
Journal of Parallel and Distributed Computing 169 (2022) 106–116

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Parallel-FST: A feature selection library for multicore clusters

Bieito Beceiro ∗, Jorge González-Domínguez, Juan Touriño

CITIC, Computer Architecture Group, Universidade da Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 November 2021
Received in revised form 20 June 2022
Accepted 20 June 2022
Available online 27 June 2022

Keywords:
Feature selection
Mutual information
MPI
HyperThreading
High performance computing

Feature selection is a subfield of machine learning focused on reducing the dimensionality of datasets
by performing a computationally intensive process. This work presents Parallel-FST, a publicly available
parallel library for feature selection that includes seven methods which follow a hybrid MPI/multithreaded
approach to reduce their runtime when executed on high performance computing systems. Performance
tests were carried out on a 256-core cluster, where Parallel-FST obtained speedups of up to 229x for
representative datasets and it was able to analyze a 512 GB dataset, which was not previously possible
with a sequential counterpart library due to memory constraints.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Big Data phenomenon has become popular in recent years
due to the continuous increase of data stored in different fields
such as bioinformatics, marketing, physics or engineering. How-
ever, these data are only valuable if we can extract useful informa-
tion from them. This increase of data slows down their analysis,
and occasionally it does not provide useful information due to the
presence of redundant or irrelevant data.

Feature Selection (FS) is the Machine Learning (ML) procedure
to remove these redundant and irrelevant data from the datasets,
making them smaller and thus more feasible to analyze without
losing relevant information. There exist many FS methods [2,22],
each one with its advantages and drawbacks which make them
useful for different scenarios. However, most FS methods present
quadratic complexity related to the number of features, which
makes them impractical for large datasets. In this work we present
Parallel-FST,1 a novel library that includes parallel implementations
of seven highly employed FS methods, all of them based on Mutual
Information (MI). More concretely, Parallel-FST includes the same
methods as FEAST,2 a broad suite of FS methods implemented in C
and Matlab that is widely used by researchers from different fields
of computational science. The FS methods included in FEAST (and
thus Parallel-FST) are theoretically described in [4].

* Corresponding author.
E-mail addresses: bieito.beceiro.fernandez@udc.es (B. Beceiro), jgonzalezd@udc.es

(J. González-Domínguez), juan@udc.es (J. Touriño).
1 Publicly available at https://gitlab .com /bieito /parallel -fst.
2 https://github .com /Craigacp /FEAST.
https://doi.org/10.1016/j.jpdc.2022.06.012
0743-7315/© 2022 The Author(s). Published by Elsevier Inc. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Parallel-FST allows us to execute all these FS methods in a High
Performance Computing (HPC) system and thus complete the anal-
yses of large datasets in a reasonable time. Specifically, it was
developed using a hybrid approach with Message Passing Interface
(MPI) [32] and C++ threads, for distributed- and shared-memory
support, respectively.

The rest of the paper is organized as follows. Section 2 sum-
marizes the related work and state of the art. Section 3 explains
the background about FS necessary to understand the rest of the
work, such as the base library FEAST and its FS methods. The par-
allel implementation and optimization of the methods included
in Parallel-FST is described in Section 4. Section 5 provides the
experimental evaluation in terms of runtime and scalability. Fi-
nally, concluding remarks and future work are presented in Sec-
tion 6.

2. Related work

There exist some ML libraries in the state of the art, such as
WEKA [10] or MAST [14], which include FS methods that can
be executed on parallel systems. Nevertheless, these parallel im-
plementations are only valid for shared-memory systems, which
are quite limited in terms of scalability as they only include tens
of cores. If more resources are needed, scientists can resort to
distributed-memory systems such as clusters or supercomputers
but, up to our knowledge, there was no FS library available that
could exploit these architectures prior to Parallel-FST.

Regardless, the idea of using parallel computing to speed up
a certain FS method has been extensively applied, using clusters,
supercomputing facilities, hardware accelerators (such as GPUs), or
le under the CC BY-NC-ND license

https://doi.org/10.1016/j.jpdc.2022.06.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.06.012&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bieito.beceiro.fernandez@udc.es
mailto:jgonzalezd@udc.es
mailto:juan@udc.es
https://gitlab.com/bieito/parallel-fst
https://github.com/Craigacp/FEAST
https://doi.org/10.1016/j.jpdc.2022.06.012
http://creativecommons.org/licenses/by-nc-nd/4.0/

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
Table 1
State of the art related to parallel FS.
Name Available Framework Year Ref.

PE-EFS No CUDA 2021 [11]
CUDA-JMI Yes CUDA 2020 [9]
parallel M-FS No Spark 2020 [34]
Hadoop-Voting No Hadoop 2020 [37]
fast-mRMR-MPI Yes MPI 2019 [8]
DiCFS Yes Spark 2019 [24]
PAGreedy No Threads 2019 [21]
MR-GAFS No Hadoop 2018 [28]
PAJMI No Threads 2017 [20]
mRMR-MR Yes Spark 2017 [27]
Asy-OS No MPI 2016 [35]
Parallel Filter No Threads 2016 [29]
Fast-mRMR Yes CUDA/Spark 2016 [26]
DWFS Web MPI 2015 [31]
VLSRF No CUDA 2015 [16]

clouds. Table 1 summarizes the state of the art related to the use
of HPC to accelerate FS algorithms.

Focusing on distributed-memory systems (the target of Parallel-
FST), several approaches are based on the message-passing pa-
radigm. Specific examples include DWFS [31], with a parallel ge-
netic algorithm, fast-mRMR-MPI [8], based on a variant of the
popular mRMR method [26], and the parallel implementation of
an online FS algorithm presented in [35].

Furthermore, Big Data frameworks such as Hadoop or Spark
are gaining attention in recent years and becoming more popu-
lar to develop FS codes that can be executed not only on clus-
ters, but also on cloud environments. We can cite, among oth-
ers, parallel implementations of FS methods based on random
forests [34], genetic algorithms [37,28], the mRMR algorithm [27],
and Correlation-based Feature Selection (CFS), either isolated [24]
or combined with methods [12,30].

However, after a thorough analysis of the literature, we can as-
sert that in all these previous works either the code is not publicly
available or it is reduced to a single algorithm that is not widely
employed by the research community. An integral library such as
Parallel-FST that provides several FS methods is a must, so that
researchers can adapt their analyses to the characteristics of the
data, as required.

3. Background: feature selection with mutual information

Parallel-FST is based on FEAST, and it includes parallel imple-
mentations of the FS methods that are available in the original
library (see [4] for further theoretical details). FEAST has been
chosen as basis as it is highly cited and has been widely used
and tested by numerous researchers. In fact, it has been used for
studies in diverse areas such as medicine [3,15], genetics [33], elec-
tronics [7], or transportation [18,6].

As previously mentioned, FS algorithms try to select only those
features that are interesting for the problem, discarding irrelevant
or redundant ones. Nevertheless, relevance and redundancy cannot
be directly measured, so they must be approximated. All FS algo-
rithms included in Parallel-FST are based on MI for this estimation.

