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A B S T R A C T

In this paper, a new method for structural topology optimization considering minimum weight and local stress
constraints is proposed. For this purpose, the Overweight Approach, an improvement of the so-called Damage
Approach, is used. In this method, a virtual relative density is defined as a function of the violation of the
local stress constraints. The virtual relative density is increased as stresses exceed the maximum allowable
value. The optimization algorithm will provide a design with a minimal variation of the relative density. The
structural analysis is performed by means of the Finite Element Method (FEM) and the distribution of material
is modelled in terms of a uniform relative density within each element. Moreover, the optimization is addressed
by means of the Sequential Linear Programming algorithm (SLP). Finally, the proposed methodology is tested
by means of some benchmark problems, and the results show that the Overweight Approach is a feasible
alternative for the Damage Approach and the stress constraint aggregation techniques.
. Introduction

The first works about structural topology optimization were con-
ucted by Bendsøe and Kikuchi in 1988 [1]. These works meant the
stablishment of the basis of what was then a new field. Since then,
n important number of contributions has been made covering a wide
ange of different approaches and applications. Although the more
xtended in the literature is the Maximum Stiffness Problem [1–8],
he attention in this publication will be only focused in the Minimum

eight with Stress Constraints Problem [9–14]. This circumstance is
ue to its high interest from the engineering point of view where
he main objective is to design structures which are able to support
ifferent loads with the requirement that structural stresses have to
e lower than a maximum value. On the other hand, the variety of
ethods developed to solve these problems is extremely high due to

he drawbacks emerged during the solution process.
The different alternatives used to solve the Minimum Weight with

tress Constraints problem are related with the different ways to for-
ulate the stress constraints in the topology optimization problem.

everal strategies have been used to impose the stress constraints in
he problem until now. The Local Stress Constraint approach [9,10,
2,15–20] establishes one constraint for each local stress considered.
n this case the number of constraints is equal to the number of local
tresses analysed. This number is related with the number of design
ariables used in the definition of the topology optimization problem.
he Global Stress Constraint approach [12,18,21–24] formulates only
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E-mail address: diego.villalba.rama@udc.es (D. Villalba).

one constraint to consider all the local stresses regardless the number
of design variables used in the definition of the problem. The Block
Aggregation of Stress Constraints approach [11,13,18,25] formulates
a certain number of constraints to consider all the local stresses. This
approach is an intermediate situation between the previous approaches,
since the number of constraints is higher than 1 but considerably lower
than the number of local stresses considered in the formulation of the
problem. Finally, the Damage Approach [26] creates an alternative
model to the original one. One of the characteristics of the original
model is modified if the local stresses are greater than its maximum
allowable value in the alternative one.

The Global Stress Constraint approach and the Block Aggregation of
Stress Constraints approach require the use of functions that let to esti-
mate the maximum value for a certain set of values: the maximum stress
value of a certain number of local stresses. Until now, several functions
have been used: the Kreisselmeier–Steinhauser (KS) function [22,25,
27–30], the p-norm approach [23,30–34], and the induced constraint
aggregation [35,36]. On the other hand, in this research an alterna-
tive formulation of the Damage Approach previously developed [26]
will be established to impose the stress constraints in the Topology
Optimization problem, this formulation will be known as Overweight
Approach. The proposed formulation creates the overweight model
by using an alternative characteristic to the global structural stiffness
with the objective of not requiring additional calculations, in this case
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the structural weight. Although the Method of Moving Asymptotes
(MMA) could be used to solve the problem, the Sequential Linear
Programming (SLP) will be used in the optimization process since it has
been previously used for the authors of this paper to solve the topology
optimization problem successfully.

The material layout in the domain will be defined by using the
Solid Isotropic Material with Penalty (SIMP) [3,37–43], considering
that the relative density will be uniform per element. The structural
analysis used in the topology optimization problem proposed in this
paper is stated in terms of a Finite Element formulation, considering
several hypotheses: elastic and linear material, small displacements
and small gradients of displacements. Since the design variables used
in the topology optimization problem define the material layout, the
formulation has to include the effect of the design variables in the
structural analysis [10–12]. The remainder of this paper is structured
as follows. Section 2 describes the topology optimization problem with
all its components and discusses numerical implementation aspects.
Section 3 describes the proposed optimization algorithms. In Section 4
the sensitivity analysis required by the optimization algorithms is for-
mulated. In Section 5 the most important aspects of the numerical
implementation are commented. In Section 6 the optimization method
is applied on different numerical examples. Conclusions are commented
in Section 7. Finally, an appendix with a comparative analysis between
the methodology developed in this manuscript and the previous formu-
lations of the same problem (local stress constraints and global stress
constraint with an aggregation function) is included.

2. Optimization problem

The optimization problem solved in this paper can be stated as:

Calculate 𝝆 =
{

𝜌𝑖
}

𝑖 = 1,… , 𝑛

which minimize 𝐹 (𝝆)

subject to 𝑔
(

𝐫0,𝝆
)

≤ 0

𝜌𝑚𝑖𝑛 ≤ 𝜌𝑖 ≤ 𝜌𝑚𝑎𝑥 𝑖 = 1,… , 𝑛

(1)

where 𝝆 =
{

𝜌𝑖
}

is the design variables vector, 𝐫0 is the coordinates
vector of the points considered, 𝐹 (𝝆) is the objective function, 𝑔

(

𝐫0,𝝆
)

is the Overweight Constraint. Furthermore, 𝑛 is the number of design
variables, and 𝜌𝑚𝑖𝑛 and 𝜌𝑚𝑎𝑥 are the side constraints of the design
variables. The material model used to solve the problem will be: uni-
form density per element. For this reason, the design variables, whose
number is equal to the elements of the mesh, represent the value of
the relative density at each element of the mesh. The rest of the terms
of the optimization problem will be described in the next subsections.
Finally, the optimization algorithms used to solve it will be described
in Section 3.

