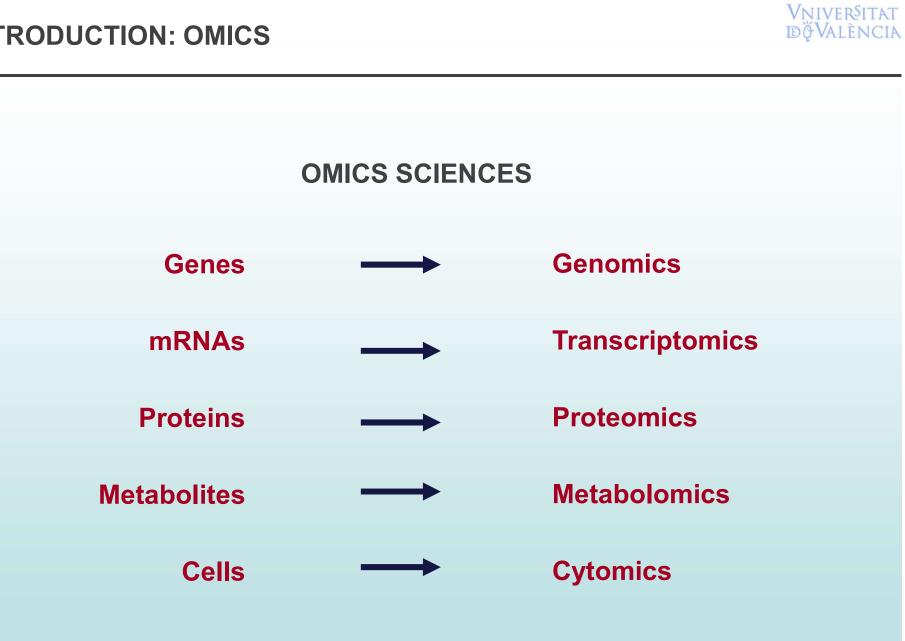
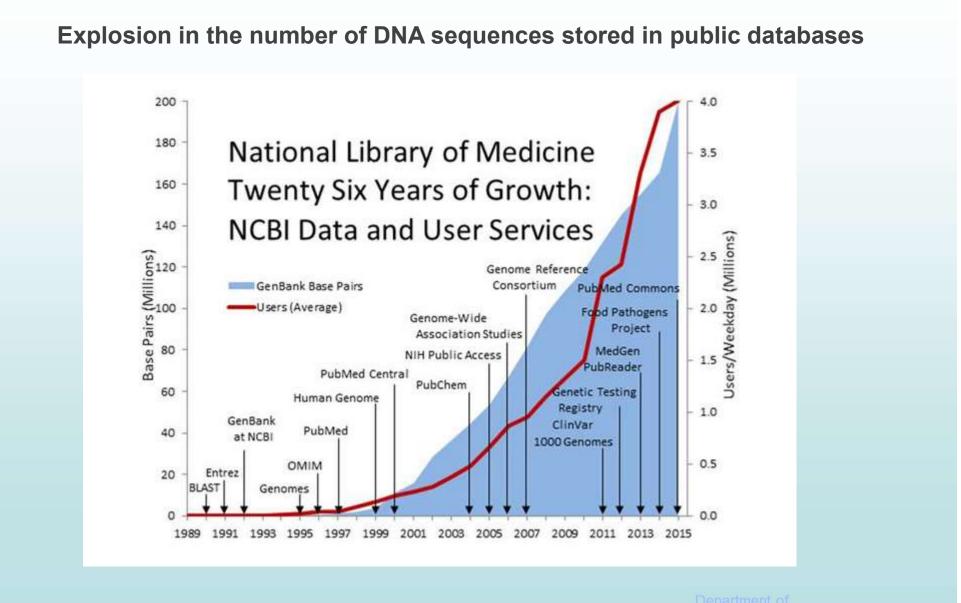

Advanced clinical diagnostic techniques: omics and their application to the molecular study of diseases


BIOCHEMICAL INTEGRATION AND CLINICAL BIOCHEMISTRY 2ND YEAR - DEGREE IN MEDICINE 2022-23


SEMINAR 4

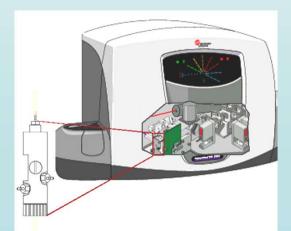
PROFESSOR: Amparo Galán Albiñana amparo.galan@uv.es

- Omics investigate organisms as a <u>whole</u>, from a <u>holistic</u> perspective.
- Omics are linked to the development of new high-performance technologies that arise from the collaboration across multiple disciplines (biology, computer science, chemistry, physics, engineering, etc.).
- Omics generate millions of biological data that require complex processing and analysis.
- The massive flow of data generated by the omics sciences has promoted the emergence and development of bioinformatics, which is defined as the discipline that applies computer science and statistics to the processing and analysis of biological data.

