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A B S T R A C T   

Digital product data quality and reusability has been proven a critical aspect of the Model-Based Enterprise to 
enable the efficient design and redesign of products. The extent to which a history-based parametric CAD model 
can be edited or reused depends on the geometric complexity of the part and the procedure employed to build it. 
As a prerequisite for defining metrics that can quantify the quality of the modeling process, it is necessary to have 
CAD datasets that are sorted and ranked according to the complexity of the modeling process. In this paper, we 
examine the concept of perceived CAD modeling complexity, defined as the degree to which a parametric CAD 
model is perceived as difficult to create, use, and/or modify by expert CAD designers. We present a novel method 
to integrate pair-wise comparisons of CAD modeling complexity made by experts into a single metric that can be 
used as ground truth. Next, we discuss a comprehensive study of quantitative metrics which are derived pri-
marily from the geometric characteristics of the models and the graph structure that represents the parent/child 
relationships between features. Our results show that the perceived CAD modeling complexity metric derived 
from experts’ assessment correlates particularly strongly with graph-based metrics. The Spearman coefficients 
for five of these metrics suggest that they can be effectively used to study the parameters that influence the 
reusability of models and as a basis to implement effective personalized learning strategies in online CAD 
training scenarios.   

1. Introduction 

This work is part of a broader initiative by the authors to develop 
new intelligent methods and tools for improving the quality and reus-
ability of parametric CAD models, which are highly relevant topics 
today in the context of the Model-Based Enterprise (MBE). MBE is a 
paradigm where annotated 3D CAD models serve as primary elements to 
support the design, analysis, and manufacturing of industrial products 
[40]. In an MBE, the quality of the native CAD models (typically para-
metric feature-based solid models) is paramount, as they are the primary 
source from which the secondary models required for CAE and CAM 
purposes derive. In the context of this paper, only models that are 
featured-based and contain a construction history are considered. 
Neutral files derived from the native CAD files are out of the scope of the 
paper. 

Despite the vital role of CAD quality in the various aspects of the 
product development process, particularly in an MBE context 

[9,14,28,17], there are no standard metrics to quantitatively evaluate 
parametric models and estimate their responses to changes [16]. 

CAD models are often reused for future redesigns, shared within 
collaborative design teams, and used as the basis for automated design 
and shape optimization tools. In this context, the ability of a parametric 
model to adjust to changes is critical. It corresponds with the “semantic 
level” in the CAD quality model proposed by Contero et al. [23]. 

The ability to alter the geometry of a parametric model depends on 
intrinsic factors (i.e., the geometric complexity of the part to be 
modeled) and extrinsic factors (i.e., the modeling methodology and 
practices employed to create it that are reflected on the complexity of 
the feature tree). A thorough examination of complexity metrics (many 
of which are borrowed from other areas such as graph theory and soft-
ware engineering) and the definition of a generalized instrument that 
can produce a reliable figure of merit to quantify the quality of a para-
metric model remain open problems. 

In this paper, we build on our previous works [15,16] to present a 
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study in which we examined, analyzed, and compared a series of 
complexity metrics for characterizing parametric CAD models. Specif-
ically, we study the assessment of parametric part modeling complexity 
as perceived by designers, and compare it to various quantitative 
complexity metrics. The paper is structured as follows: first, we provide 
an overview of the relevant literature on CAD quality metrics and 
parametric model complexity. Next, we describe the methodology used 
to integrate pair-wise comparisons of CAD modeling complexity made 

by experts into a single metric that can be used as ground truth. To the 
best of our knowledge, this is the first time this idea has been proposed in 
the context of CAD complexity metrics. Next, we discuss a comprehen-
sive study of quantitative metrics which are derived primarily from the 
geometric characteristics of the models and the graph structure that 
represents the parent/child relationships between features, followed by 
the correlation analysis between these metrics and the CAD modeling 
complexity metric derived from experts, which proves to be a valid 

Fig. 1. Sample of 95 models used in our study.  
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ground truth to determine the validity of current (and hopefully future) 
complexity metrics. Finally, we discuss the results of our statistical an-
alyses and the implications for the quantitative assessment of parametric 
models and identify directions for future work. 

