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Abstract: Drought is a major abiotic stress that greatly affects canola growth, production, and quality.
Moreover, water scarcity is projected to be more severe and frequent as a result of climate change, in
particular in arid environments. Thereupon, developing drought-tolerant and high-yielding canola
genotypes has become more critical to sustaining its production and ensuring global food security
with the continuing population growth. In the present study, ten canola genotypes comprising six
developed tissue-cultured canola genotypes, two exotic genotypes, and two commercial cultivars
were evaluated under four irrigation regimes. The applied irrigation regimes were well-watered
(100% crop evapotranspiration, ETc), mild drought (80% ETc), moderate drought (60% ETc), and
severe drought (40% ETc) conditions. Drought-stress treatments (80, 60, and 40% ETc) gradually
reduced the chlorophyll content, relative water content, flowering time, days to maturity, plant height,
number of pods, number of branches, seed yield, and oil percentage, and increased proline, phenolic,
anthocyanin, and glycine betaine contents. The evaluated genotypes exhibited varied responses to
drought-stress conditions. The developed tissue-cultured genotypes T2, T3, and T1, as well as exotic
genotype Torpe, possessed the highest performance in all evaluated parameters and surpassed the
other tested genotypes under water-deficit conditions. Overall, our findings elicited the superiority
of certain newly developed tissue-cultured genotypes and exotic ones compared with commercial
cultivars, which could be exploited in canola breeding under water-deficit conditions.

Keywords: arid environment; agronomic traits; cluster analysis; drought tolerance indices; Mediter-
ranean region; physiological parameters; principal component analysis

1. Introduction

Canola (Brassica napus L.) is a valuable crop grown mainly for edible oil [1]. Its oil is a
healthy ingredient providing polyunsaturated fatty acids, and its by-product is rich in its
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protein content [2]. Canola can be used as an alternative break crop in semi-arid regions
where the cereal-based crop is the predominant cropping system [3]. This is due to its high
water-use efficiency and relative tolerance to drought stress [4]. Nevertheless, the global
demand for vegetable oil is increasing and drought represents a threat to oilseed production
in several parts of the world, in particular under the current climate change [5]. Canola, as
with other temperate crops, is vulnerable to drought stress [6]. Its plant growth is regulated
by various factors, of which water plays a crucial role. The first common undesirable effect
of drought on canola may be a reduction in yield-related traits and a reduction in oil and
seed quality [7]. The impacts of drought stress depend on its severity, timing, and duration.
Canola is more sensitive to water deficiency during the reproductive stage; even a short
drought stress could penalize the seed yield. However, during the vegetative growth stage,
drought exhibits less damage [8]. Consequently, drought reduces the seed yield when it
occurs in the reproductive stage more than at the beginning of the plant cycle [9]. Thus, the
genotypes that have the ability to maintain a good cell water status at the final plant cycle
are significantly important for drought-prone regions [10,11].

Water-deficit stress alters agronomic and physiochemical traits at any period of plant
growth. Early drought restricts germination, emergence, and early canola seedling growth,
which leads to crop failure [12–16]. Water-deficit stress at anthesis reduces the plant height,
number of branches, thousand seed weight, number of pods per plant, number of seeds
per pod, and seed size, which ultimately leads to low seed and oil yields [17–20]. At
the physiological level, water-deficit stress increases chlorophyll degradation, decreases
photosynthesis activity, unbalances mineral nutrient contents, reduces cell turgidity, and
causes oxidative damage due to the increasing production of reactive oxygen species [21,22].
The negative impacts of water-deficit stress on different physiological processes inactivate
metabolic enzymes, impair nucleic acids, and damage membrane lipids, which ultimately
result in the death of plant cells [23–25].