2.1. Objective function

Minimum weight formulations with stress constraints [9–14] have
been stated with the purpose of reaching structures with the lowest
cost. Since the cost of the structure is related with the amount of
material required in its manufacture, the objective function of the
problem will be the structural weight, whose formulation will be:

𝐹 (𝝆) =
𝑁𝑒
∑

𝑒=1
∫𝛺𝑒

𝜌𝑒𝑑𝛺𝑒, (2)

since the value of the relative density will take a constant value in each
element of the mesh, Eq. (2) can be reduced to:

𝐹 (𝝆) =
𝑁𝑒
∑

𝑒=1
𝜌𝑒𝑉𝑒 and 𝑉𝑒 = ∫𝛺𝑒

𝑑𝛺𝑒, (3)

where 𝜌𝑒 is the value of the relative density of element 𝑒 and 𝑉𝑒 is
the volume occupied by element 𝑒. Finally, and due to the objective of
2

attaining solid-void solutions, a factor 𝑝 which penalizes intermediate
relative density values is introduced [10–13,17,25]. Thus, the objective
function will be:

𝐹 (𝝆) =
𝑁𝑒
∑

𝑒=1

(

𝜌𝑒
)
1
𝑝 𝑉𝑒. (4)

The penalty coefficient 𝑝 will be initially 1 to reduce the non-
linearity of the problem. However, it will be increased to reduce the
appearance of areas with intermediate values of relative density. In the
same way that in [26], this penalty coefficient 𝑝 is typically introduced
in the calculation of the effective Young’s modulus used to compute
the global stiffness matrix in the literature. If stress constraints are con-
sidered, this circumstance can suppose an important handicap in case
of using different values of the coefficient 𝑝 during the solution of the
problem, since the value of the structural stresses will be also modified.
This circumstance does not happen when the penalty coefficient 𝑝 is
ntroduced in the objective function. The effectiveness of the penalty
oefficient 𝑝 is tested with the measure of discreteness [44]. Once the
bjective function of the optimization problem has been stated, the next
tep is to formulate the overweight constraint.

.2. Overweight constraint

In the same way that the Damage Approach [26], the Overweight
pproach is an alternative method to the classical stress constraints
ggregation functions used to combine the effect of a certain number
f local stress constraints. The Overweight Approach penalizes the
iolation of the local stress constraints through a material overweight.
his overweight consists in the increase of the relative density in the
reas where the local stresses are violated and is related with the mag-
itude of this violation. For this purpose, an alternative model of the
riginal structure is created by considering this structural overweight.
herefore, two different models that describe the same structure are
efined, hereinafter: the original model and the overweight model.
onsequently, the overweight model is always heavier or has the
ame structural weight than the original model. In other words, if
oth models have the same weight, all the constraints imposed are
atisfied, otherwise, there are violated constraints. As a consequence,
he Overweight Approach will be used to consider the local stress
onstraints in the problem.

The overweight model will be defined from the original one fol-
owing a sequence of steps. First, the structural analysis of the original
odel is computed and the displacement field is obtained. Then, the

tresses in the central point of each element of the mesh are computed.
he last step is to increase the structural weight in the points where the
tresses exceed their maximum allowable value. This circumstance sup-
oses an important difference with the Damage Approach [26] where
he structural stiffness was reduced. The use of the structural weight
n the formulation of the overweight constraint is more appropriate
han the use of the global stiffness in the formulation of the damage
onstraint if a minimum weight problem is stated. In this case, only the
alculation of the structural weight of the overweight model is required
ince the structural weight of the original one is computed with the
bjective function. However, the Damage Approach developed in [26]
ould require to compute the structural stiffness of both models. The
verweight Constraint is a comparison between the structural weight of
oth models. Furthermore, the relative density in the overweight model
ill have to satisfy these conditions:

�̃� (𝑥) > 𝜌 (𝑥) ∀𝑥 ∈ 𝛺𝜎

�̃� (𝑥) = 𝜌 (𝑥) ∀𝑥 ∈ 𝛺∖𝛺𝜎
(5)

where 𝑥 is the point where the stresses 𝜎 are computed, 𝜎𝑚𝑎𝑥 is the
value of the maximum allowable stress, 𝛺𝜎 is the part of the domain
where the stresses are higher than their maximum allowable value, 𝜌 is

the relative density in the original model and �̃� in the overweight one.
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Fig. 1. Schematic models: (a) the original model, where the stress exceeds the
allowable maximum stress in the red subregion 𝛺𝜎 , and (b) the overweight model with
degraded material properties in 𝛺𝜎 . (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

A graphical representation of the Overweight Approach can be seen in
Fig. 1. Therefore, the overweight constraint can be defined as:

𝑔 (𝜌) = �̃�
𝑊

− 1 = 0, (6)

where 𝑊 is the structural weight of the original model and �̃� is
the structural weight of the overweight model. This means that the
structural weight of both models will be always equal unless there are
some violated stresses. In other words, all the local stresses are checked
by comparing only one global property of the structure. The structural
weight of both models can be calculated as follows:

𝑊 = ∫𝛺
𝜌𝑑𝛺 �̃� = ∫𝛺

�̃�𝑑𝛺. (7)

The definition of the Overweight constraint in (6) means that it will
be always active even when all the structural stresses will be lower
than their maximum value, since the structural weight of both models
will coincide. This can be explained from the definition of the relative
density in the overweight model established in (5), where the relative
density of the overweight model will be higher or equal to the original
one. Consequently, the Overweight constraint will be always higher or
equal to zero, since there is no possibility that the structural weight
of the overweight model will be lower than the original one to obtain
negative values of the overweight constraint. The permanent activation
of the Overweight constraint is not desirable since its derivatives have
to be computed in any case even when all the stresses are considerably
lower than their maximum allowable value. For this reason, a small
positive parameter 𝜁 is introduced in the overweight constraint to relax
the equality constraint. Thus, Eq. (6) becomes:

𝑔 [𝜌] = �̃�
𝑊

− 1 ≤ 𝜁. (8)

Theoretically, this circumstance will mean that stress constraints
may be slightly violated. Consequently, the value of 𝜁 should not be
extremely high to avoid the appearance of areas with an important
failure of local stress constraints. However, if the parameter 𝜁 takes an
extremely small value the number of iterations required is increased
considerably. The value of the relaxation parameter of the overweight
constraint 𝜁 will be in this paper 10−3.

