
Vol.:(0123456789)

The Journal of Supercomputing (2023) 79:10589–10610
https://doi.org/10.1007/s11227-023-05088-4

1 3

Efficient and portable Winograd convolutions
for multi‑core processors

Manuel F. Dolz1 · Héctor Martínez2 · Adrián Castelló3 · Pedro Alonso‑Jordá3 ·
Enrique S. Quintana‑Ortí3

Accepted: 29 January 2023 / Published online: 12 February 2023
© The Author(s) 2023

Abstract
We take a step forward towards developing high-performance codes for the convo-
lution operator, based on the Winograd algorithm, that are easy to customise for
general-purpose processor architectures. In our approach, augmenting the portability
of the solution is achieved via the introduction of vector instructions from Intel SSE/
AVX2/AVX512 and ARM NEON/SVE to exploit the single-instruction multiple-
data capabilities of current processors as well as OpenMP pragmas to exploit multi-
threaded parallelism. While this comes at the cost of sacrificing a fraction of the
computational performance, our experimental results on three distinct processors,
with Intel Xeon Skylake, ARM Cortex A57 and Fujitsu A64FX processors, show
that the impact is affordable and still renders a Winograd-based solution that is com-
petitive when compared with the lowering gemm-based convolution.

Keywords Convolution · Winograd minimal filtering algorithm · High
performance · Vector intrinsics · SIMD units · Multi-core processors

 * Manuel F. Dolz
 dolzm@uji.es

 Héctor Martínez
 el2mapeh@uco.es

 Adrián Castelló
 adcastel@disca.upv.es

 Pedro Alonso-Jordá
 palonso@upv.es

 Enrique S. Quintana-Ortí
 quintana@disca.upv.es

1 Universitat Jaume I, Castelló de la Plana, Spain
2 Universidad de Córdoba, Córdoba, Spain
3 Universitat Politècnica de València, Valencia, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05088-4&domain=pdf

10590 M. F. Dolz et al.

1 3

1 Introduction

Over the past years, convolutional neural networks (CNNs) have demonstrated
excellent accuracy beyond their traditional application niches in computer vision
and signal processing [1, 2]. This is in part due to the regularisation mechanism
implicit in CNNs, which takes advantage of the hierarchical structure of the data
to (1) avoid overfitting via the application of convolution operators as well as (2)
reduce the arithmetic cost. This type of operator, though, is responsible for a major
fraction of the computational cost required for CNN training and inference [2]. It
is therefore natural that a significant effort has been dedicated to develop and opti-
mise efficient algorithms for this particular computational kernel on almost all cur-
rent processor architectures, from FPGAs (field-programmable gate arrays) to GPUs
(graphics processing units) and multi-core processors.

Among the different methods for the convolution operator, we can list (1) the
direct algorithm, usually implemented as six nested loops around a multiply-and-
add instruction [3]; (2) the lowering (or im2col/im2row-based) approach, which
augments the activation inputs into a matrix in order to cast the operator in terms
of a compute-intensive, cache-friendly general matrix-matrix (gemm) multiplica-
tion [4, 5]; (3) the FFT-based algorithm, which shifts the computation into the fre-
quency domain in order to reduce the arithmetic requirements [6–8]; and (4) the
Winograd-based convolution, which leverages the Winograd minimal filtering algo-
rithm to decrease the arithmetic cost of the convolution [6, 9]. The general view
of these methods and some of their corresponding high-performance implementa-
tions in libraries such as, for example, NVIDIA cuDNN and Intel oneAPI, is that
the best option from the viewpoints of performance and accuracy largely depends on
the parameters that define the convolution, given by the dimensions of the filter and
image, and the number of input images (or batch size).

In this paper, we address the efficient implementation of the Winograd-based con-
volution1, using vector intrinsics, on current general-purpose processors equipped
with SIMD FPUs (single-instruction multiple-data floating-point units). The use
of vector intrinsics for this purpose, instead of “hand-coded” low-level assembly
kernels (with vector instructions), in principle sacrifices some performance. How-
ever, as we demonstrate in this work, it also augments the portability of the solu-
tion thanks to the support offered by current C compilers. In addition, the use of
“high-level” codes with vector intrinsics ease the development of customised deep
learning (DL) solutions via layer fusion. In more detail, in this paper, we make the
following major contributions:

• We describe the implementation of the Winograd-based convolution enhanced
with vector intrinsics for three types of processor architectures, Intel, ARMv8-A
and ARMv8.2-SVE, using 128-bit, 256-bit, 512-bit and Vector-Length Agnos-
tic (VLA) intrinsics, respectively defined in the Intel SSE/AVX2/AVX512 and

1 The source code of the Winograd convolution algorithm is available at https:// github. com/ hpca- uji/
convW inogr ad.

https://github.com/hpca-uji/convWinograd
https://github.com/hpca-uji/convWinograd

10591

1 3

Efficient and portable Winograd convolutions for multi‑core…

ARM NEON/SVE. Our overview of these implementations highlights the simi-
larities and differences between the different architecture-specific vector exten-
sions. Furthermore, it also exposes how current compilers, in combination with
a certain convergence in the vector intrinsics, help to overcome part of the port-
ability challenges.