Canola is a promising oil crop that delivers an opportunity to diminish the great
gap between consumption and oil production in low-income countries. It is commonly
cultivated in marginal areas that suffer from predominant environmental stresses at both
vegetative and reproductive growth stages [26–28]. Accordingly, developing drought-
tolerant canola genotypes that can cope with prolonged water-deficit stress is the best
solution to reduce the great shortage of edible oil in low-income countries. In this regard, the
present study aimed to: (i) assess the response of the physiochemical and agronomic traits
of newly developed tissue-cultured canola genotypes to various drought severities; and (ii)
identify tolerant and high-yielding genotypes with high seed and oil yields compared with
commercial cultivars.

2. Materials and Methods
2.1. Plant Material and Experimental Site

Ten canola genotypes (Brassica napus L.) were used in this study (Table 1). The eval-
uated genotypes comprised three tissue-cultured genotypes regenerated from the exotic
genotype Siberian (S1, S2, and S3), three genotypes regenerated from the exotic genotype
Torpe (T1, T2, and T3), two exotic genotypes (Siberian and Torpe), and two drought-tolerant
commercial cultivars (Serw-4 and Pactol). The tissue-cultured canola genotypes were de-
veloped under osmotic stress (180 mM NaCl) by Abdrabou et al. [29]. A field experiment
was conducted during two growing seasons of 2018–2019 and 2019–2020 at Nubaria Agri-
cultural Research Center (ARC), El-Behira governorate, Egypt (30◦55′ N and 29◦56′ E).
According to the optimal period of canola cultivation in the region, the seed sowing was
performed on the first week of November in both seasons. This region is dry, with low pre-
cipitation; the annual rainfall is below 30 mm (Table S1). Before sowing, soil samples were
taken from 0–30 cm depth to determine the physical and chemical properties according
to Horwitz and Latimer [30]. The analysis indicated that the soil of the experimental site
could be classified as sandy clay (i.e., 54.0% sand, 20.6% silt, and 24.8% clay) (Table S2).
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Table 1. Origin of the used canola genotypes.

Accession Origin

Serw-4 Local variety obtained from Field Crops Research Institute, Agricultural
Research Centre, Giza, Egypt

Pactol Adopted French cultivar in Egypt

Siberian Accessions from the gene bank of the Institute of Plant Genetics and Crop Plant
Research, Gatersleben, Germany

S1

Regenerated genotypes developed from Siberian genotypeS2

S3

Torpe Accessions from the gene bank of the Institute of Plant Genetics and Crop Plant
Research, Gatersleben, Germany

T1

Regenerated genotypes developed from Torpe genotypeT2

T3

2.2. Experimental Design and Crop Management

The experiment was performed in a randomized complete block design with a split-
plot arrangement with three replicates. The irrigation regimes were allocated in the main
plots and canola genotypes were assigned to the sub-plots (Figure 1). The ten canola geno-
types were assessed under four water irrigation regimes based on an evapotranspiration
(ETc) replacement, which was based on the crop coefficient approach of Allen et al. [31].
The applied irrigation regimes were well-watered (100% ETc), mild drought (80% ETc),
moderate drought (60% ETc), and severe drought (40% ETc). The drip irrigation system
was applied using drip laterals with a 0.6 m space between them and an emitter spacing of
0.30 m. The cumulative amounts of the applied aforementioned regimes in the first season
in the same order were 461.3, 368.8, 276.6, and 184.4 mm ha−1; in the second season, these
were 481.0, 385.3, 289.0, and 192.6 mm ha−1. Each plot included five 5 m long rows with
a 0.60 m space between the rows and a 0.15 m space between the plants. These distances
provided an experimental plot size of 15 m2 and a total area of the whole experiment
of 2322 m2. Each hill was sown with several seeds and thinned to two seedlings after
two weeks to achieve complete germination to provide 400 plants/plot. In both growing
seasons, the canola plants were sowed during the optimum period, which was the second
week of November. Phosphorus (P) and potassium (K) were added before sowing at the
rate of 25 kg P ha−1 as superphosphate (15.5% P2O5) and 80 kg K ha−1 as potassium sulfate
(48% K2O). Nitrogen fertilizer was applied by fertigation at 70 kg N ha−1 as ammonium
sulfate (20.6% N) and fractioned into 4 equal doses at 10 day intervals after sowing.

