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Abstract 

Background. In recent years, the existence of the gut-brain axis and the impact of intestinal microbiota on 

brain function has received much attention. Acumulated evidence has prompted to the postulation of the 

infectious hypothesis underlying or facilitating neurodegenerative diseases, such as Alzheimer's disease. 

Under this hypothesis, the intervention with probiotics could be useful at a preventive and therapeutic 

level. Objective. The objective of this systematic review is to reveal the benefit improving cognitive 

function following the use of probiotics in individuals with mild cognitive impairment. Methods. We 

searched bibliographic databases and analyzed in detail the evidence and methodological quality of five 

recent randomized, double-blind, placebo-controlled clinical trials using the Cochrane Tool and the SIGN 

checklist. Results. Overall, and with satisfactory methodological quality, the studies evaluated support the 

use of probiotics as a weapon to slow the progression of cognitive decline in subjects with mild cognitive 

impairment. The literature review also indicates that maximum benefit of probiotics is found in subjects 

with incipient cognitive dysfunction and has no effect in those with advanced disease or absence of 

disease. Conclusion. These results support the intervention with probiotics, especially as a preventive 

approach. However, caution is required in the interpretation of the results as microbiota has not been 

evaluated in all studies, and further large-scale research with a prolonged study period is necessary to 

ensure the translatability of the results into real practice.  
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Introduction 

Gut microbiota 

The microbiota is a community of symbiotic micro-organisms that can be neutral, beneficial, or 

detrimental to the host, with important regulatory functions in health and disease. At the genetic level, 

more than 99% of the genes in our body are microbial, amounting to more than 10 million [1, 2]. There 

is a distinct microbiome in almost every niche of the human body. Bacterial are found mainly in the 

skin, eyes, respiratory, urogenital, and gastrointestinal tract. In order of abundance, while the oral [3] 

and pulmonary [4] microbiota are important, the majority (approximately 95%), reside in the gut, 

referred to as the "gut microbiota" [5].  

Within the tract, vast majority resides in the distal part of the tract, since the hydrochloric acid in the 

stomach and bile and pancreatic secretions in the proximal small intestine prevent colonisation, allowing 

concentration ranges between 101 and 103 CFU/ml. This bacterial density increases progressively in the 

small intestine with 104 to 107 CFU/ml from jejunum to ileum and reaches an estimated 1011 to 1012 

CFU/ml bacteria per gram of intestine in the colon [6]. The advance of next-generation sequencing 

technologies over the last decade together with the development of bioinformatics is making the analysis 

of the composition of the microbiota more sophisticated and affordable, leading to an exponential 

advance in the knowledge of microorganisms that colonise human gastrointestinal tract [7]. Thus, in the 

gut microbiota Bacteroidetes and Firmicutes (stand out as the two dominant phyla (70-75% of the total). 

In a healthy microbiota, the genus within these phyla must be balanced. For example, within the 

Firmicutes phyla Lactobacillus presence is healthier that the presence of Clostridium or Enterococcus. 

Other phyla, such as Proteobacteria and Actinobacteria are less represented. Fungi, viruses, yeasts, 

archaea and protozoa are also present in approximately 1% [8].  

While the inherited genome is essentially stable throughout the life of the host, the microbiome is 

immensely diverse and dynamic [9]. The composition of these microbes can be influenced by different 

factors early in life (with relevance to the birth (vaginal or caesarean) [10, 11]). With development and 

aging, intrinsic and environmental factors including diet, commonly used drugs and antibiotics, 

smoking, lifestyle, host genetics and disease will greatly influence gut microbiota [12].  
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Although significant variations may exist between the microbiota of different individuals, the gut 

microbiota present in the same anatomical region between two people is much more similar than the 

microbiota of two regions (e.g. gut and vaginal microbiota) in the same person. Despite the inter-

individual variability, the functions that the microbiota exert on the organism is stable and constant in 

each location, allowing the functions of each microbiota to be generalised. 

Under healthy conditions, the gut microbiota plays a vital role in gut homeostasis and host energy 

metabolism, performs immunomodulatory, metabolic, anti-inflammatory and, more recently 

recognised, neuromodulatory functions via the gut-brain axis [12] (Figure 1). 

