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ABSTRACT
Nature derived compounds represent a valuable source of bioactive molecules with enormous
potential. The sea is one of the richest environments, full of skilled organisms, where algae stand
out due to their unique characteristics. Marine macroalgae adapt their phenotypic characteristics,
such as chemical composition, depending on the environmental conditions where they live. The
compounds produced by these organisms show tremendous potential to be used in the biomed-
ical field, due to their antioxidant, anti-inflammatory, immunomodulatory, and anti-cancer
properties.
Cancer is one of the deadliest diseases in the world, and the lack of effective treatments high-
lights the urgent need for the development of new therapeutic strategies. This review provides
an overview of the current advances regarding the anti-cancer activity of the three major groups
of marine macroalgae, i.e., red algae (Rhodophyta), brown algae (Phaeophyceae), and green algae
(Chlorophyta) on pancreatic, lung, breast, cervical, colorectal, liver, and gastric cancers as well as
leukemia and melanoma. In addition, future perspectives, and limitations regarding this field of
work are also discussed.
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Introduction

The marine environment is an untapped source of
unique and efficient compounds with biomedical
potential, where algae stand out as an attractive source
[1–3]. Marine macroalgae are photosynthetic plant-like
eukaryotic organisms classified into three major groups:
(1) green algae (Chlorophyta); (2) red algae
(Rhodophyta); and (3) brown algae (Phaeophyceae) [4,5].
These organisms grow in very harsh environmental
conditions and their chemical composition is greatly
influenced by: temperature, pH, sunlight, physiological
status, and carbon dioxide supply [4,6]. As a conse-
quence of the seasonal and environmental adaptations,
as well as taxonomic diversity, algae produce a wide
range of bioactive compounds, such as polysaccharides,
enzymes, glycoproteins, polyunsaturated fatty acids,
sulfolipids, phenolics, terpenoids, peptides, and other
secondary metabolites. These compounds exhibit inter-
esting properties, such as antioxidant, anti-inflamma-
tory, immunomodulatory, and anti-cancer activities,

that might have potential therapeutic applications
[7–10].

Cancer is a major health concern with multifactorial
etiology, including genetic mutations, environmental
toxins, immune conditions, unhealthy diets, and hor-
mones [11]. Although cancer is considered an assort-
ment of diseases, all share common cellular and
molecular trends [11]. In every country of the world, it
is an important barrier to life expectancy, and its bur-
den incidence and mortality are rapidly rising [11]. In
fact, in 2020, 19.3 million new cancer cases were diag-
nosed with 10 million related deaths, being lung (18%),
colorectal (9.4%), liver (8.3%), stomach (7.7%), and
breast (6.9%) cancer the leading causes [11].
Notwithstanding being less frequent, pancreatic cancer
(PC) has the poorest prognosis among all types of can-
cers, with extremely low survival (only 7% of patients
reach 5-year survival) [12].

Despite substantial improvements in modern drug
design and manufacturing, cancer treatment still
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depends on surgery resection, chemotherapy, and
radiotherapy, with serious side effects and limited cura-
tive results [13]. Moreover, immunotherapy, a promising
treatment for many cancer types, by stimulating the
patient immune system, has shown limited applications
in several types of cancer such as pancreatic, or glio-
blastoma [14,15]. Pancreatic tumors, for example, due
to the dense fibrous matrix layer around cancer cells,
display an immunosuppressive microenvironment,
which explains their resistance to both chemo and
immunotherapy treatments [14,16]. Glioblastoma
presents a similar multifactorial phenomenon, along
with the presence of the blood–brain barrier and the
limited knowledge of the neuroimmune system, that
plague immunotherapy efficacy [17].

Given the burden of cancer in society, the existing
therapeutic options, and side effects, it is urgent to
explore different solutions such as the finding of new
compounds with anti-cancer activity [9,18,19]. The dis-
covery of compounds with anti-cancer potential is
actively growing [9]. This review will innovatively dis-
cuss the last five years’ current advances in the three
major groups of marine macroalgae, i.e., brown, red,
and green-derived compounds on several types of can-
cer, as well as the future perspectives and limitations.

