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A B S T R A C T   

To improve fish welfare, it is essential that aquafeeds are designed to help fish cope with the stressful conditions 
of fish farms. One effective strategy to achieve this goal is to supplement the diet with bioactive hydrolysates. 
Here, diet supplementation to modulate oxidative stress after air exposure was investigated in European seabass, 
using swine blood hydrolysates (BH), obtained either by autohydrolysis (AH) or enzymatically. The enzymati
cally produced BH were further submitted to a micro- (RMF) and nanofiltration (RNF). Four isolipidic, isoproteic 
and isoenergetic diets were developed: a plant-based diet with low (12.5%) fishmeal levels (control, CTRL) and 
three diets where 3% of each BH (RMF, RNF and AH) was added to the CTRL. Diets were assigned to triplicate 
groups of 71 European seabass juveniles (initial weight 12.3 ± 1.4 g). After 12 weeks, 9 fish per treatment were 
either immediately sampled or air-exposed for 1 min and let to recover in a new system for 6 h prior to sampling. 
Stress response increased cortisol levels, followed by an increment in plasma lactate. The challenge increased 
liver lipid peroxidation (LPO) due to reactive oxygen species (ROS) accumulation. Carbonyls decreased post- 
stress, maybe due to a possible interaction with the LPO radicals, reducing protein oxidation. None of the BH 
improved plasma stress response. By reducing catalase levels without increasing LPO, the RNF treatment appears 
to adjust European seabass’ antioxidant defences, indicating its potential to supply exogenous antioxidants to 
combat oxidative stress induced by ROS. However, this impact was not sufficient to lower LPO levels compared 
to a control plant-based diet. The tested diets seemed to affect the fish oxidative stress response in the liver, 
possibly due to the presence of bioactive peptides, which aided in the non-enzymatic modulation of stress 
response, as observed by the total antioxidant capacity values in the liver.   

1. Introduction 

The practice of farming marine carnivorous fish used to depend on 
the inclusion of high levels of marine-based ingredients, such as fishmeal 

(FM) and fish oil, in their diets. Nevertheless, the scarceness, increased 
prices and issues concerning the environmental unsustainability of these 
dietary components have motivated a search for alternative ingredient 
sources (Naylor et al., 2021). Regarding FM replacement, plant proteins 
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are the most used alternatives in aquafeeds (Abdel-Latif et al., 2022; 
Samuel-Fitwi et al., 2013). However, their use poses some challenges 
mainly related to food-feed competition, higher water and land re
quirements and deforestation (Aubin et al., 2019; Hua et al., 2019). 
Moreover, plant-based diets may also negatively impact fish growth, 
health and welfare, namely by compromising fish immunity and resis
tance to stress. Conde-Sieira et al. (2018) found some indications that 
vegetable diets may hinder fish welfare through alterations in the 
neurotransmission activity in the hypothalamus and telencephalon. 
Costa et al. (2020) found that a vegetable-based diet decreased plas
matic lysozyme in European seabass, which may compromise immunity. 
Torrecillas et al. (2017) found that reducing FM levels to 5% hindered 
gut associated lymphoid tissue capacity of response after a bacterial 
infection in European seabass. Finally, in the work of Yin et al. (2020), 
plant protein diets for hybrid groupers hindered antioxidant capacity 
and glycolipid metabolism, hampered intestinal development and 
decreased intestinal flora diversity, which the authors attribute to the 
presence of anti-nutritional factors. This is a major challenge to aqua
culture intensification practices, including increased fish density, regu
lar handling, transport and fishing, all of these being stress sources with 
negative repercussions on fish health (Sadoul et al., 2021). While stress 
itself may not be detrimental to fish health in the short term, if it be
comes too intense or chronic, it may affect fish physiology at molecular 
and biochemical levels, impairing animal growth, immunity and sur
vival (Barton, 2002; Sneddon et al., 2016). 

Stress responses can be divided into primary, secondary or tertiary 
(Barton, 2002; Bonga, 1997; Sadoul et al., 2021). Primary responses are 
due to the activation of endocrine pathways, after recognition of a threat 
by the central nervous system. Secondary responses include respiratory 
and cardiovascular alterations due to hormonal action (Barton, 2002; 
Sadoul et al., 2021). Additionally, metabolic changes, such as increased 
levels of glucose and lactate and a decrease in tissue glycogen, are 
observed and the immune system can also be triggered. Finally, tertiary 
responses reflect the whole animal performance, with stress having ul
timately negative impacts on fish growth, disease resistance, behaviour, 
and even survival (Ashley, 2007; Barton, 2002; Sadoul et al., 2021). 
Stress may overall lead to the accumulation of reactive oxygen species, 
ROS (Mohapatra et al., 2013), affecting the balance between ROS pro
duction and antioxidant scavenging capacity of tissues, which eventu
ally damages biological molecules such as DNA, lipids and proteins, for 
example, through an increase in lipid peroxidation (LPO) or carbonyl 
compounds (CC) (Ko et al., 2014). To counteract the ROS, the organism 
activates antioxidant enzymes, such as superoxide dismutase (SOD), 
catalase (CAT), glutathione peroxidase (GPx), and glutathione S-trans
ferase (GST) (Kurutas, 2016). However, exogenous antioxidants pro
vided by aquafeeds may also help to maintain the ROS balance and 
mitigate oxidative damage. 