Entropy, as the fundamental information unit of a random vari-
able, is necessary to calculate MI. It is denoted by H(X), and quan-
tifies the uncertainty present in the distribution of X . It is defined
as:

H(X) = −
∑

x∈X

p(x) log p(x) (1)

where x is any value that the random variable X can take. The
entropy of a variable will be lower if its distribution is biased to-
wards a particular event, and higher when all events present the
same probability to occur.
107
Entropy can be conditioned by other events, and the conditional
entropy of a random variable X , given another variable Y , can be
calculated with the following expression:

H(X |Y) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y) (2)

Conditional entropy can be understood as the amount of uncer-
tainty that X holds after the result of Y becomes known.

MI measures the amount of information shared between two
variables, and it can be derived from entropy. The MI between two
random variables X and Y is computed as:

MI(X; Y) = H(X) − H(X |Y)

=
∑

x∈X

∑

y∈Y

p(xy) log
p(xy)

p(x)p(y)
(3)

Since it is the difference between two entropies, MI can also be
understood as the amount of uncertainty that is removed once Y
is known. Alternatively, a simpler definition could be the amount
of information that one variable provides over the other.

As with entropy, MI can also be conditional. That is, the amount
of information that is still shared between two variables after a
third one becomes known. The MI between X and Y conditioned
by Z is computed as follows:

MI(X; Y |Z) = H(X |Z) − H(X |Y Z)

=
∑

z∈Z

p(z)
∑

x∈X

∑

y∈Y

p(xy|z) log p(xy|z)
p(x|z)p(y|z)

(4)

The following subsections provide a basic introduction to the
algorithms included in Parallel-FST. It should be noted that the no-
tation Jm(X) refers to the score of a random variable (or feature)
X when using the algorithm m. High scores mean high relevance
and low redundancy.

3.1. MIM - Mutual Information Maximisation

A first approach for computing the score of each feature could
be some kind of correlation metric between the feature and the
class label, and MI is a metric that can be used for this purpose.
This way, the MIM score for a feature Xk and a class Y is computed
as follows:

JMIM(Xk) = MI(Xk; Y) (5)

This heuristic has often appeared in the literature, for example
in [17]. The MIM score assumes independence between the fea-
tures of the dataset, so it only considers the relevance of a feature,
but not the redundancy. For this reason, the score only needs to be
computed once for each feature of the dataset, which makes MIM
the least computationally complex method of FEAST and Parallel-
FST.

The main disadvantage appears when features are not indepen-
dent. For example, if the feature with the highest score appears
twice in the dataset, it will be selected more than once, and the
set of selected features will hold a high level of redundancy.

3.2. CondMI - Conditional Mutual Information

The CondMI criterion is an optimization derived from the for-
mulation of the FS problem as a conditional likelihood problem [4].
The score for a feature Xk , a class Y and the set of already selected
features S is computed as:

JCondMI (Xk) = MI(Xk; Y |S) (6)

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
That is, the MI between the feature and the class, conditioned
by the features selected so far.

3.3. Methods in the beta-gamma space

3.3.1. MIFS - Mutual Information Feature Selection
The MIFS criterion was presented in [1] and introduces en-

hancements over MIM in order to reduce redundancy. The compu-
tation of the score of a feature Xk , a class Y and a set of selected
features S follows the formula:

JMI F S(Xk) = MI(Xk; Y) − β
∑

X j∈S

MI(Xk; X j) (7)

where β is a user-defined parameter that can be understood as the
disagreement with the assumption of dependency among features.

3.3.2. CIFE - Conditional Infomax Feature Extraction
This criterion, which was proposed in [19], can be derived from

several transformations of CondMI. The score for a feature Xk , a
class Y and a set of selected features S is computed with the fol-
lowing expression:

JC I F E(Xk) = MI(Xk; Y)

−
∑

X j∈S

MI(Xk; X j) +
∑

X j∈S

MI(Xk; X j|Y) (8)

Three main terms can be identified: the MI with the class
MI(Xk; Y), which suggests relevance; the MI with the already se-
lected features

∑
MI(Xk; X j), which suggests redundancy, and the

MI with the already selected features conditioned by the class ∑
MI(Xk; X j|Y), which can be understood as conditional redun-

dancy.

3.3.3. Beta-gamma space
As can be seen, the formulas of the MIFS and CIFE criteria have

a similar shape. If we parametrize the terms for redundancy and
conditional redundancy, we can define a two-dimensional space
in which both criteria could be expressed as a linear combination
of information theory terms. That is, with two parameters (β and
γ) we can set a weight for redundancy and conditional redun-
dancy.

This way, any criterion in this space (named “Beta-Gamma”)
can be defined as:

J BetaGamma(Xk) = MI(Xk; Y)

− β
∑

X j∈S

MI(Xk; X j) + γ
∑

X j∈S

MI(Xk; X j|Y)(9)

From this expression, some already explained criteria can be
found:

• MIM: β = 0, γ = 0
• MIFS: β ∈ [0, 1], γ = 0
• CIFE: β = 1, γ = 1

Since both MIFS and CIFE can be derived from the Beta-Gamma
space, they were merged into a single method “Beta-Gamma”
rather than implementing a different method for each of them.
Meanwhile, although MIM can be computed with β = 0 and γ = 0,
it was implemented in a single method in order to avoid the com-
putation of information measurements that would be otherwise
multiplied by zero.
108
3.4. JMI - Joint Mutual Information

The JMI criterion is an alternative approach to MIFS presented
in [36], which aims to increase complementary information among
features rather than minimizing redundancy. Given a feature Xk ,
the class Y and the set of already selected features S , the JMI score
is computed as follows:

J JMI (Xk) =
∑

X j∈S

MI(Xk X j; Y) (10)

That is, the sum of the information between the class and a
random joint variable Xk X j is defined by joining the candidate
Xk with every already selected feature. This criterion is based on
selecting a candidate feature when it contributes with new infor-
mation complementary to the other selected features.

3.5. mRMR - Max-Relevance Min-Redundancy

Another criterion that varies with the number of selected fea-
tures is mRMR [25]. However, it does not take conditional redun-
dancy into account unlike CIFE. The mRMR score of a feature Xk

according to the class Y and a set of selected features S can be
computed as:

JmRMR(Xk) = MI(Xk; Y) − 1

|S|
∑

X j∈S

MI(Xk; X j) (11)

3.6. ICAP - Interaction Capping

This criterion was proposed in [13] and, unlike the previous
methods, it makes use of order operators. The score of a feature
Xk , given a class Y and a set of selected features S , is computed
as:

J IC AP (Xk) = MI(Xk; Y)

−
∑

X j∈S

max
[
0, {MI(Xk; X j) − MI(Xk; X j|Y)}] (12)

The usage of order operators complicates a probabilistic inter-
pretation of the ICAP criterion. However, it can be seen that fea-
tures with higher redundancy will achieve lower scores.

3.7. DISR - Double Input Symmetrical Relevance

Finally, DISR is a modification of JMI proposed in [23]. The score
of a feature Xk , given the class Y and the set of selected features S ,
is calculated by dividing the MI value by the conditional entropy,
with the following expression:

J D I SR(Xk) =
∑

X j∈S

MI(Xk X j; Y)

H(Xk X j|Y)
(13)

3.8. Inclusion of weights

Some of the described methods (MIM, CondMI, JMI and DISR)
have weighted versions. These approaches take an additional vec-
tor of weights that is used to specify the importance of each sam-
ple, so that the computation of the entropy or MI can be manually
biased.

