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Abstract 

It is well documented that intraoperative ultrasound offers improvements to the extent of 

tumour resected in neurosurgery but currently fails to depict the boundaries of more invasive 

tumours. Quantitative ultrasound (QUS) is a technique that models ultrasound scattering in 

tissue mathematically. It can act as a quantitative tool to identify cancerous regions and be 

used to define features which can train a machine learning (ML) classifier. The use of QUS 

to differentiate healthy and malignant brain tissue is the objective of this thesis. 

This work began with a proof of concept study which saw the effective implementation of 

QUS with a linear array transducer, at conventional frequencies, on phantom materials. The 

results were then used to train a K-nearest neighbours (KNN) binary classifier to differentiate 

between two soft tissues. Insight into the most practical parameters for near real time tissue 

identification was achieved, as well as the opportunity to produce parametric images for 

various QUS parameters. The effects of freezing and fixation of tissue on QUS results were 

also considered. 

The experimental design was developed to obtain a higher lateral spatial resolution before 

applying it to ex vivo human samples of ten healthy and eight high-grade glioma (HGG) 

tissues. This was accomplished with both a linear array and a single element scanning 

system, at centre frequencies of 25 and 74 MHz, respectively. The SoS and attenuation were 

found to be higher, on average, in the tumour samples than in the healthy tissue. The 

homodyned K-distribution (HK) parameters alone could distinguish between healthy and 

HGG tissue to 96% accuracy at 74 MHz, suggesting this is a viable solution for residual 

HGG detection. 

To explore the potential of ML with a larger data set, and to extend the study to low grade 

glioma (LGG) tissue, acoustic impedance maps based on 300 previously recorded 

microscope histology images of each tissue type were created. The interaction with high 

frequency (HF) ultrasound was explored using finite element analysis and QUS parameters 

were obtained. A classification algorithm was able to differentiate healthy and HGG to near 

perfect accuracy, but a significantly lower accuracy of 79% was found when distinguishing 

LGG from healthy tissue maps. 

This research represents a step forward in the otherwise unexplored landscape of HF QUS 

in brain tissue which necessitates further work to transition from laboratory based 

experiments to in vivo QUS to aid intraoperative glioma detection.  
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1 INTRODUCTION 

1.1 CHAPTER AIM 

This chapter aims to introduce the thesis, beginning with a general overview of the complex 

problem of intraoperative glioma identification. The use of ultrasound in the neurosurgical 

theatre is discussed and the limitations of current established techniques are stated as 

motivation for this study. The aims and objectives for the project are put forward, followed 

by the contributions to knowledge. Finally, the publications arising from this thesis are 

given. 

1.2 OVERVIEW OF THESIS 

1.2.1 Current Standard of Care in Glioma Patients 

Gliomas are common primary brain tumours of the central nervous system and grow 

invasively from the white matter regions of the human brain [1]. Unlike metastatic or 

meningioma tumours, which can have well defined boundaries, gliomas are extremely 

difficult to localise intraoperatively and so are nearly impossible to completely resect [2]. In 

the malignant case, remaining tumour cells will eventually form a new tumour and patient 

prognosis generally predicts death within 1 - 5 years, depending on malignancy [3]. This is 

graded by the World Health Organisation (WHO) I to IV where IV represents the 

Glioblastoma Multiforme (GBM) which is the most malignant and aggressive tumour, and I 

is a slower growing, but still dangerously invasive tumour [4]. In the surgical management 

of gliomas, maximum possible tumour resection is critical to improve prognosis in both LGG 

[5], and HGG [6]. Typically, high resolution preoperative Magnetic Resonance Imaging 

(MRI) is carried out to inform surgical decisions on craniotomy location. This provides a 

full 3D representation which can be implemented into a neuro-navigation system to allow 

the surgeon to easily map the surgical path for safest resection. 

However, for subsurface gliomas, after removal of the skull and piercing of the dura matter, 

the pressure released causes the brain to shift inside the skull, rendering the preoperative 

image locations inaccurate [7].  Furthermore, the physical structure of the brain is such that 

it tends to fold in on itself to fill the resection cavity and this in turn causes discrepancies in 

the boundaries of the tumour [8]. At this stage, a real-time image update is necessary for the 

surgeon to safely resect as much tumour as possible. Intraoperative MRI is a possibility, 

however, the safety practicalities and costs associated with a non-ferromagnetic operating 
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theatre environment mean it has not been widely adopted [9]. Furthermore, acquiring the 

MRI image still takes some time, and there could be a huge disruption to surgical workflow 

if multiple images are required [10].  