Therefore, and considering the raising concerns regarding fish wel
fare, it has become clear that well-balanced diets must not only provide 
the essential nutrients, but also assist fish in coping with the stressful 
situations they face on fish farms (Ashley, 2007; Machado et al., 2019a). 
Thus, an emergent strategy for improving fish welfare is the supple
mentation of aquafeeds with bioactive compounds that provide physi
ological benefits beyond their pure nutritional value, which have 
particular relevance when used with plant-based diets (Encarnação, 
2016; Olmos-Soto et al., 2015; Siddik et al., 2021). Among these 
bioactive compounds, protein hydrolysates have raised considerable 
interest from both the scientific community and the feed industry, as 
they can be obtained from by-products generated in food industries, 
which would make them attractive under a circular economy context 
(Faustino et al., 2019). The biological properties of hydrolysates have 
been increasingly demonstrated (Manzoor et al., 2022; Okoye et al., 
2022; Siddik et al., 2021). These properties are highly dependent on the 
protein source and on the applied hydrolysis method. For instance, the 
inclusion of some anchovy hydrolysates in low FM diets for European 
seabass (Dicentrarchus labrax) led to improved lysozyme activity, when 

compared to a non-supplemented diet, but the usage of the same hy
drolysate source with a different enzymatic processing did not lead to 
any changes in the same parameters (Costa et al., 2020). In juvenile red 
seabream (Pagrus major), Bui et al. (2014) demonstrated that 4.8% of a 
shrimp hydrolysate powder added to a fishmeal diet (47%) significantly 
increased plasma immunoglobulin, antiprotease and SOD activities. 
Additionally, in Japanese seabass (Lateolabrax japonicus) and yellow 
croaker (Pseudosciaena crocea R.), lysozyme activity and serum com
plement were enhanced by inclusion of fish protein hydrolysates (Liang 
et al., 2006; Tang et al., 2008). Inclusion of a tuna hydrolysate in a diet 
for barramundi (Lates calcarifer), at 10%, in diet with fermented poultry 
by-product meal led to increased activity of serum GPx (Siddik et al., 
2020). Moreover, some hydrolysates have also been shown to improve 
stress response in mice (Chataigner et al., 2021; Dinel et al., 2021). 

Previous work from our group demonstrated that a 3% swine blood 
hydrolysates (BH; obtained from a by-product of a pig slaughterhouse) 
inclusion in a plant-based diet led to an eight-fold reduction in European 
seabass mortality caused by Tenacibaculum maritimum infection 
(Resende et al., 2022), but the physiological mechanisms affected by 
such bioactive hydrolysates were not explored. Interest in blood hy
drolysates arises from the fact that swine blood is an abundant 
by-product of meat production. Despite the absence of official reports of 
its global production, an estimation of 859 million L of swine blood can 
be produced yearly in the European Union (European Commission, 
2021; Resende et al., 2022; Toldrà et al., 2019). Usually, it is processed 
into low-cost blood meal, but it could be valorised through hydrolysis 
yielding a beneficial mixture rich in bioactive peptides (Bah et al., 
2013). In the present study, we propose to further evaluate the ability of 
BH included in low FM diets to modulate European seabass oxidative 
stress after a multifactorial acute stress challenge (air exposure followed 
by transfer to new tanks). This acute stress was chosen as being repre
sentative of frequent handling procedures that take place in fish farms, 
and to which fish response needs improving, through further dietary 
interventions (Machado et al., 2019a). In particular, some plasmatic 
metabolites and immune markers, hepatic oxidative stress markers and 
regulating enzymes, and muscle antioxidant potential were assessed. 

2. Materials and methods 

2.1. Ethical issues 

The animal study protocol was approved by the Ethics Committee of 
CIIMAR for Managing Animal Welfare (ORBEA-CIIMAR_18_2017), in 
compliance with the Directive 2010/63/EU (European Union, 2010) 
and the Portuguese Decree_Law n◦ 113/2013 on “The protection of 
animals used for scientific purposes”. The present study was performed 
by accredited scientists in laboratory animal science by the Portuguese 
Veterinary Authority (1005/92, DGV-Portugal, following FELASA 
category C recommendations). 

2.2. Blood hydrolysates and experimental diets 

Hydrolysis of swine blood was performed as described by Resende 
et al. (2022) and Araújo-Rodrigues et al. (2022). Two different processes 
were considered: enzymatic hydrolysis and autohydrolysis (the latter 
yielding the AH-H fraction). The hydrolysate mixture obtained enzy
matically was further fractionated with a microfiltration (500 kDa 
cut-off), with the retentate from the microfiltration being termed 
RMF-H, while the filtrate was subjected to a nanofiltration (3 kDa 
cut-off). The retentate from this nanofiltration was called RNF-H. Pep
tide molecular weight (MW) profile of the hydrolysates is available on  
Table 1. 

Four isonitrogenous (54% protein in dry matter, DM), isolipidic 
(16% DM) and isoenergetic (22 kJ g− 1) diets were produced: a plant- 
based diet with 12.5% FM was used as a control (control, CTRL) to 
which 3% of each BH was added, resulting in three further experimental 
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diets (RMF, RNF, AH). Diets were formulated in compliance with Eu
ropean seabass nutritional requirements (National Research Council, 
2011) and were extruded (2 mm) by SPAROS, Lda (Portugal). Table 2 
describes the ingredients and proximate composition of diets. 

2.3. Experimental design 

European seabass juveniles were acquired from a commercial fish 
farm (Acuinuga, S.L., Spain) and transported to the Fish Culture 

Experimental Unit of CIIMAR, where the experiment was performed. 
After an acclimation period (15 days), 12 groups of 71 fish (weight of 
12.3 ± 1.4 g, density of 3.5 kg m− 3), were randomly distributed by 
fiberglass tanks (250 L) within a recirculating aquaculture system (RAS). 
Nitrogenous compounds (NH4

+ ≤0.05 mg L− 1; NO2
− ≤0.5 mg L− 1; NO3

−

≤5 mg L− 1), salinity (35 ± 1‰), temperature (20 ± 1 ◦C), dissolved 
oxygen (>90% saturation) and pH (7.5 ≤ pH ≤ 8.5) were monitored and 
kept at ideal levels for European seabass (Kır et al., 2019). Photoperiod 
was a cycle of 12 h light/12 h dark. Each tank received filtered saltwater 
at a flow rate of 16 L min− 1. Diets were randomly assigned to triplicate 
tanks and fish were fed 3 times daily until apparent visual satiety, for 74 
days. 

