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A B S T R A C T   

The sintering of compacts of irregular non-crystallising glass particles was studied by isothermal and constant- 
rate heating experiments in a hot stage microscope. The resulting data fitted very well to kinetic equations 
developed in this study, in which sintering is assumed to be a complex relaxation process, described by the 
Kohlrausch–Williams–Watts (KWW) relaxation function. The effect of compact pressing pressure, heating rate, 
and particle size distribution on the sintering curve was determined. It was generally verified that the effect of 
temperature on the sintering rate could be described by the effect of temperature on the inverse of glass viscosity. 
For industrial particle size distributions, that the pre-exponential factor of the process rate constant (or inverse of 
relaxation time) increased with pressing pressure and decreased with the inverse of particle mean radius. For 
abnormally wide particle distributions a combination of KWW functions were required.   

1. Introduction 

Glass powder sintering is widely used in fabricating sintered glass, 
sintered glass-ceramics, glass matrix compacts, and glazes [1–5]. 

Glass sintering kinetics has been modelled, usually assuming an 
idealised homogeneous microstructure. Indeed, to describe compact 
densification, in initial stage sintering Frenkel [6] assumes a regular 
packing of spherical particles of the same size, r, and in the final stage of 
sintering, Mackenzie–Shuttleworth (MS) [7] assume porous compacts 
having spherical pores of the same radius, a. The Frenkel model [6] 
predicts a sintering rate directly proportional to glass surface tension, γ, 
and inversely proportional to glass viscosity, η, and to particle radius, r. 
The group (rη/γ) is also known as capillary relaxation time [8]. This 
model is not fully consistent with the experiment data and finite element 
simulations [9–11]. The MS model leads to an expression of the type: 

dρ
dt

=
3γ
2aη (1 − ρ) Eq. 1  

where pore radius, a, decreases as compact relative density, ρ, increases. 
Generally, in Eq. (1), a is usually replaced with initial pore radius, a0, 
[12,13]. With this simplification, Eq. (1) can be readily integrated to 
yield equation: 

1 − ρ
1 − ρ0

=
ε
ε0

= exp
(

−
3γ

2a0η
t
)

Eq. 2  

or: 

ε
ε0
= exp

(

−
3
2
t
τb

)

Eq. 3  

where ε and ε0 are instantaneous and initial porosity, respectively, and 
τb = a0η/γ. This model is known as the exponential model [8], and τb as 
bubble relaxation time [8]. 

The MS and exponential models were verified to be acceptable 
except for low porosities [8], though the exponential model fitted better 
to the data than the MS model. This discrepancy is fundamentally due to 
the presence of occluded gases in the closed pores. The presence of gases 
in pores, which leads to a minimum residual porosity, has been widely 
confirmed by experiments [8,13–15]. 

The cluster model [13], used for monomodal particle size distribu
tions, assumes that: “small particles preferentially cluster in the open spaces 
left by larger particles and sinter faster”. Thus, for this model, compact 
total shrinkage is the weighted sum of the shrinkage due to each size 
fraction into which the distribution can be divided, any interaction be
tween differently sized particles being disregarded. Nor is this model 
appropriate for low porosities. 
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Glass particles prepared by traditional methods, such as crushing or 
milling, are irregular. In these cases, the initial stage sintering rate is 
faster than that predicted by the Frenkel model [6], as these particles 
exhibit a shorter capillary relaxation time owing to the much smaller 
curvature radius of irregular particles than the particle equivalent radius 
(mean radius). In final stage sintering, the inappropriateness of these 
models is essentially due to the presence of gases occluded in the pores. 
On the other hand, the exponential model was verified to describe the 
sintering process well, except at high degrees of densification. 

In the continuum mechanics of sintering [16,17], in absence of 
stresses (i.e. free sintering), the densification rate or macroscopic strain 
rate, dρ/ρdt, is proportional to sintering stress, PL, and is inversely 
proportional to bulk viscosity, Kp. PL represents the collective action of 
all capillary stresses in the porous material, and Kp represents the 
viscous resistance to densification. The Skorohod–Olevsky Viscous Sin
tering (SOVS) model [17,18] defines a dimensionless bulk viscosity, 
ψ(ρ), which is solely a function of relative density and a dimensionless 
sintering stress, ℘(ρ), also exclusively a function of ρ, such that the 
densification rate becomes: 

dρ
ρdt=

3
2
γ
rη

℘(ρ)
ψ(ρ) Eq. 4  

or: 

dρ
ρdt=

3
2

1
τS

℘(ρ)
ψ(ρ) Eq. 5 

The sintering rate is therefore inversely proportional to a sintering 
relaxation time, τS = rη/γ, and proportional to a dimensionless function 
of ρ, the ratio ℘(ρ)/ψ(ρ). To determine ψ(ρ), empirical expressions [19, 
20], theoretical expressions [18,21,22], or semi-empirical expressions 
[23] that describe the effect of ρ on porous glass viscosity are used. In 
contrast, to determine the function ℘(ρ), the authors generally consider 
different ideal porous structures, which yield expressions of sintering 
stress, ℘(ρ) [18,21,23]. For spherical particles of the same size, Skoro
hold [17,18] obtains an equation analogous to Eq. (2): 

ε
ε0
= exp

(

−
9
4

γ
rη t
)

Eq. 6 

However, the evolution with densification of pore structure shape 
and form, either open or closed, is so complex that it is virtually 
impossible to deduce a function that actually describes the relationship 
between dimensionless sintering stress and relative density, ℘(ρ), 
including in packings of spherical particles of the same size [14,24], 
particularly when porosity is exclusively closed. 

