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A B S T R A C T

In the current paradigm of Zero Defect Manufacturing, it is essential to obtain mathematical models that
express the propagation of manufacturing deviations along Multistage Manufacturing Processes (MMPs). Linear
physical-based models such as the Stream of Variation (SoV) model are commonly used, but its accuracy may
be limited when applied to MMPs with a large amount of stages, mainly because of the modeling errors at
each stage that are accumulated downstream.

In this paper we propose a methodology to calibrate the SoV model using data from the inspection stations
and prior engineering-based knowledge. The data used for calibration does not contain information about the
sources of variation, and they must be estimated as part of the model adjustment procedure. The proposed
methodology consists of a recursive algorithm that minimizes the difference between the sample covariance of
the measured Key Product Characteristic (KPC) deviations and its estimation, which is a function of a variation
propagation matrix and the covariance of the deviation of the variation sources. To solve the problem with
standard convex optimization tools, Schur complements and Taylor series linearizations are applied. The output
of the algorithm is an adjusted model, which consists of a variation propagation matrix and an estimation of
the aforementioned variation source covariance.

In order to validate the performance of the algorithm, a simulated case study is analyzed. The results, based
on Monte Carlo simulations, show that the estimation errors of the KPC deviation covariances are proportional
to the measurement noise variance and inversely proportional to the number of processed parts that have been
used to train the algorithm, similarly to other process estimators in the literature.
1. Introduction

Zero Defect Manufacturing (ZDM) paradigm has gained traction on
the quality management agenda since 2010, mainly moved by the trend
of digitalization and the Industry 4.0 [1]. In a position paper, Psarom-
matis et al. [2] defined the ZDM paradigm as ‘‘a holistic approach for
ensuring both process and product quality by reducing defects through
corrective, preventive, and predictive techniques, using mainly data-
driven technologies and guaranteeing that no defective products leave
the production site and reach the customer, aiming at higher manu-
facturing sustainability’’. According to recent reviews [1,3,4], ZDM is
considered beyond traditional quality improvement approaches where
data-driven approaches are applied to predict the future existence of a
fault and implement actions to avoid or minimize its consequences. For
this purpose, sensors and in-line inspection systems are deployed along
the production line to enable process monitoring and control [2].

A comparison of traditional quality improvement strategies and
ZDM strategies can be seen in Fig. 1, adapted from [1]. Traditional
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quality strategies rely on data from inspection stations at downstream
and the feedback quality control loop may present issues such as delays
in defect identification and difficulties in root-cause analysis. However,
ZDM strategies use in-line inspection to proactively identify defects
or potential defects and look for actions for minimize their impact
downstream by implementing feedforward quality control loops.

Data-driven technologies used in ZDM lead to a more efficient
quality assurance with capabilities for early detection of product de-
fects and the identification of fault root causes. Some key enabling
technologies for ZDM are digital twins which let the implementation
of digital counterparts of product/process/systems [1,3]. In this field,
the integration of data-driven and engineering-driven models is a key
aspect of research for the development of reliable models with phys-
ical interpretation, where causality and root cause analysis can be
conducted.

Current trends on ZDM promoted by the European Factories of
the Future Research Association (EFFRA) and other institutions are
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Fig. 1. A comparison of traditional quality improvement strategies (a) and ZDM strategies (b).
encouraging engineers to develop strategies for modeling, monitoring
and controlling the output quality of complex manufacturing systems
where several stages are inter-related to manufacture the product [5].
Examples of these processes, called Multistage Manufacturing Processes
(MMP), are automotive body assemblies, machining lines for conduct-
ing multiple operations under different part orientation and fixtures,
dielectric layer formulation processes in semiconductor industries and
tile manufacturing processes [6–9]. To understand the complexity of
these systems, consider the MMP of automobile assemblies where a
typical body-in-white structure of the car is composed of 100–150
sheet metal parts. In this multistage assembly process one may find
around 80–120 assembly stations where more than 1500 fixture locator
are used to place the parts and more than 4000 welding points are
executed [6]. As it can be expected, the amount of stages, variation
sources and the complexity of the interactions at each stage makes the
quality assurance of these processes a challenging task.

In order to model error propagation in MMP, the Stream-of-
Variation (SoV) methodology has been successfully applied since the
beginning of 21st century [6]. The kinematic relationships among
fixtures, workpieces, tools (e.g. cutting tools or welding guns), are
linearized and represented in matrix form which results in a variation
propagation model in the form of a linear state-space model, where
workpiece deviations in a given stage depend on the deviations caused
by the variation sources in that stage (named fixture, machining or
welding errors) and on the deviations of certain features manufac-
tured in previous stages (named datum errors). This methodology was
first developed to model the behavior of rigid sheet metal assembly
processes, defining the main types of errors [10], which was later
extended to compliant parts [11], and extended afterwards to 3D using
Differential Motion Vectors (DMVs) [12]. The behavior of compliant
composite parts for single and multistage assembly processes has also
been modeled [13,14]. Multistage machining processes have also been
investigated using SoV models. Originally defined using DMVs in [7],
subsequent research has modeled the effects of machining-induced
variations [15], general-purpose workholding devices [16] and general
fixture layouts [17]. The concept of feedforward quality control loops
from ZDM paradigm was investigated using the SoV model and in-
line measurements. The prediction of part deviations at downstream
stages let implement tooling compensation actions to correct or min-
imize their effects [18,19], or let apply quality rework loops [20].
These techniques require flexible manufacturing, optimal measurement
sensor location [21] and appropriate models of the manufacturing
system, which must be analyzed to verify its diagnosability [22] and
compensability [23].

However, the accuracy of these models is limited due to lineariza-
tions and approximations, especially when there is a large amount
of stages since these linearization-induced errors accumulate when
282

calculating the error propagation model. Additionally, these methods
can only take into account the general configuration of the manufac-
turing process, considering ideal geometries for each component of
the process; in reality, each component may present slight differences
depending on the manufacturer and brand. Thus, some elements of
the complete model of the MMP may present divergences with respect
to the real behavior of the process. To overcome this limitation, the
physical model based on SoV methodology requires an adjustment or
calibration using data from the process. This type of approaches where
engineering-based models are calibrated have been studied in the liter-
ature under the term ‘‘hybrid modeling’’ and it has been identified as
a big trend in the field of modeling manufacturing systems [24,25].

In this paper, we present a methodology to reduce the aforemen-
tioned divergences by slightly adjusting a physical variation propaga-
tion model of a MMP using collected measurements from the process
and engineering knowledge. The complexity and dimensionality of this
adjustment requires a numerical solution using optimization solvers.
The adjustment is performed by minimizing the difference between
the sample covariance of the output quality measurements and the
expected covariance calculated with the model and the covariance of
the variation sources, taking into account that only a given variation
source covariance range is known. Prior knowledge, such as inspection
measurement uncertainty and ranges of variation sources, is assumed
to be known from backup data and/or equipment specifications. This
knowledge is used to determine the optimization bounds. The non-
linear behavior of the objective function and the bounding conditions
require convexification transformations and iterated optimizations in
order to obtain a convergent solution using a convex optimization
solver.

The main contribution of this paper is the definition of a method-
ology that combines physical models, data-driven methods and en-
gineering knowledge to obtain an improved input–output variation
propagation model of an MMP. For this purpose, different linearization
methods have been applied to the objective function in order to ensure
that a convex optimization solver can provide a solution within a finite
time.

This paper is structured as follows. Section 2 presents the literature
review related to model adjustment using engineering models and
data. Section 3 introduces the dimensional error propagation model
usually applied in MMPs and formulates the calibration problem under
different assumptions. Section 4 describes the proposed methodology
for model adjustment and Section 5 presents several indexes to evaluate
the performance of the resulting model. A case study is shown in
Section 6 to illustrate the application of the proposed methodology and
finally, Section 7 presents the conclusions of the paper.

2. Literature review

Mechanistic models, also known as first principle models, are based
on physical laws that define the behavior of the system. These models
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are generally expensive in development, since one needs to derive
equations from physical laws and, in many cases, simplification of the
system is necessary to end with a practical mathematical expression.
On the other hand, data-driven models also known as empirical or
black-box models are based on the data obtained from the actual
system in sufficient quantity and quality to estimate the relationships
among inputs and outputs. While these models can be rapidly built
with great accuracy using the data obtained from the actual system,
the main drawbacks are the lack of physical interpretation of the model
and thus, the limitation of its use on the working region where the
data was acquired and under the same conditions. Merging physical-
based and data-driven models, i.e. engineering knowledge and data, is
becoming the next big trend in research and industry, since it leads to
models with higher accuracy and interpretability and thus, to a better
decision-making. In the literature, this field is commonly named hybrid
modeling or grey-box modeling. Interesting reviews on this topic can be
found in [24,26,27]. One type of hybrid modeling is model calibration,
where ‘‘a low-fidelity mechanistic model is calibrated using both low-
fidelity data (from the mechanistic equation) and the high-fidelity data
(from the experiment) to generate high-fidelity output’’ [24]. When
dealing with model calibration the following problems may arise [28]:
(i) various combinations of input parameters may yield comparable fits
to observed data, which is defined as the identifiability issue, (ii) the
observed data contain some degree of error or uncertainty, and (iii)
the most appropriate measure of agreement between observed data and
model response is no obvious.

Let 𝑦 be the output of the system, where the input variables are
defined as 𝑥 = [𝑥(1),… , 𝑥(𝑝)]. Consider the physical model defined as
𝑓 (𝑥, 𝜃), where 𝜃 = [𝜃(1),… , 𝜃(𝑞)] are the calibration parameters. Then,
the model error is defined as

𝑒(𝑥, 𝜃) = 𝑦(𝑥) − 𝑓 (𝑥, 𝜃). (1)

The adjustment of the calibration parameters seeks to minimize
the sum of squared errors which may be a non-convex optimization
problem and a formalized mathematical method using optimization
techniques to minimize the error criterion is required. Methods from
system identification based on Kalman filter have also been proposed
for model calibration and are particularly well-suited when new data
is available over time and process parameters may vary [28]. In the
field of model calibration of computer models, Kennedy and O’Hagan
presented in [29] a framework for model calibration that is considered
a landmark work. In their research, the real output of the system is
defined as

𝑦(𝑥) = 𝑓 (𝑥, 𝜃) + 𝛿(𝑥) + 𝜖, (2)

where 𝛿(𝑥) is a discrepancy function to capture errors between the
model and the true output (model bias), and 𝜖 is the random error that
aptures the measurement noise and the effect of unaccounted variables
n the system. Since computer models are considered inexact, if discrep-
ncy is not included in model calibration, parameter estimation may
e biased and over-confident parameter estimates are obtained. Model
alibration of Eq. (2) is conducted using parametric or non-parametric
ethods. In parametric methods both 𝑓 (𝑥, 𝜃) and 𝛿(𝑥) are modeled in

a parametric way and thus, a specific functions with a finite number
of parameters are defined in advance. Some authors have presented
parametric methods to understand why a discrepancy exists in order
to fix the wrong assumptions made in the model. For instance, Joseph
and Melkote [30] proposed an engineering-driven parametric model
to capture the discrepancy. In their work, the discrepancy function is
further analyzed using simple main effects analysis and graphical plots
in order to identify and correct the wrong assumptions of the model
and make it more interpretable. Their approach was applied for mod-
eling the cutting forces in a laser-assisted mechanical micro-machining
process.

