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Abstract  Aging is a topic of paramount impor-
tance in an increasingly elderly society and has been 
the focus of extensive research. Protein homeostasis 
(proteostasis) decline is a hallmark in aging and sev-
eral age-related diseases, but which specific proteins 
and mechanisms are involved in proteostasis (de)
regulation during the aging process remain largely 
unknown. Here, we used different text-mining tools 
complemented with protein–protein interaction data 
to address this complex topic. Analysis of the inte-
grated protein interaction networks identified novel 

proteins and pathways associated to proteostasis 
mechanisms and aging or age-related disorders, indi-
cating that this approach is useful to identify previ-
ously unknown links and for retrieving information of 
potential novel biomarkers or therapeutic targets.

Keywords  Protein aggregation · Protein–protein 
interactions · Inflammasome · NAD metabolism · 
EGAS

Introduction

Aging is the progressive physiological and func-
tional decline of organisms that affects the tissues and 
organs of the whole body. It is best characterized as 
a multifactorial process that comprises the interaction 
of cellular and molecular mechanisms, however, indi-
viduals do not age at the same rate (Broz and Dixit 
2016). Since it is estimated that by 2050, more than 
20% of the world´s population will be over 65 years 
of age (Beard et al. 2016), finding healthy aging bio-
markers and therapeutic targets is of outmost impor-
tance to predict the biological age of individuals 
and significantly impact the socio-economic burden 
caused by an increasingly elderly society.

Maintaining protein homeostasis (proteostasis) is 
crucial for protein structure, stability, and functional 
properties. The proteostasis network includes chap-
erones, co-chaperones, the ubiquitin-proteasome sys-
tem (UPS) and the autophagic machinery as protein 
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quality control mechanisms (Díaz-Villanueva et  al. 
2015). In addition to these processes, organelle-
specific systems exist and encompass the heat-shock 
response (HSR), as well as the endoplasmic reticu-
lum (ER) and mitochondria unfolded protein response 
(UPRER and UPRmito). These processes act in a 
coordinated fashion to ensure correct protein fold-
ing (Díaz-Villanueva et al. 2015; Read and Schröder 
2021). When these cellular and molecular protein 
quality control machineries are overwhelmed, the for-
mation of unfolded proteins increases the tendency of 
proteins to aggregate.

Earlier in the past decade, Lopez-Otín et al. 
included defective proteostasis, or proteotoxicity, in a 
panel of hallmarks of aging and age-related disorders 
(López-otín et  al. 2013). Despite numerous publica-
tions that revealed that unbalanced proteostasis might 
be a consequence or a cause of aging (Thibaudeau 
et  al. 2018; Luna et  al. 2018; Kelmer Sacramento 
et al. 2020), there is still a lack of proteins that com-
bine these two phenomena. As a better understanding 
of the molecular pathways involved in proteostasis 
(de)regulation during aging  might lead to the iden-
tification of biomarkers and targets for therapeutic 
intervention, the objective of this work was to pro-
vide an integrative view of the regulatory networks 
involved in proteostasis and the aging process, using 
two complementary text-mining approaches.

Material and methods

Automated text‑mining dataset

Automated text mining analysis was performed 
using the Agilent Literature Search plugin for 
Cytoscape (Cline et al. 2007). This plugin retrieves 
documents for a user query and extracts pro-
tein–protein associations from these texts using a 
set of lexicons that define protein names and associ-
ation terms. A set of queries was built up to include 
“Proteostasis”, “protein aggregation” and “proteo-
toxicity” as the terms selected and “aging”, “age-
ing” and “senescence” as the context query. The 
species Homo sapiens, Mus musculus, Caenorhab-
ditis elegans and Drosophila melanogaster were 
considered, resulting in the retrieval and analysis 
of 769 full-text biomedical research papers and the 
creation of a list of proteins for each of the species. 

Under extraction controls the option “relaxed” was 
chosen, which means that a more permissive set of 
association terms to identify potential protein inter-
actions was considered.

