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A B S T R A C T

A vast number of microarray datasets have been produced as a way to identify differentially expressed
genes and gene expression signatures. A better understanding of these biological processes can help in the
diagnosis and prognosis of diseases, as well as in the therapeutic response to drugs. However, most of the
available datasets are composed of a reduced number of samples, leading to low statistical, predictive and
generalization power. One way to overcome this problem is by merging several microarray datasets into
a single dataset, which is typically a challenging task. Statistical methods or supervised machine learning
algorithms are usually used to determine gene expression signatures. Nevertheless, statistical methods require
an arbitrary threshold to be defined, and supervised machine learning methods can be ineffective when
applied to high-dimensional datasets like microarrays. We propose a methodology to identify gene expression
signatures by merging microarray datasets. This methodology uses statistical methods to obtain several sets of
differentially expressed genes and uses supervised machine learning algorithms to select the gene expression
signature. This methodology was validated using two distinct research applications: one using heart failure and
the other using autism spectrum disorder microarray datasets. For the first, we obtained a gene expression
signature composed of 117 genes, with a classification accuracy of approximately 98%. For the second
use case, we obtained a gene expression signature composed of 79 genes, with a classification accuracy of
approximately 82%. This methodology was implemented in R language and is available, under the MIT licence,
at https://github.com/bioinformatics-ua/MicroGES.
1. Introduction

Microarray technology transformed the field of molecular biology
by enabling the measurement of thousands of gene expression levels
simultaneously [1,2]. Along with the development of this technology,
the requirement of scientific publishers and funding agencies that all
experimental data should be publicly available [3], led to the creation
of public repositories, such as the Gene Expression Omnibus (GEO) [4]
and the ArrayExpress [5], where nowadays a vast amount of microarray
data is available for re-use.

Microarray data are typically used to identify differentially ex-
pressed genes (DEGs) and gene expression signatures (GESs). DEGs
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are genes whose expression is significantly different in samples from
distinct conditions. A GES is a set of differentially expressed genes
that can differentiate distinct conditions and can be used for diagnosis,
prognosis and therapeutic response [6]. Furthermore, GESs can be used
for drug discovery by identifying new potential targets [7].

Due to the cost of acquiring microarray chips, most datasets have a
reduced number of samples and therefore low statistical, predictive and
generalization power [8]. Michiels et al. [9] reanalyzed seven studies
that aimed to identify a prognostic GES of cancer. They concluded that
the list of predictors was strongly dependent on the used dataset, and
that the different studies share only a small set of prediction genes.
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They also observed that by increasing the number of patients in a
dataset the misclassification decreased, as intuitively expected.

One can increase the number of samples by merging microarray
datasets from independent studies [10]. However, this is a challenging
task, due to the several platforms that can be used to measure the gene
expressions, and that generate incompatible datasets. Moreover, the
use of different experimental protocols, microarray platforms, and pro-
cessing methods introduces non-biological variations to the data [11],
known as batch effect, and they can lead to inaccurate findings. To
address this problem, we can use several batch effect removal methods,
but despite their advantages they also present some weaknesses [12].

The methodologies generally used to identify GESs are statistical
methods and supervised machine learning (ML) algorithms. The draw-
back of statistical methods is the fact that a cut-off must be defined
from which the genes are considered to be differentially expressed and
there is no consensus on the values to use as a threshold. The drawback
of using supervised ML algorithms is the fact that these are usually
ineffective when applied to high-dimensional datasets [13].

In this paper, we propose a methodology to identify GES from
multiple microarray datasets, by merging them before processing the
data. It uses statistical methods and diverse thresholds to obtain several
reduced sets of genes. These are then analyzed using a supervised
machine learning algorithm that determines the GES based on the
highest classification accuracy. We demonstrate the effectiveness and
generalizability of this methodology by applying it to two different
research applications: (i) heart failure, and (ii) autism spectrum dis-
order. In the heart failure case, we merged four publicly available
microarray datasets and identified a GES consisting of 117 genes with
a classification accuracy of approximately 98%. Similarly, for autism
spectrum disorder, we obtained a GES of 79 genes with a classification
accuracy of approximately 82%. The proposed methodology provided
relevant results, by being capable of merging microarray datasets.
Based on these promising results, we believe that this strategy can be
used to merge microarray datasets from distinct institutions.

2. Background

The integration of different microarray studies can be done in
two different ways: by merging the datasets of the different studies
before conducting the study, or by combining the individual results
of the different studies (meta-analysis) [2]. From these two strategies,
it has been argued that merging microarray studies is more powerful
for identifying robust biomarkers than meta-analysis [14]. Taminau
et al. [15] compared meta-analysis and data merging for the identi-
fication of cancer-related biomarkers and obtained substantially more
genes differentially expressed using data merging than using meta-
analysis. However, most researchers use meta-analysis to integrate
different microarray studies. Tseng et al. [16] conducted a systematic
review of 191 papers which combine multiple microarray studies, and
concluded that only 27% of them merged the different datasets.

Over the years, several tools were developed to merge microarray
studies [17–21]. However, most of these tools only merge microarray
studies and do not obtain GESs. To our knowledge, the only toolbox still
available to merge microarray studies and obtain DEGs is the R package
developed by Johannes Vey et al. [20]. However, this toolbox only
enables the merging of microarray datasets obtained using platform
GPL570, Affymetrix Human Genome U133 Plus 2.0 Array.

GESs are usually obtained using statistical methods, which are based
on fold change (FC) and statistical hypotheses test, mostly the t -test and
variation of this test [22]. The R package limma [23], which imple-
ments empirical Bayes methods and linear models, is also commonly
used to obtain GESs. Chrominski and Tkacz [24] tested six different
methods to detect DEGs, while Jeanmougin et al. [25] compared eight
methods. In both studies, the method implemented in limma was
ound to be one of the best to detect DEGs. These statistical methods
equire the selection of a statistical hypothesis test, the definition of a
2

decision rule and the control of false discovery rate [26]. The decision
rule and the control of false discovery rate generally rely on arbitrary
thresholds [27] which can be very distinct from study to study.