1.2.2 Ultrasound Techniques 

Ultrasound, on the other hand, is an attractive option that is less costly, portable and provides 

real-time images in a time- efficient manner. It is an imaging modality which has been used 

in the neurosurgical theatre for several decades, not only for tumour localisation but in a 

range of guidance based applications, including ventricular shunt placements, and needle 

and catheter guidance [11]. Ultrasound imaging is based on the reflections arising when 

mechanical waves encounter a boundary of different acoustic impedance, which occurs in 

the various structures in human tissue. In summary, a voltage drives a piezoelectric device, 

or transducer, to produce a sound wave with frequency typically >1MHz, which is coupled 

to the tissue so the waves can propagate through the material, reflecting off various structures 

and substructures. A brightness mode (B-mode) image is formed which portrays the 

amplitude of the reflected signals detected by the transducer [12]. In present terms, 

conventional ultrasound refers to a curvilinear array typically operating in the frequency 

range 3 - 10 MHz, offering a resolution of 500 – 1,300 μm at depths of 2 - 8 cm from the 

transducer [13]. There has been significant evidence showing intraoperative ultrasound 

(IUS) can greatly improve the extent of resection in glioma surgery [14–16] and recent 

advances are showing an improvement, particularly when IUS is integrated with a 

neuronavigation system [17] and using HF linear arrays [18]. The tumour appears as a 

hyperechoic, or brighter, region in the IUS image, usually with unclear boundaries, as the 

lesion in Figure 1.1a shows.  The comparable MRI is also displayed in Fig. 1.1b. 

 

Figure 1.1: (a) A case of a temporal high-grade glioma is shown using 7 MHz IUS. The lesion 

appears hyperechoic on the IUS image but the margins surrounding the cancerous region are 

not well delineated and the image is of significantly lower resolution than the preoperative MRI 

in (b) [19]. 
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The major disadvantage of ultrasound is the limited resolution and lack of acoustic contrast 

between healthy brain and glioma tissue, which causes the margins of the tumour to be 

unclear, as is reported often in the early literature [20]. Advancements in technology have 

allowed the manufacturing of smaller probes with higher frequency, which will improve the 

resolution, at the cost of a reduced penetration depth. This is caused by attenuation, where 

the tissue absorbs ultrasound energy as it travels through, at a rate proportional to the 

frequency, usually around 0.5 dB MHz-1 cm-1. Typically, in brain tissue, if the frequency 

were to be increased to 30 MHz, this would result in a maximum imaging depth of 2 – 3 cm, 

which would not be suitable for deep seated lesions. However, with the introduction of 

probes with smaller footprint, this can be overcome by inserting the probe into the resection 

cavity. 

While the increase of resolution may improve the image quality, there is still a distinct lack 

of acoustic contrast between healthy and glioma tissue, meaning the margins of the tumour 

are not clear in the conventional B-mode image. Some recent advances try to optimise image 

quality by reducing the grainy appearance of the ultrasound image but, crucially, there may 

be information contained in the speckle pattern which can be used for tissue characterisation. 

The speckled, or grainy, appearance is typical in an IUS image and is caused by scattering 

of waves within the tissue. Scattering arises when ultrasound encounters an acoustic 

inhomogeneity smaller than the wavelength itself [21]. This is where a region within the 

tissue has slightly different acoustic properties to the bulk acoustic properties of the material. 

Within brain tissue, the wavelength of ultrasound at 10 MHz is 155 μm and so the complex 

neuronal microstructures will contribute to scattering. It is hypothesised that regions with 

higher cell density, such as cancerous regions, will cause ultrasound to scatter more 

chaotically than in healthy areas which may have fewer scattering sources and be more 

structured. The measurement of scattering from tissue can be quantified in several ways, 

including the backscatter coefficient (BSC) and statistical model parameters. The blanket 

term given to the field where any parameter may be used to describe scattering is QUS, 

which is commonly sub-divided into spectral and statistical aspects [22].  

1.2.3 Introduction to QUS 

The field of QUS was pioneered by Lizzi and Felleppa in the 1980s when studying ocular 

tumours [23]. They developed a theoretical framework to account for system dependent 

effects, so user-independent parameters can be measured [24]. The backscattered power 

spectrum (BSPS) measures the amount of signal scattered back to the transducer from the 

tissue region over the bandwidth of the transducer. The dependence on frequency was shown 
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to give useful parameters for tissue characterisation, termed ‘Lizzi-Fellepa parameters’ [23]. 

Their parameters were based on the slope and intercept of the BSPS, when plotted against 

frequency, and launched work towards a theoretical description for scattering within tissues 

[25]. Extended by Oelze et. al in the early 2000s,  this enabled the experimental measurement 

of the effective scatterer diameter (ESD) and effective acoustic concentration (EAC), the 

product of the number of scatterers per mm3 and the acoustic impedance mismatch [25]. 

These parameters have since been used to detect different tumour grades in rat mammary 

tumours [26], human breast masses [27] and in the detection of fatty liver disease [28]. 

The values of these parameters may be used to form a parametric image over the original B-

mode image to give additional information on tissue microstructure, which can be extremely 

useful for tissue characterisation [29]. Fig. 1.2 shows an example of parametric images 

where significant differences in ESD are seen in the malignant and benign cases for rat 

mammary tumours [26]. 

 

Figure 1.2: Characterisation of rat mammary tumours using the  

ESD and EAC parameters, showing significant differences in the 

malignant case (a) and the benign case (b).  

