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Abstract

Peripheral neuropathy is a prevalent complication of diabetes that can lead to

gait impairment and its adverse consequences. This study explored the poten-

tial utility of different parameters of gait analysis using a single sensor unit as

a simple tool to detect peripheral neuropathy in 85 diabetic patients (DP) with

diabetic foot in whom different somato-sensitivity tests in the feet were per-

formed. Gait spatiotemporal parameters were examined by sensor inertial

measurement placed in the lumbar area, while the superficial sensitivity path-

way was assessed by nociception tests and deep sensitivity was examined by

light touch-pressure and vibration sensitivity tests. Correlations between each

sensory test and gait parameters were analysed in a logistic regression model

in order to assess if gait parameters are associated with two different sensory

pathways. Impaired deep sensory pathways were significantly (P < .05) corre-

lated with lower gait speed, reduced cadence, smaller stride length, longer

stance periods, and a higher risk of falling on the Tinetti Scale, while all gait

parameters were significantly (P < .01) correlated with the superficial sensory

pathway. Type 2 diabetics have significantly (P < .05) higher impairment in

vibratory sensitivity than type 1 diabetics, and the years with diabetes mellitus

(DM) diagnosis have a significant (P < .05) association with reduced vibration

sensitivity. These findings indicate relationships between the deep sensory

pathway and gait impairments in DP measured by inertial sensors, which

could be a useful tool to diagnose gait alterations in DP and to evaluate the

effect of treatments to improve gait and thus the risk of falls in diabetic

patients.
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Key Messages
• diabetic patients with peripheral neuropathy have gait impairment as mea-

sured by inertial measurement units
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• the role of deep and superficial sensitivity alterations on gait alterations has
not been evaluated in detail in diabetic patients

• impaired deep sensory pathway correlates with lower gait speed, reduced
cadence, smaller stride length and longer stance periods

• inertial measurement units can be used to assess the efficacy of interven-
tions aimed to improve peripheral neuropathy on gait

1 | INTRODUCTION

According to the International Diabetes Federation
(IDF), diabetes mellitus (DM) is a very common disease
with a prevalence of 9.3% and is suffered by 463 million
people around the world, and it is estimated that these
figures will increase to 700 million by 2045.1 Diabetic
peripheral neuropathy (DPN), defined by the American
Diabetes Association (ADA) as ‘the presence of symp-
toms and/or signs of peripheral nerve dysfunction in
people with diabetes, after the exclusion of other
causes’, is one of the most common complications, and
its estimated prevalence ranges between 6% and 51%
among the diabetic population.2,3 Symmetric sensori-
motor peripheral neuropathy progressively leads to
reduced sensitivity, loss of ankle reflexes, a lower limb
joint motion range and muscle weakness, which cause
biomechanical changes in the lower limbs and signifi-
cantly increase the risk of falling.4-7 DPN is an indepen-
dent risk factor for falls, which supposes a 20-fold
increased likelihood of falling, compared with healthy
people, affecting their quality of life.8

Sensory receptors on the cutaneous surface, joints
and proprioceptor muscles of the lower limbs provide
continuous somatosensory information about position
and movement, which is used in the central nervous sys-
tem to control the posture and gait.9 Sensory loss is the
most common manifestation of DM in the early stages
and affects all sensory modalities, for example, pain and
thermal sensation, vibration and light touch-pressure and
proprioception.10,11 In general, the first nerve fibres to be
damaged are the small unmyelinated fibres, followed by
the small myelinated fibres and lastly the large myelin-
ated fibres.12,13 However, this is open to controversy, and
prospective longitudinal studies are needed to clarify the
issue.14 Quantitative sensory testing (QST) is non-
invasive method to assess sensory nerve function and
quantify perceptual thresholds.15 For this purpose, the
Pin-Prick test was used to assess nociception (superficial
sensitivity pathway)16,17 and the deep sensitivity path-
way17 was assessed by exploring the vibration sensation
using a 128-Hz Rydel-Seiffer diapason and biothesi-
ometer18 and light touch-pressure using a Semmes-
Weinstein monofilament (SWMT).14,19