2. Background 

3D model complexity has significant effects in the design and 
manufacturing fields [48,57], particularly in activities that rely heavily 
on the CAD model and the communication of design intent [10]. The 
nature of additive manufacturing processes, for example, has enabled a 
significant increase in terms of complexity of the models that can be 
manufactured [39]. However, it is difficult to agree on a precise defi-
nition as well as to develop objective reliable metrics to assess and 
compare CAD models [3]. One reason has to do with the various levels at 
which complexity can be understood and the various sources that can 
influence complexity, such as the geometric characteristics of the model 
(e.g., number of faces, edges, etc.), the internal data structure and or-
ganization, and the properties associated with the software functionality 
[20]. 

Rossignac [46] identified five dimensions of complexity related to 
CAD models: algebraic, topological, morphological, combinatorial, and 
representational. Algebraic complexity refers to the complexity of the 
polynomials that are used to represent the shape exactly in its implicit or 
parametric form. Topological complexity refers to the number of han-
dles and components or the existence of non-manifold singularities, non- 
regularized components, holes or self-intersections. Morphological 
complexity is related to feature size and “smoothness” (e.g., components 
that have more, and smaller features would be deemed more complex). 
Combinatorial complexity refers to the vertex count in a polynomial 

mesh. Representational complexity is a measure of the file size and the 
ease-of-use of the data structure employed to store the model [46]. 
These types of complexity are informed by both the geometric repre-
sentation of the component as well as the design intent, i.e., the manner 
in which modeling decisions (and thus the constraints imposed on the 
geometry) influence how the final model is built [32]. 

A significant body of work has been devoted to developing quanti-
tative metrics to evaluate the geometric complexity of a model. Some of 
these metrics include the number of triangles, surfaces, and vertices in 
the representation of the model [56,25,46] shape measurements based 
on area and volume [33] and the similarity between its views [47]. 
However, geometric complexity is only one aspect of a broader defini-
tion, which includes the complexity of the CAD data, the organizational 
system, and the operational complexity, to name a few [20]. 

In the context of parametric CAD, there are many aspects that 
contribute to the complexity of a model, specifically in terms of its in-
ternal structure and organization. For example, the parametric re-
lationships between features and sketches and the particular 
constraining strategies and decisions used to build the model can have a 
significant impact on robustness and reusability. From a user’s stand-
point, these aspects are critical, as modeling complex parts requires 
strategic and effective modeling strategies to manage dependencies 
efficiently, which can be extremely challenging even for experienced 
users [7,31,5]. According to Camba et al. [15], CAD quality metrics can 
be classified based on the specific dimension of quality that they 
measure. 

Some researchers have adopted complexity metrics from areas such 
as graph theory and software engineering and applied them to para-
metric CAD modeling [36,24]. Graph theory is particularly useful in 
parametric CAD to represent and visualize constraint relationships and 

Fig. 2. 3D Part (A), feature tree (B), parent/child relationships for a feature (C), and full graph of the model (D).  
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parametric dependencies [30,18]. A model can be represented as a 
graph G = (V, E) where V is a set of “vertices” or “nodes” in the model 
tree (2D sketches or features) and the “edges” E represent the relation-
ships between sketches and/or features). Similar studies have demon-
strated the value strategies grounded on graph theory for determining 
differences [43] and similarities [51] between parametric models, and 
for estimating assembly time [42]. 

It has been argued that complexity is an inherently subjective 
concept; what is complex depends upon how one looks [19]. In this 
regard, the role of the observer in the acknowledgement of complexity 
can be characterized as “perceived complexity” [19,49]. Indeed, 
complexity can be understood as the result of a particular perception of a 
situation made by an observer. In the context of CAD, Johnson et al. [32] 
stated that an objective quantitative assessment of model complexity 
should also be well correlated to the subjective assessment of complexity 
by CAx tool users. In their study, the authors examined the relationship 

between perceived complexity and a series of objective metrics. They 
concluded that the volume ratio (calculated as 1–Volume/bboxVol, 
where bboxVol is the volume of the bounding box of the model) and the 
normalized volume ratio (measured by number of features) are signifi-
cantly correlated with subjective assessments of model complexity. 
Subjective assessments were conducted through 5-point Likert scale 
questions in which a group of participants scored a series of models from 
“very simple” to “very complex.”. 