2.2.1. Overweight model
The formulation of the relative density in the overweight model can

be defined by different approaches. However, a similar scheme of that
in [26] is used for this purpose. Furthermore, the relative density of the
overweight model can be calculated as:

�̃� = 𝜌𝑚𝑖𝑛 + 𝛽
(

𝜌 − 𝜌𝑚𝑖𝑛
)

, (9)

where 𝛽 is the overweight function and 𝛽
(

𝜎; 𝜎𝑚𝑎𝑥
)

≥ 1. Although the
relative density of the overweight model �̃� can be obtained directly
by multiplying the overweight function 𝛽 times the relative density of
the original model 𝜌, the term 𝜌𝑚𝑖𝑛 is included in the formulation to
avoid penalizing the areas with this relative density when the stresses
3

Fig. 2. Overweight function for increasing values of 𝛿 > 0.

exceed their maximum. This intends to simulate the effect of the
areas with relative density equal to zero, where the stresses does not
exist properly, since the main objective is the attainment of full-void
solutions and 𝜌𝑚𝑖𝑛 has been introduced for numerical issues related with
the singularity of the stiffness matrix. This is the main advantage of this
formulation with respect to the aggregation functions used to formulate
the global stress constraint.

The overweight function 𝛽 needs to satisfy two conditions: to be
at least first order differentiable and to be monotonically increasing
when stresses exceed its allowable limit. These conditions are required
to solve the problem by using gradient-based optimization methods.
Although there are many functions which satisfy both criteria, an
exponential function will be used. The main reason to use this kind
of function is that important penalizations are obtained for a small
violation of the stress constraints. The function used in this work is:

𝛽(𝜎; 𝛿) =

⎧

⎪

⎨

⎪

⎩

1, if 𝜎
𝜎𝑚𝑎𝑥

< 1

𝑒𝛿(ℎ(𝜎,𝜎𝑚𝑎𝑥))
2
, if 𝜎

𝜎𝑚𝑎𝑥
≥ 1

(10)

where ℎ is the local stress constraint, 𝛿 > 0 is the exponential degrada-
tion parameter which controls the gradient of the overweight function
and the amount of overweight for each stress level. Extremely high
values for the parameter 𝛿 means high overweight for a little failure of
the stress constraints and an increase in the non-linearity of the over-
weight constraint. For this reason, it is advisable that this parameter
takes intermediate values (10–100). A graphical representation of the
overweight function for different values of 𝛿 can be observed in Fig. 2.
At this point, the formulation developed in [26] introduces an inherent
problem when high values of the parameter 𝛼 are used, since the value
of the derivative of 𝛽 will be equal to zero when stresses are higher
than their maximum allowable value. This means that the damage
constraint does not work properly. This problem has been solved in
this paper, since the second derivative of 𝛽 is always greater than 0.
Finally, it is important to remark that this function does not intend to
model accurately the structural overweight, since the main objective is
to obtain an optimal design without overweight.

The main disadvantage of the overweight function proposed in
(10) is that its derivative is null when stresses are lower than its
maximum allowable value. This constitutes an important drawback
when stresses are near to their maximum allowable value. As a result of
this, some changes are introduced in the overweight function to avoid
this issue and to facilitate the numerical resolution of the topology
optimization problem. The modified overweight function will have to
provide information about the structural stresses when they are near
to their maximum allowable value. First, the overweight function is
moved to the left. Thus, it will take a value slightly superior to 1 when
stresses take their maximum allowable value. This does not have an
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Table 1
Overweight constraint parameters.
Parameter Value

𝛿 50
𝜏 0.01
𝜓 0.1

impact in the operation of the algorithm because it mitigates the effect
of the relaxation of the overweight constraint proposed in (8). The
translated overweight function is:

𝛽(𝜎; 𝛿) =

⎧

⎪

⎨

⎪

⎩

1, if 𝜎
𝜎𝑚𝑎𝑥

< (1 − 𝜏)

𝑒𝛿(ℎ(𝜎,𝜎𝑚𝑎𝑥)+𝜏)
2
, if 𝜎

𝜎𝑚𝑎𝑥
≥ (1 − 𝜏)

(11)

where 𝜏 is the magnitude of the overweight function movement to the
left. This traslation guarantee that the overweight function derivatives
are not equal to zero when the stresses are slightly lower than their
maximum. Moreover, 𝜏 should not take an extremely higher value to
avoid an excessive increase of the value of the overweight function
when the stresses are equal to their maximum. Then, a transition
function between the exponential and constant parts of the translated
overweight function is introduced. This transition function replaces the
exponential part when stresses are under their maximum and includes
also a part of the range where the overweight function takes a constant
value. This transition function extends the range where the overweight
function derivatives do not take a null value. The transition function
has to satisfy the same conditions than the original overweight function
since the continuity of the overweight function and its first deriva-
tive has to be maintained to avoid numerical problems. The general
structure of the overweight function is:

𝛽(𝜎; 𝛿) =

⎧

⎪

⎨

⎪

⎩

1, if 𝜎
𝜎𝑚𝑎𝑥

≤ (1 − 𝜓)
𝑡 (𝜎, 𝛿, 𝜏, 𝜓) , if (1 − 𝜓) < 𝜎

𝜎𝑚𝑎𝑥
< 1

𝑒𝛿(ℎ(𝜎,𝜎𝑚𝑎𝑥)+𝜏)
2
, if 𝜎

𝜎𝑚𝑎𝑥
≥ 1

(12)

and 𝜓 is the size of the definition range of the transition function. The
introduction of the transition function makes sense if 𝜓 is greater than
𝜏. The transition function will be:

