
TotalBotWar

A New Pseudo Real-time Single-action
Game Challenge and Competition for AI

Sergi Fuster Durà

Final Degree Work
Bachelor’s Degree in

Video Game Design and Development
Universitat Jaume I

May 22, 2023

Supervised by: Raúl Montoliu, PhD.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Acknowledgments

First of all, I would like to thank my Final Degree Work supervisor, Raúl Montoliu
Colás, for being the guide and director of this project, and for solving all the doubts
related to the development that I have had during these months.

I would also like to thank the help and company of two good friends Anatoliy Myn-
dresku and Llorenç Lavernia for giving me their ideas and opinions about this project.

I also would like to thank Sergio Barrachina Mir and José Vte. Martí Avilés for their
inspiring LaTeX template for writing the Final Degree Work report, which I have used
as a starting point in writing this report.

iii

http://lorca.act.uji.es/curso/latex/

Abstract

This work presents TotalBotWar, a new pseudo real-time single-action challenge for
game AI for mobile devices, as well as some initial experiments that benchmark the
framework with different agents. The game is based on the real-time battles of the
popular TotalWar games series where players manage an army to defeat the opponents
one. In the proposed game, a turn consists of an order to control one of your units. One
interesting feature of the game is that if a particular unit does not receive an order in
a turn, it will continue performing the action specified in a previous turn. The turn-
wise branching factor becomes overwhelming for traditional algorithms and the partial
observability of the game state makes the proposed game an interesting platform to test
modern AI algorithms.

It should be added that it is not necessary to know about programming to play, also
the manual game mechanics have been implemented in which you can control your troops
with the mouse.

Finally, for reasons that will be explained in the following chapters, the structure of the
developed system is not the conventional one, but a Cloud Gaming [26] style structure
has been necessary.

v

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Work Motivation . 2
1.2 Objectives . 3

1.2.1 Main Goal . 3
1.2.2 Specific Goals . 4

1.3 Environment and Initial State . 4
1.4 Game Overview . 6

1.4.1 Main Characteristics . 7

2 Planning and resources evaluation 9
2.1 Planning . 9
2.2 Resource Evaluation . 10

3 System Analysis and Design 13
3.1 Requirement Analysis . 13

3.1.1 Functional Requirements . 13
3.1.2 Non-functional Requirements . 15

3.2 System Design . 17
3.2.1 Security . 17
3.2.2 Multi-User . 18
3.2.3 Documentation . 19
3.2.4 Readability . 20

3.3 System Architecture . 20
3.3.1 Hardware Requirements . 20
3.3.2 Other Requirements . 20

3.4 System Analysis . 21
3.4.1 Action Space . 21
3.4.2 State Representation . 21

vii

viii Contents

3.4.3 Game Complexity . 22
3.4.4 Baseline Agents . 22

3.5 Interface Design . 24
3.6 Videogame Art . 25

4 Work Development and Results 29
4.1 Work Development . 29

4.1.1 Initial Conception . 30
4.1.2 Game Core . 30
4.1.3 Server . 31
4.1.4 Database . 31
4.1.5 Unity . 32
4.1.6 Firebase Database . 33
4.1.7 Socket Implementation . 34

4.2 Results . 38
4.2.1 Goals Achieved . 38
4.2.2 Comparison between Planning and Final Work Accomplished . . . 42
4.2.3 Applications of the Work Performed 42

5 Conclusions and Future Work 45
5.1 Conclusions . 45
5.2 Future work . 46

Bibliography 49

A Source code 51
A.0.1 GitHub . 51
A.0.2 Game State in JSON . 52

List of Figures

1.1 Bonus Type Diagram . 8

2.1 Planning Table Start . 10
2.2 Gantt Chart . 11

3.1 Authentication and Career Conditions Security 18
3.2 Use of Pipelines for parent-child Communication 19
3.3 TotalBotWar Menu Interface . 24
3.4 TotalBotWar Positioning State Interface . 24
3.5 TotalBotWar Battle RND vs OSLA . 25
3.6 Knight Running Animation . 25
3.7 Archers Attacking Animation . 25
3.8 Swordsmen Death Animation . 26
3.9 Background N.1 . 26
3.10 Background N.2 . 27
3.11 Background N.3 . 27

4.1 Main Loop Abstract . 36
4.2 Game Step 1/2 . 36
4.3 Manage Intersection . 37
4.4 Game Step 2/2 . 37
4.5 Update of Data and Rendering Loop . 38
4.6 Random vs OSLA Ingame Background N.2 39
4.7 Random vs OSLA Ingame Background N.3 39
4.8 Server and Game Working While Positioning 40
4.9 Server and Game Working While Battle . 42
4.10 Planning Table Finish . 43

ix

List of Tables

1.1 Subjects Related to the Project . 4
1.2 Attributes of Military Units . 7
1.3 Available Resolutions on TotalBotWar Game 7

3.1 Functional requirement «SETUP1. Game Teams» 14
3.2 Functional requirement «SETUP2. Units Positioning» 14
3.3 Functional requirement «ACTION1. Unit Selection» 14
3.4 Functional requirement «ACTION2. Destination Setting» 15
3.5 Non-Functional requirement «SECURITY1. Malicious Third-Party Person» . 15
3.6 Non-Functional requirement «SECURITY2. Career Conditions» 15
3.7 Non-Functional requirement «MULTIUSER. Concurrent Programming» . . . 16
3.8 Non-Functional requirement «DOCUMENTATION. Docstring» 16
3.9 Non-Functional requirement «READABILITY1. Clean Code» 16
3.10 Non-Functional requirement «READABILITY2. PEP 8 Python» 16
3.11 Number of possible actions for 8 units depending on the battlefield size. . . . 22

xi

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Work Motivation . 2
1.2 Objectives . 3
1.3 Environment and Initial State . 4
1.4 Game Overview . 6

In recent years, games have proven to be important testbeds for Artificial Intelligence
(AI). For instance, deep reinforcement learning has enabled computers to learn how to
play games such as Chess [22], Go [22], Atari games [13], and many other games [9].
Despite these important advances, there are still games that pose important challenges
for state-of-the-art AI agents. Some examples are Blood Bowl [10], Legend of Code and
Magic [11], MicroRTS [14], FightingICE [8], Hanabi [24], Splendor [2], StarCraft [3], and
the General Video Game AI framework [18], among others.

In this document, we propose TotalBotWar, a new pseudo realtime challenge for game
AI. The game is inspired by the real-time battles of the popular TotalWar game series1,
where two players control respective armies with the objective of defeating each other.
On each turn, the agent must decide where the unit must move to. When two opposite
units collide, they will start to fight. The result of the combat depends on the type
of units and their attributes. If during a turn a unit does not receive any order, it
will continue its movement following the previous one, or it will stand still if none was
given. This introduces unknown information on the state: it is possible to know that an
enemy unit is moving, but not its destination. The game has a high number of possible

1Creative Assembly, https://www.totalwar.com/

1

https://www.totalwar.com/

2 Introduction

actions in a turn (≈ 6.7 × 107) and also a huge number of possible states (≈ 3.3 × 1029

), which provides a significant challenge for AI agents. An initial set of experiments are
also presented, where four different agents are benchmarked to give a baseline to future
researchers. Three of them are primary agents where a) units never move (but can fight),
b) always move forward, or c) move to a random localisation. The one remaining is more
sophisticated, applies human knowledge by using a heuristic function. It has also been
implemented the possibility to play as a human and control the troops yourself in real
time. It is important to mention that this work complements and builds on the base
of the game developed by Alejandro Estaben [4] (alumnus of the degree), keeping the
theme this time the game is available for mobile devices, it is possible to play in human
mode and you can choose which AI algorithms will be confronted (future work will add
even more changes).

This chapter aims to provide an insight into the motivations that drove the selection of
this project, along with its objectives and starting point. It is crucial to clarify that the
project idea originated from Raúl Montoliu, and it is part of a collaborative grant that I
am undertaking with him. To enhance your understanding of the upcoming discussions,
I kindly invite you to watch a brief video showcasing the gameplay of the video game.
Several videos can be saw by clicking in the following links:

⋄ Video: TotalBotWar - Human vs OSLA

⋄ Video: TotalBotWar - Random vs OSLA

⋄ Video: TotalBotWar - DEBUG

By doing so, you will have a better grasp of the topics we will be addressing throughout
the chapter.

1.1 Work Motivation

“ Artificial intelligence (AI) has advanced significantly in recent decades, but
there are still many challenges that remain to be solved. “

The motivation for this project is primarily the intrinsic motivation that exists in all
work related to computer technology, discovery and research. CHAT GPT [15], DALL-E
[16], Bard [7]. . . All these are AI technologies that have revolutionized or will revolution-
ize the world, and we have reached this point of development thanks to thousands and
thousands of researchers who, more or less, did their bit to develop all the knowledge
necessary for this goal. Like them, Raul and I want to do our bit in this field because
we believe it has a promising future and there is still a lot to discover.

https://drive.google.com/file/d/1W1YzAJH4UnjDWk1x96z19mv-fsRVFuL2/view?usp=share_link
https://drive.google.com/file/d/1STErIov2kHeSvu4ANEIikAY8vGbmcd8b/view?usp=share_link
https://drive.google.com/file/d/1M6DxpxeP8MspZcNOzk3Gb7IVkdiTqTxr/view?usp=share_link

1.2. Objectives 3

Think about it, even if this project is not a direct help to the world of artificial
intelligence research, it can be one of the dominoes that will trigger important future
results. Interest in this world may not only become stronger in me after the development
of this project, it may also be born and grow in all those people who play the game and
make bots for it.