Besides statistical methods, supervised machine learning (ML) algo-
rithms are also used to obtain GESs [28–30]. Supervised ML algorithms
construct prediction models which can be used to classify new samples.
However, these models can be inefficient when applied to microarray
datasets because these are composed of thousands of genes (features)
and only a minimal number of samples [13]. Therefore, to minimize
this unbalance, several feature selection methods can be applied to
the microarray dataset, namely filter, wrapper and embedded meth-
ods [31]. Wrapper and embedded methods rely on learning methods
and therefore have an expensive computational cost [32]. Filter meth-
ods only rely on the characteristics of the data and are computationally
efficient and independent of a learning algorithm [33]. However, filter
methods present generally worse performance results than wrapper
and embedded methods because they do not interact with the learning
algorithm [34].

RNA-Sequencing (RNA-seq) is another technology used to measure
gene expression that has emerged in the last decade, with the advent of
next-generation sequencing. However, microarray chips continue to be
widely used because they are cheaper than RNA-seq technology [35]. In
the last five years, more than twenty-one thousand microarray datasets
have been published in the GEO repository.

In recent years, several computational tools have been developed
to merge metabolomic data and identify metabolic signatures [36–41].
These tools use methods for batch effect correction and biomarker
identification that can be adapted also for microarray data. One can
also find several web-based tools have been developed to assess the per-
formance of various methods used in metaproteomics studies, including
normalization and biomarker discovery [42–45].

3. Methods

The proposed methodology enables the merging of multiple mi-
croarray datasets and the identification of a gene expression signature.
The process, illustrated in Fig. 1, consists of several steps.

First, we perform data preprocessing, which involves cleaning and
formatting the data to ensure that it is suitable for analysis. This may
involve filtering out low-quality data points, normalizing the data to
account for technical variations, and selecting a subset of genes to focus
on.

In the next stage, it performs feature selection, which involves
selecting a subset of genes from the preprocessed data that are most
relevant to the classification task. There are several methods that can be
used for feature selection, including filter methods, wrapper methods,
and embedded methods. The choice of method depends on the nature
of the data and the specific requirements of the classification task.

Finally, it uses a supervised machine learning algorithm to classify
individuals based on their gene expression levels. There are many dif-
ferent algorithms that can be used for this purpose, including decision
trees, support vector machines, and neural networks. The choice of
algorithm depends on the characteristics of the data. In this section,
we describe in more detail all the steps of the methodology.

3.1. Selection of the datasets

Several filter criteria can be considered in order to select the
datasets suitable for a study. Some of them may be:

• the platform used to obtain the expressions of a dataset since
several platforms have few genes in common;

• the number of samples in a dataset, since datasets with few
samples have low statistical power and only datasets with impact
on the end-results should be merged;

• datasets with unprocessed data, in order to apply the same pre-
processing to all and thus obtain comparable data.
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Fig. 1. The methodology pipeline to merge datasets and identify a GES.
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.2. Pre-processing the data

Data pre-processing consists of performing background correction,
ormalization and probe summarization, with summarization only be-
ng needed for Affymetrix arrays. Background correction is the process
f removing non-specific background noise and normalization is the
rocess of correcting systematic array bias. In Affymetrix arrays, several
robes represent the same gene and therefore the different signals
btained must be summarized in one unique value [46]. Over the
ears, several methods and packages have been developed to pre-
rocess microarray data. A summary of different background correction
ethods can be found in [47], and a good comparison of normalization
ethods was performed by Bolstad et al. [48].

For microarray data obtained using Affymetrix chips the commonly
sed pre-processing method is robust multichip average (RMA) [49],
hich combines background correction, normalization and summariza-

ion. This pre-processing method is implemented in the R/Bioconductor
oftware package oligo [50]. The R/Bioconductor software pack-
ge limma [23], which includes several background correction and
ormalization methods, is commonly used for microarrays from man-
facturers other than Affymetrix. Raw data obtained using the same
latform are merged and pre-processed together and whenever possible
he same pre-processing method should be used to perform all the
re-processing.

In a microarray dataset, every probe corresponds to a biological
equence that can be uniquely identified by the GenBank sequence
ccession identifier. Different sequences can represent the same gene
nd therefore the probes are identified using the GenBank sequence
ccession identifier. Probes with no GenBank sequence accession iden-
ifier are removed from the datasets. In some microarrays, different
robes corresponding to the same biological sequence have different
xpression measurements and therefore these probes are also removed
rom the datasets. Moreover, in some platforms, a probe is associated
ith a list of GenBank sequence accession identifiers. In this case,
nly lists containing unique GenBank sequence accession identifiers are
aintained. Furthermore, every list is separated into individual Gen-
ank sequence accession identifiers and the expression measurement
f a list is assigned to every GenBank sequence accession identifier on
hat list.

The next step after removing all the conflicting probes is to identify
he common GenBank sequence accession identifier across the different
icroarray platforms, which will be used to merge the datasets. The
erged dataset is randomly divided into a training set and a test set

nd this procedure is repeated several times. Doing so, several training
ets and several test sets are obtained. The training sets are used to
btain the feature sets and to train the supervised machine learning
lgorithm and the test sets are used to evaluate the performance of the
achine learning algorithm.

.3. Feature selection

Features are selected using statistical methods such as determining
he fold change or determining the 𝑝-value of a statistical test. A
3

urvey of statistical methods to identify DEGs can be found in [51].
n order to select the features using statistical methods, a threshold
ust be defined. However, there is no consensus as to the choice of

hat threshold. Therefore, in our pipeline, several cut-offs are chosen,
eading to the definition of several feature sets for each training set. To
btain a feature set for every cut-off, the feature sets obtained using
he various training sets and corresponding to the same cut-off are
ntersected. Concerning the cut-off values, the ones generally used for
he fold change are 1.5, and between 2 and 3 [52,53], while the values
or the adjusted 𝑝-value are 0.01 and 0.05 [54].

.4. Batch-adjustment of the data

In most cases, the datasets to be merged are obtained using different
latforms, which introduces non-biological variation, i.e. batch effect,
o the gene expression measurements. Larsen et al. [55] demonstrated
he importance of using batch-adjustment methods when merging dif-
erent microarray datasets and prior to the analysis.

