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a b s t r a c t

The valuation problem of renewable energy certificates can be formulated in terms of
a nonlinear PDE model where the underlying stochastic factors are the accumulated
green certificates sold by an authorized producer and the natural logarithm of the
renewable generation rate. In the present paper, the nonlinear convective term is
treated with the Bermúdez–Moreno duality method for maximal monotone operators
as in Baamonde-Seoane et al. (2021). The main novelty of this article comes from
the proposed techniques for the numerical solution of the resulting linear problem. In
this case, we propose a Lagrange–Galerkin method which mainly consists of Crank–
Nicolson characteristics for time discretization combined with finite elements for the
discretization in the accumulated green certificates and the natural logarithm of the
renewable generation rate directions. Finally, several numerical examples are presented
to illustrate the good performance of the method and model, and its comparison with
other numerical schemes employed to solve the same problem.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Climate change has emerged as one of the most important global issues of the 21st century. The growth of greenhouse
ases concentrations in the atmosphere are responsible for the anthropogenic greenhouse effect, with an increase in
he average air surface temperature. This change has several impacts on the environment, such as the appearance of
xtreme weather events. In recent years, governments around the world have implemented different policies to reduce
reenhouse gas emissions and encourage the growth of renewable energy usage. The most well known of these policies
re the cap-and-trade markets.
In cap-and-trade markets, the market is subject to an Emissions Trading Scheme (ETS) in which regulators impose
limit to carbon emissions (cap) during one compliance period. Each registered firm receives an initial allocation of
llowances in the amount of this limit, each one allowing for a unit of CO2 emission, usually one tonne. These allowances
an be used to offset its cumulative emissions at the end of the compliance period. If a firm produces a higher level of
missions than its owned allowances permit, then the firm must pay a penalty per extra tonne of CO2 emitted. Throughout
compliance period, allowances are actively traded and this leads to the formation of a price, which represents the cost of
arbon. This is the trade part of a cap-and-trade scheme. The behaviour of prices in ETS has already attracted considerable
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interest in the literature (see [1–3]). In practice, an ETS has multiple compliance periods, each one with its own distinct
cap and penalty. Between these periods, an ETS can provide some flexibility for firms to reduce emissions.

Renewables are considered by many policy-makers to contribute to improving energy security and protecting the
environment. On an average cost basis, some renewables in the best locations are competitive with conventional energy
sources. However, in many cases renewables are not competitive yet. Supportive policies are still needed to encourage
the further development and deployment especially of ‘‘new’’ renewables in energy markets.

Nowadays, several governments have developed environmental policies in order to encourage renewable energy
sources and promote targets for renewable energy production. As it is also mentioned in [4], many countries or states
have adopted Renewable Portfolio Standards (RPSs) and trading of Renewable Energy Certificates (RECs). Through these
schemes, electric utility quote obligations are supported and a certain percentage of the electricity from renewable energy
sources is required. This required percentage is generally increased annually by a regulator to meet longer-term policy
targets.

However, renewable energy technologies often require a huge investment, hence it is necessary to have alternative
market tools to get the required targets. An interesting and closely related alternative is the markets for tradable RECs,
which can be used to encourage the growth of a particular type of renewable energy, as in the case of Solar Renewable
Energy Certificates (SRECs) (see [5,6]). A REC (or green certificate) is a financial instrument traded in the marketplace,
which guaranties that an amount of electricity has been produced by means of renewable energy sources such as solar
or wind plants, for example. One certificate is issued to the renewable power generator for each MWh or higher units of
energy produced. Thus, tradable green certificates are designed to promote electricity generation from renewable energy
sources.

On one hand, this kind of contracts are used by companies (buyers) to cover their requirements of supplying ‘‘clean’’
electricity by purchasing green certificates instead of making a huge investment in technologies to produce renewable
energy themselves. In [7], the optimal percentage requirement of the total electricity production that must be obtained
from renewable sources is analysed. On the other hand, sellers can fund the cost of renewable energy installations by
selling the certificates.

There are similarities between REC markets and carbon cap-and-trade ones, however there are also some differences.
The main important difference comes from the uncertainty in the market. In the former market, it is the supply of
certificates (driven by some generation process), while in the latter, it is the demand for allowances (driven by an
emission process). Furthermore, the regulator now fixes demand (requirement) instead of supply (cap), and borrowing
and withdrawal are not present.

Due to the necessity of fighting against climate change, in the last years the production of electricity from energy
renewable sources has increased and consequently the demand of this kind of certificates has grown. RECs markets can
provide opportunities for investing, although the risk due to their volatile price behaviour is significant. Therefore, the
study of these markets and their characteristics have begun to gain attraction.

There are several references discussing tradable green certificates in different world regions. In [8], the tradable green
certificates system in some regions of Belgium is studied and the particular system established in the Flemish region is
analysed in detail. More recently, the effects of the new Chinese government policy about green certificates pricing and
transaction decisions are evaluated in [9] and [10].

In the literature, the valuation problem of green certificates has been tackled with different models and techniques.
In [11], for the particular case of the Swedish–Norwegian market, the valuation problem is modelled as a control problem
for which the authors derive a closed formula. In [12], the authors describe three models based on game theory approach
for the implementation of the tradable green certificates system. The valuation of solar renewable energy certificates in
the New Jersey market is treated in the Ref. [5], where the price of the SREC is achieved by using a dynamic programming
algorithm. Moreover, the renewable energy production rate is modelled by means of a geometric Brownian motion process
instead of the Ornstein–Uhlenbeck (OU) process considered in the present work.