Curated text‑mining dataset

A curated dataset of protein interactions was gener-
ated using EGAS (Campos et al. 2014; Matos et al. 
2016). Pre-processed abstracts containing automati-
cally identified concepts (proteins, drugs, species, 
bioprocesses) and relations (protein–protein and 
protein-chemical interactions) were revised by the 
curators using the interactive tool. The 1920 results 
obtained from the PubMed search ((protein aggre-
gation OR proteostasis OR proteotoxicity) AND 
(ageing OR aging OR senescence)) were prioritized 
using a linear Support Vector Machine (SVM) clas-
sifier. The classifier was initially trained with data 
from the BioCreative III protein–protein interaction 
(PPI) article classification task (Krallinger et  al. 
2011), consisting of 6280 PubMed abstracts classi-
fied as containing PPI information (n = 1822) or not 
(n = 4458). This classifier was then refined through 
two steps of user feedback in which the 300 highest 
ranked abstracts, according to classification prob-
ability, were manually verified and annotated as 
containing relevant information (positive) or other-
wise (negative). After retraining the classifier using 
these manually verified documents the full list of 
1920 PubMed results was re-ranked. Curators then 
annotated the first documents of this prioritized 
list, resulting in a curated corpus of 108 abstracts. 
Specifically, this annotation process was performed 
using EGAS, a web-based text-mining and assisted 
curation tool. EGAS uses dictionary matching and 
machine learning to automatically identify and 
annotate concepts and concept relations mentioned 
in text document. These automatic annotations 
were then inspected, corrected or removed manu-
ally by curators, who also added new annotations. 
After exporting the curated annotations to a tabular 
text format, a manual revision step was required to 
assign unique UniProt identifiers (47 IDs) to protein 
annotations that had not been normalized during the 
interactive curation step. The final PPI pairs were 
imported to Cytoscape for network visualization.
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Network analysis

Cytoscape version 3.4.0 (Shannon et  al. 2003) was 
used to visualize and analyze the protein networks 
resulting from the two text-mining approaches. A 
third network was generated using the Cytoscape 
“import—network—from public databases” tool. 
The list of UniProt accession IDs was used as input 
to retrieve the protein–protein interaction (PPI) 
network from databases of the IMEX consortium 
(Orchard et al. 2012) (IntAct, MINT, I2D, InnateDB, 
MPIDb). The human proteins were selected and the 
PPIs from the two text-mining approaches that were 
not present in databases were identified. For each net-
work, self-loops and duplicated edges were removed 
and a column was added to the edge table, indicating 
the number of underlying edges to each interaction. 
The EGAS and Agilent filtered networks (2NET) 
were merged, and these were merged with the net-
work built with information retrieved from public 
databases (3NET). For key proteins (nodes) the first 
neighbors were selected, and subnetworks were cre-
ated containing only edges connected to the central 
node, to evaluate which interactions were identi-
fied by each approach. In the merged network of the 
three approaches, a clustering analysis was performed 
using MCODE App from Cytoscape (Bader and 
Hogue 2003). The protein sub-network consisting of 
the novel protein interactions (excluding databases) 
was visualized with STRING (http://​string-​db.​org/), 
using evidence data from text-mining and experi-
ments with a medium confidence score (0.4) and no 
interactors in the first or second shell.

Enrichment and pathway analyses

The list of UniProt IDs of each dataset was analyzed 
in the Reactome Pathway Database (Croft et  al. 
2011). All non-human identifiers were converted to 
their human counterparts. The statistical overrepre-
sentation test was performed in PANTHER (www.​
panth​erdb.​org), using PANTHER GO-Slim Biologi-
cal Process dataset (Mi et al. 2017). Gene enrichment 
analyses were performed with the Functional annota-
tion clustering tool in DAVID (https://​david.​ncifc​rf.​
gov/), using the default parameters (Sherman et  al. 
2022; Huang et  al. 2009) These analyses provided 
statistical measures for the association of our datasets 

to gene ontology terms, giving an insight of the func-
tional biological meaning of the results.

Results

For the automated text-mining dataset, the Agilent 
Literature Search plugin for Cytoscape was used to 
generate a list of proteins for all the species consid-
ered. The resulting protein networks consist of 155 
nodes (proteins) and 284 edges (interactions) for D. 
melanogaster, 74 nodes and 105 edges for C. elegans, 
325 nodes and 629 edges for H. sapiens and 265 
nodes and 466 edges for M. musculus. All proteins 
from each species were analyzed in the Reactome 
Pathway Database and similar results were obtained 
for all species. The integrated analysis of the statisti-
cally significant processes shows an overrepresenta-
tion of pathways related to the immune system, cel-
lular responses to stress and programmed cell death 
(Supplementary Fig. 1).

The curated text-mining dataset was obtained using 
EGAS. A total of 110 protein–protein interactions 
(PPIs), nine protein-chemical interactions (PCIs) and 
62 protein-pathway relations were identified, involv-
ing 91 unique proteins that were mapped to their Uni-
Prot accession IDs. Fifty-six protein names were not 
mapped and appear as annotated in the text. For net-
work analysis, only PPIs were considered.

The results of the statistical overrepresentation 
test, performed on the 91 UniProt IDs from the EGAS 
dataset, showed that the main processes represented 
were apoptotic process, response to stress, intracel-
lular signal transduction and regulation of biological 
process. The analysis in the Reactome Pathway Data-
base revealed that the top four pathways represented 
were related to cellular responses to stress, particu-
larly to heat stress and involving heat shock transcrip-
tion factor 1 (HSF1). A total of 34 pathways had a sig-
nificant p-value (< 0.001) and were involved mainly 
in signal transduction, immune system, programmed 
cell death and disease. Overall, the results from both 
automated and curated datasets were similar.