Macroalgae compounds with anti-cancer
potential

Macroalgae are multicellular organisms that live in
water or humid places [17]. They can perform photo-
synthesis which transforms light into chemical energy
using carbon dioxide to create complex organic com-
pounds with biological activity, and during the process
of organic synthesis, oxygen (O2) is released [17]. As a
result of their photosynthetic activity, macroalgae are
the main producers of the Earth’s O2. Although the
interest of the scientific community in these organisms
is increasing, they are still an underused natural
resource with great potential, namely for biomedical
applications [16–18].

Recently, many reviews were published compiling
the scientific literature about the anti-cancer potential
of marine macroalgae [1,9,19,20]. This review compiles
the last five years’ research on several species of brown,
green, and red macroalgae derived compounds with
anti-cancer effects over pancreatic, lung, breast,
cervical, colorectal, liver, gastric, leukemic, and melan-
oma cancer models. Additionally, the mechanisms
underlying these anti-cancer actions of algae specific
compounds will be discussed. Different types of extrac-
tions led to obtaining different types of compounds,

such as polysaccharides, enzymes, glycoproteins,
polyunsaturated fatty acids, sulfolipids, phenolics, ter-
penoids, peptides, and other secondary metabolites
that exhibit antioxidant, anti-inflammatory, immunomo-
dulatory, and anti-cancer activities [8].

Macroalgae compounds extraction uses different
types of solvents: acetone, water, methanol, n-hexane,
and chloroform (Table 1). These extractions are based
on the principle of solvent extraction – using a liquid
(solvent) to dissolve (solvate) a target molecule or
group of compounds, separating the desired natural
compounds from the raw material [51,52]. The extrac-
tion process has four stages: (1) penetration of the solv-
ent into the solid matrix; (2) dissolution of the solute on
the solvent; (3) diffusion of the solute from the solid
matrix; (4) collection, an eventual concentration, of the
extracted solute [51,53]. For the process of solvent
extraction, several aspects need to be considered, such
as: the solvent properties, the particle size of raw mate-
rials, temperature, extraction duration, among others,
to maximize the extraction efficacy [52]. Furthermore,
the extraction process results in a mixture of different
types of compounds [54]. Some of the studies herein
presented include purification methods such as ion
exchange chromatography (a process that relies on the
affinity of ion exchangers to perform the separation
of ions and polar molecules) which further isolate indi-
vidual compounds from the main algae extract [55].
Table 1 summarizes the studies published in the last
5 years, which will be discussed in the following
subsections.

Brown macroalgae

Of the three major groups of macroalgae, brown algae
are the most studied for cancer therapy [19]. This mar-
ine resource is rich in sulfated polysaccharides and
other secondary metabolites like fucoxanthin, phloro-
tannins, and fucoidans, which have revealed promising
results against several types of cancer [19,56–58].
Fucoidan has been extensively studied [19,56–58].
Geisen et al. explored the effects of a purified acetonic
extract of Fucus vesiculosus, a Baltic brown seaweed, on
PANC-1: PancTu1, Panc89, and Colo357 human PC cell
lines [21]. This extract led to reduced viability, corrobo-
rated by cell cycle inhibition of proliferating cells [21].
On the other hand, F. vesiculosus extract presented low
cytotoxic activity against terminally differentiated cells,
like erythrocytes and non-malignant resting T cells,
which demonstrates that proliferation is a pre-requisite
for the effectiveness of the macroalgae extract [21]. As
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highlighted by the authors, future in vivo studies should
explore such results and the mechanisms of action over
the cell cycle [21]. The effects of fucoidan isolated with
water extract from Turbinaria conoides, macroalgae
found along the south-east coast of India, was tested
with Mia PaCa-2 and PANC-1 human PC cell lines, show-
ing interesting results [22]. This fucoidan effectively
inhibited cell proliferation and induced apoptotic death
in both cell lines [22]. Additionally, the extract exhibited
significant anti-angiogenic potential at 100 g/mL lead-
ing to complete inhibition of human aortic endothelial
cell tube formation [22]. The same authors, in a recent
study, characterized the active fractions of Turbinaria
conoides fucoidan extract, exploring the mechanisms
involved in its pancreatic anti-cancer activity [23]. Five
fractions of fucoidan isolated by ion exchange chroma-
tography were tested with: PANC-1, MiaPaCa-2,
Panc-3.27, and BxPC-3 human PC cell lines. All fractions
presented a dose and time-dependent regulation of
cell survival [23]. In addition, fucoidan induced apop-
tosis, cleavage of poly ADP ribose polymerase (an
enzyme involved in DNA repair), and activated caspases
3, 8, and 9 (each play a critical role in mediating apop-
totic cell death) [23]. A specific fraction of the extract
(f5) inhibited the NF-jB pathway (related to transcrip-
tion of several genes associated with tumorigenesis and
progression) in Mia PaCa-2 and PANC-1 cells [23].
Furthermore, fucoidan inhibited constitutive and tumor
necrosis factor-a mediated NFjB DNA-binding activity
in PC cells [23]. NFjB is a key player in the apoptotic
resistance of PC cells, and the inhibition of this nuclear
transcription factor can lead to apoptosis, sensitizing
cells to chemotherapy treatments [59,60].