Also, in the world of video games there are many unmet or unfinished goals related to
AI. We would all like to be able to play games and face human-like enemies that test our
capabilities and help us improve. Even bots that would discover new ways of playing
games never seen before. It would also be very desirable not to have to configure the
bots ourselves, but for them to be able to adapt themselves to the level of the player
and create an ideal learning curve.

1.2 Objectives

This section sets out the objectives prior to the completion of the project, their resolution
can be consulted in the Section 4.2.

1.2.1 Main Goal

The objectives are to develop a functional project, that really is a realistic option to
learn AI focused on programming bots that play video games and are able to win. Not
only can it be a source of fun, but it can be a real tool to learn something that a game
developer needs.

The fact that the game is playable and entertaining can lead to many benefits. All
video game companies need workers specialized in AI to develop bots for their games,
bots that always lose, bots that always win, bots that are interesting, if you are good in
this field you will always have a job. On a larger scale, the world needs a lot of AI experts
to open new frontiers and solve problems. Like a virus that spreads exponentially, the
taste for AI that is generated in each person will be a potential source of contagion for
many others, with the consequence of helping the development of this field.

Another important long-term goal we have is to implement the possibility of online
(multiplayer) play. This will allow us to implement our own Turing test. The Turing Test
is a method proposed by the British mathematician Alan Turing in 1950 to determine
whether a machine can demonstrate human intelligence. The basic idea is that if a
machine can carry on a conversation indistinguishable from that of a human, then that
machine can be considered to have artificial intelligence. At the end of a game the user
must answer the question "Have you played against a human?". The answers and their
result will be stored to generate data that may be useful in the future.

https://es.wikipedia.org/wiki/Prueba_de_Turing

4 Introduction

1.2.2 Specific Goals

“ To build a good wall, you should put one brick a day as best you can do it,
after 1 year you will have a wall formed by 365 bricks. It will probably be the
best wall in the world, and your effort to achieve it has been very little. “

To achieve the main objective explained in the previous section of this same chapter, we
established a series of more specific objectives.

• G1. Make a game easily accessible to everyone... How many people do you know
who don’t have a cell phone? That’s what I mean, the most effective way to make
a software product accessible today, is to make a smartphone application. So we
set as an important goal to develop the game for mobile devices, both Android
and iOS.

• G2. Make it easy to add new algorithms to the game. That is, to have a flexible
and scalable game.

• G3. Have bots that used the most advanced AI techniques as well as the most
complex ones that were able to challenge humans.

• G4. We wanted the user to be able to choose from all available algorithms.

• G5. To put into practice the knowledge acquired during the course of study.

In the Table 1.1 the related subjects to the project can be find.

Closely Related Subjects Related Subjects
Programming 1 Databases
Programming 2 Operating Systems
Networks and Multiplayer Systems Game Engines
Algorithms and Data Structures Mathematics I

Table 1.1: Subjects Related to the Project

1.3 Environment and Initial State

The initial project requirements were:

• The basic logic of the game had to be programmed in Python.

• The game had to be for mobile devices.

1.3. Environment and Initial State 5

As previously mentioned, this game is based on a preliminary version developed by
Alejandro Estaben (Programmer) and Cesar Diaz (Artist) for the CodinGame online
platform 2. The project was entirely developed in Java using the CodinGame SDK
3. The game does not feature a human mode and instead operates on a league system,
where the participating bots are pre-defined, resulting in limited flexibility and restricted
access to specific bots for certain segments of the public. Furthermore, the game was
not officially released for public use and could only be accessed through the provided
link. As a result, the game remained highly inaccessible to the general public.

At this point, we knew few things, among them that we had to:

• Make the core in Python: I was able to take advantage of some things from Ale-
jandro Estaben’s code but most of them had to be replaced to adapt them to the
project or because I thought it was appropriate to change them.

• Make the game for mobile devices.

• Allow the user to choose the bots that were going to play the game.

• Implement the human mode.

And left to my choice the rest decisions like the engine we were going to use to develop
the mobile app, the way to communicate the app with the game in Python, and all the
other less weighty decisions involving all the main tasks.

My initial decisions were different from the ones that have ended up being implemented
due to complications in the development of the initial ideas. Initially the idea was to
communicate the game and the app through a REST API, the game would store the
states in a database and a server would be in charge of extracting the data and sending
it to the clients, i.e., the mobile application, through http requests, would obtain the
game states. We also contemplated the idea of using Flutter to develop the client but
we ended up changing it for Unity since I know how to use it much better.

My way of organizing myself for this project was based on the use of Trello, here I
wrote down the tasks I had to do, the ones I was doing, the ones that were done, the
bugs and the decisions that were to be taken. Once a week Raul and I had a meeting
where he saw the status of the project and I presented him my doubts and decisions, he
gave me his opinion and clarified my ideas.

I have used GitHub as a code management and control tool.
2CodinGame, https://www.codingame.com/
3CodinGame SDK, https : / / www . codingame . com / contribute / view /

486222077fe22e3aa6bcdc0f729dd46223bb

https://www.codingame.com/
https://www.codingame.com/contribute/view/486222077fe22e3aa6bcdc0f729dd46223bb
https://www.codingame.com/contribute/view/486222077fe22e3aa6bcdc0f729dd46223bb

6 Introduction

1.4 Game Overview

TotalBotWar is a 1 vs 1, pseudo real-time, single-action game, partially inspired in the
real-time battles of the Total War games series. In our game, both players start with
the same number of military units and their objective is to defeat the other player. The
winner is the player who first destroys all the opponents units or the one with more units
alive on the battlefield when the maximum time is reached, which is set to 180 seconds
by default.

There are five different types of units: Swordsmen, Spearmen, Archers, Knights and
General. The game uses a rock-paper-scissors-lizard-spock 4 (see figure 1.1), swords beat
spears, spears beat horses and horses beat swords, in addition, there are 2 special units
that have other utilities, the archers who are weak in melee against all other units but
can attack at a distance and in area, and the general who is like a soldier with a sword
but also powers all units that are close, the powered units will have an extra in some of
its attributes: damage, range, defense, speed, resistances. . .

The directions in which the units collide and their movement (see Figure 4.3), if
your units are stationary and another unit collides with them from behind your units
will instantly suffer a lot of damage while the enemy will not suffer damage, we call
this "charge damage". The charge damage is only executed when the attacking unit is
moving, besides this damage a bonus is added depending on the side from which it hits,
if it hits from the front there will be no bonus but if it hits from behind there will be
a bonus. The damage done by this charge will not only depend on the direction bonus
and the type bonus, but also on the specific resistances of the affected person and the
damage per charge of the unit that executes it. These are the attributes that define the
damage per charge done and resisted by the units.

Each unit has an attribute vector modelling its behaviour. The attributes are Health
Points, Attacking Strength, Defence, Charge Power, Charge Resistance, Moving Speed
and defence against Arrows. Besides, archers also have Throwing Distance and Arrow
Damage. Table 1.2 shows the values assigned to each attribute for each unit type.

Units can move to any place of the battlefield. Two units from the same agent can
overlap, while they will fight if belonging to different armies. If an unit reaches the
limits of the battlefield, it stops. Archers always shoot arrows to enemy troops into the
attacking range. Troops suffer friendly-fire if they are close to an opponent unit receiving
arrows.

4The game ’Rock, Paper, Scissors, Lizard, Spock’ became popular due to its inclusion in the television
series ’The Big Bang Theory,’ created by Chuck Lorre and Bill Prady

1.4. Game Overview 7

Table 1.2: Attributes of Military Units

Attribute Swordsmen Spearmen Knight Archer
Health Points 250 250 200 100
Attacking Strength 20 15 12 10
Defense 10 20 12 5
Charge Power 5 10 100 5
Charge Resistance 25 125 15 0
Moving Speed 15 10 40 15
Defense against Arrows 10 30 30 10
Throwing Distance - - - 450
Arrow Damage - - - 20

The size of the battlefield depends on the size chosen by the user in the menu screen,
in this screen a series of predefined resolutions are given, in Table 1.3 you can consult a
table with some of these resolutions.

Table 1.3: Available Resolutions on TotalBotWar Game
Index Horizontal Size Vertical Size
1 1000 px 500 px
2 2000 px 1000 px
3 750 px 750 px
4 1500 px 1500 px

1.4.1 Main Characteristics

The main characteristics for game AI are as follows:

• It is a 1 vs 1 game.

• It is (pseudo) real-time. Although the game engine performs actions in the order
indicated in the turn, the effect of this order is practically negligible. Similarly,
the effect of which player performs first the actions is minimal.

• Not all information is known in the state. The state contains information about
the actual position of the enemy units and if they are moving or not, but it does
not provide information about the final target where they are moving.

• It is single-action since in the same turn just one action can be performer, one unit
can be assigned to just one destination.

• The agents have just 100ms to decide the actions to be executed on each the turn.

• It has a very large number of possible actions in a turn (≈ 6.7E7) and possible
states (≈ 3.3E29).

8 Introduction

Figure 1.1: Bonus Type Diagram

• Human mode is available, if you want to play in real time and manage the troops
yourself you can do it.

C
h

a
p

t
e

r

2
Planning and resources evaluation

Contents
2.1 Planning . 9
2.2 Resource Evaluation . 10

In this chapter we will focus on how to distribute the tasks as well as the time
dedicated to each one. In addition, we are going to make an analysis and evaluation of
the resources of the resources used for the elaboration of the project, both those that were
available at the beginning and those that have been obtained during the development of
the project. development.