2.3. Measured Traits

Canola leaves were collected from 10 random plants of each plot (second leaf from
above of the main stems) 90 days after sowing for both seasons to assess the physio-
logical parameters. The relative water content (RWC%) was determined according to
Schonfeld et al. [32], the total chlorophyll as outlined by Moran [33], the proline content
following Bates et al. [34], the total phenolic content as described by Jindal and Singh [35],
the anthocyanin content in accordance with Mirecki and Teramura [36], and the glycine
betaine content as presented by Grieve and Grattan [37]. The days to flowering (DTF, days)
and days to maturity (DTM, days) were recorded. At physiological maturity (16th and 10th
of April in the first and second seasons, respectively) the following agronomic traits were
recorded from ten random plants per each plot: plant height (cm), number of branches per
plant, number of pods per plant, and number of seeds per pod. The seed yield (t ha−1)
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was estimated based on the harvested plot and converted to ton ha−1. Furthermore, the oil
percentage was quantified after extraction by the Soxhlet extraction method.
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2.4. Drought Tolerance Indices

Nine indices related to drought tolerance were calculated, as presented in Table 2.

Table 2. The drought tolerance indices applied to discriminate the assessed canola genotypes under
well-watered and drought conditions.

Index Formula

Drought tolerance index [38] (Yp − Ys)
Harmonic mean [39] (Yp × Ys)/(Yp + Ys)
Mean productivity [38] (Ys + Yp)/2
Stress susceptibility index [39] 1 − (Ys/Yp)/SI, SI = 1 − (Ȳs/Ȳp)
Geometric mean productivity [40]

√
(Yp × Ys)

Stress tolerance index [40] (Yp × Ys)/(Ȳp)2

Modified stress tolerance index [41] (YI)2 × [(Yp × Ys)/(Ȳp)2]
Yield stability index [42] Ys/Yp
Yield index [43] Ys/Ȳs

Ys: seed yield under severe drought stress; Yp: seed yield under well-watered conditions; Ȳs: average seed yield
of all genotypes under severe drought stress; Ȳp: average seed yield of all genotypes under non-water stress.

2.5. Statistical Analysis

The data were subjected to a normality distribution test and variance homogeneity
using Shapiro–Wilk and Bartlett’s tests, respectively. A combined analysis of variance
(ANOVA) was applied for the split–split plot design in three replicates across two growing
seasons. The differences among the irrigation regimes, canola genotypes, and their inter-
action were discriminated according to the Tukey HSD test (p ≤ 0.05). All analyses were
applied using R statistical software version 3.6.2.

3. Results
3.1. Physiological Parameters

The ANOVA analysis revealed that the season interaction with the genotype and irri-
gation regime was not significant for most traits (Table S1). Accordingly, the measured traits
were combined over the two seasons. The drought-stress regimes displayed a substantial
impact on all evaluated physiological parameters compared with the well-watered condi-
tions (Table 3). Severe drought decreased the total chlorophyll content and RWC by 50.9
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and 27.6%, respectively, and increased the contents of proline, anthocyanin, glycine betaine,
and total phenolic by 102.2, 726.4, 374.8, and 291.9%, respectively, compared with the well-
watered conditions. The canola genotypes significantly differed in all physiological and
agronomic parameters, and presented a significant interaction with the irrigation regimes,
except RWC (Table 3). A significant interaction effect between the irrigation regimes and as-
sessed canola genotypes was observed for the contents of chlorophyll, proline, anthocyanin,
glycine betaine, and total phenolic content. Overall, under the well-watered treatment,
less variation was observed among the genotypes for most traits compared with severe
drought (Figure 2). Under drought conditions, T1, T2, and T3 had the highest values of
most evaluated physiological parameters (Figure 2). Otherwise, the genotypes Siberian, S1,
and S2 possessed the lowest values for the physiological parameters. The growing seasons
and their interactions with the irrigation regimes and genotypes had non-significant effects
on most of the studied traits (Table S3).

