
Energy Reports 8 (2022) 14595–14605

a

b

c

e
h
S
b
t
f
f
g
m
e
I
E

r
t

h
2

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Research paper

The daily price and income elasticity of natural gas demand in Europe
A.F. Erias a,b, E.M. Iglesias c,∗

Department of Economics, University of A Coruña, A Coruña 15071, Spain
Quantitative Market Intelligence Leader, Baker Hughes, London, United Kingdom
Department of Economics, ECOBAS, University of A Coruña, A Coruña 15071, Spain

a r t i c l e i n f o

Article history:
Received 19 February 2022
Received in revised form 30 August 2022
Accepted 24 October 2022
Available online 10 November 2022

Keywords:
Natural gas
Price elasticity
Income elasticity
Energy demand in Europe
Double heating effect

a b s t r a c t

Data from 15 European countries is analysed to provide novel estimates of daily own-price, cross-price
and income elasticities of natural-gas-demand from 2016 to 2020. The results show that: first, there
is a strong-seasonal component in the October–February period during which residential-demand has
a higher share on total demand, and gas price is not a determinant factor for most of the countries.
This seasonal profile makes price-based tools more effective modifying end-consumer behaviours from
March to August when estimated own-price elasticities present larger values in absolute terms. Second,
there are estimated positive own-price elasticities from October to February in Bulgaria, Luxemburg,
Poland, the UK, and Portugal. The first four countries present natural gas prices below the EU-28
average during the analysed period and it is argued that positive elasticities may reflect a disconnection
between the price traded on the organized markets and the real price perceived by end-customers.
For Portugal, who is currently carrying out a very aggressive policy to become coal-free by the end
of 2021, natural gas and coal are mainly consumed in power sector to provide flexibility and back
up renewable generation. The limited alternatives to provide these services may explain why coal
and natural gas are found to be complementary. Finally, it is found that lockdowns due to covid-19
highly impacted on natural gas demand, confirming for the first time in the literature a ‘‘double heating
effect’’. Our results help to find when price-based tools by policymakers will influence more effectively
natural-gas-demand following economic and environmental goals.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Natural gas represented, in 2019, 24% of World’s total primary
nergy demand, a role that is set to be preserved in 2040, as
ighlighted by IEA (2020a) in its central scenario (Stated Policies
cenario). Despite being a traditional fossil fuel, natural gas will
e part of the world´s energy mix for many years to come thanks
o its characteristic (efficiency, emissions factor, flexibility, or
irmness) that allows both reducing emissions when switching
rom other fossil fuel and being the perfect back-up for renewable
eneration. Its contribution goes beyond power sector by mini-
izing the emissions in hard-to-decarbonize sectors due to either
conomic reasons or high temperature process requirements.
ndeed, the great importance of a well-functioning gas market in
urope is well established in the literature (Fetisov et al., 2021).
The European Union (EU) has established challenging emission

eduction targets by 2030 and 2050, forcing full decarboniza-
ion of the economy (Nyambuu and Semmler, 2020). Tackling
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this process will imply conducting a major transformation in
the energy system. The gas sector will have to face this new
context and adapt the gas grid to make it possible for green gas
penetration (e.g., biomethane and hydrogen). Governments will
have to implement policy measures going from new green taxes
to establishing renewable quotas. These policy measures could af-
fect gas prices having an impact on both industry competitiveness
and social welfare.

Understanding demand behaviour is crucial to tailor future
measures maximizing the contributions to reaching climate goals
while minimizing economy distortions. This paper analyses the
effects of price changes on European daily gas demand as well
as the other main drivers. The results may be interesting for
developing fundamental models and general equilibrium models
to anticipate demand responses to supply variation. The main
hypotheses to be tested in this paper are:

• H1: Natural gas own-price elasticities present a seasonal
component.

• H2: Natural gas own-price elasticities vary based on the
country.

• H3: Existence of a ‘‘Double Heating Effect’’.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Literature survey of own-price elasticity of natural gas.
Reference Location Period Frequency Sectorial breakdown Main results

Maddala et al. (1997) 49 states, USA 1970–1990 Annual Residential sector OPE: −0.27
IE: −0.06

Berkhout et al. (2004) Netherlands 1996 Annual Residential sector OPE: −0.2

Asche et al. (2008) 12 European countries 1978–2002 Annual Residential sector S-OPE: −0.24 to 0.02
L-OPE: −1.84 to −1.15
S-IE: 0.03 to 0.33
L-IE: 2.09 to 2.25

Joutz et al. (2009) USA 1980–2001 Monthly Residential sector S-OPE: −0.09
L-OPE: −0.18

Serletis et al. (2010) USA 1960–2007 Annual Industry OPE: −0.5 to −0.14

Yoo et al. (2009) South Korea 2005 Monthly Residential sector OPE: −0.243 to −0.226
IE: 0.335 and 0.496

Andersen et al. (2011) 13 OECD countries 1978–2003 Annual Industry S-OPE: −0.15 to −0.06
L-OPE: −0.84 to −0.16

Bernstein and
Madlener (2011)

12 OECD countries 1980–2008 Annual Residential sector S-OPE: −0.24
L-OPE: −0.51
S-IE: 0.45
L-IE: 0.94

Serletis et al. (2011) 15 countries (both
non-OECD and OECD)

1980–2006 Annual Country level S-OPE: −0.73 to −0.32
L-OPE: −0.65 to 2.17

Wadud et al. (2011) Bangladesh 1981–2008 Annual Country level and sectorial
breakdown

OPE: −0.25 to 0.15
IE: 0.28 to 0.76

Alberini et al. (2011) USA 1999–2007 Annual Residential sector S-OPE: −0.566
L-OPE: −0.693

Payne et al. (2011) Illinois 1970–2007 Annual Residential sector S-OPE: −0.185

Steinbuks (2012) UK 1990–2007 Annual Industry S-OPE: −0.20
L-OPE: −0.28

Bilgili (2014) 8 OECD countries 1979–2006 Annual Country level OPE: 0.90 to 3.76

Dilaver et al. (2014) OECD Europe 1978–2011 Annual Country level L-OPE: −0.16
L-IE: 1.19

Yu et al. (2014) China 2006–2009 Annual Residential sector OPE: −0.779
IE: 1.235

Burke and Yang
(2016)

44 countries 1978–2011 Annual Country level S-OPE: –0.68 to −0.5
S-IE: 0.7 to 1.13

Sun and Ouyang
(2016)

China 2013 Monthly Residential sector OPE: −1.431
IE: 0.207

Zhang et al. (2018) China 1992–2011 Annual Residential, services, industry,
power sector and
transportation

S-OPE: −1.00 to 3.10
L-OPE: −0.22 to 5.73
IE: 2.05 to 2.31

Filippini and Kumar
(2020)

Switzerland 2010–2014 Annual Residential sector OPE: −0.73

Malzi et al. (2020) 29 OECD countries 1980–2016 Annual Residential sector S-OPE: −0.0002
L-OPE: −0.0015

Alberini et al. (2020) Ukraine 2013–2017 Monthly Residential sector OPE: 0.16

Joshi (2021) USA, State level 2001–2015 Monthly Residential, commercial,
industry, and power sector

S-OPE: −1.5 to 0.5

Note: OPE: Own-price elasticity, IE: Income elasticity, S: Short-run; L: Long-run.
2. Literature review

Many recent papers have focused on elasticities relating to
he natural gas demand. For example, Dong et al. (2019, Table
) presented a literature review of previous studies on price and
ncome elasticities of natural gas demand published between
007 and 2017. Also, Huntington et al. (2019) presented a liter-

ature review of various estimates for energy demand responses
focusing specially upon lower-income industrializing economies
and covering different products including natural gas.