INTRODUCTION: OMICS

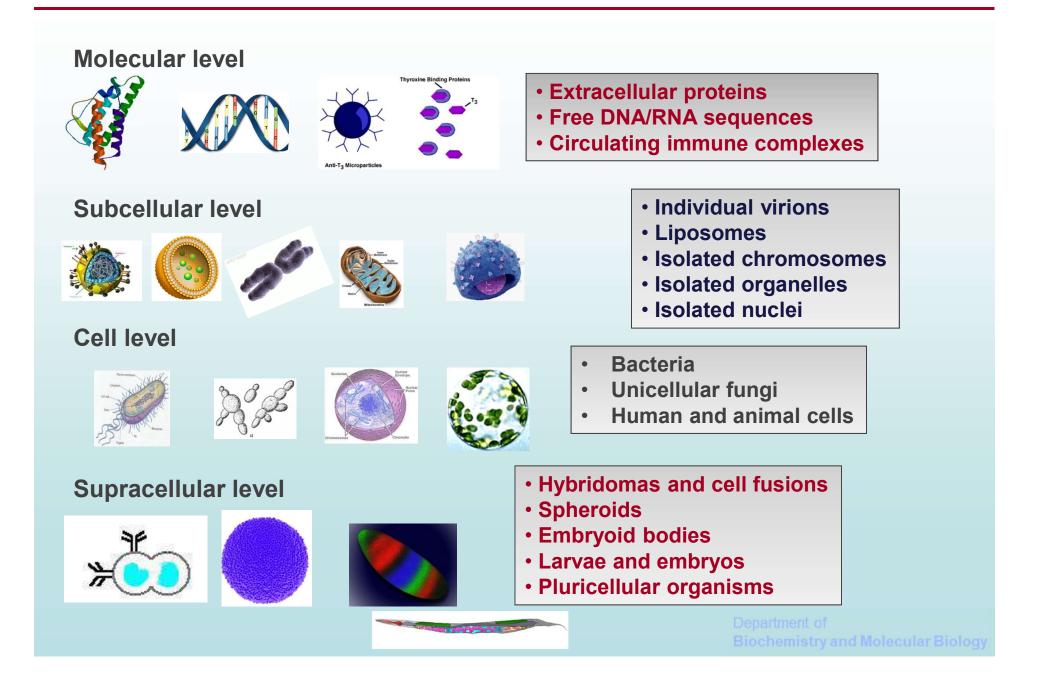
		Nucleic Acids Research, 2021, Vol. 49, Database issue	1
Table 1. The Entrez Databases (as of 9 September 2020)			
Database	Records	Description	
Literature			_
PubMed	31 471 600	scientific and medical abstracts/citations	
PubMed Central	6 447 271	full-text journal articles	
NLM catalog	1 619 856	index of NLM collections	
Books	825 385	books and reports	
MeSH	300 500	ontology used for PubMed indexing	
Genomes			
Nucleotide	429 731 711	DNA and RNA sequences	
BioSample	14 628 076	descriptions of biological source materials	
SRA	11 807 161	high-throughput DNA and RNA sequence read archive	
Taxonomy	2 401 136	taxonomic classification and nomenclature catalog	
Assembly	837 406	genome assembly information	
BioProject	458 893	biological projects providing data to NCBI	
Genome	55 580	genome sequencing projects by organism	
BioCollections	8 138	museum, herbaria and other biorepository collections	
Genes			
GEO Profiles	128 414 055	gene expression and molecular abundance profiles	
	28 377 759		
Gene		collected information about gene loci	
GEO datasets	4 002 373	functional genomics studies	
PopSet	350 627	sequence sets from phylogenetic and population studies	
HomoloGene	141 268	homologous gene sets for selected organisms	
Genetics			
SNP	720 643 623	short genetic variations	
dbVar	6 030 887	genome structural variation studies	
ClinVar	845 008	human variations of clinical significance	
MedGen	335 277	medical genetics literature and links	
GTR I	76 814	genetic testing registry	
dbGaP	1 397	genotype/phenotype interaction studies	
Proteins			
Protein	874 272 642	protein sequences	
Identical protein groups	329 946 078	protein sequences grouped by identity	
Protein clusters	1 137 329	sequence similarity-based protein clusters	
Structure	167 650	experimentally-determined biomolecular structures	
Sparcle	149 462	conserved domain architectures	
Conserved domains	59 951	conserved protein domains	
Chemicals			
PubChem substance	285 048 146	deposited substance and chemical information	
PubChem compound	111 325 418	chemical information with structures, information and links	Donartmont of
PubChem BioAssay	1 229 071	bioactivity screening studies	Department of
BioSystems	983 968	molecular pathways with links to genes, proteins and chemicals	Biochemistry and Molecular B

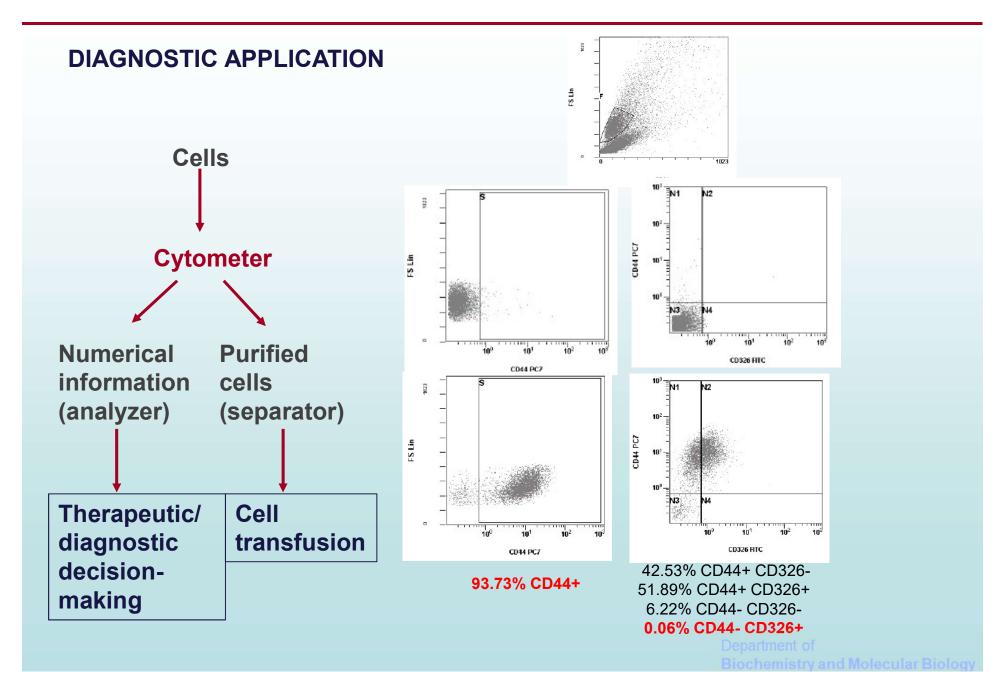
CYTOMICS


Analytical method for measuring the emission of multiple fluorescence and light scattering from cells or microscopic particles, aligned by a laminar liquid stream, when presented one at a time and at high speed in front of a light source of appropriate wavelength.