 

In parallel to developments in the spectral domain of QUS, advances were made in the 

statistical description of scattering [30]. Early work used statistics of the speckle from 

ultrasound images directly to characterise tissue [31] and recent studies are still adopting the 

simple approach to analyse the first order statistics of the echogenicity values to gain 

quantitative insight into scattering properties [32]. A sophisticated model came by 

investigating the amplitude of the echo envelope of the ultrasound signal scattered back from 

tissue [33]. Initially, the scattering sources were assumed to be randomly arranged, so were 

described by the Rayleigh distribution [34]. However, the HK distribution is the most 

commonly adopted for tissue characterisation due to its accuracy and mean invariant 

parameters [35]. This can describe ultrasound scattering in general from complex shapes and 

patterns and does not rely on the assumption of randomly placed spherical scatterers, which 
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brain tissue is unlikely to include. The key parameters for tissue characterisation are α, the 

scatter clustering parameter which gives a level of organisation of the scatterers, and, κ, the 

structure parameter, which measures the ratio of diffuse to coherent scatterers [33].  

The real benefit of QUS comes from its parameter-based nature, and most successful studies 

have adopted a multi-parametric approach where they include some or all the parameters 

detailed above to train a binary classification algorithm for tissue characterisation. The use 

of ML to aid diagnosis is ever increasing and has already achieved high sensitivity and 

specificity in a range of diseases using a QUS approach. This includes characterisation of 

breast masses [32], metastatic lymph nodes [36] and diagnosing of fatty liver disease [37]. 

Despite this success in other tissues, there have been no reports of QUS analysis of human 

brain tissue, except a study of in vivo attenuation and BSC measurements over a frequency 

range of 2 - 6  MHz in healthy brain and meningioma [38]. This study saw success 

differentiating the two tissues, suggesting that the field of QUS should be explored fully in 

glioma tissue, as these are the most infiltrative tumours and are difficult to localise with 

conventional US.  

1.3 MOTIVATION 

It is imperative, for improved patient prognosis, to remove as many of the glioma cells as 

possible during surgery. The preoperative images taken before tumour removal surgery 

become outdated and inaccurate as soon as the surgery begins. There is a need for an 

interoperative tool to provide real time imaging to the neurosurgeon to indicate whether a 

region is cancerous or healthy. Conventional ultrasound probes are limited by size and 

frequency for this application. 

There is a lack of understanding of the acoustic attenuation properties of brain tissue at 

frequencies greater than 10 MHz. This is particularly important for the BSPS, as it needs to 

be corrected for attenuation for an accurate spectral parameter result.  This gap is not specific 

only to neural tissue research but applies to the field of QUS in soft tissues in general, which 

is why, presently, there are limited reports of QUS parameters above 25 MHz in any tissue 

analysis [39].  

Furthermore, the statistics of the echo envelope signals, which can provide detailed 

information about tissue microstructure, have been successful for tissue characterisation yet 

only utilised in a handful of studies to date. There has been no measurement of HK 

parameters from animal or human brain tissue. These parameters could be key to aiding 

differentiation of healthy and cancerous neural tissue, so it is imperative they are obtained, 
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and statistical QUS parameters are explored fully. Moreover, the parametric nature of the 

QUS analysis allows for easy implementation into simple binary classification algorithms, 

the use of which has not been implemented in the context of neural tissue characterisation to 

date.  

In summary, there is motivation to explore QUS in general at frequencies higher than  

15 MHz and there is incentive to apply this technique to the differentiation of healthy and 

cancerous brain tissue. Due to the ever-increasing use of ML to aid clinical decisions, it 

would be advantageous to incorporate this into the analysis to allow QUS to reach its full 

potential in a clinical setting. 

1.4 THESIS AIMS AND OBJECTIVES 

The overall goal of this thesis is to add to the extremely limited field of QUS for brain tumour 

detection and explore some of the gaps in current literature, such as backscatter analysis at 

HF and use of statistical models. This can be divided into three more specific aims: 

1. To implement and assess the real-time classification capability of QUS techniques 

using readily available phantom materials and animal brain tissue. 

2. To explore HF QUS (>15 MHz) for the application of human brain tumour 

identification, for the first time, by obtaining measurements on ex vivo samples. 

3. To investigate the potential of ML and QUS when given a larger dataset to identify 

varying levels of malignant gliomas in an in silico study. 

To achieve these aims, the following objectives are detailed below: 

1. To arrive at suitable phantom materials to mimic brain and brain tumour to allow 

experimental procedures to be implemented in a preliminary study, aligning with 

Aim 1. 

2. To set-up a research ultrasound system for array and single element transducers, both 

low and HF, which can obtain a full set of QUS parameters, required for Aims 1 and 

2. 

3. To accurately measure the attenuation and QUS parameters from human brain tissue, 

as well as human glioma at frequencies greater than 15 MHz for Aim 2.  

4. To compare the QUS parameters from healthy and cancerous tissue and assess the 

classification performance for tissue differentiation on ex vivo samples. 

5. To realistically model healthy and cancerous brain tissue in silico to fully exploit the 

data driven ML approach for tissue characterisation. 
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1.5 CONTRIBUTIONS TO KNOWLEDGE 

This thesis has contributed both to the wider field of QUS, and specifically QUS in brain 

tissue in several ways, with the most significant contributions outlined below. 