Many studies have confirmed that reduced sensitivity
in lower limbs is related to postural and gait
disorders,20-24 but few have studied the correlations
between different alterations of sensory modalities and
gait parameters. Changes in plantar sensitivity and tactile
and vibratory sensitivity in lower limbs have been seen to
alter human gait.9 An impact on gait and posture due to
increased vibration thresholds has been observed in
patients with peripheral neuropathy.20,21,24,25 Significant
differences in gait parameters between DPN group and
healthy subjects have been shown in two studies20,21 and
in both, peripheral neuropathy was quantified only by a
vibration thresholds assessment. The presence of PN
based on vibration perception thresholds affects postural
control regardless of the cause of the peripheral neuropa-
thy.24 The cutaneous plantar surface has been defined as
a ‘sensory map’ with skin receptors providing informa-
tion about the posture of the body to the central nervous
system and playing an important role in maintaining bal-
ance during standing and ambulation.7,19 DPN patients
with tactile and vibratory sensitivity impairments have
slower gait speed, reduced cadence and shorter step
lengths.26 Modification of the plantar skin sensitivity by
means of anaesthesia or cooling has also been seen to
cause changes in gait parameters.27-29 In contrast, no
studies about gait parameter modifications and reduced
pain have been found; however, increased gait variability
was associated with neuropathic pain.30-32

Several reports have recently analysed the spatiotem-
poral parameters of gait in patients with DPN, using dif-
ferent sensors and methods.33-37 Most of them perform
gait analysis in laboratories using methods such as stereo-
photogrammetry, force platforms and dynamic surface
electromyography. Although they are validated and pre-
cise systems, their high cost, large size and transport limi-
tations make their use in clinical practice difficult.
Inertial wearable sensors are an excellent alternative to
these systems: they have a low production cost, are porta-
ble thanks to their small size, and they can be applied
outside laboratories, enabling gait analysis in any envi-
ronment, even at home.38 Diabetic patients with periph-
eral neuropathy are characterised by having a slower gait
speed, shorter step and stride lengths, reduced cadence, a
longer duration of double support and a reduced duration
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of single support compared with healthy subjects.33-40

Subjects with diabetic neuropathy have a longer duration
of the stance phase, in which the foot is in contact with
the ground, a shorter duration of the swing phase, and a
longer duration of the gait cycle than the control
group.34,35 A longer stance phase increases plantar pres-
sure and with other mechanisms, contributes to the
development of plantar ulcers, and when these are pre-
sent, the gait is altered even further, perpetuating the for-
mation of ulcers and hindering their healing.41

Despite efforts to study gait disturbances in DPN, the
relationships between gait parameters and the impair-
ment of different sensory modalities have not been clari-
fied. The aim of this study was therefore to analyse
associations between gait spatiotemporal parameters and
deep and superficial somatic sensitivity and to determine
the role of clinical variables and comorbidities related to
diabetes manifestations and diabetic control.

2 | MATERIALS AND METHODS

A cross-sectional study was carried out in diabetic
patients to explore relationships between gait parameters
measured by sensors and peripheral neuropathy vari-
ables. The study was conducted at the diabetic foot con-
sultation unit in the Rizzoli Orthopaedic Hospital in
Bologna, Italy, between September and December 2021.
The study was conducted with the approval of the Uni-
versity of Bologna Ethics Committee for Human
Research (Reference: 659/2021/Sper/IOR). The partici-
pants were recruited through a research proposal to the
University of Bologna under the agreement established
with the University of Valencia for research purposes. All
the procedures were realised in accordance with the ethi-
cal requirements of the Helsinki Declaration. All the hos-
pital's diabetic patients were contacted by telephone to
explain the objectives of the study and the procedure,
and they signed the informed consent before joining the
study.

The inclusion criteria were as follows: (1) individuals of
both genders; (2) individuals aged 18 years or older; (3) type
1 or type 2 diabetics. The exclusion criteria were: (1) sub-
jects without severe cognitive impairment or poorly con-
trolled psychiatric problems; (2) presence of active ulcers
on the feet; (3) cancer patients; (4) subjects with retinopa-
thy; (5) subjects with Charcot foot; (6) subjects with lower
limb injuries or fractures in the previous 6 months; (7) a
history of orthopaedic lower limb surgery in the last year.
In addition, they were told to bring a blood test performed
within the last 3–4 months and their usual medication.
A clinical, gait and peripheral neuropathic assessment was
carried out on each participant.

2.1 | Clinical data

Age, gender, marital status and the patient's cohabitation
or otherwise, type of diabetes, its treatment and time evo-
lution, smoking habit and mean number of cigarettes per
day, body mass index, and presence of arterial hyperten-
sion were recorded. The history of foot ulcers and lower
limb amputations was noted. A podiatric examination of
foot deformities such as hallux valgus and claw toes was
performed.