- Fluorescence and fluorescent markers
- Parameters that can be analyzed by flow cytometry
 - What can be stained?
 - Which cells can be analyzed?
- Applications of flow cytometry

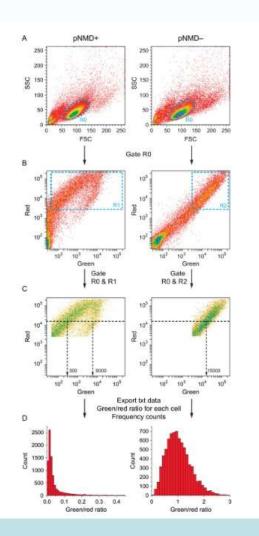
Individual biological cells or particles in suspension


Analytical method that measures the simultaneous emission of multiple fluorescence and light scattering


FLOW CYTOMETRY

Sequentially aligned by a laminar flow and presented one at a time at high speed at an optimal point of illumination

FLOW CYTOMETRY


FLOW CYTOMETRY

DIAGNOSTIC APPLICATION

Main applications: oncology and hematology

- Diagnosis and prognosis of leukemias, lymphomas, lymphoproliferative syndromes and myelodysplastic syndrome
- Absolute CD34⁺ cell count for auto- or allotransplantation of hematopoietic stem cells
- Identification of proliferating cells and tumor cells in blood, biological fluids and complex samples
- Study of cell cycle regulation

METABOLOMICS

Metabolomics is the study of metabolites.

Metabolites are the intermediates and products of metabolism. They are any molecule of less than 1 KDa (except some macromolecules: lipoproteins, albumin, etc.).

Unique footprints left by specific cellular processes.

Endogenous metabolites: produced by the organism. Exogenous metabolites: from external substances (drugs, poisoning, etc.). Also known as xenometabolites.

The metabolome represents the collection of all the metabolites in a cell, tissue, organ, or organism that are the product of cellular processes.

Biological fluids: mostly urine and plasma (non-/minimally invasive). But they also include: tissue biopsies, cells, exudates, saliva, bile salts, intestinal aspirates, and fluids (cerebrospinal, seminal, amniotic, and synovial).

Metabolites have been roughly categorized as: 2,500 endogenous metabolites 1,200 drugs 3,500 food components Human metabolome data: <u>www.hmdb.ca</u>

ROUTINE DIAGNOSTIC APPLICATIONS

BIOCHEMICAL AUTOANALYZERS

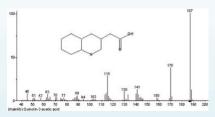
- State-of-the-art analyzers for analyzing hundreds of metabolites in a few minutes
- Based on spectrophotometry
- Non-complex techniques used
- Quick and precise

Particle detection of:

- Enzymes
- lons:
- Na⁺/K⁺
- Biochemical markers:
 - Glucose, cholesterol, triglycerides, uric acid, proteins, serum albumin, creatinine
- Immune assays by antibodies
- Hematologic assays

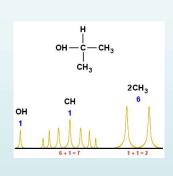
Erythrocyte sedimentation/coagulation

Samples: urine and plasma



Routinely detect common metabolites and big molecules / cells

METHODS OF BIOMARKER DETECTION IN METABOLOMICS


Mass spectrometry (MS)

Nuclear magnetic resonance (NMR) spectrometry

Samples

Urine (by NMR): high metabolite concentration and low protein concentration Blood/plasma (by MS and NMR): metabolic status of the organism

Whole tissue <

Lipid phaseAqueous phase

In pathophysiological processes, metabolites increase *in* - *situ.* Low sample amounts (10 μg in tissue and 10 μl in fluids)

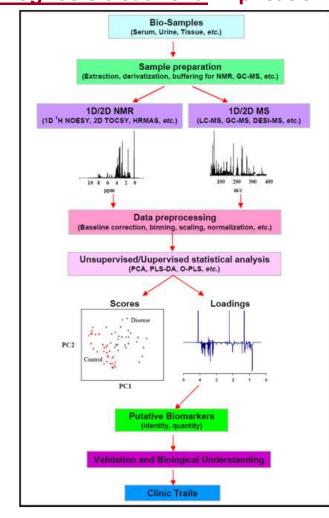
DIAGNOSTIC APPLICATION

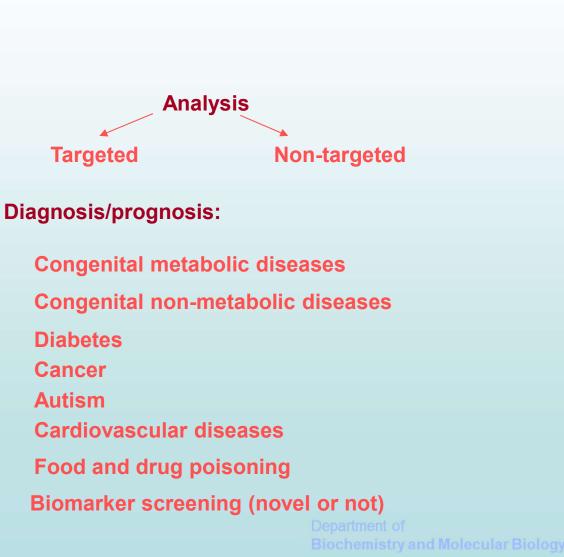
Metabolite detection endogenous/exogenous origin Vitamin C (AA/DHAA) Vitamin B6 and derivatives Taurine Amino acids Hydroxymethylated DNA cytosines Purine and pyrimidine bases Lactulose/mannitol