1. Low frequency QUS parameters measured in brain tissue-like materials. This work 

describes the simultaneous measurement of spectral and statistical parameters from 

chicken liver and gizzard muscle and shows the ability of QUS to differentiate the 

two soft tissue phantoms. 

2. The ability of QUS to differentiate between ex vivo samples of human brain and brain 

tumour was assessed at 25 MHz. This firstly adds to the field of HF acoustic 

characterisation, then to both spectral and statistical QUS. 

3. Samples of human brain tissue and tumour were studied at atypical frequencies, 

including analysis using a 74MHz single element transducer for acoustic 

characterisation and full QUS analysis for an initial investigation at the feasibility of 

implementing the technique using micro ultrasound.  

4. The use of diagnostic microscope images of healthy and cancerous brain tissue was 

investigated and adds to the discipline of tissue modelling in FEA. This allowed the 

exploration of QUS parameters for cancer detection without the limitation of a small 

sample set. 

1.6 THESIS STRUCTURE 

The remaining chapters of the thesis are outlined below. 

Chapter 2 provides context for the research from a clinical perspective, by presenting a 

literature review of the use of ultrasound in neurosurgery, with particular focus on 

intraoperative glioma imaging and limitations in the current practice. The field of QUS for 

tissue characterisation is introduced and the shortcomings of this field in neural tissue and at 

HF are discussed. 

Chapter 3 describes the underlying theory of QUS parameter estimation for tissue 

characterisation. Firstly, the mathematics of tissue attenuation are explained, followed by 

the BSC and mathematical models of tissue scattering. Then, echo envelope statistics and 

methods to estimate the distribution parameters are described. This is followed by a 

presentation of the principles of ML for binary classification. 

Chapter 4 presents phantom work carried out to implement and optimise the QUS technique 

previously described at conventional frequencies. This involved acoustic characterisation of 
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chicken liver and gizzard, followed by full QUS parametric image formation. The ability of 

QUS to differentiate the two phantoms was assessed using a binary classification. 

Chapter 5 includes preliminary work on ex vivo bovine brain before it examines the ability 

of QUS to differentiate samples of snap-frozen healthy cortical white matter and GBM ex 

vivo. A research ultrasound machine and linear array transducer were used to conduct a full 

QUS analysis and assess the differentiation potential. There was also a full analysis using 

the highest frequency recorded via a 74 MHz single element transducer.   

Chapter 6 explores tissue microstructure in more detail by modelling human brain tissue and 

tumour in FEA software. Microscope images of human healthy white matter and glioma 

tissue were used to create an acoustic impedance map where wave interaction can be studied 

in more detail, and QUS parameters obtained. These were combined to investigate the data 

driven research approach for classification. 

Chapter 7 presents the conclusions drawn from the results obtained in this thesis, 

highlighting the key contributions to this field as well as the main challenges experienced 

throughout the project. This leads to a discussion on improvements and details of the steps 

required in the future to further assess the potential of QUS as an intraoperative aid in neuro-

oncology.  

1.7 PUBLICATIONS ARISING  

1.7.1 Peer Reviewed 

Thomson H, Yang S, Cochran S (2022). Machine Learning enabled Quantitative  

Ultrasound for Tissue Characterisation. Journal of Medical Ultrasonics. 

DOI: https://doi.org/10.1007/s10396-022-01230-6 

1.7.2 Conference Proceedings 

Thomson H, Yang S, Baldwin M, Stritch T, Cochran S (2020). The Effect of Freezing and 

Fixation on QUS parameters.  2020 IEEE International Ultrasonics Symposium (IUS). 

DOI: https://doi.org/10.1109/ULTSYM.2019.8925982 

Thomson H, Yang S, Baldwin M, Stritch T, Cochran S (2019). Quantitative Ultrasound 

Differentiates Brain and Brain Tumour Phantoms. 2019 IEEE International Ultrasonics 

Symposium (IUS). DOI: 10.1109/ULTSYM.2019.8925982 

Lemke C, Thomson H, Lay H, Cox F, Yongqiang Q, Clutton E, Cochran S. 2019 IEEE 

International Ultrasonics Symposium (IUS). DOI: 10.1109/ULTSYM.2019.8925827 

https://doi.org/10.1007/s10396-022-01230-6
https://ieeexplore.ieee.org/xpl/conhome/8914674/proceeding
https://doi.org/10.1109/ULTSYM.2019.8925982
https://ieeexplore.ieee.org/xpl/conhome/8914674/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8914674/proceeding
https://doi.org/10.1109/ULTSYM.2019.8925982
https://ieeexplore.ieee.org/xpl/conhome/8914674/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8914674/proceeding
https://doi.org/10.1109/ULTSYM.2019.8925827
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1.7.3 Conference Presentations 

‘Applications of Intraoperative Ultrasound to Improve Brain Tumour Resection: A 

Literature Review’ – Poster presentation, Inaugural Brain Tumour Conference (Cancer 

Research UK), first – 3rd May 2018, London. 