For instance, the computation of the MI for two variables X
and Y would be calculated as follows, where w(xy) is the weight
of the co-occurrence of two values of each feature:

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116

Fig. 1. Diagram of the distributed execution for all methods included in Parallel-FST.
Table 2
Example of dividing a continuous range
between 0.6 and 3.1 into five bins.
Bin Range

0 [0.6, 1.1)
1 [1.1, 1.6)
2 [1.6, 2.1)
3 [2.1, 2.6)
4 [2.6, 3.1]

MI(X; Y) =
∑

x∈X

∑

y∈Y

w(xy)p(xy) log
p(xy)

p(x)p(y)
(14)

This makes it possible to introduce knowledge and to give a
meaning to certain samples.

4. Methodology

The Parallel-FST library includes the explained FS methods,
written in C++ with MPI routines and threads to accelerate the
execution on multicore clusters. Information about system require-
ments, as well as instructions to install, compile, and execute
the library are included in its website: https://gitlab .com /bieito /
parallel -fst.

Fig. 1 illustrates the general workflow of the approach followed
by Parallel-FST. Besides the appropriate work distribution among
processes and threads, with the necessary synchronizations to find
the best candidate features, the workflow also includes a prepro-
cessing step (data discretization) and two optimizations (semi-
distributed data loading and range compression). Each of these
phases are detailed in the following subsections.

4.1. Data discretization

MI, and consequently all the methods explained in Section 3,
work with discrete data. As many real datasets contain continu-
ous data, Parallel-FST also includes an auxiliary tool to discretize
the input datasets as a preprocessing step. Specifically, it applies
a binning approach where the continuous range is divided into
n bins or fragments of equal length, and each value in the input
dataset is replaced by the identifier of the fragment that contains
it.

Tables 2 and 3 illustrate, for an example with five continuous
data between 0.6 and 3.1, the procedure to convert them into dis-
crete values using five bins. First, the range is divided into five
109
Table 3
Assignment of a discrete value to a continuous one using the bins of the previous
table.

Feature Value

f 1.4 0.6 0.9 3.1 2.8
f ′ 1 0 0 4 4

fragments of equal size (0.5) and the bins are created (see Table 2).
Then, the continuous values are replaced by the identifier of the
bin (Table 3).

4.2. Data and workload distribution

Parallel-FST uses MPI to exploit the computational capability of
HPC clusters, by distributing data and work among the available
cluster nodes and cores within each node. Algorithm 1 shows the
structure of the FS methods included in Parallel-FST. They all start
with the selection of the first feature as the one having the high-
est MI with the class (Lines 5 to 8). Then, the rest of the features
are selected according to the metric used by the FS method (Line
15), as seen in Section 3. As previously explained, most metrics
depend not only on the class, but also on the already selected fea-
tures. Note that Line 13 avoids calculating the score of previously
selected features, as they cannot be chosen again.

An analysis of the pseudocode shows that most of the work is
performed in the nested loops of Lines 10 and 12. The outer loop
(Line 10) cannot be parallelized, as an iteration cannot start un-
til the previous one has finished (the information of the previously
selected feature is necessary to choose the next one). Nevertheless,
the inner loop is a suitable target for parallelization as the com-
putation of the score for each feature is independent of the other
computations. Therefore, the FS implementations in Parallel-FST di-
vide the input dataset into NP blocks with the same number of
features per block, NP being the number of MPI processes (Lines
6 and 12). Each process computes the score of all the features in
the block. This distribution of features is performed once at the
beginning of the execution and all processes work over the same
features in all the iterations of the outer loop. This static data dis-
tribution with equal-sized blocks is suitable for the FS methods
included in Parallel-FST as the workload (computation of the score)
is similar for all features (the complexity depends on the number
of samples, which is the same for all features). Consequently, the
workload is balanced among the MPI processes. The only imbal-
ance can be generated by those features that have already been

https://gitlab.com/bieito/parallel-fst
https://gitlab.com/bieito/parallel-fst

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
Algorithm 1: General structure of the FS methods included
in Parallel-FST for each process (MPI routines in red and
loops shared among threads in blue).

1 Input: Discrete subdataset with M
NP features, N samples, and one class Y ;

Number of features to select NS
2 Output: Vectors selIds and selScores, of length NS , with the ids of the

selected features and the scores obtained by the metric, respectively
3 Initialize f eat Score as a vector of length M

NP
4 Initialize selData as a vector of length NS
5 // Compute scores of local features (multithread)

6 for every local feature Fi with 0 ≤ i < M
NP do

7 f eat Score[i] = MI(Fi; Y)

8 selIds[0], selScore[0] = FindAndShareBest(featScore, selData[0])
9 // Select the other features

10 for every k with 0 < k < NS do
11 // Compute scores for unselected local features
12 for every local feature Fi with 0 ≤ i < M

NP do
13 if i is not in selIds then
14 // Depends on the selected metric
15 f eat Score[i] = calcScore(Fi; Y ; selData)
16 selIds[k], selScore[k] = FindAndShareBest(featScore, selData[k])

Procedure FindAndShareBest(featScore, selData_k)
17 // Find id and score of best local feature
18 localId = argMax(f eat Score)
19 localScore =max(f eat Score)
20 // Find best global score and owner process
21 globalScore, oRank = AllreduceMAXLOC (localScore, pRank)
22 if oRank == pRank then
23 globalId = localId + pRank ∗ M

NP
24 selData_k = FlocalId
25 f eat Score[localId] = 0
26 globalId = BcastoRank→W ORLD (globalId)
27 selData_k = BcastoRank→W ORLD (selData_k)
28 return globalId, globalScore

selected and thus do not need to have their score calculated again
(Line 13). The worst scenario would be that all selected features
fall in the same block. However, we must take into account that
in a real world analysis the percentage of selected features must
be low in order to obtain useful information. Therefore, the im-
pact of this workload imbalance is almost negligible even in the
worst-case scenario.

Each process has the data corresponding to its block of features
stored into its memory prior to the nested loop, through the pro-
cedure that will be explained in Subsection 4.4. Therefore, the only
point of synchronization among processes is the choice of the fea-
ture with the highest score (procedure FindAndShareBest in
Algorithm 1). Due to distributing the loops of Lines 6 and 12, each
process has found the most promising feature of its block, but the
algorithm must select only the best one among them. This is per-
formed by an MPI_Allreduce collective with the MPI_MAXLOC
operator (Line 21). Once the feature is selected, the owner process
sends its data to the other processes with MPI_Bcast routines,
as this information is necessary in the next iterations of the outer
loop to compute the new scores (Line 15).

4.3. Hybrid MPI/multithreaded implementation

The previous subsection has explained how the data and work-
load are distributed among different MPI processes. This approach
would be sufficient to execute the FS methods on distributed-
memory systems by creating one MPI process per core. However,
Parallel-FST includes a second level of parallelism, where each pro-
cess can launch several C++ threads that collaborate in the compu-
tation of the scores of the block.

Consequently, the work of the loops in Lines 6 and 12 is dis-
tributed in two levels: first, the features are divided into equal-
sized blocks, with one block per MPI process; and, second, the
110
features of each single block are distributed among the threads
launched by the owner process.

One typical use of this hybrid MPI/multithreaded approach on
modern multicore clusters consists in creating one process per
node, and the same number of threads as cores in the node, but in-
termediate configurations with different number of processes and
threads can be applied. This approach has the following advan-
tages:

• Creation, synchronization and destruction of threads is lighter
than for processes. Therefore, reducing the number of pro-
cesses per node in each execution should decrease runtime.