𝑡 (𝜎, 𝛿, 𝜏, 𝜓) = 𝑒
𝛿𝜏2

𝜓(2𝜓∕𝜏)
(ℎ(𝜎,𝜎𝑚𝑎𝑥)+𝜓)(2𝜓∕𝜏) (13)

Fig. 3 shows a graphical representation of the overweight function
used in this paper. This transition function allows the use of gradient-
based optimization methods since the derivative of the overweight
function will not be equal to zero in the proximities of the border
between the feasible and non-feasible region. Moreover, the use of a
comparison between both models to formulate the constraint allows
to determine if all the local stresses are lower than their maximum.
Table 1 shows the value of parameters introduced in this section used
to solve the examples of this paper. Once the overweight constraint of
the optimization problem has been stated, the next step is to establish
the most appropriate stress criterion ℎ.

2.2.2. Stress criterion
The definition of the overweight constraint will be completed with

the choice of the stress criterion ℎ. The stress criterion incorporates the
information of the local stress constraints in the overweight constraint.
Steel is the material considered in this paper to solve the problems, and
therefore, the most appropriate failure criterion is Von Mises. Other
failure criteria can be used instead of the Von Mises criterion if other
materials are considered in the definition of the stress criterion ℎ.
Moreover, several local stress constraints for the same point can be
used to define the overweight constraint in case of materials without
an appropriate failure criterion. As it was established in (10), the
stress criterion ℎ has to be normalized with respect to the maximum
4

allowable stress. Therefore, the normalized local stress constraint with
the equivalent Von Mises criterion can be expressed as:

ℎ
(

𝝈, 𝜎𝑚𝑎𝑥
)

=
�̂�𝑉𝑀 (𝝈)
�̂�𝑚𝑎𝑥

− 1 ≤ 0 (14)

where �̂�𝑉𝑀 is the Von Mises stress and �̂�𝑚𝑎𝑥 is the maximum allowable
alue of stresses. Finally, a stress relaxation coefficient 𝜑 is included in
he formulation in order to avoid singularity phenomena of the stress
riterion ℎ when the value of the relative density tends to zero. In this
aper, 𝜑 will depend on the value of the relative density according
o [9–12,45] as:

= 1 − 𝜀 + 𝜀
𝜌
, (15)

where 𝜀 is the stress relaxation parameter whose value is increased
progressively to make possible the appearance of areas with relative
density equal to its lower limit. However, an initial stress relaxation is
not advisable to avoid removing parts that might appear again later if
necessary. A graphical representation of the stress relaxation coefficient
𝜑 can be seen in Fig. 4. The introduction of the stress relaxation
coefficient is essential from a theoretical and a practical point of view.
Thus, the formula of the stress criterion ℎ to introduce in (12) will be:

ℎ
(

𝝈, 𝜎𝑚𝑎𝑥
)

=
�̂�𝑉𝑀 (𝝈)
�̂�𝑚𝑎𝑥 𝜑

− 1 ≤ 0 (16)

.3. Side constraints

The side constraints establishes the upper and lower limit of the
esign variables. The upper limit is equal to 1, what represents full
f material. Although the theoretical lower limit should be zero to
epresent the lack of material, this produces the singularity of the
lobal stiffness matrix. This singularity can be solved by considering a
mall value of the Young Modulus when the relative density is equal to
ero. However, this fictional stiffness in some parts of the domain can
roduce a little perturbation of the structural analysis. For this reason,
he lower limit takes a slightly superior to zero value. In this paper
he minimum value is 𝜌𝑚𝑖𝑛 = 0.001 according to other references in the
iterature [1,3,11,14,23].

. Optimization algorithms

The solution of the topology optimization problem (1) requires the
se of an iterative algorithm that involves different approaches. For this
eason, the design variables 𝝆 are updated in each iteration as:

𝒌+𝟏 = 𝝆𝒌 + 𝜃𝑘𝒔𝒌 (17)

here 𝜃𝑘 is the improvement factor which establishes the magnitude of
odification between two consecutive iterations and 𝒔𝒌 is the improve-
ent design direction. Excessive modifications of the design between

wo consecutive iterations are avoided by considering a move limits
pproach of the design variables. This limitation in the modification
f the design variables

(

𝛥𝜌𝑖,𝑗
)

𝑚𝑎𝑥 is introduced due to the high non-
inearity of the problem to facilitate the convergence to the optimal
olution. This move limits are reduced by multipling them for a re-
uction factor (𝐹𝑅𝑒𝑑) each certain number of iterations (𝑁𝐼𝑡,𝑅𝑒𝑑) to

avoid the oscillation of the solution around its optimal. Therefore, it
will be necessary to calculate, first, the best improvement direction
and then to establish the most appropriate value of the improvement
factor. The algorithm used to calculate the improvement direction
in this publication is the Sequential Linear Programming algorithm
based on the Simplex Algorithm. A linear approximation is considered
to compute the improvement factor 𝜃𝑘, since the Simplex Algorithm
uses the first order Taylor Series to compute the improvement design
direction 𝒔𝒌, both parameters are calculated simultaneously. Finally,
once both parameters are known, the solution of the topology opti-
mization problem can be updated, and the optimization algorithm can
be repeated until convergence. Once the optimization algorithms have
been introduced, the next step is to compute the first order sensitivity

analysis.
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Fig. 3. Overweight function. (a) Original Overweight function (10). (b) Detail of Original Overweight function (10). (c) Detail of translated Overweight function (11). (d) Modified
Overweight function (12). (e) Detail of modified Overweight function (12).
Fig. 4. Stress relaxation coefficient.
5

4. Sensitivity analysis

The optimization algorithms require the calculation of the first order
derivatives of the objective function and all the constraints. However,
it is necessary to use two different approaches for computing the first
order sensitivity analysis of the objective function and the overweight
constraint.

