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Abstract—Image registration is an essential task in image
processing, where the final objective is to geometrically align
two or more images. In remote sensing, this process allows
comparing, fusing or analyzing data, specially when multi-modal
images are used. In addition, multi-modal image registration
becomes fairly challenging when the images have a significant
difference in scale and resolution, together with local small image
deformations. For this purpose, this paper presents a novel optical
flow-based image registration network, named the FloU-Net,
which tries to further exploit inter-sensor synergies by means
of deep learning. The proposed method is able to extract spatial
information from resolution differences and through an U-Net
backbone generate an optical flow field estimation to accurately
register small local deformations of multi-modal images in a
self-supervised fashion. For instance, the registration between
Sentinel-2 (S2) and Sentinel-3 (S3) optical data is not trivial, as
there are considerable spectral-spatial differences among their
sensors. In this case, the higher spatial resolution of S2 result
in S2 data being a convenient reference to spatially improve
S3 products, as well as those of the forthcoming Fluorescence
Explorer (FLEX) mission, since image registration is the initial
requirement to obtain higher data processing level products.
To validate our method, we compare the proposed FloU-Net
with other state-of-the-art techniques using 21 coupled S2/S3
optical images from different locations of interest across Europe.
The comparison is performed through different performance
measures. Results show that proposed FloU-Net can outperform
the compared methods. The code and dataset are available in
https://github.com/ibanezfd/FloU-Net.

Index Terms—Image Registration, Convolutional Neural Net-
works, Inter-sensor, Multi-modal, Multi-spectral, Sentinel-2-3.

I. INTRODUCTION

FOR the last decades, there have emerged new remote
sensing missions with a wide variety of instruments to

obtain Earth Observation (EO) data. When designing new
missions, one of the main limitations of hyper-spectral or
multi-spectral sensors is their spatial resolution when a high
spectral resolution is also a requirement. EO programmes as
the European Spacial Agency (ESA)’s Copernicus [1] already
have a number of satellites with different instruments designed
to accomplish different tasks. This increase of different source
data [2] has an according increase of multi-modal possibilities
such in image fusion [3], product mosaicing [4] or spatial-
spectral super-resolution to improve land-cover mapping [5]
among other applications. However, inter-sensor products can

This work was supported by Ministerio de Ciencia e Innovación (PID2021-
128794OB-I00) and Generalitat Valenciana (ACIF/2021/215).
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certainly be acquired from different angles, positions, time
periods, resolutions or even imaging modalities, affecting the
successful exploitation of such data.

To use multi-modal techniques in an accurate manner, image
registration is mandatory [6]. This process aims to obtain the
spatial correspondence between two images which represent
a common area. Roughly speaking, every image registration
process [7] follows the same steps to align the input image
(slave) to its corresponding reference image (master): (1) the
image pre-processing and the selection of search space; (2)
the feature detection if the pixel intensity value is not used;
(3) the matching of these features between the slave and
master images; (4) the search strategy where a correspondence
metric is maximized or minimized; (5) the acquisition of the
transformation parameters and (6) the wrapping of the slave
image with the transformation values to the master image.

In the literature, many different approaches [8] have been
proposed to solve the spatial correspondence between im-
ages. These image registration techniques can be classified
by the similarity of their correspondence metrics and the
features they use to register images. Other details of the
methods can differ as well, such as the transformation model
(rigid, affine, deformable...), the domain (local or global) or
even the image modality (optical, synthetic-aperture radar,
laser imaging detection and ranging...). Among the different
similarity metrics, the cross-correlation is the basic statistic
technique to evaluate the similarity between to images, for
example in [9] Sarvaiya et al. used the normalized cross-
correlation to template matching medical images. Related to
correlation methods, the maximization of mutual information
(MI) is a common metric in multi-modal image registration.
MI indicates the statistic dependency degree between images,
estimating the joint probability of the pixels’ intensity. For
example, ELASTIX [10] uses a multilevel pyramidal registra-
tion to obtain the affine transformation parameters maximizing
the MI. Nevertheless, the most popular methods used in
remote sensing are feature-based methods. These methods
match edges, lines, local maximum or minimum points or
even regions between the slave and master images. From
the local feature methods proposed in remote sensing, the
Scale-Invariant Feature Transform (SIFT) is one of the most
used [11]. Learning methods which are able to perform the
complete registration process or extract features from decision
trees, convolutional neural networks (CNN) or other regression
algorithms are gaining popularity as well, inspired by the
recent success of CNN and deep learning in other fields. Yang
et al. designed in [12] a CNN to obtain robust features to
register satellite and UAV (Unmanned Aerial Vehicle) images
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using a pre-trained VGG16 to extract deep features and then an
expectation maximization registration. For images with small
deformations, optical flow (OF) methods are commonly used.
For example, GEFOLKI [13] uses the Lucas-Kanade local OF
algorithm with a multi-scale iterative strategy.