As stated in Huntington et al. (2019), some of the estimated
elasticities for natural gas must be assessed carefully, since in-
frastructure access may explain the different country situations.
Moreover, North America and Europe are the largest current
integrated markets, thanks to the access to a high level of infras-
tructure concentration. Despite of these difficulties, knowledge
 b
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of estimates of own-price, cross-price and income elasticities of
natural gas demand has already been shown to be very useful for
policy purposes (e.g. Huntington et al. (2019), Labandeira et al.
(2017), or Alberini et al. (2020)), and it is particularly important
to obtain meaningful estimated elasticities. Table 1 summarizes
the main findings of a selection of the most recent literature on
the topic.

As Table 1 reflects, literature presents a massive range of
estimates of natural gas demand heavily impacted by the period,
region or country, timeframe, the use of natural gas and fre-
quency used in the analysis. Focusing exclusively on the studies
related to European countries,1 Berkhout et al. (2004) report price
elasticities of demand for natural gas of –0.2 for the Netherlands.

1 A review of recent literature focusing on other countries and regions can
e found on the Appendix.
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sche et al. (2008) showed that for 12 European countries (Aus-
tria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy,
Netherlands, Spain, Switzerland, and the UK) and with yearly data
from 1978–2002, the estimated short-run own price elasticity for
natural gas was from −0.24 to 0.02 while the long-run own-
rice elasticity was ranging from −1.15 to 1.84. The short-run and

long run income elasticity was estimated from 0.03 to 0.33 and
from 2.09 to 2.25, respectively. Andersen et al. (2011) analysed
13 countries of the Organization for Economic Cooperation and
Development (OECD) from 1978 to 2003 obtaining own-price
elasticities ranging from −0.06 to −0.15 (short run) and from
−0.16 to −0.89 (long run). Bernstein and Madlener (2011) anal-
ysed 12 OECD countries from 1980 to 2008 obtaining estimated
own-price elasticities of −0.24 (short-run) and −0.51 (long-run)
and income elasticities of 0.45 (short-run) and 0.94 (long-run).
Serletis et al. (2011) focused on 15 OECD and non-OECD countries
from 1980 to 2006 finding an estimated short-run own-price
elasticity for natural gas from −0.32 to 0.73 while the long-run
own price elasticity was ranging from −0.65 to 2.17. Steinbuks
(2012) studied the case of UK from 1990 to 2007 obtaining an
estimated own-price elasticity of −0.20 (short-run) and −0.28
(long-run). Bilgili (2014) considered 8 OECD countries from 1979
to 2006 obtaining own-price elasticities ranging from 0.90 to
3.76. Dilaver et al. (2014) analysed several European countries
from 1978 to 2011 finding an estimated own-price elasticity of
−0.16 and an estimated income elasticity of 1.19. Burke and Yang
(2016) analysed 44 countries over the period 1978–2011 and they
find that own-price elasticity varies from −0.50 to −0.68 while
income elasticity from 0.70 to 1.13. They also find that long-run
price elasticity of natural gas demand point estimates are around
−1.25 and an estimated long-run income elasticity of natural gas
demand estimates are +1 and above. Labandeira et al. (2017)
used a meta-analysis to identify the main factors affecting short
and long-term elasticity results for energy, in general, as well
as for specific products such as natural gas. They show that for
European countries, elasticities usually are negative for own-price
elasticities for natural gas. Malzi et al. (2020), using data of 19
OECD countries from 1980 to 2016, find that the income elasticity
is positive while price elasticity is negative towards natural gas
use in the long run. More recently, Filippini and Kumar (2020)
used household-level panel data from 2010 to 2014 for 958
Swiss households showing an estimated own price elasticity of
gas demand around –0.73. An inelastic demand is expected as
the Swiss gas demand originates mainly from space heating and
water heating purposes.

However, all the previous literature relates to using yearly/
quarterly and/or monthly datasets. The value of obtaining daily
elasticities is well established outside of the energy demand
literature (even though using daily data increases the noise ver-
sus using for example yearly or monthly data) with plenty of
examples in finance2 and economics.3 Despite the importance,
empirical estimates of high-frequency (e.g., hourly, or daily) elas-
ticities are hardly available in the energy literature due to the
lack of daily data available, with the exception of power markets
in which market design, renewable energy sources development
and hourly dispatching mechanism have contributed to generate
the data necessary to this kind of analysis (e.g. Lijesen (2007);
Vesterberg (2016); or Andruszkiewicz et al. (2020)).

2 E.g. Aouadi et al. (2018) obtained daily elasticities of stock market liquidity
o information demand and Cao et al. (2021) estimated daily stock market
ndex´s elasticities.
3 E.g. Mladenovic and Petrovic (2010) estimated daily semi-elasticities of
oney demand; Fornari et al. (2002) estimated daily elasticities between news
n the exchange rate of lira and price changes, and Thakral and Tô (2021)
ocused on elasticity of labour supply with respect to average daily wages.
 (
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There are three main reasons for the need of high-frequency
stimated elasticities: (1) Data disaggregation produces lower
in absolute value) price elasticities, as already shown in the
iterature (e.g. Bohi (1981); McClung (1988); Espey and Espey
2004); or Dagher (2012)) from the empirical point view. Indeed,
im (2004) found that electricity and natural gas demand are
ore price inelastic in combined-billed markets. Also, Vesterberg

2016) found differences between daily and hourly estimated
lasticities of electricity. (2) Dagher (2012) also shows that when
ealing with natural gas, the higher volatility tends to happen
n the short run, motivating changes in the usage of existing
quipment, instead of in the long run (when changes in the
quipment stock are produced). Possible explanations are that
onsumers may have already modified their infrastructure to
revious price shocks; and/or, most of price changes are less than
% from month to month. Such small monthly changes may not
e perceived by the consumer; or even if they are perceived,
here is not a large incentive to introduce changes in the use
r the equipment stock. On the contrary, bigger price changes
that can happen for example at daily frequency) are expected
o motivate and induce changes in the use of the equipment if
he alternative infrastructure is already in place, as highlighted
y Westley (1992). It is important to highlight that this is not
ontrary to the fact that the potential effect in the long run might
e higher, especially if it implies investment on infrastructure
eady for alternative fuels. And (3), Dagher (2012) also shows that
he use of high-frequency elasticities allows to provide a more
etailed explanation of the price adjustment through the time
ath that can be very useful for policy makers. All this justifies
he need to obtain high frequency estimates of elasticities. This
aper tries to fill this gap in the energy literature by providing
ovel estimated daily elasticities for natural gas demand obtained
rom analysing daily consumption data of 15 European countries.
he daily frequency of this dataset allows the model to estimate
ynamic elasticities at a daily level and also to estimate long-
un elasticities uncovering the daily dynamics of the natural gas
emand. We analyse an extended daily period from 2016 to 2020
hat allows us also to study the effects of the lockdowns due to
he Covid-19 in the natural gas demand.