3. Methodology 

In this section, we present the dataset of parametric 3D models and 
the complexity metrics used in the study. We also describe our strategy 
to obtain a ground truth based on the integration of the assessments of a 
group of CAD experts. 

3.1. Dataset 

We compiled a set of 569 parametric CAD models of mechanicals 
parts of varying complexity. We restricted our selection to native Sol-
idWorks (.sldprt) files and used the analysis software developed in our 
previous works. Our models were obtained from six sources: 

• GrabCAD, an online community where students, engineers, de-
signers, and manufactures can share their models [26].  

• Official Solidworks training files, a public repository of SolidWorks 
tutorials and files [54].  

• SolidWorks Exercises – Learn by Practicing, a practice CAD book 
with exercises [53].  

• 3D Content Central, an online community that provides access to 3D 
models from component suppliers and individuals in all major CAD 
formats [1].  

• SPECapc, a performance evaluation software for vendors and users of 
computing systems running SolidWorks CAD/CAM software on 
Microsoft Windows 10 64-bit platforms. The software includes 
several 3D models for testing purposes [54].  

• “CAD 3D con SolidWorks vol. I & II,” a two-volume CAD book with 
SolidWorks exercises [21,22]. 

Because of the computational costs of the sorting algorithms and the 
difficulty of having a single expert sort all the models in the sample, we 
considered a theoretical maximum of 1,000 comparisons and, thus, 
selected a representative subset of 95 models randomly chosen from the 
total sample. The selection included only models built as a single solid (i. 
e., excluding assemblies and multi-body parts). The selected models 
used in our study are shown in Fig. 1. 

In order to characterize parametric models according to complexity, 
we selected a group of metrics based on an extensive literature review 
that spanned a number of disciplines (e.g., software engineering, graph 
theory, engineering design, geometry, etc.) and a study on their appli-
cability to parametric CAD. Our selection criteria included attributes 
related both to the part geometry and the metrics based on the repre-
sentation of the parametric model tree as a graph structure. 

Model trees do not fully and accurately reflect the intricacies of the 
interdependencies that are created between features during the para-
metric modeling process. The part shown in Fig. 2 is presented as an 
example to illustrate this problem. The model tree of the 3D part (Fig. 2- 
A), modeled in the commercial CAD system SolidWorks, is shown in 
Fig. 2-B as presented by the software (with dynamic reference visuali-
zation enabled). The blue arrows indicate parent features whereas the 
purple arrows represent child features. All the arrows originate from a 
circle, which indicates the currently selected feature (Boss-Extrude4, in 
the example). An alternative method to visualize these parent/child 
relationships is through the use of commands to display dependencies, 
such as the window shown in Fig. 2-C. However, these visualizations 
cannot convey the full extent of the complexity of the interdependencies 

Table 1 
Metrics analyzed in our study.  

Metric type Metric Description 

Complexity 
scale 

S_MAP Maximum a posteriori (MAP) complexity 
scale estimation based on Thurstone’s case 
V model [55] 

Computer file 
based 

File size (MBytes) Part file size measured on Mbytes 

Geometry No. of faces Total number of individual faces in the 
model 

No. of vertices Total number of individual vertices in the 
model 

No. of edges Total number of individual edges in the 
model 

Volume/area 
ratio 

Ratio between the object volume and its 
surface 

Volume ratio Calculated as 1–Volume/bBoxVol, where 
bBoxVol is the volume of the bounding box 
of the model 

Cube ratio Calculated as 1–aCube/Surface, where 
aCube is the area of a cube with the same 
volume as the model 