On the other hand, non-parametric methods are mainly based on
Gaussian Process models for both the discrepancy function and a surro-
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gate for the engineering model. Kennedy and O’Hagan [29] proposed a
Bayesian method to compute the posterior prediction distribution of the
physical process. Many other researchers proposed modifications from
this work to improve model calibration using other non-parametric
methods. For instance, Plumlee et al. [31] proposes a discrepancy
function prior that is orthogonal to the gradient of the engineering
model, which results in an improvement of the posterior distribution.
As a brief comparison [32], parametric models need of prior knowledge
to ensure that the model assumption can be explained physically, which
may be difficult if there is no enough engineering knowledge of the pro-
cess. However, model assumptions in non-parametric models are much
relaxed although leads to less physical interpretation. Furthermore, the
rate of convergence is much slower than the standard rate of parametric
methods.

One important issue in model calibration is identifiability. Identifi-
ability refers to ‘‘whether the single true value of a model’s calibra-
tion parameters can theoretically be inferred based on the available
data’’ [33]. The main problem is that different combination of param-
eters and discrepancy values can result in similar output values which
leads to an identifiability issue of the calibration parameters 𝜃. The
identifiability issue cannot be solved through additional experimental
observations, but the use of more informative prior knowledge of the
system in terms of more accurate prior information about calibra-
tion parameters or including engineering-driven information in the
discrepancy function can improve the identifiability [34,35]. The use
of multiple responses in the model can also improve this issue [36].
Another way to circumvent this problem is to apply engineering knowl-
edge to obtain a sparse model for the calibration problem as presented
in Wang et al. [37]. In their work, the authors studied how to calibrate
a computer model to match model predictions with the experimental
observations of the structural load in a composite fuselage. In their
proposal, most engineering values are considered close to their corre-
sponding optimal values and only a subset of the model parameters
require an adjustment. These parameters are called sensible variables
to differentiate from the parameters that do not require adjustment be-
cause they have no influence on the output or because they are assumed
to be close to the optimal one given the engineering knowledge. The
complex computer model is then approximated by a model in linear
form and as a result, the parameter identification becomes a convex
optimization problem.

Previous methods apply the model calibration algorithm to a com-
puter model where the cost of running is expensive, and thus, there is
limited data from the model. In Liu [38], it is assumed that sufficient
amount of data generated from both physical operations and com-
putational experiments is available to perform parameter calibration.
They presented the calibration problem as an stochastic optimization
procedure to iteratively fine-tune the calibration parameters via a mini-
batch optimization process. They formulated the parameter calibration
problem as

𝜃∗ = argmin
𝜃

𝐿(𝜃), (3)

where 𝐿(𝜃) is any form of loss function, although they applied the 𝐿2
norm due to its mathematical tractability. Given a data set (𝑦𝑖, 𝑥𝑖), 𝑖 = 1,

, 𝑁 collected from the physical system, the empirical loss becomes

(𝜃) = 1
𝑁

𝑁
∑

𝑖=1
[𝑦𝑖(𝑥𝑖) − 𝑓 (𝑥𝑖, 𝜃)]𝑇 ⋅ [𝑦𝑖(𝑥𝑖) − 𝑓 (𝑥𝑖, 𝜃)], (4)

which refers to a nonlinear least squares estimation problem which is
solved by a gradient descent algorithm with stratified sampling.

In the field of modeling MMPs, Sun et al. [39] studied the dimen-
sional errors in multistage machining processes and they proposed a
semi-parametric model to integrate engineering knowledge and mea-
surement data for model calibration. In their model, the dimensional
error at each stage depends on the previous dimensional errors and
the tolerance range due to processing at each stage. Furthermore,
a discrepancy function and random errors complete the model for
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dimensional error propagation. In their work, the discrepancy function
is closely related to machine tools and fixtures at different cutting tool
positions and it is assumed to be a second order function. The Bayesian
framework is then applied to estimate the parameters of the system.

In this paper, we deal with the problem of calibrating a model
of error propagation in multistage manufacturing systems. Unlike pre-
vious research works, the calibration problem presented has specific
characteristics that make their calibration challenging. First, the model
is derived using the SoV methodology and thus, the model is a linear
model derived from kinematic linearizations of fixture dimensions.
Second, the data used for calibration is related to dimensional devia-
tions acquired in quality control by inspection stations, but there is no
data about the sources that produce these deviations. In other words,
in Eq. (1) we have no information about 𝑥 (i.e., fixture or tooling
deviations) for a given set of inspection data, 𝑦(𝑥). However, we assume
that a solid engineering knowledge about ranges of operation of the
system is available, so prior information about values of 𝜃, and 𝑥 are
given. Our problem is to adjust the parameters 𝜃 of the SoV model
(i.e., the engineering model), which is defined as 𝑓 (𝑥, 𝜃), in order to
get a better explanation of the data acquired in the system, minimizing
the discrepancy between the model and the data.

Notation

Let us define 𝐴 ∈ R𝑛×𝑛 as a matrix, and 𝑎 ∈ R𝑛 as a vector. When
we refer to the structure of the model matrices, 𝐴(𝑖) and 𝑎(𝑖) refer to
the values of 𝐴 and 𝑎 of the 𝑖th processed part, respectively. 𝑎𝑘,𝑛 refers
to the state of 𝐴 for the nth locator or KPC deviation at stage 𝑘. Letter
𝛴 represents a covariance matrix, and 𝜎2 an element of that matrix.
Also, letter 𝑆 represents a sample covariance matrix. Letters 𝛴, 𝜎2 and
𝑆 can be accompanied by a subscript (e.g. 𝛴𝑧), which refers to a given
assigned term 𝑧. Thus, 𝜎2𝑎 [𝑞] refers to the variance of the 𝑞th element of
𝑎. Additionally, 𝐴[𝑝, 𝑞] refers to the element located on the 𝑝 row and
𝑞 column of 𝐴. A subscript after a dimensional counter (𝑛𝑧) also refers
to an assigned name 𝑧.

The diagonal of a square matrix is extracted using operator 𝑑𝑖𝑎𝑔(⋅).
perator 𝑑𝑖𝑎𝑔−1(⋅) applied to a vector generates a diagonal square
atrix whose diagonal contains the aforementioned vector. Operator
𝑒𝑐 (𝐴) ∈ R𝑛2 returns the vectorization of 𝐴 as a column. Given a
ymmetric 𝐴, operator 𝑠𝑣𝑒𝑐 (𝐴) ∈ R𝑛2 returns the vectorization of the
lements within and below the diagonal of 𝐴, expressed as a column.
he Hadamard product of 𝐴 and 𝐴 is expressed as 𝐴◦2.

When we explain numerical algorithms, 𝐴(𝑙) and 𝑎(𝑙) refer to the
alues of 𝐴 and 𝑎 during the l iteration. Expected values are denoted
s 𝑬{⋅}. Let us define function 𝑏 = 𝑓 (𝑎), where 𝑏 ∈ R1. The partial
erivative of 𝑏 with respect to vector 𝑎 is expressed as 𝜕𝑏

𝜕𝑎 .

3. Problem statement

The objective of this paper is to present a methodology to adjust a
physical linear input–output model of dimensional variation propaga-
tion in MMPs with a large amount of stages and/or with components
that, due to their configuration, cannot be reliably modeled, using col-
lected measurement data from shopfloor and engineering knowledge.
Given that physical models of these MMPs may present divergences
with respect to the real behavior of the process due to modeling approx-
imations and differences between idealized and real components, the
adjustment is performed by adapting the physical model to minimize
these divergences.

In this problem, the following assumptions are considered:

Assumption 3.1. Data from the variation sources are not available,
although approximated ranges of their covariances are available. This
is a reasonable industrial practice since accuracy of fixtures and manu-
facturing operations may be estimated from technical specifications or
capability studies.
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Assumption 3.2. Model divergences are modeled as disturbances
expressed as linear functions of the variation sources. This assumption
is explained by the nature of the SoV model. This model is based on de-
viations of reference points using linear approximations provided that
the deviations are much smaller than nominal values [6]. Therefore, a
linear function can be used to model the divergences.

Assumption 3.3. The data used to adjust the model is collected from
a MMP that is under statistical control (i.e. faultless process); thus, no
other disturbances are considered in this methodology. This is also a
common practice, for instance, prior to setting up a control chart for
quality control, the process is verified to be under statistical control.

The output of the proposed adjustment methodology will be: (i) ad-
justed coefficients of the dimensional variation propagation model and
(ii) the estimation of the actual covariance of the variation sources. The
variation propagation model considered in this paper and additional
assumptions to clarify the scope of the research are exposed in this
section.

3.1. Variation propagation model and assumptions

The Stream-of-Variation methodology defines the variation propa-
gation model of an M-stage MMP as a state-space model [6]. This model
describes the effect of the variation sources on the dimensional devi-
ations of the workpiece features, and consequently, how these feature
deviations affect Key Product Characteristics (KPC), which are the most
important dimensional and geometrical properties of a processed part,
as they directly impact the output quality of the product. The model
presents the form

𝑥𝑘(𝑖) = 𝐴𝑘−1 ⋅ 𝑥𝑘−1(𝑖) + 𝐵𝑘 ⋅ 𝑢𝑘(𝑖) +𝑤𝑘(𝑖), (5a)

𝑦𝑘(𝑖) = 𝐶𝑘 ⋅ 𝑥𝑘(𝑖) + 𝑣𝑘(𝑖), (5b)

here 𝑘 = {1, 2, ..., 𝑀} refers to the stage index. The feature deviations
f part 𝑖 = {1, ..., 𝑁} after stage 𝑘 are expressed by 𝑥𝑘(𝑖). The values
f the variation sources that affect part 𝑖 at stage 𝑘 are represented
y 𝑢𝑘(𝑖), and 𝑤𝑘(𝑖) represents unmodeled errors of the process. The
eviation of the KPCs from nominal values (KPCd) that are inspected in
tage 𝑘 are represented by 𝑦𝑘(𝑖). Measurement noise is represented by
𝑣𝑘(𝑖). Matrices 𝐴𝑘, 𝐵𝑘 and 𝐶𝑘 are defined by the process layout and its
haracteristics and can be derived from process planning data as shown
n [7].