At the end of the trial, fish were fasted for 24 h. Afterwards, 3 fish per 
tank (9 fish per treatment) were either immediately sampled (non- 
stressed) or air-exposed for 1 min, placed in 50 L aerated tanks with 
clean saltwater and sampled (stressed) after a 6-hour recovery period, 
based on previous literature reports (Machado et al., 2019a; Zheng et al., 
2017). 

Immediately before sampling, all fish were sacrificed with anaes
thetic overdose (0.5 mL L− 1 of 2-Phenoxyethanol) and individually 
weighed and measured. Blood was taken from the caudal vein using 
heparinized syringes and centrifuged at 5000 g for 10 min at 4 ◦C, for 
plasma collection. Samples of liver and muscle were also collected and 
immediately frozen in liquid nitrogen. Plasma and tissue samples were 
kept at − 80 ◦C until analysis. The remaining fish were also lightly 
anesthetized with 2-Phenoxyethanol (60 µL L− 1), and individual weight 
and length were recorded. 

2.4. Plasma analysis 

All plasma analysis were determined in triplicate on a microplate 
spectrophotometer (BioTek Synergy HT, Vermont, USA). 

2.4.1. Humoral immune parameters 
Lysozyme activity (μg mL− 1 of plasma) was quantified with a 

turbidimetric assay adapted to microtiter, as described by Hutchinson 
and Manning (1996) and Costa et al. (2020). A calibration curve with 
serially diluted, lyophilized hen egg white lysozyme (Sigma) was used. 

Total peroxidase activity was measured following the procedure 
described by Quade and Roth (1997), by defining one unit of peroxidase 
as the amount which causes an absorbance change of one OD (EU mL− 1 

of plasma). 
Alternative complement pathway activity (ACH50) analysis was 

based on the lysis of rabbit blood cells (Probiológica, Portugal), as 
described by Sunyer and Tort (1995). ACH50 units were set as the 
concentration of plasma that caused a cell lysis of 50%. 

2.4.2. Metabolites in plasma 
Plasma glucose, cholesterol, lactate and non-esterified fatty acids 

(NEFA) were determined enzymatically using commercial kits (Spin
react, Barcelona, Spain, for glucose, lactate and cholesterol; Wako 
Chemicals, Neuss, Germany, for fatty acids), adapted to a microplate 
format (Velasco et al., 2021). 

2.5. Liver oxidative stress analysis 

Liver samples were homogenized with phosphate buffer (0.1 M, pH 
7.4), in a ratio of 1:10 (w/v). To 300 µL of liver homogenate, 5 µL of 
butylated hydroxytoluene (BHT, 4%, in methanol) were added, after 
which aliquots for LPO and CC were made and stored at − 80 ◦C. The 
remaining homogenate was centrifuged at 10 000 g at 4 ◦C for 20 min, 
after which the supernatant was extracted and stored at − 80 ◦C for 
antioxidant enzymes’ analysis. Before freezing, the protein content of 
both homogenate and supernatant was measured as described by 
Bradford (1976) and applied to normalize antioxidant enzymes’ 
activities. 

Table 1 
Peptide molecular weight (MW) profile of the blood hydrolysates.   

Ingredients  

RMF-H RNF-H AH-H 

Peptide Profile (mAU)     
> 43 kDa n.d. n.d.  238137 
29–43 kDa 765 32143  138862 
13.7–29 kDa 1513 14786  80132 
1.2–13.7 48017 373302  349651 
< 1.2 kDa 7656 79596  131995 

Source:Adapted from Resende et al. (2022). 

Table 2 
Ingredients, proximate composition and mineral composition of the diets used in 
the trial.   

Diets  

CTRL RMF RNF AH 

Ingredients (%)         
Fishmeal (FM)1  12.50  12.50  12.50  12.50 
Soy protein concentrate2  25.00  25.00  25.00  25.00 
Wheat gluten3  13.50  10.00  10.10  10.20 
Corn gluten4  15.00  15.00  15.00  15.00 
Soybean meal 485  10.00  10.00  10.00  10.00 
Wheat meal6  7.24  7.44  7.34  7.34 
Fish oil7  13.40  13.70  13.70  13.60 
Vit & Min Premix8  0.50  0.50  0.50  0.50 
DCP9  2.80  2.80  2.80  2.80 
L-Tryptophan  0.06  0.06  0.06  0.06 
RMF-H10  0  3.00  0  0 
RNF-H11  0  0  3.00  0 
AH-H12  0  0  0  3.00 
Proximate composition (%DM)         
DM  96.24  94.63  97.00  93.96 
Ash  7.93  7.73  7.87  8.04 
Crude protein  54.24  54.72  54.57  54.63 
Crude fat  15.93  15.79  16.21  16.03 
Energy (kJ g− 1)  22.37  22.44  22.55  22.69 

CTRL, negative control; RMF, RNF, AH – diets supplemented with the respective 
hydrolysates. 1FM: 71% crude protein, 11% crude fat, EXALMAR, Peru; 2Soy 
protein concentrate: 65% protein, 0,7% lipids, ADM, Animal NutritionTM, The 
Netherlands; 3Wheat gluten: 90.1% DM, 83.8% protein, 1.6% lipids (as DM 
basis); 4Corn gluten feed: 61% crude protein, 6% crude fat, COPAM, Portugal; 
5Dehulled solvent extracted soybean meal: 47.7% crude protein, 2.2% crude fat, 
CAR-GILL, Spain; 6Wheat meal: 10.2% protein, 1.2% lipids, Casa Lanchinha 
Lda., Portugal; 7Sardine oil, Sopropêche, France; 8Vitamins (IU or mg/kg diet): 
DL-alpha tocopherol acetate, 100 mg; sodium menadione bisulphate, 25 mg; 
retinyl acetate, 20,000 IU; DL-cholecalciferol, 2000 IU; thiamine, 30 mg; ribo
flavin, 30 mg; pyridoxine, 20 mg; cyanocobalamin, 0.1 mg; nicotinic acid, 200 
mg; folic acid, 15 mg; ascorbic acid, 1000 mg; inositol, 500 mg; biotin, 3 mg; 
calcium pantothenate, 100 mg; choline chloride, 1000 mg, betaine, 500 mg. 
Minerals (g or mg/kg diet): cobalt carbonate, 0.65 mg; copper sulphate, 9 mg; 
ferric sulphate, 6 mg; potassium iodide, 0.5 mg; manganese oxide, 9.6 mg; so
dium selenite, 0.01 mg; zinc sulphate,7.5 mg; sodium chloride, 400 mg; calcium 
carbonate, 1.86 g; excipient wheat middlings. INVIVO 1%, Premix for marine 
fish, PREMIX Lda, Portugal; 9Di-calcium phosphate; 10Blood hydrolysate: 
retentate from microfiltration after enzymatic hydrolysis; 11Blood hydrolysate: 
retentate from nanofiltration after enzymatic hydrolysis; 12Blood hydrolysate: 
produced by auto-hydrolysis. 
Source:Adapted from Resende et al. (2022). 
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2.5.1. Oxidative stress and antioxidant biomarkers 
LPO was assessed in the liver homogenate through the quantification 