3.2. Agronomic Traits

Drought stress, particularly the severe conditions, significantly deceased all agronomic
traits (Table 4). The number of pods per plant and seed yield per ha were the traits most
decreased by severe drought stress, roughly by 53.3% and 52.9%, respectively, compared
with the well-watered conditions. The oil percentage was less affected by severe drought
stress; it decreased by only 5.2% compared with the well-watered conditions. The canola
genotypes behaved differently for all agronomic traits and they ranked differently across the
assessed irrigation regimes (Table 4). A significant interaction effect between the irrigation
regimes and assessed canola genotypes was observed for the days to flowering and oil
percentage (Table 4 and Figure 3). It is worth mentioning that T1, T2, and T3 produced
higher seed yields than the other genotypes under drought-stress conditions. In addition,
T2 and T3 had the highest oil percentage under drought stress. Accordingly, the Torpe
tissue-cultured genotypes displayed the highest values for all agronomic traits (Table 4).

Table 3. Impact of irrigation regimes on physiological parameters of canola genotypes averaged over
two growing seasons.

Studied Factor
Total

Chlorophyll
(mg/g DW)

Relative
Water Content

(%)

Proline
Content

(mg/g DW)

Anthocyanin
Content

(mg/g DW)

Glycine
Betaine

(mg/g DW)

Total Phenolic
Content

(mg/g DW)

Irrigation (I)
Well-watered 12.46 a 75.74 a 0.368 d 0.091 d 0.131 d 34.38 d

Mild drought 10.66 b 69.51 b 0.506 c 0.158 c 0.291 c 64.77 c

Moderate drought 8.91 c 62.71 c 0.621 b 0.205 b 0.398 b 91.25 b

Severe drought 6.12 d 54.85 d 0.744 a 0.752 a 0.622 a 134.74 a

Genotype (G)
Serw-4 9.66 e 70.12 a 0.706 a 0.263 e 0.231 e 103.34 a

Pactol 8.02 i 65.30 c 0.517 c 0.354 b 0.225 e 99.16 b

Siberian 9.90 d 61.66 e 0.219 d 0.337 c 0.472 b 101.15 c

S1 8.76 h 68.75 ab 0.597 b 0.313 d 0.347 cd 67.62 h

S2 10.19 b 64.31 cd 0.501 c 0.253 e 0.524 a 57.16 i

S3 8.99 g 69.14 ab 0.587 b 0.262 e 0.307 d 68.60 g

Torpe 9.20 f 62.79 de 0.607 b 0.264 e 0.477 b 75.85 e

T1 10.33 a 63.13 d 0.590 b 0.360 b 0.354 c 96.62 d

T2 10.17 bc 67.83 b 0.706 a 0.196 f 0.349 cd 68.93 g

T3 10.10 c 64.03 cd 0.569 b 0.413 a 0.319 cd 74.48 f

ANOVA df
Irrigation (I) 3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Genotype (G) 9 <0.001 0.041 <0.001 <0.001 <0.001 <0.001
I × G 27 <0.001 0.705 <0.001 <0.001 <0.001 <0.001

Means followed by different letters under the same factor were significantly different according to Tukey’s HSD
test (p ≤ 0.05).
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Figure 2. Response physiological parameters of ten canola genotypes to four irrigation regimes
averaged over two growing seasons. The bars on the top of the columns represent the SE, and
different letters on the column of each irrigation regime (with the same color) show the significant
difference using Tukey’s HSD test (p ≤ 0.05).
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Table 4. Impact of irrigation regimes on agronomic traits of canola genotypes averaged over two
growing seasons.

