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Two novel distances between categorical time series are introduced. Both of them measure
discrepancies between extracted features describing the underlying serial dependence pat-
terns. One distance is based on well-known association measures, namely Cramer’s v and
Cohen’s j. The other one relies on the so-called binarization of a categorical process, which
indicates the presence of each category by means of a canonical vector. Binarization is used
to construct a set of innovative association measures which allow to identify different
types of serial dependence. The metrics are used to perform crisp and fuzzy clustering of
nominal series. The proposed approaches are able to group together series generated from
similar stochastic processes, achieve accurate results with series coming from a broad
range of models and are computationally efficient. Extensive simulation studies show that
both hard and soft clustering algorithms outperform several alternative procedures pro-
posed in the literature. Two applications involving biological sequences from different spe-
cies highlight the usefulness of the introduced techniques.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Clustering of time series concerns the challenge of splitting a set of unlabeled time series into homogeneous groups,
which is a pivotal problem in many knowledge discovery tasks. Its applications encompass a broad spectrum of fields includ-
ing artificial intelligence, computer science, biology, finance, environmental sciences, psychology, and medicine, among
many others. As a result, time series clustering has attracted great attention in the data mining community, becoming exten-
sively studied over the past few decades. Excellent reviews on the topic are provided in [1,2]. However, most of the works
deal with continuous-valued time series, whereas cluster analysis of categorical series, the focus of this article, is usually
neglected in the literature.

Categorical time series (CTS) are featured by taking values on a qualitative range consisting of a finite number of cate-
gories, which is referred to as ordinal range, if the categories exhibit a natural ordering, or nominal range, otherwise. In this
work, the most general case of nominal range is considered. Indeed, dealing with unordered qualitative outcomes implies
that some basic analytic tools are not longer applicable. Thus, standard measures of location (mean, median, quantiles), dis-
persion (standard deviation, range) and dependence (autocorrelation, partial autocorrelation) are not defined, and alterna-
tive measures considering the qualitative nature of the outcomes are needed to analyze CTS.
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CTS arise in an extensive assortment of fields. Some illustrative examples are the stochastic modeling of DNA sequence
data [3,4], the analysis of EEG sleep state scores [5], and the use of hidden Markov processes to model protein families [6]. A
comprehensive overview of discrete-valued time series is provided by [7], including stochastic properties, modeling, insight-
ful examples and practical implementation. In particular, many interesting applications can be addressed by grouping CTS.
Typical examples are sequence alignment clustering, segmentation of customers based on their market baskets, clustering of
patients according to the presented symptoms, and identifying web-user profiles according to the sequences of visited sites
(commonly referred to as clickstreams).

Despite the wide range of applications, only a few works have addressed CTS clustering. [8] proposed a clustering algo-
rithm based on a mixture of first order Markov models to group users with similar navigation behaviors. [9,10] introduced
model-based procedures also relying on first order Markov Chains (MC) and allowing for covariates. [11] addressed the
selection of the number of components for clustering based on mixtures of MC. In [12], a distance between Hidden Markov
Models (HMM) characterizing the series was considered. Notice that [8–12] consider model-based procedures, i.e., assume
specific models for the CTS subject to clustering, which makes their applicability to real databases rather limited. A more
intuitive approach consists of introducing a distance between CTS to construct an initial pairwise dissimilarity matrix,
and then applying a conventional clustering algorithm. However, it is challenging to define a proper distance between cat-
egorical data and usual distances (v2, Hamming, simple matching dissimilarity,. . .) ignore the underlying temporal structure.
On the other hand, measuring dissimilarity between categorical sequences is a central problem in some specific fields. For
instance, this is the case of the so-called sequence analysis [13], a topic of great interest in social sciences. In this framework,
a set of variants of optimal matching (OM) algorithms and distances between inter-sequences have been provided [14–18].
Nevertheless, this kind of metrics aim at discriminating between shapes, but they are not designed to capture differences
between the dynamic structures describing the global behavior of the series (e.g., by treating with stationary series). In
[19], a different strategy was proposed to cluster clickstreams. Specifically, a dissimilarity measure combining both closeness
of raw categorical values and similarity between dynamic behaviors was used as input to a modified version of the K-modes
algorithm. A more detailed summary of the mentioned approaches, including some useful software libraries, is given in
Tables 1 and 2 for the model-based and distance-based approaches, respectively.

Previous considerations support the need for further exploration of CTS clustering. In particular, the motivation behind
this work is twofold. First, introducing model-free procedures considering the feature-based approach, a broadly used strat-
egy to cluster continuous-valued time series but overlooked for categorical series. Secondly, developing fuzzy versions of the
clustering algorithms. Some fuzzy algorithms have been proposed to cluster categorical data [22,23], but the adoption of the
fuzzy logic in CTS clustering has not received proper attention. Note that, as in the case of numerical time series, the depen-
dence structure of a categorical time series (e.g., a clickstream) may change over time so that it might belong to distinct clus-
ters during different periods of time [24,25]. In addition, a fuzzy definition of the clusters allows to identify different
underlying prototypes when the observed patterns do not differ too much from each other [24] (e.g., this might be the case
for DNA sequences of viruses from the same family). In sum, introducing fuzziness in CTS clustering provides a desirable ver-
satility to characterize the intrinsic clustering structure of the dataset. By accomplishing these two objectives, our work con-
tributes to fill two important gaps concerning CTS clustering that currently exist in the literature.

In sum, this article is aimed at introducing crisp and fuzzy clustering algorithms for stationary CTS capable of: (i) grouping
together categorical sequences generated from similar stochastic processes, (ii) achieving accurate results with series com-
ing from a broad variety of categorical models, and (iii) performing the clustering task in low computation times.

To this aim, we first introduce an algorithm by considering the partitioning-based approach, where data objects are iter-
atively relocated between the clusters in such a way that the dispersion within clusters decreases at each iteration. The nov-
elty of our procedure lies in how the dissimilarity between objects is measured. Since our target is to group series with
similar underlying dependence structures, we propose to compare extracted features quantifying serial dependence. Unlike
other works, we do not require determining a suitable metric between raw categorical data or assuming specific underlying
models. In addition, our approach allows to overcome the noisy nature of the raw data, reduce dimensionality, compare ser-
ies with different lengths or including missing data, and, more importantly, adjust the dissimilarity criterion to the specific
application domain by selecting suitable features. The feature-based approach can be seen as a ‘‘universal” solution, more
robust and usually less computationally intensive than other alternatives. The main challenge is to select proper features.
Different choices have been considered to deal with real-valued time series, including autocorrelations [24], quantile depen-
dence measures [26,25,27], frequency domain-based features [28,29], and the combined use of global features [30]. In the
current setting, the selected features must take into account the nominal nature of the series. Specifically, we introduce
two novel dissimilarities for categorical sequences. The first one combines the information provided by the elements defin-
ing two well-known association measures, namely the Cramer’s v and the Cohen’s j. Both of them describe the serial depen-
dence between categories in different ways and present attractive properties. The second metric arises from considering an
alternative representation of the CTS through binary vectors taking the value one in the component associated with the
observed category and zeros in the rest of components. This binarization process enables the computation of standard auto-
correlations, which are used to define a new distance. Under stationarity, both distances are always well-defined and are
intuitive and computationally efficient.

Next step consists of using the two proposed distances to construct novel clustering algorithms for CTS. We consider both
the crisp and the fuzzy paradigms. In particular, when adopting the fuzzy approach, we simultaneously take advantage of
468



Table 1
Some references providing model-based approaches for clustering of CTS.

Paper Method

Cadez et al. [8] A mixture of first-order MC models is learned using the EM algorithm.
Dias [11] The selection of the number of components for clustering based on finite mixtures of MC using several information criteria

is addressed via a Monte Carlo study.
Pamminger and

Frühwirth-Schnatter
[9]

Two approaches based on a finite mixture of first-order MC models: (i) assuming that all series within a cluster are
described by the same cluster-specific transition matrix, and (ii) assuming that the transition matrix of each time series
deviates from an average group-specific transition matrix according to a Dirichlet distribution. Bayesian estimation using a
two-block MC Monte Carlo sampler is considered.

Frühwirth-Schnatter
et al. [10]

Algorithms in [9] are extended by formulating a probabilistic (logit type prior) model for the latent group indicators within
the Bayesian classification rule by using a multinomial logit model.

Ghassempour et al. [12] Each time series is characterized by a HMM and then the symmetrized Kullback–Leibler divergence between HMM is used
to construct a distance matrix. The algorithm is valid for multivariate time series including both categorical and
continuous variables.

Melnykov [20] The R package ClickClust is introduced. This library is devoted to finite mixture modeling and model-based clustering of
categorical sequences, with particular attention to the problem of grouping clickstreams. Methodological and algorithmic
foundations of the package are discussed.

Table 2
Some references introducing distance measures between categorical sequences.

Paper Method

Elzinga [14] Four classes of alternatives to the optimal matching (OM) approach are introduced in order to compare categorical
sequences. The proposed metrics are based on attributes of pairs of sequences, which are meaningful within the context
of substantive social science theories.

Lesnard [15] A specific OM algorithm (Dynamic Hamming Matching, DHM) is used to construct a dissimilarity matrix. DHM only
employs substitution operations with time-dependent costs inversely proportional to transition frequencies. The
behavior of DHM is compared to three classical OM variants (Hamming and Levenshtein I and II).

Halpin [16] A variant of the OM algorithm (so-called OMv) based on weighting OM’s elementary operations inversely with episode
length.

Studer and Ritschard [17] A comparative study of multiple ways of measuring dissimilarities between categorical sequences. The focus is put on
differences concerning the order in which successive categories appear, the timing and the duration of the spells in
successive categories. All metrics are available in the R package TraMineR [21].

Halpin [18] The package SADI for STATA is introduced. SADI is devoted to sequence analysis including utilities as: dissimilarities
between pairs of categorical sequences, graphical summaries and tools for cluster analysis, among others.

García-Magariños and
Vilar [19]

A novel dissimilarity measure combining both closeness of raw categorical values and similarity between dynamic
behaviors is used as input to a modified version of the K-modes algorithm.
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both the discriminatory capability of the proposed distances and the assignment of gradual membership of the CTS to clus-
ters. Extensive simulation studies involving a broad range of dependence models show the superiority of the proposed tech-
niques with respect to other clustering algorithms employing alternative dissimilarities.

The remainder of the paper is organized as follows. Suitable features for measuring serial dependence in categorical
sequences and two distances between CTS based on these features are introduced in Section 2. Crisp and fuzzy clustering
algorithms based on these metrics are developed and evaluated through Monte Carlo simulations in Sections 3 and 4, respec-
tively. Computational efficiency is discussed in Section 5, and two interesting applications involving biological sequences are
shown in Section 6. Conclusions and future work are provided in Section 7.1
2. Feature-based distances between categorical time series

In this section, several features providing information on the serial dependence structure of a CTS are introduced in order
to define two novel distances between series.

Hereafter, Xt; t 2 Zf g denotes a categorical stochastic process taking values on a number r of unordered qualitative cat-
egories, which are coded from 1 to r so that the range of the process can be seen as V ¼ 1; . . . ; rf g. It is assumed that Xt is
bivariate stationary, that is, the pairwise joint distribution of Xt;Xt�lð Þ is invariant in t for arbitrary l (see [4]). The marginal
distribution of Xt is denoted by p ¼ p1; . . . ;prð Þ|, with pj ¼ P Xt ¼ jð Þ; j ¼ 1; . . . ; r. Fixed l 2 N, we use the notation
pij lð Þ ¼ P Xt ¼ i;Xt�l ¼ jð Þ, with i; j 2V, for the lagged bivariate probability and the notation
pijj lð Þ ¼ P Xt ¼ ijXt�l ¼ jð Þ ¼ pij lð Þ=pj for the lagged conditional probability.
1 The code used to perform the analyses described throughout the paper is available in https://github.com/anloor7/PhD_degree/tree/master/
r_code/paper_categorical.