Sphere ratio Calculated as 1–aSphere/Surface, where 
aSphere is the area of a sphere with the same 
volume as the model 

Fractal dimension Calculated as presented in [12], that is, the 
slope of log(N(s)) vs log(1/s), where s is the 
size of voxel and N(s) is the number of 
voxels needed to fill the model with voxels 
of s size  

Graph Size No. of nodes in the graph 
Cyclomatic 
complexity 

No. of independent paths through the graph  
[24] 

Modularity Measure of the strength of division of the 
graph into groups [38] 

Diameter Maximum eccentricity (greatest distance) 
between any two nodes in the graph 

Mean degree Degree of a vertex is the number of its 
adjacent edges 

Graph density Ratio between number of edges and number 
of possible edges 

Average path Average number of steps along the shortest 
paths for all possible pairs of nodes 

Dependencies No. of edges in the graph 
Kolmogorov 
complexity 

String length when the graph is encoded as a 
binary string [41] 

Li entropy Graph entropy measure, describe the 
uncertainty of a system following the 
algorithm from [37] 

Solé-Valverde 
entropy 

Graph entropy measure, describe the 
uncertainty of a system following the 
algorithm from [52] 

Shannon entropy Graph entropy measure, describe the 
uncertainty of a system following the 
algorithm from [50].  
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between features, as illustrated in the complete graph shown Fig. 2-D, 
which paints a more realistic picture of the actual complexity within the 
internal structure of the parametric model by showing the dependencies 
that are not visible in the standard visualization mechanisms provided 
by current CAD tools. This graph was produced in Gephi, an application 
developed by Bastian et al. [6]. As part of our work, we developed a 
custom plugin for SolidWorks that can extract the parent/child re-
lationships in the CAD model and export it to a GEXF (Graph Exchange 
XML Format) file, which can be imported in Gephi for visualization. In 
this example, the sizes of the nodes in the graph were made proportional 
to the number of edges that meet at those nodes to emphasize the most 
highly interconnected features in the model. 

The metrics are described in Table 1 and are mainly based on a se-
lection of those compiled by Camba et al. [16]. The metrics volume and 
surface were excluded since non-normalized metrics are not relevant in 
our study. Dimensionality was also excluded as we assume that there 

Fig. 3. Software tool for paired comparisons.  

Fig. 4. Block diagram.  

Fig. 5. Scale values vs. model ID representation.  
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cannot be features without parents, except for the initial reference 
planes. 

It is important to note that although some metrics may be mutually 
related, they are all used to assess model quality in an objective and 
quantitative manner. For example, the number of edges, vertices, and 
faces in a model are highly correlated, but they are all widely accepted 
metrics to evaluate geometric complexity. A similar situation occurs 
with graph-based metrics (number of paths, connectivity, etc.). In this 
paper, we do not intend to review the accuracy of these metrics or 
determine the extent to which they correlate to one another, but to 
provide a comprehensive view of complexity with well-established 
metrics so it can be compared to perceived complexity. 

3.2. Ground truth for perceived CAD model complexity 

We define perceived CAD model complexity as the degree to which a 
parametric CAD model is perceived as difficult to create, use, and/or 

modify. We obtain a ground truth by aggregating the evaluations of a 
group of experts. The procedure uses a pairwise comparison technique 
[44] in which each expert is shown side-by-side renderings of the most 
significant view of the models and asked to identify which of the two 
models is more complex. To facilitate the assessment and ensure all users 
receive the exact same information without manipulating the geometry, 
all models are presented in isometric view as a static image. 

To minimize the number of comparisons to be made by experts, we 
implemented a sorting tool based on the classical Quick Sort algorithm 
[29] using Microsoft Visual Studio.NET. The tool displays the images of 
the parts in pairs, as shown in Fig. 3 and asks the user to identify the 
most complex part. Ties are not allowed. Quick Sort was selected 
because is an efficient sorting algorithm; it takes on average O(n log(n)) 
comparisons to sort n items. In the worst case, O(n2) comparisons are 
required, though this situation is rare. 

