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ABSTRACT 

 

Title: Optimizing Product Recommendations for a Try-Before-You-Buy Fashion e-commerce Site 

Author: Paul Ruh 

 

The fashion e-commerce market has experienced a significant growth and more and more 

customers tend to buy products online, rather than in physical stores. However, after a customer 

buys a product online, only a fraction of the garments stay in their wardrobe as many items are 

being returned to the vendor. Due to the absence of physical examination and misleading product 

descriptions customers struggle to find the right product suitable to their personal preferences. 

Especially the category of women’s lingerie suffers to a great extend from high return rates. 

Different sources report that between 70 up to 100% of women wear wrong sized bras. Personalized 

recommendations through so called recommendation systems play an essential role in e-commerce. 

This thesis aims to optimize the current product recommendations of a Belgium start-up called 

CurveCatch that sells women’s lingerie articles online and relies on a try-before-you-buy concept. 

To predict which products a customer is likely to buy two different personalized deep learning 

approaches were introduced. Data sparsity was addressed by labeling each unique product per 

customer and minority classes were synthetically oversampled. The findings demonstrated that 

recommendation systems are not only relevant for companies operating on a large scale. Rather, 

they also can be a valuable source of accurate recommendations for start-ups with sparse data. 

However, results also underlined well-known limitations of recommendation systems. Both models 

struggled especially when identifying products a customer is likely to buy, while it was rather easy 

to identify products a customer is not likely to buy. 

 

Keywords: Machine learning, Recommendation systems, Deep learning, Data sparsity, Fashion, 

E-Commerce, Product Recommendations 
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ABSTRACT 

 

Título: Optimização das recomendações de produtos para um site de comércio electrónico Try-

Before-You-Buy Fashion 

Autor: Paul Ruh 

 

O mercado de e-commerce de moda experimentou um crescimento significativo e cada vez mais 

os clientes tendem a comprar produtos online, em vez de em lojas físicas. No entanto, muitos itens 

são devolvidos ao vendedor após a compra online, pois os clientes têm dificuldade em encontrar o 

produto certo adequado às suas preferências pessoais devido à falta de exame físico e às descrições 

de produtos enganosas. A categoria de lingerie feminina sofre muito com as altas taxas de 

devolução. Diferentes fontes relatam que entre 70% e 100% das mulheres usam sutiãs do tamanho 

errado. As recomendações personalizadas através dos chamados sistemas de recomendação 

desempenham um papel essencial no e-commerce. Esta tese visa otimizar as atuais recomendações 

de produtos de uma start-up belga chamada CurveCatch que vende artigos de lingerie feminina 

online e depende de um conceito de experimente antes de comprar. Para prever quais produtos um 

cliente é mais propenso a comprar, foram introduzidos dois diferentes abordagens de aprendizado 

profundo personalizadas. A escassez de dados foi abordada rotulando cada produto único por 

cliente e as classes minoritárias foram sobreamostradas sinteticamente. Os resultados 

demonstraram que os sistemas de recomendação também podem ser uma fonte valiosa de 

recomendação de produtos para start-ups com dados escassos. No entanto, os resultados também 

sublinharam as bem conhecidas limitações dos sistemas de recomendação. Ambos os modelos 

lutaram especialmente ao identificar os produtos que um cliente é mais propenso a comprar, 

enquanto era relativamente fácil identificar os produtos que um cliente não é propenso a comprar. 

 

Palavras-chave: Aprendizagem de máquinas, Sistemas de recomendação, Aprendizagem 

profunda, Espaçamento de dados, Moda, E-Commerce, Recomendações de produtos  
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02 INTRODUCTION 

2.1 Introduction to CurveCatch 

This thesis aims to supplement and improve the current operational processes of the Belgium 

lingerie retailer CurveCatch by developing decision support models that identify products 

customers are likely to buy. The firm relies on a so called try-before-you-buy (TBYB) concept, 

which allows customers to try on various lingerie products at home before they pay. As shown in 

the graphic below, the company gathers information about individual user features by a small 

questionnaire that all customers are obliged to fill out before items can be sent to their home. After 

a customer filled out the survey a style expert recommends several products, which will be 

presented to the client in a so called “virtual box”.  In a virtual box the customers select desired 

items online to be passed to their home in a “Box” without being charged for the products. After 

trying on the items at home, the customers decide which products they wish to keep and which 

products they want to return. If customers would like to order another box, they can decide if they 

want to fill out the survey again or if the virtual box should be based on the previous answers of 

the questionnaire. 

 

 
Figure 1: Business approach of CurveCatch 
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Currently, recommendations that ultimately end up in a virtual box are made by style experts, 

which is costly and time-consuming. This work focuses on partially replacing the human-in-the-

loop component of the current process by developing a top-line recommendation system to produce 

a ranked list of items per customers. As shown in the graphic above, this work is positioned right 

next to the style expert and aims to supplement the current process of making accurate product 

recommendations. It is important to note that at this stage of the start-up it is not the goal to fully 

replace the style expert but to build a valid starting point to select items suitable for the virtual box.   

 

Producing the ranked list is the top line of the recommendation system of CurveCatch. Other 

decision support models may determine which products should be part of the virtual box by 

building up on the probabilities from the ranked list of products and many other constraints like 

profit margins or inventory levels.  Ultimately, this work can be seen as the top part of the 

recommender system of CurveCatch with significant relevance as many other models will build up 

on the results. Recommender systems have played a major role in e-commerce for a long time. This 

research will introduce several machine learning models to tackle well-known limitations of 

recommender systems. As mentioned before, the main objective of this research is to identify 

products customers might like by producing a ranked list of products per customer, while the final 

selection of which products to position in the virtual box remains out of scope. 

2.2 Research problem  

Techniques to derive ranked list of products are widely known. There exists a large variety of 

models and techniques backed-up by profound literature of well-known research institutes and 

established companies like Amazon or Netfilx (Hunt, 2015; G. Linden B. S., 2003). For this work 

it is crucial to find the right approach and architecture specific to the available data and individual 

challenges of CurveCatch. While companies like Amazon or Google have extremely large amounts 

of data available, start-ups like CurveCatch can only utilize significantly smaller amounts which 

aggravates the challenge a lot. On the one hand this thesis aims to choose a valid machine learning 

architecture which suits the individual problem and approach of CurveCatch and on the other hand 

this work tries to find a way to successfully derive insights out of sparse data. Hence, 2 research 

questions were identified: 
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RQ 1: How can machine learning be leveraged to find out which products a customer is most likely 

to buy? 

 

Two personalized deep learning models will be developed which involves training a model on 

labeled data to predict whether a customer will purchase a particular product based on features such 

as the customer's demographics and the purchase history. Relevant user features from the 

questionnaire and several product details serve as input features for the neural networks while the 

label indicates whether an article was purchased or not. The model classifies all products in the 

inventory of CurveCatch and outputs a probability of purchase for each of the items. 

 

RQ 2: How can the data sparsity be addressed to still get results with high confidence? 