• It allows to exploit the HyperThreading technology currently
available in most processors, where two logical threads can
share the resources of a single physical core.

• As explained in the previous subsection, the data of the
lastest selected feature must be sent from its owner pro-
cess to the others. The use of threads allows replacing costly
explicit message-passing communications (broadcasts in this
case) with implicit shared-memory communications at node
level.

4.4. Semi-distributed data loading

As mentioned in Subsection 4.2, the input datasets are parti-
tioned and distributed among MPI processes so that they can work
in parallel over their assigned blocks of features. A naive approach
for this data distribution would consist in the root process read-
ing the whole dataset from disk and storing it into a buffer, which
would later be scattered among all processes using the appropriate
MPI routines. However, that approach is limited by the memory of
the node where the root process runs, so it would not be possi-
ble to straightforwardly analyze datasets larger than this memory
size.

Since the amount of information that is collected has signif-
icantly grown in the latest years, most extremely large datasets
are nowadays stored using a sparse format, i.e., some values (usu-
ally zeros) are not explicitly stored in order to reduce disk storage.
Parallel-FST needs a solution that allows an efficient processing
of these huge sparse datasets. For instance, the sequential imple-
mentations in FEAST need the data as dense matrices so that a
preprocessing step to convert them is required. Our solution con-
sists of three steps, following the diagram of Fig. 2:

1. The root process reads the dataset as a sparse matrix.
2. The MPI_Bcast collective is used to send the sparse matrix

to all processes.
3. Each process “expands” as a dense matrix its assigned block of

features exclusively.

In this way, the memory size limitation is overcome, and it is
possible to analyze datasets that fulfill these two conditions:

• They fit in the memory of one node in sparse format.
• The block of features assigned to each MPI process fits in its

available memory.

These conditions are significantly less restrictive than the origi-
nal one (the whole matrix in dense format should fit in the mem-
ory of only one node) and thus this semi-distributed data loading
allows working over large datasets. Furthermore, as the broadcast
is performed with the data in sparse format, its impact on the total
runtime remains limited.

It should be noted that other approaches could be developed
for this purpose. For instance, the root process could iteratively
read blocks of data from disk, expand them into dense format,

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
Fig. 2. Diagram of the semi-distributed data loading procedure.

Feature Values

f1 0 2 2 0 1
f2 1 3 3 2 1

f1 \ f2 0 1 2 3
0 0 1 1 0
1 0 1 0 0
2 0 0 0 2

Fig. 3. Features and co-occurrence matrix (dimension 3x4) when the number of
different values is close to the difference between the minimum and the maximum
sample.

and send each block of features to the process that will use it.
However, this approach would perform all the format translation
sequentially, with high impact on performance, while our semi-
distributed data loading performs the expansion in parallel. More-
over, communication would be more expensive as blocks would be
sent in dense format. A similar alternative that sends the data to
the other processes in sparse format could also be implemented.
However, many widely employed sparse formats store the datasets
in a sample-major fashion (for instance, LIBSVM [5]), while the
FS algorithms work with feature-major matrices. This would mean
that each row (i.e. sample) would be split into blocks, and each
block would be sent to a different process, so there would be a
large number of small size communications, and therefore high
overhead.

Finally, it is important to note that Parallel-FST is flexible
enough to work with different types of files as input. In scenar-
ios where the dataset is stored in dense format, it is loaded with
the naive approach explained at the beginning of this subsection.
The semi-distributed data loading is only applied to sparse for-
mats, which is the common case for large datasets.

4.5. Range compression

The original sequential FS methods are based on the usage
and combination of information metrics, which need to calculate
co-occurrences between values instead of focusing on the values
themselves. For instance, the values {100, 200, 100} are treated
similarly to {1, 2, 1}. In order to compute the information metrics
between two features, bidimensional histograms are created. How-
ever, when intermediate values are missing in the feature, these
histograms may contain some rows or columns in which all values
are zero. These rows and columns imply a waste of memory and
computation time since they have no impact in the results of the
111
Feature Values

f3 0 1000 1000 0 1000
f4 1000 2000 2000 1000 1000

f3 \ f4 0 . . . 1000 . . . 2000
0 0 . . . 2 . . . 0
.

1000 0 . . . 1 . . . 2

Fig. 4. Features and co-occurrence matrix (dimension 1001x2001) when the number
of different values is much lower than the difference between the minimum and the
maximum sample.

information metrics. Two examples are shown in Figs. 3 and 4. The
former illustrates a common case, where only the first column is
completely full of zeros, while the latter shows an extreme exam-
ple where memory requirements are huge.

Some datasets hold features that take values from a wide
range of numbers, so this issue might slow the computation or
even completely fill the memory of the system. For example, a
dataset about CPUs in which there are features for minimum
and maximum frequency (in kHz) with ranges [0, 700000] and
[500000, 4000000] respectively, would need a co-occurrence ma-
trix of 10 TB.

Parallel-FST includes an efficient solution to this problem,
which has been named as “range compression”. It basically per-
forms a translation of the values of the feature so that the inter-
mediate values are suppressed. This way, the creation and compu-
tation over rows and columns that do not affect the results of the
metrics are avoided.

Algorithm 2 shows a pseudocode of the procedure. Each feature
(i.e. row) is processed independently, and Parallel-FST attempts
to find new values so that the range of the resulting feature is
minimal. This is achieved through f eatMap and mapCounter: the
former an array used to keep the relationship between new and
old values, and the latter an accumulator that counts the number
of distinct values found so far.

Algorithm 2: Range compression procedure.

1 Input: Matrix A with M rows (features) and N columns (samples)
2 Output: Updated matrix A
3 for every feature F j in A with 0 ≤ j < M do
4 maxState ←max(F j)

5 f eatMap ← zeros(maxState)
6 mapCounter ← 1
7 for every i with 0 ≤ i < N do
8 old_s ← F j [i]
9 if f eatMap[old_s] = 0 then

10 f eatMap[old_s] ←mapCounter
11 mapCounter ←mapCounter + 1
12 F j [i] ← f eatMap[old_s] − 1

This procedure presents linear complexity, thus its execution
is very fast. Consequently, the overhead of performing the range
compression is almost negligible, but the impact on the reduc-
tion of the FS execution time can be huge. Furthermore, as range
compression is a per-feature procedure, it can be executed in
parallel by the MPI processes, thus further reducing the over-
head.

The impact of the range compression can be observed in the ex-
amples of Figs. 5 and 6, which show the results of its application
to the features of Figs. 3 and 4, respectively. Note that the columns
and rows that were composed of zeros, which were useless to the
information metrics, do not appear anymore. In the extreme sce-
nario (Figs. 4 and 6) the dimension of the co-occurrence matrix is
reduced from two million elements to only four.

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
Feature Values

f ′
1 0 1 1 0 2
f ′
2 0 1 1 2 0

f ′
1 \ f ′

2 0 1 2
0 1 0 1
1 0 2 0
2 1 0 0

Fig. 5. Features and co-occurrence matrix after range compression (dimension 3x3
instead of 3x4) when the number of different values is close to the difference be-
tween the minimum and the maximum sample.