Some of the important functions performed by the microbiota include: 1. Vitamin synthesis. Strains of 

the genus Escherichia produce vitamin K, B6 and B12; other beneficial bacteria produce pantothenic 

acid, folic acid, thiamine (vitamin B1), riboflavin (vitamin B2) and promote the absorption of calcium 

and iron in the colon. They are also capable of neutralising nitrates, xenobiotics and other toxic 

substances [13]. 2. Fermentation of undigested carbohydrates. Some plant-derived carbohydrates 

such as cellulose and pectins reach the large intestine virtually intact. Primarily in the caecum and 

descending colon, the microbiota can ferment undigested carbohydrates, generating H2, CO2 and short-

chain fatty acids (SCFA). Acetate, propionate and butyrate account for 95% of SCFA [14]. They 

modulate intestinal function by increasing luminal osmotic pressure, inducing water secretion and, 

together with the gases generated, increasing stool bulk, all of which stimulate intestinal peristalsis [15]. 

SCFA can also be absorbed and influence host energy homeostasis, including appetite regulation.  

Butyric acid is used by enterocytes as an energy source, while acetate and propionate go to the liver and 

enter the sugar and lipid metabolism pathways. This results in energy recovery from the diet and 

promotes ions absorption in the caecum. Anaerobic metabolism of peptides and proteins (putrefaction) 

occurs in more distal segments of the colon and is also a source of SCFA, but, at the same time, it can 

generate potentially toxic substances including ammonia, amines, phenols, thiols, and indoles [16, 17]. 

3. Colonisation resistance. Microbiotas prevent mucosal colonisation by pathogens by three main 

mechanisms: physical interference, production of antimicrobial compounds and co-aggregation with 

pathogens. Bacteria develop adhesins on their surface that bind to the mucosal glycocalyx, forming 

biofilms that prevent the establishment of pathogens. On the other hand, they produce antimicrobial 
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compounds (from toxic metabolites to bactericidal substances) and induce pH changes.  Finally, co-

aggregation with pathogens prevents their binding to the mucosa and facilitates their elimination [18]. 

4. Differentiation of the immune system. The gastrointestinal microbiota stimulates maturation of the 

immune system both locally and systemically. Bacteria increase the proportion of mucus-secreting 

goblet cells and promote deeper crypts, where Paneth cells settle, improving intestinal barrier 

permeability. Microbes provide a potent stimulus for the expansion of mucosa-associated intraepithelial 

lymphoid tissue (MALT), including Peyer's patches and mesenteric lymph nodes, and lead to the 

differentiation of T-helper lymphocytes and cytokines, conditioning the functions of dendritic cells, B-

lymphocytes, and epithelial cells themselves [19]. 5. Interaction with the nervous system. Microbial 

metabolites are precursors of several amino acids (e.g. tryptophan, y-aminobutyric acid GABA) and 

monoamines such as serotonin and dopamine, assuming an important role in neurotransmission and 

cognition [20]. Many other mechanisms describe bidirectional communication along the gut-brain axis 

(see section 1.2) and is a fundamental aspect of the synergy between microbiota and host, capable of 

modulating host behaviour. 

Gut microbiota and ageing 

The microbiota of an individual varies throughout life (Figure 2). Thus, in the early years, the microbiota 

is strongly conditioned by the type of birth (natural or caesarean) and feeding (maternal breastfeeding 

or formula feeding). Bacteria of the phylum Actinobacteria (genus Bifidobacteria) predominate at early 

ages [21]. This evolves, and in adulthood, Bacteroidetes and Firmicutes phylum predominate, but the 

intestinal ecosystem achieves the greatest variety. Many external factors such as diet and medication 

cause changes in the gut microbiota composition. In the elderly, the microbiota loses biodiversity, and 

pathogenic bacteria such as Clostridium become more important [22]. The fact that this trend is much 

more pronounced in developed countries [23] highlights the negative influence of certain environmental 

factors specific to these societies on the microbiota (e.g. contaminants, sedentary lifestyles, obesity, 

stress, high-calorie diets or diets with excess sugar and/or fat).  

While the composition of the adult gut microbiota is generally stable, ageing, and age-related 

inflammation have been linked to deterioration of this stability [24,26]. Moreover, in aged humans, a 

decrease in Firmicutes phyla and an increase in Bacteriodetes phyla, resulting in a reduction in the 
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Firmicutes/Bacteriodetes (F/B) ratio was found in an Ukranina population [27], promoting progression, 

together with the increased presence of pathogenic species. Age-related changes in gut microbiota 

composition are linked to various parametres of functional health, including frailty, cognition, 

depression, and inflammatory markers [28, 29].  