Prostaglandines

Nucleosides/nucleotides

Toxicology (alkaloids, benzodiazepines, amphetamines and derivatives)


Eicosanoids (polyunsaturated fatty acids)


Drugs of abuse

Emerging drugs

DIAGNOSTIC APPLICATION

Biomarkers: value for <u>early diagnosis of diseases</u> (i.e. preclinical phase of trials with therapeutic possibilities). Prognosis/treatment implication

Gowda et al., Expert Rev Mol Diagn. 2008

MOLECULAR BIOLOGY TECHNIQUES

Old and **new** molecular diagnostic techniques

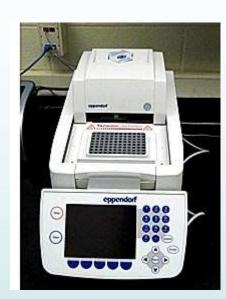
One molecule: one disease

- Southern blot •
- PCR •
- DNA sequencing (Sanger) Cytogenetics
- •

Set of markers that characterize a disease

- ٠
- Gene expression microarrays Comparative genomics and epigenetic microarrays Next generation sequencing: NGS
- •

PCR/qPCR


Polymerase chain reaction It detects presence/expression of individual genes

PCR: endpoint PCR Qualitative/semi-quantitative

qPCR: real-time PCR

- Quantitative, sensitive and specific
- Quick

PCR/qPCR

DIAGNOSTIC APPLICATION

Diagnosis of infectious diseases

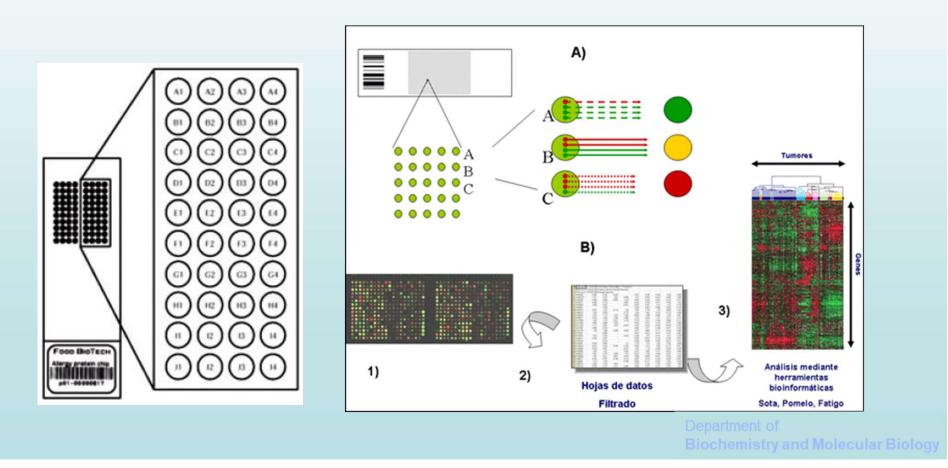
Detection of DNA and/or cDNA from infectious organisms Fungi, bacteria, virus

Diagnosis of monogenic diseases

Monogenic diseases: failures or mutations in the information of a single gene that can be inherited or *de novo*. Mutations are detected in patients by DNA analysis and confirmed by screening of family members.

Preimplantation genetic diagnosis

Performed on the embryo prior to its transfer to the uterus


Diseases:

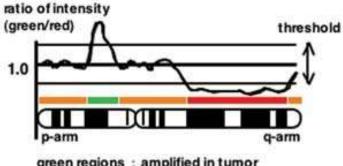
- Autosomal dominant inheritance: single parent
- Autosomal recessive inheritance: two unaffected carrier parents
- Sex-linked inheritance: an affected father or a carrier mother

Array is the equivalent to matrix.

It is a solid surface containing a huge number of fixed probes (nucleic acids, proteins, metabolites, tissues...) that will be exposed to target molecules (sample).

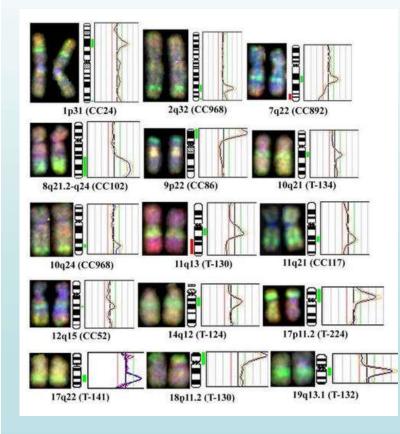
MICROARRAYS Massive analysis of gene sequences Classification **RNA** DNA **Splice** ChIP GX aCGH CH₃ miRNA. variants **RNA** interference **Methylation** Transcription Number of **mRNA mRNA** copies factors isoforms Ŷ J, Ŷ Elucidate the role that Perform a global Carry out a high-resolution analysis of the genome to protein-DNA interactions play transcriptome analysis and detect changes in DNA copy in transcription, replication, identify the role of isoforms (alternative splicing) in drug number associated with modification and repair. cancer and other diseases. response and disease. Discover and monitor Explore transcription at the Determine the microRNA epigenetic changes that play genome-wide level through a profile and explore its role in fundamental roles in many variety of model systems. gene regulation. cellular processes.