of thiobarbituric acid reactive substances (TBARS), in accordance with 
Bird and Draper (1984). LPO values were expressed as nmol TBARS/g 
fresh tissue. Regarding protein oxidation, this was assessed in the liver 
homogenate through the quantification of carbonyl compounds, using 
the Protein Carbonyl Content Assay Kit (Sigma-Aldrich MAK094–1KT), 
following the manufacturer’s instructions. Values were expressed as 
nmol carbonyls per mg protein. The concentration of total antioxidants 
in liver samples was determined with the Total Antioxidant Capacity 
(TAC) Assay Kit (Sigma-Aldrich MAK187) and expressed as nmol of 
Trolox equivalents per g tissue. 

Total glutathione (TG) was assessed via the formation of 5-thio-2- 
nitrobenzoic acid (TNB), at 412 nm, as detailed in Baker et al. (1990) 
and the results were expressed as nmol conjugated TNB formed per min 
per mg of protein. 

2.5.2. Antioxidant enzyme activities 
The activities of CAT, GPx, GR, GST and SOD were assessed in the 

supernatant, in triplicate using protocols adapted for microplate. CAT 
activity was evaluated as described by Claiborne (1985), with H2O2 30% 
as substrate. CAT activity was expressed in µmol consumed H2O2 per 
min per mg of protein. GPx activity was estimated considering NADPH 
oxidation at 340 nm, as stated by Mohandas et al. (1984). GPx activity 
was expressed as nmol NADPH oxidized per min per mg of protein. To 
assess GR activity, the method of Cribb et al. (1989) was employed and 
results were expressed as nmol oxidized NADPH min− 1 mg protein− 1 (ε 
= 6.22 × 103 M− 1cm− 1). 

The total GST activity was determined as described by Habig et al. 
(1974). Results were expressed in nmol CDNB conjugate formed per min 
per mg protein. Finally, SOD activity was measured using a SOD 
Determination Kit (Sigma-Aldrich 19160–1KT-F). Results were 
expressed as % of inhibition of the formation of WST-1 formazan per mg 
protein. 

2.6. Muscle antioxidant potential 

Muscle antioxidant potential was evaluated as described in Valente 
et al. (2015). Briefly, the muscle was hydrolyzed by pepsin under acidic 
conditions, and this reaction was inactivated by boiling at 100 ◦C. After 
centrifugation, the supernatant was recovered and analyzed for its 
antioxidant activity through the 2,2′-azino-bis-3-ethylbenzthiazoli
ne-6-sulphonic acid (ABTS•+) and oxygen radical absorbance capacity 
(ORAC) tests (as it did not present significant 1,1-diphenyl-2-picrylhy
drazyl, DPPH•, inhibition; data not shown), as described in Ribeiro 
et al. (2020). A calibration curve was developed with Trolox standards, 
and the results are expressed as nmol Trolox equivalents per mg muscle. 

2.7. Statistical analysis 

Data were tested for normality and homogeneity of variances, 
considering the Kolmogorov-Smirnov and Levene’s tests, respectively, 
and, if necessary, appropriately transformed. A two-way ANOVA was 
used to analyse data, considering the diet and stress as fixed factors, with 
the Statistica v13.5 (TIBCO Software Inc., Palo Alto, CA, USA) software. 
If significant effects were found, a pairwise multiple comparison test 
(Tukey HSD) was performed. The minimum level of significance was set 
at P < 0.05 for all analyses. Furthermore, Pearson’s correlations were 
evaluated for the data and considered a two-tailed analysis of 0.05 and 
0.01. 

3. Results 

3.1. Growth performance 

A more detailed analysis of the impact of the hydrolysates on growth 

performances is available on Resende et al. (2022). Briefly, RNF did not 
differ from CTRL in the final fish weight (47.01 ± 7.30 vs. 48.93 ± 8.21, 
respectively; P = 0.065). AH displayed a significantly lower final body 
weight (46.62 ± 7.76; P < 0.001) than CTRL, but it was similar to RNF. 
Finally, RMF was the worst performing diet (33.37 ± 5.27, P < 0.001). 

3.2. Plasma metabolites and innate immune markers analysis 

Regarding the analysed plasma metabolites (Table 3), cortisol and 
lactate levels were significantly increased in stressed fish, thus vali
dating our experimental design. However, no significant differences 
were found among diets. Glucose, cholesterol and triglycerides were 
unaffected by either diet or stress. NEFA was not affected by stress alone, 
but non-stressed fish fed AH displayed the highest levels. 

Protein levels were not only reduced in stressed fish, but were also 
affected by diet since the RMF group displayed significantly lower 
protein levels than all other dietary treatments. 

In terms of the analysed innate immune markers (Table 4), ACH50 
and peroxidase were unaffected by either stress or dietary treatments. 
Lysozyme was not affected by the stress, but it was significantly reduced 
by the RMF diet. 

