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Abstract
We take a step forward towards developing high-performance codes for the convo-
lution operator, based on the Winograd algorithm, that are easy to customise for 
general-purpose processor architectures. In our approach, augmenting the portability 
of the solution is achieved via the introduction of vector instructions from Intel SSE/
AVX2/AVX512 and ARM NEON/SVE to exploit the single-instruction multiple-
data capabilities of current processors as well as OpenMP pragmas to exploit multi-
threaded parallelism. While this comes at the cost of sacrificing a fraction of the 
computational performance, our experimental results on three distinct processors, 
with Intel Xeon Skylake, ARM Cortex A57 and Fujitsu A64FX processors, show 
that the impact is affordable and still renders a Winograd-based solution that is com-
petitive when compared with the lowering gemm-based convolution.
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1 Introduction

Over the past years, convolutional neural networks (CNNs) have demonstrated 
excellent accuracy beyond their traditional application niches in computer vision 
and signal processing  [1, 2]. This is in part due to the regularisation mechanism 
implicit in CNNs, which takes advantage of the hierarchical structure of the data 
to (1) avoid overfitting via the application of convolution operators as well as (2) 
reduce the arithmetic cost. This type of operator, though, is responsible for a major 
fraction of the computational cost required for CNN training and inference  [2]. It 
is therefore natural that a significant effort has been dedicated to develop and opti-
mise efficient algorithms for this particular computational kernel on almost all cur-
rent processor architectures, from FPGAs (field-programmable gate arrays) to GPUs 
(graphics processing units) and multi-core processors.

Among the different methods for the convolution operator, we can list (1) the 
direct algorithm, usually implemented as six nested loops around a multiply-and-
add instruction  [3]; (2) the lowering (or im2col/im2row-based) approach, which 
augments the activation inputs into a matrix in order to cast the operator in terms 
of a compute-intensive, cache-friendly general matrix-matrix (gemm) multiplica-
tion [4, 5]; (3) the FFT-based algorithm, which shifts the computation into the fre-
quency domain in order to reduce the arithmetic requirements  [6–8]; and (4) the 
Winograd-based convolution, which leverages the Winograd minimal filtering algo-
rithm to decrease the arithmetic cost of the convolution  [6, 9]. The general view 
of these methods and some of their corresponding high-performance implementa-
tions in libraries such as, for example, NVIDIA cuDNN and Intel oneAPI, is that 
the best option from the viewpoints of performance and accuracy largely depends on 
the parameters that define the convolution, given by the dimensions of the filter and 
image, and the number of input images (or batch size).

In this paper, we address the efficient implementation of the Winograd-based con-
volution1, using vector intrinsics, on current general-purpose processors equipped 
with SIMD FPUs (single-instruction multiple-data floating-point units). The use 
of vector intrinsics for this purpose, instead of “hand-coded” low-level assembly 
kernels (with vector instructions), in principle sacrifices some performance. How-
ever, as we demonstrate in this work, it also augments the portability of the solu-
tion thanks to the support offered by current C compilers. In addition, the use of 
“high-level” codes with vector intrinsics ease the development of customised deep 
learning (DL) solutions via layer fusion. In more detail, in this paper, we make the 
following major contributions:

• We describe the implementation of the Winograd-based convolution enhanced 
with vector intrinsics for three types of processor architectures, Intel, ARMv8-A 
and ARMv8.2-SVE, using 128-bit, 256-bit, 512-bit and Vector-Length Agnos-
tic (VLA) intrinsics, respectively defined in the Intel SSE/AVX2/AVX512 and 

1 The source code of the Winograd convolution algorithm is available at https:// github. com/ hpca- uji/ 
convW inogr ad.

https://github.com/hpca-uji/convWinograd
https://github.com/hpca-uji/convWinograd
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ARM NEON/SVE. Our overview of these implementations highlights the simi-
larities and differences between the different architecture-specific vector exten-
sions. Furthermore, it also exposes how current compilers, in combination with 
a certain convergence in the vector intrinsics, help to overcome part of the port-
ability challenges.

• We present a “macro-tiling” technique that unrolls loops and fuses individual 
tiles of the Winograd algorithm to improve the utilisation of long vector registers 
as those present in Intel AVX2 or AVX512 or ARM SVE intrinsics.