To deal with the batch effect, two approaches are used. When
electing features using statistical methods, the batch variables, i.e. the
latform type, are included as a covariate [56] and before determining
he GES using machine learning algorithms, the data are adjusted for
atch effects. A survey on batch effect adjustment methods can be
ound in [12]. Chen et al. [57] compared six batch adjustment methods
nd concluded that the Empirical Bayes method ComBat [58] exceeded
he performance of the other methods. In turn, Müller et al. [59]
ompared several approaches to reduce the batch effect and concluded
hat the best approach is quantile normalization followed by ComBat.

Several packages implement batch effect adjustment methods. For
xample, the R/Bioconductor software package sva [60] implements
omBat and Frozen Surrogate Variable Analysis methods and the R
ackage bapred [61] implements the following methods: FAbatch,
omBat, Frozen Surrogate Variable Analysis, mean-centering, standard-

zation, arithmetic mean ratio-based and geometric mean ratio-based.

.5. Identification of the gene expression signature

To evaluate the predictive accuracy of the various feature sets
elected and obtain a GES, i.e., the set with the best predictive accuracy,
supervised machine learning algorithm is used. A survey of machine

earning algorithms can be found in [62].
The effectiveness of supervised machine learning algorithms is

ighly dependent on the quality and quantity of the input data, as well
s the inherent characteristics of the problem being addressed [40].
iven the potential variability in these factors, it is recommended

o use a diverse set of algorithms and compare their performance in
rder to identify the most suitable approach for a given problem. In
ur study, we sought to identify GES in microarray datasets using
hree well-established and widely used classification methods: neu-
al networks (NN), random forests (RF), and linear support vector
achines (SVMs).

These algorithms were implemented using the caret package,
which provides a standardized and efficient framework for training
and evaluating machine learning models. Neural networks, random

forests, and SVMs are all highly effective approaches for classification
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Fig. 2. The pipeline with the tools used in the two use cases.
asks and have demonstrated strong performance on microarray data
n previous research [63,64]. By using multiple algorithms, we aimed
o provide a more comprehensive evaluation of GES identification and
o increase the robustness of our results. Our approach of leveraging
ultiple algorithms allowed us to account for the potential influence of
ata quality and problem-specific characteristics on the identification
f GES in microarray datasets.

The R package caret [65] implements a large number of machine
earning algorithms that can be used to create predictive models.
oreover, this package provides a range of functions to perform various

asks inherent to building a predictive model, namely model training
nd data splitting, among others.

Every machine learning algorithm has a set of parameters that
re fine-tuned to maximize accuracy. To select the best parameters
or every set of features, the training sets and repeated k-fold cross-
alidation are used. The test sets are used to evaluate the performance
f the model obtained. Besides accuracy, different metrics can be used
o evaluate this performance, such as precision, recall, specificity, and
he F1 score.

. Results

To evaluate the methodology we used two distinct use cases: one to
dentify a GES in heart failure and another to identify a GES in autism
pectrum disorder. In both use cases, we used the R/Bioconductor
ackage limma to calculate the fold change and the adjusted 𝑝-value of
very feature. For batch-adjust we used the ComBat and fsva methods,
n both use cases. To evaluate the predictive accuracy of the feature sets
e used three distinct machine learning algorithms: neural network,

andom forest and linear SVM (LSVM). Fig. 2 presents the pipeline with
he tools used in the two use cases.

In the first use case, all data were collected using Affymetrix mi-
roarray chips, while in the second use case the data were collected
sing a combination of Affymetrix and Illumina microarray chips.
hese two types of microarray chips are commonly used in gene
xpression analysis and have distinct characteristics that may influence
he quality and reliability of the resulting data. For both use cases,
e selected publicly available datasets from GEO. To pre-process data
btained using Affymetrix platforms we used the R/Bioconductor soft-
are package oligo, which implements the pre-processing method
MA (Robust Multi-Array Average). For data obtained using Illumina
latforms we used the limma package and chose for background
orrection the method normexp [66] and for normalization the quan-
ile normalization method [48]. The methods normexp and quantile

normalization were chosen because these are the methods used by RMA
for background correction and normalization, respectively.

After pre-processing the data and merging the datasets, the merged
dataset was randomly divided into a training set (75% of the samples)
4

and a test set (the remaining 25%). Repeating the division procedure 50
times, we obtained 50 different training sets and 50 different test sets
for each use case. For feature selection, we used the limma package
to determine in each training set, for each feature (i.e. each GenBank
sequence accession identifier), the fold change and the adjusted 𝑝-
value, adjusted using Benjamini and Hochberg’s method [67] to control
the false discovery rate. Concerning the list of cut-offs to obtain the
different feature sets, the choice was specific to each use case as
presented below. For each cut-off, we obtained 50 sets of features
corresponding to the 50 training sets. To obtain one feature set per
cut-off we intersected the 50 sets of features.

Before the GES can be identified, the merged dataset must be batch-
adjusted. To be able to compare, we decided to use two different
methods for batch-adjustment. The first method used was ComBat
implemented in the R package sva and the second one was the
frozen surrogate variable analysis (fsva) method implemented in the
R package bapred.

All three algorithms used in the methodology have parameters
that were fine-tuned to maximize accuracy and using repeated 10-fold
cross-validation with five repeats. Neural network has two parameters:
decay and size, random forest has also two parameters: mtry and
ntree and linear SVM has only one parameter: cost. The values
used for the parameters are presented in Table 1. As can be seen
in Table 1 the number of different values used for the parameters
of neural network and linear SVM is constant while the number of
different values used for the parameters of random forest varies with
the size of the feature set.

Although the time consumption of hyperparameter tuning, training,
and testing machine learning algorithms is dependent on the system
used, it can be an important parameter to consider when choosing an
algorithm. Therefore, in this section, we also report the time consump-
tion of the three machine learning algorithms employed for each use
case. In our evaluation, we used a server with an Intel(R) Xeon(R) CPU
E5-2670 v3 operating at 2.30 GHz and with 8 GB of RAM. The system
was running the Ubuntu 18.04 operating system, with Python 3.8.3 and
caret 6.0.86 installed.