Thus, no theoretical models are currently available that can accu
rately describe glass particle sintering or take into account the effect of 
certain operating variables and/or powder characteristics (compaction 
pressure, heating rate, particle size distribution, etc.) on this process. 
Taking into account the generic definition of the relaxation process as 
the change from one physical state to another involving the dissipation 
of energy [25], and that the Kohlrausch–Williams–Watts (KWW) relax
ation function [26–28] describes complex relaxation processes as the 
weighted sum of a series of simpler systems, the present study examines 
the suitability of this function for describing the glass particle sintering 
process, considering it to be a complex relaxation process. To do so, first, 
the function’s validity both in isothermal sintering and in constant-rate 
heating was verified. The effect of particle size distribution, compact 
pressing pressure, and heating rate on the parameters of the KWW 
function was also studied. The influence of these microstructural char
acteristics on the KWW function parameters was interpreted in terms of 
how these characteristics affected relaxation time distribution. 

1.1. Glass particle sintering: a complex relaxation process 

Glass particle sintering is an irreversible process, in which an initially 

very porous material – therefore having high surface energy – evolves as 
the process progresses, decreasing the material’s specific surface area 
and porosity and increasing its shrinkage to a maximum value (mini
mum porosity) when the system reaches equilibrium, which is generally 
metastable. Generally, in this state, the pressure of the gases occluded in 
the pores equals sintering pressure. Prolonged heat treatment leads to 
lower shrinkage and higher porosity. Only when sintering occurs under 
vacuum does the system’s state of equilibrium coincide with suppression 
of porosity. 

In terms of non-equilibrium thermodynamics, the rate of progress of 
any irreversible process can be described by the De Donder equation 
[29–31]: 

dζ
dt

= −
1

τ*(T)
(
ζ − ζeq

)
Eq. 7  

where ζ is the material’s property or characteristic being considered and 
τ* is relaxation time. 

Separating variables and integrating between the initial condition: t 
= 0→ζ = ζ0 and the generic condition: t = t→ζ = ζ yields an expression 
that relates the degree of process progress, X, to time: 

X=
ζ − ζeq
ζ0 − ζeq

= exp
(
−
t
τ*

)
Eq. 8 

Applying Eq. (8), which is of a general character, to the particular 
case of the sintering of compacts of spherical and identical glass particles 
and assuming the structural characteristic, ζ, to be the porosity of the 
compact, ε, one obtains: 

X=
ε − εeq
ε0 − εeq

= exp
(
−
t
τ*

)
Eq. 9 

This equation, for ε≫εeq or εeq ≈ 0, becomes the Eq. (6). For this 
model, τ*=(4/9)(rη/γ) or τ*=(4/9) τS. Porosity at equilibrium is the 
minimum value reached by the compact, εeq = εmin, which depends, 
among other variables, on kiln atmosphere and on porosity and pore size 
when the compact seals. 

However, in real irregular glass particle packings, particle size and 
curvature radius, interparticle contacts, and pore size and shape are not 
homogeneous either at sintering start or during sintering progress. 
Therefore, this real, heterogeneous and complex material may be 
assumed, at least conceptually, to be made up of simpler systems, 
involving very small and intrinsically homogeneous structural units 
having different structural characteristics from each other. Each of these 
microregions may therefore be assumed to exhibit a sintering or relax
ation process, described by Eq. (9), but with a different relaxation time, 
τi. The overall sintering process of the entire compact may thus be 
assumed to be the weighted sum of a series of “n” simple relaxation 
processes, each having a different relaxation time, τi, depending on its 
microstructure (number and nature of interparticle contacts, particle 
and pore size and distribution, etc.). Consequently, assuming a contin
uous distribution of relaxation time, τi, one obtains: 

X=
∑i=n

i=1
exp
(

−
t
τi

)

=

∫∞

0

ρ(τi)exp
(

−
t
τi

)

dτi Eq. 10  

where ρ(τi) is the relaxation time distribution function of each individ
ual process. It has been shown [27,28] that Eq. (10) is numerically equal 
to the Kohlrausch–Williams–Watts (KWW) relaxation function or 
stretched exponential function: 

X= exp
[
−
( t
τ

)m]
Eq. 11 

It has also been verified that, the wider the distributions ρ(τi), the 
smaller are the values of parameter m (Fig. 1), albeit always: 0 < m ≤ 1 
[26–28]. 

Eq. (11) therefore describes the overall sintering process, where τ is a 
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mean relaxation time that depends on the distribution of its individual 
values, ρ(τi), which in turn depends on the number and nature of these 
different microregions, i.e. on the microstructural heterogeneity of the 
green compact. 

For the sintering of glass particle compacts, Eq. (11) may be 
expressed in the form: 

X=
ε − εmin
ε0 − εmin

=
ρmax − ρ
ρmax − ρ0

= exp
[
−
( t

τ

)n]
Eq. 12  

since εi = 1 − ρi. 
With a view to relating the degree of sintering progress, α, to a 

readily measurable magnitude such as compact volume, V, or cylinder 
silhouette area, S, the second term in Eq. (12) will be mathematically 
manipulated. Thus, adding unity to the first term and subtracting the 
fraction (ρmax − ρ)/(ρmax − ρ0) results: 

α= ρ − ρ0

ρmax − ρ0
= 1 − exp

[
−
(t
τ

)n]
Eq. 13 

Operating, one yields: 

α=
1 −

ρ
ρ0

1 −
ρmax
ρ0

= 1 − exp
[
−
(t
τ

)n]
Eq. 14 

Considering the approximation for the series of natural logarithms: 

1 − y ≈ ln
1
y

for y < 2 Eq. 15 

The Eq. (14) becomes: 

α=
ln ρ0

ρ

ln ρ0
ρmax

=
ln V

V0

ln Vmin
V0

=
εV

εV,max
= 1 − exp

[
−
(t
τ

)n]
Eq. 16  

where V, V0 and Vmin are the initial, instantaneous, and minimum vol
ume of the test pieces, and εV is the volume strain. 