The sorting tool was designed to break the sorting task into smaller 
subtasks, avoid fatigue, and obtain more precise evaluations by the 
human expert. To combine these smaller ordered subsets back into a 
unique ordered sequence, we applied a merging technique based on the 
classical k-way merge algorithm, which takes in k sorted lists and 
merges them into a single sorted list [35]. More specifically, the algo-
rithm works as a tournament tree where, in each game, two of the input 
elements contend and the winner is promoted to the next level. The list is 
sorted in ascending order, so the winner of a game is the smallest of the 
two elements. 

Regarding the computational cost, the algorithm takes on average O 
(n log(k)), where n is the total number of items to sort, and k is the 
number of sorted lists which are taken as input. As a result of this pro-
cess, our software tool generates a csv file which contains the list of 
models ordered from lowest to highest complexity according to the 
user’s estimation. 

To combine the evaluations of multiple users, we used a square count 
matrix C of size N, where N is the total number of elements to categorize, 
scale, or order. Each matrix element, ci,j, represents the number of times 
that option i was preferred over option j. We assumed that each paired 
comparison is independent, i.e., the order of the comparisons is not 
relevant. We used the maximum a posteriori (MAP) scale estimation 
based on Thurstone’s case V model presented by Tsukida & Gupta [55]. 
This technique allowed us to combine all the evaluations in a single 
sorted list, including a scale to quantify the items. In order to apply this 
technique, we used MATLAB and code functions provided by Tsukida & 
Gupta [55]. In addition, we developed a custom script to combine the 
results from the group of experts. The script processed a set of csv files, 

Table 2 
Descriptive statistics.  

Metric type Metric M SD 

Complexity scale S_MAP  0.00  1.44 
Computer file based File size (MBytes)  0.61  0.58 
Geometry No. of faces  160.63  160.11 

No. of vertices  228.19  258.29 
No. of edges  389.57  413.98 
Volume/area ratio  0.003  0.002 
Volume ratio  0.78  0.12 
Cube ratio  0.63  0.14 
Sphere ratio  0.70  0.11 
Fractal dimension  2.79  0.09  

Graph Size  41.37  38.37 
Cyclomatic complexity  70.47  80.92 
Modularity  0.37  0.11 
Diameter  4.18  1.19 
Mean degree  4.23  0.88 
Graph density  0.08  0.04 
Average path  2.23  0.40 
Dependencies  97.39  108.58 
Kolmogorov complexity  1260.85  1732.31 
Li entropy  296.28  402.16 
Solé-Valverde entropy  2.43  0.70 
Shannon entropy  0.90  0.08  

Table 3 
Spearman ρ correlations.  

Metric type Metric Spearman ρ p-value 

Computer file based File size (MBytes)  0.758 <0.001 
Geometry No. of faces  0.762 <0.001 

No. of vertices  0.713 <0.001 
No. of edges  0.755 <0.001 
Volume/area ratio  − 0.059 0.57 
Volume ratio  0.414 <0.001 
Cube ratio  0.428 <0.001 
Sphere ratio  0.428 <0.001 
Fractal dimension  -0.497 <0.001  

Graph Size  0.792 <0.001 
Cyclomatic complexity  0.804 <0.001 
Modularity  0.680 <0.001 
Diameter  0.565 <0.001 
Mean degree  0.553 <0.001 
Graph density  − 0.731 <0.001 
Average path  0.713 <0.001 
Dependencies  0.797 <0.001 
Kolmogorov complexity  0.801 <0.001 
Li entropy  0.799 <0.001 
Solé-Valverde entropy  0.277 <0.001 
Shannon entropy  0.398 <0.001  

Fig. 6. Scatter plot for computer file-based metric: S_MAP vs. File size, ρ 
¼ 0.758. 
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sorted the estimations from the experts, stored the files in a folder, and 
then built a matrix as input for the described method. 