From the mathematical point of view, the valuation problem of green certificates can also be modelled as a PDE
problem associated with a nonlinear operator. In previous works existing in the literature, nonlinear PDEs also appear in
the valuation of financial instruments in emission markets with the possibility of multiple periods for which an obligation
is set. For example, in [1] the authors describe the asymptotic behaviour of the solution close to the end of a compliance
period.

In the present paper, assuming that the price of the certificate depends on two stochastic factors which are the
accumulated green certificates and the renewable energy production rate, we present the PDE model that governs the
valuation of such financial instruments and we propose appropriate numerical methods for its solution. It is important
to highlight that although the PDE model and the treatment of the nonlinear convective term are also presented in our
previous work [4], the numerical techniques applied to solve the problem are different.

In the literature, the same stochastic factors are considered in [11]. Nevertheless, the formulation of the problem and
the numerical techniques are different as well.

For the numerical solution of the nonlinear PDE problem, we first apply the Bermúdez–Moreno algorithm proposed
in [13] to deal with the nonlinear convective term. This duality method is based on the approximation of a nonlinear
maximal monotone operator by means of its Yosida regularization. Next, the resulting linear problem is discretized by
using a Lagrange–Galerkin method which mainly consists of Crank–Nicolson characteristics scheme for time discretization
2
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combined with finite elements for the discretization in the accumulated green certificates and the natural logarithm of
the renewable generation rate directions, which is the main contribution of this paper. These numerical techniques, which
result very efficient for convection dominated problems as the one treated in this work, were developed in [14] for Asian
option pricing problems. Moreover, in [15] the authors address the numerical analysis of the here proposed characteristics
Crank–Nicolson time discretization method for a wide class of convection–diffusion–reaction PDE problems. Additionally,
the fully discretized problem obtained by the combination of Crank–Nicolson characteristics with Lagrange finite elements
is studied in [16].

In the previous paper [4], the same PDE model is posed to price a REC and the same duality method for the nonlinear
term are used. However, in [4] the resulting linear problem is solved by a semi-Lagrangian scheme in the direction without
diffusion while an implicit second order finite differences scheme is applied in the direction with diffusion term. In the
present paper, we show the differences with respect to this previous work and the relevant improvements obtained in
the computational when applying the numerical schemes here proposed.

The organization of the paper is as follows. In Section 2, the mathematical modelling for pricing renewable energy
certificates is posed. We introduce the stochastic processes which describe the evolution of the number of accumulated
green certificates and the natural logarithm of the renewable generation rate. In Section 3, we formulate the PDE problem
which governs the valuation of RECs. In Section 4, we describe the proposed numerical techniques to obtain a solution of
the PDE problem. Section 5 presents some examples in order to illustrate the performance of the proposed models and
numerical methods. Finally, Section 6 contains some conclusions.

2. Mathematical model for the valuation of renewable energy certificates

In this section we introduce the mathematical modelling when considering two stochastic factors. In what follows, for
a fixed time horizon representing the end of the compliance period T > 0, we assume that the source of randomness in
the model is given by one-dimensional Wiener process W = (Wt)0≤t≤T . We assume that this Wiener process is defined
on a complete probability space (Ω,F,P), and it is adapted to the filtration F = {Ft , t ≥ 0}.

Assuming that the price of a green certificate depends on two stochastic factors, which are the renewable generation
rate, Gt , and the number of accumulated green certificates, Bt , we aim to address the model for pricing a REC. For this
urpose, we will start describing the stochastic processes that govern the dynamics of both factors.
First, let us denote by G̃t = ln(Gt ) the Ornstein–Uhlenbeck (OU) process, which satisfies the following stochastic

differential equation (SDE):

dG̃t = γg

(
ξ (t) +

δg

γg
Pt − G̃t

)
dt + σgdWt , (1)

assuming that Gt0 = g0, and where γg is the mean reversion speed of the process, Pt is the certificate price, δg is the
arameter which controls the level of immediate feedback from the price of the certificate, σg is the volatility and Wt is

the Wiener process governing the stochastic part of the equation. Moreover, taking into account that weather conditions
strongly affect the production of energy in the renewable power generation, we introduce a deterministic function ξ (t)
representing the seasonality effect. Seasonal patterns exist in most markets and this approach is now present in virtually
all models. It was in [17] the first time that a deterministic or seasonal component was incorporated into a spot price
model. A common choice is to use a combination of trigonometric functions as it is proposed in [5]. Nevertheless, there
are other possibilities such as the one considered in [11], which consists on using time series models to describe statistical
features of weather factors. Furthermore, in the OU process (1), the mean reversion level is linear in Pt plus seasonality.
Now, having in view the previous stochastic process, the production of renewable energy Gt can be written as

Gt = exp
(
G̃t

)
.

Secondly, we introduce de dynamics of the number of accumulated renewable energy certificates, Bt ,

dBt = Gtdt.

Note that Bt is non-negative and non-decreasing because it represents an accumulated quantity, and we assume that
Bt0 = 0, where t0 is the beginning of the compliance period.