‘Applications of Intraoperative Micro-Ultrasound to Improve Brain tumour resection’- 

Poster Presentation 10th Annual Scientific Meeting of SINAPSE (Scottish Imaging 

Network: A Platform for Scientific Excellence), 25th June 2018, Edinburgh. 

‘Multiparametric Quantitative Ultrasound Measurements for Differentiating Brain and 

Brain Tumour Phantoms with Binary Classifier’ – Invited Talk, Nanjing University of 

Science and Technology, 7th August 2020. 

 

‘Quantitative Micro-Ultrasound Differentiates High Grade Glioma and Healthy White 

Matter in Ex Vivo Tissue Samples– Oral Presentation, IEEE International Ultrasonics 

Symposium (IUS), 11th-16th September 2021, Online Conference. 

 

‘Microultrasound-Based Machine Learning Classifier Differentiates Low- and High-Grade 

Glioma via Acoustic Impedance Maps in Finite Element Analysis’– Oral Presentation, 

IEEE International Ultrasonics Symposium (IUS), 11th-16th September 2021, Online 

Conference. 

 

  

https://ieeexplore.ieee.org/xpl/conhome/8914674/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8914674/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8914674/proceeding
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2 CLINICAL BACKGROUND 

2.1 CHAPTER AIM 

The aim of this chapter is to examine current ultrasound technologies aiding brain tumour 

delineation in the neurosurgical theatre and identify which areas hold potential for the focus 

of this thesis. To fully realise this aim, the chapter begins with a clinical introduction to brain 

tumours and discusses the current standard of care for glioma patients before establishing 

what place intraoperative QUS should have in this. The history of IUS in neuro-oncology is 

reported, including recent advances and clinical trials from a range of ultrasound sub-

modalities. Finally, the chapter introduces the field of QUS and examines the literature 

surrounding its use in tissue characterisation to explain why it is a suitable focus for the 

remainder of the thesis. 

2.2 CURRENT STANDARD OF CARE FOR GBM 

2.2.1 Brain Tumours 

“To confront cancer is to encounter a 

parallel species, one perhaps more adapted 

to survival than even we are.” 

The Emperor of all Maladies [40] 

The treatment of cancer remains one of humanity’s greatest challenges. Since medieval 

times, surgeons have been devising aggressive treatments for cancer, through radical 

resections, but only in the last sixty years has cell biology advanced enough to understand 

the underlying mechanisms which cause cells to divide so relentlessly.   

The brain contains two primary types of cells: neurons and neuroglia. Neurons are 

responsible for receiving, processing and communicating information to other neurons via 

electrical and chemical excitations, or synapses [41]. These are located on the cerebral 

surface, or grey matter, as shown in Fig. 2.1. Neurons are incapable of mitosis (cell division) 

as the body of the cell lacks a pair of organelles which are essential for cell division, known 

as centrioles. This means when neuron cells die, they are not replaced, and they are thus 

unable to become cancerous. 
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Figure 2.1: a) Coronal view of T1 weighted MRI image showing contrast in white and grey matter 

[42]. b) Schematic of brain structures in the brain.[43] 

Neuroglia, or glial cells, are essentially the glue of the nervous system and are found in both 

white and grey matter. They consist of a variety of different cell types that provide functions 

to protect and nourish surrounding neurons. The most abundant are astrocytes which have 

numerous projections that link neurons to their blood supply [41]. They also regulate the 

external chemical environment of neurons and recycle neurotransmitters released during 

synapses. Oligodendrocytes, ependymal cells and microglia have different purposes and are 

located in different areas of the brain [44]. All these glial cells can become cancerous and 

are then labelled gliomas. The normally useful, infiltrative nature of glial cells then makes 

the cancer they develop one of the most difficult to cure. 

Brain tumours are relatively rare in comparison with other cancers in that they constitute 

approximately 3% of all cancer cases worldwide [45]. However, the mortality rate is 

extremely high and it is ‘the biggest cancer killer of children and adults under 40’ [46].  

Patient survival is highly dependent on a variety of parameters (age, sex, malignancy, time 

of diagnosis [47],[48]) but on average only 12% of patients survive more than 5 years after 

diagnosis of an intrinsic brain tumour [49]. There are currently over 100 categories of brain 

tumours identified by the WHO, with the most prevalent being gliomas; then meningiomas, 

which form in the outer layers protecting the brain; and finally metastases, cancers from 

another part of the body that spread into the brain [50]. 

A more complete breakdown of the most frequent cancer types is shown in Table 2.1. WHO 

Classification gives a level of malignancy to tumours from (I - IV) with I indicating benign 

and IV indicating an aggressive, rapidly growing tumour.  Survival rates decrease rapidly 

with malignancy classification for all tumour types, but GBM, which is the name given to 

a) b) 
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all gliomas with a WHO classification of IV, has a very low survival rate, with average 

survival time after diagnosis of only 16 months [3]. 

Table 2.1: 5-year survival percentage for most commonly occurring brain tumours, 2015-

2017, UK. Data retrieved from Cancer Research UK, 2020 [5]. 