Feature Values

f ′
3 0 1 1 0 1
f ′
4 0 1 1 0 0

f ′
3 \ f ′

4 0 1
0 2 0
1 1 2

Fig. 6. Features and co-occurrence matrix after range compression (dimension 2x2
instead of 1001x2001) when the number of different values is much lower than the
difference between the minimum and the maximum sample.

As a final remark note that the range compression is a general
optimization technique that can also be directly applied to the im-
plementations available in FEAST or other sequential libraries in
order to improve their performance.

5. Experimental evaluation

Parallel-FST has been extensively compared to the sequential C
version of FEAST,3 whose FS methods have been presented in [4].
First, it was proved that the output results of the methods available
both in FEAST and Parallel-FST are identical. The rest of this section
compares both libraries in terms of performance.

The comparison with the state of the art was focused on FEAST
as it is the only library in the literature that includes all these
methods, its C implementations are fast for sequential compu-
tation, it is widely employed by scientists, and provides exactly
the same results as Parallel-FST. Although FEAST does not include
any support for parallel computing the runtime and speedups
presented in this section are sufficient to prove the quality of
the hybrid MPI/multithreaded implementation used in Parallel-FST.
Weka [10], another highly employed library with FS and multi-
threaded support, was also considered for comparison. However, it
was discarded for two reasons. On the one hand, the FS methods
included in Weka differ from those implemented in Parallel-FST. As
will be seen in this section the runtime for FS significantly depends
on the method, so it would be unfair to compare the speed of dif-
ferent algorithms. On the other hand, Weka is implemented with
Java, employing its multithreaded support for shared-memory sys-
tems. As Java executions are based on a virtual machine, they are
usually slower than those of C/C++ and thus not comparable with
the FEAST/Parallel-FST implementations in order to obtain proper
conclusions.

5.1. Experimental configuration

A multicore cluster with 16 nodes, each one with two octa-core
Intel Xeon E5-2660 processors and 64 GB of memory, has been
used. It means that our experiments could be executed on up to

3 https://github .com /Craigacp /FEAST.
112
Table 4
Characteristics of the datasets (the size is calculated using 8B per value).

#Features #Samples #Classes Size

Epsilon 2,000 400,000 2 6.96GB
RCV1 47,236 20,242 2 7.12GB
News20 62,061 15,935 20 7.37GB
SVHN 3,072 531,131 10 12.16GB
E2006 4,272,227 16,087 - 512.06GB

256 cores (16 cores per node). Moreover, as this architecture pro-
vides HyperThreading, up to 512 threads can be used (two logical
threads per core). The 16 nodes are connected through an Infini-
Band FDR network with high bandwidth and low latency.

Regarding software, both FEAST and Parallel-FST used the GNU
C/C++ compiler v8.3.0, while the latter was also linked to the
OpenMPI library v3.1.4. Finally, all the experiments were run with
the nodes in exclusive mode, i.e. the hardware was never shared
by other jobs.

Five publicly available datasets with different characteristics
(summarized in Table 4) have been used for the evaluation. They
were all obtained from the LIBSVM collection [5], which stores
them in sparse format in order to reduce disk and memory con-
sumption. Therefore, the semi-distributed data loading technique
presented in Subsection 4.4 is very useful in this case. On the one
hand, two of the datasets (Epsilon and SVHN) are used as ex-
amples for scenarios with more samples than features. The first
one, with only two classes, is an artificial dataset created for the
“Pascal large scale learning challenge”. The second dataset, which
is multiclass, stores pictures of house plates with 32x32 resolu-
tion, with the features representing the RGB values for each pixel.
On the other hand, the rest of datasets contain more features than
samples. RCV1 is a dataset with two classes that includes news
categorized by hand for research purposes. News20 also contains
documents about news, divided into 20 classes. Finally, E2006 was
used as an example of a huge dataset that does not fit into the
memory of one node. It contains information of reports obtained
from several US companies between the years 1996 and 2006. This
dataset is usually employed for regression, thus not having a spe-
cific feature used as class.

All the experiments shown in this section have been obtained
after applying a discretization with 128 bins and by fixing the
number of selected features to 200. This number is high enough
to show whether there is workload imbalance because the already
selected features do not require work, but not too high to avoid
selecting too many features, which will never be the case in a real
scenario. Fig. 7 shows (in logarithmic scale) the runtime of the
different FS methods when using the sequential version available
in FEAST (and applying the range compression technique). E2006
could not be analyzed as loading it into memory requires more
than the 512 GB available in a single node of the cluster. This fig-
ure shows that the runtime is extremely variable among the FS
methods. For instance, as explained in Section 3, MIM is a very
fast and simple method that takes into account the amount of in-
formation shared between the feature and the class, but not the
redundancy among features. On the contrary, CondMI is the most
expensive one, especially when working on datasets with a large
number of samples (Epsilon and SVHN).

Table 5 shows the runtime of the FEAST version of the most
computationally expensive method (CondMI) with and without
range compression, in order to give insights about the benefits
that this technique can provide to sequential FS methods. Range
compression is beneficial in all scenarios but, as explained in Sec-
tion 4.5, its impact on performance largely depends on the variety
of data in the input dataset.

https://github.com/Craigacp/FEAST

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
Fig. 7. Runtime (in seconds) needed by the original methods in FEAST.

Table 5
Runtime (in seconds) of the sequential CondMI method in FEAST with and without
range compression (RC), as well as the time required to complete this technique.

Without RC With RC Time for RC

Epsilon 46,214 44,430 1.91
RCV1 41,596 6,221 2.12
News20 27,611 3,799 2.21
SVHN 96,113 93,246 3.68

5.2. Performance analysis

The performance evaluation started by searching for the best
combination of threads and MPI processes within each node. As
each node contains two octa-core processors (16 physical cores)
and allows for HyperThreading, all configurations launching a to-
tal of 32 threads per node were tested (i.e., one process with
32 threads, two processes with 16 threads, four processes with
8 threads and so on). The configuration with two processes per
node and 16 threads per process obtained the best results in all
cases, and thus it has been used for all the scalability experi-
ments. This is a reasonable result, as each node has two processors,
each one with its own memory module. Thus, this configuration
maps one MPI process per processor and it guarantees that threads
only access the memory module of the processor where they are
launched.

The graphs in Fig. 8 show the speedups obtained by the hybrid
MPI/threads implementation of the different FS methods present
in Parallel-FST from one node (16 physical cores) to 16 nodes (256
physical cores), when compared to the original FEAST counterparts
(using range compression in all the experiments). E2006 is not
included as, due to memory constraints, it could only be analyzed
when using the whole cluster, and thus there is no base sequential
runtime to calculate the speedup. The following conclusions can be
drawn:

• In general, the speedups are higher for those datasets with
more features than samples (RCV1 and News20). The main
reason is that the complexity of the methods depends on the
number of features, and the higher the complexity the more
opportunities of parallelism. Moreover, as explained in Subsec-
tion 4.2, the data of the feature selected in each iteration must
be broadcast from its owner to the other MPI processes. When
increasing the number of samples the weight of the commu-
nications, and thus the performance overhead, is higher.

• JMI, ICAP, DISR and the methods of the Beta-Gamma space
achieve high scalability for the four datasets, reaching parallel
efficiencies higher than 80% even for the whole cluster. They
also present superlinear speedups for some experiments with
two, four and eight nodes.