3.3. Liver oxidative stress 

LPO was significantly increased post-stress (Fig. 1). Moreover, while 
the non-stressed RMF-fed fish displayed the lowest LPO values, the 
stressed fish fed the same diet displayed the highest values. Prior to the 
stress, the AH diet displayed higher LPO than the RMF and RNF. How
ever, after the stress, all diets were statistically similar. No differences 
among dietary treatments were found for carbonyl compounds levels, 
but stressed fish had lower levels compared to non-stressed. Regarding 
liver TAC, while both stressed and non-stressed fish fed CTRL display 
statistically similar levels, a significant decrease is seen when comparing 
stressed to non-stressed fish fed the BH diets. 

Significant differences among stressed and non-stressed fish were 
observed in CAT and GPx, but dietary treatments did not have a sig
nificant impact. GR was highest for stressed AH-fed fish. The stressed AH 
group also showed an increase in GST activity, being significantly higher 
than the stressed control fish. RMF led to TG and SOD values that were 
significantly higher than all other diets. 

3.4. Muscle antioxidant potential 

Fig. 2 depicts the results from muscle antioxidant potential. When 
evaluated through ABTS, a significant increase was seen for stressed fish. 
However, this was not observed in the ORAC analysis, as no differences 
regarding stress or dietary treatments were found. 

3.5. Pearson correlations 

Some of the Pearson’s are described in Table 5 and a full table is 
provided as supplementary material. Liver LPO displayed strong corre
lations with SOD activity and lactate, and weaker, but significant cor
relations with TAC, CAT and plasma cortisol. Furthermore, carbonyl 
levels were strongly but negatively correlated with TAC, CAT, cortisol 
and lactate. SOD was correlated with cortisol and CAT. Cortisol and 
lactate were also strongly correlated. 

4. Discussion 

As fish welfare becomes a major concern in aquaculture production, 
aquafeed development evolves to not only provide the basic nutrients, 
but to also enhance fish response to stressful situations. In this sense, we 
have hypothesized that functional feeds, low FM aquafeeds supple
mented with blood hydrolysates, could improve the animals’ response to 
stress conditions faced in farms. 
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The evaluated stress challenge was an acute stress, with total dura
tion of 1 min, followed by sampling after a recovery period of 6 h. The 
significantly increased responses on cortisol, lactate and liver lipid 
peroxidation in stressed fish validate the employed protocol, since these 
are typical indicators of acute stress (Barton, 2002; Cerqueira et al., 
2021; Ciji and Akhtar, 2021). Cortisol is released by interrenal cells as a 
response to the secretion of adrenocorticotropin by the anterior pitui
tary, which had been previously stimulated by the 
corticotropin-releasing hormone produced by the hypothalamus. Thus, 
cortisol response is delayed a few minutes from stress recognition by the 
central nervous system (Barton, 2002; Ciji and Akhtar, 2021). While this 
is a common stress biomarker, it has a high degree of biological vari
ability, even in individuals subjected to the same experimental condi
tions (Ciji and Akhtar, 2021; de Magalhães et al., 2020). Indeed, high 
standard error values were found in cortisol measurements, and while 
the impact of stress was visible, other more subtle differences caused by 
diets may be disguised by this high variability. 

Cortisol promotes both glycogenolysis and gluconeogenesis, which 
may increase glucose levels, to yield the fish with the necessary energy 
to counteract the stressor (Martinez-Porchas et al., 2009). Fanouraki 
et al. (2011) provided useful information on the general patterns of the 
response of plasma cortisol, lactate, and glucose concentrations in sea
bass after acute stress. They observed that both glucose (12 mmol L− 1) 
and lactate (9 mmol L− 1) levels were considerably higher than in the 
present study (8.5 mmol L− 1 and 4 mmol L− 1, respectively), even 8 h 
post-stress. Yet, they found that plasma glucose after 4 h dropped to 
basal levels for most of the species investigated. In our work, despite an 
absence of statistical differences, glucose levels 6 h post-stress are 

slightly higher for all groups except for fish fed AH. All these observa
tions could provide evidence and support for the idea that glucose levels 
after 6 h may already have returned to basal levels. Rotllant and Tort 
(1997) reported that after an acute stress (net handling for 8 min), 
glucose levels of red porgy Pagrus pagru were elevated after a two-hour 
period, but not after 24 h. Davis and McEntire (2009) have described 
that glucose levels of sunshine bass (a hybrid Morone chrysops X Morone 
saxatilis) and white bass (Morone chrysops) only slightly rise after a stress 
(decrease in water volume in the tank) and are returned to normal after 
6 h. Another hypothesis, stated by Martinez-Porchas et al. (2009) is that, 
while cortisol does increase circulating glucose levels, the stress may 
also increase the rate at which fish consume the energetic substrates. 
Moreover, in a stressful event, the animal’s oxygen demand may in
crease, leading to cell hypoxia and anaerobic metabolism of glucose. 
This explains the increase in circulating lactate levels after the challenge 
and the absence of significant differences in glucose levels post-stress 
(Mirzargar et al., 2022). 

Overall, the hydrolysates had a reduced impact on plasma stress 
indicators. Similarly, another work with swine blood by-products at 5% 
in diets for Argyrosomus regius also did not find any differences in 
glucose, lactate, protein or cortisol, although these biomarkers were 
evaluated on skin mucus rather than plasma, and without subjecting the 
animals to any challenge (Fernández-Alacid et al., 2021). It could be 
possible that further increased inclusion levels could have better out
comes, since the average value of cortisol was lower for BH diets, albeit 
not significantly. 

Plasma protein levels can be an indicator of the nutritional status of 
fish (Pelusio et al., 2022). In this work, they decreased after the stress 

Table 3 
Plasma metabolite levels of fish prior to (non-stressed) or after (stressed) an air exposure.   