3.3. Implementation 

Two software tools were developed in Microsoft Visual Basic.NET 
(VB.NET) to implement the sorting system. A custom script was also 
created using the online version of MATLAB R2021b. A block diagram of 
the system is shown in Fig. 4. 

The first tool allows the experts to sort each subsample of the models 
using the QuickSort algorithm. An XML configuration file is used to 
indicate the specific subset of images that will be loaded into the system 
as a vector. This vector is then used as the input parameter for a tradi-
tional QuickSort recursive function, where the sorting decisions are 
determined by the user, instead of mathematically. When the sorting 
function ends, the results are displayed on screen as a table and exported 
as a Comma Separated Value (CSV) file with two columns, model id and 
order, as well as the total time employed by the user to complete the 
task. 

The second tool allows the expert user to sort the models from the 
lists created in the previous step by applying the k-way merge algorithm. 
The tournament tree is built as a recursive function, where mathematical 
comparisons are again replaced by expert judgements. The function ends 
when there are no elements left to order. Final results are shown as a 
table and exported to a new CSV file with the same characteristics as the 
previous one. 

Finally, the MATLAB script contains the code functions developed by 
Tsukida & Gupta [55] as well as other custom operations. These func-
tions take a square matrix C as input, as described above. The custom 
code loads all the CSV files from the sorting tasks performed by each 
expert, which are then combined through several iterations and 

comparisons to create the matrix. 

4. Results 

Five CAD experts were asked to rank the models using the developed 
sorting tool. The tool and the instructions on how to complete the ac-
tivity were shared with the experts via email. The experiment was 
structured in five tasks and participants were instructed to complete the 
assessments in order and in a timely manner. Tasks 1 to 4 correspond to 
the sorting tasks of 24, 24, 24, and 23 models, respectively, whereas task 
5 was used to merge the results from the previous tasks. As a result, each 
expert produced a csv file with a list of 95 models sorted by their 
perceived complexity, the time the participant spent competing the 
sorting task, and the total number of comparisons. Experts spent, on 
average, 43.29 min (SD = 18.72) sorting the 95 models and made 566.6 
comparisons (SD = 13.48). The maximum a posteriori scale of 
complexity (S_MAP) obtained by applying the procedure described in 
the previous point is shown in Fig. 5. 

Next, we studied possible correlations between the complexity scale 
S_MAP and the complexity metrics discussed by Camba et al. [16]. 
Descriptive statistics are shown in Table 2. 

Because of the non-normality of the data, a Spearman correlation test 
was applied to all data to measure the strength of association between 
the calculated scales and the complexity metrics as well as the direction 
of the relationship. The results are shown in Table 3. 

To verify whether there is a monotonic relationship between the two 
variables between which we calculated Spearman’s ρ, we present the 
scatter plots in Figs. 6-8 for each metric type with a p-value < 0.05. 

The plots in Fig. 7 show that the strongest relationships correspond 
to metrics related to the number of geometric elements in the 3D model. 
However, the dispersion increases considerably when number of 

Fig. 7. Scatter plots for geometry-based metrics.  
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elements and S_MAP value increase. Ratio-based metrics show a great 
dispersion which is reflected in a lower ρ value. 

5. Discussion 

To interpret these results, it is important to remind that the experts 
were comparing the perceived complexity of the models defined as the 

Fig. 8. Scatter plots for graph-based metrics map.  
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perceived difficulty to create, use, and/or modify the CAD models. Un-
like other studies on this subject, which focus solely on the geometric 
characteristics [4] or the complexity associated with the manufacturing 
processes of the parts [8,13], our work considers the complexity asso-
ciated with the modeling process. It seems consistent that the highest 
Spearman ρ values, as presented on Table 3, are obtained from metrics 
associated with the parent/child relationship graph that represents the 
modeling process. Cyclomatic complexity was particularly strong, with 
ρ = 0.804, p <.01. Nevertheless, if we consider |ρ|> 0.75 as an indicator 
of a strong correlation between variables, as discussed by Akoglu [2] and 
Ratner [45], then we find a total of five metrics based on graphs, two 
based on geometry, and one based on a computer file metric that satisfy 
this condition, as shown in Table 4. 