 

Data sparsity will be addresses by labeling each unique product per customer to extend the 

historical orders data frame. An oversampling technique will be introduced to create synthetic 

samples of the positive classes. Finally, the model architecture and hyperparameters need to be 

adapted to perform well on sparse data.  
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03 RELATED WORK 

3.1 Recommender systems in E-commerce 

The global E-Commerce market has been constantly growing, especially during the pandemic 

online sales have increased (Anam Bhatti, 2020). Along with this increase, the shopping behavior 

of users has changed, as more and more people tend to buy fashion products online. However, after 

a customer buys a product online, only a fraction of the garments stay in their wardrobe as many 

items are being returned to the vendor which in turn reduces profitability and increases the carbon 

footprint (Nestler, 2021). Customer returns have risen sharply in the last years with growth yearly 

growth rate of 50% for certain categories of garments (Choi, 2016). The reasons for returns vary 

from “Just tried it on for fun” to misleading product descriptions. Yet, the most frequently 

occurring reason for returns in the fashion industry is related to the size of the article (Hannu 

Saarijärvi, 2017; Ratcliff, 2014). The purchase decision of clients involves individual factors like 

the taste of the individual and product related factors like the color, the design, or the fabric of 

product. Additionally, the physical examination of the product is absent when shopping for 

products online. Thus, the aforementioned factors lead to major uncertainties in the online fashion 

industry and ultimately return rates grow (Nestler, 2021). Users are frequently confronted with an 

overwhelming selection of goods and their corresponding descriptions due to the web's tremendous 

rise in information. Thus, personalized recommendations enabled through so called “recommender 

systems” (RS) have been playing and essential role to boost sales and to facilitate the decision-

making process of the client (Shuai Zhang, 2019). 

 

Especially the category of women’s lingerie suffers to a great extend from high return rates. 

Different sources report that between 70 up to 100% of women wear wrong sized bras, as the 

traditional method of bra sizes often overestimates band size and underestimates cup size (A.R. 

Greenbaum, 2003; K. Wood, 2008; Steele, 2010; J. White, 2012). Especially for the TBYB-

approach of CurveCatch it is key to make solid product recommendations based on the gathered 

data from previous orders and from the questionnaire. Currently most recommendations are made 

knowledge-based by fashion experts. Once the start-up will scale-up, manually recommending 

products will get more costly and time-inefficient. Like many other companies CurveCatch can 

significantly boost efficiency and sales by developing recommender systems to efficiently support 
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users in the buying process by designing information agents that point to products likely to be 

purchased by a client (Burke, 2007).  

 

Typically, recommender systems are based on user preferences, item features and past interactions 

between a user and an item. Recent literature describes a recommender system as a “search ranking 

system, where the input query is a set of user and contextual information, and the output is a ranked 

list of items” (Heng-Tze Cheng, 2016). RS aim to predict whether a particular user is likely to buy 

a product or not, which means deriving the probability of purchase between a specific user-item 

pair. (F.O. Isinkaye, 2015). In most cases the ranked list of products is backed-up by other decision 

support models which also consider constraints like profit margins of products and inventory levels 

(Long-Sheng Chen, 2008). 

 

To model preferences of users, the first step is to obtain sufficient representative data or feedback 

of the respective user (Gawesh Jawaheer, 2010). Here, a distinction between explicit and implicit 

feedback is made. Explicit feedback requires active user participation to gather the desired data. 

Often a customer is asked to rate a product after the purchase. Many companies like Netflix or 

Amazon ask their customers to rate bought products on a scale from one to five to better understand 

preferences of customers and to ultimately improve their product recommendations (Gawesh 

Jawaheer P. W., 2014). Implicit feedback is automatically tracked and monitored by a system. 

This includes tracking which items a user bought and on which items the customer clicked (Lei 

Chen, 2021).  When comparing explicit with implicit feedback, explicit feedback is thought to be 

a more reliable foundation for product recommendations (F.O. Isinkaye, 2015). In the case of 

CurveCatch the amount of explicit information about the user they can rely on is large, as all 

customers are obliged to answer a questionnaire that examines both style and size preferences. On 

the other hand, the accessible implicit feedback about the order history is sparse for the young start-

up. In comparison with larger companies, it is important to note that the implicit data available to 

CurveCatch is significantly smaller. Fundamentally, this represents a disadvantage which can be 

compensated by the deep knowledge about the user. A detailed description how the explicit 

feedback can be leveraged to balance the sparse implicit feedback can be found in section 4.2. 
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Additionally, to the differentiation between the type of collected data many ways to produce a 

ranked list of items for a specific customer are available. The two most common techniques for 

recommender systems are: 

 1) Content-based:  Mainly focuses on the attributes of the product (Pankaj Agarwal, 2018).  

Mostly suitable for products like books with an extensive product description where naïve machine 

learning methods like Bayes classification are common. Content-based filtering methods examine 

the description of items the user has rated and the description of products that potentially could be 

recommended (Justin Basilico, 2004). The problem is most often handled as a “user-specific 

classification problem” (Burke, 2007) and tries to predict whether a user is likely to be interested 

in an unseen product. Training instances consist of products the user bought, rated, or found 

interesting. The filtering system selects products based on the relationship between unseen items 

and items the user has reacted positively to, which can also be called the accumulated information 

about user based on explicit feedback. In a simplified example this means: When a user buys a shirt 

of the brand Nike, the content-based filtering system can recommend other shirts of the same brand 

since many product features are similar. 

 2) Collaborative-based: Utilizes relationships of past ratings, e.g., purchases or likes, by 

identifying peer users and forming “a weighted vote over these neighbors” to predict if a customer 

is likely to buy an unseen product (Justin Basilico, 2004). Ultimately collaborative filtering 

methods try to predict a rating a user would give to an article he or she never interacted with based 

on the ratings of similar users. Practically this means that the model aims to fill gaps of a sparse 

matrix where each user is represented as rows and each item is represented as columns where 

purchases or ratings are the values of the matrix. Companies like Amazon build their 

recommendation systems based on “item-to-item collaborative filtering” methods. They 

recommend products that seem similar to the products the client actually purchased and that have 

been frequently bought together. Here a common challenge to overcome is the “cold-start-

problem”. In a nutshell: What to do with new users that did few ratings? (G. Linden, 2003). Stitch 

Fix, a personal styling service that uses recommendation systems to provide personalized clothing 

recommendations to its users in a TBYB approach is one of the main competitors of CurveCatch. 

They also leverage collaborative filtering mechanisms to rank and order all items in their inventory. 

In some way the problem is simplify able as: Those who have liked what customer C liked, also 
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liked product P. So, product P would be a suitable recommendation for customer C (Stitchfix, 

2022). 

 

Start-ups, like CurveCatch, often have a small and rapidly changing customer base due to limited 

resources, rapid growth or changing market situations, making it difficult for both collaborative-

based filtering and content-based filtering to accurately recommend products or services. 

Additionally, both types of recommendation systems rely on a large amount of data to make 

accurate recommendations, and start-ups may not have sufficient data available to effectively use 

these types of systems (Demiriz, 2004). Therefore, CurveCatch may be better served by using other 

types of recommendation systems, such as hybrid systems that combine different methods or 

personalized systems that consider individual preferences and characteristics. 

  

In many cases both collaborative and content-based filtering have merged to a hybrid architecture 

to achieve better results (Pankaj Agarwal, 2018; Justin Basilico, 2004; Prem Melville, 2002).  

(Burke, 2007) has identified 7 different Hybridization techniques, like weighting different model, 

switching between models depending on confidence scores or mixing the predictions. Recently, 

deep learning has gained more and more popularity in the domain of recommender systems due to 

its ability to solve more complex problems while providing higher precision and recall. With the 

rise of deep learning the model architecture of modern RS has changed drastically to capture non-

linear relationships between items and users based on more complex representations of data. In 

recent years, a variety of different advanced deep learning models have emerged including both 

supervised & unsupervised machine learning models, attention-based models, and several models 

within computer vision (Shuai Zhang, 2019). However, this work solely focuses on supervised 

machine learning models as the label to predict is clearly defined and known. All in all, the two 

main factors that contribute to the widespread use of deep learning recommenders today are 

nonlinear transformation by activations such as relu or sigmoid and advanced representation 

learning through embeddings or one-hot encoding. 

 

The success of this work is closely tied to selecting the right machine learning architecture from 

the multitude of available possibilities to build a top-line recommendation system. It is key to 

derive insights from the extensive user features CurveCatch has accumulated through the survey. 
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As described above, conventional filtering systems are solely based on past ratings or purchases 

which seems not suitable to the general conditions the Belgium start-up provides. Rather, it is 

necessary to develop a personalized architecture that utilizes user features gathered through the 

questionnaire. 