Biochemistry and Molecular Biology


MICROARRAYS CGH (comparative genomic hybridization) Each point corresponds to a known Patient DNA marked sequence location in the genome in green **MICROARRAY Control DNA** marked in red Diagnosis of diseases associated with chromosomal abnormalities 8 33 an a1.1° a1.° 2° 2 12° 62' 2° an A. 9 Sil's 016.2 é

Biochemistry and Molecular Biology

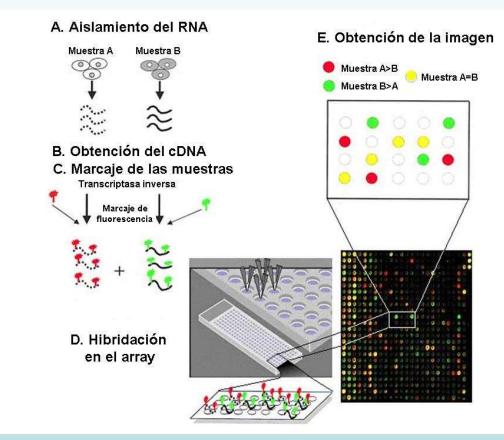
CGH (comparative genomic hybridization)



green regions : amplified in tumor red regions : deleted in tumor yellow regions : normal copy-number

DIAGNOSTIC APPLICATION

Cancer


Preimplantation diagnosis

On chromosomes

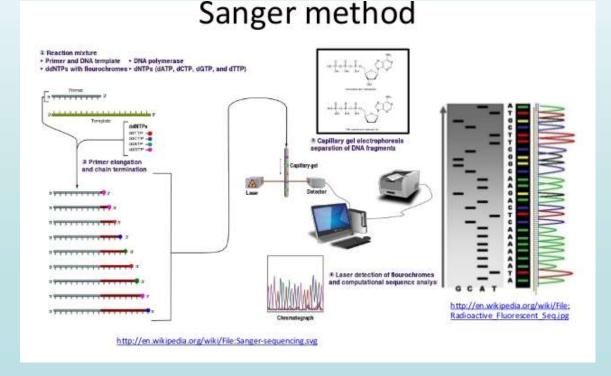
EXPRESSION MICROARRAYS

Comparative results

EXPRESSION MICROARRAYS

DIAGNOSTIC APPLICATION

- Detailed molecular phenotype
- Applications in oncology:

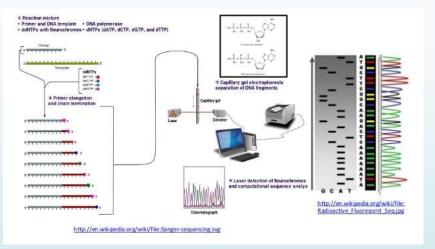

Tumor stage: molecular classification Determination of treatment modalities Identification of prognostic markers

- Variation of expression profile with nutrition → Nutrigenomics
- Variation of expression profile with exposure to toxic substances → Toxicogenomics
- <u>Personalized medicine</u>: patients can be treated with specific drugs based on their own expression signatures (patterns) → <u>Pharmacogenomics</u>

We have 3 billion $(3x10^9)$ bases arranged in a unique order, with ~ 20,000 genes regulating gene transcription to protein synthesis.

Sanger sequencing is a well-established method.

Fragments: 500 pb – 1 Kb Maximum: 96 reads

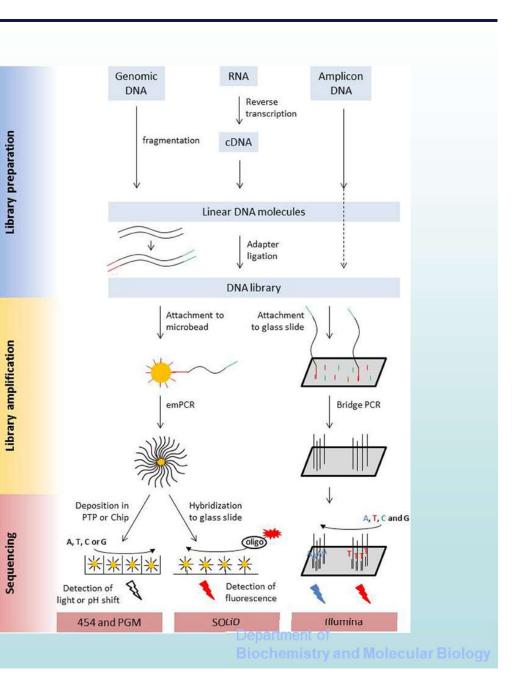

Time-consuming Expensive for long reads

The Human Genome Sequencing Project

Sanger sequencing method

Sequencing of 25,000 genes

Next generation sequencing (NGS)


High throughput

Bioinformatic interpretation

NGS

High-throughput sequencing: "Next generation" Able to sequence a large number of copies in a single reaction