• We perform a complete evaluation of the implementations based on Intel SSE/
AVX2/AVX512 and ARM NEON/SVE on three platforms equipped with Intel 
Xeon Gold, ARM Cortex-A57 and Fujitsu A64FX multi-core processors. This 
experimental analysis includes the baseline and our vectorised/parallel Wino-
grad-based convolutions, an alternative lowering-based convolution algorithm, 
and two storage layouts, using two representative CNNs.

This paper extends the work in  [10] with (1) the vectorisation of the Winograd 
algorithm using Intel AVX2/AVX512 and ARM SVE intrinsics; (2) the design of a 
“macro-tiling” technique to fully exploit long vector registers; and (3) the evaluation 
of the ARM SVE implementations on a Fujitsu A64FX processor and the evaluation 
on other popular CNNs.

The rest of the paper is structured as follows: In Sect. 2, we briefly review the 
foundations of the Winograd-based method for the convolution. Next, in Sect. 3, we 
describe our “multi-platform” realisation of these algorithms with vector intrinsics 
and OpenMP, highlighting the similarities and differences when the target architec-
ture is an Intel processor, an ARM A57 server or a Fujitsu processor A64FX with 
SVE architecture. In Sect. 4, we evaluate the performance of the implementations 
on the former three types of architectures, and finally, in Sect. 5, we close the paper 
with a few remarks and a brief discussion of future work.

2  Convolution operators via the Winograd minimal filtering 
algorithm

The Winograd (minimal filtering) algorithm provides a method to obtain an efficient 
realisation of a convolution operator [11]. Concretely, given a convolution layer that 
applies a filter f to an input image d, consisting of c input channels, in order to pro-
duce an output y, with k channels, the Winograd-based convolution can be expressed 
as

where G, B, respectively, denote the transformation matrices for the filter and input 
matrices; A is the inverse transformation matrix; fik ,ic is the ic-th channel of the ik-th 

(1)yik = AT

�
c∑

ic=1

�
Gfik ,icG

T
�
⊙
�
BTdicB

�
�
A, ik = 1, 2,… , k,
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filter; dic is the ic-th channel of the input image; yik is the ik-th channel of the output; 
and ⊙ denotes the Hadamard (or element-wise) multiplication [9].

From a practical point of view, the 2D Winograd-based convolution applies 
an r × r filter to a t × t input tile in order to produce an m × m output tile, with 
t = m + r − 1 . An hi × wi image is processed by partitioning it into t × t tiles, 
with an overlapping factor of r − 1 elements between neighbouring tiles, yielding 
⌈hi∕m⌉⌈wi∕m⌉ tiles per channel. In this algorithm, choosing a larger value for m thus 
reduces the number of arithmetic operations, unfortunately at the cost of introduc-
ing numerical instability in the computation [12]. For that reason, m is usually set 
to be small, with two popular cases being F(m × m, r × r) = F(4 × 4, 3 × 3) and 
F(2 × 2, 3 × 3).

According to Winograd’s formula  (1), the intermediate Hadamard products are 
summed over all c channels to produce the ik-th output channel. However, by prop-
erly scattering each transformed tile of the filter and input along the t × t dimen-
sions, on respective intermediate workspaces U and V, of sizes t × t × k × c and 
t × t × c × (⌈hi∕m⌉⌈wi∕m⌉) , both the Hadamard products and the element-wise 
summations can be collapsed into t × t independent matrix-matrix multiplications 
(also known as a “batched” gemm). Finally, the same coordinates of the resulting 
t × t matrices are gathered to form a new t × t tile which is next used to compute the 
inverse transform as a m × m tile on the output tensor.

Figure  1 depicts the general workflow of the “batched” gemm variant of 
the Winograd algorithm, exposing the four major phases: (1) filter trans-
form; (2) input transform; (3) “batched” gemm; and (4) output inverse trans-
form. In the example, the algorithm receives input and filter tensors, 

Fig. 1  Workflow for the Winograd algorithm
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respectively, of size c × hi × wi and k × c × r × r , to produce an output tensor of size 
k × ho × wo = k × (hi − r + 1) × (wi − r + 1).