1.1.1. Isothermal sintering. Kinetic equation 
Eq. (16) relates the degree of sintering progress, α, to dimensionless 

time, t/τ, and to the stretching parameter, n, (Fig. 2). 
The amplitude of the sintering range, defined as the difference be

tween the dimensionless time required to reach virtually full densifica
tion and process onset, increased as n decreased, in accordance with the 
relaxation time distribution function (Fig. 1). In addition, for dimen
sionless time t/τ = 1, the degree of sintering progress was α = 0.63, 

regardless of the value of n: in other words, relaxation time was the time 
required for sintering to reach a degree of progress of α = 0.63. 

Rearranging Eq. (16) yields the expression: 

t
τ= g(α)= [ − ln(1 − α)]

1
n Eq. 17  

where g(α) is the integrated form of the kinetic model, with a stretching 
parameter value of 0≤n≤1. 

Analogously, the kinetic model of sintering, in differential form, 
becomes: 

f (α)= n(1 − α)[ − ln(1 − α)]
n− 1
n Eq. 18  

and the process rate: 

dα
dt

=
1
τ f (α)=

1
τ n(1 − α)[ − ln(1 − α)]

n− 1
n Eq. 19 

The kinetic model in differential form, f(α) (Eq. (18)), exclusively 
describes the dependence of process rate on the degree of sintering 
progress. Indeed, the relationship between the instantaneous rate of the 
process and the rate corresponding to a degree of advance of α = 0.5, 
[dα/dt]/[dα/dt]α = 0.5, is dimensionless and, in accordance with Eq. 
(19), independent of thermal treatment and equal to f(α)/f(0.5), that is, 
to the relationship between the value of the instantaneous kinetic model 
and that corresponding to α = 0.5. The dimensionless rate of sintering, 
[dα/dt]/[dα/dt]α = 0.5 = f(α)/f(0.5), for a given material is therefore 
only a function of parameter n. Plotting the values of the dimensionless 
rate against process progress, for different values of n, reveals the effect 
of the stretching parameter on the decrease in the dimensionless rate of 
sintering with process progress (Fig. 3). Indeed, for α ≤ 0.5, the 
dimensionless rate of sintering and its decrease with process progress 
(slope of these curves) increased as n decreased, particularly at sintering 
onset (α ≈ 0). In contrast, for α ≥ 0.5, as n decreased, the dimensionless 
rate of sintering decreased and the rate at which it did so (curve slope) 
increased, particularly at the end of sintering (α≈1). 

1.1.2. Non-isothermal sintering. Kinetic equation 
According to Eq. (19), sintering process kinetics can be described as: 

dα
dt

= τ− 1(T)f (α) Eq. 20 

In previous studies, the effect of temperature on the constant rate of 
the process, τ− 1(T), was verified to be the same as the effect on the in
verse of glass matrix viscosity [3,4,32], the latter being described by the 

Fig. 1. Plot of the probability density function, ρ(τi), as a function of dimen
sionless relaxation time, τi/τ, for values of stretching parameter m = 0.5, m =
0.7, and m = 0.9 [26]. 

Fig. 2. Evolution of sintering progress, α, with dimensionless sintering time, t/ 
τ, for different values of n (Eq. (16)). 
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Vogel–Fulcher–Tammann (VFT) equation: 

η= η0exp
(

B
T − TVFT

)

Eq. 21  

where B, TVFT, and η0 are the values of the VFT equation parameters. 
Thus: 

τ− 1(T)=Aexp
(

−
B

T − TVFT

)

Eq. 22  

where A is a pre-exponential factor proportional to γ/η0 and, in princi
ple, also proportional to the inverse of particle mean radius, that is: A ∝ 
γ/rη0. However, this parameter may also be influenced by other 
microstructural characteristics and operating variables. 

If the process develops at constant-rate heating, β, Eq. (20) and Eq. 
(22) yield: 

dα
dT

=
A
β
exp
(

−
B

T − TVFT

)

f (α) Eq. 23 

Separating variables and integrating one obtains the integral form of 
the kinetic model, g(α), and its relation to temperature. Using the 
Murray and White approximation [33] yields: 

g(α)=
∫α

0

dα
f (α)=

A
β

∫T

0

exp
(

−
B

T − TVFT

)

dT =
AR(T − TVFT)2

βB
exp
(

−
B

T − TVFT

)

Eq. 24 

Replacing g(α) with Eq. (17) in Eq. (24) and rearranging terms one 
obtains: 

α= 1 − exp

{

−

[(
A
β

)(
(T − TVFT)2

B

)

exp
(

−
B

T − TVFT

)]n}

Eq. 25  

1.1.3. The Ozawa method 
Rearranging terms in Eq. (25) and taking logarithms yields: 

ln[ − ln(1 − α)]= nln

(
A(T − TVFT)2

βB

)

−
nB

T − TVFT
Eq. 26 

Based on Eq. (26), for experiments at different heating rates, β, 
plotting the pair of values (α, β)T corresponding to the same tempera
ture, in the form l n[− ln(1 − α)] versus lnβ, yields a straight line of slope 

-n [34]. That is: 

∂[ln( − ln(1 − α))]
∂lnβ

⃒
⃒
⃒
⃒
T
= − n Eq. 27  

2. Materials and experimental procedure 

A borosilicate frit of composition (Table 1) close to that of glass SRM 
717a [35], used as reference material for determining the viscosi
ty–temperature curve, was obtained by dry mixing appropriate amounts 
of quartz, boric acid, potassium carbonate, alumina, sodium carbonate, 
and lithium carbonate. The mixture was fused in an alumina crucible at 
1550◦C for 30min. The resulting melt was quenched in water, yielding a 
transparent and homogeneous frit. 