4.1. Sensitivity analysis of the objective function

First, the sensitivity analysis of the objective function can be com-
puted by using direct differentiation, since the structural weight de-
pends directly on the design variables. The sensitivity analysis of the
objective function (4) is obtained considering the penalization factor
of the intermediate values of relative density 𝑝 ≥ 1. The analytical
expression of the first order derivative of the objective function is:

𝜕𝐹 = 1𝜌
1−𝑝
𝑝

𝑒 𝑉𝑒 (18)

𝜕𝜌𝑒 𝑝
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4.2. Sensitivity analysis of the overweight constraint

The sensitivity analysis of the overweight constraint can be also
computed by using direct differentiation. However, the relationship
between the overweight constraint and the design variables is not as
straightforward as in the objective function, since it depends on the
design variables directly and indirectly through the structural stresses.
This dependence would mean to solve as many structural analyses as
design variables to obtain the sensitivity analysis of the overweight
constraint. If the number of constraints is considerably lower than the
number of design variables, the Adjoint Variable Approach is the most
efficient method to compute the sensitivities of constraints [13,22,45–
48]. In this problem, only one constraint is defined and the Adjoint
Variable Approach is used. For this reason, the analytical expression of
the first order derivatives of the overweight constraint can be stated as:

𝑑𝑔
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=
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𝛼(𝜌)

(19)

here 𝜎𝑠 is the local stresses vector used to compute the Von Mises
tress 𝜎𝑉𝑀,𝑠 and 𝛼 is the nodal displacement vector. These derivatives
an be computed by applying the Adjoint Variable Approach described
n [13,22,45–48] as:

𝑑𝑔
𝑑𝜌𝑖

= 𝝀𝑇
(

𝑑𝐟
𝑑𝜌𝑖
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𝜶
)
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𝜕�̂�
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|

|

|
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|

𝜎𝑉𝑀,𝑠 (𝜎𝑠 )
𝜎𝑠 (𝛼)
𝛼(𝜌)

(20)

where 𝝀 is the adjoint variable, 𝐊 is the stiffness matrix of the structure
nd 𝐟 is the vector of applied loads. The Adjoint Variable 𝝀 is computed
y solving the next system of linear equations:

𝑇 𝝀 =
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The terms 𝜕𝑔
𝜕𝜎𝑉𝑀,𝑠

and 𝜕𝑔
𝜕𝜌𝑖

can be computed by using the chain rule
s:
𝜕𝑔

𝜕𝜎𝑉𝑀,𝑠
=

𝜕𝑔
𝜕�̃�

𝜕�̃�
𝜕�̃�𝑖

𝜕�̃�𝑖
𝜕𝛽𝑠

𝜕𝛽𝑠
𝜕𝜎𝑉𝑀,𝑠

(22)

nd
𝜕𝑔
𝜕𝜌𝑖

=
𝜕𝑔
𝜕𝑊

𝜕𝑊
𝜕𝜌𝑖

+
𝜕𝑔
𝜕�̃�

𝜕�̃�
𝜕�̃�𝑖

𝜕�̃�𝑖
𝜕𝜌𝑖

(23)

Finally, the formulation of the rest of the terms can be seen in [45].

5. Numerical implementation

The most relevant numerical aspects of the algorithm developed
in this paper will be commented. First, Fig. 5 shows the flowchart of
the algorithm developed. This procedure is repeated until convergence.
The numerical implementation has been made in Fortran. The non-
linearity of the problem solved in this paper produces an important
oscillation of the solutions obtained around its optimum. For this
reason, some of the parameters of the problem are modified to make
possible the convergence of the solution to its optimum and to obtain
full-void solution: the move limits of the design variables

(

𝛥𝜌𝑖,𝑗
)

𝑚𝑎𝑥,
the penalty coefficient of intermediate values of relative density 𝑝 and
the stress relaxation coefficient 𝜀. The value of these parameters is
changed each certain number of iterations. And finally, when all the
values of the parameters have been used and the solution does not
experience important changes, the optimum has been attained. This is
6

the convergence criterium considered.
Fig. 5. Algorithm’s flowchart.

6. Application examples

The formulation proposed is validated by studying three structural
problems frequently analysed in the topology optimization field to test
the performance of the overweight approach technique as an indirect
way to impose stress constraints in the problem. These examples are
two-dimensional structures in plane stress and the material considered
is steel with density 𝜌𝑚𝑎𝑡 = 7850 kg∕m3, Young’s modulus 𝐸 = 210 GPa,
Poisson’s ratio 𝜈 = 0.3 and yield stress �̂�𝑚𝑎𝑥 = 230 MPa. Structural self-
weight is included as a structural load and the initial design of all the
examples consists on a domain full of material. All the examples have
been computed on an Intel(R) Xeon(R) CPU E5-2697 A v4 processor of
2.60 GHz with 64GB of RAM.

6.1. Cantilever beam

The first example corresponds to a cantilever beam with null dis-
placements in the left edge and a vertical force applied in the middle
of the right edge. Fig. 6 shows the dimensions of the domain and the
position of the vertical forces applied. The domain of the structure
is discretized with a homogeneous mesh of 200 x 100 eight-node
quadrilateral elements. The structural thickness is 0.30 m and the
punctual load (1000 kN) is distributed on twelve elements to avoid
stress accumulation phenomena. This number of elements only has
influence in the vicinity of the loading point and it diminishes as the
distance with this area increases.

Fig. 7 shows the optimal solution of the problem that consists in
a set of bars which coincides with isostatic lines. The most important

characteristic of the optimal solution is the existence of a certain
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Fig. 6. Cantilever beam: Domain dimensions. (Units - m).

Fig. 7. Cantilever beam: Optimal solution.