The blood analysis provided by the patient was also
collected, and we were mainly interested in parameters
related to renal function, glycemic and lipid status (creat-
inine, glomerular filtration rate, HbA1c, glycemia, LDL
and HDL cholesterol and triglyceride). The participants
were classified into two renal function categories based
on their glomerular filtration rate according to the Amer-
ican Journal of Kidney Disease: (1) renal insufficiency
(<90 GFR) and (2) normal function (90–119 GFR).42

2.2 | Gait assessment

Two scales were used to evaluate the risk of falls: the
Tinetti Scale and the Downton Index. The Tinetti Scale is
one of the most useful tools for assessing the functional
level of the population and examines two aspects: bal-
ance and gait. The gait part of the test contains seven
items with a total score of 12 points, while in the balance
part, there are nine items with a total score of 16 points.
The final score of the scale is 28 points, and the interpre-
tation is as follows: 25–28 = low risk of falls; 19–
24 = moderate risk of falls, and <19 = high risk of
falls.43,44 The Downton Index assesses items grouped in
five categories that are related to the risk of falls: previous
falls, medication, sensory deficit, mental state, and ambu-
lation.45 A total score of 3 or more indicates a risk of falls.
This is an instrument with high sensitivity for predicting
fall risks, and as such, it is very useful in preventive
programs.46

The system used to analyse gait parameters was Wiva
Science, a wearable inertial system that contained a sen-
sor (inertial measurement unit [IMU]). This sensor con-
sists of a tri-axial accelerometer, a tri-axial gyroscope,
and a magnetometer for detecting several spatiotemporal
parameters, as well as a micro-electro-mechanical system
(MEMS) designed to capture motion and translate
mechanical energy into electrical energy by applying an
algorithm.33,47 The sensor was placed in the lumbar area
on the L5 spinal segment using an elastic band, according
to the manufacturer's recommendations, and the patients
were asked to walk at their usual speed for 15 m. This
15-m walk included back and forth. When the patients
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reached the halfway point, they had to remain immobile
for 3 s in the standing position, turn around, let another
3 s pass, and start walking again towards the starting
point. After this procedure, the Wiva Science sensor sent
the information collected to a computer via Bluetooth,
and the data were stored in the Biomech Study 2011 v.1
software package. Many other studies have been carried
out using these sensors with similar methodologies for
studying gait disturbances in different pathologies and
disorders.47-52 The following parameters are thereby
obtained: gait speed, cadence, stride length, gait cycle
duration, stance and swing duration phases, double and
single support duration, step length, stance period, vari-
ability, maximum velocity of acceleration, gradient accel-
eration, and gradient deceleration. Table 1 shows the
description of each gait parameter.53,54

2.3 | Neuropathic assessment

The evaluation of superficial and deep sensitivity by
means of different tests provides valuable information
about the integrity of the two sensory pathways: the dor-
sal column–medial lemniscal system or deep sensitivity
pathway and the anterolateral system or superficial sensi-
tivity pathway, which can be useful in the diagnosis of

diabetic neuropathy. The superficial sensitivity pathway
was examined by assessing nociception using the Pin-
Prick test (Neuropen)16 and deep sensitivity was evalu-
ated by analysing light touch-pressure with the 5.07
Semmes-Weinstein monofilament (SWMT) (10 g), and
the vibration perception threshold (VPT) using two
instruments: biothesiometer Polyneuro+ (Diabetik Foot
Care Pvt Limited, India) and 128-Hz Rydel-Seiffer diapa-
son (Podoservice, Spain). Two different instruments were
used to assess the sensation of vibration because vibra-
tion is perceived through two main types of mechanore-
ceptors, the Meissner corpuscles (MCs) and Pacinian
corpuscles (PCs) associated with large fibres (Aβ fibres).
MCs are located in hairless superficial skin, and they
detect low-frequency vibrations of between 30 and 50 Hz,
while PCs are present in subcutaneous tissue, muscles
and joint capsules, and their function is to detect deep
pressure and high-frequency vibration of between
100 and 400 Hz.32 The sensory signals coming from both
structures are transmitted in the same way and in the
same large nerve fibres (Aβ) until they reach the primary
somatosensory area of the cortex,32 but they are structur-
ally different receptors, their locations are also different,
and they are sensitive to different frequency ranges. For
this reason, although vibratory stimuli arrive at the same
destination in the same way, their origin, where they are

TABLE 1 Definitions of spatiotemporal parameters of gait by inertial sensor.

Parameters Definitions

Gait speed (m/min) Ratio between the length and duration of the gait cycle.

Cadence (step/min) Number of steps per minute.

Stride length (cm) Distance between two successive contacts with the ground of the same foot. It is composed of two-step
lengths, left and right.

Gait cycle duration (s) Time interval between the first contact of two footsteps of the same foot.

Stance duration (%) This is the phase of the gait in which the foot is in contact with the ground. It begins when the foot
touches the ground for the first time, and ends when the same foot rises from the ground. This phase
accounts for approximately 40% of the gait cycle.

Swing duration (%) This is the phase of the gait in which the foot is oscillating in the air and is not in contact with the
ground. It begins when the foot rises from the ground, and ends when the same foot comes into contact
with the ground again. It accounts for approximately 60% of the gait.