Dieckol, a phlorotannin polyphenolic compound pre-
sent in the brown alga Ecklodia cava, was tested with
PANC-1 cells [24]. Dieckol decreased the expression of
cell progression inducers cyclin D1 and proliferating cell
nuclear antigen – PCNA, the anti-apoptotic protein B-
cell leukemia-2 (Bcl-2), and increased the expression of
pro-apoptotic protein Bax [24]. The apoptotic effects on
PC cells were related to increased levels of reactive oxy-
gen species (ROS) [24]. In cancer cells, chemoresistance
is associated with the antioxidant defense system and,
as such, these anti-cancer drugs should increase ROS
levels, promoting cancer cell death [24].

Dieckol extracted from Ecklodia cava (commercial
AKos Consulting & Solutions, Steinen, Germany) was
tested with human A549 lung cancer cells [25]. This
compound inhibited cell migration and invasion and
induced apoptosis by activating tumor suppressing E-
cadherin (a glycoprotein of the adherens junctions, cru-
cial in cell adhesion and maintenance of epithelial

phenotype with major importance on epithelial–mesen-
chymal transition (EMT)) levels [24]. Furthermore, apop-
tosis was induced via inhibition of the mTOR signaling
pathway [24]. This pathway regulates cellular metabol-
ism, differentiation, and proliferation, being its activa-
tion closely related to tumor development and cancer
therapy resistance [25]. Investigation toward the discov-
ery of drugs that can inhibit the PI3K signaling cascade
is needed [25,61]. In this sense, dieckol presents great
potential to be considered for lung cancer therapy [25].

Fucosterol, a phytosterol that can be also found in
Ecklonia cava or Ecklonia stolonifera, as well as in other
plant species, was evaluated as a possible anti-cancer
compound for lung cancer [26]. It was effective against
A549 and SK-LU-1 lung cancer cell growth and invasion,
by inducing apoptosis and cell cycle arrest [26]. In add-
ition, this compound inhibited the growth of A549-xen-
ografted tumors in mice in increasing doses
(intraperitoneal administration at 20, 40, and 80 mg/kg
body weight twice a week for 6 weeks), making it a
promising candidate for lung cancer therapy [26].

Wu et al. tested the effects of a native and three
degraded fucoidans by extrusion (a bioreaction process
of short duration that involves heating, mixing, shear-
ing, pressurizing, and shaping, to increase the extrac-
tion yield of fucoidan) from Sargassum crassifolium with
A549 cells [27]. The chemical compositions among the
different fucoidans varied, though the structural fea-
tures were similar [27]. All types of fucoidan promoted
apoptosis of A549 cells, by observation of mitochon-
drial membrane potential loss, an increase of cyto-
chrome c release, activation of caspases 9 and F3, and
decrease of Bcl-2 expression [27]. In addition, the
authors concluded that mTOR (signaling pathway
related to several cellular functions – proliferation, inva-
sion, and survival, frequently activated in cancer) is
involved in fucoidan induced apoptosis [27].