In DL applications, the aforementioned 3D input/output tensors are extended with 
a batch dimension n, for the number of independent images to process. Such tensors 
are usually arranged in memory using either the NCHW layout or the NHWC lay-
out; here, N corresponds to the batch dimension n; HW refers to the input image 
height and width ( hi × wi) ; C corresponds to the input channels (c); and the physical 
layout in the computer memory is a multi-dimensional generalisation of the standard 
“row-major” order.

3  High‑performance realisation of the Winograd algorithm using 
vector intrinsics and OpenMP

In this section, we discuss several high-performance implementations of the Wino-
grad algorithm, vectorised using Intel SSE/AVX2/AVX-512 and ARM NEON/SVE 
intrinsics, and parallelised using OpenMP. The vectorisation efforts for the Wino-
grad algorithm have been applied to phases 1, 2, and 4 from Fig.  1. For brevity, 
we describe only the work on phases 1 and 2, corresponding to the filter and input 
transforms. Phase 3 can be seamlessly vectorised using a high-performance imple-
mentation of gemm, for example, as that available in libraries such as Intel MKL, 
Intel oneAPI, BLIS or OpenBLAS, depending on the target architecture. Finally, we 
target single-precision floating-point (FP32) arithmetic.

3.1  Intel SSE intrinsics

Listing 1 shows a fragment of code that implements the filter transform (phase 1) for 
F(2 × 2, 3 × 3) using Intel SSE intrinsics (128-bit vector registers). Concretely the 
code computes the collection of products in Eq. (1), G fik ,ic G

T , for ik = 1, 2,… , k , 
ic = 1, 2,… , c , as follows:

• The “base vector datatype” is Intel SSE __m128. Arrays of this type (Line 1) 
abstract the 128-bit XMM vector registers with capacity for four FP32 numbers. 
The high-level operations with this type of variables (Lines 20–23 and 29–32) 
thus involve four FP32 values per array entry.

• The filter matrix is accessed via the C macro FROW, whose implementation is 
dependent on the type of storage layout being NCHW or NHWC. (For brevity, 
not shown.)

• Loading the entries of the filter (Lines 11–13) is carried out via “scalar” opera-
tions. For the NCHW layout though, this can be modified to take advantage of 
vector loads (using Intel SSE instruction _mm_loadu_ps, as in Lines 15–17). 
Since the filter matrix has 3 (valid) elements per row, but we load 128 bits (i.e. 4 
FP32 numbers) with a single SSE instruction, for NCHW the filter array has to 
be padded to prevent a potential illegal memory access.
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• This solution incurs extra arithmetic operations in the computation of 
Wik ,ic

= G fik ,ic for updating WX[0]–WX[3] (Lines 20–23), as each row has 
only 3 valid elements but we use SSE instructions operating on four values. 
For each row/vector register, the last entry contains “garbage”. Therefore, it 
will not be used in the subsequent multiplication Uik ,ic

= G WT
ik ,ic

.
• The transposition of the matrix stored in WX[0]–WX[3] (Line 26) is done 

via the C macro _MM_TRANSPOSE4_PS; see Listing 2. After that operation, 
WX[0]–WX[3] contain the columns of the input. Therefore, WX[3] does not 
store any valid data.

• The rows of transformed filter tile Uik ,ic
 , stored in UX[0]–UX[3] (Lines 

29–32), are accordingly scattered, via the C macro UROW, across the first two 
dimensions of U (Lines 35–37).
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The vectorisation of the input and output inverse transforms (phases 2 and 4) of 
the Winograd algorithm using SSE intrinsics can follow a similar approach to that 
presented for the filter transform in Listing 1. For variant F(2 × 2, 3 × 3) , the input 
and output tiles of size t × t (with t = m + r − 1 = 2 + 3 − 1 = 4 ) fit on the 128-bit 
vector. However, this strategy will not apply to those variants of the Winograd algo-
rithm with t > 4 , such as F(2 × 2, 5 × 5) . In these cases, we need either (1) to indi-
vidually process the elements that are left out of the 128-bit vector register; or (2) to 
leverage Intel AVX2/AVX-512 intrinsics, with registers that can accommodate more 
than four FP32 elements, as described in the next section. At this point, it is worth 
noting that the filter transform only needs to be computed once, independently of the 
number of images to process, and for inference, this can be done offline.