Despite the results achieved by these and many other image
registration methods, within the ESA’s Copernicus missions,
Sentinel-2 (S2) [14] and Sentinel-3 (S3) [15] products reg-
istration presents a series of complexities which are still a
challenge. Even though both missions belong to the Coperni-
cus programme, their objectives and therefore the instruments
carried by each constellation are different enough to make
their product registration a complex task. Specifically, the
S2 mission formed by two satellites (S2A and S2B) has
as main objectives agricultural management and land cover
classification. Both S2A and S2B carry the Muti-Spectral
Instrument (MSI) sensor. This sensor obtains high-resolution
multi-spectral images in 13 bands, from 443 to 2190 nm with
a spatial resolution of 10, 20 and 60 meters per pixel (mpp).
S3 mission is also composed by two satellites (S3A and S3B),
and it has the objective of seas and oceans supervision, sea-
water quality evaluation, weather forecasting and pollution
monitoring. The S3 satellites carry the Ocean and Land Color
Instrument (OLCI). This sensor provides multi-spectral images
with 21 bands and a spectral range from 400 to 1020 nm
with a spatial resolution of 300 mpp. As previously stated,
the image registration between S2 and S3 products has sig-
nificant challenges: the spectral range and bands difference,
the resolution difference, sensor local deformations and other
multi-modal complications. But those differences are also the
reason why S2-S3 synergies are attractive. The large resolution
difference between S2-S3 implies that S2 products have lower
geo-location errors than S3 images, as the error decreases with
the increase of spatial resolution of the sensor. Thus, S2 data
becomes a valid ground-truth reference to register S3 images.

Given the aforementioned problems of the S2-S3 product
registration, this paper proposes a new image registration
network that addresses the four main challenges within the S2-
S3 image registration. First, the spatial resolution difference
between S2 and S3. Coarse-to-fine registration is a complexity
which many image registration methods have to deal with, yet
state-of-the-art coarse-to-fine methods are not able to process
a difference of tens of times in pixel size between images.
Second, the multi-modal spectral differences. Not only the
different number and width of spectral bands, but the scale
of intensity and contrast between S2 and S3 products. Third,
the sensors usually generate local deformations, which makes
global geometric transformations unable to perfectly adapt S3
images to S2 information. Fourth, the unavailability of ground-
truth data for S2 and S3 operational products, resulting in a
limitation in learning and training.

To cope with these complexities, we present a novel deep
learning-based optical flow image registration network: the
FloU-Net. In contrast to other models constrained to different
remote sensing data sources with small spatial changes and
affine deformations [16], FloU-Net takes advantage of the so-
called U-Net architecture, used in other application domains
[17], to provide a new solution for successfully exploiting

Fig. 1. Diagram of the proposed FloU-Net image registration architecture.

inter-sensor spatial context with important resolution differ-
ences and multi-spectral modalities. The designed model is
able to process S2 and S3 image products, extract deep features
taking advantage of the U-Net potential to solve multi-modal
and local discrepancies, extract the OF field from them, and
deform the S3 slave image to adjust it to the S2 master image.
Additionally, the loss function used for the training integrates
the use of a Local Normalized Cross Correlation (LNCC)
metric between the images and a regularization of the OF field
to avoid over-deformation, preserving the image borders and
maximizing the similarity. Below the rest of the work is orga-
nized in three more sections including methodology Section II,
experimentation Section III and conclusions Section IV.

II. METHODOLOGY

Let IS ∈ R(XS×YS×BS) be the multi-spectral slave image
with BS spectral bands and (XS×YS) spatial size. Let IM ∈
R(XM×YM×BM ) be the master image with a size of (XM ×
YM ) and a BM number of spectral bands. Both IS and IM
represent the same Earth area surface with a R ratio between
their spatial resolutions, R = XM/XS or R = YM/YS . Then,
the FloU-Net model has the objective of spatial matching the
IS image only using information from IM to approximate it
as much as possible to the corresponding spatial ground-truth
image, IGT ∈ R(XS× YS× BS) obtaining the registered image
IREG ∈ R(XS× YS× BS). This process can be summarized
in the expression f(IS , IM ) = IREG. Therefore, ground-truth
information is not used in the model training, following a self-
supervised learning scheme thanks to the spatial resolution
differences between IS and IM .