Fig. 8. Cantilever beam: Normalized stress.

symmetry between the upper and the lower part of the domain. This
can be explained since the structural model is linear and the material
is steel whose behaviour to traction and compression forces is similar.
However, the solution of this example requires more iterations than
the other examples of this paper, since its theoretical solution consists
in an infinite number of bars that coincides with the isostatic lines.
This means that the topology optimization algorithm has to select
and remove the majority of these bars, what supposes an increase
in the difficulty of the problem. Fig. 8 shows the normalized stress
state obtained through the quotient between the stress and the stress
relaxation coefficient times the maximum allowable stress in each point
of the domain.

Fig. 9 shows the evolution of the structural weight and the objective
function. The value of the structural weight is constant during the most
of the process due to the redistribution of the material in the domain.
This phenomena can be observed in Fig. 10. The objective function is
always reduced except in the iterations in which the penalty coefficient
7

Fig. 9. Cantilever beam: Structural weight.

Fig. 10. Cantilever beam: Design variables distribution.

Table 2
Cantilever Beam: General parameters of the problem.

Data input Value

n 20000
(

𝛥𝜌𝑖,0
)

𝑚𝑎𝑥 0.005
𝐹𝑅𝑒𝑑 0.80
𝑁𝐼𝑡,𝑅𝑒𝑑 350

Table 3
Cantilever Beam: Evolution of the optimization
parameters.

Iterations 𝑝 𝜀

0–699 1 0
700–1399 2 0.001
1400–2099 3 0.002
2100–2799 4 0.003
2800–3500 5 0.005

Table 4
Cantilever Beam: Results.

Data output Value Units

Number of iterations 3500
Final weight 117.3 kg
Initial weight percentage 12.30%
Measure of discreteness 8.95
Total CPU time 22.25 h

Table 5
Cantilever Beam: Distribution of CPU time per
iteration.

Algorithms Time

Structural analysis 74.27%
Sensitivity analysis 23.23%
Optimization algorithms 1.81%
Rest of the process 0.69%
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Fig. 11. L-shaped beam: Domain dimensions. (Units - m).

Fig. 12. L-shaped beam: Optimal solution.

of intermediate values of relative density is modified. Fig. 10 shows the
design variables distribution in the last iteration of each value of the
penalty coefficient. The presence of intermediate values of the design
variables is reduced as the penalty coefficient is increased. Tables 2 and
3 show the value of the most important parameters of the problem.
Table 4 shows the results obtained with the solution of the problem,
and Table 5 shows the distribution of the computing time per algorithm
of an average iteration.

6.2. L-shaped beam

The second example corresponds to a L-shaped beam with null dis-
placements in the upper edge and a vertical force applied in the upper
part of the right edge. Fig. 11 shows the dimensions of the domain and
the position of the vertical forces applied. The domain of the structure
is discretized with a mesh of 19600 eight-node quadrilateral elements.
The structural thickness is 0.25 m and the external force applied (650
kN) has been distributed on five elements.

Fig. 12 shows the optimal solution of the problem. Fig. 13 shows
the normalized stress state. There are regions where stresses are slightly
higher to their maximum. This is common to all the examples and is
related with the relaxation of the overweight constraint needed to have
an inequality constraint in the problem. This constraint violation can
8

Fig. 13. L-shaped beam: Normalized stress.

Fig. 14. L-shaped beam: Structural weight.

be reduced, by decreasing the coefficient used to relax the overweight
constraint or by increasing the exponential degradation parameter of
the overweight function. Moreover, this is also related with the defi-
nition of the relative density in the overweight model. The minimum
value is introduced in (9) to avoid adding a penalization over the areas
with minimum relative density when stresses are higher than their
maximum. That is to facilitate removing material in low density areas.
This intends to simulate the non-existence of material in this areas what
means the non-existence of stresses, the singularity phenomena. Lastly,
the stresses slightly higher to their maximum are related with the stress
concentration phenomena in the inside corners of the domain. This can
be avoided by doing a corner smoothing, however, the geometry con-
sidered in the solution of the L-shaped beam problem, is the geometry
traditionally used in the literature. On the other hand, the formulation
with stress constraints can avoid the stress concentration phenomena
by rounding the geometry of the optimal solution in the corners where
the stress concentration phenomena appears as it can be see in Fig. 12.

Fig. 14 shows the evolution of the structural weight and the objec-
tive function. Fig. 15 shows the design variables in the last iteration of
each value of the penalty coefficient of intermediate values of density.
Both figures show the same behaviour than in the previous example.
Table 6 shows the value of the parameters related with the definition
of the problem and with the optimization process. Table 7 shows the
different values of the penalty coefficient and the stress relaxation
coefficient during the optimization process and the application range
of iterations. Table 8 shows the most relevant parameters of the opti-
mization process. Finally, Table 9 shows the distribution of the average
computing time per algorithm of one iteration.
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Fig. 15. L-shaped beam: Design variables distribution.

Table 6
L-shaped Beam: General parameters of the problem.

Data input Value

n 19600
(

𝛥𝜌𝑖,0
)

𝑚𝑎𝑥 0.005
𝐹𝑅𝑒𝑑 0.80
𝑁𝐼𝑡,𝑅𝑒𝑑 200

Table 7
L-shaped Beam: Evolution of the optimization param-
eters.

Iterations 𝑝 𝜀

0–399 1 0
400–799 2 0.001
800–1199 3 0.002
1200–1599 4 0.003
1600–2000 5 0.005

Table 8
L-shaped Beam: Results.

Data output Value Units

Number of iterations 2000
Final weight 153.4 kg
Initial weight percentage 12.21%
Measure of discreteness 8.37
Total CPU time 9.79 h

Table 9
L-shaped Beam: Distribution of CPU time per iteration.

Algorithms Time

Structural analysis 69.08%
Sensitivity analysis 28.02%
Optimization algorithms 2.02%
Rest of the process 0.88%

6.3. MBB beam

The last example corresponds to a MBB beam with null vertical
displacements in the supports and a vertical distributed force applied in
the central part of the structure over the upper edge. Fig. 16 shows the
dimensions of the domain and the position of the vertical forces applied
of the entire structure and the part of the structure considered in the
solution of the problem. The structural domain has been discretized
with a homogeneous mesh of 240 times 80 eight-node quadrilateral
elements. The structural thickness is 0.30 m and the distributed load of
3200 kN/m is applied over 32 adjacent elements in the upper part of
the domain in the proximity of the symmetry axis.