5-YEAR SURVIVAL % FOR MOST PREVALENT BRAIN TUMOURS  

Astrocytoma  Grade I 90% 
 

Grade II 50% 
 

Grade III 20% 

GBM Grade IV 5%  

Ependymoma Grade I 90% 
 

Grade II 70% 
 

Grade III 50% 

Meningiomas Grade I 80% 
 

Grade II 80% 
 

Grade III 40% 

Pituitary gland Grade I 70% 

 

Cancers of the brain are particularly challenging to treat for several reasons. Firstly, the brain 

and spinal cord are insulated by a tight cellular seal, called the blood brain barrier, which 

prevents foreign chemicals from easily entering the brain, making it almost unreachable by 

chemotherapy [51]. As well as this, the surgical resection of brain tumours is extremely 

complex, as a mass resection is rarely possible as it would result in irreversible neurological 

damage [52]. The presence of the skull also introduces the need for craniotomy (removal of 

part of the skull) which causes additional trauma to the head, so the section removed is 

generally minimised. In some cases, ‘burrhole’ surgery is used, in which a small hole, 

typically less than 3 cm in diameter, is cut through the skull to allow the surgery to be 

performed [53]. The advantages of such minimally invasive approaches include decreased 

surgical times, and lower blood loss and complication rates, resulting in shorter hospital 

stays [54]. However, they leave a limited field of view for the surgeon, which restricts the 

instrumentation or diagnostic tools that can be used to aid resection. 

2.2.2 Limitations of Current Imaging 

Tumours are typically detected via a MRI after symptoms begin. These vary from a mass 

effect (headache caused by tumour mass increasing pressure to the brain) to neuronal specific 

effects such as personality changes, confusion, vision and hearing problems [55]. Surgical 
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management depends on whether the tumour is intra-axial (growing from within the brain 

substance) or extra-axial (growing externally). Extra-axial tumours are mostly benign, cause 

symptoms by mass effect on the surrounding brain and are easier to resect. They usually 

have a well-defined boundary and complete surgical excision is the aim. On the other hand, 

intra-axial tumours are malignant and diffuse, and are more challenging to remove 

completely, such as metastatic tumours and gliomas.  

This thesis will focus on the challenge of delineating intra-axial tumours, specifically HGG, 

from healthy tissue. These tumours are particularly challenging as they typically have similar 

colour and texture to the surrounding healthy brain parenchyma, making them hard to 

distinguish during surgery. It is clear from Table 2.1 that the most difficult to treat is the 

aggressive and infiltrative GBM. It is the proliferating nature of its cells, causing a 

microscopic invasion while still aggressively multiplying, which causes it to be classed as 

an incurable disease [56].  

There have been several studies concluding a positive correlation between percentage of 

tumour resected and patient survival time [5], even in HGG growing in areas which are 

essential for basic functioning [6]. Maximum safe resection is the standard treatment for 

most GBM cases. Typically, the surgeon will refer to the preoperative MRI, perform a real 

time image update to reorientate, and navigate to the tumour site. Then the tumour bulk will 

be resected, mainly using palpation to identify it. A tissue ablator is used to destroy 

cancerous regions which, interestingly, will utilise high power ultrasonics to ablate the 

tissue. These typically consist of an ultrasonic aspirator, which has a tip diameter of around 

2 mm, such as the SonoPet® (Stryker Medical Devices, USA). After tumour debulking, the 

margins between healthy and cancerous tissue become unclear and the surgeon may use 

magnification and injection of contrast agents to aid in achieving clean margins [52]. They 

may also use several biopsy samples taken throughout the procedure to achieve an accurate 

diagnosis; however, this is time consuming and labour intensive.  

After surgery, treatment is followed by a multimodal regimen of radiotherapy and / or 

chemotherapy, but ultimately limitations in drugs accessing the brain mean any tumour 

regions left are unresponsive to this treatment so begin to proliferate again [6]. Survival time 

has modestly increased in recent years, owing to advances in surgical techniques and 

intraoperative imaging [5]. Preoperative MRI is seen as the gold standard of image quality, 

however, these images are rendered inaccurate after craniotomy and dural opening as the 

brain undergoes the phenomenon of brain shift [57]. This is a well-documented occurrence 

in which structures change shape and position as a result of the procedure [7]. Depending on 
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intracranial pressure before craniotomy, the brain and lesion will bulge toward, or away from 

the surgical site. This is further exacerbated by opening the dura mater and, during the 

process of the whole operation, where cerebral spinal fluid loss and gravity will cause further 

shift. This means the preoperative images become inaccurate and there is a need for 

interoperative imaging. 

 

Figure 2.2: a) Preoperative MRI, b) Intraoperative MRI taken during 

tumour resection [67]. Red arrow indicates tumour site. 

Fig. 2.2 shows an example of brain shift, with a) being taken preoperatively, while b) is taken 

with intraoperative MRI, after craniotomy. Not only is the surface of the brain deformed, but 

the entire left hemisphere has undergone some distortion. 

Intraoperative MRI provides the highest quality imaging method for brain tumour 

visualisation, however it has several drawbacks which have prevented it from being widely 

used [52]. Positron emission tomography (PET) scans are also used in the brain, but mostly 

for functional imaging or for monitoring the effects of radiotherapy treatment in cancer [58]. 