3.2  Intel AVX2/AVX‑512 intrinsics

The vectorisation of phases 1, 2 and 4 of the Winograd algorithm using Intel AVX2/
AVX-512 intrinsics entails re-implementing the codes for each pair (m, r). This is 
due to the distinct dimensions and sparsity patterns of the transformation matrices 
G, A and B on the m + r − 2 polynomial interpolation points  [9]. These re-imple-
mentations comprise, among other details, replacing the original SSE data types __
m128, with Intel AVX2 __m256 or AVX-512 __m512.

Given that the Winograd algorithm should leverage small values of m and r, such 
as F(2 × 2, 3 × 3) , F(4 × 4, 3 × 3) , vectorising these phases for 256- or 512-bit vec-
tor registers requires unrolling (up to some degree) the loops iterating over the input 
tiles in order to fully exploit such long vector registers. By doing so, this “macro-til-
ing” technique can then process a horizontal (and optionally vertical) block of con-
secutive tiles of the input/output images (or a subset of filters) in a single iteration 
so that the macro-tile columns, stored in vector registers, exploit their full length. 
Depending on the Winograd variant and phase, the macro-tile can thus accommo-
date a different number of tiles in both the horizontal and vertical axes.

Figure 2 illustrates the macro-tiling technique for the input transform and the 
variant F(2 × 2, 3 × 3) . For simplicity, we target Intel AVX2 256-bit SIMD units, 
able to operate with up to 8 FP32 numbers. In this code, the application of the 
input transform to a macro-tile is split into two sub-operations. The first performs 
the multiplication D�

i
= BT Di , where Di is a macro-tile of size ht × wt = 6 × 8 , 
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aggregating a 2 × 3 di,j input tiles of size t × t = 4 × 4 overlapping each other r − 1 
rows and columns. By overlapping r − 1 columns between neighbouring tiles, the 
number of arithmetic operations is reduced by a factor of 1 − t×wt

t+s×(wt−1)
 , given that 

these can then be re-utilised for the tiles that are immediately on the right. Unfor-
tunately, the results related to the r − 1 overlapping rows in Di cannot be re-uti-
lised for the tiles that are immediately below. In this case though, the aggregation 
of two rows of tiles in Di yields a square 8 × 8 matrix that is easy to transpose. 
The second multiplication VT

i
= BT D�

i

T uses the previously transposed macro-tile 
DT

i
 and is computed similarly, with the exception that there are no overlapped col-

umns in the transposed resulting matrix VT
i

 . This macro-tiling technique can be 
generalised for any other values of (m, r) while taking advantage of long vector 
registers. However, an implementation using Intel AVX2/AVX-512 has to be 
manually customised to operate with the appropriate number of elements, which 
is contrary to the focus on code portability of this work.

Fig. 2  Example of the Winograd macro-tiling technique for the input transform V
i
= B

T
D

i
B via the vari-

ant F(2 × 2, 3 × 3) and using Intel AVX2 256-bit registers
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Listing  3 shows a excerpt of code for the Winograd variant F(2 × 2, 3 × 3) for 
the input transform, implementing the macro-tiling technique using Intel AVX-512 
intrinsics. In that code, the macro-tile of size 10 × 16 aggregates 4 × 7 input tiles of 
size 4 × 4 . Furthermore:

• The “base vector datatype” corresponds to Intel AVX-512 __m512. The arrays 
of this type (Line 1) target the 512-bit ZMM vector registers with capacity for 
16 FP32 numbers. The high-level operations with this type of variables (Lines 
36–39 and 53–56) thus involve 16 FP32 values per array entry.

• The input matrix is accessed via the C macro DROW, whose implementation is 
dependent on the type of storage layout being NCHW or NHWC. The loops 
indexed by i and j iterating over the macro-tile only access “valid” image entries, 
thus avoiding the need for explicitly padding the input images with zeros.

• Loading the entries of the macro-tile (Line 32) is carried out via “scalar” opera-
tions. For the NCHW layout, this can be modified to take advantage of vector 
loads (using the Intel AVX-512 instruction _mm512_loadu_ps).