Our results reveal the suitability of graph-based metrics to 
adequately reflect the perception of CAD complexity by experienced 
CAD experts, who can anticipate the difficulty of creating or modifying a 
3D CAD model by simply viewing an isometric depiction. To the best of 
our knowledge, our study is the first to use a large dataset of CAD models 
to analyze complexity metrics, and also to examine how graph-based 
complexity metrics compare to perceived complexity, as shown in 
Table 5. Only Johnson et al. [32] concluded that volume ratio was the 

Table 4 
Metrics sorted by absolute value of Spearman ρ.  

Metric type Metric Spearman |ρ| 

Graph Cyclomatic complexity  0.804 
Graph Kolmogorov complexity  0.801 
Graph Li entropy  0.799 
Graph Dependencies  0.797 
Graph Size  0.792 
Geometry No. of faces  0.762 
Computer file based File size (MBytes)  0.758 
Geometry No. of edges  0.755 
Graph Graph density  0.731 
Geometry No. of vertices  0.713 
Graph Average path  0.713 
Graph Modularity  0.680 
Graph Diameter  0.565 
Graph Mean degree  0.553 
Geometry Fractal dimension  0.497 
Geometry Cube ratio  0.428 
Geometry Sphere ratio  0.428 
Geometry Volume ratio  0.414 
Graph Shannon entropy  0.398 
Graph Solé-Valverde entropy  0.277  

Table 5 
Comparative analysis of previous studies that use complexity metrics in the context of CAD modeling.  

Metric 
type 

Metric Valentan 
et al. [56] 

Joshi 
& 
Ravi  
[33] 

Johnson 
et al.  
[32] 

Greco 
et al.  
[27] 

Davis  
[24] 

Bodein 
et. al.  
[11] 

Camba 
et al.  
[18] 

Johansson 
et al. [31] 

Camba 
et al.  
[15] 

Camba 
et al,  
[16] 

Aramburu 
et al., [5] 

This 
paper 

File size x        x x  x 

Geometry No. of faces   x x  x   x x x x 

No. of vertices          x x x 

No. of edges          x x x 

Vol./area ratio x         x  x 

Volume ratio  x x x     x x  x 

Cube ratio   x x     x x  x 

Sphere ratio  x x x     x x  x 

Fractal dim.            x  

Graph Size     x  x x  x x x 

Dimensionality     x   x  x  x 

Cyclomatic 
comp.     

x     x x x 

Modularity          x  x 

Diameter          x  x 

Mean degree       x   x x x 

Graph density          x  x 

Average path          x  x 

Dependencies       x   x x x 

Kolmogorov 
comp.          

x x x 

Li entropy        x    x 

Solé-Valverde 
ent.            

x 

Shannon 
entropy            

x 

Clustering          x   

Eigenvector 
cent.          

x   

PageRank          x    
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most highly correlated metric with experts’ assessments, but their 
experiment used a small number of parts (10 models) and only students 
participated, not CAD experts. 

Our results can also be explained by the fact that some metrics based 
on geometry are largely affected by patterning and symmetry opera-
tions, which may produce a large number of geometric elements (edges, 
faces, vertices) but have a very small impact on the difficulty to model a 
part. These situations are easily detected by CAD experts and probably 
contribute to an inferior performance of metrics that are exclusively 
based on geometric attributes. 

We also observe similarities in the behavior of the parameters with 
higher ρ coefficients: a linear growth zone that contains most of the 
models and a plateau zone that represents around 10% of the models in 
our dataset (which are precisely the ones of greater complexity). These 
results may be explained by the difficulty of visually assessing parts with 
a very high degree of complexity. In future work, we plan to study this 
behavior further by checking whether more time should be allotted to 
decision making when evaluating these types of parts or by providing 
additional graphical information to better display the geometry. 