The frit particles were wet milled for 30min in an alumina ball mill 
until particle size distribution (PSD) M was obtained. Frit particle sus
pension M was milled anew in a zirconia bead mill to obtain a finer PSD, 
F. To obtain a coarser and wider PSD, MC, the frit was dry milled in a 
ring mill. Finally, to obtain a coarse but narrow PSD, C, powder MC was 
wet sieved using a sieve with a mesh aperture of 40 μm. 

Particle size distributions F, M, and MC were determined with a laser 
diffraction instrument. The scatter signal was interpreted using the 
Fraunhofer diffraction pattern. Particle size distribution C was deter
mined by scanning electron microscopy and image analysis. The number 
of particles measured was about 3500. Particle size distribution was 
determined using Olympus image analysis software. The area of each 
particle was selected as a descriptor, the area being the total number of 
pixels enclosed within the contour of the element under analysis, 
multiplied by the area of a previously calibrated pixel (Area = number of 
pixels × area of one pixel). The area of each particle was used to 
calculate the equivalent circle diameter (diameter of a circle having the 
same area as the measured body: ECD = 2(area/π)½). The four PSD 
curves fitted satisfactorily to lognormal distributions (Table 2 and 
Fig. 4). Most glaze PSDs used in industrial practice range from particle 
size distribution M to F [36]. Particle size distribution C is similar to the 
PSD used in dry glaze applications. Particle size distribution MC, which 
was much wider than the others, was chosen to study the effect of this 
characteristic. 

All the powders were made up of jagged glass particles, which 
exhibited a sharp radius of curvature at the edges, as shown in the SEM 
micrographs (Fig. 5). Except for powder C, small glass particles were 
observed to adhere to the largest ones. 

Disks, 5 mm in diameter and 3 mm thick, were compacted in a 
universal testing machine, using powder slightly moistened with PVA 
solution, at a displacement rate of 2 mm/min to the required pressure. 
Pressing pressure was Pcomp = 30 MPa, except in the experiments 
intended to determine the influence of this variable on sintering. To 
determine the fixed viscosity points by hot stage microscopy, cylindrical 
test pieces, 3 mm in diameter and 5 mm high, were used. A hot stage 
microscope, HSM, with image analysis and data processing software was 
used. The computer image analysis system continuously recorded the 
geometry and projected area of the test piece silhouette, S. To determine 
the sintering kinetics, constant-rate-heating (0.5≤β≤60 K/min) and 
isothermal heat treatments were conducted. In every case, peak firing 
temperature exceeded the temperature at which the test piece reached 
maximum compactness. In the isothermal treatments, the test piece was 
heated at a rate of β = 25K/min to the set treatment temperature. 
Treatment time exceeded 400min. If the test piece did not reach 
maximum density during isothermal treatment, this was extended at a 
heating rate of β = 25K/min to a temperature that was 50◦C higher, 
followed by an additional 60min isothermal treatment. 

The sintering curves were determined from the initial, S0, instanta
neous, S, and minimum, Smin, silhouette surface areas of the test pieces. 
Diametral and axial strains were similar until completion of sintering. 
Once the sintering process had been completed, test piece geometry 
changed [4]. Assuming isotropic shrinkage, the sintering progress 

Fig. 3. Evolution of the dimensionless rate of sintering, [dα/dt]/[dα/dt]α = 0.5 
= f(α)/f(0.5), with the degree of sintering progress, α, for different values of n. 
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parameter, α, was calculated as: 

α= εV
εV,max

=
εS

εS,max
=

ln(S/S0)

ln(Smin/S0)
Eq. 28  

where εS and εS,max are the instantaneous and maximum silhouette 
surface strain, respectively. 

Maximum bulk density during the tests was calculated from the 
measurement of the fired test piece dimensions and the height and width 
values of the test piece recorded during the HSM experiments. Glass true 
density, determined by a helium pycnometer, was 2.210 ± 0.04 g/cm3. 
Glass maximum relative density, ρmax, varied randomly around a mean 
value, regardless of the thermal treatment and powder particle size 
distribution. Averaging all values yielded ρmax = 0.98 ± 0.02. 

From the definition of densification strain, εV = ln(V/V0), operating 
one obtains: 

ρ= ρ0exp(− εV) Eq. 29 

On the other hand, if sintering is isotropic, one obtains: 

εV =
3
2
εS Eq. 30 

Applying Eq. (29) and Eq. (30) for ρmax and operating yields: 

ρ0 = ρmaxexp
(

3
2
εS,max

)

Eq. 31 

An expression that allows density at sintering onset to be calculated 
from the values of ρmax and εS,max. 

3. Results and discussion 

3.1. Viscosity curve 

The fixed viscosity points obtained experimentally for particle size 
distribution M, at 10K/min, are detailed in Fig. 6, together with the 
viscosity values assigned by different authors. The values obtained fitted 
well to the viscosity–temperature curve given by the National Institute 
of Standards and Technology [35] for T ≤ 1000◦C and described by the 
Vogel–Fulcher–Tammann equation: 

logη= − 3.012 +
5495.3

T − 148.1
Eq. 32  

where η is viscosity expressed in Pa⋅s and T is temperature in ◦C. 

3.2. Verification of the model 

To verify the model, six series of isothermal and constant-rate 
heating, 0.5≤β≤60 K/min, experiments were conducted, using glass 
powder of particle size distribution M. 

3.2.1. Isothermal sintering 
As the test piece had already undergone a certain shrinkage and 

hence a degree of initial progress, α0, when the kiln reached the pro
grammed temperature (isothermal treatment start, t = 0), in order to fit 

Table 1 
Oxide composition of the frit (% by weight).  

SiO2 Al2O3 B2O3 Fe2O3 CaO MgO Na2O K2O TiO2 Li2O 

68.3 4.4 16.6 0.05 0.13 0.07 0.91 7.80 0.05 0.66  

Table 2 
Geometric mean radius, r, and geometric standard deviation, σ, of the lognormal 
distribution of the four studied powder PSDs.  