• The loop in lines 35–40 performs the multiplication D�
i
= HT Di . For that pur-

pose, it iterates over the vertical axis to uncollapse the r − 1 overlapped rows in 
the resulting vectors WX, containing the macro-tile D′

i
 of size 16 × 16.

• The transposition of the matrix stored in the array WX (Line 43) is done via the C 
macro _MM_TRANSPOSE16_PS. (Omitted for brevity).

• The nested loops in Lines 52–65 perform the multiplication VT
i
= BT D�

i

T . After 
processing a row of tiles within the macro-tile, the result stored in the four entries 
of the array UX is accordingly scattered across the entries of the workspace U.

As part of this work, we also vectorised the output transform using the macro-tiling 
technique. However, due to the more complex access pattern for the result tensor, 
this technique did not render any performance improvement. In consequence, our 
Intel AVX2- and AVX-512-based implementations only leverage the macro-tiling 
technique for the filter and input transform phases.

3.3  ARM NEON intrinsics

The code for the application of the filters vectorised using Intel SSE intrinsics can 
be easily modified to utilise ARM NEON intrinsics instead. Concretely, the follow-
ing minor changes have to be added:
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• The base vector datatype for ARM NEON is float32x4_t.
• The vector loads and stores are, respectively, done via the NEON intrinsics 

vld1q_f32 and vst1q_f32.
• The transposition macro in the ARM case is an inlined function, given in List-

ing 4, that uses the instructions vtrn2q_f64 and vtrnq_f32 to transpose the 
contents of W[0]–W[3].

3.4  ARM SVE intrinsics

The migration of the ARM NEON code to employ ARM SVE VLA intrinsics is not 
straightforward and requires rewriting the codes with some aspects in mind:

• It is not possible to declare SVE arrays with the vector datatype svfloat32_t, 
since their size is not known at compile time. This forces to rewrite and unroll 
some loops of the algorithm in order to mimic the behaviour of the NEON codes, 
resulting in more verbose implementations.

• The basic arithmetic operators are not overloaded by default, since the intrinsics 
require the use of masks (predicates), which have to be declared and initialised in 
advance. This further increases the code verbosity and diminishes interpretabil-
ity.
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Listing 5 shows an excerpt of code for the filter transform phase using ARM SVE 
intrinsics. Compared with its ARM NEON counterpart, the code presents the fol-
lowing differences:

• The filter load has is performed in a temporary variable (F_tmp) as the sub-
scripting operator ([]) is also not overloaded by default (Lines 15–17). This 
modification is required for the NHWC layout, as in that case the filter rows are 
not contiguous in memory. Afterwards, the filter is loaded into the SVE registers 
via the intrinsic svld1 with the predicate pred3 (Lines 19–21), which was 
previously initialised via svwhilelt_v32_u32 to operate only with the first 
3 elements.

• The multiplication Wik
= G fik ,ic is performed by steps, as the basic operators are 

not available for svefloat32_t (Lines 29–36). The same occurs for the multi-
plication Uik

= G Wik
 (Lines 42–49).

• The transposition of the matrix stored in W0–W3 in Line 29 is performed using a 
specialised in-house C macro; see Listing 6.

• The contents of registers U0–U3 are stored via svst1_f32, with the pred4 
predicate, into the temporary matrix U_tmp (Lines 52–55). Finally, this matrix 
is copied to the corresponding entries of U (Lines 58–60).

In general, programming with SVE intrinsics has the advantage of generating a 
VLA code which does not need to be rewritten for other SVE architectures of dif-
ferent vector length. For the case of the Winograd algorithm, however, this does not 
bring major advantages as the vector length code strictly depends on the Winograd 
variant.