Gut-Brain Axis 

In the 1880s, William James and Carl Lange first introduced the concept that bidirectional 

communication between the CNS and gut organs plays a role in emotional regulation. Forty years later, 

the idea that the brain plays an important role in regulating gastrointestinal function was developed by 

physiologist Walter Bradford Cannon (1871-1945) (for review see [29]. However, although 

communication between the gut and the brain has long been known, it is only in the last decade that 

research have started to use a holistic view of the human body. This idea began in the 1990s when 

pharmacological gastric management (ignoring brain relationship) was questioned [30, 31]. This holistic 

approach represents a paradigm shift in medicine, where a better understanding of the microbiome will 

impact clinical practice [32].  

Beyond the proper functioning of the digestive tract, the gut-brain axis is linked to the functionality of 

the autonomous nervous system, endocrine glands, and even specific brain regions, such as the 

hypothalamus and frontal cortex. Furthermore, gut-brain communication influences CNS development 

and behaviour under both normal and pathological conditions. In this section, the different pathways 

involved in this axis, the nervous, immune, and endocrine systems, and their relationship with the 

gastrointestinal microbiota are discussed.  

Three major pathways constitute the gut-brain axis: the autonomic nervous, endocrine, and immune 

system. i) The autonomic nervous system controls gastrointestinal functions (e.g. intestinal motility and 

permeability, luminal osmolarity, bile secretion, and mucus production) [33]. Moreover, the vagus nerve 

exerts anti-inflammatory effects [34] and its stimulation is used therapeutically for Crohn's disease [35], 

refractory depression [36], chronic pain [37] and epilepsy [38]. Interestingly, vagotomy performed for 

peptic ulcer disease treatment was found to increase the incidence of psychiatric disorders [39]. 

Furthermore, vagal signalling can mediate the dialogue between the microbiota and the CNS since 

vagotomy overrides responses to psychobiotic administration [40-42]. ii) Endocrine System. The 
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enteroendocrine cells in the gut epithelium respond to luminal nutrients and microbiota metabolites by 

secreting peptides that, (in addition to a digestive function) influence certain behaviours [43, 44].  For 

example, L-cells produce GLP-1 and PYY, stimulate insulin secretion and suppress appetite [44]. 

Moreover, over 95% of serotonin (5-HT) synthesis takes place in enteroendocrine cells of the GI tract 

[45], indirectly regulated by microbial production of serotonergic precursors, such as tryptophan, the 5-

HT transporter, and the trytophan hidrolase (TPH) [46,47]. Moreover, the gut microbiota synthesises 

GABA, melatonin, histamine, acetylcholine, norepinephrine and dopamine, all important 

neuromodulators [48,49]. iii) Immune System, the microbe-associated molecular patterns (MAMPs), 

activate Toll receptors modulating innate and adptative immune responses [50]. In addition, bacterial 

metabolites are immunomodulators; one of the most studied are the SCFAs [51]. Furthermore, loss of 

gut microbiota diversity has been associated with defects in microglial morphology and differentiation 

[52,53]. 

Dysbiosis And Alzheimer's Disease 

Dysbiosis is the loss of microbial homeostasis and involves local inflammation with increased intestinal 

permeability, ultimately leading to systemic inflammation, which is associated with several diseases, 

beyond intestinal nature (Table 1). Studies are warranted to provide a deeper understanding of the role 

of the microbiota in the pathogenesis of these diseases, to generate promising therapies. 

Neuropathological findings in the brain of patients with Alzheimer's disease (AD) are amyloid plaques 

composed of amyloid β-peptide, neurofibrillary tangles, with hyperphosphorylated tau accompanied by 

astrogliosis and activation of microglia, mainly in the region of the hippocampus and cortex. These 

changes will lead to loss of neurons, neuropil, and synaptic elements [54-56]. 

The aetiology of AD encompasses multiple genetic and environmental factors, and the most important 

known risk factor is age [56]. In recent years, accumulated evidence highlights the role of gut dysbiosis 

in AD (Figure 3). Dysbiosis can occur by loss of key taxa, loss of biodiversity, changes in metabolic 

capacity or proliferation of pathogens [52]. Ageing is a major factor in loss of biodiversity. AD patients 

exhibit further reduction in gut microbial biodiversity compared to aged- matched controls, consistent 

to an accerelated aging. A clear decrease in anti-inflammatory bacteria (e.g. Bifidobacterium, del 

phylum actinobacteria); and an increase in pro-inflammatory bacteria such as Shigella (Proteobacteria) 
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[57] is found, correlating with pathological Aβ levels and phosphorylated tau in the cerebrospinal fluid 

(CSF) of patients. Furthermore, these imbalances in a non-elderly population correlate specifically with 

cognitive impairment [58].  