PSD F M C MC 

r (μm) 0.8 2.7 91 10.6 
σ 1.9 2.6 1.7 5.3  

Table 3 
Values of the parameters and variance, S2, obtained on fitting the experimental 
sintering points to Eq. (25) (from fit 1 to 3) and to Eq. (35) (fit 4). Powder M.  

Fit n ln A⋅(s-1) S2 

1 0.7 ± 0.015 17.6 ± 0.3 9.87⋅10-5 

2 0.7 17.6 ± 0.3 2.21⋅10-4 

3 0.7 17.6 2.05⋅10-3 

4 0.7 ln[A0 ⋅(1 + kβ)]
A0 = 3.21⋅107 s-1 

κ = 0.022 s/K  

3.39⋅10-4  

Table 4 
Values of the experimental maximum silhouette surface strain, -εS,max, calcu
lated initial relative density, ρ0 (Eq. (31)), and parameters and variance, S2, 
obtained on fitting the experimental sintering points to Eq. (35).  

PSD − εS,max ρ0 n A0⋅10-7(s- 

1) 
κ(min/ 
K) 

S2 

F 0.51 ±
0.018 

0.46 ±
0.013 

0.7 13.1 0.024 4.2⋅10- 

4 

M 0.43 ±
0.021 

0.51 ±
0.017 

0.7 3 

C 0.29 ±
0.016 

0.63 ±
0.014 

0.58 0.36  

Table 5 
Values of the parameters and variance, S2, obtained on fitting the experimental 
sintering points to Eq. (39), Eq. (40), and Eq. (41). Powder MC.  

Stage wi ni A0i⋅10-7(s-1) κ(min/K) S2 r (μm) ri (μm) 

1 0.75 0.7 4.56 0.017 4.7⋅10-4 10.6 2.3 
2 0.25 1 0.129 80  

Fig. 4. Particle size distributions of the studied glaze determined by laser 
diffraction (M, F, and MC) or by SEM and image analysis (C), fitted to the 
lognormal distribution. 
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the experimental data to the model (Eq. (16) and Eq. (17)) it was 
necessary to integrate the kinetic equation in differential form (Eq. 
(19)), taking t = 0→α = α0 as initial condition. The resulting equation 
was: 

α= 1 −
1

exp
{
t
τ + [ − ln(1 − α0)]

1/n
}n Eq. 33 

The experimental data corresponding to each temperature were 
fitted to Eq. (33), first, without fixing any parameter. The values of n 
were verified to vary very little (n = 0.7 ± 0.035) and to do so randomly. 
A second fit was therefore made, keeping n constant at 0.7. In every case, 
the value of S2 was low (of the order of 10-5). The experimental data and 
the values calculated in accordance with the second fit are plotted for six 
different temperatures in Fig. 7. The agreement is observed to be 
excellent. 

For each temperature, sintering relaxation time, τs = r η/γ, was 
calculated from the values of the experimental particle mean radius (r =
2.66 μm), from glass surface tension γ = 0.277 N/m (estimated from the 
glass composition by the Dietzel equation [37]), and from viscosity at 
each temperature (calculated from the VFT equation). The values of 
relaxation time, τ, obtained from the fits versus τs = rη/γ are plotted in 
Fig. 8. Both values are observed to be proportional, in accordance with 
the proposed model. 

On plotting the degree of sintering progress, α, versus dimensionless 
time, t/τ, the results were grouped very well to a single kinetic curve 

Fig. 5. SEM micrographs of powders F, M, C, and MC.  

Fig. 6. Characteristic fixed viscosity points according to Fernández [37], 
Scholze [38], Pascual [39], Pascual [40], and the Vogel–Fulcher–Tammann 
equation, by SRM 717a [35]. Powder M. 

Fig. 7. Isothermal sintering curves. The symbols are experimental data, and the 
solid lines correspond to the values calculated from the model (Eq. (33) with n 
= 0.7). Powder M. 

Fig. 8. Comparison of the values of experimental relaxation time, τ, and those 
of viscous sintering time, τs = rη/γ. Powder M. 

J.L. Amorós et al.                                                                                                                                                                                                                               



Open Ceramics 9 (2022) 100205

7

with n = 0.7 (Fig. 9). 

3.2.2. Non-isothermal sintering 
Six experiments were carried out at constant-rate heating, 0.5≤β≤60 

K/min (Fig. 10). 
These results were used to estimate the value of n by the Ozawa 

method (Section 1.1.3). The plot of the values of ln(-ln(1-α)) versus lnβ, 
for some of the temperatures considered (Fig. 11), yielded straight lines 
whose slope, -n, oscillated slightly around a mean value: n = 0.65 ±
0.079, which was very close to that obtained by the isothermal method 
(n = 0.7). 

The pairs of experimental values (α, T)β corresponding to each 
heating rate, β, were fitted to Eq. (25). No fitting parameter was set, first, 
so that both n and A oscillated around a mean value (fit 1 in Table 3). In 
fit 2, the value of n was set at 0. 7, and in fit 3 the values of both n and A 
were set. Obviously, as the number of variable parameters decreased, fit 
variance increased slightly. 

On plotting the curves resulting from fit 3, the experimental curves 
were observed to depart from the calculated curves in a clear trend ac
cording to the heating rate, β. On the other hand, the real rate at which 

the specimen was heated was always lower than the programmed 
heating rate, β, and this difference increased as the heating rate, β, rose 
[41]. To obtain an empirical relationship that corrected this effect, the 
values of A obtained from fit 2 were plotted versus the heating rate, β 
(Fig. 12). As already observed in a previous study [5], the results fitted a 
straight line whose equation was: 

A=A0⋅(1+ κβ) Eq. 34  

where κ is a fitting parameter that depends on the thermal properties of 
the material, test piece size, and kiln configuration and A0 is the pre- 
exponential factor when the heating rate tends to zero. 