Fig. 17 shows the optimal solution of the problem with the symmet-
rical replication. Fig. 18 shows the normalized stress state and it can
be observed that in the same way that the previous examples there are
regions where stresses are slightly higher to their maximum. Fig. 19
shows the evolution of the structural weight and the objective function
9

and Fig. 20 shows the design variables distribution in the last iteration
Fig. 16. MBB beam: Domain dimensions. (Units - m).

Table 10
MBB Beam: General parameters of the problem.

Data input Value

n 19200
(

𝛥𝜌𝑖,0
)

𝑚𝑎𝑥 0.005
𝐹𝑅𝑒𝑑 0.80
𝑁𝐼𝑡,𝑅𝑒𝑑 150

Table 11
MBB Beam: Evolution of the optimization parameters.

Iterations 𝑝 𝜀

0–299 1 0
300–599 2 0.001
600–899 3 0.002
900–1199 4 0.003
1200–1500 5 0.005

of each value of the penalty coefficient of intermediate values of den-
sity. While the structural weight is approximately constant during the
most of the process due to the redistribution of material, the objective
function is always reduced except in the iterations in which the penalty
coefficient of intermediate values of density is modified, as it can be
seen in Fig. 19. On the other hand, the presence of intermediate values
of relative density is reduced as the penalty coefficient is increased,
as it can be observed in Fig. 20. Therefore, both figures represent the
same behaviour than previous examples. The self-weight does not have
influence in the results since its magnitude only supposes at most 5%
of the loads applied over the structure.

Tables 10 and 11 show the value of the most important parameters
of the problem. Table 12 shows the results obtained with the solution
of the problem and Table 13 shows the distribution of the average com-
puting time per algorithm at each iteration. Table 12 shows that 1500
iterations are required to guarantee the convergence to the optimal
solution. It is important to remark that the complexity of the problem
is related with the number of iterations required to solve it. Moreover,
the number of iterations required to solve the problem can be reduced
considerably if a quadratic approximation of the objective function and
the overweight constraint is used to compute the improvement factor
since the oscillations around the optimal solution would be mitigated.
Table 13 shows, in the same way that previous examples, that the
structural analysis and the sensitivity analysis mean 98% of the total
CPU time required to solve the problem. The CPU time required for the
rest of the algorithms including the data initialization can be considered
negligible.
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Fig. 17. MBB beam: Optimal solution.
Fig. 18. MBB beam: Normalized stress.
Fig. 19. MBB beam: Structural weight.

Fig. 20. MBB beam: Design variables distribution.

Table 12
MBB Beam: Results.

Data output Value Units

Number of iterations 1500
Final weight 604.2 kg
Initial weight percentage 8.56%
Measure of discreteness 9.13
Total CPU time 6.75 h

7. Conclusions

This paper introduces an alternative method to the original dam-
age approach to solve the structural topology optimization problem
with minimum weight and stress constraints. This method requires
10
Table 13
MBB Beam: Distribution of CPU time per iteration.

Algorithms Time

Structural analysis 66.79%
Sensitivity analysis 30.16%
Optimization algorithms 2.10%
Rest of the process 0.95%

only one overweight constraint to consider the effect of all the local
stress constraints. This method provides solutions with high spatial
definition since problems with a large number of design variables are
solved in an affordable amount of time. On the other hand, the use of
the structural weight to define the overweight constraint requires to
calculate it only for the overweight model since the objective function
requires to compute it for the original model. By contrast, the Damage
Approach requires to compute the structural stiffness of both models,
the original and the alternative. First, the computation of the structural
stiffness of the original model is not considerably expensive, since the
structural displacements have been computed to obtain the structural
stresses. However, the computation of the structural stiffness in the
alternative model, requires to do an additional structural analysis, since
the stiffness matrix in this case will be different due to the modification
of the Young Modulus in the alternative model. Since the structural
analysis in this manuscript is the critical part of the algorithm in terms
of CPU time, the Overweight approach introduces a reduction of CPU
time required to solve the topology optimization problem with respect
to the previously developed Damage Approach. The solution of the
topology optimization problem with local stress constraints requires to
compute all the active local stress constraint derivatives, whose number
increases as the solution converges to its optimum. Conversely, the
overweight approach only defines just one constraint: the overweight
constraint. This means that the CPU time required for the search of the
improvement direction and the sensitivity analysis will be considerably
reduced in the optimization process. Consequently, the structural anal-
ysis becomes the critical step in terms of the CPU time to solve the
problem with the method developed, since the sensitivity analysis is
computed in an efficient way by using the adjoint variable approach.
Even though the use of the aggregation techniques of constraints (as the
overweight constraint) requires more iterations than the use of local
stress constraints, the CPU time required for each iteration is much
smaller and consequently the formulation proposed require less CPU
time. Thus, cases or examples with a large number of design variables
can be solved in an affordable amount of CPU time. Furthermore, the
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approach developed could improve its efficiency with respect to the
CPU time if parallel computing techniques were implemented.

Finally, the Overweight approach developed in this paper has some
advantages with respect to the aggregation functions used to state
the global stress constraints. While the aggregation functions consider
all the local stress constraints during the solution of the optimization
problem, the Overweight Approach does not take into account the local
stress constraints placed in areas with 𝜌 = 𝜌𝑚𝑖𝑛, since the relative
density of both models will coincide even when the stresses are higher
than their maximum value. This advantage of the Overweight Approach
is also common with respect to the local stress constraints approach.
In other words, the Overweight Constraint model proposed does not
penalize the weight of areas with minimum relative density even
though the stresses exceed their maximum value. This characteristic
allows the existence of these areas without using a high stress relaxation
coefficient. That is, it helps to avoid the singularity phenomena. As
it was mentioned, this intends to simulate the effect of the areas
with relative density equal to zero, where the stresses does not exist
properly.