The R package LargeMetabo [40] was used to compare the results
obtained using our methodology against other methodologies. This tool
was specifically designed for processing and analyzing metabolomic
data. It provides the capacity for metabolomic data integration and
it offers three distinct batch-adjustment methods, including Combat
which was employed in our use cases. This package also includes 13
different methods for biomarker identification and evaluates the per-
formance of the biomarkers by calculating the area under the receiver
operator characteristic curve (AUC) of an SVM model using 2-fold cross-
validation. The package was adapted to use accuracy as an evaluation
metric instead of the AUC, keeping the original SVN model and 2-fold
cross-validation. However, some of the methods were not possible to be
tested because some of the required dependencies were unavailable.
Additionally, other methods have returned empty sets of biomarkers,

due to the predefined threshold for selecting them.
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Table 1
Parameters’ values used for tuning.
Algorithm Parameter Values N. of values

Neural network decay 5 × 10−5 , 1 × 10−4 , 5 × 10−4 , 1 × 10−3 , 5 × 10−3 , 1 × 10−2 ,
5 × 10−2 , 1 × 10−1 , 5 × 10−1 , 0. 150

size 1, 2, … , 15.

Random forest mtry 2, 3, … , 𝑛, where 𝑛 is the total number of features in the set.
3 × (𝑛 − 1)

ntree 100, 500, 1000.

Linear SVM cost

1 × 10−4 , 3 × 10−4 , … , 9 × 10−4 ,

150

1 × 10−3 , 2 × 10−3 , … , 9 × 10−3 ,
1 × 10−2 , 1.5 × 10−2 , … , 9.5 × 10−2 ,
1 × 10−1 , 1.5 × 10−1 , … , 9.5 × 10−1 ,
1, 2, … , 90, 95, 100,
125, 150, … , 300.
Table 2
Summary of the datasets used in the use case HF.
Dataset Platform Manufacturer No. of samples

(HF/control)

GSE1145 [69] GPL570 Affymetrix 90 (79/11)
GSE21610 [70] GPL570 Affymetrix 38 (30/8)
GSE22253 [71] GPL6244 Affymetrix 87 (0/87)
GSE57338 [72] GPL11532 Affymetrix 313 (177/136)

Total 528 (286/242)

4.1. Heart failure

Heart failure (HF) affects millions of people worldwide and its
prevalence is increasing as the population ages. Furthermore, HF is
related to a high risk of mortality and morbidity [68]. For this use case,
we used four publicly available microarray datasets. Table 2 presents
the four datasets, as well as the respective platform, manufacturer and
number of samples.

For some datasets, we did not use all the data available. In relation
to the dataset GSE1145, we only used the data obtained using platform
GPL570 and not the seventeen obtained using platform GPL8300 since
the intersection of genes between this platform and the other platforms
used in this use case is very reduced. Concerning the dataset GSE21610,
we did not use the 30 samples collected after implementing a ventric-
ular assist device, since such a device can change the gene expression
patterns. Regarding the dataset GSE22253, we excluded the samples
which have rs1333049 genotype CC, since it was found that C is the risk
allele associated with coronary heart disease which can lead to heart
failure [71].

Concerning feature selection, in this use case, we chose to use the
fold change to obtain the different sets of features. The fold change
cut-offs used are: 1.50, 1.75, 2.00, 2.25, 2.50, 2.75 and 3.00.

For this use case, we used datasets obtained using three differ-
ent Affymetrix platforms. These three platforms have 9892 GenBank
sequence accession identifiers in common. So by merging the four
datasets we obtained a dataset with 9892 features and 528 samples.
By dividing the merged dataset we obtained 50 training sets and the
correspondent 50 test sets. Each training set is composed of 9892
features and 397 samples and each test set is composed of 9892 features
and 131 samples. To obtain the different feature sets we used the fold
change and seven different cut-offs. Table 3 presents the number of
features and the number of genes of the seven feature sets obtained.

Before using machine learning algorithms, we needed to correct the
batch effects. Fig. 3 shows the multidimensional scaling (MDS) plots
with the distribution of the data before and after data batch-adjustment,
using ComBat and fsva. Before data batch-adjustment, three clusters
can be observed, corresponding to the three platforms used. After the
batch-adjustment, this platform bias was removed.

The different mean accuracies, as well as the standard deviation
5

obtained when applying the model to the test sets, using the three
Table 3
The number of features and the number
of genes for every fold change used as a
threshold in use case HF.
Fold
change

No. of
features

No.
of genes

1.50 126 117
1.75 54 50
2.00 25 23
2.25 15 13
2.50 10 10
2.75 7 7
3.00 6 6

machine learning algorithms and the two batch-adjustment methods,
are presented in Table 4. All the results of this use case can be found
in the Supplementary File results_HD.xlsx.

Analyzing the results we can see that the best mean accuracy was
obtained using the linear SVM algorithm and the feature set obtained
using a fold change of 1.50. This feature set is composed of 117 genes
and has a mean accuracy of approximately 98%. Furthermore, this
feature set obtained the best mean recall and mean F1 score. The 47 up-
regulated genes and the 70 down-regulated genes are presented in the
Supplementary File results_HD.xlsx. For all three supervised ma-
chine learning algorithms, the results are slightly better when using the
fsva batch-adjustment method. The mean precision and the mean recall
are mostly higher than the mean accuracy and the mean specificity is
mostly lower than the mean accuracy.

In Table 4 we can also observe that the feature set obtained using
the fold change 3.00 has a mean accuracy over 96% when using the
batch-adjustment method fsva and any of the three machine learning
algorithms. This feature set is composed of 8 genes: ASPN, EIF1AY,
FCN3, IL1RL1, NPPA, PLA2G2A, SERPINA3, and SFRP4. To deter-
mine which genes had previously been associated with HF we used
DisGeNet (Version 7.0) [73]; 48 of the 117 genes have previously
been associated with HF. Regarding the 6 genes of the feature set
obtained using a fold change of 3.00, two of them have previously been
associated with HF: PLA2G2A, and SERPINA3.