469

https://github.com/anloor7/PhD_degree/tree/master/r_code/paper_categorical
https://github.com/anloor7/PhD_degree/tree/master/r_code/paper_categorical


Á. López-Oriona, José A. Vilar and P. D’Urso Information Sciences 624 (2023) 467–492
2.1. Structural features for categorical processes

In order to extract suitable features characterizing the serial dependence structure of a given CTS, we first start by defin-
ing the concepts of perfect serial independence and dependence for a categorical process. Following [4], we have perfect
serial independence at lag l 2 N if and only if pij lð Þ ¼ pipj for any i; j 2V. On the other hand, we have perfect serial depen-
dence at lag l 2 N if and only if the conditional distribution p�jj lð Þ is a one-point distribution for any j 2V. Thus, in a perfect
serially independent process, knowledge about Xt�l does not help at all in predicting the value of Xt . Conversely, in a perfect
serially dependent process, the value of Xt is completely determined from Xt�l.

There are several association measures that describe the serial dependence structure of a categorical process at lag l. One
of such measures is the so-called Cramer’s v, which is defined as
v lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r � 1

Xr
i;j¼1

pij lð Þ � pipj
� �2

pipj

vuut : ð1Þ
The quantity v lð Þ has range 0;1½ �, with the values 0 and 1 associated with the cases of perfect serial independence and perfect
serial dependence at lag l, respectively. Note that the numerator appearing in the summation of (1) measures the deviation of
pij lð Þ from the case of serial independence between i and j at lag l.

Cramer’s v summarizes the serial dependence patterns of a categorical process for every pair i; jð Þ and l 2 N. However, this
quantity is not appropriate for characterizing a given stochastic process, since different processes can exhibit the same value
of v lð Þ. A better way to characterize the process Xt is by considering the matrix V lð Þ ¼ Vij lð Þ

� �
16i;j6r , where
Vij lð Þ ¼
pij lð Þ � pipj
� �2

pipj
: ð2Þ
In this way, the r2 elements in the summation of (1) are separately considered, and a much richer picture of the underlying
dependence structure of Xt is available.

The elements of the matrix V lð Þ give information about the so-called unsigned dependence of the process. However, it is
often useful to knowwhether a process tends to stay in the state it has reached or, on the contrary, the repetition of the same
state after l steps is infrequent. This motivates the concept of signed dependence, which arises as an analogy of the autocor-
relation function of a numerical process, since such quantity can take either positive or negative values. Provided that perfect
serial dependence holds, we have perfect positive (negative) serial dependence if piji lð Þ ¼ 1 (piji lð Þ ¼ 0) for all i 2V. The reader
is referred to [4] for more details about the concepts of unsigned and signed serial dependence.

Since V lð Þ does not shed light on the signed dependence patterns, it would be valuable to complement the information
contained in V lð Þwith features describing signed dependence. In this regard, a commonmeasure of signed serial dependence
at lag l is the Cohen’s j, which takes the form
j lð Þ ¼

Xr
j¼1

pjj lð Þ � p2
j

� �
1�

Xr
j¼1

p2
j

: ð3Þ
The range of j lð Þ is given by �
Pr

j¼1p
2
j

1�
Pr

j¼1p
2
j

;1
� �

, with the lower and upper bounds associated with the cases of perfect negative

and perfect positive dependence, respectively. For instance, in the latter case, we have
Pr

j¼1pjj lð Þ ¼
Pr

j¼1pjjj lð Þpj ¼
Pr

j¼1pj ¼ 1,
so j lð Þ takes the value of 1.

Proceeding as with v lð Þ, the quantity j lð Þ can be decomposed in order to obtain a more detailed representation of the
signed dependence patterns of the process. In this way, we consider the vector K lð Þ ¼ K1 lð Þ; . . . ;Kr lð Þð Þ, where each Ki,
for i ¼ 1; . . . ; r, is defined as
Ki lð Þ ¼ pii lð Þ � p2
i

1�
Xr
j¼1

p2
j

: ð4Þ
In practice, the matrix V lð Þ and the vector K lð Þmust be estimated from a T-length realization of the process, X1; . . . ;XTf g. To
this aim, we consider estimators of pi and pij lð Þ; bpi and bpij lð Þ, defined as
bpi ¼ Ni

T
and bpij lð Þ ¼ Nij lð Þ

T � l
; ð5Þ
where Ni is the number of variables Xt equal to i in the realization X1; . . . ;XTf g, and Nij lð Þ is the number of pairs

Xt;Xt�lð Þ ¼ i; jð Þ in the realization X1; . . . ;XTf g. Hence, estimates of V lð Þ and K lð Þ; bV lð Þ and cK lð Þ, can be obtained by plugging
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in the estimates bpi and bpij lð Þ in (2) and (4), respectively. This leads directly to estimates of v lð Þ and j lð Þ, denoted by bv lð Þ andbj lð Þ, whose asymptotic distributions have been studied for the i.i.d. case by [31,32]. Note that, by considering bV lð Þ and cK lð Þ,
a complete picture of the serial dependence patterns of a CTS is provided.

An alternative way of describing the dependence structure of the process Xt ; t 2 Zf g is to take into consideration its equiv-
alent representation as a multivariate binary process. The so-called binarization of Xt; t 2 Zf g is carried out as follows. Let
e1; . . . ; er 2 0;1f gr be unit vectors such that ek has all its entries equal to zero except for a one in the k-th position,
k ¼ 1; . . . ; r. Then, the binary representation of Xt ; t 2 Zf g is given by the process Y t ¼ Yt;1; . . . ;Yt;rð Þ>; t 2 Z

	 

such that

Y t ¼ ej if Xt ¼ j. Fixed l 2 N and i; j 2V, consider the correlation
/ij lð Þ ¼ Corr Yt;i;Yt�l;j
� �

; ð6Þ

which measures linear dependence between the i-th and j-th categories with respect to the lag l. The following theorem pro-
vides some properties of the quantity /ij lð Þ.

Theorem 1. Let Xt; t 2 Zf g be a bivariate stationary categorical process with range V ¼ 1; . . . ; rf g. Then the following properties
hold:

1. For every i; j 2V, the function /ij : N! �1;1½ � given by l! /ij lð Þ ¼ Corr Yt;i; Yt�l;j
� �

is well-defined.
2. /ij lð Þ ¼ 0() pij lð Þ ¼ pipj:

3. /ij lð Þ ¼ �1() pij lð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi 1� pið Þpj 1� pj

� �q
þ pipj:

4. /ij lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj 1�pið Þ
pi 1�pjð Þ

r
() pijj lð Þ ¼ 1:
Proof. By construction and under stationarity, the marginal distribution of Y t verifies
Y t � MULT 1;p1; . . . ;prð Þ for all t 2 Z: ð7Þ

As a result, we have
P Y t ¼ ej
� � ¼ P Yt;1 ¼ 0; . . . ;Yt;j ¼ 1; . . . ;Yt;r ¼ 0

� � ¼ pj; ð8Þ

and the expectation and the covariance matrix of Y t are given by
E Y tð Þ ¼
Xr
i¼1

eipi ¼ p ¼ p1; . . . ;prð Þ>;

Var Y tð Þ ¼ diag p1; . . . ;prð Þ � pp> ¼ R ¼ rij
� �

16i;j6r;

ð9Þ
where the diag �ð Þ operator creates a square matrix whose main diagonal is the vector taken as argument and the rest of
entries are equal to zero, so that
rij ¼
pi 1� pið Þ if i ¼ j;

�pipj if i– j:

�
ð10Þ
Using again the stationarity of Xt , for a lag l 2 N, we have
Var Y t;Y
>
t�l

� � ¼E Y tY
>
t�l

� �� E Y tð ÞE Y>t�l
� �

¼
Xr
i¼1

Xr
j¼1

eie>j P Y t ¼ ei;Y t�l ¼ ej
� �� pp>

¼
Xr
i¼1

Xr
j¼1

eie>j pij lð Þ � pp>

¼ R lð Þ ¼ rij lð Þ
� �

16i;j6r ;

ð11Þ
where
rij lð Þ ¼ pij lð Þ � pipj; 1 6 i; j 6 r: ð12Þ

By taking into account (10) and (12), the covariance terms Var Y t;Y

>
t�l

� �
can be standardized to obtain
Corr Y t;Y
>
t�l

� � ¼ U lð Þ ¼ /ij lð Þ
� �

16i;j6r
; ð13Þ
with
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/ij lð Þ ¼
rij lð Þ
riirjj

¼ pij lð Þ � pipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi 1� pið Þpj 1� pj

� �q ; 1 6 i; j 6 r: ð14Þ
Under stationarity, both the numerator and the denominator in (14) are well-defined so Property 1 holds. The definition of
/ij lð Þ in (14) directly leads to the fulfillment of Properties 2 and 3. To show Property 4, assume now that pijj lð Þ ¼ 1. As
pijj lð Þ ¼ pij lð Þ=pj, we have pij lð Þ ¼ pj, hence
/ij lð Þ ¼
pj � pipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pi 1� pið Þpj 1� pj
� �q ¼ pj 1� pið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pi 1� pið Þpj 1� pj
� �q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj 1� pið Þ
pi 1� pj
� �s

; ð15Þ
so Property 4 is met and the proof is completed. h
Remark 1. About /ij lð Þ as a descriptive feature. According to Theorem 1, /ij lð Þ provides valuable insights into both types of
dependence, signed and unsigned, for the underlying process. In the case of perfect (unsigned) independence at lag l, we have
that pij lð Þ ¼ pipj for all i; j 2V, and therefore /ij lð Þ ¼ 0 for all i; j 2V, in accordance with Property 2 of Theorem 1. Under per-
fect positive dependence at lag l; piji lð Þ ¼ 1 for all i 2V, and therefore /ii lð Þ ¼ 1 for all i 2V by following Property 4 of The-
orem 1. The same property allows to conclude that /ii lð Þ ¼ �pi= 1� pið Þ for all i 2V in the case of perfect negative
dependence. In sum, /ij lð Þ evaluates unsigned dependence when i – j and signed dependence when i ¼ j.
Remark 2. Relationship between /ij lð Þ and Vij lð Þ. From (2) and (14), it follows that /2
ij lð Þ ¼ Vij lð Þ= 1� pið Þ 1� pj

� �� �
. This way,

/2
ij lð Þ is obtained by correcting Vij lð Þ by means of the marginal probabilities of categories i and j. Note that, in order to dis-

criminate between dependence patterns, /ij lð Þ is indeed a more informative feature than /2
ij lð Þ and, in turn, than Vij lð Þ (dif-

ferent serial patterns for two given categories i and j leading to different /ij lð Þ could exhibit identical /2
ij lð Þ).

The matrixU lð Þ appearing in the proof of Theorem 1 can be directly estimated by means of bU lð Þ ¼ b/ij lð Þ
� �

16i;j6r
, where the

estimates b/ij lð Þ are computed as
b/ij lð Þ ¼
bpij lð Þ � bpi bpjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpi 1� bpi
� �bpj 1� bpj

� �q ; ð16Þ
with bpi and bpij lð Þ given in (5). It is worth remarking that the numerator in (16) is more efficiently computed by using the
realization Y1; . . . ;YTf g of binary vectors obtained from the realization X1; . . . ;XTf g, that is, by computing
1
T � l

XT�l
k¼1

Ykþl;iYk;j � 1
T2

XT
k0¼1

Yk0;i

 ! XT
k0¼1

Yk0;j

 !
: ð17Þ
2.2. Motivating example

In this section, we illustrate the high ability of the features introduced in the previous section to differentiate between
categorical processes. To this end, let us consider two different three-state MC, denoted by Process 1 and Process 2, with
transition matrices P1 and P2, respectively, given by
P1 ¼ Mat3 0:1;0:8;0:1;0:6; 0:2; 0:2; 0:3; 0:4;0:3ð Þ;
P2 ¼ Mat3 0:9;0:05; 0:05;0:05;0:9;0:05;0:025; 0:025; 0:95ð Þ;

ð18Þ
where the operatorMatk; k 2 N, transforms a vector into a square matrix of order k by sequentially placing the corresponding
numbers by columns.

