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Time series data are ubiquitous nowadays. Whereas most of the literature on the topic deals with univari-
ate time series, multivariate time series have typically received much less attention. However, the devel-
opment of machine learning algorithms for the latter objects has substantially increased in recent years.
The R package mlmts attempts to provide a set of widespread data mining techniques for multivariate
series. Several functions allowing the execution of clustering, classification, outlier detection and fore-
casting methods, among others, are included in the package. mlmts also incorporates a collection of mul-
tivariate time series datasets often used to test the performance of new classification algorithms. The
main characteristics of the package are described and its use is illustrated through various examples.
Practitioners from a wide variety of fields could benefit from the general framework provided by mlmts.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
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1. Introduction

Time series databases are becoming omnipresent nowadays,
emerging frequently in a wide variety of disciplines as machine
learning, biology, geology, finance, psychology, chemistry, among
many other areas. Although univariate time series (UTS) were the
norm until recently, the advance of technology and storage capa-
bilities of everyday devices have provoked a growing presence of
multivariate time series (MTS). Typical examples of MTS are
multi-channel EEG signals or temporal records of concentrations
of certain air pollutants in a specific region. Particularly significant
in the last two decades has been the explosion of works on pattern
recognition techniques for time series. [1,2] provide extensive sur-
veys on current time series data mining directions including a
number of important problems such as representation and index-
ing of series, visualization tools, dissimilarity measures, clustering,
classification and anomaly detection.

Although a range of techniques concerning machine learning of
multidimensional series are available in the literature, the majority
of research has mainly focused on clustering (MTSCLU) and classi-
fication (MTSCLA) tasks. The former techniques attempt to split a
set of unlabelled MTS realizations into homogeneous groups so
that similar series are located together in the same group and dis-
similar MTS are placed in distinct groups. On the other hand,
MTSCLA algorithms learn on a collection of MTS with class labels,
thus constructing a set of rules used to accurately predict the class
of unlabelled series.

A pivotal issue in cluster analysis consists of establishing a suit-
able distance measure between two objects. This choice is particu-
larly complex when dealing with time series due its dynamical
nature, i.e., data objects evolving in time. Several approaches to
define dissimilarity between MTS have been proposed. Sometimes
the interest lies in comparing geometric profiles of the series, for
which standard distances between raw data (e.g., Euclidean dis-
tance) can yield satisfactory results. For instance, two natural
extensions of the dynamic time warping (DTW) distance to the
multidimensional setting were introduced in [3]. Other times, dis-
similarity is understood in terms of how different are the generat-
ing processes, and distance is then measured by comparing
matrices or vectors of extracted serial features, as autocorrelations,
cross-correlations, spectral quantities, quantile-based estimates,
wavelet-based features and so on [4–7]. Alternative approaches
consist of assuming specific underlying models [8], or performing
dissimilarity reduction techniques and defining a metric in the
reduced space [9,10]. In short, there exists a broad range of dissim-
ilarities to compare MTS and the selection of the appropriate mea-
sure depends mainly on the purpose of the grouping task. Once the
metric has been chosen, the execution of a clustering procedure is
straightforward by considering, for instance, standard versions of
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K-means or K-medoids algorithms. Overviews on time series clus-
tering (MTSCLU in particular) are provided by [11,12].

A range of algorithms for MTSCLA are also available in the liter-
ature. A classical technique consists of considering a multivariate
extension of DTW, alone or in combination with an alternative dis-
similarity, and then performing the classification task by using a k
nearest neighbours (kNN) classifier [13–15]. Approaches relying on
extracted features have also been proposed for MTSCLA. Likewise
the feature-based methods for clustering, these procedures replace
each MTS in the original set by a vector or matrix of statistical
quantities, and perform the classification task by considering the
new objects and a traditional classifier [4,16,17]. Other algorithms
for MTSCLA are based on dimensionality reduction [18–20], word
extraction [21] and neural networks [22]. Many of the previous
classification approaches have been assessed in MTS datasets
included in the UEA multivariate time series classification archive
[23], which provides a collection of 30 MTS databases from differ-
ent fields.

Besides clustering and classification procedures, there are other
interesting and challenging problems related to MTS data mining.
Among them, anomaly detection constitutes an important problem
that has been addressed in different works [24–26]. Some of them
perform the outlier identification task by assigning an outlier score
to each MTS according to a given criteria.

According to previous considerations, having available a soft-
ware tool where a range of machine learning algorithms for MTS
can be tested and compared is highly desirable. In particular, we
focus on the open-source R programming language [27]. There
are many R packages to model and forecast uni and multidimen-
sional time series, but this is far from being the case for clustering
and classification. The R packages addressing these tasks are
specifically tailored to univariate time series and most of them
focus on specific approaches. For instance, dtw package [28]
includes a wide variety of algorithms and constraints for the com-
putation and visualization of DTW alignments, which have been
widely used for clustering and classification of temporal data. More
recently, dtwclust [29] provides algorithms and optimizations
based on the DTW distance and targeted at clustering time series.
Thus, additional implementations of partitional, hierarchical,
fuzzy, k-Shape and TADPole clustering and of several cluster valid-
ity indexes are also available in dtwclust. Package pdc [30] imple-
ments a clustering method for time series based on measuring
divergence between permutation distributions of the series. A
few packages allow to use a wider range of approaches. For exam-
ple, TSclust [31] and TSdist [32] include a large set of well-
established peer-reviewed time series dissimilarity measures,
and all of them can be used to perform conventional clustering
algorithms. Nevertheless, as mentioned, these libraries focus on
unidimensional time series. Sometimes the clustering algorithm
can be extended to the multidimensional context (see e.g. the
PDC algorithm in pdc), but usually this is not the case. In sum,
there is a notorious lack of R libraries to address clustering and
classification of multidimensional time series data, which justifies
our attempt of providing practitioners and researchers with an
integrated tool allowing the execution of several machine learning
algorithms for MTS. The R packagemlmts [33] is the result of those
efforts. The package is structured so that its main functions are
related to the computation of distances between MTS, thus attach-
ing a high degree of homogeneity. However, it is worth emphasiz-
ing that the use of mlmts is not limited to clustering, since the
distance matrix usually returned as output can be employed for
other alternative data mining tasks. In addition, the functions asso-
ciated with feature-based approaches allow obtain the extracted
features, thus enabling their use as input to different types of algo-
rithms, including classification ones. All the methods included in
mlmts have been carefully examined in the MTS data mining liter-
211
ature and are appropriately referenced throughout this article.
Nevertheless, some procedures require specific conditions to
ensure meaningful results. In this regard, users should analyse
with detail what is the most suitable function for their specific
problem.

An interesting feature of the package mlmts is that it contains
28 of the 30 MTS datasets included in the UEA multivariate time
series classification archive [23]. On the one hand, this allows users
to check the results that the provided functions attain over these
datasets from an exploratory point of view. On the other hand, this
makes mlmts the perfect spot to test new MTSCLA algorithms,
since the databases in the UEA archive are considered a standard
location to evaluate the performance of novel classification algo-
rithms in a reproducible manner.

In summary, mlmts package intends to integrate an extensive
assortment of data mining algorithms for multidimensional series.
In this way, the user can compare their behaviour and identify use-
ful methods in a given context. mlmts is available from the Com-
prehensive R Archive Network (CRAN) at https://cran.r-project.
org/web/packages/mlmts/index.html.

The rest of the paper is structured as follows. The distance
measures implemented in mlmts are presented in Section 2.
Specifically, we give a brief description of each dissimilarity
and provide the corresponding references. Section 3 contains a
short explanation about the data included in the package. In Sec-
tion 4, the functionality of mlmts is illustrated through several
examples. The performance of different algorithms is studied
by considering synthetic data and some datasets included in
the UEA archive. Some concluding remarks are given in
Section 5.
2. Main functions in mlmts

The package mlmts contains a representative collection of data
mining procedures for MTS. As stated in Section 1, most of the
methods proposed in the literature make use of a pairwise dissim-
ilarity matrix between the available collection of MTS objects. For
this reason, our first challenge was to implement a set of functions
providing a range of distances between MTS. The corresponding
outputs are useful themselves, but also as starting point of other
functions to run different MTS data mining algorithms, including
clustering, classification and anomaly detection. This section is
devoted to provide brief explanations about the considered dissim-
ilarity measures, which have been grouped into three categories,
namely shape-based approaches (Section 2.1), feature-based
approaches (Section 2.2), model-based approaches (Section 2.3)
and methods relying on dimensionality reduction techniques (Sec-
tion 2.4). In addition, we present also four specific machine learn-
ing tools (Section 2.5).

From now on we assume that XT ¼ X>
T;1; . . . ;X

>
T;d

h i
and

YT ¼ Y>
T;1; . . . ;Y

>
T;d

h i
are partial realizations from two d-variate,

real-valued stochastic processes Xt ; t 2 Zf g ¼ Xt;1; . . . ;Xt;d

� �
;

�
t 2 Zg and Y t; t 2 Zf g ¼ Yt;1; . . . ;Yt;d

� �
; t 2 Z

� �
, respectively. There-

fore, for i ¼ 1; . . . ; d;XT;i ¼ Xi
1; . . . ;X

i
T

� �
and YT;i ¼ Yi

1; . . . ;Y
i
T

� �
denote the univariate realizations from the ith component of
Xt ; t 2 Zf g and Y t ; t 2 Zf g, respectively. Note that realizations of
the same length T and number of dimensions d are initially
required, although some of the methods introduced throughout
this section can deal with series of different lengths.

Based on previous considerations, a MTS can be represented by
means of a matrix whose number of rows is the series length and
whose number of columns is the number of variables or dimen-
sions, i.e., XT ;YT 2 RT�d.

https://cran.r-project.org/web/packages/mlmts/index.html
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2.1. Shape-based distances

Proximity between MTS XT and YT can be assessed through con-
ventional metrics comparing raw values at specific points of time.
Some common distances are presented below.

Euclidean distance
The Euclidean distance betweenMTS XT and YT is defined as the

sum of the dimension-wise Euclidean distances, which is

dEUCL XT ;YTð Þ ¼
Xd
i¼1

XT;i � YT;i

�� ��; ð1Þ

where XT;i � YT;i

�� ��2 ¼PT
t¼1 Xi

t � Yi
t

� �2
is the classical Euclidean dis-

tance between two vectors of the same length. The Euclidean dis-
tance evaluates proximity of the values observed at corresponding
dimensions and points of time. This metric is very sensitive to signal
transformations as shifting or time scaling.

Fréchet distance
This metric was introduced by [34] to measure proximity

between continuous curves but it has been extensively used in
the time series framework. We first introduce the Fréchet distance
in the univariate setting. Let XU

T ¼ X1; . . . ;XTð Þ and YU
T ¼ Y1; . . . ;YTð Þ

be two UTS and let M be the set of all possible sequences ofm pairs
preserving the observations order in the form

r ¼ Xa1 ;Yb1

� �
; . . . ; Xam ; Ybmð Þ� �

; ð2Þ
with ai; bj 2 1; . . . ; Tf g such that a1 ¼ b1 ¼ 1; am ¼ bm ¼ T , and
aiþ1 ¼ ai or ai þ 1 and biþ1 ¼ bi or bi þ 1, for i 2 1; . . . ;m� 1f g. The
Fréchet distance between UTS XU

T and YU
T is defined as

dUF XU
T ;Y

U
T

� �
¼ min

r2M
max
i¼1;...;m

jXai � Ybi j
	 


: ð3Þ

Note that the Fréchet distance does not treat the series as two sets
of points, but it takes into account the ordering of observations. Fur-
thermore, dUF can be computed in series of different lengths.

The Fréchet distance between MTS XT and YT is defined as

dF XT ;YTð Þ ¼
Xd
i¼1

dUF XT;i;YT;i
� �

: ð4Þ

The distance dUF is implemented in mlmts by using the R pack-
age TSclust [35].

Dynamic time warping distances
The dynamic time warping (DTW) distance is one of the most

well-known shape-based dissimilarities for time series [36] in both
the univariate and the multivariate setting. In the univariate con-
text, DTW distance is aimed to find a mapping r (as in (2)) between
the series so that a specific distance measure between the coupled
observations Xai ;Ybi

� �
is minimized. The DTW distance between

UTS XU
T and YU

T is given by

dDTW XU
T ;Y

U
T

� �
¼ min

r2M

Xm
i¼1

jXai � Ybi j
 !

: ð5Þ

As the distance dUF ; dDTW allows to detect similar shapes, even in
the presence of signal transformations. However, as the majority of
geometric dissimilarities, dDTW ignores the temporal structure of
the values as the proximity is based on the differences jXai � Ybi j
regardless of the behaviour around these values.

There exist two main extensions of DTW distance to the multi-
variate setting [3]. The “independent” version, denoted by dDTW1,
computes the distance dDTW between the corresponding pairs of
UTS, i.e.,
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dDTW1 XT ;YTð Þ ¼
Xd
i¼1

dDTW XT;i;YT;i
� �

: ð6Þ

On the other hand, the “dependent” version, hereafter referred
to as dDTW2, forces all dimensions to warp identically, in a single
warping matrix. Specifically, let M� be the set of all possible
sequences of m� pairs preserving the observations order in the
form

r� ¼ X:;a1 ;Y :;b1

� �
; . . . ; X :;am� ;Y :;bm�

� �� �
; ð7Þ

where X:;ai and Y :;bj denote the aith row of XT and the bjth row of YT ,
respectively, and the sequences indexed by ai and bj are subject to
the same conditions as in (2).

The distance dDTW2 is defined as

dDTW2 XT ;YTð Þ ¼ min
r�2M�

Xm�

i¼1

X :;ai � Y :;bi

�� �� !
: ð8Þ

Both dDTW1 and dDTW2 have proven successful in several MTS data
mining tasks [37,38]. In mlmts, the distances dDTW1 and dDTW2 are
implemented with the help of the R package dtw [29].

Mahalanobis distance
The Mahalanobis distance is a classical metric in multivariate

data analysis. This measure has been extensively employed in
the context of MTS data mining [39,10,40]. Define
XT ¼ X1; . . . ;Xd

� �
and YT ¼ Y1; . . . ;Yd

� �
, where

Xj ¼ 1
T

XT
t¼1

Xj
t and Yj ¼ 1

T

XT
t¼1

Yj
t; ð9Þ

are the mean levels of UTS XT;j and YT;j, respectively. The Maha-
lanobis divergence between MTS XT and YT is given by [10]

dMD XT ;YTð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT � YT
� �

R��1
XT

XT � YT
� �>q

; ð10Þ

where RXT is the covariance matrix of XT and R��1
XT

is the pseudo-
inverse of RXT calculated using Singular Value Decomposition
(SVD). In (10), MTS XT is assumed to be the reference series.

Note that dMD is not a distance since it does not satisfy the sym-
metric property. In mlmts, a symmetric version of dMD is imple-
mented by defining

d�
MD XT ;YTð Þ ¼ 1

2
dMD XT ;YTð Þ þ dMD YT ;XTð Þð Þ: ð11Þ

As the previously introduced metrics, d�
M pertains to the class of

shape-based dissimilarities. However, unlike the former distances,
d�
M does not consider point to point examinations, but an overall

comparison between levels. In addition, d�
M accounts for possible

correlations among the d dimensions.
A distance measure relying on both a DTW-type and a

Mahalanobis-type dissimilarity is described below.

Mahalanobis distance based dynamic time warping
A Mahalanobis distance based on dynamic time warping

(MDDTW) was proposed in [14] for MTS classification. Here, we
adapt this metric to a general setting.

Preserving the notation of (7), the MDDTW distance between
two MTS is expressed as

dMDDTW XT ;YTð Þ ¼ min
r�2M�

Xm�

i¼1

1
2

Ai þ Bið Þ; ð12Þ

with Ai and Bi are defined by Ai ¼ X:;ai � Y :;bi

� �
R��1

XT
X:;ai � Y :;bi

� �> and

Bi ¼ X:;ai � Y :;bi

� �
R��1

YT
X:;ai � Y :;bi

� �>.
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Note that the metric dMDDTW is an extension of dDTW2, where the
local distance between the row vectors of both MTS is computed
according to a squared Mahalanobis-type dissimilarity.

2.2. Feature-based distances

Several dissimilarity measures based on feature extraction are
presented in this section. These techniques rely on two steps: (i)
a collection of statistical quantities are computed from each MTS
and (ii) the distance between two series is obtained by comparing
the corresponding sets of features. It is worth highlighting that,
although most feature extraction methods are generic in nature,
the extracted characteristics are usually application dependent.

Correlation-based distances
[41] proposed to assess dissimilarity between UTS by using proper

estimates of the autocorrelation function up to some prefixed lag.
Here we extend their approach to the multivariate setting.

Fix l 2 Z and let bqXT
j1 ;j2

lð Þ ¼ dCor Xt;j1 ;Xtþl;j2

� �
andbqYT

j1 ;j2
lð Þ ¼ dCor Yt;j1 ;Ytþl;j2

� �
, for 1 6 j1; j2 6 d, be the estimated

cross-correlations for lag l computed from the realizations XT and
YT , respectively.