3.5  Exploiting thread‑level parallelism using OpenMP

In addition to the introduction of vector intrinsics, the four phases of the algorithm 
can be also parallelised using OpenMP, as the individual kernels involved by the 
transform matrices for the filter/input/output tiles, as well as the t × t gemm, present 
no data dependencies between them. To augment the degree of thread-level parallel-
ism, we use the OpenMP collapse(2) clause to fuse the first two loops in each 
phase: across the k and c-dimensions in phase 1; the n and c-dimensions in phase 2; 
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the two loops iterating over t in phase 3; and the n and k- dimensions in phase 4. 
This is shown, for example, in Listing 1 (Lines 6–7) for the first phase. Also, the 
t × t gemm kernels in phase 3 (see Fig. 1) are executed serially.2 Finally, we added 
the OpenMP clause if to extract thread-level parallelism only when the number of 
“collapsed” iterations is larger than 1.

4  Experimental results

In this section, we evaluate the performance of our implementations of the Win-
ograd-based convolution on three different platforms, using two well-known DL 
models, for both the NCHW and NHWC data layouts. For comparison purposes, we 
also include the Lowering method (also referred to as im2col/im2row + gemm) [4, 
13] in the evaluation. All experiments are performed using FP32 arithmetic.

4.1  Hardware setup

For the experimental analysis, we employ the following computer platforms:

• Sky: This server comprises two Intel Xeon Gold (Skylake) 6126 processors (24 
cores in total) running at 2.6 GHz and sharing 64 GiB of DDR4 RAM.

• NaNo: This corresponds to a low-power NVIDIA Jetson Nano board, equipped 
with a quad-core ARMv8-A Cortex-A57 processor running at 1.5  GHz and 
4 GiB of RAM.

• a64FX: This is a Fujitsu PRIMEHPC FX1000 node equipped with a 48+4-
core Fujitsu a64FX processor (ARMv8.2-SVE) running at 2.2 GHz. The cores 
of the node are grouped into four Core Memory Groups (CMGs), each with 12 
compute cores plus an additional assistant core for the operating system. This 
machine contains 32 GiB of HBM2 memory.

In the experiments, we set the largest number of OpenMP threads to match the num-
ber of cores for NaNo (4), the cores of a single socket for Sky (12), and the cores of a 
single CMG for a64FX (12 as well).

4.2  DL framework, libraries, compilation flags, and parallelisation

To evaluate our routines for the Winograd-based convolution, we bundled them into 
a dynamic C library and integrated the result with PyDTNN, a lightweight frame-
work implemented in Python for DL training and inference [14, 15]. For this pur-
pose, we developed a binding module that internally calls the Winograd functions 
via the ctypes v1.1.0 Python library. This module interacts with the PyDTNN 

2 Each gemm kernel in our implementation of the Winograd algorithm is executed sequentially to avoid 
the exploitation of nested parallelism by setting to 1 the OMP_MAX_ACTIVE_LEVELS environment 
variable.
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layer class Conv2D and allows selecting the Winograd variant according to the fil-
ter size requested by the convolutional layer encountered in a given neural network 
model.

The compilation of the Winograd library is carried out using gcc v10.2.0 with 
the optimisation flags -O3 -fopenmp for all three platforms in addition to -mavx 
-mfma for Sky. The t × t gemm kernels in phase 3 are computed via Intel MKL 
v2022.1.0 (for Sky) and BLIS v0.8.1 (for NaNo and a64FX).

Alternatively, the Conv2D layers in PyDTNN can be also processed via the 
variant im2col transform + gemm of Lowering for the NCHW layout, or the vari-
ant im2row + gemm of Lowering for NHWC. The im2col/im2row transforms are 
implemented in PyDTNN using Cython v0.29.24, and parallelised using OpenMP. 
The implementation of gemm is provided by Numpy v1.23.0rc1, linked against Intel 
MKL for the Sky or BLIS for NaNo.

4.3  Testbed

For the evaluation, we measure the inference time spent by PyDTNN on the con-
volutional layers present in two popular DL models: VGG16  [16] and ResNet-50 
(v1.5) [2] for the ImageNet dataset in both cases [17]. In our analysis, we only eval-
uate the convolutional layers using filters of size 3 × 3 with the Winograd variant 
F(2 × 2, 3 × 3) . For comparison purposes, we also measure the execution time of 
the Lowering approach using the same convolutional layers. The number of images/
batch size was set to n = 1 in order to reflect the single-stream scenario of the ML 
Commons benchmark for inference on the edge.