Computerised Tomography (CT) scans are also used for brain tumour visualisation, but are 

of lower resolution, so are more commonly used as an initial diagnosis tool for cancer, as 

well as stroke or head trauma [59]. 

Ultrasound is a real-time, cost-effective imaging system in neurosurgery, but artefacts, low 

spatial resolution and image orientation are amongst the most important challenges to 

overcome [60]. Improvements to IUS in neurosurgery are imperative in contributing to the 

ultimate aim of improved glioma resection. 

2.2.3 Introduction to Ultrasound 

Medical diagnosis by ultrasound is possible due to the physical interactions between 

ultrasonic waves and biological materials. Ultrasonic waves propagate through tissue and 

reflect or scatter from tissue interfaces and structures. B-mode ultrasound is utilised often in 
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the clinical environment and makes use of the piezoelectric effect: the conversion of 

electrical energy to mechanical energy. When an electrical signal is sent to the transducer, it 

causes the piezoelectric material to expand and contract which, in turn, generates an 

ultrasound wave. This wave propagates through the material until it encounters a boundary 

of different acoustic impedance. Then, some of the energy from the wave is transmitted 

across the boundary into the different material and some is reflected back to the source where 

it is converted back into a voltage and detected by the system. The time delay between the 

emission of the pulse and reception of the echo by the ultrasound probe enables the depth of 

the reflecting structure to be deduced.  Using an array of transducers, multiple echoes are 

represented and processed into a greyscale image - the stronger the echo from a particular 

tissue boundary, the brighter the pixel. The resulting 2D image enables visualisation of 

anatomical structures, the most common example being obstetrics imaging, but the same 

technique can be used to obtain diagnostic information in other areas such as the heart, 

breast, thyroid, kidneys and abdominal organs [61]. 

Tumour tissue has a higher local density (hence impedance) so will appear lighter on an US 

image compared to surrounding brain. The use of ultrasound predates MRI and has seen 

significant advances in the last four decades, involving improved image resolution, smaller 

probe sizes and navigated 3-D techniques [62].  

2.2.4 History of Medical Ultrasound for Brain Imaging 

The first medical use of ultrasound on a human subject was reported in 1937 in Austria by 

Theodore Dussik and his brother, investigating the detection of brain abnormalities [63]. The 

experimental set-up is shown in Fig. 2.3 and the Dussik brothers were able to produce an 

image based on the differential attenuation of sound during its passage through the head. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Dussik and his “Hyperphonic” apparatus [64]. 
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The Dussik’s paper, which translates to ‘On the way to Brain Hyperphonography’ was 

published in 1947 [65] and included the first diagnostic image of part of a living human 

being ever recorded [66]. The dark spaces are what the authors believed to be ventricles, the 

spaces in the brain where cerebral spinal fluid can enter, so appear hypoechoic, or black in 

an ultrasound image. 

 

Figure 2.4:First diagnostic ultrasound image of a 

living human brain [24]. Red arrow indicates 

ventricles. 

 

In the 1970s, B-mode US was introduced in the OR for foetal imaging, however, the acoustic 

properties of the skull halted its progress as a non-invasive technology in neurosurgery.  The 

skull comprises material with very high ultrasonic attenuation, so it is particularly 

challenging to achieve a high-resolution image through it. MRI was therefore introduced and 

adopted into routine clinical diagnostic practice for tumour diagnosis and localisation. 

However, advancements in surgical techniques allowed the removal of the skull to become 

routine practice and essential for tumour removal surgery. This allowed the first reported use 

of ultrasound in neurosurgery for tumour localisation in 1982 [11].  

 

Soon, the problem of brain shift was encountered and a need for real-time intraoperative 

image updates was evident. The main advancement specifically in IUS technology was the 

development of small ultrasound probes for superficial lesions which eliminated the 

necessity for a large cranial window. B-mode ultrasound is a real-time, cost-effective 

imaging system in neurosurgery but artefacts, low spatial resolution and image orientation 

are amongst the most important challenges to overcome [60]. Due to the non-ionising nature 

of ultrasound and the ability to image in real time with a portable machine, ultrasound is 

used in a range of applications, including brain tumour identification. IUS is a powerful tool 

in tumour surgery for resection control and future developments are likely to widen its scope. 
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An extensive review of the various uses of IUS in neurosurgery has been produced [19] but 

only its use for cancer detection is discussed in the review which follows. 

2.3 ULTRASOUND PROPAGATION IN TISSUES 

2.3.1 Wave Propagation 

A sound wave, as considered here, is a longitudinal displacement wave, causing the particles 

to oscillate back and forth in the direction of propagation. This results in regions of 

compression and rarefaction. Hence, at each point the pressure oscillates from maximum to 

minimum as the wave passes, as visualised in Fig. 2.5.  

 

Figure 2.5: Longitudinal sound wave [67]. 

The speed of propagation depends on material density, 𝜌, and stiffness, K: 

𝑐 =  √
𝐾

𝜌
 

 

(2.1) 

 

The speed, frequency and wavelength are related by 𝑐 =  𝑓𝜆. For a sound wave to be deemed 

ultrasonic, its frequency must be higher than the physical limit of human hearing (i.e. 