2.1 Planning

For the preliminary planning of the project we used a Google Excel (presented in the
Game Design Document) in which the expected tasks and their cost were exposed.
Although the final result has been quite close, there have been some changes, both in the
tasks and in the time spent for their completion. For example, in the original plan some
tasks were shown as "DB setup", referring to the implementation of a database, which
was finally discarded and replaced by another communication methodology. Between
this method and the finally implemented one, other alternatives were tested which were
also discarded but were time consuming, these tasks are not shown in the table ?? but
are explained in the section 4.1 of this document. In addition, a gantt chart is also
presented where the time spent on that task in days can be consulted, as well as its start
relative to the other tasks in figure 2.2.

9

10 Planning and resources evaluation

Task Start Date End Date Status Aproximate hours employed Hours used

F
e
b
r
u
a
r
y

M
a
r
c
h

A
p
r
i
l

M
a
y

J
u
n
e

Documents 10.01.23 Open 40h about 10h

Technical Proposal 10.01.23 11.1.23 Finish 2h about 2h

GDD 14.02.23 27.02.23 Open 8h about 8h

Memory Pause 30h about

Basic Logic Pause 60h about

Base Game Pause 40h about

Actions Requesting Pause 5h about

Observation tools Pause 5h about

Bots Pause 10h about

Server Pause 50h about

Investigation Pause 10h about

Server Setup Pause 40h about

Database Pause 50h about

Investigation Pause 10h about

DB setup Pause 40h about

Unity Pause 60h about

Setup structure program Pause 20h about

Read GS Pause 20h about

Setup Units Pause 10h about

Setup Interface Pause 10h about

Art and design Pause 20h about

Sprites Pause 10h about

Animations Pause 10h about

Prepare presentation Pause 20h about

Fix bugs Pause 5h about

Prepare demostration Pause 10h about

Power Point Pause 5h about

Total Pause 300

Figure 2.1: Planning Table Start

2.2 Resource Evaluation

For this project we have only made use of free software tools such as:

• Pycharm: It is a Python IDE and was used to implement the base game logic
and part of the server.

• Anaconda: It is a package manager that was used in conjunction with Pycharm.

• VsCode: It is the IDE used to implement most of the server.

• Unity 2D: It is the videogame engine used to implement the client part.

• Trello: It is a task manager that has been used to plan tasks and manage personal
work.

• Github: It has been used to store and manage the code of the logical base of the
game as well as the server.

• Discord: It has been used to communicate with my TFG tutor Raúl Montoliu.

2.2. Resource Evaluation 11

Figure 2.2: Gantt Chart

As for the hardware tools needed I have only needed a computer, I have made use of
my personal laptop which has the following specifications:

• CPU: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx

– Maximum frequency: 2.1GHz
– Cores: 4
– Logical processors: 8

• RAM: 8,00 GB (6,94 GB usable)

• GPU: AMD Radeon(TM) Vega 8 Graphics (integrated)

C
h

a
p

t
e

r

3
System Analysis and Design

Contents
3.1 Requirement Analysis . 13
3.2 System Design . 17
3.3 System Architecture . 20
3.4 System Analysis . 21
3.5 Interface Design . 24
3.6 Videogame Art . 25

This chapter presents the requirements analysis, design and architecture of the pro-
posed work, as well as, where appropriate, its interface design. This chapter will present
the analysis of the system requirements, both functional and non-functional, and finally
their design. In addition, a more timid mention will be made for other sections with less
weight, such as the interface design and some artistic sections.

3.1 Requirement Analysis
All those system requirements, both functional and non-functional will be presented
superficially in the first two sections. After this, in the section 3.2 these functionalities
will be explained in more detail, even providing UML diagrams [19] to facilitate their
understanding.

3.1.1 Functional Requirements

This section will have little weight in this document due to the nature of the game. As
it is a bot game, player participation is very low, however, all aspects related to the

13

14 System Analysis and Design

functional requirements will be explained in great detail.

The proposed system should allow the user to choose which teams to engage as well as
be able to allow the user to choose which types of troops to use and assign their starting
positions.

To allow the user to choose which types of troops to use and assign their starting
positions, these functional requirements are shown in the tables 3.1 and 3.2.

In addition, the proposed system should be able to execute the actions of the Judges
when they play in human mode, i.e. control the units. The functional requirements of
selecting the desired unit and assigning a destination to it are shown in the tables 3.3
and 3.4.

Table 3.1: Functional requirement «SETUP1. Game Teams»

Input: A Pair of String
Output: Game with teams selected
The user can select the teams that will play the game in the menu window.
Here will be presented a series of checkboxes for each team where the user will
select one for each of them and the system will send the selections in String
form to the server to process them and create the pertinent game instance.

Table 3.2: Functional requirement «SETUP2. Units Positioning»

Input: JSON Object List
Output: Units positioned as desired
The user will have an intermediate state between the menu and the game where
he will be able to choose the type of unit he wants using buttons and then
position that unit on the battlefield by right clicking the mouse. The only
restrictions will be the maximum and minimum number of troops to position
and the obligation that one of them (maximum and minimum) is a general.

Table 3.3: Functional requirement «ACTION1. Unit Selection»

Input: Mouse left click position (Vector2)
Output: Unit selected attribute change
When a user is playing as a human, he can select units by clicking on them.

3.1. Requirement Analysis 15

Table 3.4: Functional requirement «ACTION2. Destination Setting»

Input: Mouse left click position (Vector2)
Output: Unit destination change
The user, after having selected a unit, can assign it a new destination by select-
ing a new position within the playing field with the left mouse click.

3.1.2 Non-functional Requirements

The system has to be secure, multi-user, scalable, efficient, readable and well docu-
mented. All these non-functional requirements are explained in more detail in the ta-
bles 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10.

Table 3.5: Non-Functional requirement «SECURITY1. Malicious Third-Party Person»

Requirement: Protecting user’s games
Although the security of this system is not critical because no sensitive data
can be leaked and no important user data can be lost, it is important to put
certain barriers in place to ensure that the user’s gaming experience is as good
as possible. These barriers are explained in the section 3.2.1

Table 3.6: Non-Functional requirement «SECURITY2. Career Conditions»

Requirement: Avoid server failures
It is very important to take this section into account. When a game request
is made to the server, the server searches for an available port and, after a
certain time, returns the information to the user so that he can connect. If
during this time, another process identifies that same port as free, before the
previous user has connected, there would be a connection error for the last user
trying to connect to the socket and, in addition, the connecting user could be
connecting to another user’s game, with a different configuration. To avoid this,
thread management techniques such as locks have been used. This technique is
explained in the section 3.2.1

16 System Analysis and Design

Table 3.7: Non-Functional requirement «MULTIUSER. Concurrent Programming»

Requirement: Allowing multiple simultaneous users to play the game
If the game were not running on the server, this section would not be necessary,
but since this is not the case, it has been necessary to develop a concurrent pro-
gramming technique to be able to technique to be able to run several instances
of the game at the same time. This technique is explained in the section 3.2.2

Table 3.8: Non-Functional requirement «DOCUMENTATION. Docstring»

Requirement: Facilitating the use of internal methods by users
As those who want to program bots for the game will need, firstly, a good un-
derstanding of the inner workings of the game logic and, secondly, to know the
methods offered by the game to calculate results, as well as the basic heuristics
provided by the administrators. It is necessary that all this is well documented
to facilitate understanding and search efficiency, this is achieved using Python
Docstrings[1] that allow us to document the classes, modules and methods to
subsequently automate the extraction of these in a single well-structured and
organized pdf document. This technique is explained in more detail in sec-
tion 3.2.3

Table 3.9: Non-Functional requirement «READABILITY1. Clean Code»

Requirement: Facilitate understanding of the code for users and administra-
tors

In order to facilitate the understanding of the code, both for administrators
and users, a design guideline extracted from the book Clean Code [12] has been
followed. This design pattern is explained in more detail in section 3.2.4.

Table 3.10: Non-Functional requirement «READABILITY2. PEP 8 Python»

Requirement: Facilitate understanding of the code for users and administra-
tors

Another design pattern that has been followed for the realization of the project
has been to follow Python’s PEP 8, this is a style guide that establishes conven-
tions for the syntax when writing Python code. This style guide is explained in
more detail in section 3.2.4.

3.2. System Design 17

3.2 System Design
This section proceeds to explain in more detail some of the requirements presented in
the previous sections. The section is divided into the different types: Security 3.2.1,
Multi-user 3.2.2, Documentation 3.2.3 and Readability 3.2.4. In addition to a detailed
explanation of each system, UML diagrams [19] are provided in some sections to support
the text.

3.2.1 Security

In this project, security has been partially necessary to protect the user’s games as well
as the integrity of the server. Since users are not only authenticated at the moment of
accessing the server but also at the moment of connecting to the socket that allows them
to obtain the game states. This is called double-entry security system, since our system
is composed of two marked phases that have to be protected independently. In addition,
security measures have also been added to avoid certain errors within the system, as we
have mentioned above, it has been necessary to use locks to prevent previously occupied
ports from being assigned.

Malicious Third-Party Attack

As we have explained above, it is necessary to protect our server endpoint from creating
instances of the game for anyone accessing it. We have achieved this by parsing the
HTTP request headers received from the client. The server will only accept requests
that have a specific header with a specific value, these values can only be obtained from
the source code of one of the parties to maintain the confidentiality of these, in addition,
to prevent anyone from analyzing the source code of the application we have applied an
obfuscation technique in the client code.