Introducing Eq. (34) into Eq. (25) yields: 

α= εS
εS,max

= 1 − exp

{

−

[
A0⋅(1 + κβ)

β
(T − TVFT)2

B
exp
(

−
B

(T − TVFT)

)]n}

Eq. 35 

Using the values of fit 4 in Table 3, the sintering curves were 
calculated by Eq. (35) (Fig. 10). This model described better than Eq. 
(25) (albeit appropriate) the influence of the heating rate on the sin
tering process, using only two empirical fitting parameters: κ and A0. 

Fig. 9. Evolution of degree of sintering progress, α, with dimensionless time, t/ 
τ, for every test temperature. Powder M. 

Fig. 10. Non-isothermal sintering curves. The symbols are experimental data, 
and the solid lines correspond to the values calculated from the model (Eq. (35), 
fit 4 in Table 3). Powder M. 

Fig. 11. Ozawa plot for the determination of n. Powder M.  

Fig. 12. Variation of the pre-exponential factor, A (Eq. (22)), with heating rate, 
β. Powder M. 
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The kiln heating rate, β, in Eq. (25) was replaced with a lower rate 
(β/(1 + κβ)) in Eq. (35), the latter rate being assumed to be the real rate 
at which the compact was heated. Thus, A0 was the pre-exponential 
factor corresponding to a heating rate that tended to zero. In this case, 
the temperature at any point in the compact was the same and identical 
to kiln temperature. 

3.2.3. Comparison with other models 
To compare the goodness of different models it is very easy and 

enlightening to calculate, for some of these, the evolution of the 
dimensionless instantaneous sintering rate with sintering degree of 
progress. 

The curves: dimensionless sintering rate, (dα/dt)α/(dα/dt)0.5, or, f 
(α)/f(0.5), versus degree of process progress, α, for the relaxation model 
and for other sintering models were plotted (Fig. 13). In every case, 
initial relative density was assumed to be ρ0 = 0.5 and ρmax = 0.98. The 
Sura & Panda [20] and Scherer [21] models were calculated from the 
SOVS model (Eq. (5)), considering the Ducamp & Raj equation [23] for 
dimensionless sintering stress, ℘(ρ), and considering Sura & Panda’s 
experimental expression [20] and Scherer’s theoretically deduced 
expression [21] for dimensionless bulk viscosity, ψ(ρ). The Sura & Panda 
model [20] was verified to most closely approximate the relaxation 
model, which was the model that best described the process. 

The developed model further described, for low degrees of sintering 
progress, higher sintering rates than most of the models. This behaviour 
reflected the influence of the small curvature radii of irregular particles 
on the sintering rate. In contrast, for high degrees of sintering progress, 
the rate described by the developed model was much lower than that 
predicted by most of the models. This behaviour was related to a pro
gressive increase in closed pores containing occluded gases as the pro
cess developed. This phenomenon, which entailed a greater decrease in 
sintering rate in the final stages of the process, owing to decreased 
sintering pressure, is not taken into account in the models described in 
the literature. 

3.3. Kinetic equation of non-isothermal viscous sintering. Application to 
the determination of the effect of some variables on sintering kinetics 

Eq. (35) accurately described non-isothermal sintering kinetics with 
just three fitting parameters: κ, A0, and n. Parameters B and TVFT, which 
describe the effect of temperature and glass composition on glass 

viscosity, can be estimated or experimentally determined. As a result, 
this equation is suitable for describing the curves: degree of sintering 
progress versus temperature (sintering curves) in constant-rate heating, 
β, experiments and the effect of some variables on these curves. 

3.3.1. Effect of pressing pressure 
Test pieces were formed at six different pressing pressures. Fig. 14 

only shows plots of the values of εS = ln(S/S0) versus temperature of the 
test pieces formed at the highest, the intermediate, and the lowest 
pressing pressure. The absolute value of -εS was observed to increase as 
compaction pressure decreased, this effect being greater as temperature 
rose. However, the temperature range in which the test pieces reached 
maximum densification (750–800◦C) or maximum firing shrinkage, εA, 

max, was independent of compaction pressure. It was also verified that 
the values of -εS,max, though scattered, varied linearly with the logarithm 
of compaction pressure, Pcomp (Fig. 15), as has been observed in sin
tering different types of materials [42,43]. This relationship stems from 
the increase in relative density at sintering onset, ρ0 (Eq. (31)), related to 
-εA,max, with the logarithm of Pcomp (Fig. 15). 

Introducing ρmax = 0.98, which was the mean value obtained of the 
maximum relative density measurements, and the experimental values 
of εS,max in Eq. (31), the values of ρ0 were calculated, which are plotted 
in Fig. 15. Though scattered, the values fitted quite well to a straight 
line. 

Each of the twelve sintering curves, obtained at β = 15K/min using 
six different pressing pressures, was fitted to Eq. (35) leaving A0 as sole 
variable parameter and, for the rest, taking the values of fit 4 in Table 3. 
In every case, the experimental results fitted very well to the model, as 
may be verified in Fig. 14. The resulting values of A0 were observed to 
increase linearly with green relative density, ρ0 (Fig. 16). On plotting the 
values of -εA,max versus those of ρ0 in the same figure (Fig. 16), -εA,max 
was observed to decrease linearly with ρ0. 

The effect of green relative density, ρ0, on A0 is described by a linear 
equation (Fig. 16): 

A0 = 16.2⋅107(ρ0 − 0.335) Eq. 36 

Analogously, an increase in pressing pressure raised the value of A0 
and, with it, the sintering rate (Fig. 17). This was because, as pressing 
pressure rose, green compactness and the number of interparticle con
tacts increased while pore size decreased. 