3.2 Common limitations of recommender systems 

Recommender systems have become an integral part of many online platforms, from e-commerce 

websites to streaming services. While they have the potential to improve the user experience and 

increase engagement, they are not without limitations.  

 

One of the most widespread problems is called the cold-start problem, which occurs when the 

system is unable to make recommendations for a new user or a new item that has not been rated by 

other users. The problem is related to insufficient information about user and item features due to 

data sparsity. Often, when a new product is introduced to the inventory or when a new customer is 

acquired RS suffer setbacks in the quality of the recommendation (Blerina Lika, 2014). This 

problem happens when implicit data on purchase behavior of customers is sparse or missing. For 

example, a collaborative filtering mechanism would never recommend a product that not yet has 

been rated or purchased because there is not enough data on users’ preference available (Andrew 

I. Schein, 2002). Another major limitation is the so-called popularity bias, which refers to the 

tendency of the system to recommend the most popular items or items with the highest ratings, 

regardless of the individual preferences of the user. Popularity bias often emerges when the 

distribution of the data has a long tail, which is also the case for CurveCatch. This means that few 

items reflect most sales and therefore popular items are dominating the recommendations. There 

are several ways to tackle popularity bias, among them adjusting the distribution the prior training 

or performing a post-hoc re-ranking (Yang Zhang, 2021).  

 

To address these limitations, researchers have proposed various solutions. For example, some have 

suggested incorporating additional data sources, such as social media data or demographics, to 

provide a more comprehensive view of the user and their preferences (O'Donovan J., 2014). Others 

have proposed using hybrid systems that combine the strengths of different types of algorithms (Y. 

Koren, 2009). Another tool to improve recommender systems are heuristics. These simple, efficient 

rules or mental shortcuts can help users make decisions quickly and accurately. For example, the 
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"rule of thumb" heuristic suggests that a recommender system should prioritize items that are 

popular or well-rated by other users. Additionally, it is possible to narrow down the sheer volume 

of available options by providing a quick and easy way to make informed decisions (Deuk Hee 

Park, 2012).  
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04 MODEL CHOICE & JUSTIFICATION 

This section aims to construct the conceptual models that ultimately will be applied to the data and 

if possible to mathematically translate the concept. The goal of this work is to generate a ranking 

of all products per user with a corresponding probability of purchase. The data from the survey can 

be perceived as user features while the data on past purchases offer product features as well as 

implicit data about the history of purchases. The main model of this work is a deep learning 

recommender that predicts the label 𝒚𝒖𝒊 = {	𝟏	(𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆/𝒃𝒐𝒙); 𝟎	(𝒏𝒐	𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆) in a binary 

classification problem. To extend the scope of the model and to zoom into the results the label has 

been enlarged to 𝒚𝒖𝒊 = {	𝟐	(𝒃𝒐𝒙	𝒂𝒏𝒅	𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆); 𝟏	(𝒃𝒐𝒙	𝒃. 𝒏𝒐	𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆); 𝟎	(𝒏𝒐𝒕	𝒄𝒉𝒐𝒔𝒆𝒏) 

in a second model, where “box b. no purchase” indicates a recommendation of the style expert 

which has not been purchased by the customer, and “box and purchase” indicates that indicates a 

recommendation of the style expert which has been purchased by the customer. The table below 

provides a detailed description of all labels: 

 

 

 

Class imbalance was tackled with an oversampling technique called SMOTE while both product 

and user features were extracted using logistic regression. All categorical features were one-hot 

encoded while continuous features have been normalized to scale from 0 to 1. Finally, 330 input 

features were fed into 4 dense layers with relu as the activation function with shapes of 330, 160, 

80 and 3. In the first model the final layer consists of a Sigmoid function with the shape of 1, which 

outputs the final probability of purchase. In the second model, the final layer consists of a Softmax 

activation with a shape of 3 to output three different probabilities, each of them specifying the 

probability of a item belonging to a class. 

Label  Description 

1 The style expert didn’t choose the product for a recommendation. Therefore, the user-

product pair had no interaction yet. 

2 The style expert recommended the product, and the customer chose the article in a virtual 

box to be passed to his or her home. However, he or she did not decide to buy the item 

3  The style expert recommended an article, the customer chose it in a virtual box to be 

sent home. Additionally, the customer decided to buy the item.  

Figure 2: Label description 
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As already highlighted in section 3 of this work modern recommender systems often consist of 

more complex deep learning architectures as they simply outperform more simple techniques. The 

data of CurveCatch is sparse and just relying on traditional collaborative filtering methods would 

not result in good model performance. Rather, it is more important to exploit the extensive 

knowledge about the user CurveCatch has through the questionnaire every new customer is obliged 

to fill out. Considering the sparse implicit data and the high number of relevant user features a deep 

learning model seems a promising choice for the current data and will gain even more relevance 

when the start-up will scale up and more purchases are available as implicit feedback. Although a 

simple model like a logistic regression or a random forest might perform better now, it is crucial 

to develop an approach that will help the start-up in the long term. The following section provides 

an in-depth description of the model, where every step is explained separately. First, the overall 

classification problem is explained by formulating the models, and second, class imbalance, 

features selection, and feature extraction are explained.  

4.1 Model formulation 

Essentially, the classification problem of CurveCatch can be assessed in two different ways. Let 𝑈 

symbolize the number of unique users and 𝐼 the number of unique items. Ultimately, the goal is to 

predict the label 𝑦#$, which indicates if a specific user bought or didn`t buy an item after the style 

expert recommended some articles to the customer. However, when considering the classification 

only as a binary classification problem where  𝑦#$ = {	1	(𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒/𝑏𝑜𝑥); 0	(𝑛𝑜	𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒), the 

model would miss out on important information as it is not distinguishing between a box and a 

purchase. Instead, the classification problem can be considered as a multi-label-classification 

problem with 3 labels in total. In other words, instead of mimicking what experts are currently 

doing the model leverages all implicit information available in the historical orders data. To extend 

the scope of this work both the binary classification and the multi-label classification will be 

analyzed and compared.  

Multi-label classification Binary classification 

𝒚𝒖𝒊 = 	𝟐	(𝑏𝑜𝑥	𝑎𝑛𝑑	𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) 

	𝒚𝒖𝒊 = 		𝟏	(𝑏𝑜𝑥	𝑏𝑢𝑡	𝑛𝑜	𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒) 

𝒚𝒖𝒊 = 		𝟎	(𝑛𝑜𝑡	𝑐ℎ𝑜𝑠𝑒𝑛) 

𝒚𝒖𝒊 = 		𝟏	(𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑/𝑏𝑜𝑥) 

𝒚𝒖𝒊 = 		𝟎	(𝑛𝑜𝑡	𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑) 
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Furthermore, for profound research, it is crucial to define what to expect from a well-performing 

model and which metrics characterize good performance. Accuracy might be a first indication of 

how well the model performs, but especially when working with sparse data other metrics like 

precision and recall are more informative. The precision-recall trade-off is a fundamental concept 

in the field of machine learning, particularly in the context of classification tasks (Buckland, 1994). 

It refers to the trade-off between the precision and recall of a classifier, where precision is the 

proportion of positive predictions that are actually correct, and recall is the proportion of actual 

positive instances that are correctly predicted. In other words, precision measures the accuracy of 

positive predictions, while recall measures the completeness of the predictions Particularly in the 

Case of CurveCatch, it is of high relevance to discuss the trade-off between precision and recall 

before deploying the model. Before passing items to the customer’s home the client chooses items 

in a virtual box according to personal preference. Even if none of the items were selected by the 

customer only small to little costs arise for the firm as shipping costs are avoided. In this case, 

having more false positive predictions would be more tolerable than missing out on true positives, 

which means that recall seems to be more relevant than precision while precision still can´t be 

ignored. 