On the other hand it is also necessary to protect the socket in which the game instance
is connected, since it remains listening waiting for the client connection and anyone
could access it if we do not put a barrier. The solution to this problem is to provide the
client with an identifier, this identifier is generated by a Python library called uuid that
generates Universal Unique Identifiers [25], the client must forward this information
to the socket, the socket will only accept the connection if the id matches the id of the
client that is waiting. The socket will wait for 10 seconds for the connection, if there is
no valid connection during this time, the game will terminate and release the socket. A
summary of what happens in the system can be seen in Fig. 3.1.

Career Conditions

To implement the server we used the Python library called Flask [17], after some testing
and research, we determined that Flask uses threads 1 to handle multiple requests at

1It is important to keep in mind that in Python threads work asynchronously and not in parallel.

18 System Analysis and Design

Figure 3.1: Authentication and Career Conditions Security

the same time (asynchronous). This gave rise to a possible error, and that is that if two
requests are handled at the same time two clients can be assigned the same port with
the errors that this would trigger. To prevent this from happening we have chosen to
use locks (see Figure 3.1), so a thread is blocked until the previous thread has connected
to the socket, thus avoiding this problem.

3.2.2 Multi-User

When the execution of the logic and rendering of a game falls entirely on the client
side, making a multi-user application is trivial. But in the case of cloud gaming [26],
where the game is executed on a remote server, this becomes a problem to be solved
since the server has to create independent instances of the game for each user. The
implemented solution goes through the concurrent programming. The server, at the
time of assigning a free port, creates a new process that receives the port to which it has
to connect and, once connected, sends, through a pipe, a message to the parent (server)

3.2. System Design 19

Figure 3.2: Use of Pipelines for parent-child Communication

so that it can release the lock and give way to the next request. In Figure 3.1 this step
has been omitted so as not to overload the diagram, but in Figure 3.2 a modified diagram
to see this communication between processes can be seen.

3.2.3 Documentation

The Python docstring [20] has been used for code documentation. The docstring is a
Python documentation string used to describe the purpose and functionality of a module,
class, function or method. Subsequently, you can make use of a Python library such as
Pdoc [1]. It is a library that allows you to generate Python documentation in various
formats, including PDF.

20 System Analysis and Design

3.2.4 Readability

To improve the readability of the project, the Python style guide PEP8 [21] has been
followed in conjunction with rules from the book Clean Code by Martin, Robert C. [12].

3.3 System Architecture

As the heaviest load of the game falls on the server, the client will only have to process
a light load related to communication and graphics renderization.

3.3.1 Hardware Requirements

As for the hardware required for graphics rendering and communication with the server,
a low-end cell phone will suffice.

Minimum requirements

• Operating system: Android 5.0 or higher, iOS 9.0 or higher.

• Processor: 1.4 GHz quad-core processor or higher.

• RAM memory: 2 GB or more.

• Storage: At least 100 MB of storage available for game installation.

• Graphics card: Support for OpenGL ES 2.0 or higher.

Recommended requirements

• Operating system: Android 7.0 or higher, iOS 12.0 or higher.

• Processor: Eight-core processor at 2.2 GHz or higher.

• RAM memory: 4 GB or more.

• Storage: At least 500 MB of available storage for game installation.

• Graphics card: Support for OpenGL ES 3.2 or higher.

3.3.2 Other Requirements

On this kind of game, as the vast majority of the computational load falls on the server,
the important thing is to maintain a good quality of communication. That is why
it is important that the client has a good internet connection, broadband and stable
connection.

3.4. System Analysis 21

Internet Requirements

• Minimum download speed: 10Mbps

• Minimum upload speed: 5Mbps

• Connection stability: Very stable

3.4 System Analysis

3.4.1 Action Space

On each turn, the current player can provide an action for one of their units. An action
consists of assign a unit a particular destination defined by a vector of 2 coordinates (x
and y), and the movement normally takes several turns to be completed. If, in a turn,
the player does not indicate an action for a particular unit, it continues the movement
following the previous action performed on this unit.

An action has the following format: “ID δx δy" where:

• ID is the unique ID of the unit.

• δx is the x-coordinate where we want the unit to be directed to.

• δy is the y-coordinate where we want the unit to be directed to.

For instance, some actions that can be played are:

• Action(1, 100, 50): Unit with ID 1 will move to position v = (100, 50).

• Action(3, 800, 0): Unit with ID 3 will move to position v = (800, 0).

• Action(5, 0, 0): Unit with ID 5 will move to to position v = (0, 0).

Notice that if destination position is equal to unit position it will stop.

In each turn the agent will be able to execute only 1 action, this action is created by
a class designed for this purpose, this class has a constructor that receives (ID, δx, δy)
as an example would be: return Action(0, 500, 500), this indicates that unit with ID 0
must go to position (500, 500).

3.4.2 State Representation

The system provides information about the player and opponents units. First, the game
indicates the total number of units for each player’s army. Then, the system provides
the following information for each one of the player and opponent’s units:

• ID: Unique ID of the unit.

22 System Analysis and Design

• Location: (x, y) vector indicating the actual position of the unit on the battlefield.

• Direction: (x, y) normalized vector.

• Life: Amount of health points (See Table 1.2). The unit is dead when its life
reaches 0.

• Type: Unit type for swordsmen ("SWORD"), spearmen ("SPEAR"), knight ("KNIGHT"),
general ("GENERAL") and archers ("ARCHER").

• Moving: Indicates if the unit is moving (1) or not (0).

• Destination: (x, y) vector indicating where the unit is going to stop, only for
friendly units (for opponent units, random destination is provided).

Therefore, the state has 1 + 9n + 7n elements, where n is the number of units for
each player’s army.

3.4.3 Game Complexity

The number of possible actions that can be played on each turn is huge, due to the large
battlefield size (1000 × 500). One possibility to handle its complexity is to artificially
reduce the places where the units can be moved. According to the size of the units, we
suggest defining two grids, the first one of 7 × 4 (1000/150 ≈ 7, 500/150 ≈ 4) and the
second one of 14 × 8 (1000/75 ≈ 26, 500/75 ≈ 8). Note that the units can always be
moved to any place on the battlefield. The use of the grid is just for reducing the com-
plexity of the game. It is suggested to be used in the first stages of the implementation
of the agent or for beginners. The number of possible actions where W × H is the size
of the battlefield and n is the number of units is determined by the formula:

n × (W × H) (3.1)

On Table 3.11, you can see an example with 8 units for different battlefield sizes.

Table 3.11: Number of possible actions for 8 units depending on the battlefield size.

Battlefield size # Actions
1000 × 500 4 × 106

14 × 8 8.96 × 102

7 × 4 2.24 × 102

3.4.4 Baseline Agents

The positioning of the units is up to the player, who must always choose the armies to
be used and in which positions they will start. However, in order to speed up the work,
a series of pre-established training courses are provided.

3.4. System Analysis 23

1. StayStatic (SS): This agent does not execute any action, it only keeps the troops
in the same place during the whole time. This agent is mostly used to test with
other agents and see how they behave against this behavior.

2. AlwaysForward (AF): This agent makes his units always advance towards the front,
if they reach the end of the battlefield they turn around and go straight to the
opposite side.

3. Random (RND): In each turn this agent selects a random unit that does not have a
fixed destination and sets a random destination among all the possible ones. This
is the ideal agent when you want to test a new algorithm because the different
movement patterns it can offer are infinite.

4. One Step Looking Ahead (OSLA): The One Step Looking Ahead (OSLA) agent is
designed to simulate future steps in a game, selecting actions that lead to optimal
results. In order to achieve this behavior in complex games with a multitude of
possibilities, it is crucial to employ advanced tools and techniques. One funda-
mental aspect involves evaluating and comparing different game states, which is
accomplished through the use of heuristics. Although our implementation utilizes
a simple heuristic that yields satisfactory results, more sophisticated heuristics
could be developed to further enhance performance.

The heuristic employed by OSLA is based on a straightforward approach of
summing the health of allied troops while subtracting the health of enemy troops.
The resulting value represents the overall state evaluation.

To handle the enormous number of potential actions, which can reach up to
1.66 × 107, a reduction strategy was employed. By limiting the number of actions
tested for each unit to just eight, the total number of possible actions was reduced
to n × 8, where n represents the number of units. These actions involve movement
in the four main cardinal directions (north, south, east, and west) as well as their
combinations (northeast, northwest, southeast, and southwest), with the distance
being a variable factor.

Furthermore, to simulate forward steps effectively, a modified loop was developed
to supplement the main game loop, known as "step" (refer to Figures 4.2 and 4.4
for a visual representation). This modified loop, referred to as "pseudo step,"
operates independently of time dependencies. The original loop normally adjusts
unit movement based on the time elapsed since the last frame (δ time). However,
to maximize the simulation of frames within the limited decision-making time of
100 ms for the agents, the pseudo step loop omits such time normalization. Its
purpose is to progress the state by a specified number of frames and provide the
corresponding outcome.

24 System Analysis and Design

Figure 3.3: TotalBotWar Menu Interface

Figure 3.4: TotalBotWar Positioning State Interface

By employing the OSLA agent and implementing these techniques, the ability to
project future game states accurately is greatly enhanced, enabling more informed
and effective decision-making.

3.5 Interface Design

As this project has focused on the programmatic and engineering part, the interface
design has been left in the background. For the game interface we have used basic
assets from the Unity UI package and assets from the Final Degree Project of the former
student Alejandro Estaben [4]. In the Figures 3.3, 3.4 and 3.5 interfaces in the 3 available
stages of the game have been shown.