• We present a “macro-tiling” technique that unrolls loops and fuses individual
tiles of the Winograd algorithm to improve the utilisation of long vector registers
as those present in Intel AVX2 or AVX512 or ARM SVE intrinsics.

• We perform a complete evaluation of the implementations based on Intel SSE/
AVX2/AVX512 and ARM NEON/SVE on three platforms equipped with Intel
Xeon Gold, ARM Cortex-A57 and Fujitsu A64FX multi-core processors. This
experimental analysis includes the baseline and our vectorised/parallel Wino-
grad-based convolutions, an alternative lowering-based convolution algorithm,
and two storage layouts, using two representative CNNs.

This paper extends the work in [10] with (1) the vectorisation of the Winograd
algorithm using Intel AVX2/AVX512 and ARM SVE intrinsics; (2) the design of a
“macro-tiling” technique to fully exploit long vector registers; and (3) the evaluation
of the ARM SVE implementations on a Fujitsu A64FX processor and the evaluation
on other popular CNNs.

The rest of the paper is structured as follows: In Sect. 2, we briefly review the
foundations of the Winograd-based method for the convolution. Next, in Sect. 3, we
describe our “multi-platform” realisation of these algorithms with vector intrinsics
and OpenMP, highlighting the similarities and differences when the target architec-
ture is an Intel processor, an ARM A57 server or a Fujitsu processor A64FX with
SVE architecture. In Sect. 4, we evaluate the performance of the implementations
on the former three types of architectures, and finally, in Sect. 5, we close the paper
with a few remarks and a brief discussion of future work.

2 Convolution operators via the Winograd minimal filtering
algorithm

The Winograd (minimal filtering) algorithm provides a method to obtain an efficient
realisation of a convolution operator [11]. Concretely, given a convolution layer that
applies a filter f to an input image d, consisting of c input channels, in order to pro-
duce an output y, with k channels, the Winograd-based convolution can be expressed
as

where G, B, respectively, denote the transformation matrices for the filter and input
matrices; A is the inverse transformation matrix; fik ,ic is the ic-th channel of the ik-th

(1)yik = AT

�
c∑

ic=1

�
Gfik ,icG

T
�
⊙
�
BTdicB

�
�
A, ik = 1, 2,… , k,

10592 M. F. Dolz et al.

1 3

filter; dic is the ic-th channel of the input image; yik is the ik-th channel of the output;
and ⊙ denotes the Hadamard (or element-wise) multiplication [9].

From a practical point of view, the 2D Winograd-based convolution applies
an r × r filter to a t × t input tile in order to produce an m × m output tile, with
t = m + r − 1 . An hi × wi image is processed by partitioning it into t × t tiles,
with an overlapping factor of r − 1 elements between neighbouring tiles, yielding
⌈hi∕m⌉⌈wi∕m⌉ tiles per channel. In this algorithm, choosing a larger value for m thus
reduces the number of arithmetic operations, unfortunately at the cost of introduc-
ing numerical instability in the computation [12]. For that reason, m is usually set
to be small, with two popular cases being F(m × m, r × r) = F(4 × 4, 3 × 3) and
F(2 × 2, 3 × 3).

According to Winograd’s formula (1), the intermediate Hadamard products are
summed over all c channels to produce the ik-th output channel. However, by prop-
erly scattering each transformed tile of the filter and input along the t × t dimen-
sions, on respective intermediate workspaces U and V, of sizes t × t × k × c and
t × t × c × (⌈hi∕m⌉⌈wi∕m⌉) , both the Hadamard products and the element-wise
summations can be collapsed into t × t independent matrix-matrix multiplications
(also known as a “batched” gemm). Finally, the same coordinates of the resulting
t × t matrices are gathered to form a new t × t tile which is next used to compute the
inverse transform as a m × m tile on the output tensor.

Figure 1 depicts the general workflow of the “batched” gemm variant of
the Winograd algorithm, exposing the four major phases: (1) filter trans-
form; (2) input transform; (3) “batched” gemm; and (4) output inverse trans-
form. In the example, the algorithm receives input and filter tensors,

Fig. 1 Workflow for the Winograd algorithm

10593

1 3

Efficient and portable Winograd convolutions for multi‑core…

respectively, of size c × hi × wi and k × c × r × r , to produce an output tensor of size
k × ho × wo = k × (hi − r + 1) × (wi − r + 1).

In DL applications, the aforementioned 3D input/output tensors are extended with
a batch dimension n, for the number of independent images to process. Such tensors
are usually arranged in memory using either the NCHW layout or the NHWC lay-
out; here, N corresponds to the batch dimension n; HW refers to the input image
height and width (hi × wi) ; C corresponds to the input channels (c); and the physical
layout in the computer memory is a multi-dimensional generalisation of the standard
“row-major” order.