 

This can be further underlined by the visual representation of the expected value framework below. 

Let 𝑀% denote the profit margin and 𝑆&% the shipping costs of a specific product 𝑃.	The graphic 

below shows that significant costs for CurveCatch only occur after the item is shipped to the 

customer. 

 
Figure 3: Expected value framework 

 

𝑀% −	𝑆&% 

−	𝑆&% 
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Finally, the expected value 𝐸(𝑋) for the event of recommending a product to the customer could 

be formulated as follows where 𝑃(𝐵) denotes the probability that a customer is going to buy a 

specific product conditional: 

 

𝐸(𝑅 = 𝑌) = 𝑃(𝐵	|	𝑅 = 𝑌, 𝑆 = 𝑌, 𝐵 = 𝑌) ∗ A𝑀# − 𝑆$#D − 𝑃(𝐵|𝑅 = 𝑌, 𝑆 = 𝑌, 𝐵 = 𝑁) ∗ (𝑆$#) 

 

The expected value framework underlines that costs only arise after customers chose articles virtual 

by themselves in a “virtual box”. In other words, before shipping costs might arise a style expert 

has to recommend a product to the client in a virtual box (𝑅 = 𝑌) and the customer has to select 

the article from the virtual box (𝑆 = 𝑌). Only after both conditions happen to be true, shipping 

costs arise for CurveCatch. This highlights again that Type 1 errors seem to be more tolerable than 

Type 2 errors, which is crucial when defining a classification threshold. Ultimately, it is of high 

relevance to correctly identify all samples of the positive classes. Otherwise, the model simply 

misses out on possible sales which would contribute to the recommendations of CurveCatch in a 

negatively. This underlines that recall seems more important than precision and that the 

classification threshold should be set lower than a default value of 0.5. 

4.2 Feature selection & engineering 

When predicting which fashion articles customers are likely to buy, style and size are important 

features to consider (Hollander, 2018; P. Kaur, 2020). Style refers to the overall design and 

aesthetic of the article, such as its color, pattern, and silhouette (Fry, 2017). Size refers to the 

dimensions of the article and how it will fit on the body (K. Chung, 2021). As mentioned before, 

every unique product will be labeled per customer with the labels “box and purchase”, “box but no 

purchase” or “not chosen”.  There are ways to approach this problem: i) Label all unique products 

per customer and disregard size. Consequently, every product will only occur once per customer 

ii) Label all unique product for each size that is available. For instance, product X would be labeled 

five times for the sizes A, B, C, D, E. For this work, option one has been chosen. This means the 

model purely analyzes how well the style suits a specific customer. If the product only occurs once 

the model can’t consider all possible sizes, otherwise every product would occur multiple times for 

each available size. This means that the model is heavily focused on finding the right style for a 

specific customer. Nevertheless, the actual size is not the only size feature the data of CurveCatch 

offers. The questionnaire asks customers about their desired circumference, cup size and band size 
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which all have been included to the model as size features. Additionally, customers are asked to 

indicate their breast position and the firmness of their breasts to find the most suitable bra. This 

can be especially important when finding the right product category, as for instance women with 

space in between their breasts might prefer a bralette over a plunge.  

 

Additionally, it is important to make a clear distinction between user & product features. Product 

features refer to characteristics or attributes like price, brand, category, and color. User features, 

however, are mostly composed of what customers state in survey. For example, the above-

mentioned breast position, the favorite brand and the age of a user. Out of the whole data set ten 

user features and seven product features have been selected as input features for the model. 

 

Selecting those features that are most useful for predicting the label is a key challenge when setting 

up supervised machine learning models. Too many features can confuse the model and too few 

features may miss out on important information in the data. Manually running a logistic regression 

to analyze the relationship between features and target variable seems logical, however, also seems 

inefficient and time-consuming due to the high amount of input features. Instead, it makes more 

sense to utilize an algorithm called Recursive Feature Elimination (RFE). RFE starts with all 

variables in the train data set and removes features that might lead to inaccurate results. It is 

possible to choose several machine learning models that compute a “measure of variable 

importance”, in this case, a logistic regression was chosen. This means according to the coefficient 

and the significance level an importance score is calculated to eliminate the least important 

features. Afterward, the model will be refitted until a desired number of features is achieved (Max 

Kuhn, 2018). There are two important hyperparameters to select: i) the desired number of features 

and ii) how many features should be removed in each iteration. As the features were already pre-

selected there is no need to remove any of them. After trial and error, the model achieved the best 

results without any further feature elimination. Both tables below show the final features that have 

been defined as input features for the deep learning models. Finally, all categorical features have 

been one-hot encoded, and all continuous features have been normalized which results in 333 input 

features.  
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When comparing user and product features with each other it becomes apparent that many user 

features match product features. For example, the price of the product matches the willingness to 

pay of a customer and the favorite color of the client matches the actual color of the product. In a 

User features 

Feature name Type Description  

Circumference Categorical European circumference of the bra the customer wears most often 

Brand Categorical Favorite brand of the customer  

Cup size  Categorical European cup size of the bra the customer wears most often 

Filling Categorical How much padding/filling does the customer like to wear 

Breast position Categorical Description of firmness of breasts 

Sure right size  Categorical How sure is the customer that he/she knows the size of the bra you 

wear most often? 

Underwire Categorical Perforation in terms of underwire/ breace  

Firmness Categorical Description of position of breasts  

Willingness to pay Continuous How much is the customer willing to pay in €? 

Age Continuous Age in years of the customer  

Figure 4: User feature description 

 

Product features 

Feature name Type Description  

Vendor Categorical The vendor of the product   

Product type Categorical Product type (Bra, swim wear)  

Color  Categorical Color of the product  

Cup size Categorical European cup size of the product  

Band size Categorical European band size of the product  

Model type Categorical Model of the bra (e.g. full cup, plunge, slip…) 

Price Continuous Price in € of the product  

Figure 5: Product feature description 
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way, the model learns to map user features to the product features to find suitable products for a 

recommendation. For instance, if a customer is willing to pay a maximum amount of 50€ for an 

article the model could simply exclude all products above that price. 

4.3 Tackling class imbalance 

The training data ends up in a severe class imbalance due to the low number of purchases and 

recommendations. With 99% of all class labels being  𝑦#$ = 0	the model will struggle to find user 

& product preferences that characterize a purchase. This means, without any further data 

manipulation the model would learn quickly how to correctly predict the negative class (true 

negatives) but will encounter difficulties when predicting the positive class, which would result in 

very few true positives, low precision, and low recall. The problem of class imbalance is widely 

known, and many papers suggest different techniques to oversample the minority class or to 

undersample the majority class. Often hybrid techniques of over- and undersampling yield 

promising results (Khoshgoftaar, 2019). However, when a product is labeled as 𝑦#$ = 0 the style 

expert chose to not recommend the product to the customer justified by expertise. Thus, 

undersampling the majority class would eliminate relevant information about the negative class in 

the data. Additionally, after testing different techniques to tackle class imbalance oversampling has 

proven to yield significantly better results than undersampling or hybrid techniques. To 

synthetically generate more samples of the minority classes a technique called SMOTE (Synthetic 

Minority Over-sampling Technique) has been chosen. SMOTE selects examples in the feature 

space that are near to one another, draws a line connecting the examples, and then creates new 

samples at positions along the line (Nitesh V. Chawla, 2002). 

 
Figure 6: Oversampling of multi-label model 

 



 21 

The training data of the multi-label classification problem ends up having 386,327 samples labeled 

as 0 (“not chosen”), 275 samples labeled as 1 (“box”) and 464 samples labeled as 2 (“purchase”). 

Both minority classes were oversampled to the same number as the majority class which resulted 

in all labels having 386,327 samples. The bar charts below show the balance of the training data 

both before and after oversampling. 