As a first step, the stationary distributions of Processes 1 and 2 were calculated by solving the invariance equations for
matrices P1 and P2, resulting the marginal distributions p1 ¼ 0:3636;0:4545; 0:1818ð Þ> and p2 ¼ 0:25;0:25;0:50ð Þ>. To
examine the dispersion of each distribution, we obtained the values of the Gini index, which is defined by
Gi ¼ r
r � 1

1� p>i pi
� �

; i ¼ 1;2: ð19Þ
The Gini index has range 0;1½ �, with values close to 0 indicating minimal dispersion (i.e., similarity to a one-point distribu-
tion), and values close to 1 indicating maximal dispersion (i.e., similarity to a uniform distribution). The computed values
resulted G1 ¼ 0:9423 for Process 1 and G2 ¼ 0:9375 for Process 2, indicating that both processes exhibit a very high and sim-
ilar amount of dispersion. Note that, in this toy example, the marginal distributions are themselves an effective tool to dif-
ferentiate between the underlying Markov models.
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With respect to the serial patterns, note that the dependence structure of both processes is determined by only one lag,
l ¼ 1. In view of the transition matrices P1 and P2, it is clear that both Markov processes exhibit a distinct behavior. For
instance, Process 2 is expected to show a substantial degree of positive serial dependence, since the three diagonal elements
in the matrix P2 are close to one. On the contrary, some amount of negative dependence is anticipated for Process 1, as the
diagonal elements of matrix P1 indicate low transition probabilities between the same state. In addition, compared to P1, the
structure of matrix P2 indicates a larger deviation from the case of serial independence, corresponding here to a transition
matrix with all entries equal to 1=3. Therefore, features indicating departure from the independence case (e.g.,
Vij 1ð Þ; i; j 2 1;2;3f g) are expected to take larger values for Process 2.

In order to illustrate the types of dependence arising in each process, values of Cramer’s v and Cohen’s j were computed
in both cases with respect to lags from 1 to 10. The results are shown in Fig. 1, where blue and orange colors are used for
Processes 1 and 2, respectively. As expected, Cramer’s v takes smaller values for Process 1, indicating that this process is clo-
ser to the case of serial independence. As for the signed dependence, Cohen’s j is able to distinguish between the positive
dependence of Process 2 and the negative dependence of Process 1 when odd lags are considered.

After generating a large sample size T ¼ 106
� �

realization of each one of the processes above, estimates of the features

presented in Section 2.1 were obtained. Specifically, we computed the quantities V̂ ij 1ð Þ;cK i 1ð Þ; /̂ ij 1ð Þ; i; j ¼ 1;2;3, for both

processes. The corresponding values are displayed in Fig. 2. A logarithmic scale was employed in the case of bV ij 1ð Þ for com-
parison purposes, since the values of these estimates clearly differ between Processes 1 and 2. A label was incorporated next
to each bar of Fig. 2 to indicate the categories involved in the corresponding estimate. For instance, the label ‘‘13” in the top

left panel implies that the associated bar refers to the quantity log bV 13 1ð Þ
� �

obtained from the realization of Process 1.

Overall, the three types of descriptive measures are markedly different for both processes. With regards to the features

based on Cramer’s v (first column), it is observed that the values of bV ij 1ð Þ are generally higher for Process 2, which is
expected since, as stated previously, Process 1 is closer to a serially independent model than Process 2. The quantitiescKi 1ð Þ (second column) indicate a moderate degree of negative dependence for Process 1 and a substantial amount of pos-

itive dependence for Process 2. Note that the value
P3

i¼1cKi 1ð Þ is the estimated Cohen’s j, which is expected to take a value
close to 1 in the case of perfect positive dependence. Finally, the estimates based on the binarization process (third column)
summarize both previous columns. In fact, while the first three bars clearly discriminate the negative dependence of Process
1 from the positive dependence of Process 2 (see Remark 1 above), the remaining bars suggest that Process 2 exhibits a
greater deviation from the serial independence case.

In summary, this toy example highlights the usefulness of the features bV ij lð Þ;cKi lð Þ and b/ij lð Þ for distinguishing between
dissimilar dependence structures of categorical time series.
Fig. 1. Values of Cramer’s v lð Þ and Cohen’s j lð Þ for Processes 1 and 2 and lags ranging from l ¼ 1 to l ¼ 10.
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Fig. 2. Estimates of log Vij 1ð Þ
� �

;Ki 1ð Þ and /ij 1ð Þ for large sample size realizations of Processes 1 and 2. A label was incorporated next to each bar to indicate
the categories involved in the estimation.
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2.3. Two innovative dissimilarities between CTS

In this section, we introduce two distance measures between categorical series based on the features described in Sec-
tion 2.1 and illustrated in Section 2.2.

Suppose we have a pair of CTS, X 1ð Þ
t and X 2ð Þ

t , and consider a set of L lags,L ¼ l1; . . . ; lLf g. A dissimilarity based on Cramer’s
v and Cohen’s j, so-called dCC , is defined as
dCC X 1ð Þ
t ;X 2ð Þ

t

� �
¼
XL
k¼1

vec bV lkð Þ 1ð Þ � bV lkð Þ 2ð Þ
� ���� ���2�

þ cK lkð Þ 1ð Þ � cK lkð Þ 2ð Þ
��� ���2�þ bp 1ð Þ � bp 2ð Þ�� ��2; ð20Þ
where the superscripts 1ð Þ and 2ð Þ are used to indicate that the corresponding estimations are obtained with respect to the
realizations X 1ð Þ

t and X 2ð Þ
t , respectively. The metric dCC combines (estimates of) the features Vij lð Þ in (2) with (estimates of) the

quantitiesKi lð Þ in (4). This combination often results in improved discriminative ability, since both sets of measures provide
complementary information as shown in Section 2.2 (see Fig. 2).
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An alternative distance measure relying on the binarization of the processes, so-called dB, is defined as
dB X 1ð Þ
t ;X 2ð Þ

t

� �
¼
XL
k¼1

vec bU lkð Þ 1ð Þ � bU lkð Þ 2ð Þ
� ���� ���2 þ bp 1ð Þ � bp 2ð Þ�� ��2: ð21Þ
The distance dB jointly considers signed and unsigned dependence (see Remark 1 and Fig. 2), thus evaluating discrepancies
between the whole serial dependence patterns of both categorical series.

Remark 3. Independent consideration of metrics dCC and dB. Indeed, dCC and dB could be combined to compare simultaneously

the three sets of features /̂ ij lð Þ; V̂ ij lð Þ and cK i lð Þ by defining the dissimilarity dCOMB ¼ dCC þ dB � bp 1ð Þ � bp 2ð Þ�� ��2. However,
several numerical experiments have revealed that, in most cases, the clustering accuracy using the combined distance dCOMB

is lower than the one achieved with the algorithms based on one of the individual distances, dCC or dB. This is due to the fact
that redundant information is supplied when all features are jointly used. In fact, the serial dependence patterns captured by
/ij lð Þ are also explained by either Vij lð Þ or Ki lð Þ, and conversely. Since the use of redundant features is known to be
counterproductive in clustering and classification contexts, it can be concluded that the independent consideration of
metrics dCC and dB is a more suitable approach.
Remark 4. Consideration of the marginal probabilities. Note that a term measuring discrepancies between the marginal dis-
tributions appears in the definition of both metrics, dCC and dB. In fact, this term can play an important role to measure dis-
similarity. Assume that Xt and Yt are two bivariate stationary categorical processes such that, for all l 2 N; Xt ;Xt�lð Þ has the
same distribution than Yt ;Yt�lð Þ, which is given by the joint probabilities pij lð Þ. Then, since the probabilities P Xt ¼ ið Þ and
P Yt ¼ ið Þ can be expressed as pi ¼

Pr
j¼1pij lð Þ for all i ¼ 1; . . . ; r and any lag l, we conclude that Xt and Yt have the same mar-

ginal distribution. Therefore, taking into account the marginal probabilities does not pervert the distances dCC and dB in the
case of equal processes. On the other hand, it is possible that two processes with different lagged bivariate probabilities can
be distinguished through dCC and dB only by virtue of the marginal probabilities. For instance, consider simply two categor-
ical process formed by i.i.d. elements and having different marginal distributions. In such a case, Vij lð Þ ¼Ki lð Þ ¼ /ij lð Þ ¼ 0 for
both processes, and both distances dCC and dB will draw out different values for realizations of these processes due to the
terms involving the marginal probabilities.
Remark 5. Advantages of feature-based distances. Both proposed metrics rely on two steps: (i) each time series is replaced by
a set of extracted features and (ii) a standard distance between both sets of features is computed. This type of metrics, usu-
ally referred to as feature-based dissimilarities, have several advantages including dimensionality reduction, low computa-
tional complexity, selection of the most suitable features for a given context and possibility of comparing series with
different lengths, since the computation of the distance takes place in the reduced space. It is worth remarking that this
is not the case with many other distance measures for categorical series, for instance, metrics based on raw data, which usu-
ally involve high computational cost and require both series to have the same length.

For a given set of categorical series, the distances dCC and dB can be used as input for traditional clustering algorithms. This
way, procedures for grouping a set of CTS according to the underlying dependence structures can be developed.

3. Partitioning around medoids clustering of categorical time series

In the following, the behavior of dCC and dB in hard clustering is examined through a comprehensive simulation study.
After describing in detail the simulation mechanism and the assessment criteria, the main results are reported and properly
discussed. A discussion regarding the selection of the set L is also provided. Finally, the performance of the metrics is eval-
uated in scenarios with a greater degree of complexity.

3.1. Experimental design

We wish to perform clustering on a set of s categorical times series, S ¼ X 1ð Þ
t ; . . . ;X sð Þ

t

n o
, supposing that the target is to

group together series with the same underlying process. Therefore, the clustering task is determined by the dynamic behav-
iors of the CTS. We assume the existence of C clusters in the collection S, denoted by C ¼ C1; . . . ;CCf g. The most popular
partitioning-based procedure is likely the k-means algorithm. However, this approach is not a suitable choice in our context
because the average vectors of the estimated features involved in dCC and dB do not necessarily characterize a categorical
process. Moreover, it is often interesting to find prototype objects for each cluster, i.e., time series summarizing the different
dynamic patterns. A usual way to address these issues is to consider a k-medoids-based procedure, in which the represen-
tative elements must belong to the original set of CTS. Based on previous considerations, we have examined the behavior of
the proposed metrics by using the classical version of the well-known PAM algorithm [33]. A sketch of the corresponding
clustering procedure is shown in Algorithm1.
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Algorithm1: The PAM algorithm based on the proposed distances.