3 High‑performance realisation of the Winograd algorithm using
vector intrinsics and OpenMP

In this section, we discuss several high-performance implementations of the Wino-
grad algorithm, vectorised using Intel SSE/AVX2/AVX-512 and ARM NEON/SVE
intrinsics, and parallelised using OpenMP. The vectorisation efforts for the Wino-
grad algorithm have been applied to phases 1, 2, and 4 from Fig. 1. For brevity,
we describe only the work on phases 1 and 2, corresponding to the filter and input
transforms. Phase 3 can be seamlessly vectorised using a high-performance imple-
mentation of gemm, for example, as that available in libraries such as Intel MKL,
Intel oneAPI, BLIS or OpenBLAS, depending on the target architecture. Finally, we
target single-precision floating-point (FP32) arithmetic.

3.1 Intel SSE intrinsics

Listing 1 shows a fragment of code that implements the filter transform (phase 1) for
F(2 × 2, 3 × 3) using Intel SSE intrinsics (128-bit vector registers). Concretely the
code computes the collection of products in Eq. (1), G fik ,ic G

T , for ik = 1, 2,… , k ,
ic = 1, 2,… , c , as follows:

• The “base vector datatype” is Intel SSE __m128. Arrays of this type (Line 1)
abstract the 128-bit XMM vector registers with capacity for four FP32 numbers.
The high-level operations with this type of variables (Lines 20–23 and 29–32)
thus involve four FP32 values per array entry.

• The filter matrix is accessed via the C macro FROW, whose implementation is
dependent on the type of storage layout being NCHW or NHWC. (For brevity,
not shown.)

• Loading the entries of the filter (Lines 11–13) is carried out via “scalar” opera-
tions. For the NCHW layout though, this can be modified to take advantage of
vector loads (using Intel SSE instruction _mm_loadu_ps, as in Lines 15–17).
Since the filter matrix has 3 (valid) elements per row, but we load 128 bits (i.e. 4
FP32 numbers) with a single SSE instruction, for NCHW the filter array has to
be padded to prevent a potential illegal memory access.

10594 M. F. Dolz et al.

1 3

• This solution incurs extra arithmetic operations in the computation of
Wik ,ic

= G fik ,ic for updating WX[0]–WX[3] (Lines 20–23), as each row has
only 3 valid elements but we use SSE instructions operating on four values.
For each row/vector register, the last entry contains “garbage”. Therefore, it
will not be used in the subsequent multiplication Uik ,ic

= G WT
ik ,ic

.
• The transposition of the matrix stored in WX[0]–WX[3] (Line 26) is done

via the C macro _MM_TRANSPOSE4_PS; see Listing 2. After that operation,
WX[0]–WX[3] contain the columns of the input. Therefore, WX[3] does not
store any valid data.

• The rows of transformed filter tile Uik ,ic
 , stored in UX[0]–UX[3] (Lines

29–32), are accordingly scattered, via the C macro UROW, across the first two
dimensions of U (Lines 35–37).

10595

1 3

Efficient and portable Winograd convolutions for multi‑core…

The vectorisation of the input and output inverse transforms (phases 2 and 4) of
the Winograd algorithm using SSE intrinsics can follow a similar approach to that
presented for the filter transform in Listing 1. For variant F(2 × 2, 3 × 3) , the input
and output tiles of size t × t (with t = m + r − 1 = 2 + 3 − 1 = 4) fit on the 128-bit
vector. However, this strategy will not apply to those variants of the Winograd algo-
rithm with t > 4 , such as F(2 × 2, 5 × 5) . In these cases, we need either (1) to indi-
vidually process the elements that are left out of the 128-bit vector register; or (2) to
leverage Intel AVX2/AVX-512 intrinsics, with registers that can accommodate more
than four FP32 elements, as described in the next section. At this point, it is worth
noting that the filter transform only needs to be computed once, independently of the
number of images to process, and for inference, this can be done offline.

3.2 Intel AVX2/AVX‑512 intrinsics

The vectorisation of phases 1, 2 and 4 of the Winograd algorithm using Intel AVX2/
AVX-512 intrinsics entails re-implementing the codes for each pair (m, r). This is
due to the distinct dimensions and sparsity patterns of the transformation matrices
G, A and B on the m + r − 2 polynomial interpolation points [9]. These re-imple-
mentations comprise, among other details, replacing the original SSE data types __
m128, with Intel AVX2 __m256 or AVX-512 __m512.

Given that the Winograd algorithm should leverage small values of m and r, such
as F(2 × 2, 3 × 3) , F(4 × 4, 3 × 3) , vectorising these phases for 256- or 512-bit vec-
tor registers requires unrolling (up to some degree) the loops iterating over the input
tiles in order to fully exploit such long vector registers. By doing so, this “macro-til-
ing” technique can then process a horizontal (and optionally vertical) block of con-
secutive tiles of the input/output images (or a subset of filters) in a single iteration
so that the macro-tile columns, stored in vector registers, exploit their full length.
Depending on the Winograd variant and phase, the macro-tile can thus accommo-
date a different number of tiles in both the horizontal and vertical axes.