3. Statement of the pricing PDE

If we denote by P = P(t, G̃, B) the price of the renewable energy certificate at time t , by using a dynamic hedging
technique in a similar way to the valuation problem of swing options (see [18], for more details) and applying Itô’s Lemma
(see [19]), we can derive the following nonlinear PDE whose solution is the price of the REC:

L[P] =
∂P
∂t

+
1
2
σ 2
g
∂2P

∂G̃2
+ γg

(
ξ (t) − G̃

) ∂P
∂G̃

+ δgP
∂P

∂G̃
+ exp(G̃)

∂P
∂B

− rP = 0, (2)

here r is the constant risk free interest rate.
3
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Assuming that the number of life years of the certificate is denoted by y and the maturity of the certificate is T , the
PDE problem associated to (2) is initially formulated in the unbounded domain (T − y, T )× (−∞,∞)× (0,∞). Note that
he PDE operator (2) has a nonlinear convective term adding an extra difficulty to the problem.

For the particular case of one single period (i.e. one year, y = 1), the payoff at the expiry date of the certificate, T , is
decreasing function in the number of accumulated green certificates at maturity, B, and depends on the requirement
n the percentage of energy obtained from renewables at maturity, RT . Thus, in order to state the PDE problem, Eq. (2) is

completed with the final condition

P(T , G̃, B) = πT1{B<RT }, (3)

where πT is the penalty amount π at time T . At maturity, the price of the certificate is equal to the penalization if the
banked certificates do not meet the requirement, otherwise the price is zero.

Moreover, there exists the possibility of extending the problem to multiple periods. In that case, at each compliance
date, T i, for i = 1, . . . , y−1, a jump condition must be applied. Thus, when the obligation is set the value of the certificate
is given by

P(T i, G̃, B) = max
(
πT i1{B<Ri}, P

(
T i
+
, G̃,max(0, B − Ri)

))
. (4)

Note that T i corresponds to the end of the ith life year of the certificate and Ri is the requirement at that time. Thus,
Eqs. (2) and conditions (4) establish a sequence of linked final value problems that must be solved from time T to time
t0 with a kind of pasting conditions at the compliance dates T i.

The study of the existence and uniqueness of solution for the nonlinear PDE problems defined by (2)–(3) or by (2)–(4)
remains as an open problem as it is mentioned in [4]. We note that the PDE (2) is non-linear and exhibits some similarities
to the one appearing in emission markets in [1], the existence and uniqueness of solution of which is rigorously analysed
in [20]. However, the ideas in [20] cannot be employed to analyse the existence and uniqueness of solution of (2). The
main reason is that in [20], the PDE appearing in emission markets is obtained from a FBSDE containing a first forward
SDE which is uncoupled with the other two, so that the existence and uniqueness for this first equation can be obtained in
a first step. Then, the two remaining equations are understood as SDEs with stochastic drift terms and the methodologies
developed in [21–23] can be used.

However, in the here treated problem, the PDE (2) is obtained from a FBSDE with three equations that are coupled
each other (see [4]). This is the reason why the existence and uniqueness of solution for PDE problem (2)–(3) remains as
n open research line, as well as the same results for the PDE problem (2)–(4).

. Numerical techniques

In this section we propose a set of numerical techniques to approximate the solution of PDE problems (2)–(2) and
3)–(4) that have been posed in the previous section.

.1. The duality algorithm

As the drift term depends linearly on the unknown P , the corresponding first order (convective) term in the PDE (2)
ntroduces a nonlinear aspect that needs to be solved. More precisely, the governing PDE is semilinear. A possible approach
ould be to treat this nonlinear term in a semi-explicit way in the time discretization, by considering the drift coefficient
valuated at the previous time step, which linearizes the problem to be solved at each time step. However, implicit
ethods are usually preferred to explicit or semi-explicit ones. As in [4], the Bermúdez–Moreno algorithm proposed

n [13] will be applied. This algorithm is a duality method, which is based on the approximation of nonlinear monotone
perators by means of its Yosida regularization. It was previously applied to the simulation of read/write processes in
agnetic storage devices in [24] for the treatment of a nonlinear diffusive term in the PDE operator instead of a nonlinear
onvection term. Furthermore, in [25] the convergence of the method in the nonlinear diffusion setting has been analysed.
ext, in [26] the methodology has been extended from one to two spatial variables.
Thus, as in [4], we define the maximal monotone operator

h(P) =

{
P2 if P ≥ 0
0 if P < 0 , (5)

o that Eq. (2) can be written in the form:

∂P
∂t

+
1
2
σ 2
g
∂2P

∂G̃2
+ γg

(
ξ (t) − G̃

) ∂P
∂G̃

+
δg

2
∂h(P)

∂G̃
+ exp(G̃)

∂P
∂B

− rP = 0. (6)

Next, we consider a parameter ω > 0 and introduce the additional unknown θ = h(P) − ωP = (h − ωI)(P), so that

h(P) = θ + ωP (7)
4
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and
∂h(P)

∂G̃
=
∂θ

∂G̃
+ ω

∂P

∂G̃
. (8)

Now, following the results in [13], we have

θ = hωλ (P + λθ ) (9)

where hωλ is the Yosida approximation of the operator hω = h−ωI with parameter λ, which is given by hωλ = (I − Kωλ )/λ,
where Kωλ = (I + λω)−1 is the resolvent operator of hω with parameter λ, which is defined for λω < 1 and it is a
monotone Lipschitz function with constant (1−λω)−1, see [27] for details about maximal monotone operators and Yosida
approximation.