The processing times for the different algorithms, considering this
use case, are represented in Table 5. This table includes the mean
duration in minutes for hyperparameter tuning of a single training set,
mean duration in seconds for training a single training set, and mean
duration in seconds for testing a single testing set. These results were
collected for each of the three machine-learning algorithms, combined
with the two batch-adjustment methods considered in this study. As
demonstrated in Table 5, the most time-consuming process is the
hyperparameter tuning. The training process can be concluded in a
few seconds, and the testing stage is almost immediate, taking less
than a second. The parameter tuning of the linear SVM model requires
the least amount of time. Linear SVM and neural network models

use a constant number of values for hyperparameter tuning, which
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Fig. 3. MDS plot of the HF dataset before and after data batch-adjustment using ComBat and fsva.
Table 4
HF use case: For every fold change, the mean accuracy and standard deviation of the classifier.

Batch-adjustment Fold change Neural network Random forest Linear SVM

ComBat

1.50 0.9777 ± 0.0125 0.9646 ± 0.0150 0.9782 ± 0.0109
1.75 0.9472 ± 0.1042 0.9664 ± 0.0162 0.9693 ± 0.0129
2.00 0.9701 ± 0.0116 0.9673 ± 0.0155 0.9711 ± 0.0142
2.25 0.9554 ± 0.0157 0.9592 ± 0.0161 0.9576 ± 0.0159
2.50 0.9638 ± 0.0139 0.9592 ± 0.0168 0.9595 ± 0.0147
2.75 0.9545 ± 0.0193 0.9528 ± 0.0174 0.9548 ± 0.0189
3.00 0.9510 ± 0.0188 0.9455 ± 0.0177 0.9518 ± 0.0198

fsva

1.50 0.9713 ± 0.0629 0.9744 ± 0.0115 0.9826 ± 0.0093
1.75 0.9713 ± 0.0128 0.9721 ± 0.0113 0.9753 ± 0.0111
2.00 0.9777 ± 0.0109 0.9703 ± 0.0127 0.9771 ± 0.0114
2.25 0.9750 ± 0.0113 0.9682 ± 0.0123 0.9788 ± 0.0117
2.50 0.9736 ± 0.0111 0.9679 ± 0.0134 0.9742 ± 0.0121
2.75 0.9685 ± 0.0159 0.9721 ± 0.0135 0.9696 ± 0.0127
3.00 0.9635 ± 0.0171 0.9632 ± 0.0148 0.9656 ± 0.0140

Note: Accuracy is given as the mean of the accuracy obtained ± the standard deviation
reduces the computational time of the processes. However, the number
of values used for hyperparameter tuning in the random forest model
varies from 15 for 3.00 fold change to 375 for 1.50 fold change. This
variation may explain the considerable reduction in time required for
hyperparameter tuning using the feature set obtained using a 3.00 fold
change compared to the features set obtained with a 1.50 fold change.
Table 5 also reveals that the time used for tuning, training and testing
is comparable for both batch-adjustment methods.

Table 6 presents the results obtained using the LargeMetabo pack-
age with the dataset after by processed by the batch-adjustment meth-
ods Combat and fsva. The accuracy values present in this table, may
not provide fully accurate estimates of the performance for the defined
biomarker set, because a 2-fold cross-validation method was employed
to evaluate the classification model. This strategy is usually considered
inadequate for this purpose. This table contains the results of different
methods included in the LargeMetabo, that returned large sets of
potential biomarkers. From these, it is included the Student’s t-test and
6

Wilcoxon rank test, which produced biomarker sets consisting of almost
all the features in the dataset. The fold change method returned an
empty set due to the defined threshold for biomarker selection. The
proposed methodology employs several thresholds to be more flexible
when dealing with potential issues, such as empty or excessively large
sets of biomarkers.

4.2. Autism spectrum disorder use case

Autism spectrum disorder (ASD) is a neurodevelopmental disorder
that in 2014 affected about 1% of the world’s population [74]. Further-
more, over the years the prevalence of ASD has been increasing [75].
For this use case, we also used four publicly available microarray
datasets. Table 7 presents the four datasets, as well as the respective
platform, manufacturer and number of samples.

As for the previous use case, some of the data were excluded from
the datasets. Several datasets had some replicate samples and these
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Table 5
HF use case: For every fold change, the mean time for hyperparameter tuning, training and testing using the different classifiers.
Batch-adj. FC Tuning (min) Training (min) Testing (s)

NN RF LSVM NN RF LSVM NN RF LSVM

ComBat

1.50 10.80 60.89 0.77 4.90 3.54 1.09 0.016 0.010 0.010
1.75 22.38 14.76 0.94 1.02 2.60 0.84 0.007 0.005 0.005
2.00 8.17 4.22 1.65 2.91 1.72 0.70 0.004 0.005 0.003
2.25 5.20 2.02 1.00 0.89 2.82 0.66 0.003 0.004 0.002
2.50 3.76 1.09 0.54 0.81 2.07 0.66 0.002 0.004 0.002
2.75 3.05 0.63 0.39 1.00 2.18 0.69 0.002 0.003 0.002
3.00 2.75 0.51 0.32 0.71 0.83 0.80 0.002 0.002 0.002

fsva

1.50 10.53 52.26 0.73 4.14 1.86 0.99 0.016 0.009 0.010
1.75 22.20 12.66 0.49 0.97 1.32 0.81 0.007 0.005 0.005
2.00 8.33 3.73 1.12 1.96 1.00 0.68 0.004 0.003 0.003
2.25 5.13 1.80 0.77 0.88 0.94 0.67 0.003 0.003 0.002
2.50 3.74 1.00 0.45 1.83 0.86 0.73 0.003 0.002 0.002
2.75 3.05 0.61 0.37 1.07 1.18 0.64 0.002 0.004 0.002
3.00 2.77 0.49 0.38 0.78 0.81 0.73 0.002 0.002 0.002
Table 6
HF use case: Results obtained using LargeMetabo package.
Batch-adj. Method N. of features Accuracy