Figure 2 illustrates the macro-tiling technique for the input transform and the
variant F(2 × 2, 3 × 3) . For simplicity, we target Intel AVX2 256-bit SIMD units,
able to operate with up to 8 FP32 numbers. In this code, the application of the
input transform to a macro-tile is split into two sub-operations. The first performs
the multiplication D�

i
= BT Di , where Di is a macro-tile of size ht × wt = 6 × 8 ,

10596 M. F. Dolz et al.

1 3

aggregating a 2 × 3 di,j input tiles of size t × t = 4 × 4 overlapping each other r − 1
rows and columns. By overlapping r − 1 columns between neighbouring tiles, the
number of arithmetic operations is reduced by a factor of 1 − t×wt

t+s×(wt−1)
 , given that

these can then be re-utilised for the tiles that are immediately on the right. Unfor-
tunately, the results related to the r − 1 overlapping rows in Di cannot be re-uti-
lised for the tiles that are immediately below. In this case though, the aggregation
of two rows of tiles in Di yields a square 8 × 8 matrix that is easy to transpose.
The second multiplication VT

i
= BT D�

i

T uses the previously transposed macro-tile
DT

i
 and is computed similarly, with the exception that there are no overlapped col-

umns in the transposed resulting matrix VT
i

 . This macro-tiling technique can be
generalised for any other values of (m, r) while taking advantage of long vector
registers. However, an implementation using Intel AVX2/AVX-512 has to be
manually customised to operate with the appropriate number of elements, which
is contrary to the focus on code portability of this work.

Fig. 2 Example of the Winograd macro-tiling technique for the input transform V
i
= B

T
D

i
B via the vari-

ant F(2 × 2, 3 × 3) and using Intel AVX2 256-bit registers

10597

1 3

Efficient and portable Winograd convolutions for multi‑core…

10598 M. F. Dolz et al.

1 3

Listing 3 shows a excerpt of code for the Winograd variant F(2 × 2, 3 × 3) for
the input transform, implementing the macro-tiling technique using Intel AVX-512
intrinsics. In that code, the macro-tile of size 10 × 16 aggregates 4 × 7 input tiles of
size 4 × 4 . Furthermore:

• The “base vector datatype” corresponds to Intel AVX-512 __m512. The arrays
of this type (Line 1) target the 512-bit ZMM vector registers with capacity for
16 FP32 numbers. The high-level operations with this type of variables (Lines
36–39 and 53–56) thus involve 16 FP32 values per array entry.

• The input matrix is accessed via the C macro DROW, whose implementation is
dependent on the type of storage layout being NCHW or NHWC. The loops
indexed by i and j iterating over the macro-tile only access “valid” image entries,
thus avoiding the need for explicitly padding the input images with zeros.

• Loading the entries of the macro-tile (Line 32) is carried out via “scalar” opera-
tions. For the NCHW layout, this can be modified to take advantage of vector
loads (using the Intel AVX-512 instruction _mm512_loadu_ps).

• The loop in lines 35–40 performs the multiplication D�
i
= HT Di . For that pur-

pose, it iterates over the vertical axis to uncollapse the r − 1 overlapped rows in
the resulting vectors WX, containing the macro-tile D′

i
 of size 16 × 16.

• The transposition of the matrix stored in the array WX (Line 43) is done via the C
macro _MM_TRANSPOSE16_PS. (Omitted for brevity).

• The nested loops in Lines 52–65 perform the multiplication VT
i
= BT D�

i

T . After
processing a row of tiles within the macro-tile, the result stored in the four entries
of the array UX is accordingly scattered across the entries of the workspace U.

As part of this work, we also vectorised the output transform using the macro-tiling
technique. However, due to the more complex access pattern for the result tensor,
this technique did not render any performance improvement. In consequence, our
Intel AVX2- and AVX-512-based implementations only leverage the macro-tiling
technique for the filter and input transform phases.

3.3 ARM NEON intrinsics

The code for the application of the filters vectorised using Intel SSE intrinsics can
be easily modified to utilise ARM NEON intrinsics instead. Concretely, the follow-
ing minor changes have to be added:

10599

1 3

Efficient and portable Winograd convolutions for multi‑core…

• The base vector datatype for ARM NEON is float32x4_t.
• The vector loads and stores are, respectively, done via the NEON intrinsics

vld1q_f32 and vst1q_f32.
• The transposition macro in the ARM case is an inlined function, given in List-

ing 4, that uses the instructions vtrn2q_f64 and vtrnq_f32 to transpose the
contents of W[0]–W[3].

3.4 ARM SVE intrinsics

The migration of the ARM NEON code to employ ARM SVE VLA intrinsics is not
straightforward and requires rewriting the codes with some aspects in mind:

• It is not possible to declare SVE arrays with the vector datatype svfloat32_t,
since their size is not known at compile time. This forces to rewrite and unroll
some loops of the algorithm in order to mimic the behaviour of the NEON codes,
resulting in more verbose implementations.

• The basic arithmetic operators are not overloaded by default, since the intrinsics
require the use of masks (predicates), which have to be declared and initialised in
advance. This further increases the code verbosity and diminishes interpretabil-
ity.

10600 M. F. Dolz et al.

1 3

10601

1 3

Efficient and portable Winograd convolutions for multi‑core…

Listing 5 shows an excerpt of code for the filter transform phase using ARM SVE
intrinsics. Compared with its ARM NEON counterpart, the code presents the fol-
lowing differences:

• The filter load has is performed in a temporary variable (F_tmp) as the sub-
scripting operator ([]) is also not overloaded by default (Lines 15–17). This
modification is required for the NHWC layout, as in that case the filter rows are
not contiguous in memory. Afterwards, the filter is loaded into the SVE registers
via the intrinsic svld1 with the predicate pred3 (Lines 19–21), which was
previously initialised via svwhilelt_v32_u32 to operate only with the first
3 elements.