To compare the output obtained from the literature 
searches and text mining tools with the information 
described in specific databases of protein–protein 
interactions, a network using the automatic search 
of public databases in Cytoscape was created. As an 
input, the smaller dataset of protein IDs, consisting of 

http://string-db.org/
http://www.pantherdb.org
http://www.pantherdb.org
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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91 UniProt accession numbers obtained from EGAS 
was used and only the databases from IMEX Con-
sortium, which are curated and standardized, were 
selected. A network with a total of 5414 interactions 
involving 3578 proteins was obtained.

After filtering from the text-mined PPIs the inter-
actions already contained in the public databases, the 
curated network of PPIs contained 88 non-duplicated 
edges connecting 116 nodes. The same was done to 
the automated dataset of human proteins and a net-
work of 323 nodes and 596 edges was obtained. 
Comparing these two, 28 of the identified proteins 
(nodes) were common to both datasets. Of note, 27 
of these appear to directly interact and participate in 
a proteostasis-related network that has not been pre-
viously acknowledged (Fig.  1A). Functional enrich-
ment of the 28 proteins present in both text-mining 
datasets indicates 13 significant clusters (Supplemen-
tary Table 1), mainly associated with protein degra-
dation or folding, apoptosis and neuronal survival. 
Although with fewer genes, Alzheimer’s Disease and 
NAD-dependent ribosylation are among the clusters 
with higher fold enrichment (137.8% and 64.6%, 
respectively).

Considering only the proteins mapped to UniProt 
IDs, the two text-mining approaches together allowed 
the identification of 570 PPIs that were not present 
in the network obtained with database information. 
Examples are shown in Fig. 1B and 1C, representing 
the subnetworks centered in HSF1 and in α-synuclein 
(SNCA) and tau (MAPT). The subnetworks com-
prise all interactions obtained from the three different 
methods and show 61 HSF1 interactions, four iden-
tified by EGAS and 12 by Agilent (Fig. 1B). HSF1, 
NEDD4, SNCA, SIRT1 and their interactions can be 
retrieved from the subnetwork. In the second exam-
ple (Fig. 1C), key proteins with a role in aging related 
disorders, such as Alzheimer’s disease and Parkin-
son’s disease are shown. Although most of the inter-
actions are already found in the databases, EGAS and 
Agilent provided new information as well.

Discussion

Proteostasis and aging seem to be closely related 
processes. Despite its most prevalent association to 
pathologies such as diabetes or neurodegenerative 
diseases, the aging process itself is associated with 

a severe decline in the proteostasis machinery. Here 
a text-mining strategy was followed, towards a most 
comprehensive overview of the molecular pathways 
involved both in proteostasis and in the aging pro-
cess to identify predictive biomarkers. Two distinct 
but complimentary approaches were applied, using 
the Agilent Literature Search plugin for Cytoscape 
and EGAS that provide, respectively, automated and 
curated methods based on the analysis of the litera-
ture generated from terms of interest. Given the words 
that provide an association between proteostasis and 
aging as described in the methods section, networks 
of proteins were generated and further analyzed using 
Cytoscape, Reactome and PANTHER. The results 
demonstrate the valuable contribution of text-mining 
approaches to identify novel hypothesis and targets 
that can be further validated, as discussed next.

Considering the two text-mining strategies, the 
Agilent tool is less restrictive when compared to the 
manually curated approach and allows the use of full-
text. On the other hand, manual literature curation 
results are more reliable, but since annotating full-
text documents would require a much greater cura-
tion effort, only abstracts were annotated with EGAS. 
Accordingly, more information was retrieved with the 
automated method. Using EGAS, new information 
could still be extracted, namely, the identification of 
82 PPIs that were not present in either the Agilent or 
the public databases networks.