ComBat

Correlation-based feature selection 107 0.9640
Fold change 0 –
Linear models and empirical Bayes method 37 0.9621
Orthogonal partial least squares discrimination analysis 3138 0.9735
Random forest-recursive feature elimination 5 0.9735
Student’s t-test 6702 0.9678
Wilcoxon rank sum test 6988 0.9659

fsva

Correlation-based feature selection 5473 0.9735
Fold change 0 –
Linear models and empirical Bayes method 515 0.9640
Orthogonal partial least squares discrimination analysis 5213 0.9735
Random forest-recursive feature elimination 2 0.9716
Student’s t-test 9376 0.9754
Wilcoxon rank sum test 9409 0.9754
Table 7
Summary of the datasets used in the use case ASD.
Dataset Platform Manufacturer No. of samples

(ASD/control)

GSE6575 [76] GPL570 Affymetrix 47 (35/12)

GSE18123 [77] GPL570 Affymetrix 99 (66/33)
GPL6244 Affymetrix 186 (104/82)

GSE42133 [78] GPL10558 Illumina 142 (87/55)

GSE111175 [79] GPL10558 Illumina 98 (34/64)

Total 572 (326/246)

were excluded from these datasets since they were obtained from the
same patient. Concerning the dataset GSE6575, we maintained the
control samples and the samples with ASD and excluded the samples
referring to other perturbations. In relation to the dataset GSE111175,
we used the samples with ASD and pervasive developmental disorder,
as well as the control samples and excluded the samples referring to
other perturbations.

For feature selection in this use case, we chose to use the adjusted
𝑝-value to obtain the different sets of features. The adjusted 𝑝-value
thresholds used are: 0.008, 0.009, 0.010, 0.020, 0.030, 0.040, 0.050.

The ASD use case was validated using the datasets obtained from
three different platforms, namely two manufactured by Affymetrix
(GPL570 and GPL6244) and one manufactured by Illumina (GPL105
508). These three platforms have 6222 GenBank sequence accession
identifiers in common. Therefore, the merged dataset has 6222 features
and 572 samples. By dividing the merged dataset we obtained 50
training sets and the corresponding 50 test sets. Each training set
is composed of 6222 features and 430 samples and each test set is
composed of 6222 features and 142 samples. We used the adjusted 𝑝-
value and seven thresholds to obtain the different feature sets. Table 8
7

Table 8
The number of feature and the number of
genes for every adjusted 𝑝-value used as a
threshold.
Adjusted
p-value

No. of
features

No. of
genes

0.050 108 108
0.040 79 79
0.030 52 52
0.020 25 25
0.010 8 8
0.009 7 7
0.008 6 6

contains the number of features and the number of genes of the seven
feature sets.

Fig. 4 displays the MDS plot of the data before and after batch-
adjustment using ComBat and fsva methods. However, in this case, the
ComBat batch-adjustment method did not eliminate all the batches.
One reason for this insufficient batch-adjustment may be the fact that
not all platforms are manufactured by the same company. As can be
seen, the remaining clusters are between the Affymetrix platforms and
the Illumina platform.

Table 9 presents the mean accuracy and the standard deviation of
the model achieving the best mean accuracy, using the three machine
learning algorithms and the two batch-adjustment methods. All the
results of this use case can be found in the Supplementary File re-
sults_ADS.xlsx.

The results show that the best mean accuracy was obtained using an
adjusted 𝑝-value of 0.040, the ComBat batch-adjustment method and
neural network algorithm. The feature set obtained using an adjusted
𝑝-value of 0.040 is composed of 79 genes and has an accuracy of
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Fig. 4. MDS plot of the ASD dataset before and after data batch-adjustment using ComBat and fsva.
Table 9
ASD use case: For every adjusted 𝑝-value, the mean accuracy and standard deviation of the classifier.

Batch-adjustment Adjusted
p-value

Neural network Random forest Linear SVM

ComBat

0.050 0.8151 ± 0.0353 0.6862 ± 0.0361 0.7207 ± 0.0307
0.040 0.8176 ±0.0340 0.6908 ±0.0339 0.7361 ±0.0273
0.030 0.7054 ± 0.0424 0.6721 ± 0.0332 0.6845 ± 0.0285
0.020 0.6706 ± 0.0348 0.6661 ± 0.0354 0.6887 ± 0.0276
0.010 0.6125 ± 0.0264 0.6383 ± 0.0317 0.6396 ± 0.0338
0.009 0.6203 ± 0.0398 0.6411 ± 0.0330 0.6545 ± 0.0311
0.008 0.6314 ± 0.0417 0.6325 ± 0.0311 0.6524 ± 0.0313

fsva

0.050 0.7439 ± 0.0319 0.7739 ± 0.0307 0.7551 ± 0.0324
0.040 0.7326 ± 0.0353 0.7483 ± 0.0307 0.7492 ± 0.0308
0.030 0.7321 ± 0.0326 0.7452 ± 0.0355 0.7435 ± 0.0296
0.020 0.7097 ± 0.0334 0.7186 ± 0.0318 0.7180 ± 0.0271
0.010 0.6928 ± 0.0305 0.6818 ± 0.0280 0.7015 ± 0.0254
0.009 0.6899 ± 0.0367 0.6773 ± 0.0279 0.7059 ± 0.0277
0.008 0.6952 ± 0.0372 0.6672 ± 0.0276 0.7065 ± 0.0298

Note: Accuracy is given as the mean of the accuracy obtained ± the standard deviation
approximately 82%. Furthermore, this feature set obtained the best
mean specificity, mean precision, mean recall and mean F1 score. The
18 up-regulated genes and the 61 down-regulated genes are presented
in Supplementary File results_ADS.xlsx.

Neural network performed better when using the ComBat batch-
adjustment algorithm, however, random forest and linear SVM per-
formed better when using the fsva batch-adjustment algorithm. The
mean precision and the mean recall are mostly higher than the mean
accuracy and the mean specificity is mostly lower than the mean
accuracy.