 

The same procedure has been followed for the binary classification problem where the label 0 has 

been oversampled from 3,259 samples to 386,327 samples. 

 

 
Figure 7: Oversampling of binary classification model 
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04 RESULTS 

In this section first the binary classification will be evaluated separately in Section 4.1. To extend 

the scope of the model and to zoom into the results the multi-label classification model will be 

evaluated and compared to the binary classification model in Section 4.2. 

4.1 Binary classification problem 

The training, validation, and testing set has been split randomly, where training instances consist 

of 80% of all instances and validation and training consist of 10% of all samples respectively. As 

the model has to handle sparse data the number of dense layers is reasonable. All 333 input features 

have been reduced to 160 in a first dense layer and consequently reduced to 80 in a second dense 

layer. All dense layers relied on relu as the activation function, the loss was calculated with binary 

cross entropy and adam was selected as the optimizer which offers the benefit of not manually 

selecting the learning rate of the model. After 10 epochs the gap between validation and training 

accuracy was minimized which indicates that 10 epochs are a good choice as a hyperparameter. 

The validation accuracy of the model varied between 83% and 87%, with a small variance. The 

validation loss of the model varied between 43% and 34%, with a slightly higher variance. In terms 

of class-specific performance, the model had a precision of 100% and a recall of 84% for class 0, 

indicating strong accuracy in identifying instances of this class. However, the model had a precision 

of only 3% and a recall of 52% for class 1, indicating poor accuracy in identifying products that 

have been purchased or already recommended by a style expert of CurveCatch. The following 

section provides an in-depth analysis and interpretation of all results. On average, the predicted 

probability of purchase for label 1 was approximately 0.44, compared to a probability of 0.19 for 

label 0. This already indicates that the model found some characteristics to distinguish between 

both classes and that samples of label 1 on average end up higher in the ranking then samples of 

label 0. 

4.1.1 Accuracy and loss 

The left plot below shows the accuracy of the binary classification model after ten epochs while 

the right plot shows the loss. It is noticeable that the validation accuracy starts high and doesn’t 

change much in later epochs. Additionally, the gap between validation and training accuracy seems 

relatively small which indicates that overfitting is not present and that the model should generalize 

relatively well on unseen data. With over 42% the validation loss also starts relatively high in the 
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first epoch but decreases to 36% in the last epoch. For both the validation accuracy and the 

validation loss variance is visible.  

 
Figure 8: Accuracy and loss of binary classification model 

Variance in validation accuracy refers to the degree to which the validation accuracy of a machine 

learning model fluctuates or changes over time. High variance in validation accuracy can indicate 

that the model is unstable or sensitive to small changes in the training data, which can be a problem 

because it can make it difficult to accurately assess the model's performance. It can be difficult to 

define a specific threshold for what is considered high variance in validation accuracy, as it can 

depend on a variety of factors, such as the complexity of the model, the nature of the task being 

performed, and the quality of the training and validation datasets. In general, however, high 

variance in validation accuracy is typically considered to be any fluctuation or change in validation 

accuracy that is significantly larger than what would be expected given the inherent noise and 

variability in the data. One way to quantify variance in validation accuracy is to calculate the 

standard deviation of the validation accuracy over multiple training epochs. If the standard 

deviation is relatively large compared to the mean validation accuracy, it can be an indicator of 

high variance (Alpaydin, 2014). The standard deviation for the validation accuracy (𝜎'() equals 

1.15 on average and the standard deviation for the validation loss (𝜎')) equals approximately 3. 

Both 𝜎') and 𝜎'( seems acceptable compared to the mean validation loss and accuracy. It is worth 

noting that there is no hard and fast rule for what constitutes high variance in validation accuracy 

and loss, and the acceptable level of variance can vary depending on the specific context and goals 

of the machine learning task. In general, however, it is generally desirable to have low variance in 

validation accuracy in order to build stable and reliable machine learning models, which in this 
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context is given. This states that the model is not too complex for the given task and overfitting 

should not be present. 

4.1.2 Precision, Recall, Confusion matrix and AUC-ROC 

Accuracy is a useful metric for evaluating the performance of a neural network, but it is not the 

only metric that should be considered, because accuracy alone does not provide a complete picture 

of how well the neural network is performing. AUC-ROC (Area Under the Receiver Operating 

Characteristic curve) is a useful metric for evaluating the performance of a deep learning model 

when the target variable is binary (Fawcett, 2006). The ROC curve plots the true positive rate (also 

known as recall) against the false positive rate at different classification thresholds. AUC-ROC 

provides a single metric that summarizes the performance of the model across all classification 

thresholds, with a higher value indicating better performance. One reason to consider AUC-ROC 

when evaluating a deep learning model is that it is insensitive to class imbalance because it is based 

on the ranking of predicted probabilities, rather than the actual class labels (Flach, 2012; J.A. 

Hanley, 1982). This is especially important to CurveCatch, as the data ends up in a severe class 

imbalance before oversampling.  

 

 Furthermore, a confusion matrix is another useful tool for evaluating the performance of a deep 

learning model. It shows the number of true positive, true negative, false positive, and false 

negative predictions made by the model, and can help you understand where the model is making 

mistakes. By understanding the types of errors the model is making, areas where the model may 

lack become identifiable (Powers, 2011; Stehman, 1997). 

Figure 9 below shows the confusion matrix for the binary classification approach. When analyzing 

the confusion matrix, the high number of true negatives stands out at first glance. This means that 

the model is effective at correctly pinpointing items that customers are not likely to buy. 

Nevertheless, it is also noticeable that the model identified a significant number of samples in the 

test set as products a customer is not likely to buy when they actually were labeled as 1, which 

implies the product was either purchased by the customer or recommended by the style expert but 

not chosen to be purchased by the client. On the other hand, the model identified an almost equal 

number of true positives compared to true negatives (~400). This means that approximately half of 

all potential items for a box or purchase have not been classified correctly. This ultimately means 
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opportunities to generate revenue for CurveCatch will be overlooked. When considering the ROC 

curve, the model compared to a baseline value of 0.5, which represents a random classifier, 

performs significantly better. However, performance decreases with a true positive rate (TPR) and 

false positive rate (FPR) greater than 0.8. There are a few potential reasons why the performance 

of a deep learning model might decrease with high TPR and FPR. One possibility is that the model 

is overfitting to the training data, and is therefore not generalizing well to new, unseen data. This 

can cause the model to make overly confident predictions that may not be accurate. Another 

possibility is that the model is not adequately considering the context or characteristics of the input 

data. For example, if the model is making predictions based on a limited set of features, it may not 

be able to accurately capture the complexity of the data. In the case of CurveCatch the data set only 

included 3.259 instances of the positive class which have been oversampled to ~386k samples. 

This might indicate that the data set doesn’t consist of enough samples labeled as 1 to effectively 

represent features that characterize a purchase or an item worth putting into a box. 

 
Figure 9: Class-specific metrics - Binary model 

By looking at the values in the confusion matrix, it is possible to calculate the precision, recall, and 

F-score for each class, as well as for the overall performance of the model. Precision and recall are 

two evaluation metrics that are commonly used in the fields of information retrieval and machine 

learning. Precision measures the proportion of items that are correctly identified as positive by a 

classification model among all items that are identified as positive. On the other hand, recall 

measures the proportion of positive items that are correctly identified by the model among all 

positive items in the dataset. The F-score, also known as the F1 score, is a metric that combines 

precision and recall into a single measurement. It is calculated as the harmonic mean of precision 
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and recall (Christopher D. Manning, 2008; Mark D. Smucker, 2007). The trade-off between 

precision and recall has already been discussed in section 4.1. To recap, recall has been identified 

as a more relevant metric to evaluate performance while precision shouldn’t be fully ignored. The 

table below shows all three metrics along with the support samples from the test set. 