In aging there is an increased intestinal permeability that can be caused, amongst others, by alteration 

of the microbiota profile. Pathogenic bacteria (e.g. Salmonella, Shigella, Helicobacter pylori, Vibrio, 

Clostridium, Bacteroides fragilis) produce exotoxins that disrupt the integrity of the tight junctions that 

bind enterocytes through E-cadherin adhesion, thereby increasing intestinal permeability [59-61]. Tight 

junctions are also affected by the reduced production of SCFA. Increased permeability favours chronic 

inflammation [62]. Studies in AD patients have revealed an increased level of calprotectin in faeces, 

CSF and brain [63]. In addition, pathogenic bacteria (some strains of E.coli, Salmonella enterica, 

Bacillus subtilis, Mycobacterium tuberculosis and Staphylococcus aureus) can produce extracellular 

amyloid fibres [64]. These amyloid proteins help bacterial cells to form biofilms that tightly hold them 

together [64]. Bacterial amyloids are similar from CNS amyloids in their tertiary structure [65].  

Bacterial amyloid can act as a prion 'protein' causing a cross-seeding phenomenon, i.e., capable of 

inducing other host proteins to form pathogenic β-sheet structure [66,67]. Thus, dysbiosis may 

contribute to the onset of β-amyloid peptide aggregation in AD, via TRL2 activation [68]. 

Lipopolysaccharide (LPS) is the main component of the outer membrane of gram-negative bacteria act 

as endotoxins, and it is recognized by microglia TLR4 inducing a proinflammatory response [69,70]. 

LPS levels are higher in AD patients compared to healthy adults [71]. Strong evidence supports that 

neuroinflammation is key in AD progression [72,73]. Activation of microglia can arise from oligomers 

Aβ 40/42 accumulation [74], which in turn secrete pro-inflammatory molecules (reactive oxygen 

species, nitric oxide, and cytokines) that, chronically, cause toxic effects [73]). Thus, in pathological 

conditions like in AD, Aβ and microglia enter a vicious cycle leading eventually to neuronal 

degeneration [75]. Astrocytes, the most abundant glial cells in the CNS are also involved in 

neuroinflammation. Astrogliosis has been observed in AD brains [76]. Like microglia, over-activation 

of astrocytes leads to chronic inflammation and oxidative stress that ultimately induces neuronal death 

[77,78]. 
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Justification of the study 

Alzheimer's disease (AD) is a progressive multifactorial neurodegenerative disorder that accounts for 

~80% of dementias worldwide, specifically in adults over 60 years of age. Clinically, AD is 

characterised by severe deficits in memory, cognitive and motor functions, leading to a decline in 

mental, behavioural, and functional activities that affect the quality of daily life [79]. The 

epidemiological survey conducted by the Global Burden of Diseases, Injuries, and Risk Factors 2016 

study revealed that, worldwide, about 43.8 million people had AD in 2016 [80]. According to the World 

Alzheimer Report 2015 projections, the total number of people with AD will reach 74.7 million by 2030 

and 131.5 million by 2050, making it a global health challenge for which there is currently no 

satisfactory treatment [80]. 

As a result of a better understanding of the gut-brain axis, probiotics have been postulated to have 

beneficial effects improving cognition and memory. This is an emerging area of research that may 

generate new insights into individual variations and perhaps enable the development of new treatments 

for AD and other neurodegenerative disorders.  

 

Objectives and research questions 

This systematic review aims to evaluate the evidence from the latest published clinical trial in patients 

with mild cognitive impairment (MCI), to elucidate the potential application of probiotics in AD 

prevention. The main objective of this systematic review is to determine whether probiotic intervention 

provide significant cognitive improvements, preventing the progression of sporadic forms of AD. 

Thus, this systematic review will answer research questions: 

i. Does probiotic treatment have preventive and/or therapeutic potential in patients with MCI? 

ii. What are the utilities and limitations of probiotics? 

iii. Is intestinal dysbiosis a key trigger, enhancer or secondary factor in AD? 

 

Materials and Methods 

Search strategy and selection criteria 
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This systematic review is reported according to the Preferred Reporting Items for Systematic Reviews 

and Meta-Analysis (PRISMA) statement [81]. PubMed, Web of Science, Cochrane Library, Scopus and 

ClinicalTrials.gov were searched for relevant studies published up to 3 November 2021. The following 

MeSH terms and combined text were used to search the databases: cognitive dysfunction, cognitive 

impairment, mild cognitive impairment, neurocognitive disorder, probiotics, randomised controlled 

trial, clinical trial, placebo. Search strategies used in specific databases are provided in Supplementary 

data Fig S1. Reference lists of retrieved studies were also handsearched for relevant articles. 