• mRMR obtains lower speedups than the four previous meth-
ods, due to its lower complexity, but it still achieves good
scalability for the four datasets. It also presents superlinear
speedups for some experiments with two nodes (32 cores).
113
Table 6
Runtimes of the Parallel-FST methods
using the whole cluster (16 nodes) to
analyze the E2006 dataset.

Method Time (s)

MIM 17
JMI 788
mRMR 328
ICAP 1,463
DISR 1,123
BetaGamma 1,505
CondMI 1,783

• CondMI is the method with the highest variability depending
on the analyzed dataset. It is able to obtain an acceleration
of 229x over the sequential implementation available in FEAST
when working with the News20 dataset, but the speedups are
not higher than 55 for the two datasets with more samples
than features (Epsilon and SVHN). In general, the perfor-
mance of this FS method is really dependent on the number
of samples, as was already remarked when analyzing the run-
time of the original implementations (see Fig. 7).

• The only method that presents a limited scalability is MIM.
The reason is not an inefficient parallel implementation but
the high speed of this method in the sequential library FEAST,
as it only has to compute one MI calculation per feature (see
Subsection 3.1). In fact, the original implementation of MIM
requires less than 15 seconds for the four datasets that it can
analyze (see Fig. 7).

The results presented in Fig. 8 prove the large increase in speed
that can be achieved thanks to Parallel-FST. For instance, the FS
methods based on the Beta-Gamma space, as well as ICAP and
DISR, require more than three hours to analyze the SVHN dataset
with FEAST, and this time is reduced to around one minute with
the implementations available in Parallel-FST. Another relevant ex-
ample is the News20 dataset, where FEAST can require up to one
hour to select the 200 features, while all methods in Parallel-FST
finish in less than 18 seconds. The only exception to these gains
is the MIM method, where there is no room for improvement us-
ing parallel computing techniques, as its FEAST implementation is
already very fast.

Finally, but not less important, we should remark that Parallel-
FST not only reduces the runtime compared to FEAST, but it also
allows us to complete FS analyses on scenarios previously not fea-
sible for the sequential library. For instance, as mentioned earlier,
every method in FEAST fails when trying to analyze the E2006
dataset, as it would need around 512 GB of memory to be loaded,
which is too much for almost any shared-memory system. Never-
theless, our parallel implementation distributes the features among
the MPI processes (see Section 4.2) and thus it can aggregate the
memory of the whole cluster (64 GB per node, 1 TB in total) to
complete the FS analysis using the seven methods. Runtimes for
this dataset are shown in Table 6, ranging from 17 seconds with
MIM to approximately 30 minutes with CondMI.

6. Conclusion

Feature selection has become a key step in ML due to the con-
tinuous increase of the average dataset sizes in different fields such
as text mining, genetics or bioinformatics. This technique discards
those features that are irrelevant or redundant, and whose inclu-
sion in the ML analyses would lead to very high runtimes or even
inaccurate conclusions. Nevertheless, the high computational and
memory requirements prevent the use of most FS methods for
large datasets.

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116

Fig. 8. Speedups of the FS methods included in Parallel-FST for a varying number of nodes, using as basis the sequential implementations available in FEAST with range
compression. Each node contains 16 cores and allows for HyperThreading (two MPI processes per node, each one with 16 threads).
114

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
In this work we have presented Parallel-FST, a novel library
whose aim is to accelerate the FS procedure by providing hybrid
MPI/multithreaded implementations of seven FS methods (each
one with two versions, with and without weights). All the methods
included in the library follow the same parallel approach. Data and
workload are distributed among MPI processes and C++ threads to
exploit multicore clusters, including the HyperThreading technol-
ogy. Furthermore, two optimization techniques (semi-distributed
data loading and range compression) were implemented to im-
prove performance and reduce memory requirements. Parallel-
FST is publicly available to download under open source license
at https://gitlab .com /bieito /parallel -fst.

The experimental evaluation proved that the features discarded
by the methods of Parallel-FST are exactly the same as those of
a widely employed sequential counterpart (FEAST), but the analy-
sis is completed in significantly less time. The scalability of most
methods is high, reaching speedups of up to 229 on a multicore
cluster with 16 nodes (256 cores, 89% of efficiency) and even ob-
taining superlinear speedups for experiments with two, four and
eight nodes (32, 64 and 128 cores, respectively). For instance, all
parallel methods are able to select the most appropriate 200 fea-
tures of a 7 GB dataset in less than 18 seconds when working on
the whole cluster. The parallel implementations presented in this
work distribute the features among MPI processes and thus they
can exploit the memory of several nodes within a cluster. It means
that Parallel-FST can complete FS analyses for datasets that do not
fit in the memory of one single system or node and therefore can-
not be computed by sequential libraries such as FEAST.

Future work can continue in three directions. First, attempt to
further improve the performance of Parallel-FST by adding SIMD
support with AVX directives. Second, extend the library to include
parallel versions of other FS methods not based on MI (e.g. CFS).
And third, work on the development of a similar parallel library fo-
cused on GPUs, so that researchers could also exploit these widely
spread architectures.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This research was supported by the Ministry of Science and In-
novation of Spain (PID2019-104184RB-I00/AEI/10.13039/
501100011033), by the Ministry of Universities of Spain under
grant FPU20/00997, and by Xunta de Galicia and FEDER funds
of the EU (CITIC, Centro de Investigación de Galicia accredita-
tion 2019-2022, ref. ED431G 2019/01; Consolidation Program of
Competitive Reference Groups, ED431C 2021/30). Funding for open
access charge: Universidade da Coruña/CISUG.

References

[1] R. Battiti, Using mutual information for selecting features in supervised neural
net learning, IEEE Trans. Neural Netw. 5 (4) (1994) 537–550.

[2] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, Feature Selection for
High-Dimensional Data, Springer, 2015.

[3] N.M. Braman, M. Etesami, P. Prasanna, C. Dubchuk, H. Gilmore, P. Tiwari,
D. Plecha, A. Madabhushi, Intratumoral and peritumoral radiomics for the
pretreatment prediction of pathological complete response to neoadjuvant
chemotherapy based on breast DCE-MRI, Breast Cancer Res. 19 (1) (2017) 1–14.

[4] G. Brown, A. Pocock, M.-J. Zhao, M. Luján, Conditional likelihood maximisa-
tion: a unifying framework for information theoretic feature selection, J. Mach.
Learn. Res. 13 (2012) 27–66.

[5] C.-C. Chang, C.-J. Linn, LIBSVM: a library for support vector machines, ACM
Trans. Intell. Syst. Technol. 2 (3) (2011) 27.
115
[6] W. Choi, H.J. Jo, S. Woo, J.Y. Chun, J. Park, D.H. Lee, Identifying ecus using inim-
itable characteristics of signals in controller area networks, IEEE Trans. Veh.
Technol. 67 (6) (2018) 4757–4770.

[7] A. Das, N. Borisov, M. Caesar, Tracking mobile web users through motion sen-
sors: attacks and defenses, in: Proceedings of the 23rd Annual Network and
Distributed System Security Symposium, 2016.

[8] J. González-Domínguez, V. Bolón-Canedo, B. Freire, J. Touriño, Parallel feature
selection for distributed-memory clusters, Inf. Sci. 496 (2019) 399–409.