3.6. Videogame Art 25

Figure 3.5: TotalBotWar Battle RND vs OSLA

Figure 3.6: Knight Running Animation

Figure 3.7: Archers Attacking Animation

3.6 Videogame Art
As mentioned previously, we have made the decision to reuse the sprites created by
César Díaz, a former student of the program, for Alejandro Estaben’s TotalBotWar
project. We acknowledge that this choice was influenced by time constraints and a lack
of available resources.Images of some units can be seen at Figures 3.7, 3.6 and 3.8. And
the images of the 3 available backgrounds at this moment can be seen at 3.9, 3.10 and
3.11.

26 System Analysis and Design

Figure 3.8: Swordsmen Death Animation

Figure 3.9: Background N.1

3.6. Videogame Art 27

Figure 3.10: Background N.2

Figure 3.11: Background N.3

C
h

a
p

t
e

r

4
Work Development and Results

Contents
4.1 Work Development . 29
4.2 Results . 38

Throughout the development of the project, several setbacks were encountered that
required making decisions and adjusting certain aspects. Initially, a specific technology
was planned for the project, but further research and unexpected issues revealed that
it was not the most suitable choice. This necessitated a reevaluation of the approach
and a decision to switch to a different technology. Additionally, unforeseen technical
challenges arose during development, which required seeking alternative solutions and
adjusting the approach to address them. Despite the difficulties faced, these setbacks
fostered greater creativity and the discovery of more innovative solutions to achieve the
project’s goals. In the following section 4.1, the initial plans, encountered setbacks, and
the chosen alternative will be discussed.

4.1 Work Development

The following is an outline of the work done in chronological order. As expected, during
the course of the project, there have been problems to face and many decisions to make.
We have had to make alternatives to the initial plan in order to move the work forward
but, after much effort and time, we have achieved our goal.

29

30 Work Development and Results

4.1.1 Initial Conception

The first settled and realistic idea that settled in our heads was to build a Python
server that would be in charge of creating instances of the game for each client. To these
instances we would create an entry in a relational database locally where the game states
would be stored. Likewise, the server would work as a REST API that by means of a
player’s identifier would access the area of the database corresponding to the player’s
game and extract the desired states, send them to the client and the client would render
them on screen.

4.1.2 Game Core

The initial phase of the project involved programming the foundational logic of the
game using Python. To visualize the progress of the project, we required a user-friendly
graphical interface. Therefore, we opted for the pygame library [23], which is a Python
library providing tools for utilizing 2D graphical resources and allowed us to preview the
game.

To begin, we focused on implementing the essential classes that would serve as building
blocks for the rest of the development. Among these, the Vector class played a crucial
role. In this class, I partially implemented vector functionalities, such as vector normal-
ization, calculating vector magnitude, determining the distance and direction between
two points, scalar product calculation, angle measurement between vectors, and more. . .

Once the foundational classes were in place, we proceeded with the main classes,
starting with the units. Initially, we created a generic class, Unit, which served as
an abstract class for the rest of the unit types. It included general attributes like life,
direction, position, ID, target, and so on, along with methods for movement, rotation, life
reduction, attack boosts, attacking, and more. Subsequently, we implemented subclasses
for each specific unit type, such as Archer, Sword, Spear, Knight, and General.

With the unit classes established, we could move on to implementing the main game
loop. This loop was responsible for deploying troops and moving them in each iteration.
The graphical representation of this loop is divided into parts shown in Figures: 4.2, 4.3,
and 4.4.

In this phase it was necessary to start with the actions, the actions are objects of the
Action class, this class is characterized by determining a unit and the location where it
should go. We implemented the player class that has a method called think and returns
an Action, so each iteration of the game will call this method of the players and will pass
them a copy of the game state called Observation, the players must read this Observation
and generate an Action for the game to execute it. So we implement a variation of the
basic Player, the RandomPlayer (see RND), this player generates a random Action,

4.1. Work Development 31

chooses a random unit and assigns a random position on the map. Facing two of these
bots we could start implementing the rest of the mechanics.

The main mechanics to be implemented were collisions and charges (see Figure 4.3),
i.e., every time two units collided the angle of impact was taken into account as well
as the types of troops, since the game follows basic rock-paper-scissors (see Figure 1.1)
style rules, horses beat swords, swords beat spears and spears beat horses.

After this, a bot still basic but more complex than the previous ones, the OSLA (see
OSLA), was implemented. This bot is characterized by evaluating a certain number of
actions and choosing the one that gives the best result in the short term. For this it was
necessary to implement a basic heuristic that was based on the number of accumulated
life of each team and in addition, we had to implement simulation mechanics that allowed
us to simulate a given number of frames to be able to predict in a certain way the future
of an action, since a single frame did not give any information. With all this we managed
to implement a bot called OSLAPlayer that seems to make logical decisions and always
beats RandomPlayer.

With all this working we could finish the first stage of the project and move on to the
implementation of the database and the server.

4.1.3 Server

As the main idea was to implement a REST API to return information from a database,
a server was built with Flask that had several endpoints to extract information according
to the client’s needs. One of the endpoints was designed to return all the information
from the database while another was designed to return only the last stored state, the
information was always returned in JSON format.

4.1.4 Database

The next step was to implement a database to store the game states in it. We decided to
use a relational database using SQLite with a single table, so we did not need an ORM1.
Each row corresponded to a state and the columns of this table were:

• ids: "0 1 2 3 4. . . "

• teams: "0 0 0 0. . . "

• healths: "200 100 0 65 23.4. . . "

• types: "SWORD ARCHER ARCHER KNIGHT GENERAL. . . "
1An ORM (Object-Relational Mapping) is a programming technique that allows developers to in-

teract with a relational database using object-oriented paradigms. It acts as a bridge between the
application code and the database, abstracting the underlying database operations.

32 Work Development and Results

• states: "IDLE MOVING ATTACKING. . . "

• positions: "(0,0) (254,865). . . "

• directions: "(0,1) (0.45, 0.55). . . "

In each column was the value of all units in string format separated by spaces, so when
mapping it on an object we can easily separate the values of the strings.

4.1.5 Unity

On the client side we needed to make an http request from unity to the server and, after
receiving the response, format the text strings separating them by spaces and finally
map these results to objects. Once this was done, we could start with prefabs instances
with the information of these objects, for example:

• Item 1

– id = 0
– team = 0
– health = 100
– type = "knight"
– state = "idle"
– position = (0) 0
– direction = (1) 0

With this object we can instantiate a knight prefab for device 0 with id 0, at position
(0,0) with address (1, 0) and idle state.

It should be noted that all these procedures are done by using coroutines asyn-
chronously to ensure that the result is available before executing another method that
will use that information. For example, network access is done asynchronously and a
listener is set up and executed when the http request is finished.

Problems and Alternatives

Everything was flowing correctly until the database was implemented and a perfor-
mance test was done, the operation was mechanically correct, everything worked, the
game ran, the database was updated and the client could render the game but, the
performance was not good enough. The game initially (before including the database)
was running at 90-100 fps while now, with the database built in, it was running at 15-20
fps. I made an exhaustive analysis of the problem and determined that the problem was
to insert the states 1 by 1, since the insertions consumed approximately 50 milliseconds
so that in 1 second only gave time to perform approximately 20. Different options were

4.1. Work Development 33

considered such as inserting packages of several states, but, it was not viable since the
reading should be in real time since the user should be able to interact with the game
since the mechanics was implemented to play in human mode. Another option was to
change the database to a non-relational database, based on documents that stored json.
After some research we determined that this could be a viable option since this type of
databases show 2 advantages over the classic SQL databases:

1. Scheme flexibility: the documents or json of a nosql database do not need to
maintain a fixed structure, this comes in handy in this case because there are data
that we only need once at the beginning of the game as for example, the type of
the troop.

2. Velocity: NoSQL databases are generally faster than SQL databases for bulk
reads and writes due to their horizontal distribution and the elimination of the
need to join tables.

In addition my tutor, Raul Montoliu, proposed to use a Google service called Firebase
Database [6] for this purpose. Firebase offers a real-time database in the cloud, which
allows developers to store and synchronize real-time data between clients in real time.
So I set out to implement this alternative.

4.1.6 Firebase Database

First it was necessary to investigate the possibilities offered by this Google service. After
determining how to register the application in the platform and adding the firebase sdk
in the application we proceeded to find a way to authenticate our users so that no one
else could access the database without permission. The alternative to this was to use
an authentication method built into firebase called AppCheck, but after some research
we realized that to this day (May 22, 2023) AppCheck is not compatible with Unity.
So the alternative to this was to use our server as an intermediary, instead of letting
the users interact with the database we would first make the clients have to identify
themselves to our server using a custom header as explained in the 3.2.1 section. This is
quite secure since the server is the only one that can directly access the database thanks
to the credential system used by Firebase. In addition, only the clients that have access
to the custom header could access our server and could only execute the operations that
it offers on the database.

Problems and Alternatives

After some time of work dealing with the functionality and tools offered by Firebase,
as well as its limitations, I finished the implementation of the database in Firebase and
everything worked correctly, but the same problem returned, although even more serious.
Now the game was running at 2 fps. This was because now, as the database was in the
cloud, the insertion was even slower. We had to look for an alternative that did not
involve the use of databases because it had already been demonstrated that they were
useless for streaming gameplay.

34 Work Development and Results

The new idea was to use sockets, the server will create child processes that will connect
to available sockets and listen for a client connection. When the client connects the game
will start in the child process that will send the game states over the socket. This ended
up being the correct option, we will now proceed to explain its implementation in detail.