Same procedure Different technology depending on the platform

Vniver§itat dğValència

NGS

Step 1. Sample preparation

Step 2. Template generation/ amplification/sequencing

Reads: 30-400 bps

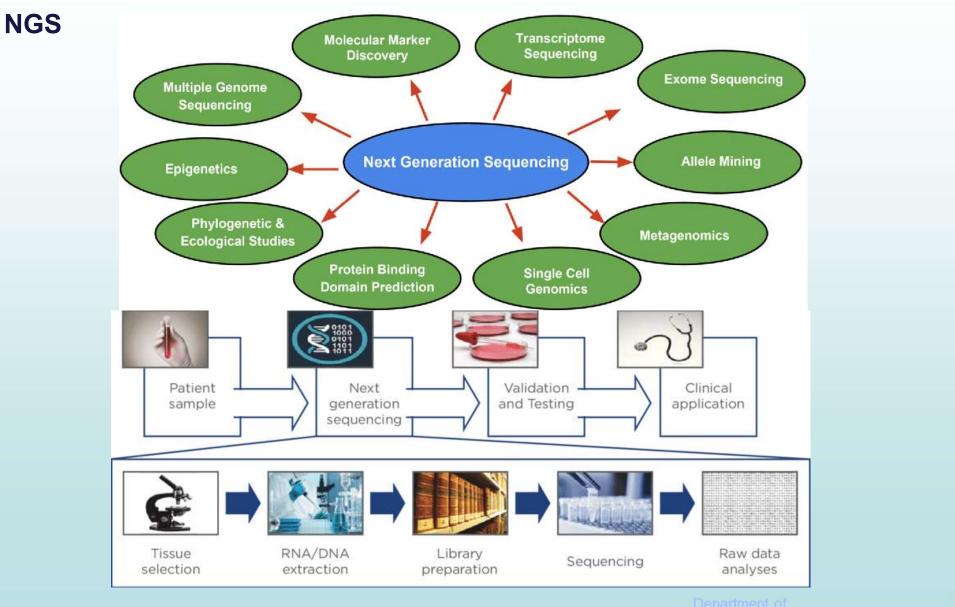
Step 3. Data analysis

Data analysis is essential. Millions or trillions of data are generated. Platform software assembles the results. Sequence assembling:

Known genomic sequences *De novo s*equences

HiSeq2000 / 2500

Ion torrent


Proper bioinformatics analysis is essential.

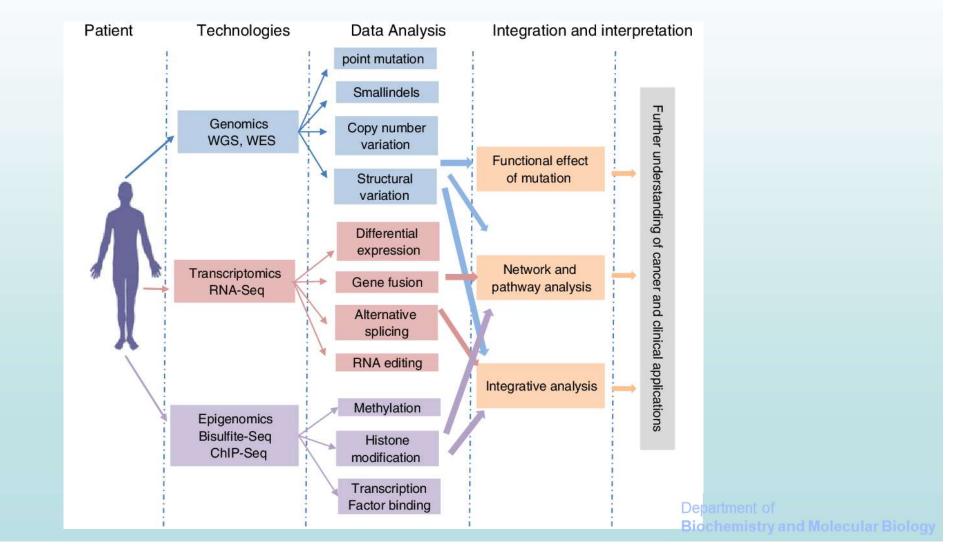
Histone modifications (e.g., acetylation, methylation) Sample Hypersensitive TFBSs DNA modifications (e.g., methylation) collection sites RNA-E.g., splicing variants (CH₃) binding and copy number protein variation RNA Nucleosome polymerase (histone proteins) CH3CO E.g., Normal tissue RIP-seq CHa Transcripts RNA-seq Source materia Bisulfite-sea DNase-seq RNA MNase-seq 5c-seq FAIRE-seq ChIP-seq + Gene E.g., Tumor sample Reverse transcription Intron (noncoding) Exon (coding region) Long-range regulatory elements Cis-regulatory elements (enhancers, repressors/ WGS (promoters, TFBSs) "Exome" sequencing CDNA silencers, insulators) (dsDNA) Template generation Fragmentation and size selection Adapter ligation Amplification Template immobilization and spatial separation Sequencing reactions and detection -----Single-end reads Unsequenced Paired-end reads NGS imer Sequence read DNA sequence template Shorter DNA templates = Total coverage Longer DNA template = partial coverage Data analysis Assemble NGS reads de novo Align NGS reads to reference genome Reference genome (Assembled genome) © 2012 American Association for Cancer Re **Cancer Prevention Research Reviews** AAR