As indicated in [4], the choice λ = 1/2ω has been proved to be optimal in several application and in some particular
cases supported by theoretical results, thus obtaining the following expression for the Yosida approximation:

hω1/2ω

(
P +

θ

2ω

)
=

{
−θ − 2ωP if P +

θ
2ω < 0

θ + 2ωP + ω2
− ω

√
4θ + 8ωP + ω2 if P +

θ
2ω ≥ 0

. (10)

s pointed out in [24], the convergence of Bermúdez–Moreno algorithm depends on the parameter ω which, in turn,
epends on the exact solution.
Next, using (7)–(8), the PDE (6) can be replaced by

∂P
∂t

+
1
2
σ 2
g
∂2P

∂G̃2
+ γg

(
ξ (t) − G̃

) ∂P
∂G̃

+
δgω

2
∂P

∂G̃
+ exp(G̃)

∂P
∂B

− rP = −
δg

2
∂θ

∂G̃
. (11)

ote that PDE (11) is coupled with the nonlinear equation (9). Moreover, for a given θ , PDE (11) is linear. Thus, the idea
of Bermúdez–Moreno algorithm we propose mainly consists of a fixed point iteration between the numerical solution of
PDE (11) and Eq. (9) at each time step, as will be explained in the forthcoming section.

4.2. Formulation of the PDE problem in a bounded domain

In order to apply numerical techniques to solve the linear PDE problem (11) for a given value of θ , it is first necessary
to truncate the initial unbounded spatial domain to a bounded one and to impose boundary conditions where they are
required. For this purpose, let G̃∞ and B∞ be appropriately chosen real numbers large enough so that the truncation of
the domain does not affect the solution of the problem in the region of interest. The choice of the values to truncate the
domain depends on the requirement which is involved in the payoff function and in the jump conditions at compliance
dates. Once the truncation values are chosen, we consider the spatial bounded domain (−G̃∞, G̃∞)×(0, B∞) and introduce
the following change of spatial variables:

a1 =
G̃ + G̃∞

Ḡ∞

, a2 =
B
B∞

,

here Ḡ∞ = 2G̃∞. Thus, with the previous change of variables we transform the bounded spatial domain (−G̃∞, G̃∞) ×

(0, B∞) into the domain Ω = (0, 1) × (0, 1), whose boundary can be decomposed as Γ =
⋃2

i=1(Γ
−

i ∪ Γ +

i ) where

Γ −

i = {(a1, a2) ∈ Γ | ai = 0}, Γ +

i = {(a1, a2) ∈ Γ | ai = 1}, i = 1, 2,

ext, as in [4], we follow the methodology introduced by [28] to obtain the boundaries where it is necessary to impose
oundary conditions. On those boundaries, we will impose homogeneous Neumann boundary conditions.
Once we have introduced the bounded domain and the boundary conditions, in order to obtain a PDE problem with

nitial condition, we consider the change of time variable τ = T − t , where τ represents the time to maturity. So, the PDE
(11) jointly with final and boundary conditions can be equivalently formulated as the following initial–boundary value
problem:

find P : [0, y] ×Ω → R such that

∂P
∂τ

− Div(A∇P) + v⃗ · ∇P + lP = f̂ +
δg Ḡ∞

2
∂θ

∂a1
in (0, y) ×Ω , (12)

P(0, ·) = πT1{a2B∞<RT } in Ω, (13)
∂P
∂a1

= 0 on (0, y) × (Γ −

1 ∪ Γ +

1 ), (14)

∂P
∂a2

= 0 on (0, y) × Γ +

2 , (15)

ointly with jump conditions (4) at compliance dates.
5
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Moreover, in (12), the diffusion matrix A, the velocity field v⃗, the linear term l and the second member function f̂ have
the following expressions:

A =

(
1
2 (σg Ḡ∞)2 0
0 0

)
,

v⃗ =

( (
−γg

(
ξ (T − τ ) − (a1Ḡ∞ − G̃∞)

)
−

δgω
2

)
Ḡ∞

−B∞ exp(a1Ḡ∞ − G̃∞)

)
,

l = r,

f̂ = 0.

.3. The Crank Nicolson characteristics method

In order to obtain a time discretization of the problem (12), we propose a Crank–Nicolson characteristic method. This
umerical scheme mainly consists of approximating the material derivative along the characteristics curves with a finite
ifferences method. Moreover, in this method, the convective term is treated explicitly leading to a symmetric system of
quations.
First, let us define

DP
Dτ

=
∂P
∂τ

+ v⃗ · ∇P,

hich represents the material derivative along the characteristic curve through a = (a1, a2) at time s̄, χ (a, s̄; s), which is
he solution of the following final value ODE problem:

∂

∂s
χ (a, s̄; s) = v⃗(χ (a, s̄; s), s), χ (a, s̄; s̄) = a. (16)

In order to discretize in time the material derivative, we introduce a number of time steps NT > 0, a time step
∆τ = y/NT and the time mesh points τ n = n∆τ , n = 0, 1

2 , 1,
3
2 , . . . ,NT .

Now, we approximate the material derivative at time τ n+
1
2 by the quotient:

DP
Dτ

≈
Pn+1

− Pn
◦ χn

∆τ
,

where χn(a) = χ (a, τ n+1
; τ n).

In some cases, the expressions of the characteristics curves can be obtain analytically. For example, when the
seasonality function ξ is equal to zero the components of χn(a) are given by

χn
1 (a) =

(
−γg (a1Ḡ∞ − G̃∞) +

δgω

2

)
Ḡ∞∆τ + a1,

χn
2 (a) = B∞∆τ exp(a1Ḡ∞ − G̃∞) + a2.