1: Fix C and d� 2 dCC ; dBf g
2: Pick the initial medoids fS ¼ eX 1ð Þ

t ; . . . ; eX Cð Þ
t

n o
and define the initial clustering partition C ¼ C1; . . . ;CCf g

3: Compute the value of the objective function as J ¼PC
c¼1
Ps

i ¼ 1 :

X ið Þ
t 2 Cc

d� X ið Þ
t ; eX cð Þ

t

� �
4: Define J� ¼ matrix Inf ;nrow ¼ C;ncol ¼ s� Cð Þ
5: repeat
6: Set JOLD ¼ J {Store the current cost}
7: for j = 1 to C do

8: for k = 1 to s : X kð Þ
t R fS do

9: Replace the medoid eX jð Þ
t by the series X kð Þ

t

10: Update fS and C (in auxiliary variables)

11: J� j; k½ � ¼PC
c¼1
Ps

i ¼ 1 :

X ið Þ
t 2 Cc

d� X ið Þ
t ; eX cð Þ

t

� �
12: end for
13: end for
14: j�; k�ð Þ ¼ argmin j;kð ÞJ

� j; k½ �
15: J ¼ J� j�; k�½ � {Update the cost}

16: Replace the medoid eX j�ð Þ
t by the series X k�ð Þ

t

17: Update fS and C

18: until JOLD 6 J
19: return The resulting clustering partition

Several simulations were conducted to assess the performance of both dissimilarities. The simulated scenarios encompass
a broad variety of generating processes. In particular, three setups were considered, namely clustering of: (i) MC, (ii) HMM,
and (iii) New Discrete ARMA (NDARMA) processes. The choice of such type of processes was made with the goal of perform-
ing the evaluation task in a fair and general manner. Indeed, the three selected settings are essential in several fields (specific
applications of the three types of processes can be seen in [7], Chapter 7). The specific generating models for each class of
processes are given below.

Scenario 1. Clustering of MC. Consider four three-state MC, so-called MC1, MC2, MC3 and MC4, with respective transition
matrices P1

1;P
1
2;P

1
3 and P1

4 given by
P1
1 ¼ Mat3 0:1;0:8;0:1;0:5; 0:4; 0:1; 0:6; 0:2;0:2ð Þ;

P1
2 ¼ Mat3 0:1;0:8;0:1;0:6; 0:3; 0:1; 0:6; 0:2;0:2ð Þ;

P1
3 ¼ Mat3 0:05; 0:90; 0:05;0:05;0:05; 0:90;0:90;0:05;0:05ð Þ;

P1
4 ¼ Mat3 1=3;1=3;1=3;1=3;1=3;1=3;1=3;1=3;1=3ð Þ:

ð22Þ
Scenario 2. Clustering of HMM. Consider the bivariate process Xt ;Qtð Þt2Z, where Qt stands for the hidden states and Xt for
the observable random variables. Process Qtð Þt2Z constitutes an homogeneous MC. Both Xtð Þt2Z and Qtð Þt2Z are assumed to be
count processes with range 1; . . . ; rf g. Process Xt;Qtð Þt2Z is supposed to verify the three classical assumptions of a HMM (see,
e.g., Section 7.3 in [7]). Based on previous considerations, let HMM1, HMM2, HMM3 and HMM4 be four three-state HMMwith
respective transition matrices P2

1;P
2
2;P

2
3 and P2

4 and emission matrices E2
1;E

2
2;E

2
3 and E2

4 given by
P2
1 ¼ Mat3 0:05; 0:90; 0:05;0:05;0:05; 0:90;0:90;0:05;0:05ð Þ;

P2
2 ¼ Mat3 0:05; 0:90; 0:05;0:05;0:05; 0:90;0:90;0:05;0:05ð Þ;

P2
3 ¼ Mat3 0:1;0:7;0:2;0:4; 0:4; 0:2; 0:4; 0:3;0:3ð Þ;

P2
4 ¼ Mat3 1=3;1=3;1=3;1=3;1=3;1=3;1=3;1=3;1=3ð Þ;

E2
1 ¼ Mat3 0:05;0:90; 0:05;0:05;0:05; 0:90; 0:90;0:05;0:05ð Þ;

E2
2 ¼ Mat3 0:1;0:8;0:1;0:5;0:4; 0:1; 0:6; 0:2; 0:2ð Þ;

E2
3 ¼ Mat3 0:1;0:8;0:1;0:5;0:4; 0:1; 0:6; 0:2; 0:2ð Þ;

E2
4 ¼ Mat3 1=3;1=3;1=3;1=3;1=3;1=3;1=3;1=3;1=3ð Þ:

ð23Þ
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Scenario 3. Clustering of NDARMA processes. Let Xtð Þt2Z and �tð Þt2Z be two count processes with range 1; . . . ; rf g and fol-
lowing the equation
Xt ¼ at;1Xt�1 þ . . .þ at;pXt�p þ bt;0�t þ . . .þ bt;q�t�q; ð24Þ

where �tð Þt2Z is i.i.d. with P �t ¼ ið Þ ¼ pi, independent of Xsð Þs<t , and the i.i.d. multinomial random vectors
at;1; . . . ;at;p; bt;0; . . . ; bt;q

� � �MULT 1;/1; . . . ;/p;u0; . . . ;uq

� �
; ð25Þ
are independent of �tð Þt2Z and of Xsð Þs<t . The considered models are 3 three-state NDARMA(2,0) processes and one three-state
NDARMA(1,0) process with marginal distribution p3 ¼ 2=3;1=6;1=6ð Þ, and corresponding probabilities in the multinomial
distribution given by
/1;/2;u0ð Þ31 ¼ 0:7;0:2;0:1ð Þ;
/1;/2;u0ð Þ32 ¼ 0:1;0:45; 0:45ð Þ;
/1;/2;u0ð Þ33 ¼ 0:5;0:25; 0:25ð Þ;
/1;u0ð Þ34 ¼ 0:2;0:8ð Þ:

ð26Þ
The simulation study was carried out as follows. For each scenario, 5 CTS of length T 2 200;600f g were generated from each
process in order to execute the clustering algorithms twice, thus allowing to analyze the impact of the series length. The
resulting clustering solution produced by each considered algorithm was stored. The simulation procedure was repeated
500 times for each scenario and value of T. The computation of dCC and dB was carried out by considering L ¼ 1f g in Sce-
narios 1 and 2 and L ¼ 1;2f g in Scenario 3. This way, we adapted the distances to the maximum number of defining lags
for the majority of clusters.

3.2. Alternative metrics and assessment criteria

To get insights into the performance of both metrics dCC and dB, we also obtained partitions by using the alternative tech-
niques for clustering of categorical series described below.

� Model-based approach using maximum likelihood estimation (MLE). Let h be the parameter vector of a MC (Scenario 1), a
HMM (Scenario 2) or an NDARMA model (Scenario 3). Each CTS X ið Þ

t ; i ¼ 1; . . . ; s, is described by means of the maximum

likelihood estimate of its corresponding parameter vector, bh ið Þ. The distance between two CTS X jð Þ
t and X kð Þ

t is defined as the

squared Euclidean distance between the vectors bh jð Þ and bh kð Þ; kbh jð Þ � bh kð Þk2. We denote this dissimilarity by dMLE. The dis-
tance matrix constructed using this metric is used as input to the PAM algorithm.
� Model-based approach using mixtures. [8] propose to cluster a set of CTS by learning a mixture of first order Markov models
via the EM algorithm. The only hyperparameter of the method is the number of components, which can be identified with
the number of clusters. Although this approach does not use directly a distance metric, for the sake of homogeneity, we
denote the technique by dCZ .
� A clustering procedure based on DHM. [15] introduces the DHM, which is a variant of the so-called temporal patterns opti-
mal matching (OM) for categorical sequences. OM employs a combination of both indel (insertion and deletion) and sub-
stitution costs in order to uncover different socio-temporal patterns. Specifically, DHM uses only substitution operations
with time-dependent costs inversely proportional to transition frequencies. The PAM algorithm is executed by consider-
ing the dissimilarity matrix associated with DHM. The corresponding metric is denoted by dDHM .
� A clustering technique relying on OM. [16] constructs a modified version of the OM algorithm, so-called OMv, which
weights OM’s elementary operations inversely with episode length. The modified procedure substantially differs from
OM when there is high variability in spell length. The OMv-based distance matrix is used to feed the PAM algorithm.
The corresponding dissimilarity is denoted by dOMV .
� An hybrid framework for clustering CTS. [19] presents a dissimilarity between categorical series which evaluates both close-
ness between raw categorical values and proximity between dynamic patterns. To this aim, the distance introduced by
[34] is combined with a correlation-based metric between categorical sequences. An hyperparameter k 2 N regulates
the weight of each dissimilarity in the resulting measure. This way, the user can give different importances to the geo-
metric and dynamic parts. The PAM algorithm is executed by considering the combined distance, which is denoted by
dMV . To apply this methodology in the simulations, we run the clustering algorithm for several values of k and selected
the most accurate partition according to the Adjusted Rand Index (ARI) [35].

Note that the approach based on the distance dMLE can be seen as a strict benchmark in the evaluation task. Indeed, this
procedure assumes the true parametric models in each scenario when computing the parameter vector estimates, which
constitutes a substantial advantage over the remaining techniques. In this regard, we are comparing the performance of both
proposed dissimilarities dCC and dB with that of one of the hardest competitors in the context of CTS clustering.
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The effectiveness of the clustering approaches was assessed by comparing the clustering solutions produced by the algo-
rithms with the true clustering partition, so-called ground truth. The latter consisted of C ¼ 4 clusters in all scenarios, each
group including the five CTS generated from the same process. The value C ¼ 4 was provided as input parameter to the PAM
algorithm in the case of dCC ; dB; dMLE; dDHM; dOMV and dMV . As for the approach dCZ , a number of 4 components were considered
for the mixture model. Experimental and true partitions were compared by using three well-known external clustering qual-
ity indices, the ARI, the Jaccard Index (JI) and the Fowlkes-Mallows index (FMI) [36]. ARI index takes values in �1;1½ �,
whereas the remaining indices are bounded between 0 and 1. In all cases, the closer to one the index, the better the quality
of the clustering partition.

3.3. Results and discussion

The average values of the quality indices by taking into account the 500 simulation trials are given in Tables 3–5 for Sce-
narios 1, 2 and 3, respectively.

It is clear from Tables 3–5 that the dissimilarities dMV and dDHM lead to results substantially worse than the rest of the
methods in all scenarios, suggesting that these metrics are not appropriate to differentiate between stationary categorical
processes. The distance dOMV attains better results than dMV and dDHM but it is still far from the best-performing metrics, spe-
cially when T ¼ 600. Although its results for T ¼ 200 are acceptable, this dissimilarity shows little improvement when
increasing the series length.

The results in Table 3 indicate that dCC is the most effective dissimilarity when dealing with MC, outperforming the bench-
mark metric dMLE. Although to a lesser extent, dB is also superior to dMLE in Scenario 1, while dCZ exhibits an outstanding per-
formance when T ¼ 600, with similar scores as dCC .

Table 4 shows a completely different picture, with dCC and dB exhibiting a significantly better effectiveness than the rest of
the metrics. The latter outperforms the former by a moderate degree, achieving virtually perfect results for the largest value
of T. The distance based on estimated model coefficients, dMLE, shows a poor performance, which is likely due to the fact that
the estimation process for HMM suffers from some drawbacks as slow convergence, low accuracy of parameter estimation
and high dependency on initial guesses [37]. As expected, dCZ is affected in this scenario by model misspecification, achieving
significantly worse scores than in Scenario 1.

As for Scenario 3, the results in Table 5 reveal that the model-based distance dMLE attains the highest scores when T ¼ 200,
but it is defeated by dB when T ¼ 600. The metric dCZ suffers again from model misspecification.

3.4. Analysing clustering effectiveness with respect to the set L

Note that, in practice, the clustering algorithms based on dCC and dB require fixing the set of lags L involved in the com-
putation of both dissimilarities. The results in Tables 3–5 were obtained using a specific collection of lags in each scenario.
However, it is interesting to assess how the clustering accuracy fluctuates when different sets are considered. In this regard, a
sensitivity analysis was performed by considering the scenarios in Section 3.1 and 5 different collections of lags, namely
L1; . . . ;L5, with Li ¼ 1;2; . . . ; if g for i ¼ 1; . . . ;5. Tables 6 and 7 contain the results for dissimilarities dCC and dB, respec-
tively. For the sake of simplicity, only the average scores in terms of ARI index are presented.