A metric comparing estimates of cross-correlations up to lag L
can be defined as

dCOR XT ;YTð Þ ¼
XL
l¼1

Xd
j1¼1

Xd
j2¼1

bqXT
j1 ;j2

lð Þ � bqYT
j1 ;j2

lð Þ
� �2"

þ
Xd

j1 ;j2¼1:
j1>j2

bqXT
j1 ;j2

0ð Þ � bqYT
j1 ;j2

0ð Þ
� �2#1=2

: ð13Þ

Note that the second term of (13) involves the lag l ¼ 0 to assess
simultaneous relationships between the single components of each
MTS, fixing here j1 > j2 due to the symmetric character of the
cross-correlation function when the lag is zero.

[42] constructed a measure of linear dependence between UTS,
which is employed to perform hierarchical clustering of UTS. An
extension of this metric to the multivariate context is available
in the package mlmts.

Let XU
T and YU

T be two stationary UTS of length T, i.e., two real-
izations from the univariate stochastic process Xt ; t 2 Zf g and
Yt; t 2 Zf g, respectively. Without loss of generality, it is assumed

that E Xtð Þ ¼ E Ytð Þ ¼ 0 and E X2
t

� �
¼ E Y2

t

� �
¼ 1. Define

qX lð Þ ¼ E Xt�lXtð Þ;qY lð Þ ¼ E Yt�lYtð Þ and qXY lð Þ ¼ E Xt�lYtð Þ.
The linear dependence for lags between 0 and L can be summa-

rized by means of the matrix.

RYX;L ¼

1 qY 1ð Þ � � � qY Lð Þ qXY 0ð Þ qXY 1ð Þ � � � qXY Lð Þ
qY 1ð Þ 1 � � � qY L� 1ð Þ qXY �1ð Þ qXY 0ð Þ � � � qXY L� 1ð Þ
� � � � � � � � � � � � � � � � � � � � � � � �
qY Lð Þ qY L� 1ð Þ � � � 1 qXY �Lð Þ qXY �Lþ 1ð Þ � � � qXY 0ð Þ
qXY 0ð Þ qXY �1ð Þ � � � qXY �Lð Þ 1 qX 1ð Þ � � � qX Lð Þ
qXY 1ð Þ qXY 0ð Þ � � � qXY �L þ 1ð Þ qX 1ð Þ 1 � � � qX L� 1ð Þ
� � � � � � � � � � � � � � � � � � � � � � � �
qXY Lð Þ qXY L� 1ð Þ � � � qXY 0ð Þ qX Lð Þ qX L� 1ð Þ � � � 1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
¼ RYY;L C>

XY;L

CXY;L RXX;L

 !
;

ð14Þ

where RXX;L is the covariance matrix of Xt;Xt�1; . . . ;Xt�Lð Þ>;RYY;L is
the covariance matrix of Yt ;Yt�1; . . . ; Yt�Lð Þ> and CXY ;L includes the
cross-correlations between both vector processes. Matrix RYX;L is
the covariance matrix of the vector stationary process
Yt; Yt�1; . . . ; Yt�L;Xt ;Xt�1; . . . ;Xt�Lð Þ>.

The so-called generalized cross-correlation between UTS XU
T and

YU
T is defined as
213
GCC XU
T ;Y

U
T

� �
¼ 1� jbRYX;Lj

jbRXX;LjjbRYY;Lj

 !1= Lþ1ð Þ

; ð15Þ

where the estimators bRYX;L; bRXX;L and bRYY;L are obtained by consider-
ing the classical estimators of auto and cross-correlations in the
matrix RYX;L. The measure GCC verifies: (i)

GCC XU
T ;Y

U
T

� �
¼ GCC YU

T ;X
U
T

� �
, (ii) GCC XU

T ;Y
U
T

� �
2 0;1½ �, (iii)

GCC XU
T ;Y

U
T

� �
¼ 1 if and only if there is a perfect linear dependence

between the series and GCC XU
T ;Y

U
T

� �
¼ 0 if and only if all the cross-

correlation coefficients are zero. Therefore, GCC provides a great
deal of information about the linear dependence between XU

T and
YU

T .
A distance measure between MTS XT and YT can be established

by comparing the pair-wise linear relationships exhibited by each
set of dimensions in terms of the quantity GCC. Specifically, the
metric is given by

dGCC XT ;YTð Þ ¼
Xd
j1¼1

Xd
j2¼1:
j1>j2

GCC XT;j1 ;XT;j2

� �� GCC YT;j1 ;YT;j2

� �� �2
2664

3775
1=2

:

ð16Þ
Spectral-based distances
Two dissimilarity measures based on estimated spectral quanti-

ties were proposed by [4] to perform machine learning procedures
in a set of multivariate series.

Let X ¼ xk; k ¼ 1; . . . ;Kf g be the set of K Fourier frequencies

and bf XT xkð Þ and bf YT xkð Þ be the spectral matrices estimators for
series XT and YT , respectively, computed as the usual nonparamet-
ric estimators. A measure of discrepancy based on the so-called J
divergence is defined as

dJSPEC XT ;YTð Þ ¼ 1
2T

XK
k¼1

tr bf XT xkð Þbf �1
YT

xkð Þ
� �

þ tr bf YT xkð Þbf �1
XT

xkð Þ
� �

� 2d
� �

;

ð17Þ
where tr �ð Þ denotes the trace of a square matrix.

A dissimilarity measure relying on the so-called Chernoff infor-
mation divergence is given by

dCSPEC XT ;YTð Þ ¼ 1
2T

XK
k¼1

log jabf XT xkð Þþ 1�að Þbf YT xkð Þj
jbf YT xkð Þj

þ
	
log jabf YT xkð Þþ 1�að Þbf XT xkð Þj

jbf XT xkð Þj



;

ð18Þ

where a 2 0;1ð Þ. The quantity dCSPEC tends to behave like a Kull-
back–Leibler measure for values of the parameter a that are near
the boundaries 0 and 1.

It is worth remarking that both dJSPEC and dCSPEC are not real dis-
tance measures, since they do not satisfy the triangle inequality.
Both quantities were used in [4] to construct hierarchical and par-
titioning clustering techniques, as well as classification algorithms
based on discriminant analysis. In addition, the measure dJSPEC was
broadly assessed in [7] in a clustering context, achieving excellent
results when grouping linear series.

The nonparametric estimators bf XT xkð Þ and bf YT xkð Þ in expres-
sions (17) and (18) are computed in mlmts using the package fre-
qdom [43].

Wavelet-based distance
The maximum overlap discrete wavelet transform (MODWT)

was used by [6] to construct crisp and fuzzy clustering methods
for MTS. The MODWT is a modification of the discrete wavelet
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transform (DWT) ensuring that the MODWTwavelet coefficients at
each scale have the same length as the original time series, thus
overcoming the lack of time invariance of the latter (see Section 2
in [6]).

Let Xt; t 2 Zf g be a univariate stochastic process. Denote by
hjl : l ¼ 0; . . . ; Lj
� �

the MODWTwavelet filter of length Lj associated

with the scale mj ¼ 2j�1. Then, define the MODWT wavelet coeffi-
cients of level j by means the convolution of the time series and

the MODWT filters, i.e., by considering WX;jt ¼
PLj

l¼0hjlXt�l. If it
exists and is finite, the time independent variance at scale mj is
defined as v2

X mj
� � ¼ Var WX;jt

� �
and the equalityP1

j¼1v2
X mj
� � ¼ Var Xtð Þ holds.

Given a UTS XU
T , which is a realization of the stochastic process

Xt; t 2 Zf g, an unbiased estimator of v2
X mj
� �

can be obtained by
means of

bv 2
X mj
� � ¼ 1

Mj

XT�1

t¼Lj

cW 2
X;jt ; ð19Þ

where cW 2
X;jt are MODWT coefficients associated with the time series

XU
T and Mj ¼ T � Lj þ 1 are the number of wavelet coefficients

excluding the boundary coefficients that are affected by the circular
assumption of the wavelet filter. Let Yt; t 2 Zf g, be another univari-
ate stochastic processes with MODWT coefficients WY ;jt . The wave-
let covariance can be defined as vXY mj

� � ¼ Cov WX;jt;WY;jt
� �

, giving a
scale-based decomposition of the covariance between Xt and Yt , i.e.,P1

j¼1vXY mj
� � ¼ Cov Xt ;Ytð Þ.

Similarly, the wavelet correlation at scale mj is defined as

wXY mj
� � ¼ vXY mjð Þ

v2
X mjð Þv2

Y mjð Þ. For two univariate series XU
T and YU

T , respec-

tively, the estimator of wXY mj
� �

is obtained by replacing
vXY mj
� �

;v2
X mj
� �

and v2
Y mj
� �

by their estimators. Thus, by considering
unbiased estimators bv XU

T Y
U
T
mj
� �

; bv 2
XU
T
mj
� �

and bv 2
YU
T
mj
� �

, we obtain

bwXU
T Y

U
T
mj
� � ¼ bv

XU
T
YU
T

mjð Þbv 2
XU
T

mjð Þbv 2
YU
T

mjð Þ. A measure of discrepancy between the

multivariate series XT and YT can be constructed by comparing
estimates of their wavelet variances and wavelet correlations for
the different components of the multivariate series, i.e., by consid-
ering the metric

dMODWT XT ;YTð Þ

¼
XJ

i¼1

Xd
j¼1

bv 2
XT;j

mið Þ � bv 2
YT;j

mið Þ
� �2

þ
XJ

i¼1

Xd
j1 ;j2¼1:
j1>j2

bwXT;j1
XT;j2

mið Þ � bwYT;j1
YT;j2

mið Þ
� �2264

375
1=2

;
ð20Þ

where J is the maximum allowable number of scales. Note that the
summation in the second term of (20) imposes that j1 > j2 due to
the symmetric character of the matrix of the wavelet correlation.

The computation of estimated wavelet variances and correla-
tions is carried out in mlmts by means of the package waveslim
[44]. Several wavelet filters are available to the user in order to cal-
culate the corresponding estimates.

Quantile-based distances
A distance measure based on comparing quantile autocovari-

ance functions is introduced in [45] to perform clustering of UTS.
The package mlmts implements an extension of this metric which
is able to deal with MTS objects.

Let Xt ; t 2 Zf g ¼ Xt;1; . . . ;Xt;d

� �
; t 2 Z

� �
be a d-variate real-

valued strictly stationary stochastic process. Denote by Fj the mar-
ginal distribution function of Xt;j; j ¼ 1; . . . ; d, and by

qj sð Þ ¼ F�1
j sð Þ; s 2 0;1½ �, the corresponding quantile function. Fixed

l 2 Z and an arbitrary couple of quantile levels s; s0ð Þ 2 0;1½ �2, con-
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sider the cross-covariance of the indicator functions

I Xt;j1 6 qj1
sð Þ

n o
and I Xtþl;j2 6 qj2

s0ð Þ
n o

given by

cj1 ;j2 l; s; s0ð Þ ¼ Cov I Xt;j1 6 qj1
sð Þ

n o
; I Xtþl;j2 6 qj2

s0ð Þ
n o� �

; ð21Þ

for 1 6 j1; j2 6 d. Quantity (21) is called the quantile cross-
covariance. It is always well-defined (even for processes with infi-
nite moments) and examines the sequential dependence structure
of the series that the standard cross-covariance is not able to cap-
ture. Furthermore, quantile cross-covariance takes advantage from
the local distributional properties inherent to the quantile methods
and it can be easily estimated by replacing the theoretical quantiles
by the empirical quantiles, thus obtaining the estimate bcj1 ;j2 l; s; s0ð Þ.
A simple dissimilarity criterion between a pair of MTS consists of
comparing their estimated quantile cross-covariances up to lag L
evaluated on a common range of selected quantiles and for every
couple of dimensions, i.e.,

dQCFðXT ;YTÞ ¼
XL
l¼1

Xr
i¼1

Xr
i0¼1

Xd
j1¼1

Xd
j2¼1

bcXT
j1 ;j2

l; si; si0ð Þ � bcYT
j1 ;j2

l; si; si0ð Þ
� �2

þ
"
Xr
i¼1

Xr
i0¼1

Xd
j1 ;j2¼1:
j1>j2

bcXT
j1 ;j2

0; si; si0ð Þ � bcYT
j1 ;j2

0; si; si0ð Þ
� �2#1=2

;

ð22Þ
where the superscripts XT and YT indicate that the estimatorsbcj1 ;j2 l; si; si0ð Þ are computed according to the realizations XT

and YT , respectively, and T ¼ s1; . . . ; srf g is a set of r probability
levels.

The distance dQCF is a quantile-based metric in the time domain.
Now we introduce its counterpart in the frequency domain. Under
suitable summability conditions (mixing conditions), the Fourier
transform of cj1 ;j2 l; s; s0ð Þ is well-defined and the quantile cross-
spectral density is given by

fj1 ;j2 x; s; s0ð Þ ¼ 1=2pð Þ
X1
l¼�1

cj1 ;j2 l; s; s0ð Þe�ilx; ð23Þ

where x 2 R. The quantile cross-spectral density can be estimated
consistently by means of the so-called smoothed CCR-periodogram

proposed by [46], denoted by, bGj1 ;j2 x; s; s0ð Þ. Let
X ¼ xk; k ¼ 1; . . . ;Kf g be the set of K Fourier frequencies. A distance
measure between series XT and YT can be established by comparing
their representations in terms of smoothed CCR-periodograms
evaluated in the sets X;T and every couple of dimensions [7],
obtaining

dQCD XT ;YTð Þ ¼Xd
j1¼1

Xd
j2¼1

Xr
i¼1

Xr
i0¼1

XK
k¼1

R bGXT
j1 ;j2

xk; si; si0ð Þ
� �

�R bGYT
j1 ;j2

xk; si; si0ð Þ
� �� �2

þ
"
Xd
j1¼1

Xd
j2¼1

Xr
i¼1

Xr
i0¼1

XK
k¼1

I bGXT
j1 ;j2

xk; si; si0ð Þ
� �

� I bGYT
j1 ;j2

xk; si; si0ð Þ
� �� �2#1=2

;

ð24Þ
where the superscripts XT and YT indicate that the estimatorsbGj1 ;j2 xk; si; si0ð Þ are computed according to the realizations XT and
YT , respectively, R denotes the real part and I denotes the imagi-
nary part of a complex number. The smoothed CCR-periodograms
appearing in the expression of dQCD are computed inmlmts by using
the package quantspec [47].

Both dissimilarities dQAF and dQCD have been successfully
employed in the context of unsupervised learning. Specifically,
they proved very effective in grouping time series generated from
a wide variety of underlying stochastic processes.
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Dissimilarity measures based on several statistical quantities
Some approaches for MTS data mining rely on describing each

series by means of several statistical quantities of different nature.
The computed feature vectors are used to perform a concrete
machine learning task, as clustering, classification or outlier detec-
tion, among others. Three approaches based on the idea of versatile
feature extraction are available in mlmts. Particularly, the tech-
niques described in [5,25,16] are implemented. The specific
extracted quantities are not described in this manuscript for the
sake of simplicity so that the reader is referred to the correspond-
ing references for more details.

Let XT and YT be two multivariate series and bhXT
k andbhYT

k ; k 2 WWW;HWL; Zf g be the vectors of extracted quantities
associated with MTS XT and YT according to the procedures
described in [5,25,16], respectively. According to prior considera-
tions, three dissimilarity measures between MTS defined in the
space of feature vectors are given by

dWWW XT ;YTð Þ ¼ bhXT
WWW � bhYT

WWW

��� ���; dHWL XT ;YTð Þ ¼ bhXT
HWL � bhYT

HWL

��� ���;
dZAGORECKI XT ;YTð Þ ¼ bhXT

ZAGORECKI � bhYT
ZAGORECKI

��� ���:
ð25Þ
2.3. Model-based distances

Model-based metrics assume that the time series are generated
from specific underlying models. The fewworks available in the lit-
erature suppose that the MTS follow a Vector Autoregressive Mov-
ing Average (VARMA) model. In such case, the idea is fitting a
VARMA model to each series and then assessing discrepancy
between the fitted models. The structure is automatically deter-
mined by using, for instance, the Akaike’s information criterion
(AIC) or the Schwarz’s Bayesian information criterion (BIC). The
parameter estimates are computed by means of generalized least
squares estimators. Two important distance measures employing
the assumption of underlying VARMA models are described in this
section.

A distance based on estimated VAR coefficients
In the univariate setting, [48] introduced a dissimilarity mea-

sure for the class of invertible ARIMA processes, namely the Eucli-
dean distance between the estimated coefficients of the truncated
AR(1) structures approximating the underlying ARIMA models.
The package mlmts contains a generalization of Piccolo’s distance
to the multivariate setting. First, a specific criterion such as AIC or
BIC is employed to fit VAR models of orders k1 and k2 to the mul-
tivariate series XT and YT , respectively. Then, the Euclidean dis-
tance between the corresponding vectorized versions of
parameter estimates is computed, where proper zero-padding is
used when k1 – k2.