Studied Factor Days to
Flowering

Days to
Maturity

Number of
Branches/Plant

Number
of Pods/Plant

Plant Height
(cm)

Seed
Yield (t/ha)

Oil Content
(%)

Irrigation (I)
Well-watered 96.90 a 173.47 a 7.45 a 290.8 a 150.67 a 2.25 a 42.49 a

Mild drought 94.90 a 171.33 a 6.70 b 243.0 b 144.33 ab 2.03 b 41.59 b

Moderate drought 87.53 b 164.27 b 6.02 c 185.5 c 139.00 b 1.54 c 41.05 c

Severe drought 80.97 c 157.63 c 4.82 d 135.9 d 131.17 c 1.06 d 40.26 d

Genotype (G)
Serw-4 87.67 b 167.42 abc 6.12 ab 211.1 bcde 136.12 bc 1.77 bc 41.84 d

Pactol 95.08 a 167.58 abc 6.00 ab 223.0 abcd 139.62 abc 1.79 b 38.61 i

Siberian 83.75 b 165.50 bc 6.04 ab 206.3 def 145.79 ab 1.63 d 40.60 f

S1 87.08 b 164.75 bc 5.71 b 208.7 cdef 141.33 abc 1.50 e 39.47 h

S2 85.50 b 162.58 c 6.08 ab 190.6 f 141.92 abc 1.44 e 39.50 h

S3 84.25 b 167.83 ab 6.04 ab 201.6 ef 137.71 abc 1.68 cd 41.39 e

Torpe 84.83 b 164.75 bc 6.04 ab 209.2 bcdef 129.58 c 1.78 bc 40.41 g

T1 94.50 a 167.92 ab 6.58 ab 228.4 ab 143.25 abc 1.82 ab 42.50 c

T2 98.92 a 171.17 a 7.08 a 232.1 a 150.42 a 1.93 a 46.24 a

T3 99.17 a 167.25 abc 6.75 ab 227.1 abc 147.17 ab 1.87 ab 42.92 b

ANOVA df
Irrigation (I) 3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Genotype (G) 9 <0.001 <0.001 0.006 <0.001 <0.001 <0.001 <0.001
I × G 27 0.041 0.450 0.990 0.122 0.520 0.125 <0.001

Means followed by different letters under the same factor were significantly different according to Tukey’s HSD
test (p ≤ 0.05).
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3.3. Genotypic Classification

Nine drought indices were calculated based on the seed yield under well-watered and
severe drought conditions. A hierarchical cluster was employed to classify the assessed
canola genotypes based on these nine tolerance indices (Figure 4). According to the
cluster analysis, the genotypes were classified into four groups. Group A consisted of five
genotypes (T1, T2, T3, Pactol, and Torpe), Group B included two genotypes (Serw-4 and
S3), Group C comprised two genotypes (S1 and Siberian), and Group D had one genotype
(S2). Group A displayed favorable tolerance indices and was considered to have drought-
tolerant genotypes. In contrast, Group C and D represented the worst values of tolerance
indices and, accordingly, were considered to have drought-sensitive genotypes. The tissue-
cultured genotypes from Torpe showed a better drought tolerance compared with those
developed from Siberian. A principal component analysis was employed to explore the
relationship among the studied tolerance indices and assessed genotypes (Figure 5). The
results displayed that most drought indices were grouped on PC1 (77.4%), except the SSI
and TOL indices, which were located on PC2 (17.6%). Moreover, PC1 divided the assessed
genotypes into two groups. The genotypes T1, T2, T3, Pactol, Torpe, Serw-4, and S3 were
located on the positive side and were associated with all tolerance indices, except SSI and
TOL. On the other hand, S1, S2, and Siberian were situated on the negative side and were
associated with SSI and TOL.
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3.4. Relationships among Assessed Treatments and Traits

A principal component analysis was employed to explore the association among the
assessed treatments and studied traits (Figure 6). The first two PCs explained 78.36%
of the variability. PC1 displayed 69.79% of the variation and was associated with the
irrigation regimes from well-watered to severe drought conditions (Figure 6). PC1 divided
the irrigation regimes into two groups; the severe and moderate drought conditions were
located on the negative side, but those of the mild drought and well-watered conditions
were situated on the positive side. PC2 exhibited 8.57% of the variation and seemed to
correspond with the assessed canola genotypes. The canola genotypes were more dissimilar,
with plots under drought conditions (severe, mild, and moderate) compared with well-
watered conditions. All agronomic traits, in addition to the chlorophyll content and relative
water content, were positively correlated with well-watered and mild drought conditions
on the positive side of PC1. However, the proline, anthocyanin, glycine betaine, and total
phenolic contents were positively associated with severe and moderate drought stress, but
negatively associated with well-watered and mild drought conditions as well as agronomic
traits, chlorophyll content, and relative water content.