• The multiplication Wik
= G fik ,ic is performed by steps, as the basic operators are

not available for svefloat32_t (Lines 29–36). The same occurs for the multi-
plication Uik

= G Wik
 (Lines 42–49).

• The transposition of the matrix stored in W0–W3 in Line 29 is performed using a
specialised in-house C macro; see Listing 6.

• The contents of registers U0–U3 are stored via svst1_f32, with the pred4
predicate, into the temporary matrix U_tmp (Lines 52–55). Finally, this matrix
is copied to the corresponding entries of U (Lines 58–60).

In general, programming with SVE intrinsics has the advantage of generating a
VLA code which does not need to be rewritten for other SVE architectures of dif-
ferent vector length. For the case of the Winograd algorithm, however, this does not
bring major advantages as the vector length code strictly depends on the Winograd
variant.

3.5 Exploiting thread‑level parallelism using OpenMP

In addition to the introduction of vector intrinsics, the four phases of the algorithm
can be also parallelised using OpenMP, as the individual kernels involved by the
transform matrices for the filter/input/output tiles, as well as the t × t gemm, present
no data dependencies between them. To augment the degree of thread-level parallel-
ism, we use the OpenMP collapse(2) clause to fuse the first two loops in each
phase: across the k and c-dimensions in phase 1; the n and c-dimensions in phase 2;

10602 M. F. Dolz et al.

1 3

the two loops iterating over t in phase 3; and the n and k- dimensions in phase 4.
This is shown, for example, in Listing 1 (Lines 6–7) for the first phase. Also, the
t × t gemm kernels in phase 3 (see Fig. 1) are executed serially.2 Finally, we added
the OpenMP clause if to extract thread-level parallelism only when the number of
“collapsed” iterations is larger than 1.

4 Experimental results

In this section, we evaluate the performance of our implementations of the Win-
ograd-based convolution on three different platforms, using two well-known DL
models, for both the NCHW and NHWC data layouts. For comparison purposes, we
also include the Lowering method (also referred to as im2col/im2row + gemm) [4,
13] in the evaluation. All experiments are performed using FP32 arithmetic.

4.1 Hardware setup

For the experimental analysis, we employ the following computer platforms:

• Sky: This server comprises two Intel Xeon Gold (Skylake) 6126 processors (24
cores in total) running at 2.6 GHz and sharing 64 GiB of DDR4 RAM.

• NaNo: This corresponds to a low-power NVIDIA Jetson Nano board, equipped
with a quad-core ARMv8-A Cortex-A57 processor running at 1.5 GHz and
4 GiB of RAM.

• a64FX: This is a Fujitsu PRIMEHPC FX1000 node equipped with a 48+4-
core Fujitsu a64FX processor (ARMv8.2-SVE) running at 2.2 GHz. The cores
of the node are grouped into four Core Memory Groups (CMGs), each with 12
compute cores plus an additional assistant core for the operating system. This
machine contains 32 GiB of HBM2 memory.

In the experiments, we set the largest number of OpenMP threads to match the num-
ber of cores for NaNo (4), the cores of a single socket for Sky (12), and the cores of a
single CMG for a64FX (12 as well).

4.2 DL framework, libraries, compilation flags, and parallelisation

To evaluate our routines for the Winograd-based convolution, we bundled them into
a dynamic C library and integrated the result with PyDTNN, a lightweight frame-
work implemented in Python for DL training and inference [14, 15]. For this pur-
pose, we developed a binding module that internally calls the Winograd functions
via the ctypes v1.1.0 Python library. This module interacts with the PyDTNN

2 Each gemm kernel in our implementation of the Winograd algorithm is executed sequentially to avoid
the exploitation of nested parallelism by setting to 1 the OMP_MAX_ACTIVE_LEVELS environment
variable.

10603

1 3

Efficient and portable Winograd convolutions for multi‑core…

layer class Conv2D and allows selecting the Winograd variant according to the fil-
ter size requested by the convolutional layer encountered in a given neural network
model.

The compilation of the Winograd library is carried out using gcc v10.2.0 with
the optimisation flags -O3 -fopenmp for all three platforms in addition to -mavx
-mfma for Sky. The t × t gemm kernels in phase 3 are computed via Intel MKL
v2022.1.0 (for Sky) and BLIS v0.8.1 (for NaNo and a64FX).

Alternatively, the Conv2D layers in PyDTNN can be also processed via the
variant im2col transform + gemm of Lowering for the NCHW layout, or the vari-
ant im2row + gemm of Lowering for NHWC. The im2col/im2row transforms are
implemented in PyDTNN using Cython v0.29.24, and parallelised using OpenMP.
The implementation of gemm is provided by Numpy v1.23.0rc1, linked against Intel
MKL for the Sky or BLIS for NaNo.