[9] J. González-Domínguez, R.R. Expósito, V. Bolón-Canedo, CUDA-JMI: acceleration
of feature selection on heterogeneous systems, Future Gener. Comput. Syst. 102
(2020) 426–436.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA data mining software: an update, ACM SIGKDD Explor. Newsl. 11 (1)
(2009) 10–18.

[11] N.M. Hijazi, H. Faris, I. Aljarah, A parallel metaheuristic approach for ensem-
ble feature selection based on multi-core architectures, Expert Syst. Appl. 182
(2021) 115290.

[12] V.J. Hodge, S. O’Keefe, J. Austin, Hadoop neural network for parallel and dis-
tributed feature selection, Neural Netw. 78 (2016) 24–35.

[13] A. Jakulin, Machine Learning Based on Attribute Interactions, Ph.D. thesis, Uni-
versity of Ljubljana, Slovenia, 2005.

[14] A. Kleerekoper, M. Pappas, A. Pocock, G. Brown, M. Lujan, A scalable imple-
mentation of information theoretic feature selection for high dimensional data,
in: Proceedings of the 2015 IEEE International Conference on Big Data, 2015,
pp. 339–346.

[15] I.O. Korolev, L.L. Symonds, A.C. Bozoki, Predicting progression from mild cog-
nitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma
biomarkers via probabilistic pattern classification, PLoS ONE 11 (2) (2016)
e0138866.

[16] K.-Y. Lee, P. Liu, K.-S. Leung, M.-H. Wong, Very large scale ReliefF algorithm on
GPU for genome-wide association study, in: Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA), 2015, pp. 78–84.

[17] D.D. Lewis, Feature selection and feature extraction for text categorization, in:
Proceedings of the 1992 Workshop on Speech and Natural Language, 1992,
pp. 212–217.

[18] G. Li, S.E. Li, B. Cheng, P. Green, Estimation of driving style in naturalistic high-
way traffic using maneuver transition probabilities, Transp. Res., Part C, Emerg.
Technol. 74 (2017) 113–125.

[19] D. Lin, X. Tang, Conditional infomax learning: an integrated framework for fea-
ture extraction and fusion, in: Proceedings of the 2006 European Conference
on Computer Vision, 2006, pp. 68–82.

[20] H. Liu, G. Ditzler, Speeding up joint mutual information feature selection with
an optimization heuristic, in: Proceedings of the 2017 IEEE Symposium Series
on Computational Intelligence, 2017, pp. 1–8.

[21] H. Liu, G. Ditzler, A semi-parallel framework for greedy information-theoretic
feature selection, Inf. Sci. 492 (2019) 13–28.

[22] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining,
Springer Science & Business Media, 2012.

[23] P.E. Meyer, G. Bontempi, On the use of variable complementarity for feature
selection in cancer classification, in: Proceedings of the Workshop on Applica-
tions of Evolutionary Computation, 2006, pp. 91–102.

[24] R.-J. Palma-Mendoza, L. de Marcos, D. Rodriguez, A. Alonso-Betanzos, Dis-
tributed correlation-based feature selection in Spark, Inf. Sci. 496 (2019)
287–299.

[25] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern
Anal. Mach. Intell. 27 (8) (2005) 1226–1238.

[26] S. Ramírez-Gallego, I. Lastra, D. Martínez-Rego, V. Bolón-Canedo, J.M. Benítez, F.
Herrera, A. Alonso-Betanzos, Fast-mRMR: fast minimum redundancy maximum
relevance algorithm for high-dimensional big data, Int. J. Intell. Syst. 32 (2)
(2017) 134–152.

[27] C. Reggiani, Y.-A. Le Borgne, G. Bontempi, Feature selection in high-dimensional
dataset using MapReduce, in: Proceedings of the 29th Benelux Conference on
Artificial Intelligence, 2017, pp. 101–115.

[28] R. Saidi, W.B. Ncir, N. Essoussi, Feature selection using genetic algorithm for
big data, in: Proceedings of the International Conference on Advanced Machine
Learning Technologies and Applications, 2018, pp. 352–361.

[29] A. Salmerón, A.L. Madsen, F. Jensen, H. Langseth, T.D. Nielsen, D. Ramos-López,
A.M. Martínez, A.R. Masegosa, Parallel filter-based feature selection based on
balanced incomplete block designs, in: Proceedings of the 22nd European Con-
ference on Artificial Intelligence, 2016, pp. 743–750.

[30] C.K. Sarumathiy, K. Geetha, C. Rajan, Improvement in Hadoop performance
using integrated feature extraction and machine learning algorithms, Soft Com-
put. 24 (1) (2020) 627–636.

[31] O. Soufan, D. Kleftogiannis, P. Kalnis, V.B. Bajic, DWFS: a wrapper feature se-
lection tool based on a parallel genetic algorithm, PLoS ONE 10 (2) (2015)
e0117988.

[32] The MPI Forum, MPI: a message passing interface (version 3.1), http://mpi -
forum .org /docs /mpi -3 .1 /mpi31 -report .pdf, 2015.