However, sometimes it is necessary to approximate the characteristics by using numerical ODE solvers. In this work
e will implement a second order explicit Runge–Kutta scheme for the cases in which the computation of an analytical
olution of the final value problem (16) is not possible.
Now, let us write the Crank–Nicolson characteristics time discretization around (χ (a, τ n+1

; τ n+
1
2 ), τ n+

1
2 ), n =

0, . . . , NT − 1, for the first equation of (12), namely:

Pn+1(a) − Pn(χn(a))
∆τ

−
1
2
Div(A∇Pn+1)(a) −

1
2
Div(A∇Pn)(χn(a))

+
1
2
(l Pn+1)(a) +

1
2
(l Pn)(χn(a)) =

1
2
f̂ n+1(a) +

1
2
f̂ n(χn(a))

+
1
2
δg Ḡ∞

2

(
∂θn+1

∂a1
(a) +

∂θn

∂a1
(χn(a))

)
. (17)

Moreover, at each time step, Eq. (17) is coupled with the following nonlinear relation between Pn+1 and θn+1;

θn+1
= hω1/2ω

(
Pn+1

+
1
2ω
θn+1

)
. (18)

.4. Fixed point algorithm

In order to approximate the solution of the nonlinear problem (17)–(18) at each iteration of the characteristics method,
e propose the following fixed point scheme:
6
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(1) Let NT > 0, ϵ > 0, P0, θ0 given.
(2) For n = 0, 1, 2, . . . ,NT − 1

A. Let θn+1,0
= θn.

B. For k = 0, 1, 2, . . .

- For θn+1,k known, we obtain Pn+1,k+1 solving the linear problem

Pn+1,k+1(a) − Pn(χn(a))
∆τ

−
1
2
Div(A∇Pn+1,k+1)(a)

−
1
2
Div(A∇Pn)(χn(a)) +

1
2
(l Pn+1,k+1)(a)

+
1
2
(l Pn)(χn(a)) =

1
2
f̂ n+1(a) +

1
2
f̂ n(χn(a))

+
1
2
δg Ḡ∞

2

(
∂θn+1,k

∂a1
(a) +

∂θn

∂a1
(χn(a))

)
, (19)

jointly with the boundary conditions.
- We set

θn+1,k+1
= hω1/2ω

(
Pn+1,k+1

+
1
2ω
θn+1,k

)
- We check the stopping test

∥θn+1,k+1
− θn+1,k

∥∞

∥θn+1,k+1∥∞

< ϵ.

C. We go to 2 if the stopping condition is met, otherwise we repeat the above steps starting at B.

.5. Spatial discretization

For the spatial discretization of the linear problem (19), we propose biquadratic Lagrange finite elements. Thus, first,
e need to obtain a variational formulation of such problem at each time step n = 0, 1, 2, . . . ,NT − 1, and each fixed

point iteration, k = 0, 1, 2, . . .. For this purpose, we multiply (19) by a suitable test function, φ ∈ H1(Ω) and we integrate
n Ω .

Moreover, assuming that χn
∈ C2(Ω) and (∇χn)−1

∈ C1(Ω), we apply Green’s theorems, such as the classical Green
ormula and the following one proposed in [29]:∫

Ω

Div(A∇Pn)(χn(a))φ(a) da =

∫
Γ

(∇χn)−T (a)n⃗(a) · (A∇Pn)(χn(a))φ(a) dA

−

∫
Ω

(∇χn)−1(a)(A∇Pn)(χn(a)) · ∇φ(a) da

−

∫
Ω

Div((∇χn)−T (a)) · (A∇Pn)(χn(a))φ(a) da, (20)

where n⃗ is a vector normal to the boundary pointing outward and dA denotes the integration measure on the boundary
Γ .

Note that for the particular case in which there is no seasonality effect, i.e. ξ = 0, we can obtain the analytical
expression of the inverse of the gradient of the characteristics, which is given by:

(∇χn)−1(a) =

⎛⎜⎜⎜⎜⎝
1

−γg∆τ (Ḡ∞)2 + 1
0

−Ḡ∞B∞∆τ exp(a1Ḡ∞ − G̃∞)
−γg∆τ (Ḡ∞)2 + 1

1

⎞⎟⎟⎟⎟⎠ , Div((∇χn)−T (a)) = 0

Taking into account the previous value of tensor (∇χn)−1, appropriate Green’s formulas and having in view that
⃗ · A∇Pn+1

= 0 on Γ due to the boundary conditions imposed in the problem (12)–(15), we can achieve the following
ariational formulation for the time discretized problem (19):
7
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w

(

Ω

Q
Σ

w

(

find Pn+1,k+1
∈ H1(Ω) such that,∫

Ω

Pn+1,k+1(a)φ(a) da +
∆τ

2

∫
Ω

(A∇Pn+1,k+1)(a) · ∇φ(a) da

+
∆τ

2

∫
Ω

lPn+1,k+1(a)φ(a) da =

∫
Ω

Pn(χn(a))φ(a) da

−
∆τ

2

∫
Ω

(∇χn)−1(a)(A∇Pn)(χn(a)) · ∇φ(a) da −
∆τ

2

∫
Ω

lPn(χn(a))φ(a) da

+
∆τ

2

∫
Γ

(∇χn)−T (a)n⃗(a) · (A∇Pn)(χn(a))φ(a) dA

+
∆τ

2

∫
Ω

f̂ n+1(a)φ(a) da +
∆τ

2

∫
Ω

f̂ n(χn(a))φ(a) da

+
∆τ

2

∫
Ω

δg Ḡ∞

2
∂θn+1,k

∂a1
(a)φ(a) da +

∆τ

2

∫
Ω

δg Ḡ∞

2
∂θn

∂a1
(χn(a))φ(a) da. (21)

In the general case, when it is not possible to compute the characteristics curves analytically, as it is pointed out in [15],
we can employ the following approximations:

(∇χn)−1(a) ≈ I(a) +∆τJ n(χn(a)) + O(∆τ 2),

Div((∇χn)−T (a)) ≈ ∆τ∇Div(v⃗(χn(a))) + O(∆τ 2).

here J n
= ∇v⃗n.