4.3 Testbed

For the evaluation, we measure the inference time spent by PyDTNN on the con-
volutional layers present in two popular DL models: VGG16 [16] and ResNet-50
(v1.5) [2] for the ImageNet dataset in both cases [17]. In our analysis, we only eval-
uate the convolutional layers using filters of size 3 × 3 with the Winograd variant
F(2 × 2, 3 × 3) . For comparison purposes, we also measure the execution time of
the Lowering approach using the same convolutional layers. The number of images/
batch size was set to n = 1 in order to reflect the single-stream scenario of the ML
Commons benchmark for inference on the edge.

4.4 SIMD vectorisation and parallel scalability

In this section, we individually assess the benefits of the SIMD vectorisation and
OpenMP loop parallelisation for the Winograd algorithms on the three selected
multi-core platforms and the two CNNs using both data layouts.

Figure 3 shows the speedup obtained when vectorising the Winograd algorithms
via SIMD intrinsics with respect to a baseline routine that performs the same opera-
tions with no vector instructions. For this initial experiment, all codes run on a sin-
gle core. Also, for brevity, we only use the AVX-512 intrinsics for Sky. As shown in
the figure, the acceleration gained for Sky ranges between 1 and 1.2; while for NaNo
and a64FX, the highest speedup factors are 1.15 and 1.3, respectively. These gains
are modest given mainly to the fact that we are vectorising only phase 1 of the algo-
rithm. For instance, the speedup for layer #63 of ResNet-50 on Sky using the NCHW
layout is 1.2, but phase 1 represents 41.04%. Therefore, we could have expected a
maximum speedup of 1.2 ⋅ 0.4104

1−1.2⋅(1−0.4104)
≈ 1.68 for this phase, according to Amdahl’s

law.
Figure 4 reports the parallel speedup of the vectorised Winograd variants when set-

ting the number of OpenMP threads to 4, 12 for Sky/a64FX, and 2, 4 for NaNo. With
regards to Sky, the speedup achieved using 4 threads is, on average, close to 3.5 for
VGG16 and about 3 for ResNet-50; when using 12 threads the speedup remains below

10604 M. F. Dolz et al.

1 3

7. Focusing on NaNo, the speedup for 2 threads is close to its maximum efficiency,
while for 4 threads is below 3.5 in most cases. The scaling for a64FX is slightly higher
than for Sky, with speedups for 4 threads close to the theoretical peak, and in the range
7–10 for 12 threads. All in all, the observed speedups are humble when the number of
threads is high. However, this is due to the limited dimension of the problem (strong
scaling).

In a separate experiment on Sky, we also analysed the scalability of the Winograd
algorithm leveraging the cblas_dgemm_batch routine from Intel MKL to perform
the t × t independent matrix multiplications of phase 3. The results using 12 threads
revealed speedups between 1.40 and 2.30 for VGG16 versus speedups between 3.5

Fig. 3 Baseline versus vectorised Winograd algorithm speedups for the aggregated inference time of
the VGG16 (left) and ResNet-50 (right) convolution layers on the Sky (top), a64FX (middle) and NaNo
(bottom) platforms

10605

1 3

Efficient and portable Winograd convolutions for multi‑core…

and 5.6 for ResNet-50 in favour of the version that uses the OpenMP pragma (with the
collapse(2) clause) to parallelise the two for nested loops of such phase 3.

4.5 Performance evaluation and comparison analysis

4.5.1 Results on the Intel Skylake

Figure 5 reports the inference execution time of the convolutional layers using the Low-
ering method and the Winograd algorithm vectorised using SSE, AVX2 and AVX-512
intrinsics for both data layouts on the Sky platform.

Fig. 4 Winograd and Lowering algorithms OpenMP speedups for the aggregated inference time of the
VGG16 (left) and ResNet-50 (right) convolution layers on the Sky (top), a64FX (middle) and a64FX
(bottom) platforms with respect to the sequential algorithm

10606 M. F. Dolz et al.

1 3

The experiments show that, for VGG16, almost all convolutional operators appear-
ing in the last layers of VGG16 (3–29), using either NCHW or NHWC and SSE, AVX2
or AVX-512 deliver higher performance than the Lowering approach. This is due to
the reduction of the arithmetic cost implicit in the Winograd algorithm (potentially at
the expense of less accurate results). Concerning the data layout we observe that, in
general, NCHW offers higher performance than NHWC. This is due to the algorithm
design, which first processes individual tiles for specific channels, accessing data con-
tiguously according to NCHW. Regarding the use of SSE, AVX2 and AVX-512, we
detect slight smaller execution times for AVX2 and AVX-512, with no clear winner
between them.

Focusing on ResNet-50, we can highlight similar results: the Winograd algorithm
provides, for almost convolutional layers (53–167), higher performance figures than the
Lowering method. For the first layers (9–31), however, the Winograd algorithm using
the NHWC format provides slightly less competitive results. This is due to the less effi-
cient memory accesses performed by this algorithm for the NHWC data layout plus
the convolutional parameters of these layers. We can also observe that, for the rest of

Fig. 5 Winograd versus Lowering execution time of the VGG16 (top) and ResNet-50 (bottom) convolu-
tion layers on the Sky platform using 12 threads

10607

1 3

Efficient and portable Winograd convolutions for multi‑core…

the layers, the AVX2 and AVX-512 Winograd implementations deliver superior perfor-
mance than SSE, with AVX2 providing slightly lower execution times than AVX-512.