. Model

Following Zhang et al. (2018),4 we construct an autoregressive
istributed lag (ARDL) model and, following Labandeira et al.
2012) – where they allowed for province and/or time specific
lasticities-, we also introduce iteration effects to allow for pos-
ible elasticities that may be country and/or time varying. The
odel has the following shape with a double logarithmic spec-

fication in a panel data context (Wooldridge (2010); and Tovar
nd Iglesias (2013)):

nQ g
i,t = α0 +

u1∑
j1=1

α1,j1 lnQ
g
i,t−j1

+

u2∑
j2=0

α2,j2 lnP
g
i,t−j2

+

u3∑
j3=0

α3,j3 lnIPI i,t−j3 +

11∑
j4=1

α4,j4dumonj4 ∗ lnPg
i,t

4 As stated in Zhang et al. (2018, page 336), there is clear evidence in the
iterature that the ARDL model yields consistent estimates regardless if the
egressors are I(1) or I(0); and that also, the ARDL model is the general form of
he error correction model and the partial adjustment model, where these two
pecifications impose unreasonable constraints on short and long run elasticities.
he double logarithmic form used in (1) at price level has been commonly used
n the literature e.g. Alberini et al. (2020), Labandeira et al. (2012); Steinbuks
2012); Zhang et al. (2018); Filippini and Kumar (2020); or Burns (2021).
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14∑
j5=1

α5,j5ducountryj5 ∗ lnPg
i,t

+

14∑
j5=1

α6,j5ducountryj5 ∗ lnPc
i,t

+

14∑
j5=1

α7,j5ducountryj5 ∗ lnPCO2
i,t +

u4∑
j6=0

π1,j6HDDi,t−j6

+

u5∑
j7=0

π2,j7HDD
2
i,t−j7

+

u6∑
j8=0

π3,j8CDDi,t−j8 +

u7∑
j9=0

π4,j9CDD2
i,t−j9

+

u8∑
j10=0

π5,j10LOCK_DOWNi,t−j10

+

u9∑
j11=0

π6,j11LOCK_DOWNxPeaki,t−j11 + µi + εi,t (1)

where i = 1,. . . ,N indicates the country and t = 1, . . ., T the time
period. For country i and time period t, Q g

i,t denotes the demand
for natural gas5; Pg

i,t is the real price of natural gas; IPIi,t is the
real Industrial Price Index; Pc

i,t is the real price of coal as an
alternative energy; PCO2

i,t is the real price of CO2 emissions; µi is
the unobservable country fixed effects and εi,t the unobservable
idiosyncratic error term. Dummies for year, day (they were not
statistically significant), month (dumon) and country (ducountry)
were also included in (1) in the consideration of possible spatial
and temporal effects on the consumption of natural gas and
iteration effects as in Labandeira et al. (2012). The year 2017,
month December, Day 1 and country Slovenia was taken as the
reference to avoid de dummy variable trap. We also included
other independent variables in Eq. (1) such as real prices of CO2

and coal as independent variables, but they were not statistically
significant. Finally, variables to capture the effect of the lock-
down due to the covid-19 (LOCK_DOWN); an iteration effect of
the LOCK_DOWN variable multiplied by a variable capturing the
peak-day in each of the countries of natural gas demand (Peak),
i.e., LOCK_DOWNxPeak; Heating Degree Days (HDD) and Cold
Degree Days (CDD) –including their squares in order to allow
for possible existence of non-linear relationships between climate
variables and natural gas consumption, as in Labandeira et al.
(2012) – more information about these variables is given in the
following Section and Appendix.

We allow for the existence in (1) of lags u1, u2,. . . , u9 and
following Zhang et al. (2018), we select them according to F-tests
and t-tests to check the statistical significance of the variables as
model selection criteria and the within-R2. From (1), we obtain
the following daily short and long-run elasticities of natural gas:

5 One crucial difference is the infrastructure available in the countries to use
to demand) natural gas and it may affect domestic, industrial, and commercial
emand; and may often dictate different responses within and between coun-
ries beyond the use of for example fixed effects. In our empirical application,
e use an aggregation of natural gas without differencing the structure of
onsumption by sector or by the purpose of demand (natural gas could be also
sed to produce electricity by energy firms, for instance). We would have liked
o have used data disaggregated by sectors, but unfortunately such data was not
vailable at daily frequency for the 15 countries in our sample.
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• Short-run own-price elasticity of natural gas demand for
country j5 in a day of month j4 as6

α2,0 + α4,j4 + α5,j5

• Long-run own-price elasticity of natural gas demand for
country j5 in a day of month j4 as7

(
u2∑

j2=0

α2,j2 + α4,j4 + α5,j5 )/(1 −

u1∑
j1=1

α1,j1 )

• Short-run cross-price elasticity of natural gas demand for
country j5 with regard to coal as8

α6,j5

• Long-run cross-price elasticity of natural gas demand for
country j5 with regard to coal as9

α6,j5/(1 −

u1∑
j1=1

α1,j1 )

• Short-run cross-price elasticity of natural gas demand for
country i with regard to CO2 emissions10

α7,j5

• Long-run cross-price elasticity of natural gas demand for
country j5 with regard to CO2 emissions11

α7,j5/(1 −

u1∑
j1=1

α1,j1 )

• Short-run income elasticity of natural gas demand for any
country is

α3,0.

• Long-run income elasticity of natural gas demand for coun-
try i with regard to CO2 emissions is
u3∑

j3=0

α3,j3/(1 −

u1∑
j1=1

α1,j1 ).

e can also obtain from (1) the short and long run impact of the
‘double heating effect’’ due to the lockdown — see Section 4 for
ore details as follows

• Short-run effect in any day (it does not include the cumula-
tive effect of the peak day of demand of natural gas and the
lockdown) is π5,0.

• Long-run effect in any day (it does not include the cumula-
tive effect of the peak day of demand of natural gas and the
lockdown) is

∑u8
j10=0 π5,j10/(1 −

∑u1
j1=1 α1,j1 ).