Fig. 13. Evolution of the dimensionless sintering rate, [dα/dt]/[dα/dt]α = 0.5 =

f(α)/f(0.5), with the degree of sintering progress α, for different models: Scherer 
[21], Sura & Panda [20], exponential model [8,12], and developed relaxation 
model (Eq. (16) with n = 0.7). 

Fig. 14. Evolution of silhouette surface strain, -εS, with temperature for Pcomp 
= 2.2, 10, and 50 MPa. Powder M and β = 15K/min. The symbols are experi
mental data, and the solid lines correspond to the values calculated from Eq. 
(35) with n = 0.7. 
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3.3.2. Combined effect of heating rate, β, and powder particle size 
distribution 

Sintering curves were obtained at different heating rates, β, with 
each studied particle size distribution (F, M, C, and MC). The values of 
-εS are plotted versus the corresponding temperatures at 15K/min in 
Fig. 18. 

3.3.2.1. Narrow particle size distributions (F, M, and C). For the nar
rowest particle size distributions (F, M, and C), the sintering curves 
exhibited the same shape as the previously studied curves (Figs. 10 and 
14), so that they can be described by Eq. (35). Particle size distribution 
was observed to lower sintering onset and maximum densification 
temperature, this effect being much greater on going from distribution 
M to C. It was also verified that decreasing particle size increased 
maximum firing shrinkage, εS,max [44], Table 4 and Fig. 18, owing to 
decreased relative density at sintering onset, ρ0, whose values were 
calculated from Eq. (31) (Table 4). Table 4 also details the values of 
parameters A0, κ, and n, obtained by jointly fitting the sintering curves 
of particle size distributions F, M, and C to Eq. (35), together with the 
variance, S2. To calculate the values of A0 and of κ, first, the values of A 
were determined by fitting the sintering curves of each PSD to Eq. (25), 

according to the procedure described in Section 3.2.2. The resulting 
values of A were fitted to Eq. (34) (Fig. 19) with the following re
strictions: a single value of κ and three values of A0, one for each PSD. 
The agreement between the experimental and the calculated results was 
very good (Table 4, Fig. 18, and Fig. 19). 

For particle size distributions F and M, which exhibited a very similar 
sintering range (difference between sintering end and densification 
onset temperature), the sintering curves could be described by using the 
same value of n = 0.7. In contrast, the sintering range for particle size 
distribution C was much larger, so that the value obtained for n was 
lower (n = 0.58). These results indicate that the relaxation time distri
bution function was broader for this PSD than for the finer PSDs. This 
was because sintering onset shrinkage depended on the curvature radius 
at the interparticle contact points. As the coarsest particles also exhibi
ted sharp edges of small curvature radius (Fig. 5), their sintering onset 
temperature was lower than expected for their high mean size. As sin
tering progressed, the particles spheroidised and the interparticle con
tact area increased, so that the sintering rate in this intermediate stage 

Fig. 15. Evolution of experimental -εS,max and calculated ρ0 (Eq. (31)) with 
compaction pressure, Pcomp. Powder M and β = 15K/min. 

Fig. 16. Evolution of experimental -εS,max and calculated A0 (Eq. (35) with n =
0.7) with calculated initial relative density, ρ0 (Eq. (31)), at different compac
tion pressures, Pcomp. Powder M and β = 15K/min. 

Fig. 17. Evolution of calculated A0 (Eq. (35) with n = 0.7) with compaction 
pressure, Pcomp. Powder M and β = 15K/min. 

Fig. 18. Evolution of silhouette surface strain, -εS, with temperature for pow
ders F, M, C, and MC. β = 15K/min. The symbols are experimental data, and the 
solid lines correspond to the values calculated from Eq. (35) and parameters in 
Table 4 for powders F, M, and C and from Eq. (39), Eq. (40), and Eq. (41) and 
parameters in Table 5 for powder MC. 
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depended much more on mean particle size. In the final stage of the 
process, in which most porosity was closed, the sintering rate depended 
on the size of the largest residual pores (with the lowest capillary 
pressure), whose size depended, in turn, on the size of the coarsest 
particles. The particle size distribution, albeit not wide, of irregular and 
coarse particles thus exhibited a broad relaxation time distribution 
owing, on the one hand, to the presence of sharp edges at the inter
particle contact points, which determined short relaxation times, and on 
the other to the formation of large-sized pores associated with the 
coarsest particles, which exhibited long relaxation times. 

The value of parameter γ/rη0 of particle size distributions F, M, and C 
was calculated from the frit properties and particle mean radius and 
compared with the corresponding value of A0 obtained from the fits 
(Fig. 20). The values of A0 were about one third the value of the 
calculated parameters γ/rη0 (Eq. (37)): 

A0 = 0.29⋅106⋅
(

γ
rη0

)

Eq. 37 

Therefore, as had been assumed, pre-exponential factor A of Eq. (22) 
was related to the process variables by means of equations Eq. (34), Eq. 
(36), and Eq. (37). That is: 

A∝(1+ κβ)[a ⋅ (ρ0 − b)]
(

γ
rη0

)

Eq. 38  

where a and b are constants. 
The first factor takes into account the effect of heating rate on the 

uniformity of the real temperature of the sample. The second describes 
the influence of green bulk density on the microstructure of the green 
compact (compactness, pore size distribution, and number and nature of 
interparticle contacts). The last term expresses the effect of frit proper
ties and mean particle size. 