Let bCXT ¼ bP1
XT
; . . . ; bPk1

XT
; bR�

XT

n o
and bCYT ¼ bP1

YT
; . . . ; bPk2

YT
; bR�

YT

n o
be the sets of estimated matrices of coefficients for series XT and

YT , respectively. Specifically, bPj
XT

( bPj
YT
) denotes the estimated

matrix of coefficients associated with lag j for XT (YT), and bR�
XT

(bR�
YT
) denotes the estimated covariance matrix of the error process

for XT (YT), j ¼ 1; . . . ; k1 (j ¼ 1; . . . ; k2). Note that both XT and YT

were assumed to be zero-mean. Without loss of generality, sup-

pose that k1 P k2 and define the padded counterpart of bCYT as

bCp
YT

¼
bP1

YT
; . . . ; bPk2

YT
;0k2þ1

d�d ; . . . ;0k2þk1
d�d ; bR�

YT

n o
; k1 > k2;bCYT ; k1 ¼ k2;

8>><>>: ð26Þ
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where 0j
d�d 2 Rd�d is a matrix with all the entries equal to zero,

j ¼ k2; . . . ; k2 þ k1. The generalized Piccolo’s distance takes the form

dVAR XT ;YTð Þ ¼ jj vec bP1
XT

� �
; . . . ;vec bPk1

XT

� �
; vec bR�

XT

� �� �
�

vec bP1
YT

� �
; . . . ; vec bPk2

YT

� �
; . . . ;vec bPk2þk1

YT

� �
;vec bR�

YT

� �� �
jj;

ð27Þ

where the operator vec �ð Þ creates a vector by concatenating the col-
umns of the matrix received as input. Note that, unlike the original
Piccolo’s distance [48], the generalized Piccolo’s distance takes into
account the estimates of the variability of the error process.

The metric dVAR has been extensively analysed in a clustering
framework by [7]. Specifically, its behaviour was studied in a broad
simulation study including several types of processes. As expected,
dVAR achieved great results when dealing with linear processes.
However, when the underlying models deviated from the linearity
assumption, the distance exhibited very poor performance, failing
to detect the underlying groups. In sum, the dissimilarity dVAR is
restricted to a limited number of scenarios, since a great percent-
age of real MTS datasets are known to display nonlinear patterns.

A distance based on a hypothesis test
In an early work, [8] introduced a distance metric based on a

test of hypothesis to determine whether or not two stationary
MTS have been generated from different stochastic processes. In
fact, the dissimilarity measure is based on the p-value of the corre-
sponding test. First, truncated VAR(1) models of order k are fitted
to each series. Afterwards, a test statistic assessing differences
between the VAR(k) estimates of both series is computed, and
the associated p-value is obtained from the corresponding asymp-
totic distribution of the test statistic under the null of equal gener-
ating processes. A nice property of the proposed hypothesis test is
that it can be applied to time series that are not necessarily inde-
pendent. Below we provide a brief description of the procedure.

Assume that XT and YT are stationary MTS which have been
generated from VAR(1) processes. Using a definite criterion such
as AIC or BIC, truncated VAR(1) of order k1 and k2 are fitted to
XT and YT , respectively. Suppose without loss of generality that
k1 ¼ k2 ¼ k (otherwise we proceed as indicated when defining
the distance dVAR). Define the parameter matrices of the generating
processes Xt ; t 2 Zf g and Y t ; t 2 Zf g, respectively, as

PXt ¼ P1
Xt
; . . . ;Pk

Xt

h i
and PY t ¼ P1

Y t
; . . . ;Pk

Y t

h i
, with PXt ;PY t 2

Rd�dk. The hypotheses to be tested are:
H0: There is no difference between the generating process of

both multivariate series, i.e., vec PXtð Þ ¼ vec PY tð Þ.
H1: There is a difference between the generating process of both

multivariate series, i.e., vec PXtð Þ– vec PY tð Þ.
The d T � kð Þ equations fitted to XT and YT can be expressed col-

lectively as the following regression model:

Z>
v ¼ BvP>

v þ A>
v ; ð28Þ

where Pv ¼ vec PXtð Þ>
vec PY tð Þ>
� >

is the vector of parameters, Zv is the

response vector, Bv is the matrix of predictors, and Av is the error
vector. Both Zv and Bv are totally constructed from the series XT

and YT (see Section 2 in [8] for more details). Note that the null
hypothesis can be expressed as H0: RP>

v ¼ 0d2k�1, with

R ¼ id2k�d2k;�id2k�d2k

� �
, where id2k�d2k 2 Rd2k�d2k is the identity matrix.

Let RAv ¼ Cov Avð Þ and bRAv be the ordinary least squares estimator
of RAv according to the regression model (28). In this way, the fea-
sible least squares estimator of Pv takes the form

bPv ¼ B>
v
bR�1

Av Bv
h i�1

B>
v
bR�1

Av Zv : ð29Þ
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[8] introduced the following test statistic along with its asymp-
totic distribution under H0:

M ¼ R bPv

� �>
R B>

v
bR�1

Av Bv
� ��1

R>
� �1

R bPv

� �
�A v2

d2k
: ð30Þ

Note that H0 is rejected for large values of the test statistic.
The dissimilarity between XT and YT can be assessed by using

the p-value associated with the test statistic (30), i.e., by
considering

dVAR;p XT ;YTð Þ ¼ 1� P v2
d2k

> M
� �

: ð31Þ

It is worth remarking that the distance dVAR;p satisfies the prop-
erties of nonnegativity and symmetry. Thus, it can be used as a dis-
similarity measure between MTS. In fact, under the alternative
hypothesis, dVAR;p properly informs about the degree of discrepancy
between two series, in the sense that we expect that
dVAR;p XT ;ZTð Þ > dVAR;p XT ;YTð Þ if the generating process of XT is more
similar to that of YT than to that of ZT . However, when the null
hypothesis is true, the use of dVAR;p as a dissimilarity measure pre-
sents some disadvantages. Indeed, if XT and YT have been generated
from the same stochastic process, then dVAR;p XT ;YTð Þ � U 0;1½ �.
Therefore, the distance can easily take large values even though
we are in a situation in which low values are expected. This poses
a substantial difference between the proposed dissimilarity and
other distance metrics described throughout this paper.

It is interesting to note that, if a hierarchical clustering algo-
rithm is executed by considering the dVAR;p-based pairwise dis-
tance matrix, then a clustering homogeneity criterion is
implicitly provided by setting in advance a threshold significance
level a (e.g., 0.05 or 0.01). This way, only those pairs of series
with associated p-values greater than a (i.e., dVAR;p < 1� a) will
be located in the same group. This means that only those series
whose underlying patterns are not significantly different at level
a will be grouped together. In mlmts, a hierarchical clustering
algorithm taking as input a matrix of p-values is available via
the package TSclust.
2.4. Dissimilarities based on dimensionality reduction

This section presents some procedures combining a dimension-
ality reduction technique with the application of a dissimilarity
measure in the transformed space. Like the feature-based
approaches, these methods aim at circumventing the high compu-
tational complexity associated with MTS objects, but, unlike the
former, they do so by reducing the dimensionality of the series
through SVD. Usually, the success of these procedures depends
on keeping enough amount of information so that the underlying
patterns in the collection of MTS are preserved whereas the noise
is removed. Frequently, the user sets in advance a rate of explained
variability that the transformed dataset must retain. Although this
kind of algorithms do not explicitly consider the serial dependence
structure of the time series, they are generally capable of preserv-
ing the temporal information to some extent. Some of the most rel-
evant metrics including a pre-processing step of dimensionality
reduction are provided below.

A distance measure based on the Extended Frobenius norm
[9] proposed the so-called Extended Frobenius norm (Eros) as

a similarity measure for MTS. Basically, Eros computes similarity
between two series by comparing the eigenvectors of their
covariance matrices weighted by the eigenvalues, i.e., evaluating
a weighted distance between their principal components. To be
more precise, the ith weight represents an aggregated value
(e.g., min, max, mean. . .) of the variances of the ith principal
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components of all MTS items in the collection. Hence, the
weights change when new data are inserted into or removed
from the database.

Let XT and YT be two d-dimensional time series of length T. Let
VXT and VYT be the eigenvector matrices obtained by applying SVD
to the covariances matrices of XT and YT ;RXT and RYT , respectively.
In this way, VXT ¼ x>1 ; . . . ; x

>
d

� �
and VYT ¼ y>

1 ; . . . ; y
>
d

� �
, where xi and

yi; i ¼ 1; . . . ; d, are orthonormal vectors of length d. The set
x1; . . . ; xdf g is associated with the collection of eigenvalues

kXT
1 ; . . . ; kXT

d

n o
, with kXT

1 P kXT
2 P . . . P kXT

d . According to the value

of kXT
i , the information contribution of the ith eigenvector, also

called ith principal component, can be known, in the sense that a
greater value of ki indicates a greater information contribution.
Analogous remarks can be made for series YT . The Eros similarity
between XT and YT is defined as

Eros XT ;YTð Þ ¼
Xd
i¼1

wij < xi; yi > j ¼
Xd
i¼1

wij cos hij; ð32Þ

where < xi; yi > is the inner product of xi and yi;w ¼ w1; . . . ;wdð Þ is
a vector of weights which is based on the eigenvalues of the MTS

dataset and properly normalised such that
Pd

i¼1wi ¼ 1, and hi
denotes the angle between xi and yi. The range of Eros is between
0 and 1, with values close to 1 indicating strong similarity between
both MTS.

To normalise the weights, either the raw eigenvalues or the nor-
malized eigenvalues can be used. Specifically, assume that we have

a collection of n d-dimensional MTS of length T; X 1ð Þ
T ; . . . ;X nð Þ

T

n o
. Let

k jð Þ ¼ k1j ; . . . ; k
d
j

� �
be the vector containing the eigenvalues associ-

ated with MTS j. The weight vector w can be computed from the
raw eigenvalues as

wi ¼
1
n

Xn
k¼1

k ið Þ
k

1
n

Xd
j¼1

Xn
k¼1

k jð Þ
k

; ð33Þ

i ¼ 1; . . . ;d. The vector of weights w can be also computed from the
normalized eigenvalues only by replacing the raw eigenvalues in
(34) by the normalized eigenvalues, i.e., by considering

k jð Þ ¼ k jð Þ=
Pd

i¼1k
i
j.

Based on previous considerations, a dissimilarity measure
between XT and YT is defined as

dEros XT ;YTð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2Eros XT ;YTð Þ

p
; ð34Þ

where the vector of weights w is computed according to one of the
previously indicated ways. The measure dEros preserves the similar-

ity relation of Eros, that is, if Eros X 1ð Þ
T ;X 2ð Þ

T

� �
> Eros X 1ð Þ

T ;X 3ð Þ
T

� �
, then

dEros X 1ð Þ
T ;X 2ð Þ

T

� �
< dEros X 1ð Þ

T ;X 3ð Þ
T

� �
. However, dEros does not satisfy the

triangle inequality, although it has been successfully applied for
similarity search on MTS datasets, outperforming traditional met-
rics as the Euclidean distance or DTW.

A distance measure based on a PCA similarity factor
[10] introduced a similarity factor based on Principal Compo-

nent Analysis (PCA) and the angles between the principal com-
ponent subspaces. The similarity factor is calculated by using
the largest principal components (PCs) of each multivariate ser-
ies, which are weighted according to their explained variance.

Let hij be the angle between the ith PC of XT and the jth PC of YT

and assume that the first k principal components were retained
such that at least 95% of the variance in each MTS is explained.
The PCA similarity factor is expressed as
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SPCA XT ;YTð Þ ¼

Xk
i¼1

Xk
j¼1

kiXT
kjYT

� �
cos2 hij

Xk
i¼1

kiXT
kiYT

; ð35Þ

where kiXT
and kiYT

are the ith eigenvalues of MTS XT and YT ,
respectively.

A dissimilarity measure inheriting the properties of SPCA can be
defined as

dPCA XT ;YTð Þ ¼ 1� SPCA XT ;YTð Þ: ð36Þ
The computation of dPCA is implemented inmlmtswith the help

of the package evolqg [49].

A dissimilarity based on the two-dimensional singular value
decomposition

A novel algorithm for MTS classification using two-dimensional
SVD (2dSVD) was constructed by [50]. The approach relies on two
steps: (i) row-row and column-column covariance matrices of MTS
elements are computed for feature extraction and (ii) one-nearest-
neighbour classifier is used to carry out the classification task
through a given dissimilarity measure.

Let X 1ð Þ
T ; . . . ;X nð Þ

T

n o
be a dataset of MTS, where each series

X ið Þ
T 2 RT�d; i ¼ 1; . . . ; n. Define the averaged row-row covariance

matrix R and column-column covariance matrix C as follows:

R ¼ 1
n

Xn
i¼1

X ið Þ
T � XT

� �
X ið Þ

T � XT

� �>
;

C ¼ 1
n

Xn
i¼1

X ið Þ
T � XT

� �>
X ið Þ

T � XT

� �
;

ð37Þ

where XT ¼ 1
n

Pn
i¼1X

ið Þ
T . Let Ur be a matrix containing the r principal

eigenvectors of R in terms of information contribution as columns,
and V s be a matrix containing the s principal eigenvectors of C as
columns, i.e., Ur ¼ u1; . . . ;ur½ � 2 RT�r and V s ¼ v1; . . . ;vs½ � 2 Rd�s.
The feature matrix associated with MTS i is expressed as

M ið Þ ¼ U>
r X

ið Þ
T V s; ð38Þ

i ¼ 1; . . . ;n, with M ið Þ 2 Rr�s.

Denoting by M ið Þ
�j the jth column of matrix M ið Þ, the distance

between two series in the collection, X jð Þ
T and X kð Þ

T , is defined as

d2dSVD X jð Þ
T ;X kð Þ

T

� �
¼
Xs
b¼1

M jð Þ
�b �M kð Þ

�b

��� ���: ð39Þ

It is worth highlighting that [50] show how the distance d2dSVD

outperforms a dissimilarity constructed from one-dimensional
SVD (1d-SVD) in the context of supervised classification.

A metric based on locality preserving projections
[20] introduced a new method for MTS classification based on

locality preserving projections (LPP), which is a linear projection
map that optimally preserves the neighbourhood structure of the
dataset. By performing LPP, the MTS samples are projected into a
lower dimensional space in which the series related to the same
class are close to each other. The approach is based on three steps:
(i) each series is replaced by a feature vector, (ii) the feature vec-
tors are projected into a lower dimensional space via LPP and
(iii) a distance measure is computed in the transformed space to
carry out the classification task.

Let X 1ð Þ
T ; . . . ;X nð Þ

T

n o
be a dataset of MTS, where each series

X ið Þ
T 2 RT�d; i ¼ 1; j ¼ 1; . . . ;n and let R ¼ RX 1ð Þ

T
; . . . ;RX nð Þ

T

n o
be the
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corresponding set of covariance matrices. Transforming the set R
through SVD, each MTS can be associated with a matrix of d

orthonormal singular vectors, V ið Þ ¼ v>
i;1; . . . ;v>

i;d

h i
, and a vector of

normalized singular values, ~k ið Þ ¼ k ið Þ

jjk ið Þ jj ¼ ~k
ið Þ
1 ; . . . ; ~k

ið Þ
d

� �
, with

i ¼ 1; . . . ;n. Based on previous remarks, each series can by repre-
sented by means of a vector in one of the following ways:

1. Replacing each X ið Þ
T in the original collection by the vector

u ið Þ ¼ v i;1; ~k
ið Þ
1 ; . . . ; ~k

ið Þ
d

� �
[18].

2. Replacing each X ið Þ
T in the original collection by the vector

u ið Þ ¼ wi;1v i;1;wi;2v i;2
� �

, where wi;1 ¼ ~k1
iPd

j¼1
~k
j
i

and wi;2 ¼ ~k2
iPd

j¼1
~k
j
i

[19]. This way, similarity relies on the closeness between the
two more informative directions, properly weighted by their
normalised variances.

Once the feature extraction step is performed, the original col-
lection of series is replaced by the set of vectors u ið Þ; . . . ;u nð Þ� �

,
which can be arranged as columns to form the matrix
u ¼ u ið Þ>; . . . ;u nð Þ>� �

.
The next step involves the execution of LPP, whose objective

funtion is given by

min
a

Xn
i¼1

Xn
j¼1

u ið Þa> �u jð Þa>� �
Sij; ð40Þ

where a is the transformation vector and S ¼ Sij
� �

is a matrix assess-
ing the local structure of the set of feature vectors. A possible way of

defining S is as follows: Sij ¼ exp
u ið Þ�u jð Þk k

b if u ið Þ is among the k near-
est neighbours of u jð Þ or u jð Þ is among the k nearest neighbours of
u ið Þ, where b is a suitable constant. Otherwise, Sij ¼ 0. The transfor-
mation vector a that minimizes the objective function (40) is deter-
mined by the minimum eigenvalue solution to the generalized
eigenvalue problem

uLu>a> ¼ kuDu>a>; ð41Þ
where D ¼ Dij

� �
is a diagonal matrix such that Dii ¼

Pn
j¼1Sji, and

L ¼ D� S is the Laplacian matrix.
Let vectors a1; . . . ;ad be the solution of (41) and define

ALPP ¼ a>
1 ; . . . ;a

>
d

� �
. A distance measure between two series in the

original collection, X jð Þ
T and X kð Þ

T , can be defined as

dLPP X jð Þ
T ;X kð Þ

T

� �
¼ u jð ÞALPP �u kð ÞALPP

�� ��: ð42Þ

[20] show that the distance measure dLPP performs comparably
to d2dSVD in terms of classification error rate and CPU runtime. The
advantage of the former distance is that it can be used with MTS
samples of different lengths, whereas d2dSVD assumes that all MTS
items have the same length. The main challenge related to the dis-
tance dLPP lies in the selection of the dimensionality of LPP subspace
and the number of neighbours for the computation of matrix S.