  

 

Based on the results above, it appears that the model performs well at identifying class 0, with a 

precision of 100% and a recall of 84%. However, the model has low performance when it comes 

to detecting class 1, with a precision of only 3% and a recall of 52%, which underlines the findings 

derived from the confusion matrix. The high precision for class 0 indicates that the model is very 

accurate at identifying instances of class 0 (not purchased), and that a large proportion of the 

instances it classifies as class 0 are actually class 0. However, the model is missing a significant 

number of instances of class 0 (~16%). On the other hand, the low precision for class 1 implies that 

the model is not very accurate at identifying class 1, and that a small proportion of the instances it 

labels as class 1 are actually class 1. Taking into account that false positive predictions don’t 

necessarily lead to additional costs for CurveCatch a low precision seems acceptable, yet still 

indicates room for improvement. A recall of 52% indicates that approximately half of all products 

that might lead to a purchase have not been correctly classified. This underlines the conclusion 

drawn from the confusion matrix that a lot of potential revenue was not identified correctly. 

Overall, these results suggest that the model may need further improvement, particularly in its 

ability to accurately identify class 1. One possible approach to improving the model's performance 

could be to collect more training data for class 1, or to fine-tune the model's hyperparameters. 

Improvements and discussions will be discussed in depth in section 5.4. 

4.1.3 Optimizing the classification threshold  

A useful tool to evaluate the performance of binary classifiers and to optimize the classification 

threshold are precision-recall curves. The precision-recall curve plots precision on the y-axis and 

 Precision Recall F1-Score Support 

0 1.00 0.84 0.91 96608 

1 0.03 0.52 0.05 789 

Figure 10: Preccision & Recall binary classification 
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recall on the x-axis for different thresholds of the classifier's predicted probability (Christopher D. 

Manning, 2009). 

 
Figure 11: Precision-recall curve 

Figure 11 above shows the precision-recall curve for the binary classification model. As mentioned 

in the previous section, setting the cutoff to 0.5 the model yields a precision of 3% and a recall of 

52%. The plot indicates that small trad-off in precision can result in a high increase in recall. For 

instance, if the classification threshold will be adjusted so that the model returns a precision of 1% 

instead of 3%, the recall would increase to approximately 70%. However, only analyzing metrics 

for the positive class doesn’t draw the full picture of the trade-off. By decreasing the classification 

threshold results for label 0 suffer as well. The table below shows precision, recall and f1-score for 

different classification thresholds. 

 
 Label 1 Label 2 

Cutoff Precision Recall F1 Precision  Recall F1 

0.5 0.03 0.52 0.05 1 0.84 0.91 

0.4 0.02 0.54 0.04 1 0.80 0.89 

0.3 0.02 0.59 0.04 1 0.76 0.86 

0.2 0.02 0.66 0.03 1 0.68 0.8 

0.1 0.01 0.72 0.02 1 0.58 0.7 

Figure 12: Threshold optimization 
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With a cutoff of 0.1 the recall of label 1 can be increased to 72%, however, the recall of label 

decreases from 0.84 to 0.58. Considering that the mean predicted probability of class 1 was 0.44 

compared to 0.19 for class 0, the optimal classification threshold should lie somewhere in the 

middle. With a threshold of 0.25, the recall of label 1 increases to 61% while the recall of class 0 

decreases to 73%, which represents a justifiable trade-off and a significant improvement of the 

model. In general, CurveCatch can find a higher number of true positives by decreasing the 

classification threshold. After analyzing the precision-recall curve and the table above it is 

suggested to set the classification threshold to 0.25 which would yield the results shown in the table 

below: 

 

4.2 Extension to a multi-label classification problem and comparison 

To recap, the multi-label classification model predicts the labels = {0: no purchase; 1: box but no 

purchase; 2; box and purchase} and outputs three columns of probabilities, each of them being the 

probability of a user-product pair belonging to one of the three classes. The model architecture is 

similar to the binary classification approach; however, the last layer consists of a Softmax 

actication with a shape of 3 instead of Sigmoid. The training data consists of approximately 386k 

samples for class 0, 2795 samples for class 1 and 464 samples for class 2. The main reason for this 

extension was that the binary classification model was missing out on critical information, as it 

doesn’t distinguish between a articles that have not been purchased after a box and an actual 

purchase. This has been broken down with the additional label and therefore, the model can provide 

a more nuanced and comprehensive understanding of the data.  

 

The model has been trained over 10 epochs. Accuracy and loss seem to coincide with the binary 

classification problem. However, when inspecting precision and recall the model performs 

significantly worse. For class 1 (box but no purchase) the model achieved a precision of 2% and a 

recall of 38% and for class 2 (box and purchase) a precision of 1% and a recall of 12%. When 

breaking down the model to binary classification problem with a classification threshold of 0.25, 

 Precision Recall F1-Score Support 

0 1.00 0.73 (-11%) 0.84 (-7%) 96608 

1 0.02 0.61 (+9%) 0.04 (-1%) 789 

Figure 13: Precision & Recall of binary classification with new threshold 
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the model achieved a recall of 54% which is 7% less compared to the first model. The labels also 

serve as a weighting scheme. This means by calculating the sumproduct of the labels and the 

corresponding probability, a final probability can be derived (e.g., 0*p1 + 1*p2 + 2*p3). On 

average, the model predicted a probability of 0.11 for label 0, 0.29 for label 1 and 0.35 for label 2. 

This means that samples of label 2 would be the highest in the ranking on average. However, the 

difference between label 1 and 2 is small and the model struggles to differentiate between those 

two classes.  There are many possible reasons why a multi-label classification model might perform 

worse than a binary classification model which will be discussed in the following section.  

4.2.1 Accuracy and loss 

Both plots below show the training/validation accuracy and loss of the multi-label classification 

problem. As already mentioned, when comparing the accuracy to the binary classification problem 

not much difference is visible. The previously mentioned variance in validation loss and accuracy 

decreased.  

 
Figure 14: Accuracy & loss multi-label model 

4.2.2 Precision, Recall, Confusion matrix and AUC-ROC 

The table below shows class-specific results for the multi-label classification algorithm. It is 

observable that recall and precision decreased by a significant amount for both positive classes. 

 Figure 15: Precision & Recall of multi-label model 

 Precision Recall F1-Score Support 

0 0.99 0.83 0.90 96,549 

1 0.02 0.38 0.04 721 

2 0.01 0.12 0.02 127 
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Figure 16 below shows the ROC curve and the confusion matrix of the multi-label classification 

problem after breaking it down to a binary classification problem. It is important to note that again 

a classification threshold of 0.25 has been used. The area under the ROC curve is slightly less 

compared to the first model. Additionally, model 1 identified 54 more true positives than model 2 

resulting in a difference of 7% in recall. 

                               

 
Figure 16: AUC-ROC & Confusion matrix of multi-label model 

 

 

There are several possible reasons why extending a binary classification model to a multi-label 

classification problem could result in a decrease in performance for the positive classes. The most 

reasonable factors are listed below: 

 

1. The additional labels may be more difficult to predict accurately. In the multi-label classification 

problem samples for the positive classes became significantly fewer as they were split up, which 

can make the task more complex and difficult to predict accurately (M.R. Boutell, 2004). 

 

2. Labels may be correlated with one another. In a multi-label classification problem, it is common 

for different labels to be correlated with one another (Tsoumakas, 2010). If this is the case, the 

model may struggle to predict one label accurately if it is strongly correlated with another label 

that is difficult to predict, leading to a decrease in precision and recall. 
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The table above shows a correlation matrix between all labels. Label 0 (no purchase) has a very 

strong inverse relationship with a correlation coefficient of -0.926. This could potentially justify 

why the model performs so well when predicting class 0. A high negative correlation indicates that 

when one label is present, it is very likely that the other label is not present. This could lead to 

confusion for the model when trying to predict both labels, as it may struggle to disambiguate 

between the two. 