4.5.2 Results on the ARM Cortex A57

Figure 6 reports the inference execution time of the convolutional layers using the
Lowering method and the Winograd algorithm vectorised using ARM NEON intrin-
sics for both data layouts on the NaNo platform.

The experiments with the VGG16 convolutional layers show that the Lowering
approach outperforms Winograd for layers 1–6, while for layers 8–11 the execu-
tion time is on pair. For the rest of the layers, from 13 on, the Lowering approach
is slower than the Winograd algorithm. We attribute these time differences to the
parameters of the convolutional layers k and c, which in some cases favour the
Lowering versus the Winograd approach. For this reason, there is no clear winner
algorithm for all layers and the selection should be made carefully according to the
convolution parameters (see [18]). In contrast with the experiments with the Sky
platform, for NaNo there are very small differences between the NCHW and NHWC
data layouts.

Concerning the convolutional layers of ResNet-50, we observe that the Wino-
grad algorithm outperforms the Lowering approach for all layers (possibly, at the
expense of less accurate results). In this case, however, the NCHW format pro-
vides slightly lower execution times than NHWC. For the Lowering approach,

Fig. 6 Winograd versus Lowering execution time of the VGG16 (top) and ResNet-50 (bottom) convolu-
tion layers on the NaNo platform using 4 threads

10608 M. F. Dolz et al.

1 3

the performance difference between these two data layouts is more dependent on
the convolution parameters.

4.5.3 Results on the Fujitsu A64FX

Figure 7 reports the inference execution time of the convolutional layers using
the Lowering method and the Winograd algorithm vectorised using ARM SVE
intrinsics for both data layouts on the a64FX processor.

For VGG16, we observe that the Lowering method offers a significant advan-
tage for the first three convolution layers of VGG16; however, for the remaining
layers, the Winograd algorithm is a better option. For ResNet-50, the Winograd-
based convolution is always the best option for both data layouts. In any case, the
improvements of this algorithm mainly depend on the input and filter sizes.

We also detect differences between the two data layouts, with NCHW being
more competitive than NHWC. These differences are due to the design of the
Winograd algorithm, which first processes the individual tiles. A more efficient
version of this algorithm would require a complete reformulation of the imple-
mentation to process first the tiles on the channel dimension, according to the
storage of data in the NHWC layout.

Fig. 7 Winograd versus Lowering execution time of the VGG16 (top) and ResNet-50 (bottom) convolu-
tion layers on the a64FX platform using 12 threads

10609

1 3

Efficient and portable Winograd convolutions for multi‑core…

5 Concluding remarks

We have presented a collection of multi-threaded and vectorised implementations of
the convolution operator, via the Winograd minimal filtering algorithm, that are port-
able across modern target architectures from Intel, ARM and Fujitsu. This is attained via
the use of (1) the OpenMP standard for the multi-threaded parallelisation; (2) a reduced
set of architecture-specific vector intrinsics (SSE/AVX2/AVX-512 for Intel and NEON/
SVE for ARM) that hint the prelude towards a future common interface; and (3) com-
piler support for high-level arithmetic operations involving vector registers. In addition,
throughout the work, we have discussed thread-level and vectorisation considerations
and opportunities for the different phases of the Winograd algorithm.

The experimental results for three state-of-the-art platforms, equipped with
SIMD-enabled Intel, ARM and Fujitsu multi-core processors, show that our paral-
lel and vectorised Winograd-based implementations moderately improve the perfor-
mance with respect to the baseline versions. Also, they deliver competitive perfor-
mance compared with the Lowering approach on the three platforms.

As future work, we plan to extend our study of vector intrinsics to other DL
kernels, including the FFT convolution, as well as to target layer fusion and auto-
matic generation of vectorised code to gain a more complete understanding of
this procedure.

Acknowledgements We thank the Barcelona Supercomputing Center for granting the access to the
MareNostrum 4 CTE-ARM cluster based on Fujitsu FX1000 machines (with A64FX processors) where
the developments and tests were performed.

Author Contributions ESQ-O and MFD wrote the main manuscript text. MFD and HM implemented
the codes. HM prepared and executed all the experiments on the computing platforms. PA-J prepared
figures 5–7. All authors reviewed the manuscript.

Funding Information Open Access funding provided thanks to the CRUE-CSIC agreement with Springer
Nature. This research was funded by Project PID2020-113656RB-C21/C22 supported by MCIN/
AEI/10.13039/501100011033. Manuel F. Dolz was also supported by the Plan Gen–T grant CDEI-
GENT/2018/014 of the Generalitat Valenciana. Héctor Martínez is a POSTDOC_21_00025 fellow
supported by Junta de Andalucía. Adrián Castelló is a FJC2019-039222-I fellow supported by MCIN/
AEI/10.13039/501100011033.

Data Availability The ImageNet dataset used for the current study is publicly available from the web. See
https:// www. image- net. org/.