Merging the networks from the two text-mining 
approaches revealed 28 common nodes (proteins) and 
6 common edges (interactions). These included pro-
teins such as PARK7, MAPK8, SQSTM1, SIRT1, 
VCP, STAT3, SIRT6, APP, DDIT3 and CLU, show-
ing that these methods provide new, and literature 
supported information. For example, APP interaction 
with Superoxide Dismutase 1 (SOD1), a key partici-
pant in apoptotic signaling and oxidative stress, was 
detected. SOD1 had been associated with Amyo-
trophic lateral sclerosis (ALS) and was recently 
linked to Alzheimer’s disease (Muresan and Lad-
escu 2016). Clusterin also referred as apolipoprotein 
J (ApoJ), a small heat shock protein that acts as a 
molecular chaperone and promotes cell survival, has 
been largely reported in the literature associated with 
Alzheimer’s disease and other neurodegenerative dis-
eases (Yuste-Checa et al. 2022; Jackson et al. 2019). 
According to the literature, CLU is a good target for 
the development of therapeutic approaches (Wilson 
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Fig. 1   Subnetwork of proteins and protein–protein interactions 
identified by text-mining approaches as associated with proteo-
stasis and aging. A Nodes (proteins) identified by both data-
sets were visualized using STRING and shown to participate 
in proteostasis-related processes, such as response to topologi-
cally incorrect protein (GO:0035966, green), regulation of pro-
tein stability (GO:0031647, yellow) or positive regulation of 
proteolysis (GO:0045862, blue). B, C Subnetworks centered in 

HSF1, and in MAPT and SNCA. Nodes (proteins) and Edges 
(interactions) from the automated and curated dataset networks 
are shown in orange and pink, respectively. Common proteins 
are represented in green. Nodes and edges retrieved from pub-
lic databases are shown in blue and gray. The Group Attributes 
Layout based on the origin of the dataset (Curated, Automated 
or Databases) and the Prefuse Forced Directed Layout were 
used to visualize the network
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and Zoubeidi 2017), however its interaction with APP 
was not found in the public databases network but 
was identified by the EGAS text-mining tool. In addi-
tion, both text-mining approaches identified the inter-
action of amyloid-β (APP) with BCL2 Associated 
Athanogene 3 (BAG3). BAG3 is involved in chap-
erone-assisted selective autophagy and was already 
associated to Alzheimer’s disease (Lei et  al. 2015). 
Also, a BAG1 to BAG3 switch was observed dur-
ing aging, being BAG1 associated with the removal 
of polyubiquitinated proteins from the proteasome 
and BAG3 related with the turnover of polyubiquit-
inated proteins from the autophagic-lysosomal system 
(Gamerdinger et al. 2009).

The enrichment analysis revealed the pathways 
that were overrepresented in our set of results. This 
means that there was a significant number of proteins/
genes associated to those pathways, and this num-
ber is higher than we would have expected to find by 
chance, using the entire human genome as reference. 
The top 4 pathways were related to cellular responses 
to stress, particularly involving the HSF1 regulation 
or transactivation. EGAS provided two more HSF1 
interactions with SNCA and NEDD4 that were not 
found in public databases. NEDD4 (Neural Precursor 
Cell Expressed, Developmentally Down-Regulated 4, 
E3 Ubiquitin Protein Ligase) is an enzyme that tar-
gets proteins for ubiquitination. Its involvement in 

neurodegeneration and interaction with HSF1 were 
described (Kim et al. 2016). Interestingly, the HSF1-
SIRT1 interaction was acknowledged by both text-
mining approaches. SIRT1, a NAD-dependent dea-
cetylase well studied in aging, had a subnetwork with 
136 edges, most of them found in databases (data not 
shown).

From the statistically significant processes rep-
resented, it should also be noted the overrepresenta-
tion of processes related to the immune system. The 
NLRP3 inflammasome is the major inflammatory 
complex (Broz and Dixit 2016) and its activation trig-
gers the caspase-1 mediated processing of IL-1β and 
IL-18 into their bioactive cytokine forms and pyrop-
tosis (Broz and Dixit 2016). It is not clear whether 
NLRP3 activation is a cause or a consequence of 
mitochondrial dysfunction however it is known that 
this complex can be activated through several dam-
age-associated molecular patterns (DAMPs) such as 
ATP, DNA, heat shock proteins and protein aggre-
gates or even mitochondrial DAMPs such as cath-
epsin B and reactive oxygen species (ROS) (Gurung 
et  al. 2015). Moreover, the activation of mitochon-
drial biogenesis that is a pathway related to the 
inflammasome activation is also observed. NLRP3 
activation is enhanced in many age-related diseases 
and is also associated with aging itself (Gritsenko 
et  al. 2020). The acetylation status of NLRP3 is 

Fig. 1   (continued)
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affected during aging. NLRP3 is normally modified 
by SIRT2-dependent deacetylation in macrophages, a 
process that is dysregulated during aging. This switch 
towards an acetylated status activates the inflamma-
some leading to chronic inflammation and insulin 
resistance (He et al. 2020).

Conclusion

In conclusion, the work presented here shows how 
text-mining tools can be used to extract knowledge 
from available data. To face the increasing number 
of published papers in a topic such as aging and the 
need to progress with directed studies to identify new 
potential biomarkers or therapeutic targets, text-min-
ing tools provide a useful approach as a first step in 
the research process.
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