This model can be rearranged into a linear input–output model of
he MMP:

𝑀 (𝑖) = 𝛤 ⋅ 𝑢(𝑖) + 𝑣𝑀 (𝑖) + 𝜔(𝑖), (6)

here 𝑦𝑀 (𝑖) is 𝑦𝑘(𝑖) at stage 𝑀 , containing the 𝑛𝑦 KPCd measurements
n that stage (𝑦𝑀 (𝑖) ∈ R𝑛𝑦 ), 𝑣𝑀 (𝑖) is 𝑣𝑘(𝑖) at stage 𝑀 (𝑣𝑀 (𝑖) ∈ R𝑛𝑦 ), 𝑢(𝑖)

contains all the 𝑛𝑢 states of the variation sources of the MMP (𝑢(𝑖) ∈
R𝑛𝑢 ), 𝜔(𝑖) includes the unmodeled disturbances, and 𝛤 (𝛤 ∈ R𝑛𝑦×𝑛𝑢 )
is the variation propagation matrix, which relates the impact of all
variation sources on the KPC deviations using a linear relationship.
Matrix 𝛤 is the result of the organized products of matrices 𝐴, 𝐵 and
𝐶 of each stage [7] and it defines the general behavior of the MMP.

As explained in Assumption 3.3, no faults nor non-linear distur-
bances will be present for our adjusting methodology; thus, 𝜔(𝑖) will be
omitted from now on. The divergences due to errors when developing
physical models are considered proportional to the variation sources
and thus, included within matrix 𝛤 , as commented in Assumption 3.2.

From Eq. (6), vectors 𝑦𝑀 (𝑖), 𝑣𝑀 (𝑖) and 𝑢(𝑖) are then defined as

𝑦𝑀 (𝑖) =
⎡

⎢

⎢

⎣

𝑦𝑀,1(𝑖)
⋮

𝑦𝑀,𝑛𝑦 (𝑖)

⎤

⎥

⎥

⎦

, 𝑣𝑀 (𝑖) =
⎡

⎢

⎢

⎣

𝑣𝑀,1(𝑖)
⋮

𝑣𝑀,𝑛𝑦 (𝑖)

⎤

⎥

⎥

⎦

, 𝑢(𝑖) =
⎡

⎢

⎢

⎣

𝑢1(𝑖)
⋮

𝑢𝑛𝑢 (𝑖)

⎤

⎥

⎥

⎦

, (7)

where 1, ..., 𝑛𝑢 in 𝑢1, ..., 𝑢𝑛𝑢 refer to an arbitrarily assigned numeration
of the variation sources of the whole MMP.
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Fig. 2. Diagram of the variation source propagation in a multistage process.
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Assumption 3.4. Matrix 𝛤 is time invariant, so it remains constant
during the natural working time of the MMP.

Thus, Eq. (6) is generalized into

𝑦 = 𝛤 ⋅ 𝑢 + 𝑣, (8)

and we define 𝑢, 𝑣 and 𝑦 as vectors containing the values of the
tates for each deviation source, measurement noise and inspected KPC
eviations, respectively, for any given amount of parts:

=
⎡

⎢

⎢

⎣

𝑢1
⋮
𝑢𝑛𝑢

⎤

⎥

⎥

⎦

, 𝑣 =
⎡

⎢

⎢

⎣

𝑣𝑀,1
⋮

𝑣𝑀,𝑛𝑦

⎤

⎥

⎥

⎦

, 𝑦 =
⎡

⎢

⎢

⎣

𝑦𝑀,1
⋮

𝑦𝑀,𝑛𝑦

⎤

⎥

⎥

⎦

. (9)

ote that subscript 𝑀 is now omitted, as it is implied.
In Fig. 2 we present a diagram that summarizes the different con-

epts we have exposed until now.

ssumption 3.5. The expected value of the states of the variation
ources 𝑢 and the measurement noise 𝑣 is zero.

{𝑢} =
⎡

⎢

⎢

⎣

𝑬{𝑢1}
⋮

𝑬{𝑢𝑛𝑢}

⎤

⎥

⎥

⎦

= 𝟎𝑛𝑢×1, 𝑬{𝑣} =
⎡

⎢

⎢

⎣

𝑬{𝑣𝑀,1}
⋮

𝑬{𝑣𝑀,𝑛𝑦}

⎤

⎥

⎥

⎦

= 𝟎𝑛𝑦×1. (10)

ssumption 3.6. Both 𝑢 and 𝑣 are independent variables:

{𝑢 ⋅ 𝑣⊤} = 𝟎𝑛𝑢×𝑛𝑦 . (11)

Taking into account the previous assumptions a Variance Variation
ropagation Model (VVPM) is established, which models the behavior
f the covariance matrices of the variation propagation model. Defining
ariables 𝛴𝑦, 𝛴𝑢 and 𝛴𝑣 as

𝛴𝑦 =𝑬{𝑦𝑦⊤}, (12a)

𝛴𝑢 =𝑬{𝑢𝑢⊤}, (12b)

𝑣 =𝑬{𝑣𝑣⊤}, (12c)

here 𝛴𝑦 ∈ R𝑛𝑦×𝑛𝑦 , 𝛴𝑢 ∈ R𝑛𝑢×𝑛𝑢 and 𝛴𝑣 ∈ R𝑛𝑦×𝑛𝑦 , we define the VVPM
s

𝑦 = 𝛤 𝛴𝑢 𝛤⊤ + 𝛴𝑣. (13)

ssumption 3.7. The linear input–output model in Eq. (6) is consid-
red a stationary process [40], thus, the aforementioned variances will
e constant during the normal operation of the multistage process, and
o faults are present as stated in Assumption 3.3.
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Additionally, we also consider the following assumptions:
ssumption 3.8. The variation sources are independent, so covari-
nce matrix 𝛴𝑢 is diagonal:

𝑢 =
⎡

⎢

⎢

⎣

𝜎2𝑢 [1] … 0
⋮ ⋱ ⋮
0 … 𝜎2𝑢 [𝑛𝑢]

⎤

⎥

⎥

⎦

, (14)

here 𝜎2𝑢 [𝑞] represents the variance of the qth variation source (𝑢𝑞). We
all �⃗�𝑢 to the variable that collects the same terms of the diagonal of
𝑢.

⃗𝑢 =
[

𝜎2𝑢 [1], ..., 𝜎
2
𝑢 [𝑛𝑢]

]⊤ ≡ 𝑑𝑖𝑎𝑔
(

𝛴𝑢
)

. (15)

ssumption 3.9. Measurement noises are independent. Thus, covari-
nce matrix 𝛴𝑣 is diagonal:

𝑣 =
⎡

⎢

⎢

⎣

𝜎2𝑣 [1] … 0
⋮ ⋱ ⋮
0 … 𝜎2𝑣 [𝑛𝑦]

⎤

⎥

⎥

⎦

, (16)

here 𝜎2𝑣 [𝑝] represents the variance of the pth measuring instrument.
e call �⃗�𝑣 to the variable that contains the same terms of the diagonal

f 𝛴𝑣.

⃗𝑣 =
[

𝜎2𝑣 [1], ..., 𝜎
2
𝑣 [𝑛𝑦]

]⊤ ≡ 𝑑𝑖𝑎𝑔
(

𝛴𝑣
)

. (17)

ssumption 3.10. The variance of the measurement noises is always
nown. It is calculated from its precision, obtained through the in-
truments’ handbook or by performing a calibration of the instrument.
hus, covariance matrix 𝛴𝑣, and consequently, �⃗�𝑣 are known terms in
his paper.

ssumption 3.11. Covariance matrix 𝛴𝑦 is a full symmetric matrix.
e call �⃗�𝑦 to the variable that contains the same terms of the diagonal

f 𝛴𝑦.

⃗𝑦 ≡ 𝑑𝑖𝑎𝑔
(

𝛴𝑦
)

. (18)

Attending to Appendix A, we can state the following relationship for
the diagonal elements of the covariance of the KPCd measurements.

�⃗�𝑦 = 𝛤 ◦2�⃗�𝑢 + �⃗�𝑣. (19)

Assumption 3.12. The elements of 𝛴𝑦 are magnitude orders greater
than the elements of 𝛴𝑣.

3.2. Problem formulation

With the definitions and assumptions above we can reformulate the

problem statement as follows. Given that:
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• the MMP behaves as a linear input–output model (8) that leads
to a VVPM model (13) assuming random independent variables;

• the process allows physical modeling and through geometrical
analysis (as SoV methodology) we can obtain an initial estimation
for variation propagation matrix in (8) that is close to the real
one, but not enough to be used for diagnosis or control purposes;

• we can state some geometrical premises, and we have some engi-
neering knowledge about the process that allows us to establish
some bounds about the parameters of the model;

• a set of KPCd measurements from the real process can be acquired
in standard conditions without any excitation for identification
purposes (e.g. at the inspection station) and those measurements
are affected by measurement noises with known variances;

hen, obtain an accurate estimate for 𝛤 and 𝛴𝑢 in model (13). This
model can be used latter, for instance, to estimate source variation
covariance 𝛴𝑢 to detect changes and state fault detection and isolation
(see [40,41]), or to apply feedforward control (see [18]).

4. Proposed methodology for model adjustment

In this section we detail our proposal to adjust the variation propa-
gation model for MMPs. The proposed methodology can be summarized
as:

1. Obtain the variation propagation model according to the SoV
methodology [6]. This is the initial model estimation for 𝛤 ,
obtained through geometrical and engineering knowledge.

2. Set constraints to model values. According to engineering knowl-
edge, fixed values or uncertainty ranges of model coefficients can
be set up.

3. Acquire real data from the MMP to be modeled. For simplicity
we assume that the data acquired is at the last stage of the pro-
cess where a quality inspection is conducted, but the procedure
can be applied at any intermediate stage.

4. Obtain an initial estimated value for the variation source covari-
ance matrix, i.e., for 𝛴𝑢.

5. Set constraints to admissible ranges for the variation source
covariance matrix during normal operation based on engineering
knowledge (e.g., admissible tool wear in machining, admissible
locating error due to assembly and wear, etc.).

6. Calibrate the model (i.e., 𝛤 and 𝛴𝑢 adjustments) by an optimiza-
tion procedure that takes into account the following:

• The model must minimize the difference between the ac-
quired measured output variances and the predicted one
through the model.

• The optimization must use as an initial guess the values
estimated in steps 1 and 4.

• The optimization must search for the model respecting the
knowledge set in steps 2 and 5.

In the next subsections we detail and formalize the steps of this
proposed methodology. For now on 𝛤 and 𝛴𝑢 will refer to the real
values to be estimated, and 𝛤 and �̂�𝑢 will refer to their estimates, while
𝛤0 and 𝛴𝑢,0 will refer to their initial estimation.