A. FloU-Net Architecture

To improve modularity and ease the whole process, the
FloU-Net model has been divided in three blocks: the head
block (BHEAD), whose purpose is to perform the necessary
processing of the input images and to extract deep features for
the subsequent block, i.e., the body block (BBODY ). In the last
block, the OF field is obtained from the deep features and the
IS image is wrapped using the OF field into the IREG output.
The complete architecture scheme is shown in Figure 1. To
balance the deformation from the OF field and the spatial
consistency, a composed loss function was designed.
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The first block of the FloU-Net, BHEAD, has three main
phases. First, a single BS and BM band from each multi-
spectral product is selected. Then, the input images become
IS ∈ R(XS×YS) and IM ∈ R(XM×YM ). The band selection is
followed by a down-sampling process, done over the IM image
to match the spatial resolution of IS . The down-sampling of
IM is implemented through a 2D-convolution (2DC) with a
kernel of size K = 1× 1 and a stride S = R. This configura-
tion is intended to efficiently sub-sample the high-resolution
image domain while simulating a sort of spectral PSF (Point
Spread Function) to better alleviate inter-sensor multi-modal
discrepancies compared to pooling or other straightforward
down-sampling operations. After this 2DC layer, we obtain
the image IMR ∈ R(XS×YS), which is concatenated to the IS
image and forwarded to the next block.

To obtain the deep features to extract the OF field after-
wards, the BBODY is based on a standard U-Net backbone.
The U-Net backbone architecture used by the FloU-Net is
depicted in Figure 2, composed by two types of encoder layers
and three types of decoder layers, with a total of five layer of
each kind. On the one hand, the encoder layers are composed
by a 2DC layer and a leaky ReLU layer. On the other hand,
all the decoder layers are composed by an up-sampling layer,
a 2DC and a leaky ReLU layer except for the last one which
does not contain an up-sampling layer. The difference between
the E1 and E2 encoder layers lies in the number of filters,
as the E1 layer has a number of filters N = 16 and the E2
layers contain N = 32 filters to further increase the features
representation maps. The kernel size and stride are the same
for the both encoding layers, K = 3 ∈ 3 and S = 2 to
reduce the spatial information while condensing layers’ depth
information. Meanwhile, the D1, D2 and D3 decoder layers
have a similar approach, the three of them having a kernel size
of K = 3× 3, a stride of S = 1 and an up-sampling ratio of
2, but with a different number of filters. The D1 layers have
32 filters, while D2 and D3 have 16 to gradually reduce the
feature maps depth while increasing the spatial resolution. The
difference between the layers D2 and D3 is the up-sampling
layer, which does not exist in the D3 layer.

In the last stage of the FloU-Net model, BTAIL first
extracts the OF field from the information obtained through
the BBODY . This process is done using an extra 2DC layer,
in this case of N = 2 filters with a kernel size K = 3 × 3
and stride S = 1. The objective of this layer is extracting the
displacements in each direction. As only small deformations in
the OF field are expected, the weights and the bias values are
initialized with low values, specifically 10−5 for the weights
and 0 for the bias. Finally the OF field Φ obtained in the
2DC is used in the spatial transformer [18] with the original
IS image to obtain the registered image IREG. In the spatial
transformer, the new sub-pixel location l for each original pixel
location p is calculated as l = p + Φ(p). For this purpose, a
localization network takes the OF, and using hidden layers
outputs the predicted spatial transformation that should be
applied to the image. Then, the image and a sampling grid
generated from the predicted transformation are taken as inputs
to the sampler, creating the output registered image. Since
pixel locations can only be integers, a bilinear interpolation of

Fig. 2. Diagram of the U-net backbone architecture used in FloU-Net.

the new location l is done using its eight pixel neighborhood.
In order to train the layers of the different blocks, a

composed multi-modal loss function has been used, shown in
(Equation (1). The first component of this loss is the LNCC
loss, (Equation (2)). This loss allows to asses the multi-modal
correlation between the two images. The considered LNCC
expression is shown in Equation (3), where Z(p) is the n×n
neighborhood of the pixel p, Î1 and Î2 denote images with
local mean intensities subtracted out, and Ω is the image
pixel grid in (X,Y ) spatial axes. The second loss component
is weighted by the hyper-parameter α is a L2 regularized
Gradient of the Φ OF field to avoid irregular deformations
and inconsistencies in the local pixel displacements.