Study eligibility criteria 

Only randomised controlled trials (RCTs) were included in this systematic review. RCTs were eligible if 

they met the PICO (Patient, Intervention, Comparison, Outcomes) criteria (Table 2). Studies were included 

if they (1) were randomised clinical trials conducted in participants with mild cognitive impairment; (2) 

included a probiotic intervention; (3) compared the efficacy of the intervention with a control or placebo; 

and (4) reported the main outcomes of cognitive function assessed using a validated rating scale. Additional 

outcomes reported could be changes in metabolic variables and biomarkers of oxidative and inflammatory 

stress. 

Studies were excluded if they (1) did not have a cohort of people with MCI, (2) included subjects with 

advanced AD or other dementias, (3) were observational or retrospective, (4) were based on a prebiotic, 

synbiotic or mixed intervention, or (4) did not assess intervention outcomes with validated tests. 

Data extraction 

The following data were extracted from the included studies:  

• General information: title, authors, year of publication, trial registration number and country. 

• Participant information: sample size, age, demographics, and baseline characteristics. 

• Methodological information: study design, intervention, comparison, treatment allocation, 

description of the intervention and duration of the intervention period. 

• Outcome-related information: recruitment, primary outcome data, secondary outcome data, adverse 

events recorded, and study completion rates. 

Assessment of risk of bias according to the cochrane tool  
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The risk of bias of each RCT was assessed using the specific questions listed in the Cochrane risk of 

bias tool [82] and internal validity using The Scottish Intercollegiate Guidelines Network (SIGN) 

clinical trials checklist [83].  

The Cochrane Handbook proposes a tool that assesses the risk of bias through 7 items for each included 

study: random sequence generation, allocation concealment, blinding of participants and staff, blinding 

of outcome assessors, incomplete outcome data, selective reporting of results, and other biases not 

addressed in the previous sections. For each of these, criteria are explained to classify the assessment of 

risk of bias as low / high / unclear.  

The SIGN checklist assesses internal validity for each included study using 10 items: appropriate and 

focused research question, random allocation, appropriate method of concealment, blinding of 

participants and investigators, similarity of treatment and control groups at baseline, the only difference 

being the intervention performed, standard, valid and reliable measurement of outcomes, participant 

dropout rate, intention-to-treat analysis of results, and comparability between different centres if any. 

After examining these items SIGN proposes an overall assessment of the study reflecting on the risk of 

bias, the causal relationship between the intervention and the observed effect and the external validity 

of the study. 

Results 

Literature Search and Study Selection 

A total of 41 results were obtained after the initial search of electronic databases, and 1 study was 

identified by hand searching the reference lists of relevant published reviews. Of these 42 studies, 19 

were duplicates and removed; 11 publications were excluded after reviewing the title and abstract (with 

reasons: they were not randomised clinical trials (n=2), they referred to other pathological processes 

rather than cognitive impairment (n=8) or the study population was different (n=1)). The remaining 11 

articles were analysed by reviewing the full text, after which 6 were excluded for different reasons 

(intervention was combined (n=1), participants did not meet the pre-determined inclusion criteria (n=3) 

or results had not yet been published (n=2)). Ultimately, 5 studies were considered eligible for this 

systematic review (Figure 4). 

Characteristics of the included studies 
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The characteristics of the included studies are summarised in Table 3, and in more detail in 

Supplementary data Fig S2. The five included studies were published in the last three years (2019-2021), 

all randomised, double-blind, placebo-controlled clinical trials (RCTs). Two of them were conducted in 

Japan, two in Korea and one in the United States. The aggregate sample of all of them is 509 subjects 

(an average of 102 per study), and the minimum age of inclusion of participants was 50 years. In all of 

them, the intervention consisted of administering 2 capsules of a probiotic strain per day for 12 weeks, 

except in one study where the duration was 16 weeks. Importantly, the genera used were Lactobacillus 

and Bifidobacterium, the two best known and most used. The outcome of the intervention was measured 

as the difference in cognition compared to placebo, with different tests in each study (RBANS, NIHTH, 

CNT, MMSE, CERAD-K), all validated for this purpose. The main findings included a significant 

improvement in, at least, one aspect of cognition (immediate, visuospatial, constructive, immediate 

memory, and/or attention and mental flexibility), in four studies. In one study, significant differences 

were observed only if patiEnts were stratified, and disregarding more advanced stages of disease 

(RBANS>41) from the analysis. 