6 If the country and the month are the ones that are taken as the reference
n order to avoid the dummy-variable trap then it will be only α2,0 .
7 If the country and the month are the ones that are taken as the reference

in order to avoid the dummy-variable trap then it will be only (
∑u2

j2=0 α2,j2 )/(1−

u1
j1=1 α1,j1 ).
8 If the country is the one that is taken as the reference in order to avoid

he dummy-variable trap then it will be zero.
9 If the country is the one that is taken as the reference in order to avoid

he dummy-variable trap then it will be zero.
10 If the country is the ones that is taken as the reference in order to avoid
he dummy-variable trap then it will be zero.
11 If the country is the ones that is taken as the reference in order to avoid
he dummy-variable trap then it will be zero.
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• The short-run effect in any day (including the cumulative
effect of the peak day of demand of natural gas and the
lockdown) is π5,0 + π6,0.

• Long-run effect in any day (including the cumulative effect
of the peak day of demand of natural gas and the lockdown)
is (

∑u8
j10=0 π5,j10 +

∑u9
j11=0 π6,j11 )/(1 −

∑u1
j1=1 α1,j1 ).

4. Data

This study has been developed using daily data for the period
that goes from October 1st, 2016, to November 30th, 2020, from
15 European countries, generating N = 15 and T = 1522 obser-
vations, utilizing all the sample size that was available. Although
the initial intention of this study was to model the demand of
all the countries in European Union, restrictions on the access to
the data led us to limit our analysis to 15 countries.12 Despite
this limitation, the countries sample represents consistently over
the period of analysis more than 80% of the EU28 natural gas
consumption. Considering these 15 countries (all of them EU
members that follows similar market rules and have a quite
homogeneous access to gas infrastructure) limits the potential
distortion on price–demand interaction due to different natural
gas infrastructure build-in levels highlighted by Huntington et al.
(2019). The daily natural gas consumption data has been ex-
tracted from the daily operational data of the different European
Transmission System Operators (TSOs).

The gas prices series were created based on the traded daily
closing prices13 of the spot reference of the different hubs re-
trieved from Thomson Reuters (2021), harmonized to use the
same counting unit (=C/MWh).

Labandeira et al. (2012) used several extrapolating-procedures
to obtain for example gross disposable income of households by
provinces that imply breaking the data into quarters and later
inflating it according to the evolution of the Consumer Price
Index. Also in Labandeira et al. (2012), several proxies were used
in those cases where the real variables were not available. We
apply similar extrapolating procedures in our case as well as
several proxies that we describe in what follows.14

The CO2 price used is the closing price of the European Union
Allowance (EUA) of the EU Emissions Trading System (EU ETS)
retrieved from Sendeco2. As a proxy of the coal price in Europe
we have use the daily closing price of the CIF ARA, retrieved from
Thomson Reuters (2021).

All prices were converted into real terms by using the
harmonized index of consumer prices (HICP) published by Eu-
rostat, extrapolating a daily variation from monthly data for each
and every country of study (see the Appendix).

The economic activity data correspond to the Production in
Industry Index,15 neither seasonally- nor calendar-adjusted and
with base 2015, published by Eurostat. We transformed monthly
dataset into a daily data by generating ‘‘bridge’’ values through a

12 Austria, Belgium, Bulgaria, Croatia, Denmark, France, Germany, Italy,
uxembourg, Netherlands, Poland, Portugal, Slovenia, Spain, and United
ingdom.
13 Austria (VTP), Belgium (ZEE), France (PEG), Germany (NCG/GPL) Italy (PSV),
etherlands (TTF), Spain (MIBGAS), United Kingdom (NBP).
14 We use previous literature such as Labandeira et al. (2012) as a guidance
or the interpolation procedures. Interpolation induces autocorrelation which is
n artefact of interpolation methods. This in turn is expected to affect the choice
f the lag order of model (1). We consider this issue by allowing for the use of
ifferent lag orders in the estimation of model (1).
15 Mining and quarrying; manufacturing; electricity, gas, steam, and air con-
itioning supply included in sections B, C and D of the Statistical Classification
f Economic Activities in the European Community (NACE Rev.2).
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daily-compounded growth rate that considers exclusively work-
ing days.16

Regarding climatic variables, we have utilized the variables
Heating Degrees Days (HDD) and Cooling Degrees Days (CDD). In
order to construct those variables, we started from the IEA; CMCC
(2020a) database where the daily average temperature for each
country is calculated based on the 2 m above the surface tempera-
ture measurements of the different weather stations weighed by
population of their area of influence.17 Using the daily average
temperature for each country of study and following Labandeira
t al. (2012), HDD and CDD were calculated taking eighteen
egrees Celsius as ideal temperature, considering an interval of
lus/minus five degrees in which there are no relevant heating
r cooling needs. Therefore, these variables have been defined as
he degrees of deviation from the temperature comfort interval,
dentifying this way the energy needs to achieve the comfort
emperature.

Additionally, a variable named LOCK_DOWN was included to
nalyse the impact of the measures established to tackle the covid
ealth crisis. To define this variable, we used a database of the
xford Covid-19 Government Response Tracker project developed
y the Blavatnik School of Government to assess the different
overnments’ response to the covid pandemic. Therefore, the
OCK_DOWN variable corresponds with their Stringency Index,
eformulated while using their methodology available in Hale
t al. (2020), to limit the analyses to the measures designed to
inimize social interaction and control the virus spreading.18
inally, an iteration effect of the LOCK_DOWN variable multiplied
y a variable capturing the peak-day in each of the countries of
atural gas demand (Peak) was also included, creating the vari-
ble named LOCK_DOWNxPeak (the peak day of the lockdown
orresponds to the natural gas demand peak day for each country
ince the World Health Organization (WHO) declared COVID-19
pandemic, on March 11th, 2020).
Descriptive statistics of the variables used in the model are

rovided in Table 2. Unit root testing on all variables was per-
ormed using a battery of tests that goes from Levin et al. (2002),
m et al. (2003), and the Hadri (2000) Lagrange multiplier (LM)
ests. The Levin et al. (2002) and Im et al. (2003) tests have as the
null hypothesis that all the panels contain a unit root. The Hadri
(2000) Lagrange multiplier (LM) test has as the null hypothesis
that all the panels are stationary. All the variables are proved to be
stationary or I(0) no matter the unit root test selected. The Levin
et al. (2002) test results are especially relevant to our analysis,
since it requires that the number of time periods grow more
quickly than the number of panels, so the ratio of panels to time
periods tends to zero.