In this work, having in view that ∇Div(v⃗(χn(a))) = 0 and considering the previous approximation for the tensor
∇χn)−1(a), the weak formulation (21) can be rewritten as

find Pn+1,k+1
∈ H1(Ω) such that,∫

Ω

Pn+1,k+1(a)φ(a) da +
∆τ

2

∫
Ω

(A∇Pn+1,k+1)(a) · ∇φ(a) da

+
∆τ

2

∫
Ω

lPn+1,k+1(a)φ(a) da =

∫
Ω

Pn(χn(a))φ(a) da

+
∆τ

2

∫
Ω

(A∇Pn)(χn(a))∇φ(a) da −
∆τ

2

∫
Ω

lPn(χn(a))φ(a) da

−
∆τ

2

∫
Ω

∆τJ n(χn(a))(A∇Pn)(χn(a))∇φ(a) da

+
∆τ

2

∫
Γ

(I(a) +∆τJ n(χn(a)))T n⃗(a) · (A∇Pn)(χn(a))φ(a) dA

+
∆τ

2

∫
Ω

f̂ n+1(a)φ(a) da +
∆τ

2

∫
Ω

f̂ n(χn(a))φ(a) da

+
∆τ

2

∫
Ω

δg Ḡ∞

2
∂θn+1,k

∂a1
(a)φ(a) da +

∆τ

2

∫
Ω

δg Ḡ∞

2
∂θn

∂a1
(χn(a))φ(a) da. (22)

Now, for the spatial discretization with finite elements, we consider a family of quadrangular meshes {τh} of the domain
. Associated to each mesh {τh}, we can introduce a piecewise quadratic Lagrangian finite elements, (T ,Q2,ΣT ), with
2 being the space of polynomials defined in T ∈ τh with degree less than or equal to two in each spatial variable, and
T the subset of nodes of the element T . More precisely, we can introduce the finite elements space

νh = {ψh ∈ C0(Ω)|ψhT ∈ Q2, ∀T ∈ τh}, (23)

here C0(Ω) is the space of piecewise continuous functions on Ω .
At each step of the proposed duality method, we have to solve numerically the linear PDE (11) by using the formulation

22). Therefore, the numerical analysis of the Lagrange–Galerkin method for solving (11) can be framed in the numerical
analysis for the general problem addressed in the two articles [15,16]. In this way, existence and uniqueness of solution
for the fully discretized problem of the linear PDE, as well as its convergence, can be obtained. However, we have not
addressed the numerical analysis for the coupled problem between the nonlinear equation (9) for the additional unknown
θ and the linear PDE (11). The numerical analysis of this coupled formulation for the nonlinear PDE remains as an open
problem.

5. Numerical results

In this section we show some numerical examples in order to show the good performance of the numerical techniques

and models proposed in the present paper. On one hand, we consider an academic test with an analytical solution in order

8
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w
t
t

Table 1
Number of nodes and elements for quadrangular meshes.

Mesh 4 Mesh 8 Mesh 16 Mesh 32 Mesh 64

Elements 16 64 256 1024 4096
Nodes 81 289 1089 4225 16641

Table 2
Values for the parameters involved in the PDE model.
Mean reversion speed (γg ) 2.
Feedback from prices (δg ) 0.00127
Volatility (σg ) 0.1863
Interest rate (r) 0.02
Maturity (T ) 1.
Years of life (y) 1.

to illustrate the convergence of the numerical methods. On the other hand, as a real case and taking into account the data
for Solar Renewable Energy Certificates (SRECs) from the New Jersey market which are provided in [5], we solve the
problem (12) to obtain the price of the certificate.

In both examples we have considered the same data as in [4] and we show the numerical results in the same format.
This allows the comparison between the set of methods proposed in [4] and the ones presented in this article.

In all the tests, for the finite elements space, we use quadrangular uniform meshes with the number of nodes and
elements collected in Table 1.

5.1. Academic test with an analytical solution

As a first numerical example, we consider a test with analytical solution in order to check the numerical method
and illustrate its convergence. For this purpose, we compute the second member function u, such that P(t, G̃, B) =

exp
(
(T − t)G̃B

)
is a solution of the nonlinear PDE:

L[P] = u (24)

where L is given by (2) and

u(t, G̃, B) = P(t, G̃, B) ×[
−G̃B +

1
2
σ 2
g t

2B2
− tBγg

(
ξ (t) +

δg

γg
exp

(
(T − t)G̃B

)
− G̃

)
− exp

(
G̃
)
tG̃ − r

]
.

We consider one single period, i.e. one year’s life (y = 1), T = 1 and we pose the PDE problem in the bounded spatial
domain Ω = (0, 1)× (0, 1), where the chosen points to truncate the domain are Ḡ∞ = B∞ = 1 in the change of variables.

Moreover, for the duality method we take the parameter ω = 2 and the tolerance ϵ = 10−5. Additionally, the final
condition and the boundary conditions on Γ +

1 , Γ
−

1 and Γ +

2 are chosen in agreement with the analytical solution of the
PDE. More precisely, we impose Dirichlet boundary conditions with the exact solution on the boundaries where they are
required.

In this first test, for the parameters involved in the PDE formulation, we consider the values which are collected in
Table 2.