Jason M. Rizzo, and Michael J. Buck Cancer Prev Res 2012;5:887-900

Department of Biochemistry and Molecular Biology

Vniver§itat döValència

Landolt et al., EMJ. 2016;1[2]:50-57


gDNA "exome" Protein-encod incing (i.e., exons) cDNA made f sources of seq Bisulfite-treat immunoprecip cDNA made f immunoprecip pNase-digest DNAs) (exons), including copy number variation (e.g., repeats, indels) and structural rearrangements (e.g. translocations) from various Can identify all transcribed sequences (transcriptome) or just coding RNA sequence can also provide information on sequence content (e.g., splicing variants) and copy number/abundance (e.g., gene expression profiling) ted DNA Identifies sites of DNA methylation (e.g., genetic imprinting) pitated DNA Identifies sites of protein–DNA interactions such as transcription factor-binding sites from Identifies sites of protein–RNA interactions; a ChIP-seq for RNA-binding proteins
Incing (i.e., exons) CDNA made f sources of Bisulfite-treat Immunoprecip cDNA made f immunoprecip eq DNase-digest	indels) and structural rearragements (e.g., translocations) (e.g., translocations) (exons), including copy number variation (e.g., repeats, indels) and structural rearrangements (e.g. translocations) from various RNA (transcriptome) or just coding RNA sequences RNA (transcriptome) or just coding RNA sequence can also provide information on sequence content (e.g., splicing variants) and copy number/abundance (e.g., gene expression profiling) ted DNA Identifies sites of DNA methylation (e.g., genetic imprinting) pitated DNA Identifies sites of protein–DNA interactions such as transcription factor–binding sites from Identifies sites of protein–RNA interactions; pitated RNA a ChIP-seq for RNA-binding proteins
Incing (i.e., exons) CDNA made f sources of Bisulfite-treat Immunoprecip cDNA made f immunoprecip eq DNase-digest	ding gDNA Identifies the sequence for all coding regions (exons), including copy number variation (e.g., repeats, indels) and structural rearrangements (e.g. translocations) from various Can identify all transcribed sequences RNA (transcriptome) or just coding RNA sequence can also provide information on sequence content (e.g., splicing variants) and copy number/abundance (e.g., gene expression profiling) ted DNA Identifies sites of DNA methylation (e.g., genetic imprinting) pitated DNA Identifies sites of protein–DNA interactions such as transcription factor-binding sites from Identifies sites of protein–RNA interactions; a ChIP-seq for RNA-binding proteins
sources of seq Bisulfite-treat Immunoprecip cDNA made f immunoprecip eq DNase-digest	from various RNA Can identify all transcribed sequences (transcriptome) or just coding RNA sequence can also provide information on sequence content (e.g., splicing variants) and copy number/abundance (e.g., gene expression profiling) ted DNA Identifies sites of DNA methylation (e.g., genetic imprinting) pitated DNA Identifies sites of protein–DNA interactions such as transcription factor–binding sites from Identifies sites of protein–RNA interactions; pitated RNA a ChIP-seq for RNA-binding proteins
cDNA made f immunoprecij immunoprecij eq DNase-digest	ted DNA Identifies sites of DNA methylation (e.g., genetic imprinting) pitated DNA Identifies sites of protein–DNA interactions such as transcription factor–binding sites from Identifies sites of protein–RNA interactions; pitated RNA a ChIP-seq for RNA-binding proteins
cDNA made f immunoprecip eq DNase-digest	pitated DNA Identifies sites of protein-DNA interactions such as transcription factor-binding sites from Identifies sites of protein-RNA interactions; pitated RNA a ChIP-seq for RNA-binding proteins
immunoprecip eq DNase-digest	from Identifies sites of protein–RNA Interactions; pitated RNA a ChIP-seq for RNA-binding proteins
	ted chromatin Identifies genomic regions susceptible
DNA	to enzymatic cleavage by DNase, i.e., hypersensitive sites and potential regulator regions
eq Open/accessi DNA	ible chromatin Identifies open/accessible chromatin regions i.e., hypersensitive sites and potential regulatory regions
eq Nucleosome- DNA	associated Identifies nucleosome positions on genomic DNA (i.e., primary chromatin structure); also provides information on histone/
seq Captured chro conformation	ons interactions; determines the spatial organizati
omics Microbial DN/	A populations Genomic analysis of microbial communities; identifies bacterial/viral populations present in specific environments (e.g., human gut and tumor samples)
n	C-seq Captured chr conformati

IP DNA sources can include histone proteins (e.g., histone H3 or H4), as a paired or alternative approach to MNe (77). IP DNA sources can also include covalently modified histone proteins (i.e., specific histone acetylation: H3K36Me3)-to map "histone code."

Abbreviations: cDNA, reverse-transcribed RNA or "complementary DNA" (i.e., introns removed during RNA splic collection of DNA and proteins in the nucleus; openness/accessibility of chromatin, regions of looser DNA packa enzymatic cleavage and protein binding/gene regulation (see Fig. 1: "Hypersensitive Sites"); indels, insertions/ tome, all transcribed DNA sequences, includes small noncoding RNAs, miRNAs, and coding RNAs (i.e. genes)

NGS DIAGNOSTIC APPLICATION

Workflow for integrating omics data into cancer research (disease) and clinical applications

NGS

DIAGNOSTIC APPLICATION

Exome and targeted sequencing

Cancer panels study

Solution of the substitution of t

- Presence or absence of mutations
- Diagnostic factors / prognosis / biomarkers that indicate/advise against therapies

Diagnosis of unknown genetic diseases

- Exome sequencing to understand recessive hereditary diseases
- Child developing inflammatory bowel disease
 - Wounds in the gut / unknown cause
 - 100 visits to hospital from age 4
- Exome sequencing reveals mutation in XIAP gene
 - Bone marrow transplant as a treatment

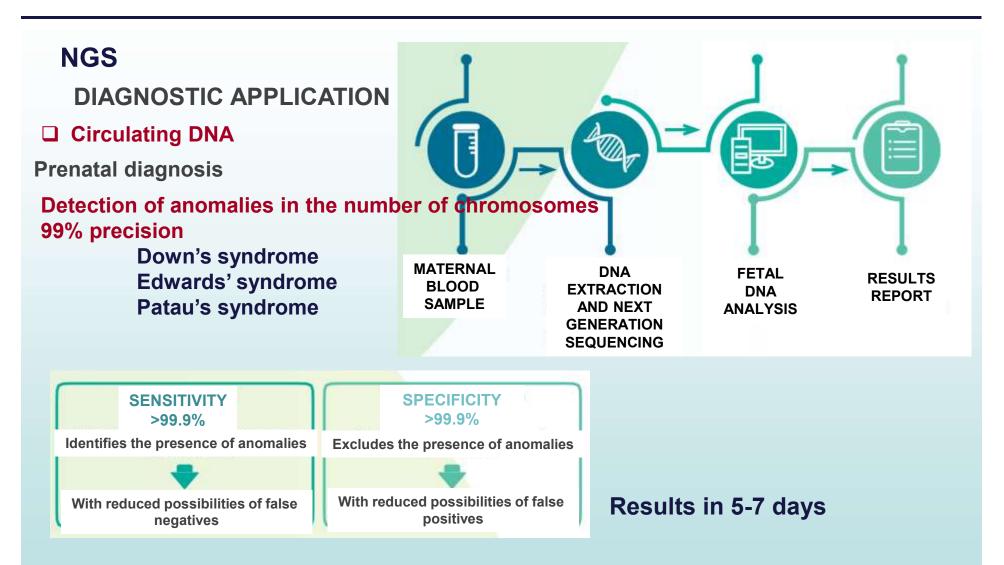
NGS

DIAGNOSTIC APPLICATION

□ Whole genome sequencing (WGS)