Double support
duration (%)

This is the period in which the 2 ft are in contact with the ground, between the initial contact by the first
foot and the last contact by the second foot. It accounts for 10% (twice in the same gait cycle).

Single support duration (%) This is when only one foot is in contact with the ground. It accounts for 40% of the gait cycle.

Step length (cm) The distance between initial contact by one foot and the initial contact of the opposite foot.

Stance period (s) The time interval during which the foot is in contact with the ground.

Variability (%) The standard deviation of the gait cycle duration

Max. velocity of
acceleration (m/sec2)

Peak acceleration

Gradient acceleration Variation of the acceleration during the gait between two points of a certain distance.

Gradient deceleration Variation of the deceleration during the gait between two points of a certain distance.

4 SEMPERE-BIGORRA ET AL.
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generated, is different, and their affectation could also be
different. For a broader study of deep sensitivity pathway
impairment, two instruments with the ability to stimulate
the same sense in different ways were therefore used.
SWMT, which is used to assess light touch and pressure,
evaluates the sensitivity of three receptors: Meissner cor-
puscles, Merkel cell–neurite complexes and Pacinian cor-
puscles. By analysing the VPT and using the SWMT, we
can assess the dorsal column–medial lemniscal system
and identify large fibre neuropathy.19,55,56

Prior to the assessment of each sensation, the patients
were reminded that when they perceived the stimulus,
they had to express this verbally. They were reminded of
this procedure as many times as necessary during the
examination, and we avoided asking if they noticed it
every time we stimulated an area, as this could pressure
the patients to answer ‘yes’ and misrepresent the results
of the investigation. The procedure of each test was
explained before the assessment, and a demonstration
was performed on the participants' hands so that they
could identify the sensation. The patients had to be lying
or sitting with their feet raised, without shoes or socks,
and with a screen to prevent them from looking at their
feet during the examination.

2.3.1 | Superficial sensitivity

The Pin-Prick test protocol was carried out on six sites:
the plantar fingertip of the first toe, the first and fifth
metatarsal heads, the outer plantar edge of the foot, the
medial arch and a dorsal area of the hallux, near to the
nail fold. Previously, we performed a demonstration with
the blunt end of the instrument and with the sharp tip so
that the patients would be able to distinguish between
the tactile and the painful sensations. The instrument
was pressed perpendicularly onto the skin plantar surface
at each location until the sharp tip retracted, and the
patients indicated if they detected a sensation of pain by
raising their hand.16,57 The Pin-Prick test was considered
abnormal when the patients did not notice the painful
stimulus in the dorsal area of the hallux near the nail
fold.18,58

2.3.2 | Deep sensitivity

Semmes-Weinstein monofilament was applied at 10 loca-
tions, 9 on the plantar surface and 1 on the dorsum of the
foot, which coincide with the different foot dermatomes:
the plantar fingertips of the first, third and fifth toes; the
first, third and fifth metatarsal heads; the outer plantar
edge of the foot, the medial arch, the heel and the dorsal

interdigital area (between the first and second toes). The
instrument was placed perpendicular to the skin surface,
and pressure was applied until the monofilament buck-
led. This pressure was maintained for 1 second, and the
instrument was then removed and the patients' possible
response was awaited. This procedure was carried out on
both feet.18,57,59 Application of the monofilament directly
on ulcers, scars, callus and necrotic tissue was avoided.60

The test was classified as abnormal when the patients did
not detect the pressure at 4 of 10 locations, following the
evidence.61,62

The VPTs were measured with both instruments at
the same five bone prominences on the right and left feet:
on the distal dorsal area of the big toe, first and fifth
metatarsal heads and medial and lateral malleolus.60,63,64

For the assessment with the diapason, the examiner hit
the 128-Hz Rydel-Seiffer tuning fork against the palm of
his hand to make it vibrate, and it was applied perpendic-
ularly to the different sites. The test started with a maxi-
mum vibration of 8 to 0. The patients were asked to state
when they stopped feeling the vibration, and the vibra-
tion was then quantified. The test was considered abnor-
mal on the distal dorsal area of the big toe for values ≤6
in the population younger than 60 years, and for values
≤4 in patients older than 60 years.18 With the biothesi-
ometer, we started by applying a 25 V vibration: if the
patients did not detect that vibration intensity, it was
gradually raised until they detected it or until it reached
its maximum (50 V). However, when the patients felt the
25 V vibration, it was decreased until they stopped feeling
it. We recorded the number immediately before the volt-
age was detected, that is, the vibration intensity at which
the patients stopped feeling. According to the evidence,
not feeling values greater than 25 V in the dorsal area of
the big toe is associated with an ulceration risk, and
it has demonstrated high levels of sensitivity
and specificity in the detection of distal symmetric
polyneuropathy.58,63-65