Risk of Bias Assessment  

Cochrane Tool. The results of the risk of bias assessment for the included studies are shown in Figure 

5, and for each study individually in Supplementary data Fig S3. As all five studies were double-blind 

RCTs, all were classified as having a low risk of selection and conduct bias. However, two studies, 

Kobayashi et al (2019) and Xiao et al (2020) were unclear in describing the form of allocation 

concealment [84, 85]. Also, Kobayashi et al (2019) does not describe the blinding of outcome assessors 

[84], which could introduce selection and detection biases respectively. Unclear risk of attrition bias due 

to incomplete outcome data was reported in Sanborn et al (2020) study [86]. None of the included studies 

stopped their trials early and therefore all were assigned a low risk of reporting bias. None of the included 

studies were considered to have high risk of bias, and generally all implemented strict procedures in 

their methodology. 

SIGN methodology checklist for clinical trials Overall, the parameters assessing internal validity 

according to the SIGN scale are positive for the studies included in this review (Table 4). The breakdown 

for each study can be found in Supplementary data Fig S4. In all studies the research question was 
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adequate, randomisation and double blinding were performed, there were no differences in the 

intervention in each group and no excessive loss to follow-up, and the relevant outcomes were measured 

in a standard, valid and reliable way. All studies indicated that the analysis was both per protocol and 

intention-to-treat. Loss to follow-up and missing or atypical data are adequately accounted for in each 

study, and the investigators note that participants excluded from the analyses were not significantly 

different from included participants, so it is unlikely that the balance achieved by randomisation was 

broken for these reasons. Again, it should be noted that in two cases the method of concealment was not 

specified [84,85]; and in Kombayashi et al, the treatment and control groups showed differences in 

cognition score at baseline, which led the authors to stratify the results for analysis [84].  

As an overall assessment, the RCTs included in this systematic review are of high methodological 

quality, with low risk of confounding, bias, or chance, and with a high probability that the relationship 

is causal. The results of the studies are directly applicable to the patient group targeted by the guidelines, 

with internal validity being an outstanding quality. A possible lack of external validity of the RCTs 

should be acknowledged, as the exclusion criteria of the studies ruled out subjects with common 

characteristics such as having a relevant disease or being a user of drugs that could interact with 

probiotics, among others. 

Discussion 

Role of probiotics and cognition: current evidence from preclinical and clinical studies 

As discussed above, strong evidence suggests that the gut microbiota is pathophysiologically involved 

in the progression of AD. Of note, two recent systematic reviews show evidence that in preclinical 

studies, probiotics are very effective in promoting cognition in rodents with AD or cognitive impairment 

[89, 90]. Furthermore, the cognitive improvement correlate with biochemical and histological measures, 

ie. reduction in brain oxidative stress biomarkers, amyloid plaques, and proinflammatory microglia in 

rat model of diseases [91]. Generally, the risk of bias of the studies included in these systematic reviews 

was low, although the heterogeneity among them was moderate. In addition, it should be stressed that 

animal models may have limitations mimicking human disorders.  

In humans, increasing evidence is available. To date, four systematic reviews have been published on 

the subject [92-95], all within the last 4 years, suggesting an exponential trend in scientific production. 
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The results of the systematic reviews are generally favourable for the consideration of probiotics as a 

weapon to slow the progression of cognitive decline. However, all of them acknowledge important 

limitations in relation to the small number of included studies and the high risk of bias attributed to most 

of them. The high heterogeneity among the included studies is obvious, and could be attributed to (1) 

differences in the intervention performed in terms of duration of the intervention and probiotic strains 

used (dose, number and type of species); (2) very loose inclusion and exclusion criteria of the studies, 

so that the results obtained with subjects at very different stages of the disease, from healthy subjects to 

those with severe AD, are evaluated together; (3) the measurement of cognitive function as an outcome 

variable is not always assessed by objective methods. Moreover, many studies did not record changes 

in microbiota composition after the intervention, so the causal relationship between supplementation 

and cognitive improvement is weak and may be due to yet unexplained intermediate links. Krüger et al 

(2021) systematic review found no beneficial effect of probiotic supplementation on cognitive function 

[93].  Therefore, interpretation of the results should be very cautious. The present systematic review 

attempts to focus on studies with more homogeneous characteristics, to elucidate whether, in this group 

of subjects there is a significant effect of probiotics.   

Importance of severity of cognitive impairment on the usefulness of probiotics 

One of the most important aspects to question about the usefulness of probiotics is their effectiveness at 

different stages of cognitive decline. Several studies in both animals and humans indicate that in subjects 

with intact cognitive abilities, probiotic intervention has a limited impact [93], likely due to the ceiling 

effect. Thus, high baseline cognitive function may limit the scope for improvement. On the other end, 

probiotic supplementation has not led to significant changes in cognition in individuals with advanced 

AD [96,97], which can be due to several reasons, i) the margin for improvement in advanced disease is 

very small, ii) the follow-up in studies is insufficient to reveal significant changes, iii) the 

histopathological changes in severe disease stages are already irreversible. Yet, even in these cases, 

metabolic improvements have been reported, such as in plasma triglyceride levels, very low-density 

lipoproteins, insulin resistance and plasma malondialdehyde.  