Oncological application

Studies of mutations, methylation, sequence fusion, SNPs, etc.

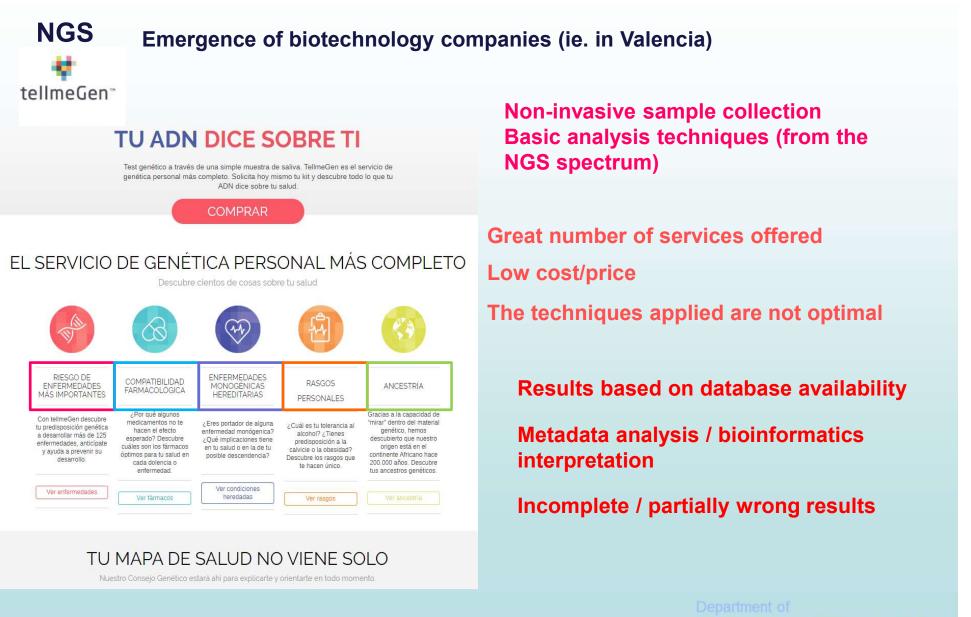

Diagnosis of unknown genetic diseases

- Study of all regions of the genome (SNP array) to understand recessive hereditary disorders
- Patients who suffer from joint pain and show calcium deposits in their arteries on x-ray
 - WGS shows mutation in *NT5E* gene, involved in breaking down calcifications in arteries

Diagnosis of a great number of disorders with a genetic cause

NGS

DIAGNOSTIC APPLICATION


Circulating DNA

Circulating tumor DNA Liquid biopsy

New UltraSEEK[™] Lung Panel

Gene	Coverage (Missense mutations)	
BRAF	Codon 469 (exon 11) and codons 594, 600 (exon 15)	
EGFR	E709A, E709G, E709K, E709V, G719A, G719D, G719S, G719C, S768I, T790M, L858R, L861Q, L861R, C797S, Exon 19 indels, Exon 20 insertions	
KRAS	G12A, G12C, G12D, G12R, G12S, G12V, G13C, G13D, Q61H, Q61K, Q61E, Q61P, Q61R, Q61L	
ERBB2	A775_G776insYVMA, G776>VC	
PIK3CA	Codons 542, 545 (exon 9), codon 1047 of (exon 20)	
TOTAL	5 Genes	

NGS

DIAGNOSTIC APPLICATION

Future perspectives

Is NGS the ultimate "personalized medicine"?

• It has a predictive value of disease risk and potential for delaying or preventing the development of the disease.

• It can predict adequate drug dosage, drug response or adverse effects.

• It can help determine the treatment of diseases based on the patient's genetic profile.

Mol Biosyst. 2016 May 24;12(6):1818-30. doi: 10.1039/c6mb00115g.

Next generation sequencing: implications in personalized medicine and pharmacogenomics.

<u>Rabbani B¹, Nakaoka H², Akhondzadeh S³, Tekin M⁴, Mahdieh N¹</u> **⊕ Author information**

http://www.labgenetics.com.es/catalogo_enfermedades_hereditarias.htm

- Legal/political adaptations
- Work adaptations
- Social adaptations

Post-genomic era of medicine

The application of omics for the diagnosis, prognosis and study of diseases has great value and potential.

Cytomics is used for the diagnosis and prognosis of hematological and oncological diseases.

Metabolomics develops biomarkers for the current and potential diagnosis of multiple pathologies.

Molecular diagnostics has the greatest application and potential at present.

- **CGH** arrays
- □ Expression microarrays
- □ Sequencing/NGS

Advanced clinical diagnostic techniques: omics and their application to the molecular study of diseases

BIOCHEMICAL INTEGRATION AND CLINICAL BIOCHEMISTRY 2ND YEAR - DEGREE IN MEDICINE 2022-23

SEMINAR 4

PROFESSOR: Amparo Galán Albiñana amparo.galan@uv.es