III. EXPERIMENTS

A. Dataset

To validate the proposed FloU-Net, a dataset of 21 cou-
pled pairs of S2/S3 multi-spectral images with less than one
day difference from the year 2020 of different locations in
Europe has been used. These images contain a variety of
locations: cities, natural parks, coasts and mixtures of them
to better show the generalization capabilities of the FloU-Net.
Specifically, there are images from Spain, Portugal, France,
Italy, Germany, Czech Republic, Poland and Denmark. To
generate the dataset, first the study areas were located, and
only S2 MSI Level 2 products containing those locations
with less than a 1% of cloud coverage were selected. After
obtaining the S2 products, the correspondent S3 OLCI Level
1 products with one day of maximum difference were selected
and downloaded. Then, the S2 products were re-sampled to
a 20 m spatial resolution to obtain a multi-spectral image of
(5490×5490×12) size. Meanwhile, the S3 data were Rayleigh
corrected and cropped using only the overlapping area with the
S2 image, generating images of size (366× 366× 21). Once
the cropping and corrections were finished both S2 and S3
data were normalized.

B. Experimental settings

In order to test the performance of the FloU-Net, it has been
compared to other state-of-the-art image registration methods,
used in remote sensing and other application fields: SIFT[11],
ELASTIX[10], a CNN[12] and GEFOLKI[13]. In this work,
we assume that spatial displacements among intra-sensor
spectral bands are negligible due to the important resolution
differences between S2 and S3 optical sensors. Hence, all the
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L(IREG, IMR,Φ) = LLNCC(IREG, IMR) + αLGRAD(Φ) (1)

LLNCC(I1, I2) = −
∑
p∈Ω

( ∑
qi∈Z(p)

(I1(qi)− Î1(q))(I2(qi)− Î2(q))

)2

( ∑
qi∈Z(p)

(I1(qi)− Î1(q))

)( ∑
qi∈Z(p)

(I2(qi)− Î2(q))

) (2)

LGRAD(Φ) =
∑
p∈Ω

||∇Φ(p)||2 (3)

(a) (b) (c)
Fig. 3. Dataset example of Burdeos, France (45.1467528,-1.7279663),
(45.1226718,-0.33236694) longitude-latitude: (a) S3 Oa17, (b) S2 B8a, (c)
Synthetic ground-truth.

considered methods are used to register only one spectral band
of multi-spectral images and then apply the deformation to
the remaining bands. Specifically, the Oa17 spectral band of
S3 and the B8a band of S2 were chosen as both of them
are centered in 865 nm and have a band width of 20 nm.
For state-of-the-art methods, the master image IS2 B8a band
with the complete resolution of (5490×5490) was reduced to
the size of IS3 simulating the PSF effect using a Lanczos
interpolation, obtaining IS2R with a size of (366 × 366).
For the FloU-Net, the full IS2 (5490 × 5490) resolution was
used. To asses the results, as no ground-truth exists in this
study case, the histogram of IS2R was matched to the S3
Oa17 spectral information using a histogram-based intensity
function and histogram equalization, simulating a ground-truth
reference image IGT of size (366 × 366), containing the S3
spectral signature and the low geo-location error of S2. For
the proposed FloU-Net the ADAM optimizer with a standard
learning rate of 10−4, a batch size of 1 to process each image
separately and 8000 iterations were used. This is the minimum
number of iterations needed for the model, in some cases the
results could improve with more epochs. Also an α = 0.5 in
the L2 regularized Gradient loss, to give more weight to the
multi-modal loss. This experimentation has been done with
Python 3.6 PyTorch on a Ubuntu 20.04 x64 machine with
Intel(R) Core(TM) i7.6859K, NVIDIA GeForce 2080Ti and
64 Gb of RAM.

C. Results

In Table I, the quantitative results of the conducted exper-
imentation are shown with seven metrics: root mean square
error (RMSE), normalized root mean square error (NRMSE),
peak signal-to-noise ratio (PSNR) in dB, structural similarity
index measure (SSIM), relative dimensionless global error

(ERGAS), universal image quality index (Q) and mutual
information (MI). The methods are presented in rows and the
metrics in columns in the table, being each result the mean
of the 21 image pairs of the dataset with their corresponding
standard deviation. Note that the images used were represented
in unsigned integers of 16 bits, so the RMSE values are
according to this dynamic range. The two first metrics RMSE
and NRMSE show the ability of each method to reduce the
intensity differences between the ground-truth reference and
the registered image, the PSNR the noise reduction, MI and
SSIM for the similarity between the images and the ERGAS
and Q index for image distortions. The optimal values for
each of the metrics are the following: RMSE(0), NRMSE(0),
PSNR(+∞), SSIM(1), ERGAS(0), Q(1), MI(+∞).