According to the quantities in Tables 6 and 7, both metrics are quite robust with respect to the choice of L, but they dis-
play a different behavior in each of the considered settings. In Scenario 1, the dissimilarities achieve the best results when
only the first lag is selected L1ð Þ, and then slightly decrease their performance when more lags (noise) are incorporated in
the set. A similar situation occurs in Scenario 3 when short series are generated (T ¼ 200), with average scores moderately
decreasing when more than two lags L2ð Þ are considered. This decline is no longer observed when increasing the series
length (T ¼ 600), since the features involved in the computation of the distances are estimated with high accuracy. Finally,
in Scenario 2, clustering accuracy moderately improves when the third lag is included L3ð Þ, which is due to the fact that the
second process in this scenario exhibits the strongest degree of serial dependence at l ¼ 3 (see Section 7.3 in [7] for a descrip-
tion of the serial dependence structure of a HMM). Notice that, in general, moderate deviations from the nominal lag order
have very low impact on the clustering accuracy. Thus, while the optimal lag selection is a critical issue in modeling and
forecasting problems, the clustering approaches based on dCC and dB exhibit a reasonable robustness to a nonoptimal choice
of L. This is a particularly nice property in our setting because the proposed clustering algorithms are model-free and no
single lag selection procedure has been proven to perform well with all time series models.

In view of the mentioned robustness, the required set of lags L can be determined by a simple and automatic criterion,
mainly satisfying two properties: applicability without prior assumptions about the generating models and computational
efficiency. Note that, in the case of an arbitrary i.i.d. process, the distribution of T r � 1ð Þbv 2 lð Þ is approximated by a v2

r�1ð Þ2 [31].

Hence, for a given series and a significance level a, the null hypothesis of serial independence at lag l is rejected if
bv lð Þ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T r � 1ð Þv

2
r�1ð Þ2 ;1�a

s
; ð27Þ
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Table 3
Scenario 1: Average values over 500 trials of 3 clustering quality indices based on several dissimilarities. For each index and value of T, the best result is shown
in bold.

T ¼ 200 T ¼ 600

Method ARI JI FMI ARI JI FMI

dCC 0.761 0.697 0.817 0.917 0.888 0.936
dB 0.729 0.661 0.792 0.861 0.878 0.893
dMLE 0.704 0.633 0.772 0.841 0.792 0.876
dCZ 0.712 0.648 0.786 0.915 0.886 0.934
dMV 0.406 0.363 0.665 0.379 0.363 0.650
dDHM 0.169 0.243 0.401 0.145 0.245 0.424
dOMV 0.581 0.524 0.702 0.599 0.539 0.715

Table 4
Scenario 2: Average values over 500 trials of 3 clustering quality indices based on several dissimilarities. For each index and value of T, the best result is shown
in bold.

T ¼ 200 T ¼ 600

Method ARI JI FMI ARI JI FMI

dCC 0.705 0.638 0.777 0.853 0.808 0.887
dB 0.760 0.701 0.812 0.963 0.949 0.971
dMLE 0.354 0.342 0.512 0.299 0.310 0.478
dCZ 0.645 0.577 0.739 0.703 0.638 0.779
dMV 0.089 0.175 0.323 0.062 0.175 0.301
dDHM 0.142 0.213 0.352 0.180 0.248 0.406
dOMV 0.540 0.489 0.667 0.581 0.524 0.702

Table 5
Scenario 3: Average values over 500 trials of 3 clustering quality indices based on several dissimilarities. For each index and value of T, the best result is shown
in bold.

T ¼ 200 T ¼ 600

Method ARI JI FMI ARI JI FMI

dCC 0.621 0.558 0.723 0.869 0.846 0.913
dB 0.680 0.612 0.754 0.925 0.901 0.941
dMLE 0.727 0.656 0.788 0.872 0.828 0.900
dCZ 0.586 0.562 0.693 0.647 0.577 0.738
dMV 0.035 0.167 0.292 �0.028 0.138 0.251
dDHM 0.329 0.319 0.481 0.386 0.359 0.524
dOMV 0.529 0.489 0.668 0.589 0.532 0.710

Table 6
Average values over 500 trials of ARI index based on dCC for different sets of lags (Lj; j ¼ 1; . . . ;5). Si denotes Scenario i; i ¼ 1;2;3, and the theoretical set of lags
is given in brackets. For each scenario and value of T, the best result is shown in bold.

T ¼ 200 T ¼ 600

Set S1 (L1) S2 (L1) S3 (L2) S1 (L1) S2 (L1) S3 (L2)

L1 0.761 0.705 0.621 0.917 0.853 0.869
L2 0.750 0.690 0.677 0.900 0.843 0.960
L3 0.718 0.738 0.652 0.869 0.959 0.969
L4 0.689 0.742 0.630 0.844 0.953 0.973
L5 0.674 0.729 0.604 0.823 0.953 0.969
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where v2
g;1�a denotes the 1� að Þ-quantile of the distribution v2

g . This way, a simple criterion for selectingL consists of deter-
mining the significant lags for each CTS in the dataset according to (27), and then fixing a maximum lag for all of them.

Specifically, given the set S ¼ X 1ð Þ
t ; . . . ;X sð Þ

t

n o
of CTS subject to clustering, we propose to select L as follows.

1. Fix a > 0 and a maximum lag LMax 2 N. Using the Bonferroni’s adjustment for multiple comparisons, compute the cor-
rected significance level a0 ¼ a= sLMaxð Þ.

2. For each series X ið Þ
t 2S:
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Table 7
Average values over 500 trials of ARI index based on dB for different sets of lags (Lj; j ¼ 1; . . . ; 5). Si denotes Scenario i; i ¼ 1;2; 3, and the theoretical set of lags is
given in brackets. For each scenario and value of T, the best result is shown in bold.

T ¼ 200 T ¼ 600

Set S1 (L1) S2 (L1) S3 (L2) S1 (L1) S2 (L1) S3 (L2)

L1 0.729 0.760 0.680 0.861 0.963 0.925
L2 0.709 0.796 0.682 0.851 0.969 0.928
L3 0.698 0.837 0.667 0.826 0.972 0.944
L4 0.689 0.815 0.652 0.796 0.962 0.951
L5 0.670 0.784 0.627 0.774 0.956 0.948
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2.1. Determine the set LðiÞ formed for all the lags li 2 1;2; . . . ; LMaxf g for which the decision rule (27) leads to rejection at
level a0.

2.2. Select the lag Li 2LðiÞ maximizing the estimated Cramer’s v, i.e., v̂ Lið Þ ¼max v̂ lið Þ; li 2LðiÞ
	 


.
3. Set L� ¼max L1; . . . ; Lsf g and L ¼ 1;2; . . . ; L�f g.

Some remarks concerning the previous procedure are given below. The Bonferroni correction is considered in Step 1 to
address the problem of multiple comparisons, since sLMax statistical tests are simultaneously performed. The use of a conser-
vative rule is motivated because frequently a few lags are sufficient to characterize the serial dependence. Nonetheless, other
procedures ensuring that the family-wise error rate is at most a could be employed. In Step 2.2, the lag maximizing the esti-
mated Cramer’s v is selected to avoid including redundant features, since dependence at lower lags usually produces (less
strong) dependence at higher lags (e.g., the serial dependence structure of a MC). Lastly, in Step 3, L� is the maximum lag
within L. By construction, L� is necessarily a significant lag for one or several series, although indeed some series might
not exhibit significant serial dependence at L� or lower lags. However, this is not an issue because the corresponding esti-
mated features are expected to be close to zero for these series.

We extended the simulation study to gain insights into the behavior of the previous strategy. Considering Scenarios 1, 2
and 3 again, the procedure was run by setting a ¼ 0:05 and LMax ¼ 5. According to 500 simulation trials for each value of T,
the proportion of times that each set of lags was selected is provided in Table 8. The results are consistent with the ones in
Tables 6 and 7, which indicates that the proposed method frequently succeeds in determining the optimal set of lags. In fact,
the setsL1 andL2 were selected almost 100% of the trials in Scenarios 1 and 3, respectively. A different situation is observed
in Scenario 2, where the series length greatly influences the choice of L. Thus, L ¼ 1f g was often selected when T ¼ 200
because the significant dependence at lag l ¼ 3 exhibited by the series in the second cluster was not generally detected. This
dependence was more easily identified when increasing the series length, which accounts for the selection ofL3 most of the
times when T ¼ 600. Notice that the ability to detect the dependence at the third lag could be improved by considering a less
conservative multiple testing correction. Similar conclusions were obtained by using alternative values of a (e.g., a ¼ 0:01 or
a ¼ 0:10).
3.5. Additional experiments. Scenarios with a higher degree of complexity

To obtain a more comprehensive evaluation of the proposed clustering methods, more challenging setups were con-
structed by increasing the complexity of Scenarios 1, 2 and 3. First, a new scenario with 6 clusters defined by models
MC1, MC2 and MC3 in Scenario 1 and models HMM1, HMM2 and HMM3 in Scenario 2 was considered. This way, the new setup
involves two different types of generating processes (MC and HMM), which makes the clustering task substantially harder.
Notice that we decided to combine MC and HMM because the respective vectors of estimated model coefficients are easily
comparable (HMM can be seen as an extension of MC), and thus introducing a common dMLE metric for the new scenario is
quite straightforward.

The experiments were carried out as in previous sections but varying some parameters. Ten series of length
T 2 350;700f g were simulated from each generating process and the number of clusters was set to C ¼ 6. The metrics
and performance indices used in Section 3.3 were also considered here except for dMV , which was removed from the analysis
due to its poor behavior and high computational cost. As the MLE-based vectors for MC and HMM differ in length (lengths 9
and 18, respectively), the vectors in the former case were properly padded with zeros in order to compute dMLE. This way, the
estimated transition probabilities of both processes can be compared and the emission probabilities are set to zero in MC
(which is reasonable since they only exist in HMM). Metrics dCC and dB were computed by considering L ¼ 1f g and the sim-
ulation experiment was run 500 times.

Table 9 shows the average values of the clustering quality indices for the new scenario. Metrics dCC and dB outperform the
remaining ones by a large degree, while no significant differences between both of them are observed. Metrics dMLE and dCZ

display acceptable scores, but they are negatively affected by the complexity of the current scenario. Lastly, dDHM and dOMV

exhibit a very poor behavior in all cases. Interestingly, the proposed distances are the ones showing the greatest
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Table 8
Proportion of times that each set Li was selected according to the proposed criterion. For each scenario and value of T, the largest rate is shown in bold. A
significance level a ¼ 0:05 was considered.

L1 L2 L3 L4 L5

Scenario 1 T ¼ 200 0.988 0 0.006 0.002 0.004
T ¼ 600 0.980 0.004 0.004 0.004 0.008

Scenario 2 T ¼ 200 0.750 0.044 0.172 0.018 0.016
T ¼ 600 0.070 0.026 0.816 0.058 0.030

Scenario 3 T ¼ 200 0 0.996 0.002 0 0.002
T ¼ 600 0 0.998 0 0 0.002

Table 9
Complex scenario (C ¼ 6): Average values over 500 trials of 3 clustering quality indices based on several dissimilarities. For each index and value of T, the best
result is shown in bold.

T ¼ 350 T ¼ 700

Method ARI JI FMI ARI JI FMI

dCC 0.718 0.621 0.766 0.799 0.715 0.833
dB 0.701 0.601 0.750 0.803 0.720 0.835
dMLE 0.598 0.501 0.675 0.613 0.516 0.687
dCZ 0.629 0.540 0.708 0.687 0.598 0.753
dDHM 0.101 0.154 0.274 0.095 0.156 0.281
dOMV 0.375 0.323 0.497 0.412 0.353 0.534

Table 10
Randomized scenario (C ¼ 5): Average values over 500 trials of 3 clustering quality indices based on several dissimilarities. For each index and value of T, the
best result is shown in bold.