 

3. The additional labels are even rarer and have a skewed distribution. In these cases, it is difficult 

for the model to accurately predict them due to a lack of sufficient examples or a bias in the training 

data (Gama, 2014). The train set only offers 464 actual purchases with label 2, which can be 

considered very few compared to the 386.327 samples of label 0 (not chosen). It is questionable, 

even after oversampling, if this number is a sufficient feature representation of a purchase. Even 

samples of class 1 (box) become fewer when extending the model to a multi-label classification 

problem. Therefore, the model struggles to learn to characterize both positive classes and recall 

and precision suffer. 

 

4. The model may need to be sufficiently fine-tuned. Simply adapting a binary classification model 

to a multi-label classification problem without any further fine-tuning may not be sufficient to 

optimize the model for the new task (Zhang, 2018). 

 

In conclusion, various factors could contribute to a decrease in precision and recall when extending 

a binary classification model to a multi-label classification problem.  Limitations and further 

improvements will be discussed in section 5. 

 0 1 2 

0 1 -0.926 -0.375 

1 -0.926 1 -0.003 

2 -0.375 -0.003 1 

Figure 17: Label correlation 
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4.3 Choice of model 

In general, the choice between a binary classification model and a multi-label classification model 

will depend on the specific task at hand and the amount of data available. If the task requires 

predicting only a single label and there is a sufficient amount of data, a binary classification model 

may be the better choice due to its higher performance. However, if the task requires predicting 

multiple labels or there is a limited amount of data, a multi-label classification model may be a 

better choice due to its ability to consider more information. The TBYB approach of CurveCatch 

requires more than one label which means that in the long-term the choice should always fall on 

the multi-label classification problem. 

 

Moreover, both models could also work together. If both models assigned a high probability of 

purchase to specific product it is more likely that the item will be purchased. Hence, it would make 

sense to use both models for the time being until the multi-label classification model is able to 

equal or even outperform the binary classification model. 
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05 DISCUSSION 

This section focuses on the overall applicability of the model as well as its strengths, limitations, 

and further improvements in relation to the problem it was designed to address, which is predicting 

to what likelihood or probability a customer is going to buy a product.  

5.1 Assessment of applicability 

The goal of the work was to build a machine learning model that is able to partly replace the style 

expert in the process of making product recommendations. It is evident that the model would miss 

out on a high number of sales due to its inability to correctly identify purchases in the test set, 

which is reflected in the low recall and precision of the model. The question of whether CurveCatch 

can solely rely on the model in the future can be clearly answered in the negative. However, it is 

important to keep in mind that this work never aimed to fully replace the style expert. Rather, the 

goal was to build a machine learning model to supplement and support the human-in-the-loop 

component. Ultimately, the machine learning model provides a probability of purchase for each 

product in the inventory, serving as a starting point for the human expert to consider. However, 

due to the low confidence in the model scores, the human expert must also consider additional 

factors that may impact the likelihood of a purchase. These may include the customer's personal 

style and preferences, as well as any current trends or popular products in the market. By combining 

the insights from the machine learning model with the expertise of the style expert, it is possible to 

make more informed and accurate product recommendations. All things considered, the 

personalized deep learning recommender for CurvCatch can be a valuable source to boost 

efficiency of current product recommendations of the start-up. The style expert can always access 

the ranking of the products as a starting point but should always keep in mind that a major part of 

products the customer might buy were not identified by the model. However, the positive classes 

are still ranked higher than negative classes which underlines the value of the produced ranked list 

of items. Additionally, the model will gain even more relevance once the start-up scales up and 

grows, as the main reason for low confidence in predictions is the low number of purchases 

available in the training data. In the future is extremely crucial for CurveCatch to try to improve 

the recall of the model. For the style expert it takes a lot more time to look for products that still 

could be recommended with a low probability of purchase, than simply filtering out products the 

expert believes the customer won’t buy even when the model assigned a high probability of 
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purchase to the product. To put it in a nutshell, the model represents a starting point for the current 

scale of the start-up but needs to be extended once the start-up grows.  

5.2 Strengths 

A major strength of the deep learning model is the extensive feature representation for both users 

and products and that the model adequately leverages all implicit and explicit information available 

to CurveCatch. By one-hot encoding all relevant categorical features of the questionnaire and of 

the historical orders data approximately 333 features are generated that could potentially 

characterize a purchase between a specific user-product pair. While conventional recommendation 

systems, like collaborative filtering would completely miss out on explicit feedback, the 

personalized deep learning model can process a wide-ranging set of features. This means, the 

personalized deep learning recommender of CurveCatch can learn complex patterns in data and 

make more accurate recommendations compared to collaborative filtering algorithms, which rely 

on simple statistical models. Additionally, the model performs relatively well with sparse data and 

will perform even better once the start-up gathers more training data. For traditional approaches it 

is a challenge get confident results with sparse data and often many purchases are necessary to get 

accurate predictions. Another major advantage of the current architecture is that the model is able 

to handle new and cold items (items with no or few interactions). Collaborative filtering approaches 

heavily rely on item popularity and these models are prone to only recommend items that have 

been purchases multiple times while deep learning models predict a probability dynamically for 

each user-product pair. Furthermore, user preferences change over time. Especially in the fashion 

industry new trends come up quick. Deep learning models can adapt to changing user preferences 

and product availability in real-time, which is not possible with collaborative filtering algorithms 

that are based on static models. Lastly, deep learning models can handle multiple types of data 

which represents additional opportunities to further improve the model’s performance. It is possible 

incorporate multiple types of data, such as text, images, and ratings, which can improve the quality 

of recommendations. While the incorporation of images remained out of scope for this work, it 

could be a important improvement for CurveCatch. More on this topic will be discussed in the next 

section. All in all, the model offers a variety of strengths compared to traditional approaches to 

build a recommender system. The model is specifically tailored to the data available to CurveCatch 

an also challenges crucial challenges CurveCatch is facing, e.g., data sparsity. Lastly, the model 

offers plenty of room for further improvements. 
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5.3 Limitations 

One major disadvantage of neural networks, particularly deep learning models, is their lack of 

interpretability, often referred to as the "black box" problem. This means that it can be challenging 

to understand how the model is making decisions and to identify the specific features or input data 

that are driving its predictions. While some techniques such as saliency maps and layer-wise 

relevance propagation have been proposed to try to shed light on the internal workings of neural 

networks (Bach, 2015; Montavon, 2018), these methods are not always reliable and may not 

provide a complete understanding of the model's decision-making process. The lack of 

interpretability can make it difficult to trust the predictions made by the model and to identify and 

fix any errors or biases that may be present in the model's output (Doshi-Velez, 2017). For 

CurveCatch it would be very valuable to know which user features characterize purchases for a 

specific product. 

 

One strength outlined in the previous chapter was the vast number of user & product features 

available to CurveCatch. On the other hand, the low number of sales represents a major limitation 

of this work which also makes it harder for the model to correctly predict the positive classes. Even 

after labeling all products per customer and synthetically generating new samples of the minority 

classes, the model struggles to characterize purchases which is reflected in a low recall. Overall, 

several actions have been taken to address data sparsity, however, it remains a major challenge and 

limitation of this work and the model’s predictions would get more accurate with more purchases. 

5.4 Improvements 

Considering that the multi-label classification problem only identified 12% of all purchases in the 

test set it is evident that the model needs further adjustments to be a reliable top-line 

recommendation system. 

5.4.1 Generate more training data 

The data offers a variety of meaningful user and product features but simply lacks purchases. This 

means the model is not able to accurately identify all of the instances of class 1 & 2 in the data, 

resulting in missed opportunities for sales. To improve the performance of the model and make it 

a more reliable source of predictions, several steps can be taken. One approach is to increase the 

amount of data available for training the model. This can help the model learn more about the 
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characteristics of purchases, allowing it to better identify them in the future. CurveCatch could 

extend the time frame of the historical order data to have access to more purchases. Furthermore, 

adding recent purchases, for example monthly, would boost the model’s performance with not 

much additional effort.  