Fucoidan biological activity is related to molecular:
weight, degree, and pattern of sulfation, and glycosidic
branches [28]. As an extension of the previous work
[27], Hsiao et al. analyzed the effect of oversulfation on
fucoidan from Sargassum aquifolium and tested its anti-
cancer activity on A549 cells [27,28]. The authors con-
cluded that fucoidan with increased sulfate content
induced more apoptosis of lung cancer cells and that
the mTOR pathway was involved [28].

Hsu et al. explored for the first time the effects of
fucoidan over cell apoptosis via endoplasmic reticulum
stress studies [29]. The endoplasmic reticulum is an
intracellular organelle with important functions, such
as: lipid biogenesis, maintenance of Ca2þ homeostasis,
and protein folding, and its stress-induced apoptosis is
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related to several pathologies, including cancer [29].
The authors analyzed the effects of fucoidan in vitro
(A549 and CL1-5 lung cancer cell lines treated with 200
and 400 lg/mL of fucoidan for 48h) and in vivo (lung
cancer murine LLC1-xenograft model orally fed with
fucoidan for 3 weeks) and found that fucoidan acti-
vated one of the major pathways in endoplasmic reticu-
lum stress-mediated apoptosis – PERK–ATF4–CHOP,
which conducted to apoptotic cell death in vitro and
tumor reduction in vivo [29].

Alginic acid is a natural polyuronic acid very com-
mon in edible brown algae. This compound possesses
anti-inflammatory properties [30]. Wang et al. explored
the effects of alginic acid in vitro on A549 and H1155
lung cancer cells and in vivo on an A549-xenograft
mouse cancer model orally fed with 100 mg/kg body
weight of alginic acid for 19 days [30]. The authors
focused on lung cancer-driven angiogenesis and ana-
lyzed the expression of VEGF-A (angiogenesis pro-
moter), and found that alginic acid downregulated
VEGF-A expression [30].

Leukemia is the common terminology to classify a
group of malignant disorders related to an increased
number of leucocytes in the bone marrow and/or blood
[62]. Halosmysin A, a metabolite isolated from the mar-
ine brown algae Sargassum thunbergia was tested with
murine P388 and L1210, and human HL-60 leukemic
cell lines, showing high cytotoxicity [31]. Future investi-
gations should address the structure–activity relation-
ship of this compound to elucidate the mechanisms
and specific molecular pathways underlying its action
[31]. Fucoidan from Sargassum polycystum was
extracted using an enzyme (cellulase), purified by anion
exchange chromatography, and evaluated with HL-60
leukemia and MCF-7 breast cancer cells [32]. The
authors observed that this fucoidan exhibited anti-pro-
liferative effects via mitochondria-mediated apoptosis
(one of the main pathways for apoptosis, frequently
inactivated in cancer cells), increasing DNA damage and
apoptotic body formation [32,63]. The carotenoid fuco-
xanthin extracted from Undaria pinnatifida was eval-
uated with human lymphatic endothelial cells (LEC) and
MDA-MB-231 breast cancer cells [33]. Fucoxanthin
inhibited the migration, proliferation, and formation of
tube-like structures by human LEC [33]. This phenom-
enon is important, once the proliferation and migration
of LEC in lymphatic vessels surrounding the tumor
(tumor-related lymphangiogenesis) diminish the growth
of the tumor [33]. Furthermore, these results were cor-
roborated in vivo in mice MDA-MB-231 derived tumors
and treated daily for 26 days with fucoxanthin 100 and
500 lmol/L injected at the tumor periphery. It was

observed a decrease in tumor growth and lymph tube
density [33]. In a clinical trial setting, Tocaciu et al.
explored the effects of fucoidan extracted from Undaria
pinnatifida on the pharmacokinetics of two drugs com-
monly used for breast cancer therapy – letrozole and
tamoxifen [34]. The breast cancer patients were divided
into two groups: tamoxifen or letrozole and taken
500 mg of fucoidan orally twice a day. Relevant param-
eters (letrozole, tamoxifen, 4-hydroxytamoxifen, and
endoxifen) were measured at baseline and after fucoi-
dan administration, through plasma concentration [34].
Fucoidan did not affect plasma concentrations of the
drugs, nor its metabolites, presenting no adverse effects
or toxicity [34]. Future studies should address the pos-
sible fucoidan concomitant administration with phar-
maceuticals on other types of cancer.