Diets Two-way ANOVA (P-value)  

Non-Stressed  Stressed  

CTRL RMF RNF AH  CTRL RMF RNF AH Diet Stress Diet ×
Stress 

Cortisol 
(ng mL¡1) 

618 ±
101 

589 ± 91 529 ± 47 652 ± 68  1014 ± 92 875 ± 91 859 ±
115 

790 ± 74 0.420  < 0.001  0.419 

Glucose 
(mmol L¡1) 

7.82 ±
0.89 

7.17 ±
0.24 

7.33 ±
0.36 

9.58 ±
0.45  

8.08 ±
0.48 

8.57 ±
0.87 

8.36 ±
0.39 

8.84 ±
0.22 

0.040 *  0.206  0.229 

Lactate 
(mmol L¡1) 

3.69 ±
0.60 

2.74 ±
0.33 

2.75 ±
0.20 

2.83 ±
0.15  

3.84 ±
0.41 

4.17 ±
0.42 

4.01 ±
0.37 

4.37 ±
0.35 

0.797  < 0.001  0.873 

Triglycerides (mmol 
L¡1) 

5.46 ±
1.08 

5.49 ±
1.00 

6.30 ±
1.11 

5.86 ±
0.90  

4.94 ±
0.63 

4.46 ±
0.96 

6.73 ±
1.43 

4.90 ±
0.37 

0.503  0.532  0.948 

Cholesterol (mmol 
L¡1) 

7.92 ±
1.70 

6.65 ±
1.04 

8.66 ±
1.06 

8.11 ±
1.15  

7.27 ±
0.68 

5.87 ±
1.26 

7.01 ±
0.62 

8.00 ±
0.66 

0.380  0.310  0.919 

NEFA 
(mmol L¡1) 

0.12 ±
0.01B 

0.14 ±
0.01B 

0.13 ±
0.01B 

0.20 ±
0.02 A  

0.15 ±
0.01AB 

0.11 ±
0.01B 

0.12 ±
0.01B 

0.16 ±
0.01AB 

<

0.001  
0.126  0.014 

Protein (g dL¡1) 4.23 ±
0.31a 

3.63 ±
0.26b 

4.12 ±
0.21a 

4.23 ±
0.19a  

3.94 ±
0.14a 

2.68 ±
0.27b 

3.72 ±
0.21a 

4.03 ±
0.20a 

<

0.001  
0.007  0.348 

Values are presented as mean ± SE. Different superscript lowercase letters denote significant differences among diets (P < 0.05), while different superscript uppercase 
letters indicate significant differences for Diet × Stress. * No significant differences were found after the post-hoc test. 

Table 4 
Humoral immune parameters of fish before (non-stressed) or after (stressed) air exposure.   

Diets Two-way ANOVA (P-value)  

Non-Stressed  Stressed  

CTRL RMF RNF AH  CTRL RMF RNF AH Diet Stress Diet ×
Stress 

Lysozyme (µg mL 
-1) 

15.74 ±
1.03a 

12.25 ±
0.76b 

14.41 ±
1.03a 

16.66 ±
0.68a  

15.99 ±
0.75a 

9.21 ±
0.49b 

15.49 ±
1.29a 

15.85 ±
1.19a 

<0.001 0.353 0.171 

Peroxidase (EU 
mL -1) 

33.8 ± 4.6 74.9 ±
18.0 

33.8 ± 5.6 39.4 ± 5.1  62.0 ±
11.5 

43.7 ±
7.5 

55.0 ±
12.5 

30.5 ± 3.4 0.146 0.749 0.034* 

ACH50 (units mL- 

1) 
167.6 ±
18.7 

136.8 ±
31.1 

111.6 ±
19.5 

135.6 ±
30.6  

127.1 ±
8.7 

130.1 ±
7.8 

126.1 ±
10.3 

163.1 ±
9.4 

0.217 0.901 0.279 

Values are presented as mean ± SE. Different superscript lowercase letters denote significant differences among diets (P<0.05), while different superscript uppercase 
letters indicate significant differences for Diet × Stress. * No significant differences were found after the post-hoc test. 
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challenge, in accordance with previous literature reports (Di Marco 
et al., 2008; Fernández-Alacid et al., 2019; Mommsen et al., 1999; Sa
maras et al., 2023). This decrease can be attributed to proteolysis 
derived from cortisol action (Di Marco et al., 2008; Mommsen et al., 
1999; Pelusio et al., 2022). This proteolytic action has been claimed to 
be evident in white muscle (Mommsen et al., 1999) and can also explain 
the results from the ABTS tests, as an increased antioxidant potential 
was observed in muscle, probably derived from peptides released from 
this proteolysis. However, the ORAC test did not support these results. 
This is not unheard of, as the ABTS•+ is sterically-hindered stable, 
compared to the tested radical in the ORAC test, leading to the observed 
difference (Schaich et al., 2015). ORAC uses a biologically pertinent 
radical source (H2O2), meaning its results should be closer to an in vivo 

approach (Thaipong et al., 2006); yet this relates more to a possible 
benefit of fillets for consumers than to inferences regarding proteolysis 
of muscle. Additionally, the RMF diet led to lower plasmatic protein 
levels, which suggests an overall poorer nutritional status and possible 
higher protein oxidation. This is in agreement with its general worse 
growth performance (in terms of final weight), when compared to the 
remaining diets. Nevertheless, further analysis regarding amino acid and 
protein turnover should be performed to validate this evidence. 

High values of NEFA in the plasma can be attributed to a mobiliza
tion of lipid reserves and their oxidation, caused by a higher metabolic 
demand (Di Marco et al., 2008). The AH diet led to the highest NEFA 
values, and also displayed high levels of liver LPO, particularly in 
non-stressed fish, which could be an indicator of impairment of lipid 
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Fig. 1. Liver oxidative status and antioxidant enzymes’ activity. LPO – lipid peroxidation; TAC – total non-enzymatic antioxidant activity; CAT – catalase; GPx – 
glutathione peroxidase; GR – glutathione reductase; GST – glutathione S-transferase; TG – total glutathione; SOD – superoxide dismutase. Values are presented as 
mean ± SE (n = 9). Different superscript lowercase letters denote significant differences among diets (P < 0.05), while different superscript uppercase letters 
indicate significant differences for Diet × Stress (P < 0.05). * indicates significant differences between stressed and non-stressed fish (P < 0.05). 