A distance constructed via a piecewise representation based on PCA
[51] proposed to reduce the dimensionality of a given MTS by con-
sidering an extension of standard PCA which takes into account the
local information contained in the series. The method, called piece-
wise representation based on PCA (PPCA), segments a MTS into
several sequences and employs PCA to obtain the principal compo-
nents with respect to an average covariance matrix considering
independently each one of the sequences. Package mlmts intro-
duces a dissimilarity measure based on PPCA. Starting from an
MTS XT 2 RT�d, assumed to be centered (its columns add up to
zero), the technique PPCA is based on the following steps:
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1. Split the series XT 2 RT�d into w segments of approximately the
same length along the time direction, XT;1; . . . ;XT;w. Note that
each XT;i; i ¼ 1; . . . ;w is a MTS with d variables and approximate
length T=w.

2. For each segment XT;i, compute the corresponding covariance
matrix Ri; i ¼ 1; . . . ;w. Construct the average covariance matrix
Ra ¼ 1

w

Pw
i¼1Ri.

3. Use SVD to decompose matrix Ra as VaKaV
>
a , where Ka is a diag-

onal matrix containing the eigenvalues of Ra and Va is a
orthonormal matrix containing the eigenvectors of Ra as col-
umns. Let Va rð Þ 2 Rd�r be a matrix containing the r principal
eigenvectors of Ra in terms of information contribution as
columns.

4. Compute the reduced series MXT ¼ XTVa rð Þ 2 RT�r .

Note that the previous method encompasses a dimensionality
reduction procedure employing the standard PCA when w ¼ 1.
Advantages of the local approach with respect to the global one
include a more detailed representation of the series, a better ability
to handle large MTS (where relationships between variables usu-
ally become complex over time) and a greater effectiveness when
performing dimensionality reduction in real MTS datasets.

For two series XT and YT , a distance measure based on PPCA is
defined as

dPPCA XT ;YTð Þ ¼ jjvec RXT
a

� �� vec RYT
a

� �jj; ð43Þ

where the superscripts XT and YT indicate the series used to con-
struct the average covariance matrix. It is assumed that RXt

a and
RY t

a are computed by considering analogous segments in both series
(i.e., XT;i has the same length than YT;i for all i ¼ 1; . . . ;w). By defini-
tion, dPPCA assesses discrepancy between representations of the local
structures of XT and YT . Therefore, this distance could be particu-
larly useful with datasets of long time series exhibiting complicated
relations over time.

A spatial dissimilarity relying on Variable-Based Principal Compo-
nent Analysis

[52] devised a novel dissimilarity measure between multivari-
ate series which preserves the 2-dimensional structure of MTS
samples, thus avoiding their vectorization. Its computation con-
sists of two stages. First, a new dimensionality reduction technique
based on variable-based Principal Component Analysis (VPCA) is
performed to reduce the dimensionality of MTS items in the orig-
inal collection. Afterwards, a spatial weighted matrix distance
(SWMD) is considered to assess discrepancy between pairs of
transformed series. The SWMD evaluates proximity between raw
values of two reduced MTS but taking into account the spatial cor-
relations between different coordinates in the 2-D space.

Let X 1ð Þ
T ; . . . ;X nð Þ

T

n o
a dataset of n d-dimensional MTS of length T,

where X ið Þ
T ¼ X ið Þ>

T;1 ; . . . ;X
ið Þ>
T;d

h i
is a T � d matrix whose columns are

the univariate series X ið Þ
T;j; j ¼ 1; . . . ; d. To reduce the dimensionality

of MTS items through VPCA, first we combine the records of every
variable from all the samples into one matrix, i.e., we define

V j ¼

X 1ð Þ
T;j

X 2ð Þ
T;j

. . .

X nð Þ
T;j

266664
377775; j ¼ 1; . . . ;d: ð44Þ

Note that V j 2 Rn�T is a matrix whose kth row contains the jth
UTS within the kth MTS. In this way, matrix V j is associated with
the jth variable in the original collection. Dimensionality reduction
218
is carried out as follows. For each 1 6 j 6 d, the eigenvectors and
eigenvalues of the covariance matrix of V j, denoted by RV j

, are
obtained and the smallest number pj of eigenvalues ensuring a
given cumulative rate of explained variability Q is selected. Then,
we set p� ¼ min

16j6d
pj

� �
and, for each j, construct the matrix

UV j
¼ uj;1; . . . ;uj;p�
� �

formed by the p� first eigenvectors of RV j
. Pro-

jecting each V j by UV j
to a space with lower dimensionality, we

obtain

F j ¼ V jUV j
¼

f j;1
f j;2
. . .

f j;n

26664
37775; j ¼ 1; . . . ; d; ð45Þ

where f j;k is the kth row of F j. Note that F j 2 Rn�p� . The ith sample

MTS, X ið Þ
T , is then reconstructed from the set Fj; j ¼ 1; . . . ; d

� �
to

obtain a dimensionality-reduced MTS Y i proceeding as follows:

Y i ¼ f >1;i; f
>
2;i; . . . ; f

>
d;i

h i
; i ¼ 1; . . . ;n; ð46Þ

with Y i 2 Rp��d. It is worth remarking that the kth column of Y i is
obtained according to the variation distribution of all kth dimen-
sions in the original collection of multivariate series. By replacing

the initial dataset X ið Þ
T

n on

i¼1
by Y j
� �n

j¼1, the length of the original ser-

ies is reduced from T to p�.

The SWMD between two series X jð Þ
T and X kð Þ

T is defined in terms
of their reduced counterparts Y j and Yk in the following way:

dSWMD X jð Þ
T ;X kð Þ

T

� �
¼ vec Y j

� �� vec Ykð Þ� �
S vec Y j

� �� vec Ykð Þ� �>h i1=2
;

ð47Þ
where S ¼ Suwð Þ is a spatial matrix which captures the intrinsic cor-
relations of the coordinates in Rp��d. In fact, Suw represents the spa-
tial dimensionality distance between the uth element of vec Y j

� �
and the wth element of vec Ykð Þ.

Let yi
k be the ith element of vec Ykð Þ; i ¼ 1; . . . ; p�d; k ¼ 1; . . . ;n.

Note that yi
k is associated with a given row and a given column

of Yk, denoted by r ið Þ and c ið Þ, respectively. In this way, the dimen-
sionality distance between yu

j and yw
k is expressed as

dD yu
j ; y

w
k

� �
¼ dD u;wð Þ ¼ r uð Þ � r wð Þð Þ2 þ c uð Þ � c wð Þð Þ2

h i1=2
: ð48Þ

The distance dD 2 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� 1ð Þ2 þ p� � 1ð Þ2

q� 
and takes small

values when yu
j and yw

k are located in close rows/columns. Other-
wise, the distance dD takes large values. The matrix S can be
defined as a monotonically decreasing function of dD as follows:

Suw ¼ 1

2p 1� p��1ð Þ2
exp � d2

D u;wð Þ
2 1� p��1ð Þ2

 !
: ð49Þ

Below we give two remarks concerning the construction of the
matrix S:

� According to (47), Suw can be seen as the weight associated with

the factor yu
j � yu

k

� �
yw
j � yw

k

� �
in the computation of the dis-

tance dSWMD. This weight gets larger as the distance dD u;wð Þ gets
smaller, and decreases as the position difference of uth and wth
elements increases. Therefore, the dissimilarity dSWMD can be
regarded as a weighted Euclidean distance, which directly
includes the spatial dimensionality difference between the cor-
responding elements.
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� The variation range of dD shrinks as p� decreases. Therefore, for
very small values of p�, the range of dD is substantially narrow.

The quantity 1� p��1
� �2 is incorporated in (49) to avoid that Suw

inherits the restricted range of dD. Indeed, this factor provokes
that Suw keeps a sufficiently wide range so that the spatial dis-
tance between the uth and wth elements is correctly identified
in the feature matrix space even for small values of p�.

According to (47) and (49), the distance dSWMD can be also
expressed as

d2
SWMD X jð Þ

T ;X kð Þ
T

� �
¼ 1

2p 1� p��1ð Þ2Xp�d
u;w¼1

exp � d2
D u;wð Þ

2 1� p��1ð Þ2
yu
j � yu

k

� �
yw
j � yw

k

� � !
: ð50Þ

The advantages of dSWMD in the context of soft clustering of MTS
are shown in [52]. Specifically, it is argued that VPCA allows to
extract more information from the MTS collection than other clas-
sical dimensionality reduction techniques. Furthermore, by consid-
ering the spatial weighted matrix S, the inherent structural
information of MTS samples is preserved, which is not possible
with traditional dissimilarities as the Euclidean distance.

A dissimilarity based on maximal cross-correlations
A dimensionality reduction technique employing maximal

cross-correlations was introduced by [53]. The procedure is charac-
terized by two key points: (i) a novel approach to measure cross-
correlation between each pair of components of a MTS, and (ii) a
graph-based clustering algorithm using the quantities obtained
in (i) as input. Besides implementing the method, package mlmts
takes advantage of this procedure to define a new dissimilarity
between MTS. In this way, the use of the corresponding function
is not limited to lowering the dimension of a given series. Given
the MTS XT 2 RT�d, [53] propose to remove the redundant compo-
nents by means of the following steps:

1. For each pair of components j1; j2ð Þ in XT , compute the setbHXT
j1 ;j2

¼ jbqXT
j1 ;j2

�Lð Þj; . . . ; jbqXT
j1 ;j2

�1ð Þj; jbqj1 ;

n
jXT
2 0ð Þj; jbqXT

j1 ;j2
1ð Þj; . . . ; jbqXT

j1 ;j2
Lð Þjg, with L being the maximum

number of lags fixed beforehand by the user. Define

M bHXT
j1 ;j2

� �
¼ max bHXT

j1 ;j2

� �
.

2. Construct a symmetric matrix bHXT whose entries are the quan-

tities M bHXT
j1 ;j2

� �
; j1; j2 ¼ 1; . . . ; d. Note that the diagonal elements

of bHXT are all equal to one. This matrix can be seen as the adja-
cency matrix of a weighted, undirected graph.

3. Given a threshold d 2 0;1ð Þ, construct a newmatrix bHXT
d by keep-

ing theentriesof bHXT abovedandsettingall the remainingentries
to zero.

4. Compute the connected components of the graph defined by

matrix bHXT
d , which can be seen as groups of related variables.

For each component, define the corresponding center as the ele-
ment maximizing the sum of the weights of its edges. Note that
each center corresponds to a specific variable in MTS XT .

5. Construct the reduced MTS, X�
T , by selecting the variables of XT

corresponding to the center elements obtained in Step 4.

Thepreviousprocedurecanbeappliedindependently toeachMTS
in a given dataset, producing a collection of MTS with lower dimen-
sionality but not necessarily having the same number of variables.
Each reduced MTS is expected to contain fewer components than
its original counterpart while retaining themost important patterns
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exhibited by the latter. Hence, by considering the transformed data-
set instead of the original one, the user could dramatically improve
the computation times of several machine learning algorithms.

Note that a distance between MTS usually requires both series
to have the same number of dimensions, so a standard metric can-
not be computed in the collection of reduced series. Based on pre-
vious considerations, given two MTS XT and YT , a dissimilarity
measure based on maximal cross-correlations can be defined as

dMCC XT ;YTð Þ ¼ jjvec bHXT

� �
� vec bHYT

� �
jj: ð51Þ

It is worth remarking that dMCC and the correlation-based dis-
tance dCOR in (13) differ in two ways: (i) unlike dCOR; dMCC does
not measure dissimilarity between estimated autocorrelations,
and (ii) dMCC only assesses discrepancy between the maximum val-
ues of the cross-correlations for each pair j1; j2ð Þ. Therefore, two
MTS could be considered similar with dMCC even if their serial
cross-dependence patterns occur at very different lags.

2.5. Specific machine learning tools

The metrics introduced in Section 2 and included in mlmts can
be used to perform several machine learning techniques on a given

set of n MTS, X 1ð Þ
T ; . . . ;X nð Þ

T

n o
. For instance, a pairwise dissimilarity

matrix constructed from the collection of series can be used to exe-
cute a clustering algorithm. The same distance matrix could be also
used to detect outlier series, i.e., series displaying the largest aver-
age distance to the remaining series in the dataset. In addition, a
classification procedure based on kNN could be carried out by com-
puting the distances between a given element in the test set and
every element in the corresponding training set. In sum, many
powerful function available through R packages can be used with
output produced by mlmts. Nevertheless, some particular tools
for MTS data mining have been implemented in mlmts. These pro-
cedures can not be directly executed from any of the dissimilarities
presented in Section 2, so their availability to the package broadens
the variety of methods made accessible to the user. An overview of
these specific methods is provided in this section.

A classification algorithm based on QCD and MODWT
[17] proposed the so-called Fast Forest of Flexible Features (F4)

algorithm for MTS classification. This classifier consists of two
stages. First, an array of features based on QCD and MODWT are
extracted from each series, and the classical PCA is performed with
respect to the set of features associated with QCD. Second, a tradi-
tional random forest is fed with the extracted features.

Assume we have a collection of n MTS X 1ð Þ
T ; . . . ;X nð Þ

T

n o
such that

the first n1 are labelled, whereas the remaining series are unla-
belled. The classification task consists of learning an algorithm
from the set of labelled series so that the class labels associated
with the set of unlabelled MTS can be predicted with high accu-
racy. Usually, in the context of supervised classification, the collec-

tion X 1ð Þ
T ; . . . ;X n1ð Þ

T

n o
is called the training set, whereas the

collection X n1þ1ð Þ
T ; . . . ;X nð Þ

T

n o
is referred to as the test set. An outline

of the steps executed by the classifier F4 is provided below (see
Section 2 in [17] for further details).

1. A vector of QCD-based features is extracted from each element

in the set X 1ð Þ
T ; . . . ;X nð Þ

T

n o
. Specifically, given the series

X ið Þ
T ; i ¼ 1; . . . ;n in the original set, the vectorized version of

the array W bGj1 ;

hn
j
X ið Þ
T

2 x; s; s0ð Þ� : W 2 R;If g; 1 6 j1; j2 6 d;

x 2 X; s; s0 2 Tg is considered. We denote this vector by



Fig. 1. Flowchart of F4 classifier.
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W ið Þ
QCD. In this way, each series is described by means of real and

imaginary parts of its smoothed CCR-periodograms evaluated in
every pair of components, every pair of quantile levels from a
pre-fixed set, and the set of Fourier frequencies. This feature

extraction procedure results in the set WQCD ¼ W 1ð Þ
QCD; . . . ;W

nð Þ
QCD

n o
.

2. A vector of MODWT-based features is extracted from each ele-

ment in the set X 1ð Þ
T ; . . . ;X nð Þ

T

n o
. Specifically, given the series

X ið Þ
T ; i ¼ 1; . . . ;n in the original collection, the vectorized version

of the set WV [WC is considered, where

WV ¼ bv 2
X ið Þ
T;j

mkð Þ : j ¼ 1; . . . ; d; k ¼ 1; . . . ; J
� �

and

WC ¼ bwX ið Þ
T;j1

X ið Þ
T;j2

mkð Þ : j1; j2 ¼ 1; . . . ; d; j1 > j2; k ¼ 1; . . . ; J
� �

. In

this way, each series is described by means of its associated
wavelet variances and wavelet correlations. This feature extrac-
tion procedure results in the set

WMODWT ¼ W 1ð Þ
MODWT ; . . . ;W

nð Þ
MODWT

n o
.

3. The classical PCA is applied to the dataset associated with the
collectionWQCD. After retaining the p first principal components,

the set of score vectors WQCD;PCA ¼ W 1ð Þ
QCD;PCA; . . . ;W

nð Þ
QCD;PCA

n o
is

obtained. Note that each vector of the form W ið Þ
QCD;PCA is a vector

of length p.

4. Each series in the original collection, X ið Þ
T , is described by means

of the vector W ið Þ
QCD;MODWT ¼ W ið Þ

QCD;PCA;W
ið Þ
MODWT

� �
; i ¼ 1; . . . ;n.

5. A traditional random forest is trained in the dataset associated

with the collection of vectors W 1ð Þ
QCD;MODWT ; . . . ;W

n1ð Þ
QCD;MODWT

n o
.

6. For each vector W ið Þ
QCD;MODWT ; i ¼ n1 þ 1; . . . ;n, the corresponding

predicted class label is computed by using the random forest
constructed in the previous step.