Smyrniotopoulos et al. studied the effects of oxygen-
ated acyclic diterpenes isolated from the Irish brown
algae Bifurcaria bifurcata over MDA-MB-231 cells [35].
The authors isolated eight different compounds – six
new and two known acyclic diterpenes – eleganediol
and bifurcane [35]. Only three of the tested oxygenated
acyclic diterpenes, one new, C20H32O3, and the two
known, presented anti-cancer activity by reducing
MDA-MB-231 cell viability [35]. The effects of methanol,
chloroform, and n-hexane derived extracts from macro-
algae Halopteris scoparia were tested with HeLa (cer-
vical), CaCo-2 (colorectal), and MCF7 (breast) cell lines
by G€uner et al. [36]. All extracts reduced cell viability
with more pronounced effects on HeLa cells [36]. In
addition, the expression of pro-apoptotic genes in cas-
pase pathways increased [36]. Moreover, no toxicity
was observed in vivo in mice fed with 2000 mg/kg body
weight of Halopteris scoparia extracts, which reinforces
the potential of Halopteris scoparia extracts to be incor-
porated in pharmaceuticals aiming at human cancer
therapy [36]. Eo et al. explored the molecular mechan-
ism of phlorofucofuroeckol A, a phlorotannin isolated
from Eisenia bicyclis in colorectal cancer [37].
Phlorofucofuroeckol A induced apoptosis and
decreased cell viability of human colorectal cancer cells
(HCT116, SW480, LoVo, and HT-29) via ATF3-mediated
pathway (ATF3 is a master regulator of metabolic
homeostasis, directly influencing cancer proliferation)
[37,64].

Radiotherapy is one of the most effective treatments
for cancer [38,65]. It relies on the use of radiation to kill
cancer cells and diminish tumor size [65]. However,
increasing radiation therapy doses lead to severe dam-
age to healthy cells [38,65]. One option to boost radio-
therapy is to augment the radiosensitivity of cancer
cells, and that premise was tested by Malyarenko et al.
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on colon cancer [38]. The authors studied the effects of
phlorethols from Costaria costata, a brown macroalga,
on HT-29 and HCT 116 cells [38]. These compounds
exerted cytotoxic activity and enhanced cell sensitivity
to non-toxic low X-ray irradiation doses [38].
Furthermore, the combination of phlorethols with radi-
ation led to a synergistic effect – the treatment with X-
ray (2 Gy) and phlorethols at 5, 10, and 20 mg/mL led to
colony formation inhibition of HT-29 by 28%, 39%, and
41%, and of HTC 116 by 15%, 24%, and 40%, respect-
ively, in comparison to irradiated cells (doses of 2, 4, 8,
and 10 Gy lead to inhibition of the colonies number of
HT-29 by 26%, 55%, 95%, and 97% AND HCT 116 by
18%, 30%, 47%, and 61%, respectively) [38]. Park et al.
aimed to investigate the anti-cancer effect of fucoidan
on two p53 isogenic HCT116 cells (one without the
gene p53 and the wild-type with the gene p53) and
concluded that regard from the p53 status, fucoidan
presents the capacity to induce apoptosis, inhibit cell
viability and lead to DNA damage in similar proportions
for both cell lines [39]. The gene p53 is a transcription
factor with pro-apoptotic functions that is absent in
most tumor cells [66].