4.4  SIMD vectorisation and parallel scalability

In this section, we individually assess the benefits of the SIMD vectorisation and 
OpenMP loop parallelisation for the Winograd algorithms on the three selected 
multi-core platforms and the two CNNs using both data layouts.

Figure 3 shows the speedup obtained when vectorising the Winograd algorithms 
via SIMD intrinsics with respect to a baseline routine that performs the same opera-
tions with no vector instructions. For this initial experiment, all codes run on a sin-
gle core. Also, for brevity, we only use the AVX-512 intrinsics for Sky. As shown in 
the figure, the acceleration gained for Sky ranges between 1 and 1.2; while for NaNo 
and a64FX, the highest speedup factors are 1.15 and 1.3, respectively. These gains 
are modest given mainly to the fact that we are vectorising only phase 1 of the algo-
rithm. For instance, the speedup for layer #63 of ResNet-50 on Sky using the NCHW 
layout is 1.2, but phase 1 represents 41.04%. Therefore, we could have expected a 
maximum speedup of 1.2 ⋅ 0.4104

1−1.2⋅(1−0.4104)
≈ 1.68 for this phase, according to Amdahl’s 

law.
Figure 4 reports the parallel speedup of the vectorised Winograd variants when set-

ting the number of OpenMP threads to 4, 12 for Sky/a64FX, and 2, 4 for NaNo. With 
regards to Sky, the speedup achieved using 4 threads is, on average, close to 3.5 for 
VGG16 and about 3 for ResNet-50; when using 12 threads the speedup remains below 
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7. Focusing on NaNo, the speedup for 2 threads is close to its maximum efficiency, 
while for 4 threads is below 3.5 in most cases. The scaling for a64FX is slightly higher 
than for Sky, with speedups for 4 threads close to the theoretical peak, and in the range 
7–10 for 12 threads. All in all, the observed speedups are humble when the number of 
threads is high. However, this is due to the limited dimension of the problem (strong 
scaling).

In a separate experiment on Sky, we also analysed the scalability of the Winograd 
algorithm leveraging the cblas_dgemm_batch routine from Intel MKL to perform 
the t × t independent matrix multiplications of phase 3. The results using 12 threads 
revealed speedups between 1.40 and 2.30 for VGG16 versus speedups between 3.5 

Fig. 3  Baseline versus vectorised Winograd algorithm speedups for the aggregated inference time of 
the VGG16 (left) and ResNet-50 (right) convolution layers on the Sky (top), a64FX (middle) and NaNo 
(bottom) platforms
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and 5.6 for ResNet-50 in favour of the version that uses the OpenMP pragma (with the 
collapse(2) clause) to parallelise the two for nested loops of such phase 3.

4.5  Performance evaluation and comparison analysis

4.5.1  Results on the Intel Skylake

Figure 5 reports the inference execution time of the convolutional layers using the Low-
ering method and the Winograd algorithm vectorised using SSE, AVX2 and AVX-512 
intrinsics for both data layouts on the Sky platform.

Fig. 4  Winograd and Lowering algorithms OpenMP speedups for the aggregated inference time of the 
VGG16 (left) and ResNet-50 (right) convolution layers on the Sky (top), a64FX (middle) and a64FX 
(bottom) platforms with respect to the sequential algorithm
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The experiments show that, for VGG16, almost all convolutional operators appear-
ing in the last layers of VGG16 (3–29), using either NCHW or NHWC and SSE, AVX2 
or AVX-512 deliver higher performance than the Lowering approach. This is due to 
the reduction of the arithmetic cost implicit in the Winograd algorithm (potentially at 
the expense of less accurate results). Concerning the data layout we observe that, in 
general, NCHW offers higher performance than NHWC. This is due to the algorithm 
design, which first processes individual tiles for specific channels, accessing data con-
tiguously according to NCHW. Regarding the use of SSE, AVX2 and AVX-512, we 
detect slight smaller execution times for AVX2 and AVX-512, with no clear winner 
between them.