5. Results

5.1. Own-price, cross-price, and income elasticities

In relation to the estimation procedure, in (1) we have a
dynamic panel where N = 15 and T = 1522, our T is much larger
than N. Therefore, we should not use the methodology Arellano
and Bond (1991) and Bond (2002) that requires a large N. The bias
from using fixed effects with lagged dependent variables is small
when T is large. Therefore, we proceed to estimate (1) by fixed

16 To have additionally information about the transformation process, see
Appendix.
17 For additional information on the methodology followed by the IEA and
CMCC, consult (IEA; CMCC (2020a,b)).
18 The Stringency Index has been reformed to evaluate the impact on gas con-
sumption limiting the included categories to Containment and closure measures
only. To have additionally information see Appendix.
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Table 2
Descriptive statistics.
Variable Mean Standard

deviation
Minimum Maximum Skewness Kurtosis

QG 810.04110 974.13110 8.28595 5642.54000 1.61626 5.27640
PG 16.77097 6.16705 3.10000 76.00000 0.45626 6.00712
PC 10.60709 2.43133 6.16871 14.80224 −0.16995 1.65048
PCO2 16.83229 8.53685 4.29945 30.41892 −0.24177 1.44408
IPI 105.49440 9.51004 59.00000 136.10000 −0.37008 5.02891
HDD 3.54125 4.51415 0.00000 26.89689 1.22175 3.80525
CDD 0.08862 0.47024 0.00000 6.80201 6.65851 54.24517
LOCK_DOWN_S 9.89383 22.77017 0.00000 95.83333 2.13282 6.11278
c
s
s

effects19 with Driscoll and Kraay (1998) standard errors, which
llow any correlation across countries and general serial corre-
ation across time. Driscoll and Kraay (1998) standard errors are
obust to very general forms of cross-sectional (spatial) and tem-
oral dependence when the time dimension becomes large (in
ur panel T is much larger than N). This nonparametric technique

of estimating standard errors does not place any restrictions on
the limiting behaviour of the number of panels. The results are
provided in Table 3,20 where we use the notation that when a
variable is followed by ‘‘.Lu’’ it means that we have introduced
lag ‘‘u’’ of that variable following (1). Dumon3, . . . ., Dumon9 refer
to the dummy variables of months from March to September, and
Ducountryx refers to the dummy of country x where we have
obtained statistically significant effects in Table 3 for Poland (PL),
nited Kingdom (UK), Luxembourg (LU), Bulgaria (BG), Portugal
PT), Austria (AT) and Croatia (HR). From Table 3, we see that all
ariables are statistically significant at least at 10% level except
he p-value corresponding to the income elasticity that is very
lose to 10%. An F-test where the null hypothesis is that all the
ariables are not statistically significant is rejected with a p-value
f 0.00.
In what follows, we will show that indeed natural gas demand

as important information at daily basis — see the dynamics
t daily basis for the lagged dependent variable that we allow
n model (1) and the lags of independent variables that we find
hat are statistically significant in Table 3, that we can uncover to
btain more precise estimates of elasticities at daily level.
As stated in previous sections and based on our data, we have

ocused on total demand elasticity in (1), so our results are not
erfectly comparable with some of the literature on the topic that
rovides either sectorial segmentation (such as Labandeira et al.
2012) for electricity or Zhang et al. (2018) for natural gas) or are
ased on a database with a different frequency. Our estimations
rom Table 3 show that elasticity in Europe has a strong seasonal
rofile. From Table 3, we have computed in Table 4 the estimated

short-run own price elasticities for all analysed countries of the
EU that are different from the five countries where in Table 3
we have estimated proper estimated elasticities (we denote them
EU∗).

As shown in Table 4, in the period October–February during
which residential demand has a higher share on total demand,
mainly due to heating demand, gas price is not a determinant
factor for all EU∗ countries. On the contrary, in those months with
lower heating demand, we find estimated negative short-run own

19 The Hausman test for random versus fixed effects, provides a p-value much
maller than 0.05 providing evidence that we should use the fixed effects
stimator. Also intuitively, a model with fixed effects seems to be adequate
ecause the individual sample (countries) is more a population than a sample
nd the number of countries is very small as regards the number of time periods.
20 The use of instrumental variables is advisable since errors in variables are
ntroduced in model (1) when mixing data with different frequencies. However,
sing a daily frequency makes that finding instrumental variables is extremely
ifficult due to the limited number of variables at that frequency that we can
se, and this limits our possibilities of applying robustness checks for our results.
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Table 3
Estimated results of (1) for natural gas demand. Within-R2 = 0,9781.
Variable Estimated value Driscoll/Kraay Std. Err. P-value

lnQg .L3 0.3655530 0.147049 0.042
lnPg .L7 −0.5929023 0.172250 0.011
lnIPI.L2 0.3781897 0.230937 0.146
HDD.L2 0.0078953 0.004004 0.089
CDD.L1 −0.0296030 0.005539 0.001
HDD2 .L6 0.0005722 0.000060 0.000
CDD2 .L6 0.0047552 0.001567 0.019
LOCK_DOWN.L3 0.0027795 0.000994 0.027
LOCK_DOWNxPeak.L7 0.0008632 0.000236 0.008
Dumon3*lnPg

−0.4334454 0.189099 0.056
Dumon4*lnPg

−0.7782381 0.280075 0.027
Dumon5*lnPg

−1.1829060 0.255380 0.002
Dumon6*lnPg

−1.8095000 0.189266 0.000
Dumon7*lnPg

−2.2085330 0.318070 0.000
Dumon8*lnPg

−2.1594300 0.407365 0.001
Dumon9*lnPg

−1.4235200 0.443041 0.015
Ducountry PL*lnPg 1.2301500 0.131734 0.000
Ducountry UK*lnPg 0.3392442 0.127993 0.033
Ducountry LU*lnPg 0.3357466 0.138805 0.046
Ducountry BG*lnPg 0.6604148 0.108425 0.000
Ducountry PT*lnPg 0.9182855 0.163101 0.001
Ducountry AT*lnPc 0.9513752 0.107608 0.000
Ducountry PT*lnPc

−1.2539740 0.212232 0.001
Ducountry UK*lnPc 0.5175868 0.209701 0.043
Ducountry AT*lnPCO2 0.2450632 0.064153 0.007
Ducountry HR*lnPCO2 0.2419285 0.068997 0.010
constant 0.4218411 0.995541 0.684

price elasticity with continuously increasing values in absolute
terms starting from March, peaking in July, and reducing in Au-
gust and September. This is supported by other sectors’ behaviour
more sensible to price fluctuations such as power sector. If we
average the daily elasticities to compute a unique daily constant
elasticity for the whole year for the EU∗ countries that is not
varying per month, we obtain an average daily short-run own-
price elasticity of natural gas demand of almost −0.60, showing,
overall, a lack of response to price fluctuations. Moreover, we find
that during the months from May to September (see Table 4),
most of the analysed EU countries show elastic own-price elastic-
ities, implying that pricing policies (such as taxation, subsidies, or
regulatory tools) will result in a more than proportional reduction
in natural gas demand. This knowledge may be very relevant for
designing energy policies since the results of those may differ
depending on the month of the year, jeopardizing part of their
potential environmental benefits.