T ¼ 350 T ¼ 700

Method ARI JI FMI ARI JI FMI

dCC 0.759 0.685 0.807 0.829 0.769 0.863
dB 0.745 0.667 0.795 0.833 0.771 0.865
dMLE 0.627 0.547 0.711 0.652 0.572 0.730
dCZ 0.661 0.591 0.745 0.694 0.629 0.773
dDHM 0.113 0.183 0.315 0.105 0.184 0.322
dOMV 0.408 0.365 0.541 0.445 0.396 0.577
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improvement when increasing the series length. These results corroborate the great performance of dCC and dB in challenging
scenarios.

A second additional scenario with C ¼ 5 clusters was constructed to examine the effect of varying the number of groups.
To this aim, we considered the simulation scheme previously described and introduced some degree of uncertainty. Specif-
ically, at each trial, we removed the ten series associated with one particular generating process, which was chosen at ran-
dom. Note that this mechanism creates a challenging setup where the whole underlying structures in the CTS dataset are
successively different. This way, robustness of the clustering techniques against slight changes in the dependence patterns
of the database is being evaluated. Results for this randomized scenario are displayed in Table 10.

Average scores in Table 10 (C ¼ 5) are very similar to the ones in Table 9 (C ¼ 6) but there is a slight improvement in the
performance of all dissimilarities. This is reasonable, since, usually, the lower the number of clusters, the simpler for the clus-
tering algorithms to identify the true partition. In brief, these results illustrate the robustness of the proposed distances
against the elimination of a certain generating process from the database.

To summarize, the numerical experiments carried out throughout this section clearly show the high ability of the pro-
posed measures, dCC and dB, to discriminate between a broad variety of categorical processes. In fact, the PAM algorithm
based on both distances exhibits an excellent clustering accuracy under a wide variety of settings, including different values
for the number of clusters, series per cluster and series length, among others. Compared to the model-based procedures,
which take advantage of knowing the true underlying models, the proposed methods either produce better results or show
a similar behavior. Note that the model-free property of our approach is particularly desirable since it is often unrealistic in
practical settings that all the CTS subject to clustering are confined to one class of categorical models. In general, the dis-
tances are also robust against the choice of a nonoptimal set of lags. Based on previous considerations, it can be concluded
that dCC and dB are two powerful and useful metrics to perform hard clustering of CTS.

Next section shows the behavior of the proposed dissimilarities in the fuzzy setting, which generally provides a greater
deal of information than the crisp one.
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4. Fuzzy clustering of categorical time series

So far, we have analysed the behavior of both dCC and dB in a crisp clustering context, where the collection of CTS is
divided in C mutually exclusive groups. However, when dealing with time series, frequently a fuzzy clustering approach
is more appealing and interpretable. It is not uncommon that some of the CTS in a particular set change their dynamics
at a particular time, hence exhibiting patterns that share characteristics from several clusters. A meaningful clustering par-
tition should disclose the vague nature of these elements, thus providing a better description of the temporal patterns of the
series. In sum, the flexibility of the fuzzy logic in combination with the high ability of the proposed distances to discriminate
between categorical processes motivates the use of both metrics in a soft clustering setting. In the present section, we first
introduce the proposed fuzzy clustering algorithms and then carry out their assessment by means of several simulation
experiments.

4.1. Fuzzy C-medoids clustering models based on the proposed dissimilarities

In this new framework, we attempt to perform clustering on the set of s categorical seriesS ¼ X 1ð Þ
t ; . . . ;X sð Þ

t

n o
by using the

fuzzy C-medoids clustering model, which tries to find the subset of S of size C;fS ¼ eX 1ð Þ
t ; . . . ; eX Cð Þ

t

n o
, and the s	 C matrix of

fuzzy coefficients, U ¼ uicð Þ; i ¼ 1; . . . ; s; c ¼ 1; . . . ; C, leading to the solution of the minimization problem
mineS;U

Xs
i¼1

XC
c¼1

um
ic d
� X ið Þ

t ; eX cð Þ
t

� �
w:r:t:

XC
c¼1

uic ¼ 1; uic P 0; ð28Þ
where uic 2 0;1½ � represents the membership degree of the i-th CTS in the c-th cluster, d� is a distance between CTS andm > 1
is a real number, usually referred to as fuzziness parameter, which regulates the fuzziness of the partition. For m ¼ 1, the
crisp version of the algorithm is obtained so that we have uic ¼ 1 if the i-th series pertains to cluster c and uic ¼ 0 otherwise.
As the value of m increases, the boundaries between clusters get softer and the resulting partition is fuzzier.

To solve the minimization problem in (28), an iterative algorithm that alternately optimizes the membership degrees and
the medoids is considered [38]. First, the membership degrees are optimized for a set of fixed medoids. The iterative solu-
tions for the membership degrees are given by
uic ¼
XC
c0¼1

d� X ið Þ
t ; eX cð Þ

t

� �
d� X ið Þ

t ; eX c0ð Þ
t

� �
0@ 1A

1
m�1

264
375
�1

; ð29Þ
for i ¼ 1; . . . ; s; c ¼ 1; . . . ;C.
In the second step, given the membership degrees computed according to (29), the C series minimizing (28) are selected

as new medoids. This two-step mechanism is iterated until there is no change in the medoids or a maximum number of iter-
ations is reached.

Two specific versions of the general problem in (28) are considered by taking into account d� ¼ dCC and d� ¼ dB. An outline
of the corresponding clustering algorithm is given in Algorithm2.

Algorithm2: The fuzzy C-medoids algorithm based on the proposed distances.

1: Fix C;m, max.iter and d� 2 dCC ; dBf g
2: Set iter ¼ 0

3: Pick the initial medoids fS ¼ eX 1ð Þ
t ; . . . ; eX Cð Þ

t

n o
4: repeat

5: Set fSOLD ¼fS {Store the current medoids}
6: Compute uic; i ¼ 1; . . . ; s; c ¼ 1; . . . ;C, using (29)
7: For each c 2 1; . . . ;Cf g, determine the index jc 2 1; . . . ; sf g satisfying:
jc ¼ argmin16j6s

Ps
i¼1u

m
ic d
� X ið Þ

t ;X jð Þ
t

� �
8: return eX cð Þ

t ¼ X jcð Þ
t , for c ¼ 1; . . . ; C {Update the medoids}

9: iter  iter þ 1

10: until fSOLD ¼fS or iter ¼ max:iter
11: return The resulting clustering partition.
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4.2. Simulation study

A second simulation study was carried out to evaluate the performance of the fuzzy C-medoids clustering model based on
dCC and dB. The new scenarios involve two well-separated clusters consisting of five time series each and a single isolated
series arising from a different generating process. The specific scenarios and generating models are described below.

Scenario 4. Consider 3 three-state MC with corresponding transition matrices P4
1;P

4
2 and P4

3 defined as
P4
1 ¼ Mat3 0:1;0:8;0:1;0:5;0:4;0:1;0:6;0:2; 0:2ð Þ;

P4
2 ¼ Mat3 0:2;0:7;0:1;0:4;0:3;0:3;0:2;0:4; 0:4ð Þ;

P4
3 ¼ 1

2 P4
1 þ P4

2

� �
:

ð30Þ
Scenario 5. Consider 3 three-state HMM with the same transition matrix, namely P5 ¼ P5
1 ¼ P5

2 ¼ P5
3, but different emis-

sion matrices E5
1;E

5
2 and E5

3 given by
P5 ¼ Mat3 0:1;0:8;0:1;0:5; 0:4; 0:1; 0:6; 0:2;0:2ð Þ;
E5
1 ¼ Mat3 0:1;0:8;0:1;0:5;0:4; 0:1; 0:6; 0:2; 0:2ð Þ;

E5
2 ¼ Mat3 0:1;0:4;0:5;0:25;0:25;0:5;0:2;0:5;0:3ð Þ;

E5
3 ¼ 1

2 E5
1 þ E5

2

� �
:

ð31Þ
Scenario 6. Consider 3 three-state NDARMA(2,0) models with marginal distribution p6 ¼ 1=3;1=3;1=3ð Þ and probabilities

/1;/2;u0ð Þ6i ; i ¼ 1;2;3, in the corresponding multinomial distribution given by
/1;/2;u0ð Þ61 ¼ 0:7; 0:15;0:15ð Þ
/1;/2;u0ð Þ62 ¼ 0:1; 0:45;0:45ð Þ
/1;/2;u0ð Þ63 ¼ /1 ;/2 ;u0ð Þ61þ /1 ;/2 ;u0ð Þ62

2 :

ð32Þ
Note that Scenarios 4, 5 and 6 have been designed in a way that the isolated series is expected to lay ‘‘in the middle” of both
clusters. In other words, a metric capable of discriminating between generating processes should be able to produce similar
distance values from the isolated series to series from Cluster 1 and Cluster 2 indistinctly.

We considered T 2 200;600f g and several values for the fuzziness parameter, namely m ¼ 1:5;1:8;2 and 2:2. It is worth
remarking that these values of m are coherent with the recommendations suggested by several authors [39–41]. The sim-
ulation mechanism was repeated 500 times. The number of clusters was set to C ¼ 2. The computation of dCC and dB involved
L ¼ 1f g in Scenarios 4 and 5, and L ¼ 1;2f g in Scenario 6.

In this new setting, the clustering effectiveness was measured in terms of the number of times that the two resulting clus-
ters were formed by 5 CTS coming from the same model and the isolated series presented relatively high membership
degrees in both groups. To that end, we had to introduce a cutoff point to determine when a given realization is assigned
to a specific cluster. According to the choice made in other works (e.g., [24,41,42]), the cutoff was set at 0.7, i.e., the i-th
CTS was placed into the c-th cluster, c ¼ 1;2, if uic > 0:7. A discussion about the arguments supporting the choice of this
threshold can be seen in [41]. In the same way, the isolated series was considered to concurrently pertain to both clusters
if its membership degrees were both below 0.7. Note that, although dCZ does not represent a fuzzy clustering approach, its
evaluation can be done similarly by considering the final probabilities returned by the mixture model.

Note that the evaluation mechanism considered in Scenarios 4, 5 and 6 is particularly designed to handle fuzzy partitions,
since it directly assesses the membership degrees of all the time series in the dataset. Particularly, a successful classification
implies that the algorithm properly detects the vague nature of the isolated series. It is worth highlighting that several works
have also considered scenarios with isolated series to evaluate fuzzy clustering algorithms (see, e.g., [24,25]).

The average classification rates attained by the analyzed dissimilarities in Scenarios 4, 5 and 6 are presented in Tables 11–
13, respectively. In all cases, we decided to remove the results associated with distances dCZ ; dMV ; dDHM and dOM due to their
poor performance. In fact, some of these metrics attained average rates of 0 in all the considered settings.

According to Table 11, the dissimilarity dB was the most effective in Scenario 4 for every value of m and T, attaining sig-
nificantly greater scores than its competitors. The metric dCC achieved the worst rates of correct classification, but they were
close to the ones associated with dMLE, specially for T ¼ 600, which suggests that no significant differences exist between
both metrics in the considered setting.

A different situation occurs in Scenario 5. One can see from Table 12 that both proposed dissimilarities dCC and dB dra-
matically outperform the MLE-based metric for all combinations of m and T. The distance based on the binarized process
seems to be slightly superior to its counterpart based on standard association measures when T ¼ 200, but no significant
differences are observed between them when T ¼ 600.

Table 13 shows the results for Scenario 6. Here the metric dB achieves the best classification rates for the shortest value of
the series length. However, when increasing the value of T, the distance dCC significantly improves its performance, reaching
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Table 11
Average rates of correct classification for dCC ; dB and dMLE in Scenario 4. For each value of the fuzziness parameter and the series length, the best result is shown
in bold.