After the whole examination, the presence of sensory
diabetic neuropathy (SDN) was established with the
results of the light touch-pressure using the monofila-
ment and the vibration sensation using the biothesi-
ometer, according to the recommendations of the
International Working Group of the Diabetic Foot
(IWGDF).66

2.4 | Statistical analysis

In the descriptive analyses, the mean, standard error
mean, maximum and minimum were obtained for quan-
titative variables, and frequencies and proportions were
obtained for categorical variables. The Kolmogorov–
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Smirnov test (n > 50) was used for analysing the data dis-
tribution. In general, they showed non-normal data dis-
tribution for all neuropathic test variables and for most
gait parameters and clinical and sociodemographic data.
Depending on the result of normality test, parametric or
non-parametric tests were applied in bivariate analysis.
When analysing the relationships between numerical
variables, we used the non-parametric test of the Spear-
man correlation coefficient and the parametric test of the
Pearson correlation coefficient, while the associations
between the quantitative variables and categorical vari-
ables were analysed by the U Mann–Whitney non-
parametric test and the Student's t parametric test.
A binary logistic regression analysis was used to predict
which variables of gait were related to alterations of sen-
sory modalities in diabetic patients. Logistic regression
(LR) is used as a predictive model to simultaneously
examine some independent variables that are supposedly
related to the dependent variable. In our research, five
binary regression analyses were performed with a back-
ward model for each dependent variable related to sen-
sory alterations. We used gait parameters analysed by
sensors and the results of the Tinetti and Downton scales
as independent variables.

A confidence level of 95% with a statistical signifi-
cance of P < .05 was used throughout the analysis. The
data were analysed using the IBM SPSS 25.0 statistical
software package.

3 | RESULTS

3.1 | Description of the sample

A total of 85 diabetic participants with a mean age of
68.1 (±1.3) years (aged between 20 and 87 years), par-
ticipated in the study. The sociodemographic and clini-
cal characteristics are presented in Table 2. Of these
participants, 25 (29.4%) lived alone, 3 (3.5%) with their
children, 1 (1.2%) with their parents, 11 (12.9%) lived
with the whole family, 43 (50.6%) lived with their wife,
husband, or partner and 2 (2.4%) shared a home with
someone. Among the 11 (12.9%) smokers participating,
the mean number of cigarettes smoked per day was
14.2 (±3.7) with a minimum of 1 and a maximum of 45.
The evolution time of type 1 diabetes was 32.4 years
(±4.6) ranging from 4 to 63 years, while for the group
of type 2 diabetics, it was 14.9 (±1.2) with a minimum
of 2 years and a maximum of 41. 6 (7.1%) of the
participants had no treatment for diabetes. 19 (22.4%)
participants were taking took insulin, 40 (47.1%) oral
anti-diabetic drugs and 20 (23.5%) had a combined
treatment of both.

As regards foot complications, 6 (7.1%) patients
developed ulcers in one of the feet during their diabe-
tes, 2 (2.4%) developed bilateral ulcers, while 77 (90.6%)
had no ulcers. 82 (96.5%) participants had no history of
amputations and 3 (3.5%) had experienced unilateral
amputations. 37 (43.5%) patients had no deformities,
while 7 (8.2%) had unilateral deformities and 41 (48.2%)
had bilateral deformities. 59 (69.4%) participants had
no history of Hallux Valgus; however, 7 (8.2%) had it
unilaterally and 19 (22.4%) bilaterally. In addition,
35 (41.2%) had claw toes, compared with 50 (58.8%)
who did not.

On the Tinetti scale, 6 (7.1%) individuals had a high
risk of falls, 34 (40.0%) had a moderate risk of falls and
45 (52.9%) individuals had low risk of falling. On the
Downton scale, 39 (45.9%) participants were found to be
at risk of falls compared with 46 (54.1%) who were not.

TABLE 2 Sociodemographic and clinical characteristics of

diabetic patients.