5.4.2 Incorporation of domain knowledge 

Deep learning models can often be improved through the incorporation of domain knowledge, such 

as heuristics or other expert-derived information. One way to incorporate domain knowledge into 

a neural network is through the use of heuristics. Heuristics are simple, rule-based strategies that 

can be used to make decisions or solve problems quickly and efficiently. They are often used when 

exact solutions are not feasible or when there is not enough time or resources to explore all possible 

options (Steven Walczaka, 1999). For CurveCatch the extensive knowledge of style experts and 

other employees could address data sparsity to improve the model’s performance. A domain expert 

in the field of lingerie might have knowledge of certain heuristics that are associated with an 

increased probability of purchase for certain product. For example, certain user information 

gathered through the questionnaire could point to a certain category of bras. This information could 

be inputted to the model as additional features, along with the standard input features. Additional 

heuristical features could be represented as a binary variable which takes the value of 1 if the data 

already points to a specific category of bras. Another approach is to use heuristics to guide the 

learning process of the neural network. The domain expert might have knowledge of certain 

heuristics that are particularly relevant to the task at hand, such as the importance of certain factors 

that contribute to a purchase or the relationships between different features. By incorporating this 

knowledge into the training process, the neural network can potentially learn more effectively and 

achieve better performance. There are also more sophisticated approaches for incorporating 

heuristics into neural networks. One example is the use of expert systems, which are systems that 

are designed to mimic the decision-making processes of a human expert in a particular domain. 

Expert systems can be used to guide the learning process of a neural network, providing additional 

context and information that can help the model make more accurate predictions (C. Lacave, 2004). 

Overall, the incorporation of domain knowledge, such as heuristics, can be a powerful way to 

improve the performance of a neural network. By leveraging expert-derived information, the model 

can make more informed decisions and better adapt to new situations, resulting in improved 

accuracy and reliability. 
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5.4.3 Extension through visual images 

In addition to the data already described, CurveCatch also has access to images of most of the 

articles. One way that images can improve deep learning recommenders is by providing additional 

information about the items being recommended. For example, images of bras can provide visual 

cues about the style, color, and fit of the items, which may not be captured by text-based 

descriptions alone (He, 2016). 

 

Another way how images can improve deep learning recommenders is by providing a more robust 

and diverse set of features for the model to learn from. When working with text-based data, the 

model may be limited by the vocabulary and syntax of the language being used. By contrast, images 

provide a rich source of visual features that can be extracted and used by the model, such as color, 

texture, and shape (Liu J. W., 2018). This can enable the model to learn more complex and nuanced 

patterns in the data, leading to improved recommendations.  

 

Incorporating images into the recommendation process can improve the performance of deep 

learning models in several ways, including providing additional information about the items being 

recommended, enhancing user engagement, and providing a more diverse set of features for the 

model to learn from. Hence, many limitations and challenges CurveCatch must face in the future 

could potentially be tackled by the incorporation of images.  

5.4.3 Extension to a ranking algorithm 

Ranking algorithms, such as RankNet from Microsoft, have increasingly become the preferred 

approach for many recommendation systems due to their superior performance and ability to 

handle complex ranking tasks (Burges, 2010). Ranking algorithms can take into account the unique 

preferences of each user and the overall diversity of the item set, resulting in more personalized 

and diverse recommendations. The goal is to not just predict the probability of purchase or to 

predict whether the item belongs to a specific class, instead so-called learning-to-rank (LTR) 

algorithms predict the correct ordering of items.  

 

A neural network can be extended to a learning-to-rank (LTR) algorithm by adding a ranking loss 

function to the network's objective. The ranking loss function measures the quality of the rankings 
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produced by the network and provides a measure of how well the network is learning to rank the 

items. There are several different ranking loss functions that can be used in an LTR neural network, 

including the pairwise loss and the listwise loss. The pairwise loss measures the difference between 

the scores of pairs of items, with the goal of correctly ranking the more relevant item higher. The 

listwise loss measures the difference between the predicted ranking and the ground truth ranking 

of the entire list (Cao, 2007; Liu, 2009). To train an LTR neural network, the network is fed a 

dataset of labeled examples, where the goal is to predict the relative order of the items in the list. 

The network is then optimized using the ranking loss function as the objective, with the aim of 

minimizing the loss and producing accurate rankings (Wang, 2017). 

 

A reliably learned ranking would save a lot of time of the style expert and would bring CurveCatch 

on steps closer to an automated multi-stage recommendation system. When customers want a box 

passed to their home, they first send a query by answering the questionnaire. The LTR algorithm 

would now automatically output a ranking of all items in respect to the query. The architecture of 

such a algorithm is significantly more complicated than a conventional classification task. 

Additionally, it is hard to develop a LTR algorithm with sparse data. For CurveCatch this could be 

interesting in the future as the current model architecture seems sufficient for the scale of the start-

up.  
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06 CONCLUSION 

In this work the task to optimize product recommendations of a Belgium fashion start-up called 

CurveCatch was studied. The start-up sells women’s lingerie products and relies on a TBYB-

approach, which means the customer does not actively shop on a website, rather, several items will 

be passed home to the client based on a questionnaire every customer is obliged to answer. The 

surveys offer a variety of user features, like the favorite brand & color and specific details about 

the position and firmness of a customer’s breast. Additionally, several product features have been 

defined, consisting of brand, color, category, and other details of the item. Furthermore, two 

different personalized deep learning architectures were introduced to predict to what probability a 

customer is going to buy a product. The first model relied on a binary classification approach while 

the second model represents an extension of the first model as a multi-label classification problem. 

Ultimately, they predict the label:  

𝑴𝒐𝒅𝒆𝒍	(𝟏)	𝒚𝒖𝒊 =		 {𝟏:	𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆	𝒐𝒓	𝒃𝒐𝒙, 𝟎: 𝒏𝒐𝒕	𝒄𝒉𝒐𝒔𝒆𝒏) 

𝑴𝒐𝒅𝒆𝒍	(𝟐)	𝒚𝒖𝒊 =		 {𝟐:	𝒃𝒐𝒙	𝒂𝒏𝒅	𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆, 𝟏:	𝒃𝒐𝒙	𝒃𝒖𝒕	𝒏𝒐	𝒑𝒖𝒓𝒄𝒉𝒂𝒔𝒆, 𝟎: 𝒏𝒐𝒕	𝒄𝒉𝒐𝒔𝒆𝒏) 

After labeling each product in the inventory per customer, the positive classes ended up in a severe 

class imbalance which has been tackled by an oversampling technique called SMOTE. The results 

demonstrated that the binary classification model performed significantly better. Both precision 

and recall were higher as the multi-label model struggled to correctly identify samples from both 

positive classes in the test set. However, the binary classification model misses out on significant 

implicit information accessible to CurveCatch, as the model doesn’t distinguish between a purchase 

and a recommendation by a style expert that the customer didn’t buy. Hence, in the long-term the 

decision should always fall on the multi-label classification model.The main goal of this work was 

to support the style experts in the process of making accurate product recommendations, which has 

been reached. However, with a low to medium recall in both models the style expert should always 

carefully consider that many interesting products have been assigned with a low probability of 

purchase. The output of the model serves as a starting point for the style expert but is not yet able 

to fully replace the human-in-the-loop component. Several ways to improve the model, like the 

incorporation of heuristics or images have been outlined which offer valid opportunities to build 

up on this work. All in all, this work builds a good fundament to further improve the product 

recommendations at CurveCatch. The final code and a deeper look at the Result can be found in 

the Appendix. 
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