4.1.7 Socket Implementation

For the implementation of this methodology it was necessary to adapt both the client
side and the server side, as well as the main program of the game.

Server

First it was necessary to implement a search algorithm for free ports. This was achieved
by a simple loop that goes through all available ports and tries to connect a socket to
each one, when it is able to connect a socket to a port this means that port is free so it
has done its job.

Flask [17] works asynchronously to handle multiple requests in parallel. This can
lead to race conditions when assigning available ports to clients, to the point where the
same port is assigned to different clients, leading to obvious problems. The procedure to
solve this problem has already been explained in the section 3.2.1 on career conditions
security.

The next challenge was to generate child processes that connect to a given socket, for
this purpose we made use of the subprocess library [5], it is a tool to work with external
processes from a Python program. It allows to start a process in the operating system
and control it from Python. With this tool, the creation of the child processes as well
as the communication through pipes has been carried out. The pipes have been used to
transmit a message from the child to the parent, when the child has been able to connect
to the socket it sends a success message to the parent so that it unblocks and moves on
to the next request, otherwise the child sends an error message and cuts the execution
of the game.

Once we had defined the mechanism for creating processes and assigning them a
socket, we needed to define the communication protocol that the socket would use to
communicate with the client. Two options were presented:

• UDP: This is a connectionless transport protocol, i.e. messages are sent as data-
grams over the socket without knowing if there is anyone listening on the other
side. If the message is not intercepted by anyone, it is lost. Despite its unrelia-
bility, it is very useful in cases where transfer speed is more important than data
integrity.

4.1. Work Development 35

• TCP: This is a transport protocol with connection, that is, two processes have to
be connected at both ends of the socket sending and receiving data consecutively,
the receipt of a message is the sending signal for the next one. This protocol, al-
though slower than UDP, ensures data integrity (reception order) and data arrival.

First of all, we thought that the UDP protocol would be the most appropriate because
in cloud gaming [26], speed prevails over integrity, i.e. information losses are not critical,
so certain losses could be tolerated as long as the transfer speed improves. In fact, an
implementation of this method was made, but soon after we decided to change it to TCP
protocol, since we forgot to take into account the other side of the coin. Data goes from
the server to the client in the form of states (frames) but it also goes from the client to
the server in the form of inputs to be processed by the server. In this case the integrity of
the data is important because we can not allow the system to be unresponsive, since one
of the most important things in video games is to give the user the feeling that he has
total control over what happens, also the order of processing of inputs is also important
because it is what differentiates between selection of troops and destinations, with the
first click units are selected and with the second one destinations are assigned.

After determining the communication protocol it was necessary to determine a system
to protect the socket from unwanted clients, since although the endpoint was protected
by a custom header, the socket had no protection and, in the time interval from when a
client makes a request to the server and receives the response, until it connects, another
process could connect to the socket waiting to start the game. The mechanism used
for this purpose is the one explained in the second paragraph of the section 3.2.1 on
third-party attacks.

A real game state sent by server in JSON format can be seen at A.0.2.

36 Work Development and Results

Figure 4.1: Main Loop Abstract

Figure 4.2: Game Step 1/2

4.1. Work Development 37

Figure 4.3: Manage Intersection

Figure 4.4: Game Step 2/2

38 Work Development and Results

Figure 4.5: Update of Data and Rendering Loop

4.2 Results
In general we are very happy with the results, we believe that we have achieved all the
proposed objectives and we are satisfied with the result, although it is true that there is
still a lot of development to be done to reach the final goal. I think I have left a good
base to start working with, it is going to be a very good starting point for other people
to continue with the development of this and we think that this project has a lot of real
potential. We think this is going to be a very good platform to develop agents and learn
in the process. In the Figures 4.6 and 4.7 a 2 different game can be seen. Also at Figures
4.8 and 4.9 the server and the game can be seen working at the same time. In case you
have not read it in section 1, I will link you again to the available videos. I encourage
you to watch them.

⋄ Video: TotalBotWar - Human vs OSLA

⋄ Video: TotalBotWar - Random vs OSLA

⋄ Video: TotalBotWar - DEBUG

4.2.1 Goals Achieved

This section focuses on the objectives achieved within the scope of this undergraduate
project. Throughout the development of this work, a set of objectives was established

https://drive.google.com/file/d/1W1YzAJH4UnjDWk1x96z19mv-fsRVFuL2/view?usp=share_link
https://drive.google.com/file/d/1STErIov2kHeSvu4ANEIikAY8vGbmcd8b/view?usp=share_link
https://drive.google.com/file/d/1M6DxpxeP8MspZcNOzk3Gb7IVkdiTqTxr/view?usp=share_link

4.2. Results 39

Figure 4.6: Random vs OSLA Ingame Background N.2

Figure 4.7: Random vs OSLA Ingame Background N.3

(see Section 1.2) to address and overcome the challenges at hand. In this section, the
initial objectives will be presented and a detailed discussion on how they have been
achieved will be provided, offering a clear overview of the progress made and the results
obtained.

While the results will be described in this section, it is important to note that detailed
technical aspects will not be included. To avoid unnecessary repetition and maintain a
concise approach, specific technical details will be addressed in the corresponding sections
of the document where methods, techniques, and analyses are thoroughly explained.
References to these sections will be made to guide readers to where they can find more
detailed information on the technical aspects.

By adopting this approach, we aim to provide a clear overall understanding of the ac-
complishments in relation to the set objectives while also encouraging interested readers

40 Work Development and Results

Figure 4.8: Server and Game Working While Positioning

to consult the relevant sections for a more in-depth and technical comprehension of the
specific processes and outcomes.

⋄ G1: As observed throughout the document, the game has been made accessible
for mobile devices. Through the implementation of the server (see Subsec. 4.1.3)
and the TCP socket (see Subsec. 4.1.7), the game is now capable of running on
mobile devices with minimal computational burden. This achievement maintains
the feasibility of all other goals. However, it is important to note that the Cloud
Gaming derived structure implemented in the project has imposed constraints on
fully meeting this objective without compromising others.

⋄ G2: An architecture has been implemented that leverages the game’s central server
to directly load algorithms, eliminating the need for users to download updates.
The server acts as a REST API, notifying the client about available bots. The
client interface has been designed with flexibility in mind, displaying the bots on
the screen and providing checkboxes for selection.

Additionally, an endpoint has been automated to retrieve the names of avail-
able bots by formatting the file names in the "Players" folder. This automation
eliminates the need for additional time investment. For security reasons, a per-
sonal review of user-uploaded bots has been implemented, following a more austere
methodology. Once the code review is completed, the process of uploading a bot
is as simple as dragging and dropping a file (or folder) onto the server.

In summary, this approach ensures efficiency and security in managing user bots
within the game. It removes the requirement for users to download updates and
provides a seamless process for selecting and uploading bots.

⋄ G3: As of the time of writing this document, the most advanced implemented
bot is OSLA (see OSLA). Despite being a relatively simple agent, it consistently

4.2. Results 41

delivers impressive results and poses a considerable challenge. However, the true
significance lies in the opportunity to develop more sophisticated bots. The game’s
core has been entirely developed in Python, making it the recommended language
for programming these agents. Python stands out as the language with the greatest
potential for artificial intelligence, thanks to the extensive range of high-quality
libraries it provides for this purpose. Some of the notable libraries for AI in Python
include:

– TensorFlow

– PyTorch

– OpenCV

– Gensim

– SciPy

These libraries offer a wide range of functionalities, such as machine learning, deep
learning, natural language processing, computer vision, and scientific computing,
empowering developers to explore and implement advanced AI techniques in their
projects.

⋄ G4: As we have explained in section G2 above, the implementation of the server
and the flexibility that this offers us has also allowed us, collaterally, to meet
this objective. Since, when the game is started, the client asks the server for a
list of all the available bots, so it can choose among all of them. Once chosen, it
communicates with the server and sends 2 strings with the identifier bot0 and bot1,
so the game can be configured so that these are the bots that play the game. In
both figures 3.1 and 3.2 you can see how the client sends the relevant information
to the server to configure the game parameters.

⋄ G5: In any professional endeavor, the pursuit of learning should be a central objec-
tive, and this project is no exception. I take great pride in the accomplishments we
have achieved thus far. The challenges and obstacles we encountered along the way
provided valuable opportunities for growth, problem-solving, and personal devel-
opment. Through this journey, my passion for programming and system design has
deepened significantly. Moreover, I have acquired a wealth of knowledge spanning
diverse subjects, including Servers (4.1.3), Networking, Python (4.1.2), C#, Unity
(4.1.5), GitHub, Concurrent Programming, Cybersecurity (3.2.1), REST APIs,
Databases (4.1.4), SQL, JSON, Firebase (4.1.6), and more. Embracing these mul-
tifaceted areas of study has not only broadened my skillset, but also enhanced my
understanding and expertise in various aspects of technology and software devel-
opment.

42 Work Development and Results

Figure 4.9: Server and Game Working While Battle

4.2.2 Comparison between Planning and Final Work Accomplished

When we started this project, we knew it was very ambitious. It has been a task that
involves many areas of development and has presented numerous challenges that have
allowed us to grow but have also consumed a lot of time. Despite being generous in our
project planning (see Fig. 2.1), the time spent has exceeded the estimated time (see Fig.
4.10).