Age (years) Mean ± SEM: 68.1 ± 1.3 (Minimum 20 -
Maximum 87)

HbA1c (mmol/
mol)

Mean ± SEM: 52.9 ± 1.3 (Minimum 33 -
Maximum 86)

Glycemia (mg/dL) Mean ± SEM: 128.7 ± 4.5 (Minimum 63
- Maximum 261)

Gender 46 males; 39 females

Marital status Single: 12 (14.1%)

Married: 49 (57.6%)

Widow/Widower: 13 (15.3%)

Divorced: 11 (12.9%)

Type of diabetes Type 1: 18 (21.2%)

Type 2: 67 (78.8%)

Smoking habit Non-smoker: 74 (87.1%)

Smoker: 11 (12.9%)

BMI Normal (18.5–24.9): 26 (30.6%)

Overweight (25–29.9): 39 (45.9%)

Obese ≥30: 20 (23.5%)

Arterial
hypertension

No: 33 (38.8%)

Yes: 52 (61.2%)

Renal function
impairment

Normal function (90–119 GRF):
17 (25.4.%)

Renal insufficiency (<90 GFR):
50 (74.6%)

Digital deformities 37 (43.5%) with deformities

48 (56.6%) without deformities

Abbreviations: BMI, body mass index; GFR, glomerular filtration rate;
HbA1c, glycated haemoglobin; SEM, standard error mean.
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A sensory neuropathy evaluation was conducted using
different tools on the feet to that end (Table 3).

3.2 | Analysis between gait parameters
and sensory evaluation

We next evaluated which gait parameters are related to
different impairments of sensory modalities in a binary
logistic regression model. Regression logistic analyses
showed which gait parameters are more significantly
associated with the different somatosensitive neuropa-
thies. Lower light touch-pressure sensitivity was signifi-
cantly associated with reduced gait speed (OR = 0.52,
95% IC = 0.31–0.88, P = .015), lower cadence
(OR = 12.9, 95% IC = 2.57–65.15, P = .002), reduced
stride length (OR = 1.39, 95% IC = 1.07–1.82, P = .014)
and increased stance period (OR = 1.17, 95% IC = 1.04–
1.32, P = .012). Lower vibratory sensitivity measured by
diapason was significantly associated with lower cadence
(OR = 8.80, 95% IC = 1.88–41.11, P = .006), increased
stride length (OR = 1.61, 95% IC = 1.13–2.29, P = .009),
increased mean step length (OR = 0.41, 95% IC = 0.21–
0.88, P = .014) and a longer stance period (OR = 1.22,
95% IC = 1.07–1.39, P = .004). Lower vibratory sensitiv-
ity measured by biothesiometer was significantly associ-
ated with reduced cadence (OR = 2.61, 95% IC = 1.04–
6.51, P = .040) and a longer stance period (OR = 1.09,
95% IC = 1.01–1.19, P = .034). Finally, the presence of
sensory neuropathy (SN) was significantly associated
with a lower gait speed (OR = 0.48, 95% IC = 0.27–0.85,
P = .011), reduced cadence (OR = 20.82, 95% IC = 3.25–
133.32, P = .001), reduced stride length (OR = 1.46, 95%
IC = 1.09–1.95, P = .010) and a longer stance period
(OR = 1.21, 95% IC = 1.05–1.38, P = .007). The main sig-
nificant differences in gait parameters between patients

with and without sensitivity impairments are shown in
Figure 1.

In contrast, painful sensitivity was not significantly
associated with any of the gait parameters analysed. The
following gait parameters did not show any relationship
with sensitivity alterations: gait cycle duration, stance
duration, swing duration, single and double support
duration, variability, maximal velocity of acceleration,
gradient acceleration and gradient deceleration (data not
shown).

Interestingly, worse scores on the Tinetti scale (but
not the Downton scale) were significantly associated with
lower light-touch pressure (OR = 0.59, 95% CI = 0.41–
0.85, P = .005), lower vibratory sensitivity measured by
diapason (OR = 0.72, 95% CI = 0.53–0.97, P = .032) and
with the presence of peripheral neuropathy (OR = 0.59,
95% CI = 0.40–0.88, P = .009).

3.3 | Associations between neuropathy
measurements and age, sex and
comorbidities

Regression-logistic analyses were performed in order to
evaluate which clinical variables (age, gender, type of dia-
betes, years since DM diagnosis, smoking, arterial hyper-
tension, overweight/obesity, reduced renal glomerular
filtration rate and foot ulcer history) could be associated
with lower sensitivity and the presence of neuropathy.
Compared with patients with type I diabetes, those with
type II diabetes had more impaired vibratory sensitivity in
both the diapason test (OR = 20.19, 95% CI = 1.54–265.10,
P = .022) and with the biothesiometer (OR = 13.52, 95%
CI = 1.60–114.10, P = .017). The number of years since the
DM diagnosis was significantly associated with reduced
vibratory sensitivity measured with the biothesiometer
(OR = 1.08, 95% CI = 1.03–1.14, P = .003) and with the
presence of neuropathy (OR = 1.06, 95% CI = 1.0–1.13,
P = .047). As expected, a previous history of foot ulcers
was significantly associated with all types of sensitivity, for
example, reduced light touch-pressure (OR = 9.4, 95%
CI = 1.49–59.66, P = .017), reduced vibration sensitivity
measured with the diapason test (OR = 14.44, 95%
CI = 1.79–116.79, P = .012) and with the biothesiometer
(OR = 8.33, 95% CI = 1.3–67.33, P = .047), reduced pain-
ful sensitivity (OR = 6.75, 95% CI = 1.21–37.63, P = .029)
and with the presence of sensory neuropathy (OR = 12.10,
95% CI = 1.82–80.52, P = .010). In contrast, age, gender,
overweight/obesity, arterial hypertension and reduced
renal glomerular filtration rate were not significantly asso-
ciated with any sensitivity impairment variables (data not
shown).