Liver cancer ranks number three as the deadliest
cancer [40]. Fan et al. investigated the therapeutic
potential of Sargassum fusiforme extracts for this type
of cancer [40]. An in vivo HepG2 xenograft mouse
model was orally administrated with Sargassum fusi-
forme extract at 100, 200, and 400 mg/kg body weight
for 28 days. The authors concluded that the extract
inhibited cell growth and increased NO, IgM, TNF-a,
and IL-1 levels [40]. Furthermore, an increase of Bax and
a decrease in Bcl-2 expression were detected, which led
to the inhibition of tumor progression [40].

Dieckol from Ecklodia Cava, a compound previously
cited in this review for its potential therapeutical appli-
cation on pancreatic and lung cancer [24,25], was also
tested in liver cancer [41]. An in vivo rat hepatocarcino-
genesis model (liver cancer induced in rats by ingestion
of 0.01% of N-nitrosodiethylamine (NDEA) through
drinking water for 15 weeks) was used [41]. Dieckol
orally administrated at 40 mg/kg body weight for
15 weeks: decreased lipid peroxidative markers,
increased antioxidant cascade, reversed hepatic marker
enzymes activity, and decreased NDEA concentration
[41]. Oxidative damage is closely related to chronic
inflammation and liver cancer, and lipid peroxidation
plays a key role in carcinogenesis leading to the pro-
duction of toxic products that can attack cellular targets
[41,67]. Since dieckol decreased lipid peroxidative
markers and NDEA concentration in the liver, it seems
to be a promising candidate to target liver cancer [41].

Pan et al. explored the effects of fucoidan extracted
from Sargassum brown macroalgae on in vitro and
in vivo models of liver cancer [42]. Fucoidan was tested
for 24 h, 48 h, and 72 h with concentrations of 10, 20,
30, and 40 mg/mL and this compound was able to
reduce the migration and invasion in a dose-dependent
manner of SMMC-7721, Huh7, and HCCLM3 liver cancer
cell lines [42]. Furthermore, decreased expression of
several invadopodium-related proteins (Src, Cortactin,
N-WASP, ARP3, CDC42, MMP2, MT1-MMP, integrin Av,
and b3) was detected in the HCCLM3 cells as well as
increased levels of several endoplasmic reticulum-
related proteins (GRP78, IRE1, SPARC, integrin a1, and
b1) [42]. The in vivo mouse model (HCCLM3 xenograft
mice liver cancer model) supplemented with 1 g/kg
body weight for 21 days, presented decreased liver
tumor size and 40% less occurrence of lung cancer
metastasis [42].

Green macroalgae

Green macroalgae show a tremendously wide variability
of size, shape, and habit, being the most heteroge-
neous group of photoautotrophic protists on earth [68].
At least 7000 species are known, being the most diverse
of the algal groups [69]. This type of algae can be found
on all continents and curiously, the earliest evidence of
green algae species comes from fossils a billion years
old [69]. Regarding green algae compounds, sulfated
polysaccharides, sulfolipids, glycolipids, among others,
have been exhibiting potential against cancer [68]. One
such example is biosynthesized silver nanoparticles (Ag
NPs) using the algae Caulerpa taxifolia (obtained by
mixing HPLC purified algae extract with Ag NO3 aque-
ous extract) against A549 cells [43]. At a dose of
40 mg/mL, this compound showed cytotoxicity and cell
morphology damage [43]. Haq et al. tested the anti-
cancer activity of Chaetomorpha sp. ethanolic and aque-
ous extracts against MCF-7 and MDA-MB-231 cells [44].
The ethanolic extract presented pronounced anti-can-
cer activity by inhibiting the growth of MDA-MB-231
cells, but not in MCF-7 cells [44]. Furthermore, dichloro-
acetic acid, oximes, and L-a-terpineol were identified as
some of the compounds present in the ethanolic
extract responsible for this anti-cancer activity [44]. Ulva
lactuca algae methanolic extract loaded on albumin
nanoparticles also demonstrated anti-cancer activity
against MCF7 and HepG2 cancer cells, inducing cell
death by increasing of caspase 8 and 9 levels [45]. The
effects of Ulva lactuca polysaccharide sulfate and aque-
ous extract against liver cancer were also tested by
Hussein et al. [46]. The authors used an in vivo induced
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hepatocarcinogenesis rat model (as in [41]) fed with
50 mg/kg daily of each extract for 2, 12, and 24 weeks
[46]. Sulfated polysaccharides of this green macroalga
inhibited cancer cell proliferation inducing apoptosis
[46]. Furthermore, several serum parameters related to
hepatic damage (AST, ALT, ALP, and c-GT) were altered,
as well as the components of hepatic non-enzymatic
and enzymatic antioxidant defense systems [46]. The
authors propose that sulfated polysaccharides from U.
lactuca inhibit severe oxidative damage initiated by
DENA by indirectly activating the antioxidant defense
system and interacting directly with ROS [46].