Fig. 2. Antioxidant potential of the muscle of fish fed the experimental diets, evaluated through 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS•+) and 
oxygen radical absorbance capacity (ORAC) tests. Values are presented as mean ± SE (n = 9). Different superscript lowercase letters denote significant differences 
among diets (P < 0.05), while different superscript uppercase letters indicate significant differences for Diet × Stress (P < 0.05). Asterisk (*) indicates significant 
differences between stressed and non-stressed fish (P < 0.05). 
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metabolism in fish fed this diet. In a previous work with these blood 
hydrolysates, a reduction of lipid digestibility was observed for this diet 
(Resende et al., 2022), which supports this hypothesis. However, despite 
alterations in NEFA, triglycerides and cholesterol were not affected, a 
similar situation to that reported by Di Marco et al. (2008). This could 
indicate that free fatty acids may derive from mesenteric fat or hepatic 
tissue, rather than from blood triglycerides, which suggests the activa
tion of transcription factors that control metabolic pathways in a 
tissue-specific manner, regulating nutrient transport and modulating 
levels of plasma NEFA, triglycerides and cholesterol (Shearer et al., 
2012). 

Humoral immune parameters were not affected by stress in this 
report, despite the frequent association between both chronical and 
acute oxidative stress and impairments in the immune system (Dawood 
et al., 2022; Paray et al., 2021). It is, however, possible that acute 
stressors may not affect seriously the immune system, as other responses 
of the organism are occurring (Tort, 2011). This is in agreement with 
Machado et al. (2019a), who also found that a similar stress for Euro
pean seabass did not affect some immune markers such as peroxidase 
and lysozyme. Additionally, the BH did not affect significantly the innate 
immune parameters in the plasma, compared to the CTRL. Diet RMF led 
to lower plasmatic lysozyme levels, possibly suggesting a poorer ca
pacity to respond in the event of an infection. This hydrolysate possessed 
the lowest abundance of smaller sized peptides, which have been asso
ciated with beneficial effects on immunity (Resende et al., 2022; Siddik 
et al., 2021), and that could be the reason behind those values. In any 
case, the values observed for plasmatic lysozyme (Machado et al., 
2019b), peroxidase (Campos et al., 2017) and ACH50 (Azeredo et al., 
2017) are in agreement with previous reports for this species. 

Other authors have found that marine hydrolysates in low FM diets 
increased the non-specific immunity biomarkers to values equal to or 
above to those induced by a non-supplemented FM-based diet (Costa 
et al., 2020; Gisbert et al., 2018). Yet, Leduc et al. (2018) claimed that a 
shrimp hydrolysate had stronger immunostimulant properties than a 
tilapia hydrolysate when supplemented at equal levels in European 
seabass diets. Thus, the raw material used to produce hydrolysates plays 
an important role in determining the outcomes, and this could be the 
reason behind the differences in our results, along with variations in 
inclusion levels of the hydrolysates. Other residual compounds, such as 
vitamins or minerals, eventually present in the hydrolysates, may also 
play an important role. In addition, it is suggested that, in future ex
periments, other immune markers, namely expression of immunoglob
ulins, antiproteases, or even inflammation markers, are assessed to 
obtain a clearer picture of the potential of hydrolysates to modulate 
immune responses. 

Another concern regarding the impacts of stress and impaired fish 
welfare is related to the production of ROS, which then tend to accu
mulate in the liver (Awasthi et al., 2018). Indeed, liver LPO levels were 
increased after stress, similarly to previous literature reports on this 
species (Silva-Brito et al., 2019). Liver LPO pre-stress was lowest for the 
RMF diet, but this diet displayed the highest increase after the challenge. 
This could be partially due to the decrease in SOD levels after stress. SOD 
is an enzyme that catalyses the conversion of the superoxide radical into 
molecular oxygen and hydrogen peroxide, being an important antioxi
dant defence (Birben et al., 2012). Indeed, we have found a negative 
correlation between liver SOD activity and liver LPO (p < 0.001), as 
previously demonstrated by other authors in studies correlating higher 
SOD activity with lower LPO levels (Abdel-Tawwab et al., 2021; Passos 
et al., 2021). 

Liver CAT activity was higher for stressed fish than for non-stressed 
ones and has a positive correlation with LPO. This suggests that once 
stressed, the increase in lipid peroxidation stimulates the activity of 
CAT, which aids in antioxidant defence by breaking down hydrogen 
peroxide (a pro-oxidant) into water and molecular oxygen (Moutinho 
et al., 2021). The results here presented for CAT are within the range 
described for this species (Islam et al., 2020). 

GPx acts in a similar way to CAT, also converting hydrogen peroxide 
into water, and the range of its activity is within the range reported for 
this species (Lobo et al., 2018). Nevertheless, GPx is not significantly 
correlated with CAT in this work. GPx activity was higher for stressed 
fish in all diets apart from RMF, where it was decreased. This may also 
partially explain the increase of LPO in stressed fish fed this diet, due to 
the impairment of antioxidant enzymatic defences. 

However, while the activity of SOD was significantly lower in all 
diets after the stress challenge, only the RMF diet displayed a significant 
increase in LPO (considering the two-way ANOVA results). Exogenous 
antioxidants present in the diet, such as bioactive peptides, can enhance 
non-enzymatic antioxidant response and minimize the need for enzy
matic activity when facing oxidative stress (Batista et al., 2020; Mou
tinho et al., 2021; Pereira et al., 2022). The TAC values support this 
hypothesis, as a mobilization of non-enzymatic antioxidants seems 
evident in BH-diets post-stress. Furthermore, TAC has a negative cor
relation with SOD activity, which suggests that if non-enzymatic anti
oxidants are mobilized, the need for antioxidant enzymes decreases. It is 
possible that some of the bioactive peptides present in the BH could have 
an affinity for the superoxide radical in the liver of the stressed fish, 
minimizing the need for the SOD activity. However, further assessment 
of the mechanisms of action of such peptides are still needed to clarify 
this matter. 