Current knowledge supports positively the usefulness of probiotics in improving cognitive ability in the 

early stages of AD or mild cognitive impairment (MCI) [98] and reflected in the present systematic 
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review. MCI refers to a state of cognitive impairment preceding the clinical diagnosis of Alzheimer's 

disease, which does not yet compromise daily functioning. 

This systematic review analyses five RCTs: Hwang et al (2019) evaluated the efficacy and safety of the 

probiotic DW2009 as a nutritional supplement for cognitive enhancement in 100 people with MCI aged 

55-85 years. After 12 weeks, improvements were found in cognitive performance, as measured by the 

CNT scale, especially in attention [87]. Kobayashi et al (2019) conducted a similar intervention on 121 

subjects with memory problems with Bifidobacterium breve A1 capsules. After 12 weeks of 

intervention, significant differences in RBANS and MMSE scores were only observed in the subgroup 

of individuals with incipient dementia, but not in those with near normal memory function [84]. These 

results support probiotics rescue cognitive function in subjects with MCI. It invites future studies to 

clarify the benefit of probiotics in healthy individuals. The study by Xiao J et al (2020) analysed the 

effect at 16 weeks of Bifidobacterium breve A1 administration in 80 subjects aged 50-79 years with MCI 

(MMSE score >22). The RBANS total score improved significantly in the probiotic group compared to 

placebo, markedly in the immediate, visuospatial, constructive, and delayed memory domains. The 

JMCIS score also improved [85]. Similarly, Sanborn et al (2020) investigated whether Lactobacillus 

rhamnosus 12 weeks of GG supplementation improved cognitive function in 200 middle-aged and older 

adults. The results, measured with the NIH ToolBox scale, were favourable, showing an improvement 

in total cognition in those with previous cognitive impairment. No effect was observed those with intact 

cognitive function or in placebo group [86]. Finally, Kim CS et al (2021) evaluated the effect of 

Bifidobacterium bifidum and Bifidobacterium longum probiotics in 63 subjects over 65 years of age. 

After 12 weeks significant improvements in scores on the cerad-k mental flexibility test were found in 

the probiotic group compared to the placebo group [88]. 

This systematic review strongly supports a positive effect of probiotic supplementation on cognitive 

function in people with MCI. Importantly, only this study [88] performed an analysis of the gut 

microbiome profile in their participants, before and after the probiotic intervention. A decrease in the 

relative abundance of pro-inflammatory bacteria (Eubacterium, Allisonella, Clostridiales and 

Prevotellaceae) at week 12 in the probiotic group was reported. The study by Hwang et al (2019) [87] 

correlated the serum levels of BDNF with cognitive performance for each treatment group: serum BDNF 
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levels increased after Lactobacillus Plantarum C29 probiotic administration, which may suggest that 

this metabolite may have mediated the cognitive enhancement.   

The improvement in cognitive function may be due to a direct effect of the gut microbiota via the gut-

brain axis; or indirectly, improving metabolic parameters (insulin sensitivity), and reducing 

inflammatory conditions. 

In terms of safety, probiotics were well tolerated as no adverse events were reported in any of the RCTs 

evaluated. There were also no differences in vital signs (blood pressure, pulse rate), body mass index 

and laboratory results between treatment groups. Probiotics are classified as safe by the US Food and 

Drug Administration (FDA). However, they should not be administered in certain patients, particularly 

those receiving immunosuppressive treatments such as chemotherapy, as some cases of sepsis, fungemia 

and bacteraemia have been reported in people receiving S. boulardii. Although no adverse events were 

found in these studies, exceptionally, probiotic bacteria may contain antibiotic resistance genes that can 

be transmitted to other bacteria, including harmful genera [99]. 

Gut health beyond probiotics 

In addition to probiotics, other measures must be taken to preserve the gut health in the elderly, such as 

monitoring the excess of medication. The most used non-antibiotic drugs affecting the gut microbiota 

profile are proton pump inhibitors [100], antipsychotics and antidepressants [101}. Also, non-steroidal 

anti-inflammatory drugs [102], laxatives, statins, anti-diabetic drugs (e.g., metformin) [103] and anti-

rheumatic drugs such as methotrexate can affect microbiota [104,105]. Polypharmacy (defined as 5 or 

more drugs) can cause changes in luminal pH, local mucosal inflammation, leading to dysbiosis, 

depending on the type of medication used [106]. Polypharmacy is very common in developed countries. 