https://gitlab.com/bieito/parallel-fst
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBB98D8466A6B5C17EB525C423023EFBFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBB98D8466A6B5C17EB525C423023EFBFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7D4883FEAC2C828238C29CF184665348s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7D4883FEAC2C828238C29CF184665348s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCA9793C6B0DA4E398BBA23AD97420ECFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCA9793C6B0DA4E398BBA23AD97420ECFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCA9793C6B0DA4E398BBA23AD97420ECFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCA9793C6B0DA4E398BBA23AD97420ECFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8B88FD72165158222197F4A4D14AB824s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8B88FD72165158222197F4A4D14AB824s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8B88FD72165158222197F4A4D14AB824s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA3CF19501138F29D2107A275E7670846s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA3CF19501138F29D2107A275E7670846s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib17C92D65763AAE6711703D152783B232s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib17C92D65763AAE6711703D152783B232s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib17C92D65763AAE6711703D152783B232s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib37BE3F7ADF3FCDE36AC0ADB29F267B77s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib37BE3F7ADF3FCDE36AC0ADB29F267B77s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib37BE3F7ADF3FCDE36AC0ADB29F267B77s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0C75D2BD181E2690853A080C572A5252s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0C75D2BD181E2690853A080C572A5252s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib14354D69D78781DE8295A50FD7DB897Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib14354D69D78781DE8295A50FD7DB897Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib14354D69D78781DE8295A50FD7DB897Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib9298136AD2A981933C95C438571DFBD5s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib9298136AD2A981933C95C438571DFBD5s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib9298136AD2A981933C95C438571DFBD5s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6CE19528A40DDE9521D97CF7BA264ECAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6CE19528A40DDE9521D97CF7BA264ECAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCC8018BD332B63F3D0DD177663DB08DCs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCC8018BD332B63F3D0DD177663DB08DCs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCEB74219D144AB5760A228E71440C5CAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCEB74219D144AB5760A228E71440C5CAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCEB74219D144AB5760A228E71440C5CAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCEB74219D144AB5760A228E71440C5CAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8DE26673BBAAC3AFB564129EF066B2BDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8DE26673BBAAC3AFB564129EF066B2BDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8DE26673BBAAC3AFB564129EF066B2BDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8DE26673BBAAC3AFB564129EF066B2BDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib5C5F4B9B08266ECB7A15D976A124615Cs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib5C5F4B9B08266ECB7A15D976A124615Cs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib5C5F4B9B08266ECB7A15D976A124615Cs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib5C5F4B9B08266ECB7A15D976A124615Cs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibB093DF4FDBE63B69070F48B719FEA4A0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibB093DF4FDBE63B69070F48B719FEA4A0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibB093DF4FDBE63B69070F48B719FEA4A0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA51EF0746E1B92428685545D946BE931s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA51EF0746E1B92428685545D946BE931s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA51EF0746E1B92428685545D946BE931s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib44858D469FFC8DF89789A42B124653EDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib44858D469FFC8DF89789A42B124653EDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib44858D469FFC8DF89789A42B124653EDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib43AAA1EFAC3EACB0A9535A9110141B44s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib43AAA1EFAC3EACB0A9535A9110141B44s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib43AAA1EFAC3EACB0A9535A9110141B44s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib24D760F8E710C806D18C94424A38A679s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib24D760F8E710C806D18C94424A38A679s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA43BF0AD8387AED475B73432A959E196s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA43BF0AD8387AED475B73432A959E196s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib56AB8823ED1B1B2853BC217FDBE96875s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib56AB8823ED1B1B2853BC217FDBE96875s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib56AB8823ED1B1B2853BC217FDBE96875s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6EB87EAB38DA54A1836255E3BFE12369s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6EB87EAB38DA54A1836255E3BFE12369s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6EB87EAB38DA54A1836255E3BFE12369s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibAFF0E9C3CF20E5B6BC881BDDED1E441Es1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibAFF0E9C3CF20E5B6BC881BDDED1E441Es1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibAFF0E9C3CF20E5B6BC881BDDED1E441Es1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibD72B3E607E3CDD7B824AD0E1DEFCA2A9s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibD72B3E607E3CDD7B824AD0E1DEFCA2A9s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibD72B3E607E3CDD7B824AD0E1DEFCA2A9s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibD72B3E607E3CDD7B824AD0E1DEFCA2A9s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib124D1449A077440C1CA23DF7E6A87BA0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib124D1449A077440C1CA23DF7E6A87BA0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib124D1449A077440C1CA23DF7E6A87BA0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7AA3C537063CD336A9B366B3F1758102s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7AA3C537063CD336A9B366B3F1758102s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7AA3C537063CD336A9B366B3F1758102s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0892C30F35BC3EAB116A8E6E271F496As1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0892C30F35BC3EAB116A8E6E271F496As1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0892C30F35BC3EAB116A8E6E271F496As1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0892C30F35BC3EAB116A8E6E271F496As1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib2693B57F0F59DF94CAACEFB811E99851s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib2693B57F0F59DF94CAACEFB811E99851s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib2693B57F0F59DF94CAACEFB811E99851s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib278DD38F2D3FB05CF71B0CDC10B9B831s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib278DD38F2D3FB05CF71B0CDC10B9B831s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib278DD38F2D3FB05CF71B0CDC10B9B831s1
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
[33] E.R. Velazquez, C. Parmar, Y. Liu, T.P. Coroller, G. Cruz, O. Stringfield, Z. Ye, M.
Makrigiorgos, F. Fennessy, R.H. Mak, et al., Somatic mutations drive distinct
imaging phenotypes in lung cancer, Cancer Res. 77 (14) (2017) 3922–3930.

[34] L. Venkataramana, S.G. Jacob, R. Ramadoss, A parallel multilevel feature selec-
tion algorithm for improved cancer classification, J. Parallel Distrib. Comput.
138 (2020) 78–98.

[35] H. Yang, R. Fujimaki, Y. Kusumura, J. Liu, Online feature selection: a limited-
memory substitution algorithm and its asynchronous parallel variation, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 1945–1954.

[36] H.H. Yang, J. Moody, Data visualization and feature selection: new algorithms
for nongaussian data, in: Proceedings of the 12th International Conference on
Neural Information Processing Systems, 1999, pp. 687–693.

[37] S.-F. Zhang, J.-H. Zhai, S. Tian, X. Zhou, Y. Li, Feature selection for big data based
on MapReduce and voting mechanism, in: Proceedings of the 2020 Interna-
tional Conference on Machine Learning and Cybernetics, 2020, pp. 213–218.

Bieito Beceiro received the B.S. in computer sci-
ence and the M.S. in High Performance Computing
(HPC) from the Universidade da Coruña (UDC), Spain,
in 2020 and 2021, respectively. He is currently a Ph.D.
student at the Computer Architecture Group of the
UDC. His work is focused on the acceleration of ma-
chine learning methods for computational science us-
ing HPC techniques.

Jorge González-Domínguez received the B.S., M.S.,
and Ph.D. degrees in computer science from the Uni-
versidade da Coruña (UDC), Spain, in 2008, 2009, and
2013, respectively. He is currently an Associate Pro-
fessor with the Department of Computer Engineering,
UDC. His main research interests include the develop-
ment of parallel applications on multiple fields, such
as bioinformatics, data mining, and machine learning,
focused on different architectures.

Juan Touriño is a Full Professor with the De-
partment of Computer Engineering, Universidade da
Coruña, where he also leads the Computer Architec-
ture Group. He has extensively published in the area
of High Performance Computing (HPC): HPC & AI con-
vergence, programming languages and compilers for
HPC, high-performance architectures and networks,
parallel algorithms and applications in computational
science and engineering. He is coauthor of more than

170 papers on these topics in international conferences and journals.
116

http://refhub.elsevier.com/S0743-7315(22)00147-2/bib660B0D3A6B159E5BAC02187B6BC72138s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib660B0D3A6B159E5BAC02187B6BC72138s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib660B0D3A6B159E5BAC02187B6BC72138s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBEE977B94523C82F33C2A9B89BF5AED7s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBEE977B94523C82F33C2A9B89BF5AED7s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBEE977B94523C82F33C2A9B89BF5AED7s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib297A7FDA91EF56DDDA0BAB72B7DC8563s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib297A7FDA91EF56DDDA0BAB72B7DC8563s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib297A7FDA91EF56DDDA0BAB72B7DC8563s1

	Parallel-FST: A feature selection library for multicore clusters
	1 Introduction
	2 Related work
	3 Background: feature selection with mutual information
	3.1 MIM - Mutual Information Maximisation
	3.2 CondMI - Conditional Mutual Information
	3.3 Methods in the beta-gamma space
	3.3.1 MIFS - Mutual Information Feature Selection
	3.3.2 CIFE - Conditional Infomax Feature Extraction
	3.3.3 Beta-gamma space

	3.4 JMI - Joint Mutual Information
	3.5 mRMR - Max-Relevance Min-Redundancy
	3.6 ICAP - Interaction Capping
	3.7 DISR - Double Input Symmetrical Relevance
	3.8 Inclusion of weights

	4 Methodology
	4.1 Data discretization
	4.2 Data and workload distribution
	4.3 Hybrid MPI/multithreaded implementation
	4.4 Semi-distributed data loading
	4.5 Range compression

	5 Experimental evaluation
	5.1 Experimental configuration
	5.2 Performance analysis

	6 Conclusion
	Declaration of competing interest
	Acknowledgment
	References