Fig. 1 shows a flowchart of F4 classifier.
Now we provide some remarks concerning classifier F4. First,

several hyperparameters have to be set in advance before executing
the procedure. Someof themost important hyperparameters are the
pre-fixed set of probability levels, T, and the number of selected
principal components, p. The numerical experiments carried out in
[17] showed that a small numbers of probability levels regularly
spaced on 0;1½ � (e.g., T ¼ 0:1;0:5;0:9f g) and a number of principal
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components such that at least 90% of the variability of the dataset
is retained are enough to reach satisfactory results. The default
options of these input parameters provided in the mlmts version
of F4 arebasedonprevious considerations. Second, note that the fea-
ture extraction phase, including the application of the PCA transfor-
mation, involves all the series and not only the training ones. This is
not an issue, since no information about the class labels is necessary
to carry out the corresponding stage. In fact, employing the whole
set ofMTS for feature extraction is necessary, since the test elements
must be defined in the same space as the training elements in order
to compute proper predictions (step 6 before). Lastly, it is worth
highlighting that classifier F4 was thoroughly analysed in [17] by
using synthetic and real data and two important conclusions were
obtained: (i) F4 obtains, on average, better results than other
state-of-the-art algorithms and (ii) the consideration of the PCA
transformation constitutes a key step in the success of F4.

An outlier detection procedure based on QCD
[26] introduced a novel method for detecting outlier samples in

a multivariate time series dataset, so-called Quantile Cross-
Spectral Density Functional for Outlier Detection (QCD-F-OD).
The approach first describes each MTS by means of its correspond-
ing smoothed CCR-periodograms, which are treated as a multivari-
ate functional datum. Then an outlier score is assigned to each MTS
by using functional depths. In this way, the most anomalous series
in the collection are those associated with the lowest depth values.

Starting from the set X 1ð Þ
T ; . . . ;X nð Þ

T

n o
, the outlier detection proce-

dure proposed in [26] relies on the following steps (see Section 2
in [26] for further details):

1. The collection of multivariate series X 1ð Þ
T ; . . . ;X nð Þ

T

n o
is replaced

by the collection of multivariate functional data
X 1ð Þ xð Þ; . . . ;X nð Þ xð Þ� �

, where each X ið Þ xð Þ; i ¼ 1; . . . ;n, is
formed by several univariate functions. Particularly, given the

series X ið Þ
T , the element X ið Þ xð Þ is formed by the set of curves

W bGX ið Þ
T

j1 ;j2
x;ð

��
s; s0Þ� : W 2 R;If g; 1 6 j1; j2 6 d; s; s0 2 T ¼ s1; . . . ; srf gg,
wherex 2 0;p½ �. Note that, in this way, each MTS is represented

by means of a set of 2d2r2 curves which are function of the fre-
quency x.

2. For each elementX ið Þ xð Þ; i ¼ 1; . . . ;n, its multivariate functional
depth with respect to the set X 1ð Þ xð Þ; . . . ;X nð Þ xð Þ� �

, denoted by

DM X ið Þ xð Þ� �
, is computed as a sum of univariate depths. That is,

if X ið Þ xð Þ ¼ X
1ð Þ
i xð Þ; . . . ;X 2d2r2ð Þ

i xð Þ
� �

, where the X jð Þ xð Þ are

univariate functions of x, then DM X ið Þ xð Þ� � ¼ D1
i þ . . .þ D2d2r2

i ,

where Dj
i is the univariate functional depth of curve X

jð Þ
i xð Þ

with respect to the set X
jð Þ

1 xð Þ; . . . ;X jð Þ
n xð Þ

n o
.

3. Given the set of depths DM X 1ð Þ xð Þ� �
; . . . ;DM X nð Þ xð Þ� �� �

, its ele-
ments are sorted in increasing order, obtaining the vector VDM .
For a given desired proportion of outliers to detect, a 2 0;1½ �,
the MTS associated with the first daneelements, denoting d�e
the ceiling function, are determined to be anomalous series.

Fig. 2 shows a flowchart of the outlier detection algorithm.
In what follows we give some comments on the outlier detec-

tion procedure. First, the technique requires the selection of some
hyperparameters, namely the set of probability levels T (Step 1
before), the univariate functional depth D (Step 2 before) and the
desired proportion of outliers a (Step 3 before). Concerning the for-
mer two parameters, the numerical analyses performed in [26]



Fig. 2. Flowchart of the outlier detection procedure.

Á. López-Oriona and José A. Vilar Neurocomputing 537 (2023) 210–235
revealed that T ¼ 0:1; 0:5;0:9f g is enough to attain adequate
results, and that the Fraiman-Muniz depth [54] outperforms alter-
native functional depths in terms of outlier detection accuracy.
With respect to the rate a, it can be set in advance as long as the
user knows an approximate desired number of outliers to detect.
Alternatively, one can analyse the distribution of the computed
depths to determine the optimal proportion of outliers. Second,
the time complexity of the algorithm can be approximated by

O nTd2
� �

, thus behaving linearly with respect to the number of

MTS and the series length and quadratically with respect to the
number of dimensions. Finally, it is worth highlighting that outlier
identification technique was extensively examined in [26] by
means of a broad simulation study and two significant conclusions
were reached: (i) the procedure outperforms alternative anomaly
detection algorithms proposed in the literature and (ii) the treat-
ment of the smoothed CCR-periodograms as functional data is sub-
stantially advantageous for outlier identification.

A clustering algorithm based on Common Principal Component
Analysis

A fast and accurate algorithm for crisp clustering of MTS based
on Common Principal Component Analysis (CPCA) was introduced
by [55]. The procedure, so-called Mc2PCA, is inspired by the tradi-
tional K-means clustering method and constructs a common pro-
jection axes as prototype of each cluster. In this way, the
reconstruction error of each MTS projected on the corresponding
common projection axes is used to reassign the members of the
cluster. A nice property of Mc2PCA is that it considers the relation-
ship between dimensions and the distribution of the entries in the
original MTS. Below we give a description of Mc2PCA algorithm
(for more details, see [55]).

Suppose we have a dataset having nMTS of length T and dimen-

sion d;X ¼ X 1ð Þ
T ; . . . ;X nð Þ

T

n o
, where each X ið Þ

T 2 RT�d. To obtain the

common principal components of dataset X, we consider the col-
lection of covariance matrices R�

1; . . . ;R
�
n

� �
, where each

R�
i ¼ E X� ið Þ

T

>
X� ið Þ

T

h i
, being X� ið Þ

T the normalized matrix of

X ið Þ
T ; i ¼ 1; . . . ;n, in which the mean of the corresponding column

has been subtracted from each entry. Next, all the covariance
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matrices can be averaged to a common covariance matrix R�

according to

R� ¼ 1
n

Xn
i¼1

R�
i : ð52Þ

After decomposing the common covariance matrix R� through
SVD, the first p eigenvectors u1; . . . ;up can be selected to con-
structed the matrix Up ¼ u1; . . . ;up

� �
, with p 6 d. Up is the common

space constructed through CPCA by considering the whole MTS
dataset. In fact, the space Up, usually referred to as common projec-
tion axes, is expected to describe the features of the MTS better
than the original space, since Up has lower dimension than the lat-

ter but retaining most of the data information. Each MTS X ið Þ
T can

then be projected into Up to obtain

Pi ¼ X ið Þ
T Up; i ¼ 1; . . . ;n; ð53Þ

with Pi 2 RT�p. Note that Pi is the representation of X ið Þ
T in the com-

mon space Up.
According to the principle of SVD, the projection axes Up can be

also used to reconstruct a new multivariate time series in the orig-
inal space taking the form

Y i ¼ PiU
>
p ¼ X ið Þ

T UpU
>
p ; i ¼ 1; . . . ; n; ð54Þ

where Y i 2 RT�d is the reconstruction of the time series X ið Þ
T with

respect to the projection axes Up. Note that, as the first p princi-
pal components are retained, some information may be lost in
the process of space transformation so that the reconstruction
series might be different from the original one. In other words,
some amount of reconstruction error is expected to happen
between both series. Formally, the reconstruction error between

X ið Þ
T and Y i is defined as

Ei ¼ vec X ið Þ
T

� �
� vec Y ið Þ

��� ���; i ¼ 1; . . . ;n: ð55Þ

Note that the reconstruction error is caused by two factors,
namely the reduced dimensionality of the projection axes and
the quality of the common space created through CPCA.

The main idea of Mc2PCA method is to consider the common
projection axes associated with a given cluster as a prototype for
that group, i.e., the projection axes play the role of the centroid
in a K-means clustering procedure. In this way, the error between
each series and its reconstructed counterpart with respect to the
different projection axes can be used to assign each MTS to a clus-
ter. The specific steps concerning the Mc2PCA algorithm are
explained below.

1. The original set of MTS, X ¼ X 1ð Þ
T ; . . . ;X nð Þ

T

n o
, is randomly

divided into K groups, obtaining the set of clusters

C0
1; . . . ; C

0
K

n o
, being each C0

k ; k ¼ 1; . . . ;K , approximately formed

by the same number of series. The common covariance matrix
of X is computed as indicated in (52) and the first p eigenvectors
are selected according to a certain criterion.

2. At the iteration gth, the common projection axes of each ele-
ment in the set Cg

1; . . . ;C
g
K

� �
is computed, being Cg

k the kth clus-
ter associated with the gth iteration. Specifically, cluster Cg

k

gives rise to the projection axes Ug
p;k, which is obtained by

applying SVD to the common covariance matrix computed from
the series in the kth cluster. The first p eigenvectors are selected
for constructing each Ug

p;k; k ¼ 1; . . . ;K .

3. For each X ið Þ
T in the original collection, its reconstructed counter-

part with respect to Ug
p;k is computed as
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Yg
i;k ¼ X ið Þ

T Ug
p;kU

g
p;k

>
; i ¼ 1; . . . ; n; k ¼ 1; . . . ;K; ð56Þ

where Yg
i;k is the reconstruction of X ið Þ

T with respect to the projec-

tion axes Ug
p;k in the gth iteration.

4. Each series X ið Þ
T is assigned to the cluster

k0 ið Þ ¼ argmink¼1;...;K vec X ið Þ
T

� �
� vec Yg

i;k

� ���� ���. The set of clusters

is updated accordingly.
5. Steps 2–4 are repeated until no MTS is reassigned or the num-

ber of iterations exceeds a certain value, gm.
6. Assuming that the algorithm stopped at the gsth iteration, the

set of clusters, Cgs
1 ; . . . ;C

gs
K

� �
is returned.

The main hyperparameters of Mc2PCA are the number of clus-
ters, K, and the number p of principal eigenvectors. The former can
be selected by employing an heuristic criterion based on clustering
quality indexes, whereas the latter can be determined by fixing a
reasonable rate of desired explained variability. The time complex-

ity of Mc2PCA is O T nd2 þ gmnKdp
� �

þ gmKd
3

� �
, indicating that the

algorithm could be very slow when tackling datasets of high-
dimensional series. Lastly, it is worth emphasizing that the
Mc2PCA algorithm was exhaustively analysed by [55] with several
real MTS datasets, and the results showed that the proposed tech-
nique is superior to various traditional methods for MTS clustering.

A fuzzy clustering algorithm based on VPCA
[52] proposed a fuzzy clustering model based on VPCA and the

distance dSWMD defined in (47). The procedure, so-called VPCAFCM,
treats each MTS as a reduced matrix and does not employ vector-
ization. In addition, the spatial dimensionality difference between
the entries of the transformed MTS is taken into account. VPCAFCM

performs in a similar way than a traditional fuzzy C-means cluster-
ing model. In fact, the corresponding distance between each series
and each centroid is computed in terms of dSWMD. Assuming we

want to group the set of series X 1ð Þ
T ; . . . ;X nð Þ

T

n o
into K clusters, the

VPCAFCM clustering algorithm is outlined below (for more details,
see Section 3 in [52]):

1. The collection of series X 1ð Þ
T ; . . . ;X nð Þ

T

n o
is transformed into the

collection of reduced fseries Y1; . . . ;Ynf g as indicated in (46).
2. The spatial distance matrix S is computed according to (49). K

initial centroids are produced from Y1; . . . ;Ynf g, obtaining the

set of centroids Z0 ¼ Z0
1; . . . ;Z

0
K

n o
.

3. At the gth iteration, the dissimilarity matrix

Dg ¼ Dg
ki

� �
; k ¼ 1; . . . ; k; i ¼ 1; . . . ;n, where Dg

ki ¼ dSWMD Zg
k;X

ið Þ
T

� �
,

with Zg
k being the kth centroid associated with the gth iteration,

is computed. Note that matrix Dg contains the distances
between each series and each centroid.

4. The membership matrix Ug ¼ ug
ki

� �
; k ¼ 1; . . . ; k; i ¼ 1; . . . ;n, is

computed in the following way:
ug
ki ¼

Dg
ki

�2
m�1XK

k¼1

Dg
ki

�2
m�1

; ð57Þ

where ug
ki P 0 is the membership degree of the ith MTS in cluster

kth associated with the gth iteration and m > 1 is a parameter
which regulates the fuzziness of the partition, usually referred
to as the fuzziness parameter. Note thatPK

k¼1u
g
ki ¼ 1 8i 2 1; . . . ;nf g, i.e., the sum of the membership
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degrees associated with a given series must be equal to one,
which is a standard constraint in fuzzy clustering algorithms.

5. The set of centroids is updated, obtaining Zg ¼ Zg
1; . . . ;Z

g
K

� �
,

where
Zg
k ¼

Xn
i¼1

Y ium
kiXn

i¼1

um
ki

: ð58Þ
6. The value of the objective function is computed as
J ¼
XK
k¼1

Xn
i¼1

um
kiD

g
ki
2
: ð59Þ
7. Steps 3–6 are repeated until J is improved less than a certain
threshold or the number of iterations exceeds a certain value,
gm.

8. Assuming that the algorithm stopped at the gsth iteration, the
resulting membership matrix Ugs and the resulting set of cen-
troids Zgs , are returned.

Concerning the hyperparameters of the algorithm VPCAFCM, the
most important ones are the rate of explained variability employed
to construct the reduced matrices Y1; . . . ;Ynf g, the number of clus-
ters K, and the fuzziness parameter m. Our empirical studies have
shown that a rate of explained variability of 0.90 is usually appro-
priate to get satisfactory results. Regarding, K and m, several
heuristic criteria are available for their selection, e.g., criteria based
on internal clustering quality indexes.

With respect to the computational time of the method, the

approximate time complexity is O dT2nþ dT3
� �

þ O gmKndp
�ð Þ.

The first term is associated with the computation of the trans-
formed series through VPCA (Step 1 before), whereas the second
term involves the calculation of the spatial distance matrix and
the updating optimization task regarding the fuzzy C-means type
procedure (Steps 2–7 before). It is clear that the execution of the
algorithm can take a very high time when dealing with long series.

Finally, it is worth remarking that the VPCAFCM method was
empirically assessed by [52] by using publicly available datasets
and the results indicated that VPCAFCM is superior to other proce-
dures in terms of clustering effectiveness and outperforms tech-
niques based on classical PCA with regards to time consumption.

A general forecasting procedure for MTS
Package mlmts includes a general technique to predict future

values of a given multivariate series. It is worth noting that fore-
casting is not among the main objectives of the toolbox mlmts,
particularly due to the availability of well-known R packages to
address this problem. However, we believe that adding some
specific functions to forecast would be useful for mlmts users.
For instance, these functions could be of great interest to
perform clustering or classification taking point forecasts as
features. The proposed method, called Flexible Forecasting for
MTS (FFMTS), is based on fitting regression models to lag-
embedding matrices of a given autoregressive order. Assuming
we want to forecast a given MTS XT with univariate components

XU;i
T ¼ XU;i

1 ; . . . ;XU;i
T

n o
; i ¼ 1; . . . ; d, the corresponding steps are

described below.

1. Fix a maximum lag L P 1, a prediction horizon h P 1 and a
standard regression model.

2. For each component XU;i
T in series XT ; i ¼ 1; . . . ; d, construct the

corresponding lag-embedding matrix as



Table 1
Summary of the 30 datasets contained in the UEA archive. An asterisk indicates that the corresponding database is too large to be included in package mlmts.

Dataset Train instances Test instances Dimensions Length Classes

ArticularlyWordRecognition 275 300 9 144 25
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4
CharacterTrajectories 1422 1436 3 182 20
Cricket 108 72 6 1197 12
DuckDuckGeese 60 40 1345 270 5
EigenWorms 128 131 6 17984 5
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
ERing 30 30 4 65 6
FaceDetection� 5890 3524 306 375 6
FingerMovements 316 100 28 50 2
HandMovementDirection 160 74 10 400 4
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2
JapaneseVowels 270 370 12 29 9
Libras 180 180 2 45 15
LSST 2459 2466 6 36 14
InsectWingbeat� 30000 20000 200 78 10
MotorImagery 278 100 64 3000 2
NATOPS 180 180 24 51 6
PenDigits 7494 3498 2 8 10
PEMS-SF 267 173 963 144 7
Phoneme 3315 3353 11 217 39
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8
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LEi ¼

XU;1
1 . . . XU;1

L . . . XU;d
1 . . . XU;d

L XU;i
Lþ1

XU;1
2 . . . XU;1

Lþ1 . . . XU;d
2 . . . XU;d

Lþ1 XU;i
Lþ2

. . . . . . . . . . . . . . . . . . . . . . . .