4.1. Step 1. Engineering-based modeling

As presented above, the SoV model is a engineering-based model
to estimate dimensional variation propagation in MMPs. Given the
manufacturing process plan (e.g., sequence of machining or assembly
stages, machined/welded features, surfaces used for locating the part
in the fixture, etc.), the variation propagation model is built in the
form of a state space model with the definition of matrices 𝐴𝑘, 𝐵𝑘 and
𝐶𝑘 from Eq. (5). The state space model is expressed in the form of a
linear input–output model as shown in Eq. (8), where 𝛤 represents
286
a reorganized product of those matrices. We call 𝛤0 to this initial
estimation of 𝛤 . The internal elements of 𝛤0 (𝛤0 ∈ R𝑛𝑦×𝑛𝑢 ) present the
following form:

𝛤0 =
⎡

⎢

⎢

⎣

𝛤0[1, 1] … 𝛤0[1, 𝑛𝑢]
⋮ ⋱ ⋮

𝛤0[𝑛𝑦, 1] … 𝛤0[𝑛𝑦, 𝑛𝑢]

⎤

⎥

⎥

⎦

. (20)

Since modeling errors at each stage are accumulated, 𝛤0 matrix may
not present accurately the dimensional error propagation, especially
when the number of stages of the MMP increases. In this paper we
assume that, due to approximations and differences between idealized
and real components, 𝛤0 will differ from 𝛤 , and, in some cases, some
of the elements could notably differ due to, for instance, error during
modeling phase and, thus, we need some adjustment.

4.2. Step 2. Model constraints

Now we propose several constraints that must be taken into account
when searching for the model parameters. The formulation of these
constraints depends on the available engineering knowledge, and they
are detailed for any element in matrix 𝛤 , denoted as 𝛤 [𝑎, 𝑏].

1. Sign of the elements of 𝛤 . The direction of the effect of each
variation source on each KPC deviation can be defined in most
cases. Thus, elements of matrix 𝛤 can be constrained with the
corresponding sign.

𝐶1 ∶ 𝛤 [𝑎, 𝑏] ≥ 0 ∥ 𝛤 [𝑎, 𝑏] ≤ 0. (21)

2. Bounds of 𝛤0. The upper and lower limits for 𝛤 can be de-
fined as a variation of the initial model 𝛤0 within some given
deviations.

𝐶2 ∶ 𝛤0[𝑎, 𝑏] + 𝜇1 ≤ 𝛤 [𝑎, 𝑏] ≤ 𝛤0[𝑎, 𝑏] + 𝜇2. (22)

In practice, this means we assume that the initial model esti-
mation 𝛤0 based on physical modeling is, to some extent, close
to 𝛤 . The elements that are obtained during the modeling phase
by using approximations and linearizations, will require of these
constraints, and, the rougher the approximations, the higher the
values in 𝜇1 and 𝜇2 to be used.

3. Null values. Elements of 𝛤 can be constrained to zero if it is
clear that some variation sources cannot affect the corresponding
KPC deviations.

𝐶3 ∶ 𝛤 [𝑎, 𝑏] = 0. (23)

This constraint can be also applied to fix some elements based
on accurate engineering knowledge in 𝛤 .

4. Related terms. If supported by geometrical assumptions, some
different elements in 𝛤 can be constrained to be proportional or
related to each other.

𝐶4 ∶ 𝜆1𝛤 [𝑐, 𝑑] ≤ 𝛤 [𝑎, 𝑏] ≤ 𝜆2𝛤 [𝑐, 𝑑], (24)

where 𝜆1 and 𝜆2 are scalar values close to the expected relation
between the aforementioned elements [𝑎, 𝑏] and [𝑐, 𝑑] of 𝛤 .

With straightforward manipulations, constraints (21) to (24) can be
reformulated into:

𝐴𝛤 ⋅ 𝑣𝑒𝑐(𝛤 ) ≤ 𝑏𝛤 , 𝐶𝛤 ⋅ 𝑣𝑒𝑐(𝛤 ) = 𝑑𝛤 , (25)

where 𝐴𝛤 and 𝐶𝛤 are matrices, and 𝑏𝛤 and 𝑑𝛤 column vectors that
contain the terms of the reorganized aforementioned constraints. The
number of columns in 𝐴𝛤 and 𝐶𝛤 are equal to 𝑛𝑦 ⋅ 𝑛𝑢, i.e., the number
f different elements in 𝛤 , while the number of rows in 𝐴𝛤 and 𝑏𝛤 are
qual to the number of inequality constraints, and the number of rows
n 𝐶𝛤 and 𝑑𝛤 are equal to the number of equality constraints. The set
f constraints formulated by Eq. (25) will bound the search for the final
odel estimation 𝛤 .
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4.3. Step 3. Process data acquisition

To adjust the engineering model we use a set of data acquired from
the MMP during production. This data set consists of KPCd measure-
ments at the last stage (𝑘 = 𝑀). Given a batch of 𝑁 processed parts,
he corresponding KPCd measurements of the parts processed in that
atch are expressed as matrix 𝑌 ∈ R𝑛𝑦×𝑁 :

=
[

𝑦𝑀 (1) ... 𝑦𝑀 (𝑁)
]

=
⎡

⎢

⎢

⎣

𝑦𝑀,1(1) ... 𝑦𝑀,1(𝑁)
⋱

𝑦𝑀,𝑛𝑦 (1) ... 𝑦𝑀,𝑛𝑦 (𝑁)

⎤

⎥

⎥

⎦

. (26)

e can compute the sample covariance of the data set 𝑌 using the
ormula:

𝑦 =
1

𝑁 − 1
(

𝑌 ⋅ 𝑌 ⊤) . (27)

We call 𝑆𝑦 to the variable that extracts the values contained in the
diagonal of 𝑆𝑦.

𝑆𝑦 ≡ 𝑑𝑖𝑎𝑔
(

𝑆𝑦
)

. (28)

Thus, 𝑆𝑦 ∈ R𝑛𝑦×𝑛𝑦 , and 𝑆𝑦 ∈ R𝑛𝑦 .

.4. Step 4. Initial estimation of variation source covariance

As stated in Assumption 3.10, we know the theoretical covari-
nce of the measurement noise 𝛴𝑣, which is directly related to the
recision of the measuring instrument and thus, obtainable from the
nstruments’ specifications. The order of magnitude of 𝛴𝑣 is stated in

Assumption 3.12 to be notably lower than the expected values of 𝛴𝑦,
as required to perform faithful measurements.

Under Assumption 3.8, which states the independence of the vari-
ation sources, we search for a diagonal matrix �⃗�𝑢. Thus, making use
of Eq. (19), we can obtain an initial estimation of the variance of the
variation sources, expressed as �⃗�𝑢 (15). From the approximation

𝑆𝑦 ≈ �⃗�𝑦 ≈ 𝛤 ◦2
0 �⃗�𝑢 + �⃗�𝑣, (29)

which is based on Eq. (19), we can then derive an estimation for the
diagonal of the covariance matrix using least squares as

�⃗�𝑢,0 =
(

𝛤 ◦2
0

⊤𝛤 ◦2
0

)−1
𝛤 ◦2
0

⊤ (

𝑆𝑦 − �⃗�𝑣

)

. (30)

4.5. Step 5. Constraints related to variation source covariance ranges

The covariance matrix for variation source 𝛴𝑢 must be positive
definite and, if some previous knowledge of the process is available, we
can state the following bounds on the possible values for the variation
source. The knowledge for the variation source can be obtained from
vendor’s specifications (e.g. accuracy of fixture locators) as well as from
some backup data if, for instance, the fixtures have been already used
and analyzed in another manufacturing or assembly usage. Further-
more, as stated before in Assumption 3.8, we force this matrix to be
diagonal to reinforce the independence of the variation sources. With
these premises, we state the following constraints for the variation
source covariance matrix:

1. Independence of the variation sources. Matrix 𝛴𝑢 can be
expressed only with its diagonal elements (called �⃗�𝑢) through

𝐶5 ∶ 𝛴𝑢 = 𝑑𝑖𝑎𝑔−1(�⃗�𝑢). (31)

2. Positive variance. The values of �⃗�𝑢 are positive, as it represents
the variance of the variation sources.

⃗
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𝐶6 ∶ 𝛴𝑢 ≥ 𝟎. (32) m
3. Backup data. The expected limits of �⃗�𝑢 can be bounded if
backup data from other similar processes is available.

𝐶7 ∶ �⃗�𝑢𝐵𝑈1
≤ �⃗�𝑢 ≤ �⃗�𝑢𝐵𝑈2

, (33)

where �⃗�𝑢𝐵𝑈1
and �⃗�𝑢𝐵𝑈2

are vectors containing backup data.

dditional engineering-based constraints can be included if deemed
ecessary.

Constraints (31) to (33) can be reformulated into:

𝑢 ⋅ �⃗�𝑢 ≤ 𝑏𝑢, 𝐶𝑢 ⋅ �⃗�𝑢 = 𝑑𝑢, (34)

here 𝐴
𝑢

and 𝐶
𝑢

are matrices, and 𝑏𝑢 and 𝑑𝑢 column vectors, which
ontain the terms of the reorganized aforementioned constraints. The
umber of columns in 𝐴𝑢 and 𝐶𝑢 are equal to 𝑛𝑢, the number of rows
n 𝐴𝑢 and 𝑏𝑢 are equal to the number of inequality constraints, and
he number of rows in 𝐶𝑢 and 𝑑𝑢 are equal to the number of equality
onstraints. The set of constraints formulated by Eq. (34) will bound
he search for the final model estimation �̂�𝑢.