3.3.2.2. Wide particle size distribution (MC). The sintering curve of the 
widest particle size distribution (MC) was more complex and therefore 
required a different mathematical treatment. Indeed, the sintering curve 
(Fig. 18) was made up of two sections. The temperature range of the first 
was similar to that of particle size distribution M. In contrast, the 
behaviour at the end of sintering was very similar to that exhibited by 
the coarsest particle size distribution (C). The curve suggested that 
sintering of the MC particle size distribution took place in two differ
entiated stages, each of which could be described, in principle, by the 
developed model (Fig. 21). In the first stage, test piece densification 
stemmed from sintering of the small and medium-sized particles that 
surrounded the largest particles, thus reducing the separation of the 
largest particles. As a result, this process exhibited a relaxation time 
distribution similar to that of particle size distribution M. The other 
small and medium-sized particles located in the voids formed by the 
largest particles did not contribute, on sintering, to compact densifica
tion but led to formation of large pores. These pores between the largest 
particles were eliminated in the second sintering stage and pore removal 
was therefore similar to that in final sintering of particle size distribution 
C particles (the coarsest). As a result, relaxation time distribution in the 
second stage, which mainly involved removal of large pores, must be 
narrower (n2 of MC must be greater than n of C) and shifted towards long 
times. In light of this, a model was developed based on the following 
considerations: i) the degree of sintering progress, α, is the sum of the 
progress made in the first stage, α1, and in the second stage, α2: 

α= α1 + α2 Eq. 39 

ii) The degree of progress in each stage, α1 and α2, can be described 
by the developed relaxation model (Eq. (35)), multiplying each degree 
of progress by the fraction of one in which it contributes to the overall 

Fig. 19. Comparison of the pre-exponential factor, A, calculated from Eq. (25) 
with that calculated from Eq. (34), using the values of A0 and κ in Table 4. 

Fig. 20. Relationship between A0 (Table 4) and (γ/rη0) for powders F, M, 
and C. 

Fig. 21. Sintering curve for powder MC at 15K/min. The symbols are experi
mental data, and the solid lines correspond to the values calculated from the 
model: stage 1 (Eq. (40)), stage 2 (Eq. (41)), and total (Eq. (39)), with the 
parameters from Table 5. 
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process, w1 and w2: 

α1 =w1

{

1 − exp

{

−

[
A01⋅(1 + κβ)

β
(T − TVFT)2

B
exp
(

−
B

(T − TVFT)

)]n1
}}

Eq. 40  

α2 =w2

{

1 − exp

{

−

[
A02⋅(1 + κβ)

β
(T − TVFT)2

B
exp
(

−
B

(T − TVFT)

)]n2}}

Eq. 41 

The five sintering curves obtained at different heating rates, 
0.5≤β≤60 K/min, were jointly fitted to Eq. (39), Eq. (40), and Eq. (41). 
Table 5 details the values of A01, A02, κ, n1, and n2, together with the fit 
variance, S2. The first stage contributed more to the sintering process 
than the second stage, exhibiting a value of w1 = 0.75 and a value of n1 
= 0.7, the latter being identical to that obtained for particle size dis
tributions M and F. The second stage exhibited a value of n2 = 1, indi
cating a very narrow relaxation time distribution, theoretically a single 
value. 

Using the values of A01 and A02, taking into account the relationship 
between this parameter and particle mean radius, r, obtained for the 
narrowest PSDs (Eq. (37)), the particle sizes corresponding to each stage 
were estimated (Table 5 and Fig. 20). It was observed that r1 practically 
coincided with the mean radius of particle size distribution M, while r2 
was similar to that of particle size distribution C. These results confirmed 
the validity of the developed model. 

4. Conclusions 

The sintering of compacts of frit particles with a similar particle size 
distribution to that used in industrial practice for producing glazes was 
studied by isothermal experiments (at six temperatures) and six constant 
heating rates in a hot stage microscope. The results fitted very well to 
their respective kinetic equations whose development was based on the 
following assumptions: i) Densification in a gaseous environment leads 
to minimum residual porosity. ii) For an ordered packing of identical 
spherical particles, the rate at which this system approaches equilibrium 
(minimum porosity) is given by the De Donder equation, with a relax
ation time that is inversely proportional to glass surface tension and 
proportional to glass viscosity and to particle radius. iii) For real com
pacts of irregular particles, the densification rate is a complex relaxation 
process, with a relaxation time distribution given by the Kohl
rausch–Williams–Watts (KWW) equation. iv) The effect of temperature 
on the sintering rate is given by the effect of temperature on the inverse 
of glass viscosity. 

It was verified, in constant-rate heating experiments, that the pre- 
exponential factor of the rate constant depended slightly on the heat
ing rate. 

It was determined, by constant-rate heating experiments, that raising 
pressing pressure decreased maximum linear shrinkage and slightly 
increased the sintering rate, as the pre-exponential factor of the rate 
constant increased (or relaxation time decreased). In contrast, the 
stretching parameter remained constant. 

The combined effect of the heating rate and particle size distribution 
of the frit particles was determined by constant-rate heating experi
ments. For the three particle size distributions with relatively narrow 
particle size distributions, all used in industrial practice for glaze pro
duction, the results fitted very well to the developed equation. For the 
finest particle size distributions, the values of the stretching factor 
remained constant, whereas they decreased for the coarsest particle size 
distribution. In contrast, the pre-exponential factor of the rate constant 
(or inverse of relaxation time) increased proportionally with the inverse 
of particle radius. For the much wider particle size distribution than 
those customarily used in industrial practice, the sintering curve was 
described as the sum of two stages, each of which was described by the 

developed model. The first stage described sintering due to the smallest 
particles, which exhibited a short relaxation time distribution, whereas 
the second stage was due to the removal of large pores associated with 
the largest particles, which exhibited a longer relaxation time 
distribution. 

Generally, it was found, by constant-rate heating experiments, that 
the pre-exponential factor of the rate constant or inverse of relaxation 
time was proportional: to a linear function of the heating rate, to a power 
law function of pressing pressure, and to the ratio of glass surface ten
sion to the product, pre-exponential factor of glass viscosity and particle 
mean radius. 
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