XU;1
T�L . . . XU;1

T�1 . . . XU;d
T�L . . . XU;d

T�1 XU;i
T

0BBBBBB@

1CCCCCCA:
3. For each one of the matrices LEi; i ¼ 1; . . . ; d, fit the regression
model selected in Step 1 by considering the last column as
the response variable and the remaining columns as predictors.
This produces a set of d forecasting models, M ¼ M1; . . . ;Mdf g.

4. Use the set M to obtain the h-step ahead forecasts for XT in a
recursive manner, obtaining the matrix of predictions
H1
1 H2

1 . . . Hd
1

H1
2 H2

2 . . . Hd
2

. . . . . . . . . . . .

H1
h H2

h . . . Hd
h

0BBBB@
1CCCCA; ð60Þ

where Hi
j denotes the j-step ahead forecast for the ith component

of XT according to the model Mi.

The described procedure forecasts each univariate series by
considering past values of all the components up to a given lag L,
which must be determined by the user. Since any regression model
can be fitted to the lag-embedding matrices, the method is quite
flexible and allows to construct several classes of forecasting
approaches. For instance, a VAR-type prediction function can be
obtained by considering the standard linear regression model.
Indeed, this approach is expected to yield reliable forecasts if the
corresponding MTS exhibits a linear behavior. On the contrary,
more complex regression models (random forest, neural net-
works. . .) should be selected to get accurate predictions when
dealing with series clearly deviating from linearity. Note that the
proposed technique is not limited to forecasting, since the predic-
223
tion matrix obtained in Step 4 could be used as input for alterna-
tive machine learning tasks. It is worth highlighting that several
approaches relying on lag-embedding matrices have been success-
fully applied in the field of time series forecasting (see, e.g., [56]).

This way, mlmts also includes a simple but powerful forecast-
ing method, enabling users to construct different classes of fore-
casting functions with several degrees of complexity. The
regression models available for Step 1 of the algorithm are imple-
mented by using the R package caret [57].
3. Datasets in mlmts

The packagemlmts includes several MTS datasets which can be
used to evaluate different machine learning algorithms, or simply
for illustrative purposes. Specifically, mlmts contains 28 of the
30 real MTS databases provided in the well-known UEA multivari-
ate time series classification archive [23,37], originally devised in
the context of supervised classification, one financial database,
and two synthetic datasets. Datasets in the UEA archive cover a
wide range of instances, dimensions, series lengths and number
of classes. Training and testing sets are established in the archive
for each database, thus allowing to perform a rigorous assessment
of new methods for MTS classification. Clustering algorithms can
also be evaluated with the UEA data collections by considering that
the ground truth is determined by the underlying class labels. In
fact, the performance of any method assuming certain classes for
the time series could be analyzed by means of the UEA databases.
Additionally, assessing forecasting procedures using MTS datasets
in the UEA archive is also plausible. In sum, by using the UEA data,
mlmts attempts to provide practitioners in the field of MTS data
mining with a simple tool to test their ideas. It is worth highlight-
ing that, to the best of our knowledge, mlmts is the first package
making available UEA databases to the R community. Table 1 con-
tains a summary of the 30 UEA datasets included in the UEA
archive. An asterisk was used to indicate the largest datasets in
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the archive, FaceDetection and InsectWingbeat. In both cases, the
corresponding files have sizes of over 1 GB, thus making impracti-
cal the introduction of these databases in mlmts1

The synthetic datasets were created so that they contain groups
of series generated from the same underlying stochastic process.
Specifically, the dataset called SyntheticData1 includes 15 series
of length 400 simulated from each one of four different models,
thus encompassing a total of 60 MTS. The generating models con-
cerning each class of process are given below.

(a) A VAR(1) process given by

Xt;1

Xt;2

	 

¼ 0:2 0:2

0:2 0:2

	 

Xt�1;1

Xt�1;2

	 

þ �t;1

�t;2

	 

:

(b) A VMA(1) process given by

Xt;1

Xt;2

	 

¼ 0:2 0:2

0:2 0:2

	 

�t�1;1

�t�1;2

	 

þ �t;1

�t;2

	 

:

(c) A QVAR(1) (quantile vector autoregressive) process given by

Xt;1

Xt;2

	 

¼ 0 �0:5 Ut;1 � 0:5ð Þ

�0:5 Ut;2 � 0:5ð Þ 0

	 

Xt�1;1

Xt�1;2

	 

þ U�1 Ut;1ð Þ

U�1 Ut;2ð Þ

 !
:

(d) A QVAR(1) process given by

Xt;1

Xt;2

	 

¼ 0 1:5 Ut;1 � 0:5ð Þ

1:5 Ut;2 � 0:5ð Þ 0

	 

Xt�1;1

Xt�1;2

	 

þ U�1 Ut;1ð Þ

U�1 Ut;2ð Þ

 !
:

In processes (a) and (b), �t;1; �t;2ð Þ> is an i.i.d. vector error pro-
cess following the bivariate standard normal distribution. In pro-
cesses (c) and (d), ¼ Ut;1;Ut;2ð Þ> is a sequence of independent
random vectors with independent components Ut;k which are uni-

formly distributed on 0;1½ �, and U�1 uð Þ;u 2 0;1ð Þ, denotes the
quantile function of the standard normal distribution.

Note that, in SyntheticData1, each underlying model can be
seen as a different class label in the context of supervised learning.
Moreover, these underlying models can be regarded as the ground
truth in the case of unsupervised learning. Therefore, Syn-
theticData1 is an appropriate collection to illustrate the use of
methods assuming that the different classes/groups are given by
different dependence structures. An interesting feature of this col-
lection is that it combined linear processes with highly nonlinear
models.

In order to create a database containing some anomalous series,
the set SyntheticData1 was expanded by incorporating 5 MTS gen-
erated from the VAR(1) model

Xt;1

Xt;2

	 

¼ �0:4 �0:4

0:4 0:4

	 

Xt�1;1

Xt�1;2

	 

þ �t;1

�t;2

	 

;

giving rise to SyntheticData2. Note that this latter collection is use-
ful to demonstrate the use of mlmts for anomaly detection
purposes.

Finally, the financial dataset included in mlmts is called Finan-
cialData and contains 50 series representing companies of the
well-known S&P500 index. This data collection is analysed in detail
in Section 4.4.

4. Using the mlmts package. An illustration

In this section, we illustrate the use ofmlmts by employing sev-
eral implemented functions with some UEA databases and also a
synthetic dataset included in the own package. Notice that the
1 Datasets FaceDetection and InsectWingbeat can be downloaded from https://
www.timeseriesclassification.com/, where additional information about the UEA
archive is available.
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examples involving real data do not intend to reach meaningful
conclusions about the underlying problems, but rather to show
the scope and usefulness of the package mlmts.

As explained in previous sections, mlmts provides several
functions to calculate dissimilarity measures between multivari-
ate series, as well as some methods implementing particular
machine learning procedures. In order to get familiar with the
commands of package mlmts, Table 2 lists each of the distance
measures introduced in Section 2 together with the correspond-
ing mlmts functions. In the same way, Table 3 associates each
one of the specific data mining methods with the correspond-
ing function in the package. After a brief introduction to the
general framework of mlmts, the rest of the section illustrates
the use of the package separately for the cases of classification,
clustering, outlier detection, dimensionality reduction and
forecasting.

4.1. Some generalities about mlmts

In mlmts, a T-length, d-dimensional MTS XT 2 RT�d is repre-
sented through a matrix object with T rows and d columns. In this
way, each column of a MTS object can be regarded as a vector con-
taining a T-length UTS.

The majority of functions in the package take as input a list of
MTS (i.e., a list of matrices). Functions in Table 2 return by default
a pairwise dissimilarity matrix (dist object) based on the corre-
sponding distance measure. Most of these functions admit the
argument features = TRUE. In that case, the function returns a data-
set in which the ith row corresponds to a feature vector associated
with the ith MTS in the input list. The nature of the feature vectors
depends on the underlying dissimilarity measure. For instance, the
function dis_cor() produces by default a pairwise dissimilarity
matrix according to (13). However, if we employ the argument fea-
tures = TRUE, a dataset whose ith row contains a vector of esti-
mated auto and cross-correlations for the ith MTS (i.e., a vector
including the quantities bqj1 ;j2 lð Þ in (13)), is returned. In this man-
ner, functions in Table 2 are not limited to the computation of dis-
tances. On the other hand, the output of functions in Table 3 does
not follow a common pattern, being related to the specific context.
It is worth remarking that all functions in mlmts require the input
series to be numerical and have the same number of dimensions.
On the contrary, the requirement on the equality of lengths
depends on the particular function.

The UEA databases, the synthetic datasets and the financial data
collection included in mlmts are defined by means of a list named
as indicated in the first column of Table 1. Each list contains two
elements, which are described below.

� The element called data is a list of matrices with the multivari-
ate series of the corresponding collection.

� The element named classes includes a vector of class labels asso-
ciated with the objects in data. The only exception is the finan-
cial dataset. In this case, as no underlying class labels exist,
classes produces the abbreviated names of the companies as
given in the S&P500 index (see Section 4.4).

MTS objects can be easily visualized in mlmts by using the
function mts_plot(), which takes as input a numerical matrix. For
instance, the following code can be used to visualize the first series
in RacketSports and SyntheticData1 datasets, respectively:

>library(mlmts)

>mts_plot(RacketSports$data[[1]])
>mts_plot(SyntheticData1$data[[1]])



Table 2
Dissimilarity measures implemented in mlmts.

Distance measure Function in mlmts

Shape-based
dEUCL dis_eucl()
dF dis_frechet()
dDTW1 dis_dtw1()
dDTW2 dis_dtw2()
d�MD dis_mahalanobis()
dMDDTW dis_dtw_mahalanobis()

Feature-based
dCOR dis_cor()
dGCC dis_gcc()
dJSPEC dis_spectral(method = ‘j_divergence’)
dCSPEC dis_spectral(method = ‘chernoff_divergence’)
dMODWT dis_modwt()
dQCF dis_qcf()
dQCD dis_qcd()
dWWW dis_www()
dHWL dis_hwl()
dZAGORECKI dis_zagorecki()

Model-based
dVAR dis_var_1()
dVAR;p dis_var_2()

Based on dimensionality reduction
dEros dis_eros()
dPCA dis_pca()
d2dSVD dis_2dsvd()
dLPP dis_lpp()
dSWMD dis_swmd()
dPPCA dis_ppca()
dMCC dis_mcc()

Table 3
Specific machine learning procedures implemented in mlmts.

Specific procedure Context Function in mlmts

F4 Classification f4_classifier()
QCD-F-OD Outlier detection outlier_detection()
Mc2PCA Clustering mc2pca_clustering()
VPCAFCM Clustering vpca_clustering()
FFMTS Forecasting mts_forecasting()

Fig. 3. First MTS in the RacketSports (top panel) and SyntheticData1 (bottom panel)
datasets.

Á. López-Oriona and José A. Vilar Neurocomputing 537 (2023) 210–235
The corresponding graphs are depicted in Fig. 3. The function
mts_plot() represents a MTS by showing each dimension (UTS) sep-
arately, with a different color, thus providing an overall picture of
the behavior of the series. According to the top panel of Fig. 3, the
first series in RacketSports is formed by dimensions exhibiting dif-
ferent types of behaviour. On the other hand, no trend patterns are
observed for the MTS in the bottom panel, which is expected since
the series was generated from a stationary VAR process. In sum,
the function mts_plot() provides an useful tool to perform explora-
tory analysis of MTS objects.

4.2. Performing MTS classification with mlmts

The package mlmts is a great tool to perform supervised classi-
fication of MTS. Firstly, we show how the dissimilarities associated
with the functions in Table 2 can be used to construct a kNN clas-
sifier. We start by testing several dissimilarities with the dataset
BasicMotions. For exploratory purposes, we have depicted in
Fig. 4 four MTS of this database, each one of them pertaining to
one of the four different classes. It is clear from Fig. 4 that each
class is characterized by a different geometric pattern. For instance,
series in Classes 2 and 4 take much larger values than series in
225
Classes 1 and 3. This suggests that a shape-based dissimilarity
could be effective in classifying the series of dataset BasicMotions.

Function knn_classifier() in mlmts is specifically designed to
compute kNN classification. Below we illustrate the use of
knn_classifier() by considering the SVD-based dissimilarity dEros.

>predictions <- knn_classifier(dataset
= BasicMotions$data, classes=BasicMotions
$classes, index_test = 41: 80, distance =

‘dis_eros’, k = 1)
The input parameters of knn_classifier() are the MTS dataset
(dataset), the associated vector of classes (classes), the indexes of
the elements defining the test set (index_test), the distance func-
tion to be employed, as a string (distance), and the number of
neighbors (k). Note that, in this example, the last 40 elements in
BasicMotions are selected as test set by following Table 1. The
function returns the predictions (class labels) for the elements in
the test set, which are stored in the vector predictions. To evaluate
the performance of the algorithm, we can compute the classifica-
tion accuracy by comparing the predicted classes with the true
labels. Such computation can be carried out by means of the func-
tion ml_test() of package mltest [58].

>library(mltest)

>ml_test(predictions, BasicMotions$classes
[41:80])$accuracy

[1] 0.7
Thus, the kNN classifier based on the distance dEros achieves an
accuracy of 0.70, showing substantially better performance than a
naive classifier, which has an expected accuracy of 0.25 (both
training and test sets in BasicMotions are balanced). The use of
alternative metrics can be tested in a similar way. Consider for
instance the dissimilarity based on the MODWT. We evaluate this
distance for k ¼ 1 and k ¼ 5 in order to analyze the effect of the
number of neighbors.



Fig. 4. Four MTS in dataset BasicMotions. Each series pertains to one of the four different classes.
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>predictions <- knn_classifier(dataset
= BasicMotions$data, BasicMotions$classes,

index_test = 41: 80, distance = ‘dis_modwt’, k = 1)

>ml_test(predictions, BasicMotions$classes[41:
80])$accuracy

[1] 1

>predictions <- knn_classifier(dataset
= BasicMotions$data, BasicMotions$classes,

index_test = 41: 80, distance = ‘dis_modwt’, k = 5)

>ml_test(predictions, BasicMotions$classes[41:
80])$accuracy

[1] 1
In both cases, the metric dMODWT attains perfect results. Let’s
now examine the behavior of two geometric distances, namely
dEUCL and dDTW1.

>predictions <- knn_classifier(dataset
= BasicMotions$data, BasicMotions$classes,

index_test = 41: 80, distance = ‘dis_eucl’, k = 1)

>ml_test(factor(predictions, levels = c(1, 2, 3,

4)), BasicMotions$classes[41: 80])$accuracy
[1] 0.6

>predictions <- knn_classifier(dataset
= BasicMotions$data, BasicMotions$classes,

index_test = 41: 80, distance = ‘dis_dtw_1’, k = 1)

>ml_test(predictions, BasicMotions$classes[41:
80])$accuracy

[1] 0.95
Therefore, even though the differences in shape are substantial,
the Euclidean distance provides worse performance than the previ-
ous dissimilarities, whereas dDTW1 exhibits a great effectiveness.
Finally, we assess the distances d2dSVD and dLPP , which rely on SVD.
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>predictions <- knn_classifier(dataset
= BasicMotions$data, BasicMotions$classes,

index_test = 41: 80, distance = ‘dis_2dsvd’, k = 1)

>ml_test(factor(predictions, levels = c(1, 2, 3,

4)), BasicMotions$classes[41: 80])$ccuracy
[1] 0.55

>predictions <- knn_classifier(dataset
= BasicMotions$data, BasicMotions$classes,

index_test = 41: 80, distance = ‘dis_lpp’, k = 1)

>ml_test(predictions, BasicMotions$classes[41:
80])$accuracy

[1] 0.65

Both metrics lead to results far worse than the ones reached by
the best-performing dissimilarities, thus indicating that some
amount of information is lost during the dimensionality reduction
process. In sum, the best metrics to classify series in BasicMotions
are dMODWT and dDTW1. Note that the great performance of the latter
was expected from the analysis of Fig. 4.

The nearest neighbors rule is one of the several options avail-
able in mlmts to perform supervised classification. An alternative
approach consists of using the feature dataset provided by most
of the functions in Table 2 to feed a traditional classifier. Next we
illustrate this approach by considering the data collection Syn-
theticData1. The corresponding feature dataset associated with
the distance dQCF is obtained as follows.

>feature_dataset <- dis_qcf(SyntheticData1$data,
features = T)

The object feature_dataset is a matrix whose ith row contains
the vector of quantile-based estimates describing the i th MTS. In
fact, the Euclidean distance between the ith and j th rows of this
matrix is the dissimilarity dQCF between the series i and j. Many
traditional classification algorithms can be applied to the object
feature_dataset by means of the R package caret. As the Syn-
theticData1 does not have a default split into training and test
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set, the evaluation of the algorithms in this database can be carried
out, for instance, by using Leave-One-Out Cross-Validation
(LOOCV). Package caret requires the dataset of features to be an
object of class data.frame whose last column provides the class
labels of the elements, which must be named ‘Class’. Based on pre-
vious comments, the following chunk of code creates the object
df_feature_dataset, which can be used as input to caret functions.