.6. Step 6. Model calibration through optimization

As our goal is to obtain a model that can be latter used, for
nstance, for diagnosis purposes or feedforward quality control, that
odel must be able to predict the KPCd measurement covariances (𝛴𝑦)
sing Eq. (19) with high accuracy. For that reason, the initial idea for
odel adjustment is the minimization of the difference between the

eal covariance 𝛴𝑦 and its estimated value �̂�𝑦 by tuning our model
arameters, i.e., 𝛤 and ̂⃗𝛴𝑢. Matrix �̂�𝑦 is a function of our estimated
arameters and according to Eq. (19) this function is expressed as

̂𝑦(𝛤 , ̂⃗𝛴𝑢) = 𝛤𝑑𝑖𝑎𝑔−1( ̂⃗𝛴𝑢)𝛤⊤ + 𝛴𝑣, (35)

here 𝛴𝑣 is known, as stated in Assumption 3.10.
On the other hand, matrix 𝛴𝑦 is not known and we approximate

ts value to the sample covariance 𝑆𝑦 from Eq. (27). Then, the model
djustment seeks to minimize the difference between 𝑆𝑦 and its pre-
icted value �̂�𝑦 from Eq. (35). As 𝑆𝑦 and its predicted value are
ymmetric matrices, we use the operator svec, that gathers unique
atrix elements in a column vector. With these premises, we propose

he following optimization problem to adjust the model parameters,
here the decision variables are matrix 𝛤 and vector ̂⃗𝛴𝑢:

𝛤 , ̂⃗𝛴𝑢) = arg min
𝛤 , ̂⃗𝛴𝑢

‖𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)‖22 (36a)

s.t. 𝐴𝛤 ⋅ 𝑣𝑒𝑐(𝛤 ) ≤ 𝑏𝛤 , (36b)

𝐶𝛤 ⋅ 𝑣𝑒𝑐(𝛤 ) = 𝑑𝛤 , (36c)

𝐴𝑢 ⋅
̂⃗𝛴𝑢 ≤ 𝑏𝑢, (36d)

𝐶𝑢 ⋅
̂⃗𝛴𝑢 = 𝑑𝑢, (36e)

here ‖ ⋅ ‖2 refers to the vector 2-norm, and thus, ‖ ⋅ ‖22 refers to the
ummation of all the squared elements of the previous vector, that can
e expressed as

𝑒(⋅)‖22 = 𝑒(⋅)⊤𝑒(⋅). (37)

unction 𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢) constructs the vector containing the difference
etween unique elements in the sampled output covariance 𝑆𝑦, and the
stimated one �̂�𝑦 through 𝛤 and ̂⃗𝛴𝑢, i.e.,

(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢) = 𝑠𝑣𝑒𝑐(𝑆𝑦 − �̂�𝑦(𝛤 , ̂⃗𝛴𝑢)), (38)

ith �̂�𝑦 defined in Eq. (35). As 𝑒(⋅) is the result of a symmetrical
ectorization, 𝑒(⋅) ∈ R𝑛𝑆𝑦 is a column vector, with 𝑛𝑆𝑦 = 𝑛𝑦(𝑛𝑦 + 1)∕2.

It should be noted that the function to be minimized in Eq. (36a),
.e., ‖𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)‖22, depends on the elements included in the decision

̂ ̂⃗
atrix 𝛤 and vector 𝛴𝑢 and it becomes a 6th order polynomial on the
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decision variables. The number of decision variables is 𝑛𝑢 ⋅ (𝑛𝑦 +1). The
proposed model parameters estimation through problem (36a) requires
solving a polynomial optimization of high degree with lots of deci-
sion variables. There are several methods and available tools to solve
polynomial optimization problems through semidefinite programming
relaxations that may converge to the optimal value (see [42–44]). In
order to solve such a complex optimization problem, we propose to
use as initial guess 𝛤0 for the model and 𝛴𝑢,0 for the variation source
obtained in previous steps. We also want to remark that the initial guess
𝛤0 and 𝛴𝑢,0 do not necessarily must fulfill constraints (25) and (34). If
that is the case, one should recompute the initial estimate, as some of
the aforementioned tools require an initial feasible estimated solution.

In an attempt of using those methods and the available tools for
our problem, we have run into numerical problems derived of the high
required computational burden for the degree and number of variables
involved in our problem. As a polynomial optimization problem, it is
a nonlinear optimization problem, so we could also use general (and
expensive) nonlinear solvers, that may fail for the same reasons above.

Then, in this work, we propose in the following section an alter-
native approach to solve our polynomial optimization problem using
both a reformulation of the problem to decrease the polynomial order,
and a sequence of approximations through linearization. The idea is
to formulate the problem in such a way that nonlinear solvers (that
may not find a solution, or that may be too expensive or hard to tune)
are avoided, and only generic standard convex optimization tools (that
lead to a unique solution if the problems are properly formulated) are
used. However, this will require some iteration procedure over convex
problems to reach a solution.

4.6.1. Optimization solution through convexification
Here we present our proposal to numerically solve problem (36)

iteratively. First, let us define index 𝑗 to denote the number of iteration.
Then, let us define new decision variables that represent the difference
between an initial guess and the obtained solution at each iteration of
the optimization problem as
{

𝛥𝛤(𝑗) = 𝛤(𝑗+1) − 𝛤(𝑗),

𝛥�̂�𝑢(𝑗) =
̂⃗𝛴𝑢(𝑗+1) −

̂⃗𝛴𝑢(𝑗).
(39)

ow let us express small changes in the error function as a function of
mall changes in decision variables through a first order Taylor series
pproximation as

(𝑆𝑦, 𝛤(𝑗+1),
̂⃗𝛴𝑢(𝑗+1)) ≈ 𝑒(𝑆𝑦, 𝛤(𝑗),

̂⃗𝛴𝑢(𝑗))+𝐾𝛤 ,𝑗 ⋅𝑣𝑒𝑐(𝛥𝛤(𝑗))+𝐾𝑢,𝑗 ⋅𝛥�̂�𝑢(𝑗) (40)

with 𝐾𝛤 ,𝑗 and 𝐾𝑢,𝑗 matrix gains that can be computed numerically as

𝐾𝛤 ,𝑗 =
𝜕𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)

𝜕
(

𝑣𝑒𝑐(𝛤 )
)

|

|

|

|𝛤=𝛤(𝑗) ,�⃗�𝑢=
̂⃗𝛴𝑢(𝑗)

,

𝑢,𝑗 =
𝜕𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)

𝜕
( ̂⃗𝛴𝑢

)

|

|

|

|𝛤=𝛤(𝑗) ,�⃗�𝑢=
̂⃗𝛴𝑢(𝑗)

(41)

ith the use of Schur complements (see Appendix B.1) and the lin-
arization of the error function (see Appendix B.2), the optimization
roblem in Eq. (36) can be solved iteratively through the solution of
onvex optimization problems as follows.

1. Set 𝑗 = 0, 𝛤(0) = 𝛤0 and ̂⃗𝛴𝑢(0) = �⃗�𝑢,0.
2. Obtain 𝛥𝛤(𝑗) and 𝛥�̂�𝑢(𝑗) by solving the following convex opti-

mization problem

(𝛥𝛤(𝑗), 𝛥�̂�𝑢(𝑗)) = arg min
𝛥𝛤 ,𝛥�̂�𝑢 ,𝑡

𝑡(𝑗) (42a)

𝑠.𝑡.

[

𝑡(𝑗) 𝜀⊤(𝑗+1)
𝜀(𝑗+1) 𝐼𝑛𝑆𝑦

]

⪰ 0, (42b)

𝐴 ⋅ 𝑣𝑒𝑐(𝛤 + 𝛥𝛤 ) ≤ 𝑏 , (42c)
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𝛤 (𝑗) (𝑗) 𝛤
𝐶𝛤 ⋅ 𝑣𝑒𝑐(𝛤(𝑗) + 𝛥𝛤(𝑗)) = 𝑑𝛤 , (42d)

𝐴𝑢 ⋅
( ̂⃗𝛴𝑢(𝑗) + 𝛥�̂�𝑢(𝑗)

)

≤ 𝑏𝑢, (42e)

𝐶𝑢 ⋅
( ̂⃗𝛴𝑢(𝑗) + 𝛥�̂�𝑢(𝑗)

)

= 𝑑𝑢, (42f)

where

𝜀(𝑗+1) = 𝑒(𝑆𝑦, 𝛤(𝑗),
̂⃗𝛴𝑢(𝑗)) +𝐾𝛤 ,𝑗 ⋅ 𝑣𝑒𝑐(𝛥𝛤(𝑗)) +𝐾𝑢,𝑗 ⋅ 𝛥�̂�𝑢(𝑗), (42g)

is the linear approximation of 𝑒(𝑆𝑦, 𝛤(𝑗+1),
̂⃗𝛴𝑢(𝑗+1)) and where 𝐾𝛤 ,𝑗

and 𝐾𝑢,𝑗 are given by Eq. (41)
3. Update the actual model estimation as

{

𝛤(𝑗+1) = 𝛤(𝑗) + 𝛥𝛤(𝑗),
̂⃗𝛴𝑢(𝑗+1) =

̂⃗𝛴𝑢(𝑗) + 𝛥�̂�𝑢(𝑗).
(43)

4. If ‖𝑣𝑒𝑐(𝛥𝛤(𝑗))‖22 ≥ 𝛿 (with 𝛿 > 0 a small quantity), set 𝑗 = 𝑗+1 and
go back to step 2; else, define the final adjusted model elements
as
{

𝛤 ≡ 𝛤(𝑗+1),
̂⃗𝛴𝑢 ≡

̂⃗𝛴𝑢(𝑗+1),
(44)

and end the algorithm.

ote that by using the Schur complement and the linearization step (see
ppendix B), we have reduced the order of the polynomial to a linear

unction and we have included a new constraint of the type Linear
atrix Inequality in (42b) that can be faced by any standard solver

or convex optimization.

.7. Methodology summary and limitations

The Algorithm 1 summarizes the proposed algorithm for model
djustment. Fig. 3 overviews the proposed methodology with the input
ata required and the output data related to model adjustment. In
ummary, the proposed methodology can be read as follows. Once
n initial model guess, process data and engineering knowledge have
een established, obtain matrices 𝛤 and �̂�𝑢 that minimize some metric
hat measures the error between 𝛴𝑦 and its estimation �̂�𝑦 through the
odel (13), fulfilling the derived engineering-based constraints and
sing 𝑆𝑦 as an approximation for 𝛴𝑦, i.e.,

𝛤 , �̂�𝑢] = 𝑓
(

𝑆𝑦, 𝛤0
)

. (45)

One of the limitations of the proposed methodology is that the
stimation problem presents multiple feasible solutions by model pa-
ameters escalations (i.e., an identifiability issue). For instance, one
an achieve the same predicted output covariance matrix with different
odel parameters, i.e.,

̂𝑦 = 𝛤 ⋅ 𝛴𝑢 ⋅ 𝛤
𝑇 + 𝛴𝑣 = 𝛤 ′ ⋅ 𝛴′

𝑢 ⋅ (𝛤
′)𝑇 + 𝛴𝑣, (46a)

ith any scalar scaling factor 𝛼 ∈ 𝐑 (𝛼 ≠ 0) such that the following is
fulfilled

𝛤 ′ = 𝛼 𝛤 , 𝛴′
𝑢 =

1
𝛼2

𝛴𝑢. (46b)

In that sense, our method is devoted to search for the model that is
closer to the initial estimated one, and it is of great importance to state
properly the bounds on the search (the constraints in the optimization
problem) to avoid that the optimizer iteration move around equivalent
(scaled) solutions.