Furthermore, a correlation network was performed for the further exploration of the
association among the evaluated traits (Figure 7). The agronomic traits were positively
intercorrelated; the seed yield presented strong associations with most agronomic traits, but
a weak relationship with the plant height (PH) and oil percentage (Figure 7). Conversely,
most physiological parameters were negatively intercorrelated with agronomic traits. With
an exception, positive correlations were observed for anthocyanin content (AC) with glycine
betaine (GB) and total phenolic content (TPC) as well as total chlorophyll (Chl) content
and relative water content (RWC). Moreover, the total chlorophyll content showed positive
correlations with agronomic traits, especially with the seed yield (SY), number of pods
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per plant (NoP), and number of branches per plant (NoB). Similarly, the relative water
content was positively correlated with the seed yield, number of pods per plant, and days
to maturity (DTM).
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number of branches per plant; NoP: number of pods per plant; PH: plant height; SY: seed yield; Oil:
oil percentage.
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4. Discussion

Drought is one of the major constraints of canola production in Mediterranean
semi-arid environments and is expected to be more severe under the current climate
change [44–46]. In the present study, water-deficit conditions adversely affected all recorded
traits compared with well-watered conditions. Drought-impaired physiological traits such
as the total chlorophyll and relative water content were reflected in the seed yield and
its components. The adverse impact of drought stress on agronomic performance can be
partly explained by reducing the nutrient uptake, limiting its movement from the roots to
the shoot and impairing membrane permeability [47,48]. In this respect, Jamshidi et al. [18],
Rad and Zandi [20], Eyni Nargeseh et al. [49], and Fard et al. [50] elucidated that drought
stress considerably reduces the plant height, number of branches, number of pods, and
canola seed yield. Otherwise, a water deficit increases the proline, anthocyanin, glycine
betaine, and total phenolic contents. Under drought stress, organic solutes called osmo-
protectants are increased in the plants to cope with the induced stress [51,52]. Likewise,
Ahmad et al. [53], Khan et al. [54], and Khan et al. [55] disclosed an increase in osmoprotec-
tant contents under drought stress. The accumulation of osmoprotectants may serve as a
readily accessible source of nitrogen, carbon, and energy during recovery after drought
stress [56]. These osmoprotectants (such as glycine betaine and proline) are exogenously ap-
plied to improve the growth, survival, and tolerance of plants under various environmental
stresses [57].