On a country basis, we observe in Table 4 how five countries
(Poland, Portugal, Bulgaria, Luxembourg, and United Kingdom)
present a slightly different behaviour with the rest of the EU∗

ountries, with lower elasticity in absolute terms in the summer
eason – March to September – while preserving the expected
igns, and positive values during the winter season.21 We argue

21 If we compute unique daily constant elasticities for the whole year for
those five countries that are not varying per month, we obtain that three of
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Table 4
Estimated short-run own price elasticities.

Month_1 Month_2 Month_3 Month_4 Month_5 Month_6 Month_7 Month_8 Month_9 Month_10 Month_11 Month_12

EU* 0.000 0.000 −0.433 −0.778 −1.183 −1.810 −2.209 −2.159 −1.424 0.000 0.000 0.000
PL 1.230 1.230 0.797 0.452 0.047 −0.579 −0.978 −0.929 −0.193 1.230 1.230 1.230
PT 0.918 0.918 0.485 0.140 −0.265 −0.891 −1.290 −1.241 −0.505 0.918 0.918 0.918
UK 0.339 0.339 −0.094 −0.439 −0.844 −1.470 −1.869 −1.820 −1.084 0.339 0.339 0.339
LU 0.336 0.336 −0.098 −0.442 −0.847 −1.474 −1.873 −1.824 −1.088 0.336 0.336 0.336
BG 0.660 0.660 0.227 −0.118 −0.522 −1.149 −1.548 −1.499 −0.763 0.660 0.660 0.660

EU* represents the estimated values for all EU countries except PL, PT, UK, LU and BG.
Table 5
Estimated long-run own price elasticities.

Month_1 Month_2 Month_3 Month_4 Month_5 Month_6 Month_7 Month_8 Month_9 Month_10 Month_11 Month_12

EU* −0.935 −0.935 −1.618 −2.161 −2.799 −3.787 −4.416 −4.338 −3.178 −0.935 −0.935 −0.935
PL 1.004 1.004 0.321 −0.222 −0.860 −1.848 −2.477 −2.399 −1.239 1.004 1.004 1.004
PT 0.513 0.513 −0.170 −0.714 −1.352 −2.339 −2.968 −2.891 −1.731 0.513 0.513 0.513
UK −0.400 −0.400 −1.083 −1.626 −2.264 −3.252 −3.881 −3.803 −2.644 −0.400 −0.400 −0.400
LU −0.405 −0.405 −1.089 −1.632 −2.270 −3.257 −3.886 −3.809 −2.649 −0.405 −0.405 −0.405
BG 0.106 0.106 −0.577 −1.120 −1.758 −2.746 −3.375 −3.297 −2.137 0.106 0.106 0.106

EU* represents the estimated values for all EU countries except PL, PT, UK, LU and BG.
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that a possible explanation to the positive values of the estimated
elasticities for these five countries could be a disconnection be-
tween the price traded on the organized markets and the real
price perceived by end-customers. Thus, during the winter season
when heating demand increases, end costumers prioritize meet-
ing their needs over any price signal, especially if that price signal
is a regulated tariff that does not reflect the market conditions
and that could be partially subsidized. As stated in Zhang et al.
2018), market distortions arise when low prices are present, so
hat price increases are not followed by reductions in gas con-
umption. According to Eurostat data, four of the five countries
ith positive estimated elasticities during winter season (Poland,
ulgaria, Luxembourg, and United Kingdom) present natural gas
rices for household consumers below the EU-28 average during
he whole period of analysis. Portugal’s gas prices for household
onsumers are over the EU-28 average, both including and ex-
luding taxes and duties. In this case, we argue that the Portugal
haracteristics may be the key factor to explain our result. As
tated in Huntington et al. (2019), different infrastructure access
in the natural gas market may induce different responses in the
countries. Table 3 shows that natural gas and coal behave as
complementary goods in Portugal, limiting alternative options to
meet the energy needs.

In Table 5 we have computed the estimated long-run own
price elasticities for the EU∗ countries and the five countries with
specific estimated long-run price elasticities that we obtained
from Table 3. As shown in Table 5, long-run own-price elastic-
ities follow a similar trend than short-run own-price elasticities.
During the winter season (October to February), own-price elas-
ticities are negative in general (except for Poland, Portugal, and
Bulgaria), close to one and almost double the short-run own-price
elasticity values. During the summer season, price elasticities in-
crease in absolute terms, almost doubling the values seeing in the
short-run elasticities. The average long-run own-price elasticity
of natural gas demand if it would be a constant value for all the
year is around −1.87, higher than the results obtained by Bilgili
(2014); Dilaver et al. (2014) or Burke and Yang (2016) – where
hey used lower frequency data than in our case-.

In relation to the estimated long-run income elasticity, Table 3
hows a value of 1.38, totally in line with previous works Burke
nd Yang (2016) but higher that what Huntington et al. (2019)
btained.

them present negative estimated daily average short-run own price elasticities,
with the only exceptions of Poland with 0.39 and Portugal with 0.12.
14601
Table 6
Estimated long-run effects for lockdown and peak days during lockdown.
Long-run effects Estimated value

LOCK_DOWN 0.0043810
LOCK_DOWNxPeak 0.0057415

Our findings have relevant policy implications regarding price
and income measures effectiveness. We show that when policy-
makers use price-based tools to influence the natural gas demand
in Europe, these policies will be more effective during the months
from March to August that is when our estimated own-price
elasticities present larger values in absolute terms. Moreover, we
find that during the months from May to September (see Table 4),
ost of the analysed EU countries show elastic own-price elas-

icities, implying that pricing policies will result in a more than
roportional reduction in natural gas demand. This knowledge
ay be very relevant for designing energy policies since the

esults of those may difference depending on the month of the
ear. If this fact is not taken into account and tax mechanisms are
ot applied to all fossil fuels coherently, the higher elasticity of
atural gas during the months from May to September can send
he wrong signal to the market and contribute to the use of more
olluting alternative fuels, such as coal, jeopardizing part of the
otential environmental benefits.

.2. Double-heating effect

Covid-19 has had an impact that has gone further than a
ealth and economic crisis. The Euro Area’s GDP fell 7.2% in 2020,
ith impacts on all economic sectors IMF (2021). The natural gas

sector has not been an exemption. 2020 was the largest recorded
demand downturn of natural gas in history, as highlighted by
IEA (2021). But covid’s impact has gone beyond this global fossil
gas consumption downfall since lock down measures could have
changed normal patterns of natural gas demand.