Focusing on ResNet-50, we can highlight similar results: the Winograd algorithm 
provides, for almost convolutional layers (53–167), higher performance figures than the 
Lowering method. For the first layers (9–31), however, the Winograd algorithm using 
the NHWC format provides slightly less competitive results. This is due to the less effi-
cient memory accesses performed by this algorithm for the NHWC data layout plus 
the convolutional parameters of these layers. We can also observe that, for the rest of 

Fig. 5  Winograd versus Lowering execution time of the VGG16 (top) and ResNet-50 (bottom) convolu-
tion layers on the Sky platform using 12 threads
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the layers, the AVX2 and AVX-512 Winograd implementations deliver superior perfor-
mance than SSE, with AVX2 providing slightly lower execution times than AVX-512.

4.5.2  Results on the ARM Cortex A57

Figure 6 reports the inference execution time of the convolutional layers using the 
Lowering method and the Winograd algorithm vectorised using ARM NEON intrin-
sics for both data layouts on the NaNo platform.

The experiments with the VGG16 convolutional layers show that the Lowering 
approach outperforms Winograd for layers 1–6, while for layers 8–11 the execu-
tion time is on pair. For the rest of the layers, from 13 on, the Lowering approach 
is slower than the Winograd algorithm. We attribute these time differences to the 
parameters of the convolutional layers k and c, which in some cases favour the 
Lowering versus the Winograd approach. For this reason, there is no clear winner 
algorithm for all layers and the selection should be made carefully according to the 
convolution parameters (see  [18]). In contrast with the experiments with the Sky 
platform, for NaNo there are very small differences between the NCHW and NHWC 
data layouts.

Concerning the convolutional layers of ResNet-50, we observe that the Wino-
grad algorithm outperforms the Lowering approach for all layers (possibly, at the 
expense of less accurate results). In this case, however, the NCHW format pro-
vides slightly lower execution times than NHWC. For the Lowering approach, 

Fig. 6  Winograd versus Lowering execution time of the VGG16 (top) and ResNet-50 (bottom) convolu-
tion layers on the NaNo platform using 4 threads
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the performance difference between these two data layouts is more dependent on 
the convolution parameters.

4.5.3  Results on the Fujitsu A64FX

Figure  7 reports the inference execution time of the convolutional layers using 
the Lowering method and the Winograd algorithm vectorised using ARM SVE 
intrinsics for both data layouts on the a64FX processor.

For VGG16, we observe that the Lowering method offers a significant advan-
tage for the first three convolution layers of VGG16; however, for the remaining 
layers, the Winograd algorithm is a better option. For ResNet-50, the Winograd-
based convolution is always the best option for both data layouts. In any case, the 
improvements of this algorithm mainly depend on the input and filter sizes.

We also detect differences between the two data layouts, with NCHW being 
more competitive than NHWC. These differences are due to the design of the 
Winograd algorithm, which first processes the individual tiles. A more efficient 
version of this algorithm would require a complete reformulation of the imple-
mentation to process first the tiles on the channel dimension, according to the 
storage of data in the NHWC layout.

Fig. 7  Winograd versus Lowering execution time of the VGG16 (top) and ResNet-50 (bottom) convolu-
tion layers on the a64FX platform using 12 threads
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5  Concluding remarks

We have presented a collection of multi-threaded and vectorised implementations of 
the convolution operator, via the Winograd minimal filtering algorithm, that are port-
able across modern target architectures from Intel, ARM and Fujitsu. This is attained via 
the use of (1) the OpenMP standard for the multi-threaded parallelisation; (2) a reduced 
set of architecture-specific vector intrinsics (SSE/AVX2/AVX-512 for Intel and NEON/
SVE for ARM) that hint the prelude towards a future common interface; and (3) com-
piler support for high-level arithmetic operations involving vector registers. In addition, 
throughout the work, we have discussed thread-level and vectorisation considerations 
and opportunities for the different phases of the Winograd algorithm.

The experimental results for three state-of-the-art platforms, equipped with 
SIMD-enabled Intel, ARM and Fujitsu multi-core processors, show that our paral-
lel and vectorised Winograd-based implementations moderately improve the perfor-
mance with respect to the baseline versions. Also, they deliver competitive perfor-
mance compared with the Lowering approach on the three platforms.

As future work, we plan to extend our study of vector intrinsics to other DL 
kernels, including the FFT convolution, as well as to target layer fusion and auto-
matic generation of vectorised code to gain a more complete understanding of 
this procedure.
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