Once more, we used DisGeNet to identify which genes had previ-
ously been associated with ASD. 3 of the 79 genes have previously
been associated with ASD: CD79A, EIF3A, and NDUFS1. CD79A is up-
regulated while EIF3A and NDUFS1 are down-regulated. These results
are not as good as the previous use case, which may be explained by the
datasets that were obtained using chips from different manufacturers,
leading to a reduced the number of features in the merged dataset.
8

Table 10 considers similar parameters as defined in Table 5. How-
ever, the metrics obtained in this table relate to the ASD use case.
Similar to the previous use case, the most time-consuming process is
the hyperparameter tuning. However, in contrast to the previous use
case, the parameter tuning of the linear SVM model did not exhibit the
shortest duration. For the present use case, the number of values used
for hyperparameter tuning in the random forest model varied between
15 and 321 for adjusted p-values of 0.008 and 0.050, respectively. The
presented results may justify the reason for the shortest feature sets the
random forest model being the one that requires less time for tuning the
parameters.

Table 11 presents the results of biomarker identification for the
ASD use case. For this use case, several methods have returned empty
sets of biomarkers, including correlation-based feature selection, fold
change and linear models and the empirical Bayes method. Addition-
ally, when using the batch-adjustment method Combat, orthogonal
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Table 10
ASD use case: For every fold change, the mean time for hyperparameter tuning, training and testing using the different classifiers.
Batch-adj. Adj. p-value Tuning (min) Training (s) Testing (s)

NN RF LSVM NN RF LSVM NN RF LSVM

ComBat

0.050 20.96 104.90 87.34 27.37 4.37 2.38 0.014 0.008 0.013
0.040 27.10 61.28 75.48 30.28 3.51 1.98 0.011 0.008 0.010
0.030 25.72 30.47 49.36 15.93 6.56 1.87 0.008 0.007 0.008
0.020 10.14 8.94 15.32 5.14 3.32 1.57 0.004 0.006 0.004
0.010 3.77 1.31 2.24 1.88 2.99 0.80 0.002 0.005 0.002
0.009 3.62 1.04 1.75 2.26 2.02 0.79 0.002 0.005 0.002
0.008 3.38 0.81 1.43 0.97 1.11 0.77 0.002 0.002 0.002

fsva

0.050 20.59 110.30 91.08 17.08 19.29 1.82 0.014 0.015 0.012
0.040 27.01 63.15 76.97 7.15 7.49 1.64 0.010 0.014 0.010
0.030 25.89 31.16 45.31 6.04 11.07 1.41 0.008 0.010 0.008
0.020 10.30 9.56 13.47 5.14 5.60 0.98 0.004 0.009 0.004
0.010 4.05 1.44 1.90 1.18 4.74 1.13 0.002 0.008 0.002
0.009 3.81 1.15 1.66 0.97 2.88 0.90 0.002 0.008 0.002
0.008 3.47 0.89 1.29 0.88 6.04 0.74 0.002 0.007 0.002
Table 11
ASD use case: Results obtained using LargeMetabo package.
Batch-adj. Method N. of features Accuracy

ComBat

Correlation-based feature selection 0 –
Fold change 0 –
Linear models and empirical Bayes method 0 –
Orthogonal partial least squares discrimination analysis 0 –
Random forest-recursive feature elimination 37 0.7378
Student’s t-test 780 0.6976
Wilcoxon rank sum test 1953 0.6626

fsva

Correlation-based feature selection 0 –
Fold change 0 –
Linear models and empirical Bayes method 0 –
Orthogonal partial least squares discrimination analysis 1826 0.7710
Random forest-recursive feature elimination 24 0.7640
Student’s t-test 2473 0.7570
Wilcoxon rank sum test 3016 0.7549
partial least squares discrimination analysis also resulted in an empty
set of biomarkers. Most of the remaining biomarker identification
methods returned relatively large sets of potential biomarkers. How-
ever, as previously mentioned, the proposed methodology employs
several thresholds that help mitigate issues, such as returning empty
or excessively large sets of potential biomarkers.

5. Discussion

The proposed methodology demonstrated a good efficiency to iden-
tify gene expression signatures. The pipeline consists of several steps,
including data preprocessing, feature selection, and supervised machine
learning. For each step of the pipeline, we provide a list of potential
methods that can be used. These lists are intended to serve as a
starting point and guide for researchers, rather than prescribing a single
approach that must be followed.

It is important to note that the performance of feature selection
and supervised machine learning methods is dependent on various
factors, including the quality of the data, the nature of the problem
being addressed, the choice of algorithm, and computational resources.
Therefore, we recommend that researchers carefully consider these
factors when selecting methods for each step of the pipeline.

To demonstrate the efficacy of this methodology, we employed two
research applications using publicly available microarray datasets. For
each case study, we selected one or more methods from the provided
lists for each step of the pipeline. By using multiple methods, we were
able to compare their performance in the specific context of each case
study.

As the primary metric for evaluating the performance of the GES,
we used accuracy. In the heart failure case study, we obtained a GES
consisting of 117 genes with a classification accuracy of approximately
9

98%. In the autism spectrum disorder case study, we obtained a GES
of 79 genes with a classification accuracy of approximately 82%. In
addition to accuracy, we also measured precision, recall, F1 score, and
specificity, with the results presented in the supplementary material.

To ensure the generalizability and robustness of the proposed strat-
egy for GES, we employed a cross-validation approach in which we
randomly divided the merged dataset into training and test sets 50
times, applying the feature selection process to the 50 training sets
and intersecting the results. This allowed us to assess the stability of
the GES across different training and test sets. In this section, we also
evaluate the biological relevance of the genes in the GES in relation to
the problem at hand. These analyses helped to provide insight into the
mechanisms underlying the classification results and may inform future
research on these conditions.

5.1. Biological insight of the results

Considering the complexity of the study context, this section does
not explore in depth every gene and disease mechanism but aims to
provide a biological insight from the results, supporting the application
of our methodology.