>feature_dataset <- dis_qcf(SyntheticData1$data,
features = T)

>df_feature_dataset <- data.frame(cbind

(feature_dataset,
SyntheticData1$classes))
>d <- dim(df_feature_dataset)[2]
>colnames(df_feature_dataset)[d] <- ‘Class’

>df_feature_dataset[,d] <- factor

(df_feature_dataset[,d])

The function train() can be used to fit several classifiers to the
feature dataset. A grid search in the hyperparameter space of the
corresponding classifier is performed by default. First we consider
a random forest by using method = ‘ranger’ as input parameter. By
means of the argument trControl, we define LOOCV as evaluation
protocol.

>library(caret)

>train_control <- trainControl(method = ‘LOOCV’)

>model <- train(Class ., data = df_feature_dataset,
trControl = train_control, method = ‘ranger’)

The object model contains the fitted model and the evaluation
results, among others. The corresponding accuracy can be accessed
as follows.

>max(model$results$Accuracy)
[1] 1

The QCD-based algorithm achieves maximum accuracy when
classifying the series in SyntheticDataset1, thus perfectly discrim-
inating between the four underlying stochastic processes.

Next we study the performance of the correlation-based fea-
tures based on dCOR.

>feature_dataset <- dis_cor(SyntheticData1$data,
features = T)

>df_feature_dataset <- data.frame(cbind

(feature_dataset, SyntheticData1$classes))
>d <- dim(df_feature_dataset)[2]
>colnames(df_feature_dataset)[d] <- ‘Class’

>df_feature_dataset[,d] <- factor

(df_feature_dataset[,d])
>model <- train(Class ., data = df_feature_dataset,

trControl = train_control, method = ‘ranger’)

>max(model$results$Accuracy)
[1] 0.8166667

The metric dCOR attains moderately worse results than dQCF , with
a maximum accuracy of 0.817 for the best combination of hyperpa-
rameters in the random forest. Let’s try now a different classifier,
for instance, the standard Quadratic Discriminant Analysis (QDA)
(method=‘qda’).
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>model <- train(Class ., data = df_feature_dataset,
trControl = train_control, method = ‘qda’)

>max(model$results$Accuracy)
[1] 0.7166667

The results attained with QDA are poorer, with a maximum
accuracy of 0.717. The worse performance of dCOR with respect to
dQCF in classifying the series of SyntheticData1 is caused by the fact
that the QVAR processes defining the last two classes in this data-
set have all theoretical auto and cross-correlations equal to zero.
Therefore, the series generated from both QVAR models are indis-
tinguishable from the point of view of the correlation-based quan-
tities, resulting in several misclassifications. On the contrary, the
quantile-based estimates are able to detect arbitrary dependence
patterns as the ones arising in both QVAR processes, which endows
the corresponding classifier with a great ability to differentiate
between complex stochastic structures.

Still on the classification task, mlmts includes an additional
specific function implementing the algorithm F4 proposed by
[17], so-called f4_classifier(). To illustrate the use of this command,
we are going to perform supervised classification with the dataset
Libras. We want to fit the classifier with respect to the training set
(first 180 elements in Libras) and to produce predictions for the
elements in the test set (last 180 elements in Libras). The function
f4_classifier() provides a simple way to execute this process in a
single line of code.

>predictions_libras <- f4_classifier
(training_data = Libras$data[1: 180],

new_data = Libras$data[181: 360], classes = Libras

$classes[1: 180])
>ml_test(predictions_libras, Libras$classes[181:

360])$accuracy
[1] 0.85

The object predictions_libras is a vector containing the predicted
class labels for the MTS in the test set. The corresponding classifi-
cation accuracy is 0.85, thus indicating that classifier F4 attains
great results in a quite challenging problem as the one defined
by the Libras dataset, where 15 different classes are present. Note
that the argument new_data in the function f4_classifier() is not
limited to be a test set. In fact, it can be any collection of MTS for
which the user wishes to obtain the predicted labels. The only con-
dition is that the objects in new_datamust have the same structure
(number of rows and columns) than the objects in training_data.

It is worth remarking that f4_classifier() can be executed with-
out providing data requiring predictions. Actually, new_data = -
NULL constitutes the default option for the command. In that
case, the function returns a fitted model, which is an object of class
train of the caret package. Let’s exemplify this scenario by consid-
ering the dataset RacketSports. For illustrative purposes, training
and test sets are used in conjunction to fit the classifier.

>model <- f4_classifier(training_data
= RacketSports$data, classes = RacketSports

$classes)
>max(model$results$Accuracy)
[1] 0.8383994

The accuracy obtained via cross-validation is approximately
0.84.
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4.3. Performing MTS clustering with mlmts

The package mlmts also provides an excellent framework for
practitioners to carry out MTS clustering. In this context, we con-
sider the dataset SyntheticData1. Assuming that the clustering
structure is governed by the similarity between underlying mod-
els, the ground truth is given by the 4 groups involving the 15 ser-
ies from the same generating process. Thus, this partition has to be
compared with the experimental solutions to assess clustering
algorithms.

We start testing the dissimilarity dJSPEC proposed by [4], which
measures discrepancy betweenMTS by taking into account estimates
of the spectral density matrices. To compute a pairwise dissimilarity
matrix based on dJSPEC , we feed the function dis_spectral() with the
corresponding data object, indicating method = ‘j_divergence’.

>distance matrix jspec < � dis spectralðSyntheticData1$data;
method ¼ ‘j divergence’Þ
The object distance_matrix is a dist object which can be taken as
input for several standard clustering algorithms. It contains the
dissimilarity matrix calculated by applying dJSPEC to each pair of
series in SyntheticData1$data. As the correct number of clusters is
known‘, we first consider a partitive clustering technique as the
popular Partitioning AroundMedoids (PAM) algorithm.We employ
the function pam() of package cluster [59].

>library(cluster)

>spectral_clustering_pam <- pam

(distance_matrix_jspec, k = 4)$clustering
>spectral_clustering_pam
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 3 3 3 3 [35] 3 3 3 4 3 3

3 3 4 4 3 4 4 4 4 4 3 4 4 4

4 4 4 4 4 4

The vector spectral_clustering_pam provides the experimental
partition. From this solution we can conclude that the series of
the first two processes (the linear ones) get correctly assigned,
whereas dJSPEC has some trouble in discriminating series from the
last two models (the QVAR ones). As measure of clustering effec-
tiveness, we consider the so-called Adjusted Rand Index (ARI)
[60]. This index can be easily computed by means of the function
external_validation() of package ClusterR [61].

>ground_truth <- rep(1: 4, each = 15)

>external_validation(ground_truth,
spectral_clustering_pam)

[1] 0.8382027
The ARI index is bounded between �1 and 1 and admits a simple
interpretation: the closer it is to 1, the better is the agreement
between the ground truth and the experimental solution. Moreover,
the value of 0 is associated with a clustering partition picked at ran-
dom according to some simple hypotheses. Therefore, it can be con-
cluded that the dJSPEC attains good results in this scenario when used
with the PAM algorithm. Note that the high value of ARI index was
already expected from the output of spectral_clustering_pam.

The popular K-means clustering algorithm can be also executed
by using mlmts utilities. In this case, we need to employ a dataset
of features along with the kmeans() function of package stats [27].
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>feature_dataset_jspec <- dis_spectral
(SyntheticData1$data, method = ‘j_divergence’,

features = T)

>spectral_clustering_kmeans <- kmeans

(feature_dataset_jspec, centers = 4)$cluster
>external_validation(ground_truth,

spectral_clustering_kmeans)
[1] 0.8397744

In this example, the dissimilarity dJSPEC achieves slightly better
results with the K-means algorithm, although the difference does
not seem statistically significant. Any dissimilarity function can
be analyzed in a similar manner. Consider for example the dissim-
ilarity based on fitted VAR coefficients dVAR.

>distance_matrix_var <- dis_var_1(SyntheticData1
$data)

>var_clustering_pam <- pam(distance_matrix_var, k
= 4)$clustering

>external_validation(ground_truth,
var_clustering_pam)

[1] 0.7071614

>feature_dataset_var <- dis_var_1(SyntheticData1
$data, features = T)

>var_clustering_kmeans <- kmeans

(feature_dataset_var, centers = 4)$cluster
>external_validation(ground_truth,

var_clustering_kmeans)
[1] 0.6553356

>var_clustering_pam
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 3 3 4 4

[35] 4 3 4 3 4 4 3 3 3 3 3 4 4

3 3 4 4 3 4 4 4 4 4 4 4 4

>var_clustering_kmeans
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 3 2 2 2

[35] 2 3 2 3 2 2 3 3 3 3 3 2 2

2 3 2 3 3 3 3 2 2 2 2 3 2

The VAR-based metric leads to worse results. Here the PAM
algorithm outperforms the K-means algorithm. The experimental
partitions show that dVAR perfectly identifies the series generated
from both linear models, but suffers from model misspecification
when the generating processes depart from the linearity assump-
tion, thus struggling to differentiate between series simulated from
both QVAR models.

A classical exploratory step in cluster analysis consists of con-
structing the so-called two-dimensional scaling (2DS) based on
the pairwise dissimilarity matrix. In short, 2DS represents the pair-
wise distances in terms of Euclidean distances into a 2-dimensional
space preserving the original values as well as possible (by mini-
mizing a loss function). Package mlmts includes a function return-
ing an attractive simple representation of a 2DS plane. Below we
obtain the 2DS plane associated with the dissimilarity dJSPEC .

>plot_2d_scaling(distance_matrix
= distance_matrix_jspec, cluster_labels
= ground_truth)

$plot
$gof
[1] 0.6278975
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The corresponding graph is shown in the top panel of Fig. 5. The
points are colored according to the underlying ground truth, which
is indicated to function plot_2d_scaling() by means of the argument
cluster_labels. This option is often useful to get insight about
whether a specific dissimilarity measure is appropriate in a partic-
ular problem when the true class labels are known. This way,
mlmts provides the user with a simple exploratory tool to assess
the adequacy of several metrics in a given MTS database. The top
panel of Fig. 5 reveals that the dissimilarity dJSPEC clearly identifies
the series from both VAR models (Clusters 1 and 2), but mixes the
series from both QVAR processes to some extent. The function
plot_2d_scaling() also reports the R2 value (0.63 in this case), which
measures the proportion of variance of the original data accounted
for the 2DS procedure, thus indicating the quality of the embed-
ding. For comparison purposes, the bottom panel of Fig. 5 displays
the 2DS plane corresponding to distance dQCD, which is capable of
totally discern the underlying clustering structure in this problem.

To conclude, we show how the algorithm VPCAFCM can be exe-
cuted through package mlmts. We illustrate this algorithm by per-
forming fuzzy clustering in the dataset AtrialFibrillation. To this
aim, the object AtrialFibrillation$data must be used as input for
the function vpca_clustering(). We consider the existence of 3
underlying clusters (the number of different classes in the database
AtrialFibrillation) and the value 1.5 for the fuzziness parameter
(standard choice in the fuzzy clustering literature).
>fuzzy_clustering <- vpca_clustering(AtrialFibrillation$data, k = 3, m = 1.5)

>fuzzy_clustering$U[, 1: 5]
½;1� ½;2� ½;3� ½;4� ½;5�

½1; � 0:151486421 0:090469821 0:3587131 0:04954507 0:064394802
½2; � 0:008914912 0:002475682 0:2814761 0:86719024 0:004663519
½3; � 0:839598667 0:907054497 0:3598108 0:08326469 0:930941680
The previous output shows the first 5 columns of the resulting
membership matrix, i.e., the fuzzy clustering partition for the first
5 MTS in AtrialFibrillation. MTS 1, 2 and 5 get located in the third
cluster with membership degrees greater than 0.80 (i.e.,
u3i > 0:80; i 2 1;2;5f g). On the contrary, MTS 4 is mainly placed
in the second group, whereas MTS 3 displays a quite fuzzy alloca-
tion, with membership degrees higher than 0.28 in the three clus-
ters. Note that the five analyzed MTS pertain to the same group
according to the assumed ground truth. Function vpca_clustering
() also produces the final set of centroids (Zgs in Step 8 of
VPCAFCM algorithm), which can be seen as prototypes for each
one of the clusters. Below we show the centroid of the first cluster.
>fuzzy_clustering$centroids[[1]]
½;1� ½;2�

½1; � 0:298206663 �0:05559328
½2; � �0:345047068 0:92699629
½3; � �0:718630543 0:38115124
½4; � �0:009589561 0:60010414
½5; � 0:429001360 �0:30280082
½6; � 0:644505031 �0:02695864
½7; � 0:639802093 �0:16183344
½8; � 0:878216726 0:17991764
½9; � �0:431324783 0:36750956
½10; � �0:960149246 �0:25486112
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4.4. Performing outlier detection in MTS datasets with mlmts

Although clustering and classification constitute perhaps two of
the most extended approaches in MTS data mining, the package
mlmts is not limited to such types of algorithms. To confirm the
previous claim, this section is devoted to illustrate the use of
mlmts for an alternative machine learning purpose which is the
detection of anomalous series. We should remark that, although
there are several definitions of outliers in the context of temporal
data (i.e., additive outliers, innovative outliers, etc), mlmts is
designed to perform outlier detection in such a way that the
anomalous series are whole MTS objects. In other words, the
anomaly identification task consists of determining some MTS in
the dataset whose behavior greatly differs from that of the
majority.

To begin with, we show how the dissimilarity matrix pro-
duced by the functions in Table 2 can be used itself as a tool
to carry out anomaly detection. To this aim, the distance
dSWMD and the dataset SyntheticData2 are considered. Note that,
as indicated in Section 3, the last 5 series in this database (with
indexes from 61 to 65) are anomalous elements since they were
deliberately generated from a process different from the ones
characterizing the four underlying clusters. Given a distance
matrix, the outlier detection task can be carried out in two
steps.
1. For each element, computing the sum of the distances
between that element and the remaining objects in the
dataset, which is expected to be large for anomalous
elements.

2. Sorting the quantities computed in Step 1 in decreasing order,
then recording the associated vector of indexes. The first
indexes in this vector correspond to the most outlying elements
and the last indexes in this vector correspond to the least out-
lying elements.

Following this approach, the top 5 anomalous series in dataset
SyntheticData2 according to distance dSWMD can be obtained as
follows.

>distance_matrix_swmd <- dis_swmd(SyntheticData2
$data)

>order(colSums(as.matrix(distance_ma-
trix_swmd)), decreasing = T)[1: 5]

[1] 31 65 33 61 64

Distance dSWMD is able to identify 3 true outliers series (MTS 61,
64 and 65) but it also misclassifies two nonanomalous MTS as out-
lying ones (MTS 31 and 33). Let’s study now the performance of
dissimilarities dLPP and dPCA.



Fig. 5. Two-dimensional scaling planes based on distances dJSPEC (top panel) and
dQCD (bottom panel) for the series in the dataset SyntheticData1.
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>distance_matrix_lpp <- dis_lpp(SyntheticData2
$data)

>order(colSums(as.matrix(distance_matrix_lpp)),
decreasing = T)[1: 5]

[1] 51 23 61 19 10

>distance_matrix_pca <- dis_pca(SyntheticData2
$data, retained_components = 2)

>order(colSums(as.matrix(distance_matrix_pca)),
decreasing = T)[1: 5]

[1] 38 52 46 64 34
Fig. 6. Returns and change in volume of four A
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Both metrics detect only one anomalous series, thus exhibiting
a poor performance in the corresponding outlier identification
task. These results indicate that the dimensionality reduction
approach employed by these distances is not effective in detecting
series generated from an atypical stochastic process.

Apart from performing outlier identification starting from a
pairwise dissimilarity matrix, package mlmts also includes the
anomaly detection technique proposed by [26], QCD-F-OD, which
is based on the treatment of the QCD-features as functional data.
The command outlier_detection() allows to execute that approach
in a simple way.

>outlier_detection(SyntheticData2$data)$Indexes
[1] 61 62 64 65 63 9 11 20 14 10

4 12 13 3 35 53 34 15 7 5 28 18

[23] 1 38 31 21 43 29 32 24 6 40

45 39 44 2 33 17 25 19 36 37 23

41 27

[46] 16 59 51 52 42 26 50 56 49 22

54 60 8 55 47 30 46 57 58 48

Note that the function outlier_detection() returns a vector
including the indexes of the MTS in the corresponding dataset,
which are sorted in decreasing order in accordance to the outlying
likelihood of the underlying elements. In this example, algorithm
QCD-F-OD correctly identifies the 5 true atypical series, thus dis-
playing maximum accuracy.

Finally, our last example involves anomaly detection in a real
MTS dataset containing financial time series. The database, so-
called FinancialData, includes daily stock returns and trading vol-
ume of the top 50 companies of the S&P 500 index according to
market capitalization. The sample period spans from 6th July
2015 to 7th February 2018, thus resulting serial realizations of
length T ¼ 655. The S&P 500 is a stock market index that tracks
the stocks of 500 large-cap U.S. companies. The top 50 contains
some of the most important companies in the world, as Apple,
Google, Facebook or Berkshire Hathaway. The corresponding MTS
collection is included in mlmts through the list FinancialData$data.
It is worth remarking that the data in FinancialData was analyzed
in [26] to study the behaviour of their proposed algorithm.
merican companies in the S&P 500 index.