As can be observed in Table I, the FloU-Net outper-
forms every other image registration method tested for multi-
modal image registration between S2 and S3 images. Fol-
lowed by GEFOLKI, and SIFT having the worst performance.
GEFOLKI’s high performance can be explained due to being
the only one designed to deal with small local deformations
through optical flow. ELASTIX was able to obtain competitive
MI and SSIM results, but the affine transformation with B-
spline was not able to solve properly the local deformations,
which also happened to SIFT’s affine transformation. On
the other hand, the CNN performed better with RMSE and
NRMSE metrics using a thin plate spline transformation, but
lacked in similarity. Nonetheless, the proposed FloU-Net is
able to obtain better results in all the considered metrics with
the smallest deviation as well, except for the PSNR. As an
example of qualitative results, Figure 3 shows the results of
the four best methods (ELASTIX, CNN, GEFOLKI and FloU-
Net) for the images in Figure 4. These images contain two
areas that have been magnified to appreciate the details of the
checkerboard image comparing each image registered (lighter)
and the corresponding ground-truth reference (darker). In the
first magnified area, the coastline and a near inland water
body are shown. Note how the proposed method is able to
better correct the coastline and define the border of the water
body reducing the noise and with sharper borders. The second
magnified area contains the bifurcation of the Garona and
Dordoña rivers. Again, the difference with the noise reduction
and the sharpness is noticeable between the FloU-Net and the
other methods, in the riverbanks and in other small details.

As it has been shown with quantitative and qualitative
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Methods RMSE NRMSE PSNR SSIM ERGAS Q MI
SIFT [11] 6531±5413 0.12±0.12 21.9±5.26 0.68±0.19 1.33±1.20 0.62±0.21 1.22±0.59

ELASTIX[10] 4202±3973 0.07±0.11 25.8±5.06 0.79±0.09 0.95±1.05 0.74±0.13 1.41±0.32
CNN [12] 3939±1318 0.07±0.02 24.9±3.26 0.61±0.09 0.84±0.21 0.56±0.11 0.98±0.35

GEFOLKI[13] 2808±944 0.05±0.02 27.9±3.17 0.80±0.06 0.58±0.13 0.75±0.11 1.41±0.33
FloU-NET 2500±876 0.04±0.01 28.9±3.46 0.80±0.06 0.52±0.10 0.75±0.11 1.42±0.33

TABLE I
QUANTITATIVE ASSESSMENT FOR RMSE, NRMSE, PSNR, SSIM, ERGAS, Q AND MI METRICS.

(a) (b)

(c) (d)

Fig. 4. Registration qualitative assessment, comparison between ground-truth
and: (a) CNN, (b) ELASTIX, (c) GEFOLKI, (d) FloU-Net.

results, the proposed FloU-Net has three main advantages:
(i) the exploitation of inter-sensor resolution differences, (ii)
the capacity to register multi-modal images, (iii) the ability
to solve local deformations. The proposed FloU-Net is able
to use the complete spatial information contained in the full
resolution S2 images (15 times bigger than S3 data), allowing
the network to adjust with sub-pixel accuracy. This comes at
the cost of a higher computational cost compared with the
other methods. However, FloU-Net is the only multi-modal
registration method able to deal with such resolution differ-
ences. In addition, the multi-modal loss is able to optimize the
registration in spite of the intensity and contrast differences
between the spectral information of S2 and S3. Finally, the
OF field solution makes possible to exploit the sub-pixel
displacements obtained coping with the resolution difference
between the images. Thanks to these advantages, we expect the
proposed FloU-Net to perform in a similar fashion with other
multi-modal registration tasks, even in higher resolutions.

IV. CONCLUSIONS

In this paper a new image registration method for multi-
modal images with resolution differences and local deforma-
tions is proposed, the FloU-Net. This self-supervised CNN
model is able to exploit the significant image resolution differ-
ences, adapt to the multi-modal discrepancies and solve local
displacements directly from the full resolution original data.
An experimental study using 21 couples of different Europe

locations comparing the FloU-Net to other state-of-the-art
methods validates its performance and results. The main con-
clusion of this work is the relevance of taking advantage of the
complete spatial resolution in remote sensing registration and
deep learning techniques for achieving registration accuracy in
the described conditions. Future plans are directed to further
exploit spectral information while extending the experiments
to other forthcoming tandem platforms like FLEX.
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