A modification of the algorithm to limit large changes of the initial
parameters that may result in similar results can be made by including
a regularization process where the distance of the searched model pa-
rameters with respect to its initial value is penalized. For that, one can
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Algorithm 1 Proposed model adjustment algorithm

1. Apply physical modeling to obtain 𝛤0 (20).
2. Construct matrices 𝐴𝛤 , 𝑏𝛤 , 𝐶𝛤 , 𝑑𝛤 (25) to set known model

uncertainty ranges and other engineering-based assumptions.
3. Acquire process data 𝑌 and obtain sample covariance 𝑆𝑦 (27).
4. Obtain initial estimation of variation source covariance matrix

𝛴𝑢,0 (30).
5. Construct 𝐴𝑢, 𝑏𝑢, 𝐶𝑢 and 𝑑𝑢 to set known variation covariance

uncertainty ranges (34).
6. Calibrate the model (i.e., obtain 𝛤 and �̂�𝑢) through optimization

problem (36) using 𝛤0 and 𝛴𝑢,0 as an initial guess. To solve the
optimization problem through standard semidefinite program-
ming, follow the steps for iterative procedure through convex
optimization problems as:

(a) Initialize with 𝑗 = 0, 𝛤(𝑗) = 𝛤0, and ̂⃗𝛴𝑢(𝑗) = 𝛴𝑢,0.
(b) Solve optimization (42).
(c) Update model estimation 𝛤(𝑗+1) and ̂⃗𝛴𝑢(𝑗+1) with (43)
(d) Check exit conditions:

i. If fulfilled: set 𝛤 and �̂�𝑢 with (44) and exit.
ii. Else: set 𝑗 = 𝑗 + 1 ad return to (b).

change the objective function (36a) in the optimization problem (36)
to

(𝛤 , ̂⃗𝛴𝑢) = arg min
𝛤 , ̂⃗𝛴𝑢

‖𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)‖22 + 𝛽𝛤 ‖𝑣𝑒𝑐(𝛤 − 𝛤0)‖22 + 𝛽𝑢‖
̂⃗𝛴𝑢 − �⃗�𝑢,0‖

2
2

(47a)

s.t. (36d)–(36e) (47b)

here 𝛽𝛤 > 0 and 𝛽𝑢 > 0 are scalar weighting factors chosen by
he user for the penalization. The application of this regularization
n the iterative approach through convex optimizations must refer
o the incremental decision variables (𝛥𝛤(𝑗) and 𝛥�̂�𝑢(𝑗)), that directly

measure the distance from an initial solution to a new one, and, then,
constraint (42b) (the one obtained through linearization and Schur
complements) translates to

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑡(𝑗) 𝜀⊤(𝑗+1) 𝑣𝑒𝑐(𝛥𝛤(𝑗))
⊤ 𝛥�̂�⊤

𝑢(𝑗)
𝜀(𝑗+1) 𝐼𝑛𝑆𝑦 0 0

𝑣𝑒𝑐(𝛥𝛤(𝑗)) 0 1
𝛽𝛤

𝐼𝑛𝑦⋅𝑛𝑢 0

𝛥�̂�𝑢(𝑗) 0 0 1
𝛽𝑢
𝐼𝑛𝑢

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⪰ 0. (48)

This approach can also be extended to penalize with a different
eighting factor each of the decision variables. In the case of the
289

f

onlinear optimization proposal, this implies substituting the term
𝛤 ‖𝑣𝑒𝑐(𝛤 − 𝛤0)‖22 + 𝛽𝑢‖

̂⃗𝛴𝑢 − �⃗�𝑢,0‖
2
2 in the objective function by

𝑒𝑐(𝛤 − 𝛤0)⊤ ⋅ 𝛽𝛤 ⋅ 𝑣𝑒𝑐(𝛤 − 𝛤0) + ( ̂⃗𝛴𝑢 − �⃗�𝑢,0)⊤ ⋅ 𝛽𝑢 ⋅ (
̂⃗𝛴𝑢 − �⃗�𝑢,0)

here 𝛽𝛤 ≻ 0 and 𝛽𝑢 ≻ 0 are now positive-definite diagonal matrices

𝛤 = 𝑑𝑖𝑎𝑔([𝛽𝛤 [1]⋯ 𝛽𝛤 [𝑛𝑦 ⋅ 𝑛𝑢]]), 𝛽𝑢 = 𝑑𝑖𝑎𝑔([𝛽𝑢[1]⋯ 𝛽𝑢[𝑛𝑢]]).

he Schur complement in the convexified approximation leads in this
ase to

𝑡(𝑗) 𝜀⊤(𝑗+1) 𝑣𝑒𝑐(𝛥𝛤(𝑗))
⊤ 𝛥�̂�⊤

𝑢(𝑗)
𝜀(𝑗+1) 𝐼𝑛𝑆𝑦 0 0

𝑣𝑒𝑐(𝛥𝛤(𝑗)) 0 [𝛽𝛤 ]−1 0
𝛥�̂�𝑢(𝑗) 0 0 [𝛽𝑢]−1

⎤

⎥

⎥

⎥

⎥

⎦

⪰ 0. (49)

On the other hand, as the data used for the adjustment is obtained
n standard operation without controlled excitation for identification
urposes, we must understand that the fitted model will be able to
atch the variation source propagation, i.e., its usage for accurate fault
iagnosis is assured, but its use for feedforward control (where the goal
s to correct deviations in average) could be more limited if the initial
odel is far from the correct values and the bounds are too relaxed.

In the next section we address how to evaluate the goodness of the
odel with the available data set 𝑌 .

. Indexes for model validation

The proposed adjustment algorithm shown in Eqs. (42)–(44) is
ased on an iterative optimization procedure, and it uses an estimation
f 𝛴𝑦 by means of 𝑆𝑦, and a metric that estimates the sum of the square
f the difference of the elements of 𝛴𝑦 and �̂�𝑦(𝛤 , �̂�𝑢). The output of the
roposed algorithm is an adjusted model of the process. However, in
rder to validate the model, we must assess different data sets.

In that sense, we propose to validate the model using a training–
esting procedure. From a theoretical validation point of view, we will
ssume that we have available the theoretical real values of matrices
𝑦, 𝛴𝑢, 𝛴𝑣 and 𝛤 . We will also assume that we have two sets of avail-
ble data, one of them used in the estimation algorithm (training set,
hat leads to sample covariance 𝑆𝑦𝑇 𝑟), and another one used to evaluate
he goodness of the adjustment (test set, with sample covariance 𝑆𝑦𝑇 𝑠).
hus, adjusting the model with the training set will yield the values of
̂ and ̂⃗𝛴𝑢:

𝛤 , ̂⃗𝛴𝑢] = 𝑓
(

𝑆𝑦𝑇 𝑟, 𝛤0
)

. (50)

The model is validated using performance indexes, which compare
he sample covariance values and the theoretical values with the es-
imated covariance of the KPCd measurements (�̂�𝑦), obtained using
q. (35). The performance indexes are vectored using symmetrical
ectorization in order to avoid the duplication of the effect of the
lements located outside the diagonal. The indexes are defined as

ollows:
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• Index 𝐼1 evaluates the performance of the algorithm on estimating
the theoretical covariance matrix of the KPCd measurements.
Given that the covariance of the measurement noise 𝛴𝑣 is known,
as per Assumption 3.10, index 𝐼1 presents this form:

𝐼1 = ‖𝑒(𝛴𝑦, 𝛤 , ̂⃗𝛴𝑢)‖22. (51)

with 𝑒(𝛴𝑦, 𝛤 , ̂⃗𝛴𝑢) = 𝑠𝑣𝑒𝑐(𝛴𝑦 − �̂�𝑦(𝛤 , ̂⃗𝛴𝑢)), i.e., error function
from Eq. (38) evaluated with 𝛴𝑦 instead of 𝑆𝑦.

• Index 𝐼2 expresses the proportion of the fourth root of index 𝐼1
and the 𝑙22-norm of the symmetrical vectored elements of 𝛴𝑦−𝛴𝑣,
in percentage:

𝐼2 =

(

𝐼1
‖𝑠𝑣𝑒𝑐

(

𝛴𝑦 − 𝛴𝑣
)

‖

2
2

)
1
4

⋅ 100. (52)

Roughly speaking, this index evaluates the error on estimating 𝛴𝑦
with respect to the explained variance in 𝛴𝑦 when there are no
measurement noises.

• Index 𝐼3 evaluates the performance of the algorithm on estimating
the theoretical standard deviations of the KPCd measurements
(i.e. the terms of the diagonal) by comparing the maximum error
of the estimation.

𝐼3 = max

(

|

|

|

|

|

|

√

�⃗�𝑦 −

√

̂⃗𝛴𝑦

|

|

|

|

|

|

)

. (53)

• Index 𝐼4 expresses the maximum ratio of the estimation error of
the standard deviations with respect to the standard deviation of
�⃗�𝑦:

𝐼4 = max

⎛

⎜

⎜

⎜

⎜

⎝

|

|

|

|

|

√

�⃗�𝑦 −
√

̂⃗𝛴𝑦

|

|

|

|

|

√

�⃗�𝑦

⎞

⎟

⎟

⎟

⎟

⎠

⋅ 100. (54)

Note that the previous quotient refers to an element-wise division
of the vector components.

It should be noted that previous indexes are applied to evaluate the
erformance of the proposed adjustment methodology in a theoretical
ay, since it requires to know the real values of 𝛴𝑦, 𝛴𝑢, 𝛴𝑣 and 𝛤 . For
ractitioners, the methodology can be validated at the shop floor level
sing the following index:

• Index 𝐼𝑃 evaluates the performance of the algorithm on estimat-
ing the values of the covariance matrix of the KPCd measurements
obtained from the testing set.

𝐼𝑃 = ‖𝑒(𝑆𝑦𝑇 𝑠, 𝛤 , ̂⃗𝛴𝑢)‖22. (55)

Index 𝐼𝑃 is the only index that can be assessed in practical cases,
ut the other indexes are the ones that would provide real information
f the goodness of the fit.

In the next section a case study is presented to illustrate the per-
ormance of our adjustment methodology using these indexes. We will
how through numerical examples how 𝐼𝑃 can be related with other
ndexes and how it can help to decide if a proper adjusted model has
een reached.

. Case study

.1. Multistage manufacturing process

In order to validate the performance of the proposed adjustment
ethodology, we have conducted a case study of a multistage manu-

acturing process. In this case study, we consider that matrix 𝛤0, which
s derived using the SoV methodology, presents notable deviations
290

ith respect to the real values of 𝛤 as a result of simplifications and t
Table 1
Experiment scenarios under analysis in the case study.