Red macroalgae

Red algae or Rhodophyta comprises more than 5000 dif-
ferent species of algae [70]. Their composition is unique
and most of them possess novel sulfated galactans and
polysaccharides, such as carrageenans and agars, and
glycoproteins, among other compounds, with scientific-
ally documented health benefits [1,70–72]. Crude
extract from Kappaphycus alvarezii was tested over
MCF-7 cells, and given to rats (2000 mg/kg body weight
for 60 days to evaluate the eventual chronic toxicity
and heavy metal toxicity studies (determination of: cad-
mium, arsenic, chromium, iron, manganese, lead, mer-
cury, nickel, selenium, and zinc in the liver) [47]. The
authors also tested the effects of the extract on a rat
mammary tumor model (induced by 65 mg/kg body
weight of dimethylbenz[a]anthracene (DMBA) intake),
by feeding them with 300 mg/kg for 11 weeks, after
tumor development [47]. Kappaphycus alvarezii reduced
MCF-7 cell viability from 84.91% to 0.81% [47]. For the
sub-chronic and heavy metal toxicity in rats, no differ-
ences were found between the control and test groups
[47]. In the mammary cancer model, the untreated
group presented a significantly higher growth rate of
tumors in comparison with the experimental group
[47]. Nikolova et al. explored the anti-cancer potential
of a new extracellular polysaccharide (composed of
xylose:glucose and galactose:mannose:rhamnose in a
molar ratio of 1:0.52:0.44:0.31) isolated from the red
algae Porphyridium sordidum with MCF-7 and MDA-
MB231, and concluded that after 48 h of administration,
cell survival appeared to be dose and cell type depend-
ent [48]. Furthermore, the authors administrated the
red algae derived polysaccharides to cells by reversible
electroporation (a method to increase the transport of
compounds through the plasma membrane) and con-
cluded that the application of 200 V/cm electroporation
combined with 75 lg/mL of algae polysaccharide
decreased MDA-MB231 cells viability in 40%, as well as

induced cell morphology alterations [48]. Fazeela
Mahaboob Begum et al. tested an extract with solvents
of different polarity, rich in polyphenols and flavonoids,
from the red algae Gelidiella acerosa against A549 cells
and in vivo using a lung cancer zebrafish model (injec-
tion of A549 cells in the muscle to develop tumors) fed
with 15, 30, 45, and 60 lg/mL daily for 10 days [49]. It
also tested the acute and chronic toxicity, by feeding
zebrafish with 100, 250, and 500 lg of crude extract/-
day [49]. Gelidiella acerosa extract inhibited cell: prolifer-
ation, migration, and colonization, inducing apoptosis
by activation of caspase 3 and Bax protein, with
decreased expression of Bcl-2 and Bcl-XL [49].
Additionally, GSK3b was activated, PI3K/Akt was down-
regulated and MMP2 expression decreased in vitro [49].
The extract led to the inhibition of tumor growth
in vivo, and no acute or chronic toxicity was observed
[49]. The PI3K/Akt cascade is typically deregulated in
lung cancer, which leads to metastasis, prolonged cell
survival, and evasion of apoptosis [49]. The decreased
expression of matrix metalloproteinase MMP2 (a mol-
ecule that plays a key role in tumor proliferation,
growth, and invasion) indicates that the algae extract
presents anti-metastatic activity [49]. In the in vivo
model, the experimental group presented: less angio-
genesis, lysing tumor cells (cancer cells die by large
numbers within a short period), normal muscle path-
ology, and an increase in the normal cell population at
a dose of 60 lg/day [49]. Polysaccharides extracted
from Gracilariopsis lemaneiformis were tested on human
A549 lung and MKN28 gastric cancer cell lines, and
mouse melanoma cell line B16, by Kang et al. [50]. The
authors concluded that these polysaccharides were
capable of exerting anti-tumor activity by modulating
cell morphology, viability, and apoptosis on all cell
types [50]. Furthermore, at 30 lg/mL concentration,
polysaccharides inhibited cell growth in a dose and
time dependent manner, particularly over A549 cells
[50] (Figure 1).