4.2.3 Applications of the Work Performed

The project at date May 22, 2023, is fully playable and functional. However, it is
currently not playable on mobile phones, and we need to host the server and adapt
the client to access the server’s IP on the new host before putting it on the app store.
Additionally, we would like to improve the graphics and add some extra functionalities,
as well as incorporate new bots before making it public. Once these tasks are completed,
the game can be applied for real algorithmic AI learning purposes, as well as for testing
and research in this vast field, as mentioned in Section 1.2.

4.2. Results 43

Tasks Start Date Days Employed End Date Status Aproximate hours employed Hours used F
e
b
r
u
a
r
y

M
a
r
c
h

A
p
r
i
l

M
a
y

Documents 10.01.23 115 05.05.23 Open 40h about 40h

Technical Proposal 10.01.23 1 11.1.23 Finish 2h about 2h

GDD 14.02.23 13 27.02.23 Finish 8h about 8h

Memory 20.02.23 74 05.05.23 Open 30h about 30h

Basic Logic 01.03.23 22 23.03.23 Finish 60h about 77h

Base Game 01.03.23 3 04.03.23 Finish 40h about 30h

Actions Requesting 05.03.23 6 11.03.23 Finish 5h about 7h

Observation tools 12.03.23 5 17.03.23 Finish 5h about 20h

Bots 18.03.23 5 23.03.23 Finish 10h about 20h

Server 15.03.23 31 15.04.23 Finish 50h about 40h

Investigation 15.03.23 7 22.03.23 Finish 10h about 10h

Server Setup 23.03.23 23 15.04.23 Finish 40h about 30h

Socket 20.03.23 14 03.04.23 Finish 55h about 38h

Investigation 20.03.23 5 25.03.23 Finish 20h about 10h

Connection 25.03.23 7 01.04.23 Finish 5h about 3h

Send and Receive 01.04.23 1 02.04.23 Finish 20h about 15h

Reading 02.04.23 0 02.04.23 Finish 5h about 5h

Writing 02.04.23 1 03.04.23 Finish 5h about 5h

Unity 03.03.23 39 11.04.23 Finish 85h about 128h

Setup Game Structure 03.03.23 3 06.03.23 Finish 20h about 40h

Read GS 01.04.23 1 02.04.23 Finish 20h about 15h

Final Scene 29.03.23 3 01.04.23 Finish 5h about 10h

Setup Units 03.04.23 1 04.04.23 Finish 10h about 20h

Implement Animations 04.04.23 0 04.04.23 Finish 5h about 3h

Menu Scene 24.03.23 2 26.03.23 Finish 5h about 10h

Initial Positions 04.04.23 7 11.04.23 Finish 20h about 30h

Prepare presentation 30.12.99 0 30.12.99 Pause 20h about 0h

Fix bugs 0 Pause 5h about 0h

Prepare demostration 0 Pause 10h about 0h

Power Point 0 Pause 5h about 0h

Total 0 310 323h

Figure 4.10: Planning Table Finish

C
h

a
p

t
e

r

5
Conclusions and Future Work

Contents
5.1 Conclusions . 45
5.2 Future work . 46

After many months of development, the first functional version of the project has
been obtained and with it many lessons and skills acquired during the development. In
the following sections I will comment my personal opinion about what this project has
given me and can give me as well as what I have in mind to implement in the future,
either by myself or by other students who adopt this project.

5.1 Conclusions

With regard to the project, all the objectives established at the outset have been met.
This project has helped me learn many new things, including how to manage large
projects and how to organize myself. I have learned that it is very important to have
a very clear idea of the project and that it is worth spending more time designing the
system before starting to work, although it seems that you lose time it ends up being
the opposite. I have also learned that it is worth spending time to have a clean and
structured code, this ends up saving a lot of time when the project is growing and leaves
the door open to grow the project in the future.

Personally, I believe that what this project has given me will give me a lot of freedom
from now on to carry out new projects on my own. I feel able to find solutions to many
of the problems that I face every day and I am eager to put all this knowledge into

45

46 Conclusions and Future Work

practice. I am very happy because I feel capable of developing very interesting projects
as well as contributing to other people’s projects. Thanks to this I see myself able to
perform much better in the professional world from now on.

This knowledge not only helps me to solve problems but also to have more and better
ideas. I am now much more aware of what can be achieved with the right tools and how
to overcome adversity.

5.2 Future work
We have many ideas to implement in the future:

⋄ Graphics: We want to create our own custom sprites tailored for the game. Due
to time constraints, we had to use graphics created by César Díaz for the previous
version of TotalBotWar. Since they were not designed specifically for this imple-
mentation, they don’t fully meet our needs. Therefore, we would like to create our
own sprites from scratch, taking into account our specific requirements.

For example, since the sprite sizes are determined at runtime due to the flexible
nature of the game, all animations should have the same proportions. Currently,
if one animation has a 1:1 ratio while another has a 2:1 ratio, resizing the sprite
to fit the first animation causes distortion in the second one. Although additional
checks could be implemented to adjust the proportions depending on the active
animation, this would require considerable effort for a minor issue. The correct
solution would be to create new artwork that addresses this problem appropriately.

⋄ Multiplayer: Currently, the game can only be played locally in human vs bot or
bot vs bot modes. It is also possible to play human vs human, but it would require
local play where the same user controls both teams. In the future, we aim to
develop a multiplayer option that would allow two humans to play against each
other from different geographical locations.

⋄ Turing Test: We want to develop our own Turing test, building upon the previous
objective. If the game allows playing with other people, we could create a game
mode where players are unaware whether they are playing against another person
or a human-controlled AI player. At the end of the game, we would present a form
to the player asking them to indicate whether they believe they played against a
human or an AI-controlled agent. This information would be stored in a database
to draw conclusions in the future.

⋄ Other Platforms: We would like to develop the game for other platforms, primar-
ily for computers, but we are also considering the possibility of developing it for
consoles. This is to reach as many people as possible and fulfill one of our main
objectives (see G1).

5.2. Future work 47

⋄ More Agents: We would like to have many more bots available in this video game.
While we will develop some additional bots ourselves, the main idea is to encourage
game users to create their own bots and upload them to our server.

⋄ Info Saving: With the aim of conducting studies and training other AI algorithms,
we would like to store information from game sessions. The idea is for each played
game to save information in a database, such as the game ID, game states, playtime,
player 1, player 2, winner, etc. This way, we can leverage this information to draw
conclusions and train other AI algorithms that can analyze these states and learn
from them.

Personally, I plan to continue with the development of this project because I enjoy
it and I am interested in seeing it grow. I also feel a sense of responsibility to leave it
in the best possible state so that future individuals working on it can do so in the most
efficient manner, with well-structured and clean code.

I also want to create a couple more AI algorithms and implement data saving to make
the most of the game sessions played by users when the game is published.

The next thing I want to do is polish the code and the functionality of the project, as
well as improve the interface and aesthetics, in order to publish it as soon as possible.
This way, users can contribute to the creation of bots at the earliest opportunity.

Bibliography

[1] Andrew Gallant. pdoc – api documentation generator for python. https://pdoc.

dev/, 2021. [Online; accessed 3-May-2023].

[2] I. Bravi, D. Perez-Liebana, S. M. Lucas, and J. Liu. Rinascimento: Optimising
statistical forward planning agents for playing splendor. In 2019 IEEE Conference
on Games (CoG), pages 1–8, 2019.

[3] M. ertick, D. Churchill, K. Kim, M. ertick, and R. Kelly. Starcraft ai competitions,
bots, and tournament manager software. IEEE Transactions on Games, 11(3):227–
237, 2019.

[4] Alejandro Estaben. TotalBotWar: A New Pseudo Real-time Multi-action Game
Challenge and Competition for AI. arXiv preprint arXiv:2009.08696v1 [cs.AI],
September 2020. https://arxiv.org/abs/2009.08696v1.

[5] Python Software Foundation. Python subprocess library documentation. https:

//docs.python.org/3/library/subprocess.html, 2021. Accessed on 2023-05-03.

[6] Google. Firebase. https://firebase.google.com/?hl=es&authuser=0, 2021. [Online;
accessed 4-May-2023].

[7] Google. Google Bard. Google, n.d. https://bard.google.com/?hl=en.

[8] R. Ishii, S. Ito, R. Thawonmas, and T. Harada. A fighting game ai using highlight
cues for generation of entertaining gameplay. In 1st IEEE Conference on Games
(CoG’19), 2019.

[9] N. Justesen, P. Bontrager, J. Togelius, and S. Risi. Deep learning for video game
playing. IEEE Transactions on Games, 12(1):1–20, 2017.

[10] N. Justesen, L. M. Uth, C. Jakobsen, P. D. Moore, J. Togelius, and S. Risi. Blood
bowl: A new board game challenge and competition for ai. In 2019 IEEE Conference
on Games (CoG), 2019.

[11] J. Kowalski and R. Miernik. Legends of code and magic. https://jakubkowalski.

tech/Projects/LOCM/, 2019. [Online; accessed 8-April-2020].

49

https://pdoc.dev/
https://pdoc.dev/
https://arxiv.org/abs/2009.08696v1
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://firebase.google.com/?hl=es&authuser=0
https://bard.google.com/?hl=en
https://jakubkowalski.tech/Projects/LOCM/
https://jakubkowalski.tech/Projects/LOCM/

50 Bibliography

[12] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, Upper Saddle River, NJ, 2008.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[14] S. Ontan, N. A. Barriga, C. R. Silva, R. O. Moraes, and L. H. S. Lelis. The first
microrts artificial intelligence competition. AI Magazine, 39(1):75–83, 2018.