Exp. A B C D E

𝜎2
𝑣 (μm2) 1 4 16 64 256

𝑃𝑟𝑜𝑝𝑣 (%) 3.72 7.42 14.75 28.77 52.36

unreliable modelizations of some parts of the process. In this case, for
the sake of dimensional simplicity but without loss of generality, we
have used as 𝛤 an adapted version of the matrix presented in a case
study from [45]:

𝛤 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.093 0.577 −0.120
−0.093 0 0.843
0.093 0.577 −0.120
0.647 0 −0.120
−0.370 0.577 0.482
0.647 0 −0.120

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (56)

For this MMP, we assume that 𝑢 presents a Gaussian distribution
with zero mean and a variance 𝜎2𝑢 = 1.111 ⋅ 103 μm2. Thus, considering
that all variation sources behave with the same variance, 𝛴𝑢 = 𝜎2𝑢 𝐈.
We also consider that the following constraints are known from the
process, and, therefore, they are used in the optimization procedure to
adjust the model:

• The values of 𝛤 that we know that are null have been forced to
zero in 𝛤 , and several values that we know that are positive have
been forced to be greater or equal to zero. Additionally, we have
constrained the values of 𝛤 to be within a 30% range with respect
to the initialization matrix 𝛤0.

• The values of ̂⃗𝛴𝑢 have been forced to be positive, and within the
500−1500 μm2 range, which would be obtained using backup data
from other similar process.

With this considerations, we have constructed matrices 𝐴𝛤 , 𝑏𝛤 , 𝐶𝛤 , 𝑑𝛤 ,
𝑢, 𝑏𝑢, 𝐶𝑢 and 𝑑𝑢.

.2. Simulated shop floor data and model initialization

The proposed model adjustment uses data from the MMP. In this
ase study, the simulated values of the KPCd measurements for each
art at the last stage (𝑦𝑀 (𝑖)) are generated using the real value of

detailed in Eq. (56) and the values of 𝑢(𝑖) and 𝑣(𝑖) are randomly
enerated to include the effect of the variation sources, as well as
easurement noises. With this, we have generated our data set {𝑦𝑀 (𝑖)}.
e consider that all KPCd are measured with the same instrument, so

he variances of all measurement noises are identical (𝛴𝑣 = 𝜎2𝑣𝐈).
To analyze the impact of different levels of measurement noise

n the proposed model calibration methodology, five experimental
cenarios, named A, B, C, D, E, are studied. The measurement noises
ntroduced at each experimental scenario are shown in Table 1. To com-
are the level of measurement noise with the KPCd at each scenario, the
able also includes the proportion in percentage between the standard
eviations of the measurement noise and the standard deviations of the
PCd measurements, defined as:

𝑟𝑜𝑝𝑣 (%) =

(

𝑠𝑣𝑒𝑐
(

𝛴𝑣
)⊤ 𝑠𝑣𝑒𝑐

(

𝛴𝑣
)

𝑠𝑣𝑒𝑐
(

𝛴𝑦
)⊤ 𝑠𝑣𝑒𝑐

(

𝛴𝑦
)

)

1
4

⋅ 100.

Two data sets are simulated in the analysis. The training data set
efers to the data that is obtained from the shopfloor and it is used to
un the adjustment algorithm. The testing data refers to the data that is
sed after model calibration, and it is used to calculate index 𝐼𝑃 . The
raining and testing data sets applied in the simulations are shown in
able 2.

The simulated data is obtained by applying Monte Carlo simula-
ions. For each experimental scenario and data sets, 200 Monte Carlo
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Table 2
Training and testing data sets used in the simulation.

Number of Monte Carlo iterations 200
Number of parts in the training set (𝑁𝑡𝑟) {1, 5, 15, . . . , 95, 100, 200, . . . , 2100}
Number of parts in the testing set (𝑁𝑡𝑠) {350, 500, . . . , 1100, 1250}

simulations are run. Since we assume that a initial value of the model,
𝛤0, is given from the SoV derivation, 𝛤0 is randomly generated within
the 30% range of the real value 𝛤 for each Monte Carlo simulation,
thus fulfilling one of the previous mentioned constraints.

6.3. Results of the adjusted model: performance indexes

The proposed model adjustment is applied for each experimental
scenario and data sets. For each Monte Carlo simulation and, in order
to adjust the model by solving the proposed optimization problem, we
use the YALMIP parser [46] and the optimization software mosek. Our
two-core i7 laptop takes around 8 s to solve the proposed optimization
problem, which in turn performs 8 iterations in order to converge
the results. This indicates that solving (42) takes around 1 s, and, in
average, 8 iterations (from 𝑗 = 0 to 𝑗 = 7 in (42)) were required at
each Monte Carlo simulation.

The performance indexes calculated during the experiments are
shown as follows:

• Index 𝐼1 is presented in Fig. 4(a) for the different experimental
scenarios presented in Table 1. As it can be observed, index 𝐼1 is
reduced when the number of processed parts used in the training
set increases. A detailed version of the first stretch of the values of
Index 𝐼1 with respect to training data size is presented in Fig. 4(b),
where a sudden peak and a swift descent can be observed for
all experiment scenarios. In both Figs. 4(a) and 4(b) it can be
observed that the performance of the proposed methodology is
lower when the standard deviation of the measurement noise is
higher.

• Index 𝐼2 is presented in Fig. 5 for the different experimental
cases. Its general behavior is very similar to index 𝐼1, as we have
higher values for this performance index when the considered
measurement noise is higher.

• Indexes 𝐼3 and 𝐼4 are presented in Figs. 6 and 7, respectively, for
the proposed measurement noises. They show a similar behavior
to the other indexes, but they lack the initial peak, as the ini-
tial point is higher because maximum points are searched here
instead. These indexes are less affected by the variance of the
measurement noise.

• Index 𝐼𝑃 is presented in Fig. 8(a) for measurement noises of
𝜎2𝑣 = 4 μm2 (Exp. B) and in Fig. 8(b) for measurement noises of
𝜎2𝑣 = 256 μm2 (Exp. C), using several amounts of processed parts
in the testing set. The values of Index 𝐼𝑃 for different training
test size is shown together with Index 𝐼1, which presents a clearly
lower value for all sizes 𝑁𝑡𝑠. This difference increases as the
number of parts used in the training set increases. In fact, we
see that 𝐼𝑃 shows a negligible sensitivity with respect to 𝑁𝑡𝑠 for
values above 1000.

Finally, in order to show an example of the results of the adjustment
lgorithm, we present the real parameters, its initial estimation and
he adjusted ones with our proposal. The results presented below are
rom the experimental scenario B with 𝑁𝑡𝑠 = 2100 parts in the training
et. The real data are 𝛤 and �⃗�𝑢, the initial values from engineering

̂⃗ ̂
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nowledge are 𝛤0 and 𝛴𝑢(0), and the final adjusted parameters are 𝛤𝐵
nd ̂⃗𝛴𝑢.

0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.1102 0.7344 −0.1367
−0.0951 0 0.9546
0.1078 0.5034 −0.1492
0.5892 0 −0.1481
−0.3366 0.5576 0.4142
0.8015 0 −0.1503

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝛤𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0999 0.5844 −0.1433
−0.0957 0 0.8501
0.0990 0.5919 −0.1359
0.6737 0 −0.1491
−0.3805 0.5892 0.4871
0.6666 0 −0.1541

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝛤 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.093 0.577 −0.120
−0.093 0 0.843
0.093 0.577 −0.120
0.647 0 −0.120
−0.370 0.577 0.482
0.647 0 −0.120

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(57)

̂⃗𝛴𝑢(0) =
⎡

⎢

⎢

⎣

898.2
1043.0
939.5

⎤

⎥

⎥

⎦

, ̂⃗𝛴𝑢 =
⎡

⎢

⎢

⎣

1017.5
1107.4
1127.8

⎤

⎥

⎥

⎦

, �⃗�𝑢 =
⎡

⎢

⎢

⎣

1111.1
1111.1
1111.1

⎤

⎥

⎥

⎦

. (58)

As it can be observed, most of the elements of 𝛤𝐵 have been adjusted
from 𝛤0 towards the direction of 𝛤 . Likewise, the elements of ̂⃗𝛴𝑢
resemble the real values of �⃗�𝑢.

6.4. Discussion

As it can be observed from the results in Figs. 4(a)–7, all indexes
show a rapid decrease of the model error as the number of the data used
for adjusting the model increases. As data increases, the estimation of
the real 𝛴𝑦 improves and the optimized parameters are closer to the real
ones. For instance, given a training data set of 500 parts the adjusted
model reduces the 𝐼1 index from 105.5 μm4 to 2 ⋅ 104 μm4, one order
magnitude. Note that in these figures, the value of the index when data
training is 0 refers to the index where the adjusted model is the one
obtained from the SoV model and the engineering data, i.e., 𝛤0.

However, index 𝐼1 shows that when using only small data training
sets the adjusted model could be even worst that the model without
adjustment. In fact, when using up to 20–25 parts in the training data
set, the index presents higher values than the initial value when no
adjustment is made. This minimum number of parts in the training
set required to enhance the results obtained through the initialization
equations is quite similar to the number of decision variables that are
calculated in this case study, as 𝛤 ∈ R6×3 and ̂⃗𝛴𝑢 ∈ R3×1, thus the
total amount of decision variables is 21. Therefore, a minimum set of
data is needed to tune the model parameters and reduce the value of
𝐼1, mainly because of the large amount of parameters to be adjusted.
This behavior is not found in 𝐼3 and 𝐼4 since these indexes refer to the
maximum parameter deviation from the real ones and index 𝐼1 refers
to an average error from all model parameters. Then, our methodology
reduces the maximum parameter deviation of the model even when
using small data sets although for tuning all parameters in the correct
direction, a minimum data is required that depends on the number of
the decision variables of the problem.

Another interesting result can be observed when comparing the
model adjustment indexes with different measurement errors (noises).
The evolution of the indexes is mainly drawn by the number of train-
ing data. However, the effect of the measurement noise, represented
through the different experimental scenarios A, .., E, has a minimal
impact. For instance, when 500 parts are used as training data, the
adjusted model presents a 𝐼1 value of 2 ⋅ 104 μm4 and 3 ⋅ 104 μm4 for
a variance measurement error of 4 μm2, and 256 μm2, respectively. In
both cases, the reduction of model error due to the adjustment is around
one order magnitude with respect to no adjustment procedure. In fact,
in order to obtain a similar model adjustment under a noisy environ-
ment, instead of using a data set of 500 parts, only 100 additional parts

is needed, 600. Therefore, the methodology can be successfully applied
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Fig. 4. Index 𝐼1 and detail of index 𝐼1.
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Fig. 5. Index 𝐼2 w.r.t. number of parts used in the training set.

Fig. 6. Index 𝐼3 w.r.t. number of parts used in the training set.

Fig. 7. Index 𝐼4 w.r.t. number of parts used in the training set.
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o

for model adjustment even when measurement data is obtained from
noisy environments.