Table 4
The 5 anomalous companies according to different approaches.

Function Anomalous companies

outlier_detection() Tesla, NextEra Energy, Chevron, Netflix and Mastercard
dis_cor() Netflix, Merck, Berkshire Hathaway, Nvidia and Google

(Class A)
dis_modwt() Nvidia, Netflix, Merck, ExxonMobil and Facebook
dis_eros() Google (Class A), Nvidia, Netflix, Merck and Chevron
dis_dtw_1() Nvidia, Chevron, Qualcomm, Eli Lilly and ExxonMobil

Fig. 7. Boxplots of the depths for the QCD-F-OD procedure applied to the dataset
FinancialData.
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It can be observed that both the UTS of prices and trading vol-
ume are non-stationary in mean. Thus, all UTS are transformed
by taking the first differences of the natural logarithm of the orig-
inal values. This way, prices give rise to stock returns, and volume
to what we call change in volume. This kind of transformation is
common when dealing with financial time series. Fig. 6 shows four
of the transformed bivariate time series, corresponding to compa-
nies Microsoft, Amazon, Google and Facebook. All series seem
stationary.

Let’s assume that up to 10% of the most distant MTS are candi-
date to exhibit an anomalous behaviour, i.e., our concern is to iden-
tify the top 5 extreme series. By treating with real data, a
comprehensive analysis of the five identified MTS should be car-
ried out before concluding their outlying performance. We con-
sider several techniques to carry out the outlier identification
task. First we consider the algorithm QCD-F-OD through function
outlier_detection(), whose input parameter alpha determines the
desired proportion of outliers to detect. Next we execute a distance
matrix-based approach relying on dissimilarities dCOR; dMODWT ; dEros

and dDTW1. Note that vector FinancialData$classes contains the
abbreviations of the corresponding companies as given in the
S&P 500 index.

>indexes_outliers_1 <- outlier_detection
(FinancialData$data, alpha = 0.10)

>FinancialData$classes[indexes_outliers_1]
[1] “TSLA” “NEE” “CVX” “NFLX” “MA”

>distance_matrix_cor <- dis_cor(FinancialData
$data)

>indexes_outliers_2 <- order(colSums(as.matrix

(distance_matrix_cor)), decreasing = T)[1: 5]

>FinancialData$classes[indexes_outliers_2]
[1] “NFLX” “MRK” “BRK.B” “NVDA” “GOOGL”

>distance_matrix_modwt <- dis_modwt
(FinancialData$data)

>indexes_outliers_3 <- order(colSums(as.matrix

(distance_matrix_modwt)), decreasing = T)[1: 5]

>FinancialData$classes[indexes_outliers_3]
[1] “NVDA” “NFLX” “MRK” “XOM” “FB”

>distance_matrix_eros <- dis_eros(FinancialData
$data)

>indexes_outliers_4 <- order(colSums(as.matrix

(distance_matrix_eros)), decreasing = T)[1: 5]

>FinancialData$classes[indexes_outliers_4]
[1] “GOOGL” “NVDA” “NFLX” “MRK” “CVX”

>distance_matrix_dwt_1 <- dis_dtw_1
(FinancialData$data)

>indexes_outliers_5 <- order(colSums(as.matrix

(distance_matrix_dwt_1)), decreasing = T)[1: 5]

>FinancialData$classes[indexes_outliers_5]
[1] “NVDA” “CVX” “QCOM” “LLY” “XOM”
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Each of the approaches gives rise to a different set of anomalous
series. Table 4 summarizes the results from the previous outputs.
Distances dCOR; dMODWT and dEros identify three common atypical
companies, namely Netflix, Merck and Nvidia. On the contrary,
the outlier sets detected by QCD-F-OD and dDTW1 are more diverse,
with companies as Tesla, NextEra Energy, Qualcomm and Eli Lilly,
which are not considered anomalous by the remaining approaches.
The previous analysis suggests that the conclusions reached from
the outlier identification procedure are highly dependent on the
chosen dissimilarity measure and its nature. For instance, dCOR

detects atypical series in terms of linear structures, whereas
QCD-F-OD involves general dependence patterns and dDTW1

assesses outlyingness in terms of shape. Note that the last dissim-
ilarity does not seem very appropriate to perform outlier identifi-
cation in dataset FinancialData since the corresponding series are
stationary, which makes unlikely that discrepancies between them
are due to different geometric profiles. In sum, packagemlmts pro-
vides several dissimilarities to carry out MTS data mining but it is
ultimately the user who should decide what is the most appropri-
ate metric for the problem at hand.

Note that, in the previous case study, the number of outliers to
detect was set in advance without following any specific principle.
However, there exist some heuristic criteria to determine the num-
ber of true outliers in the database. One typical rule consists of ana-
lyzing the distribution of the quantities determining the outlying
likelihood. For instance, in the case of QCD-F-OD, we can study
the corresponding set of depths (Step 3 in QCD-F-OD procedure),
which can be obtained by means of the function outlier_detection().



>outlier_detection(FinancialData$data)$Depths
46 42 38 20 10 2 5 8

0:2555479 0:2584443 0:2627515 0:2643318 0:2643733 0:2650152 0:2659087 0:2662398
29 17 25 34 45 35 30 6

0:2713271 0:2734367 0:2736475 0:2759959 0:2760933 0:2766480 0:2766946 0:2772307
44 15 49 4 22 16 24 23

0:2779556 0:2791861 0:2793979 0:2801033 0:2816751 0:2817793 0:2819326 0:2827261
19 39 27 47 7 13 21 41

0:2832156 0:2833994 0:2834155 0:2840379 0:2844656 0:2845571 0:2856555 0:2864312
12 32 3 43 14 18 11 33

0:2876821 0:2878532 0:2891768 0:2898620 0:2902024 0:2914533 0:2918115 0:2922976
28 26 37 1 48 36 40 31

0:2923891 0:2924162 0:2928963 0:2931928 0:2968801 0:2974348 0:2979954 0:2981623
9 50

0:3004412 0:3025542
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Fig. 7 displays a boxplot of the depth values. Note that only one
point appears at the bottom of the graph. This point, which corre-
sponds to the company Tesla, has an extreme (low) value accord-
ing to the depth distribution. Therefore, Tesla could be regarded
as the only anomalous company in dataset FinancialData. Note that
this type of empirical methodology automatically determines the
number of outliers. Similar analyses can be carried out when a dis-
similarity matrix-based approach for outlier detection is
considered.
4.5. Reducing the dimensionality of MTS objects with mlmts

Dimensionality reduction of MTS can be carried out by
using some distance functions available in mlmts. The goal is
to construct lower dimensional MTS objects preserving the
information contained in the original series with high accuracy.
Some approaches focus on removing redundant components.
For instance, the procedure proposed in [53] (see Section 2.4)
uses maximum values of the cross-correlations between com-
ponents to decide which variables must be eliminated. This
>head(reduced_dataset_mcc[[2]])

;1½ � ;2½ � ;3½ � ;4½ �
1;½ � 0:464568 0:281542 �0:237040 �0:170456
2;½ � 7:017253 �1:483576 0:551318 �1:174547
3;½ � 0:401548 �5:083115 0:588605 �2:397035
4;½ � 0:401548 �5:083115 0:588605 �2:397035
5;½ � �2:830047 �2:741396 0:463427 �2:269193
6;½ � �6:471095 �1:829423 0:364882 �1:587370
algorithm is implemented in mlmts by means of the function
dis_mcc() as long as we set features = TRUE. We use this func-
tion to reduce the dimension of all the series in dataset
RacketSports.

>reduced_dataset_mcc <- dis_mcc(RacketSports
$data, max_lag = 10, delta = 0.7, features = T)
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A maximum number of lags of L ¼ 10 and a threshold value
d ¼ 0:7 were considered. Note that, the greater the value of d, the
lower the expected number of variables to be removed. Let’s show
the first MTS in the reduced dataset.

>head(reduced_dataset_mcc[[1]])
;1½ � ;2½ �

1;½ � 1:266676 0:031960
2;½ � �2:180751 �1:725865
3;½ � �0:943348 �1:523449
4;½ � 0:440631 �1:086656
5;½ � 1:562197 �0:183773
6;½ � 0:248300 0:516694

The reduced series contains only the first and fifth components
of the original MTS (all series in RacketSports have 6 dimensions).
The remaining variables were eliminated because they show a sub-
stantial degree of correlation with the retained ones. Let’s examine
next the second series in the new dataset.
In this case, four components were retained and only two
removed, which means that the variables of the second series show
a less degree of correlation than the ones of the first series. Note
that, as shown in this example, the series in the new collection
have generally different dimensions, since each original MTS is
processed individually. For example, the components of the fifth
MTS in RacketSports are barely correlated, thus resulting in a
reduced series containing all the original variables.



>head(reduced_dataset_mcc[[5]])

;1½ � ;2½ � ;3½ � ;4½ � ;5½ � ;6½ �
1;½ � �0:108107 0:799450 0:772173 �0:013317 �0:053267 �0:287644
2;½ � 4:973278 �2:803670 �3:346607 1:592697 0:378199 �0:945497
3;½ � 1:181158 �3:093719 �6:995264 1:438221 �0:034624 �0:926854
4;½ � �1:893015 �1:686749 �4:629456 �0:799012 �0:154476 �0:127842
5;½ � �13:361450 �7:628262 12:033613 �2:231906 1:917628 1:448875
6;½ � �4:248398 10:361725 3:936902 0:375536 2:964334 1:262439

Á. López-Oriona and José A. Vilar Neurocomputing 537 (2023) 210–235
The parameter d can be properly adjusted according to the num-
ber of variables one wishes to retain, thus giving the user the free-
dom to decide about the dimensionality of the reduced series.

Next, let’s reduce the dimensionality of the first series in dataset
RacketSports by employing an alternative procedure, namely, the
technique PPCA, which divides a given MTS into different seg-
ments. The corresponding algorithm is implemented in mlmts
through the function dis_ppca().

>reduced_dataset_ppca <- dis_ppca(RacketSports
$data, w = 3, features = T)

>head(reduced_dataset_ppca[[1]])
;1½ � ;2½ � ;3½ �

1;½ � �0:2195899 3:78500495 1:8524667
2;½ � �0:7901470 3:34970596 �1:7414870
3;½ � �0:0527398 4:54178237 �0:8457695
4;½ � 1:0397579 3:16751296 0:1407492
5;½ � 1:1126066 0:01146494 1:5294547
6;½ � �1:5327390 �2:72954395 1:7406453

The argument w was set to 3 in order to indicate that 3 seg-
ments are considered to obtain the average covariance matrix Ra.
Here, the reduced MTS has three variables, which means that the
first three principal components are enough to capture the 90%
of the variability (default). Clearly, different values of w could lead
to very different results. In this regard, the user should examine the
local patterns in the corresponding MTS to find a suitable value for
w. Unlike the procedure based on maximal cross-correlations, the
reduced series produced by PPCA do not contain a subset of the
original variables, but a collection of synthetic variables creating
via the standard PCA by taking into account the local information.
Nevertheless, as with the standard PCA, one could inspect the cor-
responding eigenvectors to get insights into the influence of each
one of the original variables in the principal components.

As a last remark, it is worth highlighting that the original collec-
tion of series could be replaced by the dataset produced by dis_mcc
() or dis_ppca() before performing specific data mining tasks. In this
way, one could expect a substantial improvement in computa-
tional efficiency, specially when the original series have a large
number of variables.

4.6. Forecasting MTS with mlmts

Forecasting of multivariate series can be carried out in mlmts
with the function mts_forecasting() implementing the FFMTS tech-
nique described in Section 2.5. Here, mts_forecasting() is used to
obtain future values of a particular time series. Specifically, we
consider the first MTS in dataset StandWalkJump and a value of
1 (default one) for the prediction horizon h and the maximum
lag L. For evaluation purposes, we begin by splitting the corre-
sponding time series into two periods, the training period, formed
by all but the last observation, and the validation period, formed by
the last observation.
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>training_series <- StandWalkJump$data[[1]]
[-2500,]

>validation_series <- StandWalkJump$data[[1]]
[2500,]

The FFMTS procedure allows to fit an arbitrary regression model
to the lag-embedding matrices. Let’s start with standard linear
regression (default) and compute the mean absolute error (MAE)
associated with the corresponding model.

>predictions <- mts_forecasting(list
(training_series))

>predictions_vector <- unlist(predictions)

>predictions_vector
[1] �0.04827054 0.03000827 �0.02603342 0.01958164

>mean(abs(predictions_vector-
validation_series))

[1] 0.03117851

The MAE for the linear model is 0.031. However, this isolated
value does not provide too much information. In fact, the consid-
ered error metric is frequently used to compare the predictive per-
formance of several procedures. Let’s compute the MAE for three
alternative approaches, namely random forest, support vector
machine, and a generalized additive model using splines. The
regression model to be fitted to the lag-embedding matrices is
specified in function mts_forecasting() by means of the argument
model_caret.

>predictions_rf <- mts_forecasting(list
(training_series), model_caret = ‘rf’)

>predictions_vector_rf <- unlist(predictions_rf)
>mean(abs(predictions_vector_rf-

validation_series))
[1] 0.02228232

>predictions_svm <- mts_forecasting(list
(training_series), model_caret = ‘svmLinear’)

>predictions_vector_svm <- unlist

(predictions_svm)
>mean(abs(predictions_vector_svm-

validation_series))
[1] 0.02397654

>predictions_gam <- mts_forecasting(list
(training_series), model_caret = ‘gamSpline’)

>predictions_vector_gam <- unlist

(predictions_gam)
>mean(abs(predictions_vector_gam-

validation_series))
[1] 0.03117849



Table 5
MAE associated with four regression models when forecasting the first series in
dataset StandWalkJump with method FFMTS. Different values of h and L are
considered. The best results are shown in bold.

h ¼ 3 h ¼ 10

Model L ¼ 3 L ¼ 5 L ¼ 3 L ¼ 5

Linear regression 0.044 0.036 0.084 0.099
Random forest 0.047 0.028 0.040 0.024
Support vector machine 0.047 0.039 0.074 0.150
Generalized linear model 0.044 0.036 0.084 0.099
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The random forest and the support vector machine achieve a
substantially lower prediction error than the linear model (0.022
and 0.024, respectively), while the generalized linear model attains
a similar error than the latter. The predictive performance of any
other regression model available in package caret can be examined
in a similar way. Finally, let’s analyze the behavior of the four con-
sidered methods for different values of the prediction horizon and
the maximum lag. Specifically, we consider h ¼ 3;10 and L ¼ 3;5.
The series is divided into training and validation periods in the
same way as before. Table 5 contains the corresponding values of
the MAE for each combination of the parameters.

The results in Table 5 indicate that the random forest yields the
most accurate forecasts in most of the settings. Curiously, this
method is able to improve its accuracy when increasing the predic-
tion horizon, which usually means a more challenging forecasting
task. In fact, all the remaining methods substantially decrease their
performance when h ¼ 10. In addition, the predictive ability of the
random forest significantly improves when more lags are consid-
ered, which indicates that significant serial dependence exists
beyond the third lag in the corresponding series. The remaining
three procedures show a similar performance among themselves.
Interestingly, the support vector machine behaves even worse than
the linear model when h ¼ 10 and L ¼ 5, suggesting that this
method is not suitable at all to forecast the considered MTS. In
short, the results of this study suggest that the first series in data-
set StandWalkJump follows a complex nonlinear structure which
can be properly exploited by using a powerful model like the ran-
dom forest to predict future values.

Note that the previous methodology can be replicated with any
MTS we wish to forecast. In this way, package mlmts incorporates
a flexible tool which allows the user not only to compute the cor-
responding point predictions, but also to determine the optimal
forecasting model for a specific series.

5. Concluding remarks

The 21st century has witnessed a significant number of
advances in the field machine learning of temporal data. Early
works usually focused on UTS, but MTS have received a great deal
of attention in the last decade. The R package mlmts is fundamen-
tally an attempt to integrate different MTS data mining algorithms
in a single framework, thus providing users with a common envi-
ronment to check and compare the behavior of well-established
methods. The main motivation behind the package is that, to the
best of our knowledge, no previous R packages are available imple-
menting several machine learning methods for MTS. Although the
majority of functions in the package are associated with the com-
putation of a distance matrix, the use of mlmts is not limited to
clustering. In fact, visualization, supervised classification, outlier
detection, dimensionality reduction and forecasting tasks can be
also carried out in an effective and efficient manner. Several real
and synthetic datasets which allow to illustrate the main methods
implemented in the package are also included. Specifically, mlmts
contains 28 of the 30 MTS collections provided in the well-known
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UEA multivariate time series classification archive [23,37], which
are frequently used to test the performance of newmethods. A rea-
sonably complete description of the procedures available inmlmts
is given in the first part of this paper to make clear the details and
the scope behind the software. However, the readers particularly
interested in some of the procedures are encouraged to check the
corresponding key references, which are also provided in the
manuscript. In the second part of the manuscript, the use of the
package is illustrated by considering several examples where the
implemented functions are executed with the UEA collections
and the synthetic datasets. mlmts is under continuous develop-
ment and we expect to perform frequent updates by incorporating
future machine learning algorithms in the field of MTS data
mining.
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