Residential gas consumption was expected to increase as mil-
lions of people in Europe were forced to spend more time at
home. Despite teleworking protocols, many offices and working
centres must continue opening, commercial use should remain
steady, generating a so-called ‘double-heating effect’ that could
lead to potential increase in use of natural gas. Although many
sources in the sector pointed to the possibility of the existence of
this effect (e.g. Stapczynski and Blas (2020)), we have not found,

from the best of our knowledge, any reference in the academic
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iterature corroborating its existence and quantifying its impact
n total natural gas demand. Using the results of Table 3, we
omputed Table 6 with the long-run effects for the lockdown. The
results in Tables 3 and 6 show empirically that the double-heating
effect does exist, confirming that it has a positive effect on gas
consumption. Thus, an increase of one point on the Stringency
Index used to define the LOCK_DOWN variable would generate
an increase of 0.42% of the daily gas consumption.

Based on the ‘double-heating effect’ definition we have estab-
lished; it is likely that this effect has a stronger impact on peak
demand rather than on total demand. To test this hypothesis, and
thanks to have defined the sample based on daily observations,
we introduced a dummy variable that equals 1 on the peak
demand day once the World Health Organization (WHO) declared
COVID-19 a pandemic, on March 11th, 2020 (named Peak). Our
analysis shows the product of this variable and LOCK_DOWN to
be statistically significant in Table 3, determining a higher posi-
tive impact on natural gas consumption when markets face peak
needs. The impact on daily gas consumption would increases until
0.54% as shown in Table 6.

The existence of a ‘double-heating effect’ may have long-
term implications for policymakers if new consumption patterns
due to teleworking get consolidated, introducing an additional
factor to be considered when natural gas peak demand needs are
evaluated.

6. Conclusion

Understanding European demand behaviour is crucial for pol-
icy makers, especially in the current 2022 Ukraine war context,
under high risk of supply disruption and potential demand ra-
tioning. It will be important to monitored if the EU Commission
to reduce natural gas demand have the capacity to modify the
current consumption patterns that have been analysed in this
article.

Our results suggest that the estimated dynamic elasticities
vary significantly at daily and country level, and that natural gas
demand has important daily information that we can uncover to
obtain estimated elasticities that allow to avoid time aggregation
issues when dealing with monthly or lower time frequencies. We
show that: first, there is a strong seasonal component, mainly
due to heating demand, gas price is not a determinant factor
for most of the countries. Second, we show that Bulgaria, Lux-
emburg, Poland, the UK, and Portugal are the only exceptions
where we find estimated positive own-price elasticities from
October to February. These findings have very relevant policy
implications regarding price and income measures effectiveness
(see also Burns (2021)) to compare our results in Europe with
those in the U.S.). Based on our empirical work, we conclude
that when policymakers use price-based tools to influence the
natural gas demand in Europe, these policies will be more effec-
tive during the months from March to August that is where our
estimated own-price elasticities present larger values in absolute
terms. Moreover, we find that during the months from May to
September, most of the analysed EU countries show elastic own-
price elasticities, implying that pricing policies (such as taxation,
subsidies, or other regulatory tools) will result in a more than pro-
portional reduction in natural gas demand. This knowledge may
be very relevant for designing energy policies since the results
of those may difference depending on the month of the year. If
this fact is not considered and tax mechanisms are not applied
to all fossil fuels coherently, the higher elasticity of natural gas
during the months from May to September can send the wrong
signal to the market and contribute to the use of more polluting
alternative fuels, such as coal, jeopardizing part of the potential
environmental benefits.
14602
Third and finally, we find that the lockdowns due to covid-
19 highly impacted on natural gas demand in all 15 countries
confirming the ‘‘double heating effect’’. From the best of our
knowledge, our study is the first one in quantifying empirically
this effect in the academic literature. The existence of a ‘double-
heating effect’ may have long-term policy implications if new
consumption patterns due to teleworking get consolidated, in-
troducing an additional factor to be considered when natural gas
peak demand needs are evaluated.
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Appendix

A.1. Literature review

Referring to the literature of the estimation of elasticities of
natural gas in countries outside of the EU, Yoo et al. (2009)
analysed the case of South Korea with cross-sectional data for the
year 2005; Wadud et al. (2011) focused on the case of Bangladesh
from 1981 to 2008, Khan (2015) analysed the case of Pakistan
from 1978 to 2011; Alberini et al. (2020) considered the case of
Ukraine; and using annual data from 1971 to 2009, Kani et al.
(2014) studied the case of Iran.

Two countries have obtained an important attention: (1) On
one hand we have the case of the USA, where Bloch (1980)
provided estimated elasticities and Gautam and Paudel (2018)
examined the demand for natural gas in the residential, com-
mercial, and industrial sectors of the North-eastern United States,
comprising nine states and using annual state-level panel data
over the period between 1997 and 2016. Joutz et al. (2009),
Serletis et al. (2010), Alberini et al. (2011), and Payne et al. (2011)
also provided the results for the USA using monthly and/or yearly
data between 2000 and 2006, 1960 and 2007, 1999 to 2007
and 1970 to 2007; while Dagher (2012) considered the case of
Colorado. Burns (2021) has provided estimates of own price and
income elasticity of natural gas consumption by residential users
in the U.S. from 1970 to 2016. More recently, Joshi (2021) studied
the variation of sectoral natural gas demand in the United States
using monthly data between 2001 and 2015. Results reveal the
inelastic price responses across natural gas consumption sectors
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nd highlight that price-based tools can impact differently on a
ectorial basis. (2) The other country that has received an impor-
ant attention is China (Yu et al., 2014; Sun and Ouyang, 2016;
hang et al., 2018). For example, Zhang et al. (2018) constructed
n autoregressive distributed lag model to estimate the elasticity
f natural gas demand in China’s various subsectors with yearly
ata from 1992 to 2015.

.2. DATA

.2.1. Daily natural gas consumption
The natural gas consumption data has been extracted from

he operational data of the different European Transmission Sys-
em Operators (TSOs) through either their websites or the trans-
arency portal of the European Network of Transmission System
perators for Gas (ENTSOG).22 In those countries where there

is more than one balancing zone (e.g., Germany), a consolida-
tion of the data was carried out to generate a single value at a
national level. Unlike previous works on this matter (e.g. Zhang
t al. (2018)), this paper does not provide sectorial segmenta-
ion since not all the countries of the sample have this level of
isaggregation on a daily basis in the available data sources.

.2.2. Natural gas prices
Although the European hubs are getting consolidated over

ime through gradual gains in liquidity and agents, this is not a
omogeneous process.23 For those market in which there is no
aily price signal a neighbouring hub was selected as proxy based
n the market characteristics (supply and demand).24
It is important to highlight the price signals of those organized

arkets, despite being clear and transparent signals, do not have
o reflect the final price to which end consumers (domestic and
ndustrial consumers) are exposed to but the market sentiment
bout the natural gas price at each moment. Thus, this end price
ill be determined not only by portfolio of the different suppliers
hat each country has access to and the pricing formula of the
upply contracts (since there is no obligation to link these pricing
echanisms to these hubs25) but also by specific taxation and
nergy policy costs that every country has included in its natural
as bill.