Under the current climate change and continuing population growth, it has become
more crucial to develop new drought-tolerant canola genotypes with high oil yields to
ensure global food security. Sakhanokho and Kelley [58] and Orbović et al. [59] disclosed
that in vitro plant tissue culture has become one of the most effective approaches in recent
decades to induce selective conditions. Several drought-tolerant genotypes have been
developed based on tissue cultures supplemented with selective agents for different species,
as proved by Purushotham et al. [60], Gangopadhyay et al. [61], Ochatt et al. [62], and
Errabii et al. [63]. In the present study, six developed tissue-cultured canola genotypes
alongside two exotic genotypes and two commercial cultivars were assessed under four
irrigation regimes. The evaluated canola genotypes displayed an appreciable variability
for all measured traits. This finding indicated an adequate genetic variability among
the used genotypes and the possibility of breeding new canola cultivars. The detected
considerable genotypic variations were in consonance with the results of Kandil et al. [64].
The evaluated set of canola genotypes was clustered into four different groups according
to drought tolerance indices. The variable response of canola genotypes to drought stress
was also was demonstrated by Zali et al. [65]. The tissue-cultured genotypes T2 and T3
regenerated from Torpe were the most drought-tolerant genotypes. These two genotypes
were more vigorous and productive in the field, as expressed by the high values for
the plant height, number of branches per plant, and number of pods per plant. These
two genotypes were more productive, with the highest seed yields under drought-stress
conditions even compared with the commercial cultivars Serw-4 and Pactol. The evaluated
commercial cultivars were previously demonstrated to be more tolerant in the study of
Kandil et al. [64]. Furthermore, T2 and T3 reached flowering and maturity later than the
other developed genotypes and commercial cultivars. The late flowering and maturity
seemed to be favorable for high seed and oil yields, as elucidated by Riffkin et al. [66]. This
indicated that these genotypes maintained their photosynthesis activity and growth longer
than the other genotypes, which could lead to a better seed set and filling, and ultimately
to a high seed yield under drought conditions. Moreover, T2 and T3 accumulated more
proline compared with the other genotypes. The accumulation of proline contributes
to osmotic modifications under water scarcity due to acclimatization to recompense for
plant survival and, accordingly, assists in tolerating drought stress [67–69]. Therefore,
the proline accumulation was detected to be higher in the most tolerant genotypes [70].
The favorable performance exhibited by the tissue-cultured genotypes T2 and T3 was
different from the mother parent Torpe. This indicated that the improvement in these
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genotypes was most likely caused by a somaclonal variation that had occurred through
the tissue-culture process under osmotic stress. Consequently, the traits that were altered
during the tissue-culture process under salt stress offered more tolerance to the tissue-
cultured genotypes. Plants develop diverse activated defense mechanisms and stress-
responsive signaling pathways to adapt to drought and salinity stresses [71]. In this
context, Golldack et al. [72] and Ma et al. [73] deduced that plant tolerance to drought
and salinity stress was similar in multicomponent signaling pathways, plant metabolism,
biochemical responses, and energy supply to restore cellular homeostasis and promote
survival. Likewise, Agarwal et al. [74] elucidated that the regulatory processes of plant
tolerance to drought and salinity involve the control of cellular osmotic adjustments and
water flux via the biosynthesis of osmoprotectants.

Understanding the relationship between the studied traits is a vital aspect that can
provide valuable information [75–77]. The formation of pods, including the seed set, is
highly impacted by drought stress [8]. The obtained results showed that the number of
pods and branches per plant were highly associated with the seed yield. Additionally,
the chlorophyll content was positively associated with the seed yield, indicating that an
increased chlorophyll content under drought conditions would improve the seed yield. In
this respect, Khodabin et al. [78] deduced that tolerant canola cultivars exhibited a higher
chlorophyll content under water-stress conditions. Germchi et al. [79] manifested that a
higher number of branches could be attributed to improving the seed yield. Moreover,
Diepenbrock [80] depicted that the number of siliqua per plant was highly related to the
seed yield. Accordingly, improving the traits that exhibit high associations with the seed
yield would improve canola productivity under drought stress.

5. Conclusions

A water shortage significantly reduced the total chlorophyll, relative water content,
days to flowering, days to maturity, number of branches per plant, number of pods per
plant, and plant height, which ultimately led to a poor performance in the seed yield
and oil percentage. The newly developed tissue-cultured genotypes possessed genetic
diversity, which was reflected in their different responses to the studied irrigation regimes.
The genotypes T2, T3, T1, and Torpe were less affected by drought stress and exhibited
a better performance in all evaluated parameters. These genotypes surpassed the other
tested genotypes and commercial cultivars under different drought levels. Conclusively,
these genotypes displayed a superiority in the physiological and agronomic parameters
compared with the commercial cultivars, which could be exploited in improving canola
production in water-limited environments.
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www.mdpi.com/article/10.3390/agronomy13030836/s1, Table S1. Climatic data for the experimental
site in 2019 and 2020 cropping seasons. Table S2. Soil properties of the experimental site for 2018-2019
and 2019-2020 growing seasons Table S3. Analyses of variance of agronomic and physio-chemical
traits as affected by canola genotypes, irrigation regimes and their interactions.
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