The AH diet required higher activities of GPx, GR, and GST, which 

Table 5 
Pearson correlations between some evaluated parameters.    

LPO Carbonyls TAC GPx SOD CAT Cortisol Lactate 

LPO Pearson correlation  1 -0.260* 0.295*  0.047 -0.503** 0.250* 0.284* 0.305**  
Sig (2-tailed)   0.027 0.034  0.697 < 0.001 0.034 0.016 0.009 

Carbonyls Pearson correlation   1 -0.327**  -0.035 0.179 -0.363** -0.342** -0.320**  
Sig (2-tailed)    0.005  0.771 0.133 0.002 0.003 0.006 

TAC Pearson correlation    1  -0.028 -0.560** -0.364** 0.338** 0.413**  
Sig (2-tailed)      0.817 < 0.001 0.002 0.004 < 0.001 

GPx Pearson correlation      1 -0.045 0.192 0.157 0.334**  
Sig (2-tailed)       0.707 0.106 0.189 0.004 

SOD Pearson correlation       1 -0.241* -0.286* -0.223  
Sig (2-tailed)        0.042 0.015 0.060 

CAT Pearson correlation        1 0.355** 0.431**  
Sig (2-tailed)         0.002 < 0.001 

Cortisol Pearson correlation         1 0.468**  
Sig (2-tailed)          < 0.001 

Lactate Pearson correlation          1  
Sig (2-tailed)            

* significant at p < 0.05 
** significant at p < 0.01 
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can suggest that this diet cannot modulate antioxidant defences, leading 
for higher needs of the enzymes to maintain homeostasis. This occurred 
despite the presence of low-sized (<13.7 kDa) peptides in this hydro
lysate. A low bioavailability of such peptides could be the reason behind 
its inefficacy. Indeed, a previous work with this diet resulted in worse 
protein digestibility and higher faecal nitrogen losses (Resende et al., 
2022), which would affect not only protein metabolism related to 
growth, but also reduce the availability of bioactive peptides. The RNF, 
which also displays small sized peptides, led to statistically similar GR 
and GST activities before and after the stress. As such, the bioactive 
peptides present in this potentially functional feed may be more avail
able than those present in AH. 

In oxidative stress events, ROS may directly or indirectly introduce 
carbonyl moieties at amino acid side chains. Higher amounts of carbonyl 
groups have been correlated with protein damage resulting from 
oxidative stress (Almroth et al., 2005). However, in this work, liver 
carbonyls are significantly decreased in stressed fish compared to 
non-stressed. Two reasons, previously stated in the literature, may aid 
explain this issue. Firstly, mildly oxidated proteins are more susceptible 
to proteolytic degradation, as a defence mechanism to prevent the 
spreading of oxidative damage (Passi et al., 2004). Moreover, the in
crease of lipid peroxidation products has been reported to act as an in
hibitor for protein carbonyl formation (Almroth et al., 2005). Indeed, a 
negative correlation between carbonyls and LPO was observed. There
fore, both an increase and a decrease in carbonyls can be indicators of 
oxidative stress (Almroth et al., 2005); the RNF and AH diets, which led 
to the lowest difference between the non-stressed and stressed coun
terparts, could possibly be adequate to prevent an elevated impact of 
oxidative stress on proteins. 

5. Conclusions 

The tested diets seemed to affect the fish oxidative stress response in 
the liver. This could be due to their bioactive peptides, which aided in 
the non-enzymatic modulation of stress response. This seems to be 
confirmed by the TAC values in the liver. However, this impact was not 
sufficient to lower LPO levels compared to a control plant-based diet. In 
addition, plasmatic cortisol response was not affected by dietary treat
ments. Therefore, and while bioactive hydrolysates remain an option for 
improvement of farmed fish stress response, further research is needed. 
This includes optimizing inclusion levels, assessing other timepoints 
after an acute stress and verifying the impact of BH on chronical stress. 
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de Magalhães, C.S.F.R., Cerqueira, M.A.C., Schrama, D., Moreira, M.J.V., 
Boonanuntanasarn, S., Rodrigues, P.M.L., 2020. A Proteomics and other Omics 
approach in the context of farmed fish welfare and biomarker discovery. Rev. Aquac. 
12, 122–144. https://doi.org/10.1111/raq.12308. 

Manzoor, M., Singh, J., Gani, A., 2022. Exploration of bioactive peptides from various 
origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food 
Chem. 373, 131395 https://doi.org/10.1016/j.foodchem.2021.131395. 

Martinez-Porchas, M., Martinez-Cordova, L.R., Ramos-Enriquez, R., 2009. Cortisol and 
glucose: reliable indicators of fish stress? Panam. J. Aquat. Sci. 4, 158–178. 

Mirzargar, S.S., Taheri Mirghaed, A., Hoseini, S.M., Ghelichpour, M., shahbazi, M., 
Yousefi, M., 2022. Biochemical responses of common carp, Cyprinus carpio, to 
transportation in plastic bags using thymol as a sedative agent. Aquac. Res. 53, 
191–198. https://doi.org/10.1111/are.15564. 

Mohandas, J., Marshall, J.J., Duggin, G.G., Horvath, J.S., Tiller, D.J., 1984. Differential 
distribution of glutathione and glutathione-related enzymes in rabbit kidney: 
possible implications in analgesic nephropathy. Biochem. Pharm. 33, 1801–1807. 
https://doi.org/10.1016/0006-2952(84)90353-8. 

Mohapatra, S., Chakraborty, T., Kumar, V., DeBoeck, G., Mohanta, K.N., 2013. 
Aquaculture and stress management: a review of probiotic intervention. J. Anim. 
Physiol. Anim. Nutr. 97, 405–430. https://doi.org/10.1111/j.1439- 
0396.2012.01301.x. 

Mommsen, T.P., Vijayan, M.M., Moon, T.W., 1999. Cortisol in teleosts: dynamics, 
mechanisms of action, and metabolic regulation. Rev. Fish. Biol. Fish. 9, 211–268. 
https://doi.org/10.1023/a:1008924418720. 
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