To obtain an overview of the functional meaning of the results, we
analyzed the gene ontology annotations of each gene signature. In the
heart failure case study, we observed an enrichment of inflammatory
and immune response processes in the down-regulated genes. Among
those genes, we found IL1RL1, PLA2G2A and SERPINA3, which have
been previously associated with heart disease, according to the Dis-
GeNet database. Additionally, the calcium binding proteins encoded by
genes S100A8 and S100A9 are specifically expressed by myeloid cells
and are involved in several inflammation related processes, via the Toll-
like receptor 4 (TLR4) activation. The regulation of the inflammatory
response has a dual role in the development and progression of heart

failure, as it can often act as a trigger, but its suppression is also
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required to induce the regenerative process. Therefore, the modulation
of the inflammation associated pathways has been identified as a
therapeutic strategy in heart failure [80]. Considering the up-regulated
genes, the most relevant process was the epithelial proliferation, which
is essential to ensure the formation of a scar and for the development
of heart tissue and cardiac remodeling in a post-infarction response.
Among those genes and their respective proteins, we found several
proteoglycans and secreted frizzled-related proteins (such as SFRP4
and Frizzled-7). The latter, SFRPs, belong to the non-canonical Wnt
signaling pathway and participate in the up-regulation of epithelial cell
proliferation [81].

In the second case study, ASD, the number of up-regulated genes
(61) was much higher than the down-regulated ones (18), which may
be related to an increase of brain activity. This is concordant with
recent studies, which report a higher number of synapses in the autistic
brain, associated with an mTOR-dependent increase of dendritic spines
density [82]. About one-third of the up-regulated genes (15 to 20
out of 61) are involved in processes of anatomical structure develop-
ment, cell differentiation and signal transduction, which are critical
in a neurodevelopment disorder such ASD. Although distinct, half the
down-regulated genes (9 out of 18) were also involved in processes
related to the development of anatomical structures. The most promi-
nent down-regulated gene was the GABA type A receptor-associated
protein (GABARAP) gene, which participates in many processes related
to cellular signaling, including cell–cell signaling, protein transport
and targeting, response to stress, among others. Although this specific
gene is not reported as such in DisGeNet, the GABA receptor modu-
lators have been recently suggested as a potential therapeutic target
in ASD, due to the critical regulation exerted by GABAergic inhibitory
transmission on neuronal activities during brain development [83].

Among the up-regulated genes, EIF3A and NDUFS1 were previously
associated with ASD, according to the DisGeNet. Both have essential
physiological cell functions and, when dysregulated, may lead to differ-
ent pathological conditions. Namely, eIF3 is one of the subunits of the
eukaryotic initiation factor 3, participating in the translation process of
gene expression, and the protein encoded by the NDUFS1 gene partic-
ipates in the energy production through the mitochondrial respiration,
due to its NADH dehydrogenase and oxidoreductase activity. The Toll-
like receptor 2 (TLR2) was one of the genes that we found to be
involved in more processes, according to gene ontology annotations.
The TLR pathway is mainly involved in innate immune responses. In
the pathophysiology of ASD, there is a strong component of immune
dysfunction, and the levels of cytokines in B cells were recently studied
in children with autism [84]. Among their main findings, the authors
observed that activation of the TLR4 was responsible for the increase
of the inflammatory potential of B cells in ASD.

Interestingly, analysis of the two case studies highlighted the im-
portance of inflammation in both pathogenic processes, particularly
through the presence of the TLR pathway. As a curiosity, TLR4 can
be activated by the extracellular forms of two NAD related enzymes
(eNAPRT and eNAMPT) and induce inflammation [85]. In addition,
a recent study has suggested the involvement of NAPRT in neural
development [86]. Altogether, these findings are mentioned here to
show that the results obtained through the methodology presented in
this study are supported by the literature.

5.2. Multicentre processing

The proposed methodology was created focused on aggregating
multiple datasets to increase the accuracy of the data processing al-
gorithms. Several data owners are reluctant to share their dataset
publicly, and therefore, some initiatives have invested in strategies
for multicentre studies [87–89]. These strategies enable collaboration
between researchers from distinct institutions, with the possibility of
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sharing their datasets in a secure way.
Almeida et al. [89] proposed a semi-automatic methodology to
analyze distributed repositories of genomic data. This strategy aims
to conduct a multicentre study without the need for data owners to
release the datasets. To accomplish this, three different actors have
specific responsibilities in the study, namely: (i) researcher, the entity
interested in conducting the study; (ii) study manager, the entity with
higher privileges who knows the data owners; and (iii) the data owners.

With our methodology, we can apply similar principles, which
would help researchers to conduct a multicentre microarray study, by
merging the datasets of interest without ever accessing the data. We
include in this work all the necessary tools for the study manager to
process the datasets in a Private Remote Research Environment (PRRE).
Then, this entity can share the results with the researcher without
exposing the data.

6. Conclusion

In this paper, we present a general pipeline for identifying a gene
expression signature. Using statistical methods and supervised machine
learning algorithms, this approach overcomes limitations such as the
need to set an arbitrary threshold for gene selection when using sta-
tistical methods and the ineffectiveness of supervised machine learning
algorithms when applied to microarray data.

We applied the methodology to two use cases: one using heart fail-
ure microarray datasets and the other using autism spectrum disorder
microarray datasets. For the HF use case, we identified a GES of 117
genes with high accuracy (98%). For the ASD use case, we identified
a GES of 79 genes with approximately 82% accuracy. For this second
use case, we used datasets obtained using microarrays from different
manufacturers. This study shows that the methodology presented is
appropriate to identify common GESs across multiple microarray ex-
periments, helping to increase the statistical power of small datasets.
Furthermore, this methodology can be used for different diseases.

The methodology presented has several limitations. One potential
limitation is that merging microarray datasets obtained from different
platforms may result in the loss of genes that are not present on all
platforms. Additionally, the methodology provides a list of methods
that could be used at various stages of the pipeline, requiring the
researcher to choose the most appropriate method for their specific
study.

In future work, we plan to apply this methodology to a diverse range
of microarray data and evaluate the performance of various methods
at different stages of the pipeline. We also plan to utilize ensemble
learning techniques to combine multiple methods in both the feature
selection and gene expression signature identification steps.
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