The very definition of the overweight constraint allows to check
whether all the stresses are below their maximum value by comparing
two different models: the original and the overweight. However, a small
violation of the local stress constraints is allowed due to numerical
reasons. That is, the overweight constraint introduced to have a in-
equality constraint and the use of stress relaxation coefficients. This
effect can be mitigated by reducing the value of the stress relaxation
coefficient and/or by increasing the value of the exponential degra-
dation parameter. The latter means also an increase in the number of
iterations required to solve the problem due to its high non-linearity.
The quality of the results obtained with the overweight approach is
very good, since problems with a considerable number of elements
can be solved in a reasonable amount of CPU time. Moreover, the
use of a penalty coefficient over the intermediate values of the rel-
ative density provides material distributions with only 10%–15% of
the domain with intermediate values of relative density. This is very
important from a practical point of view since the solutions obtained
could be easily manufactured. Moreover, the use of a penalty coefficient
over the intermediate values of the relative density provides solutions
whose topology is clearly defined and manufactured after submitting
the solutions to a postprocessing process. In conclusion, the use of
the Overweight Approach proposed reports important benefits from a
computational point of view in topology optimization problems with
stress constraints. The CPU time required to obtain the solution of
problems with a large number of design variables is affordable, what
makes manageable in practice to attain solutions with high spatial
definition.
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Fig. 21. Cantilever beam: Domain dimensions (Units - m).
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Appendix. Comparison of the Overweight Approach with the pre-
vious formulations of the same problem

A limited comparison between performance of the local stress con-
straint approach and the global stress constraint with a classical ag-
gregation function and a Overweight aggregation function is presented
here, based on a benchmark problem previously solved by the authors.
A more comprehensive investigation of the comparative performance
between local and global stress constraint approaches is presented
in [49]. The analysis herein aims to demonstrate how the proposed
method in this manuscript compares with the classical methods in
the literature. The results of this benchmark problem with the three
formulations: Local strategy, Global strategy (Aggregation Function and
Overweight Approach) computed in the same computer are shown
below. The benchmark problem considered to compare all the for-
mulations corresponds to a cantilever beam (similar to the problem
solved in Section 6.1) with null displacements in the left edge and
vertical force applied in the middle of the right edge. Fig. 21 shows
the dimensions of the domain and the position of the vertical forces
applied. The domain of the structure is discretized with a homogeneous
mesh of 120 × 60 eight-node quadrilateral elements. The structural
thickness is 0.2 m and the punctual load (4000 kN) is distributed on
eight elements to avoid stress concentration phenomena. Figs. 22–24
show the solution of the problem with the Local Stress Constraints,
with a Global Stress Constrain by using an aggregation function and
the Overweight Constraint respectively. In all the cases, the optimal
solution consists in a set of bars which coincides with isostatic lines.
Figs. 25–27 show the normalized stress state obtained through the
quotient between the stress and the stress relaxation coefficient times
the maximum allowable stress in each point of the domain for the
three formulations. Table 14 show the value of the most important
parameters of the problem that will be used to do the comparison
between the three formulations. The comparative analysis is shown
below.
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Fig. 22. Cantilever beam: Optimal solution - Local stress constraints.

Fig. 23. Cantilever beam: Optimal solution - Global stress constraint.

Fig. 24. Cantilever beam: Optimal solution - Overweight constraint.

Fig. 25. Cantilever beam: Normalized stress - Local stress constraint.
12
Fig. 26. Cantilever beam: Normalized stress - Global stress constraint.

Fig. 27. Cantilever beam: Normalized stress - Overweight constraint.

Table 14
Cantilever Beam: Comparative analysis.

Data Local Global Overweight
stress stress

output constraint constraint constraint

Number of iterations 157 971 1400
Initial Volume percentage 18.27% 16.05% 17.08%
Total CPU time 729.4 h 10.4 h 1.3 h

• Quality of the solutions: The topology is perfectly defined in
the solutions obtained with the local stress constraints and the
overweight constraint, by contrast, the solution obtained with the
global stress constraints by using an aggregation function shows
parts of the structure that are non-connected with the rest of the
structure.

• Structural Stresses: The structural stresses with the local stress
constraints are in all the domain lower than their maximum,
on the contrary, in the solutions obtained with the global stress
constraint by using an aggregation function and the Overweight
constraint the structural stresses can be slightly higher than their
maximum in some parts of the domain.

• Number of Iteration. The local stress constraints approach re-
quires less iterations than the global stress constraint approach
with an aggregation function and the overweight approach. More-
over, the overweight approach requires more iterations than the
global stress constraint due to the high non-linearity of the over-
weight constraint.

• Final Weight: The solutions obtained with the three formulations
have approximately the same structural weight, since the differ-
ences in the final volume are lower than a 3% of the volume
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of the domain, consequently, these differences can be considered
negligible.

• CPU time: The CPU time required for the Overweight Approach
is considerable lower than the CPU time required for the previous
formulations, Local stress constraints and global stress constraint
with an aggregation function. The use of Local stress constraints
requires more time than the other formulations to solve the
problem since the number of active constraints increases as the so-
lution converges to its optimum, by contrast, the other two formu-
lations only defines one constraint to control the same structural
stresses. On the other hand, the Overweight approach requires
less CPU time than the global stress constraint approach with
an aggregation function, since only the derivative of the stresses
higher than a certain percentage of the maximum value has to
be considered to compute the Overweight Constraint derivative,
on the contrary, the global stress constraint derivative with an
aggregation function requires to compute the derivatives of all
the structural stresses.

Finally, it is possible to conclude that the Overweight Approach is a
alid alternative to the previous formulations used to consider the stress
onstraints in the topology optimization problem of minimum weight.
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