TABLE 3 Sensory neuropathy evaluation (both feet).

Superficial
sensitivity

Painful sensitivity: 11 of 85 altered (12.9%)
versus 74 normal (87.1%)

Deep
sensitivity

Light touch-pressure: 16 of 85 altered (28.6%)
versus 68 normal (81%)

Vibratory sensation (DP): 20 of 85 altered
(23.8%) versus 64 normal (76.2%)

Vibratory sensation (BTM): 33 of 85 altered
(38.8%) versus 52 normal (61.2%)

Presence of
SN

15 individuals of 85 with SN (17.6%) versus 70
individuals without SN (82.4%)

Abbreviations: BTM, biothesiometer; DP, diapason; SEM, standard error
mean; SN, sensory neuropathy.
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4 | DISCUSSION

Our findings confirm the relationship between deep sen-
sitivity impairment and some gait parameters in diabetic
patients as measured by inertial measurement units
(IMUs), a convenient tool for measurement of feet
motion outside laboratory settings because of their low
cost and ease of use.38 However, no correlation was found
with superficial sensitivity. This pattern of nerve involve-
ment suggests that proprioception sense is damaged
simultaneously to the sensory modalities (light touch-
pressure and vibration sensation) that are transmitted by
the same pathway and by the same types of fibres (large
myelinated Aβ fibres), which reinforces the importance
of vibratory and cutaneous plantar sensory afferences for
walking, as other authors have indicated.7,9,19 Of all the
parameters studied, only gait speed, cadence, stride and
step length and stance period maintained the relationship
with sensory loss in a simultaneous analysis model. The
damage of light touch-pressure and vibration sensitivity
was correlated with a slower gait velocity, shorter stride
length, lower cadence and a longer stance period. These

results for gait parameters are consistent with previous
studies performed in diabetic patients.33-40 Altered deep
sensitivity measured by diapason was correlated with
shorter stride and step lengths, but stride and step lengths
were increased when these parameters were analysed in
the presence of sensory neuropathy (SN) and with light
touch-pressure. Other studies48,67 have suggested an
increase in cadence as a compensation for reduced step
and stride lengths and lower gait speed. In our case, it is
possible that the length of the steps may be increased to
compensate for loss of speed and cadence, but we suggest
that correlations between these reduced gait parameters
and altered light touch-pressure and the presence of SN
are stronger because they include the association of two
sensory assessment tests.

Our findings coincide with those of Menz HB et al.26

who showed a significant relationship between gait speed
and step length with vibration and tactile sensitivity in
DPN patients; however, no superficial sensory modalities
were analysed, and only one measure of deep sensory
pathway has been considered. On the other hand, the
analysis of both sensory pathways performed in our study

(A)
(B)

(C) (D)

FIGURE 1 Significant differences in gait speed between patients with and without sensory neuropathy (A), in speed between patients

with and without altered light touch-pressure (B), in cadence between patients with and without altered vibration sensitivity as measured by

diapason (DP) (C) and by biothesiometer (BTM) (D).
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has allowed us to show the relationship that deep sensi-
tivity damage has on the balance and gait, proposing of
future research lines and clinical interventions in the sen-
sory and walking field.

Although few studies have been dedicated to this
question, some of them reinforce the relationships
between gait parameters and specific sensory losses that
have been found in this study, especially in the case of
vibratory sensitivity. Brown S et al.20 showed that dia-
betics with DPN develop balance impairment during
movement, predominantly in the medial-lateral plane,
and they found a positive correlation between medial-
lateral dynamic sway and reduced vibratory sensation
measured with a biothesiometer. Allet L et al.21 found
abnormalities in gait parameters even before sensory loss
was clinically detected, in this company by a Rydel-
Seiffer diapason in this case. In our case, the differences
were found in results between neurothesiometer and dia-
pason measures: we observed a closer relationship
between altered gait parameters and sensory vibration
loss measured by the neurothesiometer in bivariate anal-
ysis. A recent study68 concluded that there was no differ-
ence between the Rydel-Seiffer diapason and the
neurothesiometer in the polyneuropathy diagnosis for
both clinical and research purposes, although diabetic
patients were not included in this research. Of all the sen-
sory variables considered in our study, ‘the presence of
sensory neuropathy,’ established by the combination of
monofilament and VPT by neurothesiometer, was the
variable that was related to the most gait abnormalities,
which reinforces the importance of both deep sensory
modalities during walking.