Distance m ¼ 1:5 m ¼ 1:8 m ¼ 2:0 m ¼ 2:2

T ¼ 200 dCC 0.184 0.302 0.356 0.424
dB 0.254 0.448 0.564 0.606
dMLE 0.168 0.340 0.446 0.498

T ¼ 600 dCC 0.268 0.508 0.660 0.758
dB 0.340 0.642 0.744 0.836
dMLE 0.288 0.570 0.698 0.758

Table 12
Average rates of correct classification for dCC ; dB and dMLE in Scenario 5. For each value of the fuzziness parameter and the series length, the best result is shown
in bold.

Distance m ¼ 1:5 m ¼ 1:8 m ¼ 2:0 m ¼ 2:2

T ¼ 200 dCC 0.316 0.528 0.620 0.676
dB 0.380 0.562 0.666 0.708
dMLE 0.070 0.072 0.046 0.032

T ¼ 600 dCC 0.449 0.675 0.748 0.762
dB 0.494 0.688 0.730 0.760
dMLE 0.120 0.104 0.076 0.052

Table 13
Average rates of correct classification for dCC ; dB and dMLE in Scenario 6. For each value of the fuzziness parameter and the series length, the best result is shown
in bold.

Distance m ¼ 1:5 m ¼ 1:8 m ¼ 2:0 m ¼ 2:2

T ¼ 200 dCC 0.241 0.323 0.351 0.279
dB 0.288 0.456 0.506 0.508
dMLE 0.212 0.382 0.454 0.542

T ¼ 600 dCC 0.442 0.748 0.835 0.875
dB 0.366 0.634 0.770 0.872
dMLE 0.384 0.630 0.734 0.862
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the highest scores for all values of m. The remaining dissimilarity dMLE attains significantly worse results than the best-
performing one for m 2 1:5;1:8;2f g, and shows a similar behavior when m ¼ 2:2.

In short, although the great effectiveness of dCC and dB in CTS clustering was already observed by carrying out hard cluster
analysis, the results presented in this section also illustrate how the fuzzy nature of time series exhibiting intermediate prop-
erties between categorical models is properly detected by fuzzy algorithms based on both metrics.

5. Time consumption comparison

In order to assess the efficiency of the five dissimilarities analyzed throughout Sections 3 and 4, we recorded the runtime
of the corresponding programs used for the experiments in Scenario 3. Specifically, given a metric and a value for T, we
reported the CPU runtime spent in finishing the clustering task for the 500 simulation trials. The computer used to run
the programs was a MacBook Pro with processor Quad-Core Intel Core i7, a speed of 2.9 GHz and a RAM memory of
16 GB. The programs were coded and executed in RStudio. The R version was 4.1.2.

The CPU runtime for the five dissimilarity measures is provided in Table 14. The more efficient distances were dB and dCZ ,
followed by dCC . The metrics dMLE and dMV were substantially slow. For instance, both distances spent more than 10 and 20 h
in finishing the clustering task for T ¼ 200, respectively. Furthermore, all the dissimilarities run at most linearly with the
series length except for dMV , which exhibits a quadratic relationship. This makes dMV the worst distance by far in terms of
efficiency.

In summary, both metrics dCC and dB are efficient, but the latter significantly outperforms the former in terms of compu-
tational speed. In fact, dB is the fastest among all the considered dissimilarities.

6. Applications. Clustering of biological sequences

This section is devoted to show two applications of the proposed clustering procedures. The first application considers
DNA sequences from several viruses, while the second focuses on protein data from two different species. In both cases,
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Table 14
The CPU runtime (minutes) for five metrics regarding the 500 simulation trials in Scenario 3.

Measure T ¼ 200 T ¼ 600

dCC 8.8538 22.7154
dB 1.9062 2.6503
dMLE 645.9365 1901.7660
dCZ 2.6986 4.7045
dMV 1275.6150 13134.4900
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we first describe the corresponding database along with some exploratory analyses and, afterward, we show the results of
applying the clustering algorithms.

6.1. Clustering of DNA sequences

This section shows the application of the proposed methods to a dataset of DNA sequences.

6.1.1. Dataset and exploratory analyses
In this case study, we consider the genome of 32 different viruses. The genome of an organism consists of sequences of the

four DNA bases, the purines adenine (‘a’) and guanine (‘g’), and the pyrimidines thymine (‘t’) and cytosine (‘c’). Therefore, it
can be seen as a CTS with rangeV ¼ a; g; c; tf g, containing all genetic information of the organism. For instance, the first sym-
bols in one of the sequences of the considered database are given by the subsequence
2 http
atggcccaagcacaaat tc t . . . ;
which corresponds to the virus Rodent associated circovirus 1. This type of CTS exhibit many signs of possible serial depen-
dence. In fact, several authors have considered different types of categorical processes to model DNA sequences (see, e.g.,
[3,4,7]).

Each virus in the considered database pertain to one of four different families, so-called Rodent associated circovirus (RAC),
Circoviridae LDMD (CLDMD), Human cosavirus (HC) and Human parechovirus (HP). In turn, the families RAC and CLDMD per-
tain to the subgroup of Circoviridaes, whereas the families HC and HP belong to the subgroup of Picornaviridaes. Table 15
summarizes information about the families, subgroups, and number of instances considered within each family. All data
were sourced from the National Center for Biotechnology Information (NCBI) website2. The DNA sequences under consider-
ation have different lengths, ranging from T ¼ 669 (minimum length) to T ¼ 6950 (maximum length), with a median value of
T ¼ 988. However, this is not an issue for the computation of dCC and dB, since these metrics do not require both time series to
have the same length (see Remark 5).

According to Table 15, one could assume the existence of four different groups within the set of genetic sequences under
consideration. Our objective is to determine if the proposed metrics dCC and dB are able to discover the existence of the
underlying families, i.e., if the genetic families can be distinguished in terms of generating stochastic processes.

As a preliminary exploratory step, we performed a two-dimensional scaling (2DS) based on both pairwise dissimilarity
matrices, those computed by using dCC and dB. That way, a projection of the genetic sequences on a two-dimensional plane
preserving the original distances as well as possible is available. The set of lagsL ¼ 1;2; . . . ;6f gwas considered for the com-
putation of both distances (see Section 6.1.2).

The location of the 32 sequences in the transformed space is displayed in Fig. 3. The left panel corresponds to the distance
dCC , whereas the right panel refers to the metric dB. The R2 values are 0.7677 and 0.8203, respectively. Thus, the scatter plots
in Fig. 3 can be considered quite accurate representations of the underlying distance configurations [43]. The points in Fig. 3
have been colored according to the classes presented in Table 15 concerning the family of each virus.

It is clear from Fig. 3 that both distances are able to detect some structure in the dataset according to the underlying fam-
ilies of viruses. The left-hand panel shows a fuzzy configuration. Each class of viruses is located in a different region of the
plane, but there are several points situated in the middle of the graph, which could pertain to more than one family. On the
contrary, the right-hand panel displays a more compact conformation, with the families HC and HP clearly separated from
each other and from families RAC and CLDMD. Although these latter classes show some degree of overlap, the corresponding
groups are clearly distinguishable. Fig. 3 suggests that the distance dB is more effective than dCC if the goal is to obtain an
accurate clustering partition according to the true families of viruses.

6.1.2. Application of clustering algorithms and results
The crisp and fuzzy clustering methods proposed in this work were applied to the dataset of genetic sequences. Concern-

ing the hard methods, the number of clusters, C, and the set of lags, L, must be determined in advance. The first hyperpa-
rameter was fixed to C ¼ 4, since the considered viruses pertain to 4 different families. On the other hand, the heuristic
s://www.ncbi.nlm.nih.gov/genome/browse#!/overview/.
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Table 15
Summary of the 32 genetic sequences.

Family Subgroup No. instances

Rodent associated circovirus (RAC) Circoviridaes 5
Circoviridae LDMD (CLDMD) Circoviridaes 10

Human cosavirus (HC) Picornaviridaes 10
Human parechovirus (HP) Picornaviridaes 7

Fig. 3. Two-dimensional scaling plane based on distances dCC (left panel) and dB (right panel) for the 32 DNA sequences.
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criterion presented in Section 3.4 (Steps 1–3) was employed to find out the optimal set of lags. Specifically, we fixed a global
significance level a ¼ 0:05 and a maximum lag LMax ¼ 10, and recorded the most significant lag Li for each genetic sequence.
The collectionL ¼ 1;2;3;4;5;6f gwas chosen as the optimal one. Note that the considered criterion can be used to select the
set of lags in every application concerning the proposed methods.

As for the fuzzy clustering techniques, an additional hyperparameter,m, must be determined. The selection of this param-
eter was carried out by taking into account C ¼ 4 and the optimal set of lags obtained with the crisp methods. In this regard,
we run the fuzzy C-medoids algorithm based on both metrics for C andL fixed, and several values ofm;m 2 1:1;1:2; . . . ;4f g.
The optimal value for m was the one associated with the lowest value of the Xie-Beni index [44]. It is worth remarking that
several works have used criteria based on internal clustering quality indices to carry out the selection of the optimal value for
m (see, e.g., [45]), which is the one producing the partition with the best trade-off between compactness and separation. This
procedure resulted in m ¼ 1:4 for dCC and m ¼ 1:8 for dB.

Table 16 contains the values of the ARI, JI and FMI indices for the crisp clustering procedures based on the two metrics. In
all cases, the ground truth was assumed to be given by the underlying families of viruses as indicated in Table 15. Both dis-
similarities attained satisfactory values for the evaluation indices. However, as it was expected from Fig. 3, the distance dB

produced a more accurate partition than dCC . In fact, the experimental solution associated with dB is almost identical to the
ground truth except for the fact that one virus pertaining to the family HC is placed within the cluster which contains HP
viruses. The misclassified organism corresponds to the central blue point in the right panel of Fig. 3.

For comparison purposes, the results obtained by the distances dMLE and dCZ (the best-performing metrics among the
alternative ones as indicated by the simulations carried out throughout the paper) are also shown in Table 16. The estimation
486



Table 16
Values of three clustering quality indices for several dissimilarities in the database of DNA sequences. For each index, the best result is shown in bold. The last
column contains the average number of iterations.

Method ARI JI FMI Number of iterations

dCC 0.665 0.597 0.748 2.616
dB 0.912 0.875 0.933 2.092

dMLE;MC 0.848 0.794 0.885 2.210
dMLE;HMM 0.047 0.177 0.302 2.710
dMLE;DAR 0.594 0.534 0.696 2.452

dCZ 0 0.244 0.494 –
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procedure in the former metric was carried out by considering independently a MC, a first-order HMM and a DAR(2) process.
The notation dMLE;MC ; dMLE;HMM and dMLE;DAR was used in Table 16 to indicate the nature of the estimated coefficients. The best
measure among the alternative distances was dMLE;MC , which showed a worse but similar performance than dB. The remaining
metrics exhibited worse behavior. The problem with the distances based on estimated model coefficients is that, in practical
applications like this, there is no way of knowing which model is the best for the CTS at hand, so it is impossible for the user
to choose the optimal form of dMLE.

The last column of Table 16 includes the average number of iterations until the PAM algorithm reached convergence. For
each dissimilarity, 500 executions were performed and the same clustering partition was always obtained. The algorithm
using distance dB returned the clustering solution in approximately 2 iterations, whereas the number of iterations associated
with the remaining approaches was slightly higher.

Table 17 contains the partition returned by the fuzzy C-medoids algorithm based on dB. For each single virus, the entries
in bold enhance the highest membership degrees, i.e, they provide the cluster assignment from a crisp perspective. The
entries highlighted in italics in the first column correspond to the medoid viruses.