.2.3. Production in industry index
As explained in Section 4, monthly dataset was transformed

nto a daily data by generating ‘‘bridge’’ values through a daily
ompounded growth rate that considers exclusively the working
ays as described in the equation below:

CRGi =

(
HICPi

HICPi−1

) 1
n

− 1

Being HICPi and HICPi−1 the value of the HICP form the months
i and i -1, and n the number of working days in the month i after
having discounted Saturday and Sundays and the public holidays.

22 The data from the following countries have been downloaded directly from
heir TSOs and market areas: Austria (AGGM), Germany (Gaspool and NCG)
taly (SNAM), Portugal (REN), Spain (Enagas), United Kingdom (National Grid).
enmark and France data were retrieved from open data portal. The data from
elgium, Netherlands, Luxembourg, Poland, Croatia, Bulgaria, and Slovenia have
een retrieved through ENTSOG transparency portal.
23 For additionally information see OIES’ work on the matter (Heather, 2012,
019a,b, 2020).
24 A proxy was needed for the following markets: Portugal (MIBGAS); Lux-
mbourg and Denmark (TTF); Poland (NCG/GPL); Bulgaria, Croatia, and Slovenia
PSV).
25 Contracts with oil-indexed pricing formulas are still dominant despite gas
ub-linked pricing continues to grow as new contracts are signed and legacy
il-linked contracts expire IEA, 2020a,b.
 m
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Table 7
Indicators used for stringency index.
Indicator Max. Value (Nj) Flag (FJ )

C1 – School closing 3 (0, 1, 2, 3) Yes = 1
C2 – Workplace closing 3 (0, 1, 2, 3) Yes = 1
C3 – Cancel public events 2 (0, 1, 2) Yes = 1
C4 – Restrictions on gathering size 4 (0, 1, 2, 3, 4) Yes = 1
C5 – Close public transport 2 (0, 1, 2) Yes = 1
C6 – Stay at home requirements 3 (0, 1, 2, 3) Yes = 1
C7 – Restrictions on internal movement 2 (0, 1, 2) Yes = 1
C8 – Restrictions on international travel 4 (0, 1, 2, 3, 4) No = 0

Once this compound growth rate was obtained, a daily value was
generated either by applying it to the previous value in case of a
working-day or maintaining the value of the previous day if non-
working-day. This transformation has been done in a way that
the values at the end of the month matches the original values
for the month of the monthly dataset.

A.2.4. Stringency index
The Stringency Index was defined using the database and the

methodology developed by the Blavatnik School of Government,
reformulating the index to limit the categories included to the
Containment and closure indicators. As stated in Hale et al. (2020,
page 26), the indicator is ‘‘a simple average of the individual com-
ponent indicators. This is described in Eq. (2) below where k is the
number of component indicators in an index and Ij is the sub-index
score for an individual indicator ’’.

Index =
1
k

k∑
j=1

IJ (2)

To determine the subindices included to generate the gen-
eral index, we selected exclusively those whose effects could
potentially be more relevant to the gas demand or the patterns
of consumption. All the indicators analysed are specified in the
Table 7:

As described in Hale et al. (2020, pages 27 and 28), ‘‘each sub-
index score (I) for any given indicator (j) on any given day (t), is
calculated by the function described in Eq. (2) based on the following
parameters:

• the maximum value of the indicator (Nj).
• whether that indicator has a flag (Fj = 1 if the indicator has a

flag variable, or 0 if the indicator does not have a flag variable)
• the recorded policy value on the ordinal scale (vj,t)
• the recorded binary flag for that indicator, if that indicator has

a flag (fj,t)’’

Ij,t = 100
vj,t − 0, 5(Fj − fjt )

NJ

A.3. Results

As seen in Table 3, cross-price elasticities between natural
gas and coal are only statistically significant for three coun-
tries (Austria, Portugal, and the United Kingdom) of our sample,
presenting different signs and values. As highlighted by Serletis
et al. (2011), the characteristics of each country (e.g. energy
mix, economic activity etc.) determine if coal and natural gas
are either complementary (as shown in Table 3 in Portugal) or
ubstitutive (as shown in Table 3 in Austria, and the United
ingdom), not being determinant the level of economic devel-
pment. As mentioned above, we argue that Portugal’s results
re linked to the fast path reducing role of coal in the energy
ix, going from representing almost 24% of the power generation
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Table 8
Estimated long-run effects for HDD and CDD.
Long-run effects Estimated value

HDD 0.0133463
CDD −0.0391645

mix in 2016 to 2.6% in 2020. Portugal has accelerated its coal
phase-out plans, initially expected to 2023, closing Sines power
plant (1180 MW) in January 2021 and Pego (576 MW), its last
coal power plant, in November 2021. Portugal will become the
fourth country to phase out completely coal power generation,
following Belgium (2016), Austria (2020), and Sweden (2020).
Five more European countries have closing plans for the coal
power generation: France (2022), Slovakia (2023), the UK (2024),
Ireland (2025), and Italy (2025). Paradoxically, the other two sta-
tistically significant countries (Austria and the United Kingdom)
where we find that coal and natural gas are substitutive goods in
Table 3 (see e.g. Loureiro et al. (2013) for a review about benefits
rom low-carbon fuels), have plans to close their generation (one
ecently executed in 2020, and another planned for 2024).

In Table 3, cross-price elasticities between natural gas and CO2
re only statistically significant for two countries (Austria and
roatia) presenting signs and values coherent with what should
e expected. CO2 prices play a crucial role on the switching
rocess from coal to natural gas, especially in power sector,
nternalizing CO2 emissions cost in both technologies variable
ost functions, modifying the merit order for dispatching, and
etermining the competitiveness of one against the other.
Finally, in relation to the climatic variables, we computed

able 8 from the results of Table 3, where Heating Degree Days
HDD) has been shown to be statistically significant in our anal-
sis with a positive effect on gas demand. Our results in Table 8
re fully aligned with the existing literature, suggesting that each
dditional HDD generates an increase of 1.37% increase of the
aily gas consumption. On the contrary, Cooling Degree Days
CDD) has a negative effect on daily gas consumption, generating
.94% reduction per additional CDD. The CDD sign does not match
p with the results obtained by Labandeira et al. (2012) for
he electricity demand. Electricity demand is expected to have a
ifferent behaviour than for natural gas demand since most of
limatization systems rely on electricity to be boosted. However,
he impacts on gas demand go in both directions in our Table 3.
here is a direct negative impact on gas consumption from fewer
eating needs and an indirect positive impact, potentially coming
rom a higher power demand but only if gas natural generation
ncreases to meet that additional power demand. We argue that
his direct negative impact is higher than the potentially positive
ffect resulting in an overall negative effect.
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