We note that there is a need for studies that clearly identify the 
overlaps and gaps between existing metrics. Defining “similarity” or 
“complexity rate” in parametric CAD models is difficult, partly because 
it is a multidimensional construct. For example, two parametric models 
may be geometrically identical but very different internally because of 
the way they were built, which means they will react to changes in a 
very different manner. Likewise, a model that one may consider “com-
plex” because of its geometric characteristics may be extremely simple 
in terms of its internal structure. 

It is important to emphasize that this study focused on single-part 
modeling complexity, particularly parametric modeling complexity, 
where geometry is built as a sequence of interrelated featured controlled 
by parameters. The work could naturally be extended to study the 
complexity of assemblies, but other factors would come into play such as 
number of parts, length of the dependency chains, etc., which do not 
apply to part modeling. We speculate that the perceived complexity of 
an assembly could possibly depend, to a certain extent, on the 
complexity of the individual parts that make up the assembly. In any 
case, the treatment of assemblies is certainly multifaceted, and would 
require a separate rigorous study. 

6. Conclusions and future work 

In this paper, we described a novel methodology for producing a CAD 
complexity ground truth by integrating the evaluation provided by a 
group of experts who employed pairwise comparisons to evaluate the 
perceived complexity of parts. In addition, the preparation of a dataset 
of native parametric CAD models (SolidWorks, in our case) is also 
notable as it could be used in other studies in this field. 

An additional contribution is the extensive statistical analysis which 
involves both graph-based and geometry-based complexity metrics of 
CAD models. Our results confirmed that the CAD complexity index 
strongly correlated with several metrics, particularly graph based. It is 
worth noting that two of the metrics with the strongest correlation with 
experts’ perception, graph size and file size, are simple to compute in 
any commercial CAD system. Graph size measures the number of nodes 
in the graph, which represent the number of features used to model a 
part. 

Our experiment demonstrates the viability of the proposed approach 
to measure perceived complexity. Future studies with more experts and 
an even larger dataset of parts would be relevant to confirm the results 
reported in this paper. We also acknowledge that although all the ex-
perts in our study have extensive experience in parametric modeling, it 
is possible that similar mindsets and workstyles could have affected the 
results. In this regard, the methodology and software tool are ready to be 
used in a more extensive experimental work. 

An objective and quantitative measure of complexity is of great 

interest in studies that aim to assess the capability of a CAD model for 
reuse/modification. The results of this work could be applied to improve 
previous analyses that only used the mean degree metric [15] to 
determine the influence of complexity on CAD model editability. In our 
experience analyzing how formal modeling methodologies affect CAD 
model reusability, we have observed that role of methodology becomes 
increasingly relevant once the level of complexity of a part exceeds a 
certain threshold of complexity. The present work can be used to inform 
future strategies to determine more precisely where that threshold is. 
After a quick evaluation, engineers could then decide which modeling 
methodology is more appropriate for a specific design scenario. 

The reusability of a CAD model depends on two factors that are 
highly coupled: the complexity of the part and the suitability of the 
modeling process followed to build the geometry. Since the S_MAP 
variable has a strong relationship both with geometric and graph-based 
complexity parameters, it would be interesting to analyze as future work 
how the variable correlates with reusability metrics such as the ones 
used in previous studies [15], or to incorporate other complexity pa-
rameters that have been proposed in the context of additive 
manufacturing [34] to determine whether they have a stronger relation 
with the S_MAP variable (experts’ opinion) than with the parameters 
investigated in this work. 

With regards to academia and workforce development, our work has 
direct application to CAD instruction where proper gauging of the level 
of difficulty of the exercises is critical, particularly in the assessment and 
evaluation of modeling skills. We envision our approach as part of an 
intelligent tutoring system that can offer a personalized learning expe-
rience where the system provides modeling exercises of increasing 
complexity based on the student’s performance level. 

As future work, we plan to replicate our study with students to 
determine whether their evaluations align with those provided by CAD 
experts. Additionally, we are interested in using complexity assessment 
tasks to evaluate student expertise. We speculate that high performing 
students will provide assessments with higher levels of agreement with 
CAD experts’ assessment than low performing students. 
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