[15] OpenAI. ChatGPT: Language Models for Task-Oriented Conversations. OpenAI
Blog, November 2021. https://openai.com/blog/chatgpt/.

[16] OpenAI. DALL·E: Creating Images from Text. OpenAI Blog, January 2021.
https://openai.com/blog/dall-e/.

[17] Pallets Projects. Flask documentation. https://flask.palletsprojects.com/en/2.

2.x/, 2023. Accessed: May 22, 2023.

[18] D. Perez-Liebana, S. M. Lucas, R. D. Gaina, J. Togelius, A. Khalifa, and J. Liu.
General Video Game Artificial Intelligence. Morgan & Claypool Publishers, 2019.

[19] Dan Pilone and Neil Pitman. UML 2.0 in a Nutshell. O’Reilly Media, Inc., 2005.

[20] Python Software Foundation. PEP 257 – Docstring conventions. https://peps.

python.org/pep-0257/, 2001. [Online; accessed 3-May-2023].

[21] Python Software Foundation. PEP 8 – Style Guide for Python Code. Website,
2001. Accessed April 21, 2023.

[22] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A
general reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science, 362:1140–1144, 12 2018.

[23] Pygame Team. About pygame. https://www.pygame.org/wiki/about, 2021. Ac-
cessed on 2023-05-03.

[24] J. Walton-Rivers, P. R. Williams, and R. Bartle. The 2018 hanabi competition. In
2019 IEEE Conference on Games (CoG), pages 1–8, 2019.

[25] Wikipedia. Universally unique identifier. https://en.wikipedia.org/wiki/

Universally_unique_identifier. Last accessed: 4 de mayo de 2023.

[26] Wikipedia. Cloud gaming — Wikipedia, the free encyclopedia. https://en.

wikipedia.org/wiki/Cloud_gaming, 2021. [Online; accessed 3-May-2023].

https://openai.com/blog/chatgpt/
https://openai.com/blog/dall-e/
https://flask.palletsprojects.com/en/2.2.x/
https://flask.palletsprojects.com/en/2.2.x/
https://peps.python.org/pep-0257/
https://peps.python.org/pep-0257/
https://www.pygame.org/wiki/about
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Cloud_gaming
https://en.wikipedia.org/wiki/Cloud_gaming

A
p

p
e

n
d

ix A
Source code

As we have used GitHub for code management and version control, we believe it would
be better to provide you with a direct link to access the repositories related to this
project. This way, we can avoid lengthy code explanations and provide complete access
to all the code that you may want to review.

A.0.1 GitHub

⋄ Server: https://github.com/SergiFuster/TotalBotWar

⋄ Unity: https://github.com/SergiFuster/TotalBotWar-Unity

51

https://github.com/SergiFuster/TotalBotWar
https://github.com/SergiFuster/TotalBotWar-Unity

52 Source code

A.0.2 Game State in JSON
What we will include directly in this section is the game state in JSON format. Obtaining
this information would require downloading the appropriate versions of the project and
running them on your computer, which can be cumbersome. We believe it is more
convenient to provide the JSON object here directly, so you can observe an example
of what the Unity application reads in each frame and how it updates the necessary
information.

1 {

2 "team_0": {

3 "0": {

4 "id": 0,

5 "state": "MOVING",

6 "type": "GENERAL",

7 "health": 100,

8 "position": {

9 "x": 501.01,

10 "y": 181.9

11 },

12 "orientation": {

13 "x": 1.0,

14 "y": -0.02

15 },

16 "width": 50.0,

17 "height": 50.0,

18 "archerTarget": false

19 },

20 "1": {

21 "id": 1,

22 "state": "ATTACKING",

23 "type": "KNIGHT",

24 "health": 67.0,

25 "position": {

26 "x": 175.59,

27 "y": 228.44

28 },

29 "orientation": {

30 "x": 0.36,

31 "y": 0.93

32 },

33 "width": 60.0,

34 "height": 60.0,

35 "archerTarget": false

36 },

37 "2": {

38 "id": 2,

39 "state": "ATTACKING",

40 "type": "KNIGHT",

41 "health": 176.0,

42 "position": {

43 "x": 776.09,

44 "y": 268.28

45 },

46 "orientation": {

Source code 53

47 "x": -0.59,

48 "y": 0.81

49 },

50 "width": 60.0,

51 "height": 60.0,

52 "archerTarget": false

53 },

54 "3": {

55 "id": 3,

56 "state": "MOVING",

57 "type": "SPEAR",

58 "health": 250,

59 "position": {

60 "x": 380.79,

61 "y": 258.72

62 },

63 "orientation": {

64 "x": 0.0,

65 "y": 1.0

66 },

67 "width": 70.0,

68 "height": 35.0,

69 "archerTarget": false

70 },

71 "4": {

72 "id": 4,

73 "state": "MOVING",

74 "type": "SPEAR",

75 "health": 250,

76 "position": {

77 "x": 608.85,

78 "y": 244.82

79 },

80 "orientation": {

81 "x": -1.0,

82 "y": -0.01

83 },

84 "width": 70.0,

85 "height": 35.0,

86 "archerTarget": false

87 },

88 "5": {

89 "id": 5,

90 "state": "ATTACKING",

91 "type": "SWORD",

92 "health": 195.0,

93 "position": {

94 "x": 519.54,

95 "y": 257.2

96 },

97 "orientation": {

98 "x": 0.79,

99 "y": 0.62

100 },

54 Source code

101 "width": 24.96,

102 "height": 12.64,

103 "archerTarget": false

104 },

105 "6": {

106 "id": 6,

107 "state": "MOVING",

108 "type": "ARCHER",

109 "health": 100,

110 "position": {

111 "x": 501.95,

112 "y": 144.17

113 },

114 "orientation": {

115 "x": 0.0,

116 "y": 1.0

117 },

118 "width": 80.0,

119 "height": 40.0,

120 "archerTarget": false

121 }

122 },

123 "team_1": {

124 "0": {

125 "id": 0,

126 "state": "MOVING",

127 "type": "GENERAL",

128 "health": 100,

129 "position": {

130 "x": 576.56,

131 "y": 335.41

132 },

133 "orientation": {

134 "x": 0.89,

135 "y": -0.46

136 },

137 "width": 50.0,

138 "height": 50.0,

139 "archerTarget": false

140 },

141 "1": {

142 "id": 1,

143 "state": "ATTACKING",

144 "type": "KNIGHT",

145 "health": 81.0,

146 "position": {

147 "x": 735.72,

148 "y": 323.94

149 },

150 "orientation": {

151 "x": 0.59,

152 "y": -0.81

153 },

154 "width": 60.0,

Source code 55

155 "height": 60.0,

156 "archerTarget": false

157 },

158 "2": {

159 "id": 2,

160 "state": "ATTACKING",

161 "type": "KNIGHT",

162 "health": 67.0,

163 "position": {

164 "x": 198.37,

165 "y": 287.77

166 },

167 "orientation": {

168 "x": -0.36,

169 "y": -0.93

170 },

171 "width": 60.0,

172 "height": 60.0,

173 "archerTarget": false

174 },

175 "3": {

176 "id": 3,

177 "state": "MOVING",

178 "type": "SPEAR",

179 "health": 250,

180 "position": {

181 "x": 671.93,

182 "y": 311.8

183 },

184 "orientation": {

185 "x": 0.9,

186 "y": 0.44

187 },

188 "width": 70.0,

189 "height": 35.0,

190 "archerTarget": false

191 },

192 "4": {

193 "id": 4,

194 "state": "MOVING",

195 "type": "SPEAR",

196 "health": 250,

197 "position": {

198 "x": 332.17,

199 "y": 312.75

200 },

201 "orientation": {

202 "x": -0.98,

203 "y": 0.19

204 },

205 "width": 70.0,

206 "height": 35.0,

207 "archerTarget": false

208 },

56 Source code

209 "5": {

210 "id": 5,

211 "state": "ATTACKING",

212 "type": "SWORD",

213 "health": 200.0,

214 "position": {

215 "x": 537.46,

216 "y": 271.27

217 },

218 "orientation": {

219 "x": -0.79,

220 "y": -0.62

221 },

222 "width": 45.0,

223 "height": 22.77,

224 "archerTarget": false

225 },

226 "6": {

227 "id": 6,

228 "state": "MOVING",

229 "type": "ARCHER",

230 "health": 100,

231 "position": {

232 "x": 577.36,

233 "y": 415.56

234 },

235 "orientation": {

236 "x": 1.0,

237 "y": -0.09

238 },

239 "width": 80.0,

240 "height": 40.0,

241 "archerTarget": false

242 }

243 }

244 }

	Contents
	List of Figures
	List of Tables
	Introduction
	Work Motivation
	Objectives
	Main Goal
	Specific Goals

	Environment and Initial State
	Game Overview
	Main Characteristics

	Planning and resources evaluation
	Planning
	Resource Evaluation

	System Analysis and Design
	Requirement Analysis
	Functional Requirements
	Non-functional Requirements

	System Design
	Security
	Multi-User
	Documentation
	Readability

	System Architecture
	Hardware Requirements
	Other Requirements

	System Analysis
	Action Space
	State Representation
	Game Complexity
	Baseline Agents

	Interface Design
	Videogame Art

	Work Development and Results
	Work Development
	Initial Conception
	Game Core
	Server
	Database
	Unity
	Firebase Database
	Socket Implementation

	Results
	Goals Achieved
	Comparison between Planning and Final Work Accomplished
	Applications of the Work Performed

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Source code
	GitHub
	Game State in JSON