Declarations

Conflict of interest The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

https://www.image-net.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

10610 M. F. Dolz et al.

1 3

References

 1. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu M-L, Chen S-C, Iyengar SS (2018) A sur-
vey on deep learning: Algorithms, techniques, and applications. ACM Comput Surv 51(5):92:1-92:36.
https:// doi. org/ 10. 1145/ 32341 50

 2. Sze V, Chen Y-H, Yang T-J, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and
survey. Proc IEEE 105(12):2295–2329

 3. Zhang J, Franchetti F, Low TM (2018) High performance zero-memory overhead direct convolutions.
In: Proceedings of the 35th International Conference on Machine Learning—ICML, vol. 80, pp.
5776–5785

 4. Chellapilla K, Puri S, Simard P (2006) High performance convolutional neural networks for document
processing. In: International workshop on frontiers in handwriting recognition

 5. Georganas E, Avancha S, Banerjee K, Kalamkar D, Henry G, Pabst H, Heinecke A (2018) Anatomy of
high-performance deep learning convolutions on SIMD architectures. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage, and Analysis, ser. SC ’18.
IEEE Press

 6. Zlateski A, Jia Z, Li K, Durand F (2019) The anatomy of efficient FFT and Winograd convolutions on
modern CPUs. In: Proceedings of the ACM International Conference on Supercomputing, ser. ICS ’19.
New York, NY, USA: Association for Computing Machinery, pp 414–424. https:// doi. org/ 10. 1145/
33303 45. 33303 82

 7. Wang Q, Li D, Huang X, Shen S, Mei S, Liu J (2020) Optimizing FFT-based convolution on ARMv8
multi-core CPUs. In: Malawski M, Rzadca K (eds) Euro-Par 2020: parallel processing. Springer, Cham,
pp 248–262

 8. Zlateski A, Jia Z, Li K, Durand F (2018) FFT convolutions are faster than Winograd on modern CPUs,
here is why

 9. Lavin A, Gray S (2016) Fast algorithms for convolutional neural networks. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp 4013–4021. https:// doi. org/ 10. 1109/ CVPR.
2016. 435

 10. Dolz MF, Castelló A, Quintana-Ortí ES (2022) Towards portable realizations of Winograd-based con-
volution with vector intrinsics and OpenMP. In: 2022 30th Euromicro International Conference on Par-
allel, Distributed and Network-based Processing (PDP), pp 39–46

 11. Winograd S (1980) Arithmetic complexity of computations. Society for Industrial and Applied Math-
ematics, Philadelphia

 12. Barabasz B, Anderson A, Soodhalter KM, Gregg D (2020) Error analysis and improving the accuracy
of Winograd convolution for deep neural networks. ACM Trans Math Softw. https:// doi. org/ 10. 1145/
34123 80

 13. Barrachina S, Dolz MF, San Juan P, Quintana-Ortí ES (2022) Efficient and portable GEMM-based con-
volution operators for deep neural network training on multicore processors. J Parallel Distrib Comput
167(C):240–254

 14. Barrachina S, Castelló A, Catalan M, Dolz MF, Mestre J (2021) PyDTNN: a user-friendly and extensi-
ble framework for distributed deep learning. J Supercomput 77:09

 15. Barrachina S, Castelló A, Catalán M, Dolz MF, Mestre JI (2021) A flexible research-oriented frame-
work for distributed training of deep neural networks. In: 2021 IEEE International Parallel and Distrib-
uted Processing Symposium Workshops (IPDPSW), pp 730–739

 16. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv: 1409. 1556

 17. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Proceedings of the 25th International Conference on Neural Information Processing Sys-
tems - Volume 1, ser. NIPS’12. Curran Associates Inc., USA, pp 1097–1105. http://dl.acm.org/citation.
cfm?id=2999134.2999257

 18. Barrachina S, Castelló A, Dolz MF, Tomás A (2022) Best of: an online implementation selector for the
training and inference of deep neural networks. J Supercomput

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1145/3234150
https://doi.org/10.1145/3330345.3330382
https://doi.org/10.1145/3330345.3330382
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1109/CVPR.2016.435
https://doi.org/10.1145/3412380
https://doi.org/10.1145/3412380
http://arxiv.org/abs/1409.1556

	Efficient and portable Winograd convolutions for multi-core processors
	Abstract
	1 Introduction
	2 Convolution operators via the Winograd minimal filtering algorithm
	3 High-performance realisation of the Winograd algorithm using vector intrinsics and OpenMP
	3.1 Intel SSE intrinsics
	3.2 Intel AVX2AVX-512 intrinsics
	3.3 ARM NEON intrinsics
	3.4 ARM SVE intrinsics
	3.5 Exploiting thread-level parallelism using OpenMP

	4 Experimental results
	4.1 Hardware setup
	4.2 DL framework, libraries, compilation flags, and parallelisation
	4.3 Testbed
	4.4 SIMD vectorisation and parallel scalability
	4.5 Performance evaluation and comparison analysis
	4.5.1 Results on the Intel Skylake
	4.5.2 Results on the ARM Cortex A57
	4.5.3 Results on the Fujitsu A64FX

	5 Concluding remarks
	Acknowledgements
	References