Conclusions, limitations, and future perspectives

The burden of cancer in society hungers for novel com-
pounds that can effectively target tumors without the
side effects implied by currently available therapies.
Brown macroalgae have been the most widely studied
type of algae with 14 species tested on at least one of
these types of cancer: pancreatic, lung, breast, cervical,
colorectal, and liver (Figure 2). Three species of brown
algae demonstrated the potential to target three differ-
ent types of cancer, showing immense biomedical
potential: F. vesiculosus, E. cava, and H. scoparia
(Figure 2).

CRITICAL REVIEWS IN BIOTECHNOLOGY 11



About green macroalgae, three different species (C.
taxifolia, Chaetomorpha sp., and U. lactuca) were identi-
fied with the potential to target lung, breast, or liver
cancer. Ulva lactuca presented anti-cancer activity for
breast and liver cancer.

Similarly to the green macroalgae, red macroalgae
also revealed anti-cancer potential, being worth men-
tioning G. lemaneiformis, which showed evidence to

target melanoma, lung, and gastric tumors (Figure 2). In
what concerns molecules with anti-cancer activity, fucoi-
dan from brown algae has been the most widely
studied. This natural compound has been widely used
by biomedical and pharmaceutical industries because of
its promising therapeutic properties against cancer and
low toxicity. Fucoidan shows the capacity to induce cell
cycle arrest and apoptosis on several cancer cell lines,

Figure 1. Mechanisms of action of macroalgae major bioactive compounds in cancer cells.

Figure 2. Brown, green, and red macroalgae species and targeted types of cancer.
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but the corresponding mechanisms of action remain
uncertain. Future studies should address the discovery
of these mechanisms and test the anti-cancer activity of
fucoidan in more relevant cancer models, and/or in co-
administration with current chemotherapeutic agents.

Most of the studies performed with macroalgae
compounds/extracts are performed on in vitro cell and
in vivo mouse models of cancer. In vitro studies are
excellent to start the studies such as a preliminary func-
tional screening, and to identify the molecular of a
compound or extract. However, these assays constitute
a poor predictor of therapeutic response because sev-
eral processes that occur in the human body such as
the interaction between nutrients/pharmaceuticals,
metabolic activity, and variation in dose, among others,
are not considered. On the other hand, animal studies
bring to the equation some of these factors, leading to
a more flexible approach for health effect studies,
although, due to animals’ different physiological sys-
tems, these conclusions are still limited for humans. The
extraction method should be considered carefully for
each macroalga to maximize the extraction of com-
pounds with functional properties. Choosing the most
appropriate extraction method will condition the recov-
ery of the seaweed fractions which might affect further
applications, including cancer.

As presented in this review, macroalgae of marine origin
possess molecules that can be incorporated into the devel-
opment of novel pharmaceuticals targeting several types
of cancer. However, to confirm such anti-cancer activities,
the promising results obtained in in vitro and in vivo stud-
ies should be tested on human subjects. Despite some
advances in recent years, the literature about the anti-can-
cer activity of marine macroalgae remains incomplete.
More studies are needed to clarify such anti-cancer activ-
ities and determine the real potential of these compounds
for the development of novel pharmaceuticals.
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