According to the 2017 Spanish National Health Survey, the 37.5% of non-institutionalised older adults 

consume 5 or more medicaments [106]. However, other national [107], French [108], and Swedish [109] 

studies report even higher prevalences, close to 50% of polypharmacy and up to 20% of 

hyperpolypharmacy (defined as 10 or more medicines). In this context, it is worth noting a study on 

hospitalised elderly patients in which polypharmacy was significantly associated with gut microbiota 

dysbiosis and mortality. Differences in more than 15 taxa were found associated to polypharmacy (e.g. 

positive association was observed in Bradyrhizobium, Coprobacter, Helicobacter and Prevotella), in 
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comparison with healthy, active elderly subjects without polypharmacy [110]. Therefore, although the 

efficacy and safety of medication remain highly favourable, increasing evidence reveals the importance 

of identifying inappropriate polymedication by assessing the long-term effects in the gut ecosystem. 

Strengths and limitations of this review 

This systematic review has some notable strengths. First, the systematic review strictly follows the 

recommendations of the Cochrane handbook. Secondly, we applied strict inclusion and exclusion 

criteria to have as homogeneous studies as possible, which, together with the high methodological 

quality of the studies. Also, the primary outcomes were measured with scales validated for this purpose.  

Despite these strengths, this systematic review is not without some limitations. First, despite thorough 

literature searches, it is possible that some eligible studies may have been missed, especially those 

published between the search deadline and the publication of this systematic review. Furthermore, the 

research question of whether gut dysbiosis is a key trigger, enhancer or secondary factor in AD has not 

been satisfactorily elucidate since most studies did not evaluate the bacterial profile before and after the 

intervention. Further studies are warranted to clarify the directionality of this causal association.   

Although the current scientific evidence invites optimism about the role of probiotics in not only 

gastrointestinal but also systemic and neurodegenerative diseases, such as AD, there are many 

unresolved questions that need to be clarified before the use of probiotics in clinical practice can be 

firmly considered. Some of these questions include: Are there differences in therapeutic intervention 

with prebiotics and probiotics? Does the brain adapt to probiotic intake over the long term? Is there a 

"ceiling effect" on probiotic benefits? Do factors such as diet, genotype, gender, and age moderate the 

effects of probiotics? How do probiotics interact with other drugs?  

Furthermore, given the taxonomic disparity at the individual level, personalised medicine should be 

considered in the use of probiotics based on the pre-existing microbiota and patient symptomatology. 

Future studies with longer treatment are needed to address these questions. 

Conclusions 

Taken together, the results of this systematic review indicate that Bifidobacterium and Lactobacillus 

probiotics, when supplemented for minimum of 12 weeks, can improve cognitive function in people 

with MCI and/or incipient AD, with a very favourable safety profile. Due to the gradual nature of AD 
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progression, and considering its societal importance, it is imperative to explore and develop intervention 

strategies for early AD.  

Preserving gut health, counteracting the dysbiosis associated with ageing would have a great health, 

social and economic impact, by preventing or delaying progression of diseases associated to aging. 
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Figure Legends 

Figure 1.  Basic functions of the gut microbiota. 

Figure 2. Composition and diversity of the gut microbiota throughout life and the main external 

conditioning factors. 

Figure 3. Schematic representation of the pathophysiology of the sporadic form of AD. Both intrinsic 

and environmental factors can lead to gastrointestinal dysbiosis in the elderly, resulting in local 

inflammation that spreads systemically through the bloodstream and vagus nerve to the CNS, disrupting 

the blood-brain barrier and promoting neuroinflammation, a key factor underlying AD. 

Figure 4. Flow chart for literature search. 

Figure 5. Summary Graph of Cochrane risk of bias. 

 

Tables 

Table 1. Examples of publications were microbiota dysbiosis is associated with human pathologies 

Table 2. PICO criteria; Patient, Intervention, Comparison, Outcomes 

Table 3. Extracted data from revised trails. For the extended version see Fig S2. 

Table 4. Cochrane revision. For details see Fig S3 

 

Suplementary data 

Figure Supplementary 1. Search strategies used in specific databases 

Figure Supplementary 2. Detailed Data extracted from the revised trails.  

Figure Supplementary 3. Detailed Cochrane risk of bias tool.  
Figure Supplementary 4. SIGN checklist for clinical trials. 
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