To reinforce this perception, it is presented Fig. 9 that plots the
performance index 𝐼1 with respect to the training data set and the
measurement noise. We observe that performance index 𝐼1 is inversely
proportional to the number of parts used in the training set, similarly to
other process estimators [40]. 𝐼1 is also affected by the precision of the
measuring instrument, as it is proportional to a polynomial function of
the standard deviation of the measurement noise. Thus, the resulting
surface can be fitted into the following form:

𝐼1 ∼
𝑏𝜎2𝑣 + 𝑐𝜎𝑣 + 𝑑

𝑁𝑡𝑟
. (59)

As stated above, practitioners may be interested in analyzing the
erformance of the adjusted model and thus, the 𝐼𝑃 index should be
pplied. Figs. 8(a) and 8(b) show the evolution of the 𝐼𝑃 indexes for
ifferent values of testing data sets in the experimental scenario B and
, respectively. Note that 𝐼𝑃 analyzes the model error with respect to
he sampling covariance of the testing data and not with respect to the
eal covariance of the data.

As it can be observed under both scenarios, it is necessary to use
notably high amount of testing parts in order to use 𝐼𝑃 as a reliable

ubstitute of 𝐼1 in a practical case. That means that the index 𝐼𝑃 may
eport a less model improvement that the reality, which can be seen
y 𝐼1. As observed in both figures, index 𝐼𝑃 seems to be caught in
minimum value even if a higher data training set is available, and

ts use could lead the practitioner infer that the estimator is giving
he problem predicted in (46), i.e., a similar (scaled) model is being
btained and the estimated model cannot be improved. However, index
1 shows that the model is estimated with higher accuracy in those
ases (with a larger data set).

Therefore, practitioners can use index 𝐼𝑃 to estimate the error if
he training data set is short, but must trust in the use of a larger data
et to obtain better model estimation even if index 𝐼𝑃 seems not to
mprove. Furthermore, if only a limited number of parts are available,
t is recommendable to mostly use them to train the algorithm than
o test it. For instance, we see in Fig. 8(a) that the use of 1000 parts
or training leads to an error (in terms of 𝐼1) of 104 𝜇𝑚4, and the use of
000 parts leads to 4⋅103 𝜇𝑚4. However, the value that we can compute
umerically in an experiment is index 𝐼𝑃 that tells us that the error is
⋅104 𝜇𝑚4 with 1000 parts and 3.6 ⋅104 𝜇𝑚4 (practically the same) with
000 parts when using 350 parts for testing through 𝐼𝑃 . This behavior

f 𝐼𝑃 is mainly explained by the use of a scarce set of parts for testing
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Fig. 8. Comparison of 𝐼𝑃 for different 𝑁𝑡𝑠 and 𝐼1 for different measurement noises.
Fig. 9. Evolution of performance index 𝐼1 for different number of processed parts in
he training set and different standard deviations of the measurement noise.

hat requires the estimation of the output covariance (𝛴𝑦) through the
ampled one (�̂�𝑦).

The analysis of the performance of the adjustment methodology
ith respect to the processed part shows that, for some given data

ize, we can execute our algorithm to obtain a more accurate estimate
f model parameters. In that sense, our approach can be also applied
or situations when some changes have occurred in the system due to
mall changes in the manufacturing process plan, fixture redesigns or
ther manufacturing readjustments. In those situations, one can run the
ptimization procedure when enough new data is gathered from the
PCs measurements of a set of processed parts, and then, the model is
dapted to the new situation. With this, we can state that our algorithm
llows to have some flexibility in adapting the model to new situations.

. Conclusions

This paper presents a methodology to improve the accuracy of
imensional variation propagation models in MMPs by adjusting the
odel parameters using shop floor data. Variation propagation models

ased on engineering knowledge such as SoV models present limited
293
accuracy due to linearization, approximation and modeling errors. This
problem is aggravated as the number of stages increases due to error
accumulation.

The initial mathematical development of the proposal requires solv-
ing a complex nonlinear polynomial problem that minimizes the differ-
ence between the KPCd measurements from a batch of processed parts
and its estimation, which is a function of the estimated variation prop-
agation matrix 𝛤 and the estimated covariance of the variation sources.
This optimization problem is initialized using physical models such as
the SoV model and it is bounded using prior engineering knowledge and
backup data. This problem can be hardly numerically faced with the
available existing solvers, so we have used convexification techniques
to obtain a tractable optimization problem by iterating through convex
optimization problems that are solved in finite time and only require a
few iterations.

After applying the proposed methodology to a simulated case study,
we validated the adjusted model using several performance indexes.
We conclude that the algorithm can be trained using a low amount of
processed parts (at least the amount of decision variables of the opti-
mization problem), and with any higher amount the estimation error
of the covariance of the KPCd measurements is reduced proportionally
to the amount of processed parts used during the training process.
However, if only a sample covariance matrix of the KPCd measurements
is available from a batch of processed parts (as it is common in practical
cases), the amount of parts in the batch that are required to test the
performance of the algorithm does increase notably.

The proposed methodology presents some limitations. First, it as-
sumes that the theoretical covariance of the measurement noise re-
mains identical as its respective sample covariance. This assumption
may not hold but, since it is always assumed that their values will be
notably lower than those of the KPCd measurements covariance, this as-
sumption may not notably affect the accuracy of the model adjustment.
Second, we consider that the magnitude of the errors in the model
caused by approximations and other unmodeled linear errors that have
arisen when obtaining the linear input–output variation propagation
model of an MMP using physical models will be considerably higher
than the linearizations performed in order to convexify the optimiza-
tion problem and ensure that the optimization problem is solved within
a finite time. Future research may include a greater refinement of the
linearization methods for convexifying the optimization problem and
analyzing the impact of the adjusting methodology in processes with

higher dimensionality.
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Appendix A. Obtaining 𝜮𝒚

Let us detail the behavior of the 𝑑𝑖𝑎𝑔(⋅) operator as

𝑑𝑖𝑎𝑔
([

𝑥1 𝑥2
𝑥3 𝑥4

])

=
[

𝑥1
𝑥4

]

. (60)

Let 𝐵 and 𝐶 be two square matrices of the same size, the distributive
property of the 𝑑𝑖𝑎𝑔(⋅) operator allows

𝑑𝑖𝑎𝑔 (𝐵 + 𝐶) = 𝑑𝑖𝑎𝑔 (𝐵) + 𝑑𝑖𝑎𝑔 (𝐶) . (61)

According to [47], let 𝐴 ∈ R𝑛𝑎×𝑛 and 𝑋 ∈ R𝑛×𝑛 be some matrices,
and 𝑋 is a diagonal matrix. Then

𝑑𝑖𝑎𝑔
(

𝐴𝑋𝐴⊤) = 𝐴◦2𝑑𝑖𝑎𝑔(𝑋). (62)

Applying Eq. (62) into Eq. (13), and assuming that 𝛴𝑢 is a diagonal
matrix, then

�⃗�𝑦 = 𝑑𝑖𝑎𝑔(𝛴𝑦) = 𝑑𝑖𝑎𝑔(𝛤𝛴𝑢𝛤
⊤ + 𝛴𝑣) = 𝑑𝑖𝑎𝑔(𝛤𝛴𝑢𝛤

⊤) + 𝑑𝑖𝑎𝑔(𝛴𝑣). (63)

Substituting Eqs. (15), (17) and (18) into Eq. (63), we obtain Eq. (19).

Appendix B. Order reduction justification

B.1. The Schur complement

The order of the polynomial is reduced replacing the product of
the objective function by an equivalent constraint. This conversion is
implemented using the Schur complement.1 We define a scalar variable
𝑡 that bounds the maximum value of squared 𝑒(⋅). Considering that
𝑒(⋅)⊤ ⋅ 𝑒(⋅) will always be zero or positive, we rewrite the optimization
problem in Eq. (36a) into

(𝛤 , ̂⃗𝛴𝑢) = arg min
𝛤 , ̂⃗𝛴𝑢 ,𝑡

𝑡 (64a)

𝑠.𝑡. 𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)
⊤
⋅ 𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢) ≤ 𝑡. (64b)

onstraint (64b) is rewritten into

− 𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)
⊤
⋅ 𝐼𝑛𝑆𝑦 ⋅ 𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢) ≥ 0, (65)

s the identity matrix 𝐼𝑛𝑆𝑦 is always positive definite. Using the proper-
ies of the Schur Complement, we affirm that Eq. (65) will be positive
emi-definite if and only if the following matrix 𝐻 is also positive
emi-definite.

=
⎡

⎢

⎢

⎣

𝑡 𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)
⊤

𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢) 𝐼𝑛𝑆𝑦

⎤

⎥

⎥

⎦

⪰ 0. (66)

hus, both expressions are exchangeable without losing their inequality
roperties. Linear Matrix Inequality in Eq. (66) is applied in constraint
42b).

1
[

𝐴 𝐵
⊤

]

⪰ 0 if and only if 𝐶 ≻ 0 and 𝐴 − 𝐵 𝐶−1 𝐵⊤ ⪰ 0.
294

𝐵 𝐶
B.2. Linearization

The error function 𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢) (38) is a 3rd order polynomial on the
ecision variables. We reduce its order using a first-order Taylor series
pproximation around an initial estimation of 𝛤 and ̂⃗𝛴𝑢 (40)–(41).

Assuming 𝑣𝑒𝑐(𝛤 ) =
[

𝛤 [1, 1] 𝛤 [2, 1] ... 𝛤 [𝑛𝑦, 𝑛𝑢]
]⊤ and ̂⃗𝛴𝑢 =

[ ̂⃗𝛴𝑢[1], ...,
̂⃗𝛴𝑢[𝑛𝑢]

]⊤
, then

𝜕𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)

𝜕𝑣𝑒𝑐(𝛤 )
=
[

𝜕𝑒(𝑆𝑦 ,𝛤 , ̂⃗𝛴𝑢)
𝜕𝛤 [1,1]

𝜕𝑒(𝑆𝑦 ,𝛤 , ̂⃗𝛴𝑢)
𝜕𝛤 [2,1]

...
𝜕𝑒(𝑆𝑦 ,𝛤 , ̂⃗𝛴𝑢)
𝜕𝛤 [𝑛𝑦 ,𝑛𝑢]

]

, (67)

𝜕𝑒(𝑆𝑦, 𝛤 , ̂⃗𝛴𝑢)

𝜕 ̂⃗𝛴𝑢

=
[

𝜕𝑒(𝑆𝑦 ,𝛤 , ̂⃗𝛴𝑢)

𝜕 ̂⃗𝛴𝑢[1]

𝜕𝑒(𝑆𝑦 ,𝛤 , ̂⃗𝛴𝑢)

𝜕 ̂⃗𝛴𝑢[2]
...

𝜕𝑒(𝑆𝑦 ,𝛤 , ̂⃗𝛴𝑢)

𝜕 ̂⃗𝛴𝑢[𝑛𝑢]

]

. (68)

After that, the decision variables are obtained and 𝛤(𝑗) and ̂⃗𝛴𝑢(𝑗) are
updated into 𝛤(𝑗+1) and ̂⃗𝛴𝑢(𝑗+1) using 𝛥𝛤(𝑗) and 𝛥�̂�𝑢(𝑗), as previously
presented in Eq. (43).
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