Errors in L∞((0, 1); L2(Ω)) discrete norm between the exact and numerical solution, convergence ratio and order are
presented in Tables 3 and 4. On one hand, in Table 3 we are assuming that there is not seasonal effect, i.e. ξ (t) = 0. In this
case the characteristics curves can be computed analytically. On the other hand, in order to compute the errors shown in
Table 4, we have taken into account seasonal factors modelled with the following function:

ξ (t) = −0.1209 sin(4π t) + 0.09 cos(4π t) + 0.2151 sin(2π t) + 0.3859 cos(4π t), (25)

which implies that the characteristics curves need to be approximated by using ODE solvers.
Note that the length of the edges of each quadrangular element of the mesh is divided by two when refining the

meshes shown in Table 1. Moreover, in both cases, the radius of convergence is given by

Ratio =
Error(h̃)

Error( h̃2 )
(26)

here the parameter h̃ indicates that we start with a level of refinement in time and space and we divide by two both,
he time and finite element mesh steps to get the results for h̃

2 . Thus Ratio = 2 corresponds to linear convergence. Finally,
he empirical order of convergence is given by log Ratio .
2 ( )

9
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Table 3
Relative errors in L∞((0, 1); L2(Ω)) discrete norm between the exact and numerical
solution, convergence ratio and order for the academic test without seasonal effect.
Time steps Meshes Error Ratio Order

10 Mesh 4 7.9499 × 10−3 – –
20 Mesh 8 3.5846 × 10−3 2.2177 1.1491
40 Mesh 16 1.7029 × 10−3 2.1049 1.0737
80 Mesh 32 8.4004 × 10−4 2.0272 1.0195
160 Mesh 64 4.2651 × 10−4 1.9696 0.9779

Table 4
Relative errors in L∞((0, 1); L2(Ω)) discrete norm between the exact and numerical
solution, convergence ratio and order for the academic test with seasonal effect.
Time steps Meshes Error Ratio Order

10 Mesh 4 2.8348 × 10−2 – –
20 Mesh 8 1.3784 × 10−2 2.0565 1.0402
40 Mesh 16 6.7905 × 10−3 2.0299 1.0214
80 Mesh 32 3.3786 × 10−3 2.0098 1.0071
160 Mesh 64 1.6903 × 10−3 1.9988 0.9991

Table 5
Requirements and penalty amounts for each energy year.
Energy year 2011 2012 2013

Requirement (Ri) 306000 442000 596000
Penalty (πi) 675 658 641

In both cases, the computed errors and the convergence ratio shown in Tables 3 and 4 illustrate first order convergence.
oreover, the qualitative results for both cases are very close. Nevertheless, the errors are a bit lower when the
haracteristics curves can be computed analytically.
In [4], the same nonlinear PDE is solved by replacing the Lagrange–Galerkin method by a finite differences schemes

nd first order convergence is also met. However, more refined meshes are necessary in [4] to obtain similar errors, which
nvolves larger computing time.

Concerning the fixed-point algorithm explained in Section 4.4, the convergence is attained in one or few iterations for
he same tolerance as in [4]. Moreover, we have empirically checked that the relative errors are not too much influenced
y this tolerance, although the computational cost is highly increased. Furthermore, the choice of the parameter ω was
arried out empirically.
Although second order convergence could be expected for the here treated nonlinear problem, the authors understand

hat the main reason for the observed first order convergence is due to the nonlinear aspect of the problem. Also, first
rder convergence has been observed for separate refinements of the time and spatial meshes.
Finally, note that for the analytical tests developed in [16], a second-order convergence is obtained with respect to

ime and space. However, we point out that the academic tests in [16] were developed for a linear PDE problem and
nder certain assumptions on the velocity field.

.2. Real case: pricing of a green certificate

In order to show an example of the pricing of a real REC, we consider the numerical solution of problem (12) with
eal data taken from the literature. As in [4], we use some from the New Jersey market data for Solar Renewable Energy
ertificates (SRECs) presented in [5]. In this setting, we carry out the valuation of a SREC with maturity T = 13, which
orresponds to the end of energy year 2013, which is May 31, 2013, as it is indicated in [5]. Moreover, we assume that
nergy year 2013 matches the time interval (12, 13]. Additionally, we consider that the certificate has 3 years of life,
.e. y = 3. Hence, the beginning of the certificate is t = T − y = 10 (or equivalently τ = y = 3), which is the end of
nergy year 2010, and the first compliance date is t = 11 (i.e. end of energy year 2011) which corresponds to τ = 2.
For this certificate, in Table 5 we show the values of the requirements at the end of each energy year and the

orresponding penalties if the requirements are not met. Note that the end of each energy year corresponds to maturity
r compliance date. At these dates, either the payoff or the appropriate jump conditions are applied. Additionally, the
alues of the parameters γg , δg , σg and r are the same as the ones included in Table 2 for the analytical test. In this real
ase, the valuation of the certificate is performed when seasonal effects are taken into account and modelled with the
unction given by (25).

Regarding the parameters involved in the numerical methods, we have chosen Ḡ∞ = 2× ln(8×105) and B∞ = 8×103.
oreover, in order to solve the real case, we have employed Mesh 16, the data of which are reflected in Table 1, while
10
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Fig. 1. Renewable energy certificate price at time t = T − 2/3.