Our results have shown correlations between an
increased risk of falls quantified by the Tinetti Scale and
light touch-pressure, altered vibratory sensitivity mea-
sured by diapason and the presence of sensory neuropa-
thy. We suggest that deep sensory pathway impairments
lead to balance impairment, and changes in gait become
necessary to avoid falls. In fact, shorter step and stride
lengths are widely reported in populations with a risk of
falls38,48 and it has been considered a compensatory strat-
egy to maintain a closer control of mass centre and
reduce the risk of falling.20,69,70

The somatosensitive impairment that seems to
develop in the early stages of DPN is followed by dysfunc-
tion of the neuromuscular system, leading to muscle atro-
phy and muscular weakness.71 In addition,
hyperglycemia seems to lead to increased tendon stiff-
ness, reduced extensibility of the Achilles tendon and
finally, limited dorsiflexion ankle mobility.72 All these
factors favour the development of bony deformities and
plantar pressure increase, and eventually foot ulcers. In
this context, it has been suggested that the mechanical

pressures exerted on the sole of the foot during gait are a
key factor in the development of plantar ulcers.73 The
stance period, which is the time when the foot is in con-
tact with the ground, has been proposed as an important
factor in the formation of foot ulcers. As other studies
have shown, a longer stance period has been observed in
diabetics.37,38,73 In fact, Fernando M et al.41 showed that
diabetic patients with higher plantar pressures and active
ulcers had a longer stance period.

We observed a greater frequency of large-fibre neu-
ropathy than small-fibre neuropathy, which is contrary
to the results of other studies. It has previously been
argued that small-fibres and unmyelinated fibres are
more susceptible to damage from metabolic changes than
large myelinated fibres, with an earlier appearance of
small-fibre neuropathy during diabetes.12,13,74-77 Never-
theless, a recent prospective study conducted on type
2 diabetics78 failed to show that nerve damage during
DPN begins affecting small fibres and progresses to affect
large fibres, as has been suggested to date, and in line
with our results, they detected a large proportion of
patients with large-fibre neuropathy.

As for clinical variables, a ‘previous history of foot
ulcers’ was the only clinical variable associated with
small fibre neuropathy (superficial sensitivity pathway)
determined by pain sensitivity. In fact, painful neuropa-
thy has been associated with diabetic foot79 which is the
clinical entity resulting in widespread neuropathy-based
injury among patients with diabetes uncontrolled for
long periods of time.80,81 The clinical variables that were
associated with impaired deep sensitivity were type II
diabetes and the number of years since the DM diagnosis.
Likewise, impaired vibratory sensitivity assessed in mal-
leolus and hallux has been reported as higher in type
2 diabetic patients than in type 1 diabetic patients,82-85 as
it was found in 40% of type 2 diabetics and in approxi-
mately 12% of type 1 diabetic patients,83,85 and in another
study,84,85 a reduced vibration sense was not significant
in type 1 diabetics, thereby reinforcing the data on higher
threshold values in type 2 patients than in type 1 patients.
The risk of developing peripheral neuropathy increases
with a longer duration of diabetes, as observed in both
type 186,87 and type 2 diabetics.87-89

This study also has some limitations. First, the sample
of type 1 diabetics was insufficient to make a comparison
with type 2 diabetics. We believe it is important to study
the differences in peripheral nervous impairment
between the two types of diabetes to improve understand-
ing of the pathology and its treatment.85 Studies with a
larger sample are required. Second, it is possible that the
use of a particular type of footwear by all the participants
would yield more reliable results for gait parameters.
Measures of motor neuropathy, which plays an important
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role in gait alteration, were not included in this study.
After some questions about the relationships between
sensory damage and gait parameters have been clarified,
further studies should evaluate muscle function and dam-
age and gait parameters in diabetic patients, as deep sen-
sitivity can also alter motor responses.

In conclusion, the deep sensitivity pathway impair-
ment seems to have a significant implication in gait alter-
ations, as evidenced by the fact that the score of the
Tinetti scale was significantly associated with presence of
sensory neuropathy in this study. Gait speed, cadence,
stride length, step length and stance period are the main
gait parameters associated with deep sensitivity alter-
ation. Larger studies are needed to clarify the course of
nerve fibre impairment in DPN and to expand knowledge
of the influence of this damage on gait and posture. Clari-
fying these issues will enable improved planning of the
diagnosis and management of diabetes complications
related to gait impairment.
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