Table 17 provides a great deal of information about the corresponding partition, since nearly all the viruses in the collec-
tion display significant membership degrees in more than one group. The organisms in the family RAC exhibit the maximum
membership degree in the same cluster, and the same happens for CLDMD and HP. On the other hand, the family HC is the
most heterogeneous one. In fact, most of the viruses in this family show the maximum degree in the HP cluster. In fact, the
Table 17
Membership degrees for the 32 genetic sequences of viruses by considering the 4-cluster partition produced by the distance dB .

Virus C1 C2 C3 C4

RAC 1 0.188 0.108 0.491 0.213
RAC 2 0.209 0.126 0.479 0.186
RAC 3 0.000 0.000 1.000 0.000
RAC 4 0.212 0.136 0.393 0.259
RAC 5 0.259 0.208 0.365 0.168

CLDMD 1 0.000 0.000 0.000 1.000
CLDMD 2 0.215 0.124 0.223 0.438
CLDMD 3 0.237 0.144 0.236 0.384
CLDMD 4 0.256 0.150 0.216 0.377
CLDMD 5 0.191 0.113 0.214 0.483
CLDMD 6 0.177 0.100 0.191 0.533
CLDMD 7 0.202 0.105 0.178 0.515
CLDMD 8 0.266 0.157 0.181 0.395
CLDMD 9 0.259 0.168 0.260 0.312
CLDMD 10 0.223 0.137 0.258 0.382

HC 1 0.339 0.296 0.158 0.207
HC 2 0.362 0.345 0.151 0.143
HC 3 0.356 0.327 0.166 0.151
HC 4 0.276 0.323 0.214 0.187
HC 5 0.346 0.300 0.180 0.174
HC 6 0.308 0.369 0.171 0.152
HC 7 0.324 0.323 0.195 0.159
HC 8 0.336 0.332 0.172 0.159
HC 9 0.000 1.000 0.000 0.000
HC 10 1.000 0.000 0.000 0.000
HP 1 0.346 0.248 0.203 0.202
HP 2 0.318 0.208 0.198 0.276
HP 3 0.368 0.188 0.260 0.185
HP 4 0.369 0.229 0.220 0.182
HP 5 0.324 0.246 0.219 0.211
HP 6 0.359 0.241 0.201 0.199
HP 7 0.396 0.241 0.185 0.178
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medoid of this cluster corresponds to a HC virus. These insights suggest that there is a high degree of overlap between HC
and HP families.

Since the dissimilarities dCC and dB are only well-defined for stationary series, it is important to check the stationarity of
the genetic sequences under consideration. To that aim, the so-called rate evolution graph [46] was constructed for each one
of the medoid series associated with the dB-based fuzzy procedure. This tool represents component-wise curves of the cumu-
lated sums Ct ¼

Pt
s¼1Y t ; t ¼ 1; . . . ; T , against time t. The slope of each graph gives an estimation for the corresponding mar-

ginal probability. If the underlying process is stationary, then each component should exhibit a linear behavior in t, whereas
apparent violations of linearity reveal nonstationarity. Fig. 4 depicts the rate evolution graphs of the medoids. In all cases, no
strong deviations from linearity are observed, which suggests a stationary behavior for the medoid series. The rate evolution
graphs of the remaining sequences are similar to those in Fig. 4. In short, the stationarity of the series corroborates the suit-
ability of both dCC and dB to perform clustering in the genetic database.

The conclusions reached from a fuzzy analysis like the previous one could be particularly helpful from a biological point of
view. First, the medoid sequences could be used to describe the whole families. Note that the medoids represent the proto-
type features of the clusters, then summarizing the characteristics of the viruses within each group. For example, a
researcher could employ the virus RAC 3 as a representative element of the RAC class, thus avoiding a joint analysis of all
the organisms in the family. Second, the overlapping nature of some viruses may give some hints on their common evolu-
tionary patterns. For example, it is clear that the families HC and HP are related, which is reasonable since viruses in both
groups have human beings as natural hosts. One could even analyse the specific membership degrees (see Table 17) and
determine that the virus HC 2 is the one displaying the highest degree of overlap between the HC and HP families. Note that,
although the previous case study dealt with genomes of well-known viruses, the proposed methodology could be employed
to cluster databases of recently discovered DNA sequences, which would shed light on the common features of the corre-
sponding organisms. Third, the resulting clustering partition is useful in its own right, since it provides meaningful groups
which may be helpful for exploratory purposes.
6.2. Clustering of protein sequences

This section shows the application of the proposed methods to a dataset of protein sequences.
Fig. 4. Rate evolution graphs for the medoid genetic sequences.
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Fig. 5. Two-dimensional scaling plane based on distances dCC (left panel) and dB (right panel) for the 40 protein sequences.
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6.2.1. Dataset and exploratory analyses
In this second application, we consider a dataset with 40 protein sequences. Proteins are large molecules constituted of

one or more chains of simple organic compounds called amino acids. There are 20 different amino acids making up the pro-
teins of any living organism. Therefore, each protein can be seen as a CTS with 20 categories. In fact, the application of cat-
egorical processes to protein data has been considered in several works [6,47].

Half of the proteins in the database are found in different parts of human beings, while the remaining half are present in
several variants of COVID-19 virus. In this regard, our goal is to find out if the proposed clustering algorithms are able to
group the sequences according to the underlying species. The maximum, minimum and median lengths for the CTS in the
database are T ¼ 2511; T ¼ 165 and T ¼ 426, respectively. The corresponding data were extracted from the UniProt Knowl-
edgebase (UniProtKB) website.3

Note that, in this case study, a number of 400 features of the form bpij lð Þ or b/ij lð Þmust be estimated from each CTS to com-
pute dCC and dB, respectively. However, as we are dealing with realizations of moderate size, the corresponding quantities are
expected to be poorly estimated. For this reason, we decided to reduce the number of categories in the original CTS by
employing the so-called protein sequence encoding. Specifically, we chose to categorize the amino acids into three classes
according to its hydrophobicity, which is a common transformation [48,49]. As result, the new dataset contains CTS with 3

categories, which allows to estimate features bpij lð Þ or b/ij lð Þ with a higher degree of accuracy.
As in Section 6.1.1, a 2DS was carried out by considering each one of the proposed metrics. Computation of both dissim-

ilarities was performed by using the setL ¼ 1;2f g, which was selected as the optimal one according to the method provided
in Section 3.4 for a ¼ 0:05 and LMax ¼ 10. Fig. 5 contains the corresponding planes for dCC and dB, whose associated R2 values
are 0.9500 and 0.6517, respectively. Different colours were used to distinguish human proteins from COVID-19 proteins.
Configurations in Fig. 5 indicate that both metrics are able to differentiate the underlying classes quite properly in this
database.
3 https://www.uniprot.org.
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Table 18
Values of three clustering quality indices for several dissimilarities in the database of protein sequences. For each index, the best result is shown in bold. The
last column contains the average number of iterations.

Method ARI JI FMI Number of iterations

dCC 0.900 0.903 0.949 1
dB 0.900 0.903 0.949 1

dMLE;MC 0.715 0.745 0.854 1
dMLE;HMM 0.344 0.504 0.670 1
dMLE;DAR 0.805 0.818 0.900 1

dCZ 0 0.487 0.698 –
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6.2.2. Application of clustering algorithms and results
The proposed clustering algorithms were applied to the database of protein sequences. The number of clusters was set to

C ¼ 2, which is the number of underlying species in this new case study (human and COVID-19). Concerning the fuzzy tech-
niques, the parameter m was selected by means of the procedure presented in Section 6.1.2, resulting m ¼ 2 for dCC and
m ¼ 2:3 for dB.

Table 18 summarizes the performance of the hard clustering algorithms based on the proposed and the alternative met-
rics. Dissimilarities dCC and dB achieve the best results according to the three clustering quality indices. In fact, the clustering
solution produced by both metrics is exactly the same. Specifically, one of the groups contains all the COVID-19 proteins
along with one human protein, while the other cluster is formed by the remaining human proteins. The misclassified
sequence corresponds to a protein identified as Q7Z434, which plays an important role in the human immune system.
The MLE-based metric assuming NDARMA models also exhibits an excellent behavior in this application, since it returns
a partition with only 2 misclassifications. The last column in Table 18 indicates that all methods converge in just one
iteration.

Although the soft partitions produced by the fuzzy C-medoids algorithm based on dCC and dB are not shown for the sake of
simplicity, they provide interesting insights. In both cases, COVID-19 proteins exhibit maximum membership degrees sig-
nificantly higher than human proteins, which is coherent with the plots in Fig. 5, where the blue points constitute more com-
pact clusters than the red ones. In addition, the partitions contain some sequences displaying a strongly fuzzy behavior. For
instance, protein Q7Z434, which was incorrectly located in the COVID-19 group by the hard clustering procedures, has mem-
bership degrees of 0.37 and 0.63 in the human and COVID-19 clusters, respectively, according to dissimilarity dB. This sug-
gests that this protein shares a moderate degree of similarity with proteins in the former group, which is expected since
Q7Z434 is actually present in human beings. Similar conclusions can be reached for several other sequences in the database.

7. Concluding remarks and future work

In this paper, we introduced two metrics to perform cluster analysis of categorical series. The goal of both distances is to
discriminate between underlying categorical processes. The first dissimilarity (dCC) is based on standard association mea-
sures, whereas the second (dB) employs the so-called binarization of a categorical process, which describes the presence
of each category by means of unit vectors. In both cases, the concepts of unsigned and signed dependence are properly
assessed.

The proposed dissimilarities were used to define hard and soft clustering methods. To evaluate the performance of the
constructed algorithms, a broad range of simulation scenarios covering a wide variety of categorical processes was taken into
account. On the one hand, scenarios formed by CTS pertaining to well-defined clusters were considered to assess the hard
clustering algorithms. On the other hand, scenarios involving series equidistant from two clusters were used to evaluate the
fuzzy techniques. All numerical experiments showed the superiority of the proposed procedures in comparison with some
alternative methods suggested in the literature. The computation times of the different techniques were also studied. The
algorithms based on dB achieved the best overall results in terms of both clustering effectiveness and computational
efficiency.

To illustrate the usefulness of the novel categorical distances, we applied the corresponding clustering algorithms to two
collections of biological sequences from different species. In both cases, the hard clustering methods based on both dCC and
dB were able to detect the underlying structures, the latter attaining almost the highest possible accuracy. In addition, the
fuzzy clustering methods provided a great deal of information, showing that some organisms share a certain degree of over-
lap. The results suggest that applied researchers in fields related to Biology and Genetics could substantially benefit from the
proposed methodology when dealing with databases arising in those fields.

There are several ways through which this work can be expanded. First, the proposed dissimilarities could be extended so
that they are able to discriminate also between different geometric profiles. In this way, metrics simultaneously taking into
account serial dependence and proximity between raw categorical values could be introduced. Second, although we have
presented here a simple but accurate technique for choosing the set of lags in the computation of both dCC and dB (see Sec-
tion 3.4), the selection of the optimal setL could be a topic for further research. Specifically, this problem could be addressed
through two different approaches: (i) by considering a feature selection problem in an unsupervised setting but assuming
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that the search is limited to specific groups of features (note that each lag l 2 Z produces a certain set of features for both dCC

and dB) and (ii) by incorporating in the objective function of the clustering algorithms a set of weights giving different impor-
tance to each lag l 2 Z, which allows the ability of each lag to discriminate between groups to be automatically determined
during the computation of the clustering partition. Third, robust clustering methods based on the proposed dissimilarities
could be constructed by considering the so-called metric, noise and trimmed approaches [50]. Fourth, the statistical prop-
erties of dCC and dB could be investigated in order to define powerful hypothesis tests. In this way, clustering methods based
on the p-value of the corresponding tests could be designed. Finally, given the great results obtained by the clustering algo-
rithms in the biological datasets, they could be applied to complete biological databases in order to detect complex relation-
ships between a great number of species. This could provide meaningful insights from an evolutionary perspective. All paths
will be properly addressed in further work.
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