Fig. 2. Renewable energy certificate price at time t = T − 1/3.

or the time discretization we have considered 100 time steps per month, i.e. ∆τ =
1

1200 . Finally, the parameter (ω) in the
uality method is set to 2 × 10−5 and the tolerance ϵ is equal to 10−5, which is again achieved in one or few iterations.
As in [4], in Fig. 1 we show the price of the certificate eight months before maturity, that is at time t = T − 2/3

or y = 2/3, equivalently), taking values between zero and the penalty amount, π . On the one hand, we can observe
hat when the values of accumulated supply, B, and renewable energy, G = exp(G̃), are low, the price of the certificate
ends to the penalty value. On the other hand, when the value of both state variables increases, the price of the certificate
ecreases, as in [5]. More precisely, for high values of B, the price goes very low, and vice versa. Nevertheless, when high
alues of G do not offset low values of B, the price goes towards the penalty, as it is shown in Fig. 1.
Next, in Fig. 2 we represent the value of the certificate for a time closer to maturity, actually four months before

maturity, i.e., at time t = T − 1/3. At this time, we can observe that, for values of accumulated certificates nearer to
requirement, low values of generation rate are linked to certificate prices equal to the penalty amount. Additionally, for
lower values of banked certificates, high enough values of generate rate are associated with prices equal to the penalty. As
expected, a low number of accumulated renewable energy certificates is compensated by a high production of renewable
energy.

Finally, for large enough values of renewable energy rate, in Fig. 3 we represent the price of the certificate versus the
number of accumulated renewable energy certificates for different times, obtaining some cross-sectional plots similar to
the ones in [4]. At t = T , which coincides with maturity, the REC price matches the penalty if the requirement is not met,
otherwise the price is zero. Then, as we move backwards in time, the curves take lower values and move to the left, due to
the diffusion of the final value. This behaviour can be also observed in [4,5]. Moreover, due to the jump condition imposed
at compliance dates, an increment in the price and a jump to the right appears when arriving at this date. Thus, in Fig. 3
we show the value at the first compliance date as well. As it is pointed out in [5] and also observed in [4], at maturity
11
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Fig. 3. Price curves for different times.

Table 6
Convergence order at time t = T − 2/3 for the mesh point (G, B) = (100 000, 200 000) in
the real case.
Time steps Meshes REC value (P) R Order

80 Mesh 4 186.6418 – –
160 Mesh 8 310.8065 – –
320 Mesh 16 427.2542 1.0662 0.0926
640 Mesh 32 485.6351 1.9946 0.9961
1280 Mesh 64 503.9941 3.1799 1.6691

and compliance dates there exists a discontinuity when the number of accumulated certificates meets the requirement,
because of the penalization multiplied by the indicator function.

The CPU time is 123 s for this real case example, i.e., this method is faster than the first one presented in [4] which
equires 223 s. The CPU of the laptop we use is an Intel(R) Core(TM) i7-10750H at 2,6 GHz with 32 GB 2933 MHz DDR4
AM.
In this real case, we have also checked the experimental order of convergence. As the analytical solution is not available,

e compute the indicator of convergence order, R, at a given mesh point, which is given by

R =

P
(

h̃
2

)
− P(h̃)

P
(

h̃
4

)
− P

(
h̃
2

) ,
where P is the REC price at the given point and the parameter h̃ indicates that we start with a level of refinement in time
and space and divide by two both the time and finite element mesh steps to get the results for h̃

2 . Finally, the order of
onvergence is given by log2(R). Thus, R = 2 corresponds to first order convergence while R = 4 corresponds to second
order convergence. Tables 6 and 7 show the pointwise error and order of convergence at time T = t−2/3 at two different
values, after computing the value of the REC at each particular point as well as the value of the error indicator R. Note
that the computed of order of convergence for the two points is between one and two. As shown in the tables we have
chosen two points are mesh nodes for all considered meshes and for which the value of the REC is greater than zero and
less than the penalization value.

6. Conclusions

The number of financial institutions interested in trading energy and power derivatives is growing and it has sparked
a drive in both industry and academia to find suitable mathematical models. The objective of this paper has been the
numerical solution of pricing problems related to renewable energy certificates (RECs) or green certificates. For this
purpose, we propose appropriate numerical methods different to the ones applied to this problem before.
12
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Table 7
Convergence order at time t = T − 2/3 for the mesh point (G, B) = (400 000, 100 000) in
the real case.
Time steps Meshes REC value (P) R Order

80 Mesh 4 313.5751 – –
160 Mesh 8 449.3907 – –
320 Mesh 16 514.4062 2.0889 1.0628
640 Mesh 32 545.1797 2.1127 1.0791
1280 Mesh 64 555.7902 2.9003 1.5362

In particular, we characterize the green certificate price as the solution of a degenerate PDE with a nonlinear convective
term due to the dependence of the drift on the unknown of the problem. Concerning this issue, an appropriate maximal
monotone operator is introduced to formulate the nonlinear problem. In this way, the nonlinear convection term can be
treated by means of a duality algorithm proposed by Bermúdez and Moreno. At each time step of the fixed point algorithm,
the linear problem is discretized by means of a characteristics Crank–Nicolson Lagrange–Galerkin method, which is the
main contribution of this paper.

Numerical results obtained in an academic problem with analytical solution, that has been used as sanity check,
illustrate the performance of the method. Next, the consideration of a real REC pricing problem is addressed (taken
from the SREC markets) and reasonable results are obtained which can be compared with the ones in [4]. In terms of
computational time, the proposed method outperforms the one proposed in [4].

Future research will focus on the mathematical modelling and numerical solution for the pricing of financial derivatives
of RECs, that are increasingly traded in energy markets.
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