>20 kHz).  

Ultrasonic waves are generated by the transducer, which usually consists of one or many 

piezoelectric elements which can convert electrical into mechanical energy via the converse 

piezoelectric effect. The material allows the wave to be produced by supplying a voltage 

across the material surface. The direct piezoelectric effect is also observed; when ultrasound 

is incident on the surface of the material, this will translate into a voltage which can be 

recorded.  

If the transducer is operating in “pulse echo” mode, which it usually is for medical imaging 

and in the work in this thesis, it will first generate a short pulse to propagate away from the 

transducer. If there is any boundary, or material with different properties, in the wave’s path, 

it reflects the wave, changing the direction of propagation, and so a smaller signal may be 

received by the same transducer if it is incident on the surface. 
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The acoustic impedance of a material, Z, is the product of the density and the speed of sound 

(SoS), c, so is a fundamental property of the material: 

When an ultrasound wave propagates through a material and reaches a point where a 

boundary exists in acoustic impedance, reflection of the ultrasound wave will occur at this 

boundary. Specular reflections result where the boundary is smooth and the sizes of 

irregularities at a tissue boundary are much larger than the wavelength of the ultrasound [68]. 

Diffuse reflections are observed when the ultrasound wave meets a rough boundary while 

scattering directs ultrasound waves into various directions as a result of irregularities within 

the medium material [69]. 

The amount of energy reflected normally from a specific boundary between materials of Z1 

and Z2 is proportional to the difference in acoustic impedance:  

𝑅 =
(𝑍1 − 𝑍2)

2

(𝑍1 + 𝑍2)2
 

(2.3) 

 

where R is the energy (or intensity) reflection coefficient, measured in MRayl (kg.s-1.m-2). 

Typical acoustic impedance of  soft tissue is 1.3 – 1.7 MRayl, with differences between 

blood vessels, fatty layers and muscle causing relatively strong reflections [70]. The 

reflection coefficient between water and quartz, as a representative material of high density 

and SoS, is 0.8 [71]. This means 80% of the energy is reflected back towards the transducer, 

which is useful as a reference pulse-echo signal. 

The voltage signal converted from the ultrasound reflections incident upon a single element 

transducer is called an A-scan, and has its own uses in medical diagnostics. A-scans are more 

widely adopted for non-destructive testing in an industrial setting. An array of elements, for 

example 64 or 128, is used in imaging, where the A-scans from all elements are displayed 

beside each other and a 2-D image can be formed.   

Basic ultrasound analysis uses the knowledge of the SoS in a material and, by measuring the 

time delay, ∆t, between the emission of the pulse and echo received, the depth, d, of the 

reflecting tissue boundary can be calculated by 

d =
c∆t

2
 (2.4) 

 

In this equation, d is the depth of the reflection and the factor of two is required to account 

𝑍 =  𝜌𝑐 (2.2) 
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for the wave travelling to and from the target, back to the transducer face. Several methods 

exist to experimentally measure the SoS using a transducer; a review of these methods is 

given in [72].  

Though tissue can be heterogeneous, the SoS is usually assumed to be constant within a 

material at a specific temperature. It is taken to be 1540 ms-1 for soft tissues but can range 

from 1350 – 1700 ms-1, with fat having a much lower SoS than cartilage [73]. Due to its 

higher stiffness, bone can have c up to 4000 ms-1 [74]. 

While there is no particular relationship between the SoS and frequency set by the ultrasonic 

system, there was slight dispersion noted in human brain samples and this is attributed to 

relaxation theory [75]. In one of the few records of ultrasonic measurements of fresh human 

brain, Kremkau et. al found that the SoS varied from 1561 ms-1 to 1566 ms-1 at 37 °C [76]. 

Temperature may also affect the results of SoS in brain tissue, though this has not been 

published in brain tissue yet. However, the SoS in other soft tissues was observed to increase 

with temperature (by around 10 ms-1) when conducting experiments at room temperature as 

opposed to 40°C [77]. Furthermore, rarely are speeds of sound reported above 30 MHz, as 

attenuation makes it difficult to use a sufficiently large tissue sample to examine the 

macroscopic propagation of ultrasound through it, due to the amplitude of the signal 

decaying away as it travels through the attenuating medium. 

2.3.2 Attenuation 

In all biological tissues, refraction, dispersion, scattering and absorption all contribute to the 

total signal loss, or attenuation, of the tissue [12]. The mechanisms behind absorption and 

dispersion of ultrasound in biological media were studied extensively in the 1970s and 

collated by Bamber et. al in 1986 [74]. Understanding attenuation is of the utmost 

importance throughout this project, because of the HF systems studied, as these lead to very 

high signal losses, even when the tissue sample is only a few centimetres thick. Besides, 

QUS analysis requires a separation of the scattering component from the total attenuation, 

in turn requiring attenuation compensation, which needs accurate measurement of 

attenuation in the tissue under investigation at the operating frequency of the transducer. The 

theory behind why attenuation occurs is only briefly discussed before focusing on methods 

to accurately measure it at high frequencies.  

Absorption of ultrasound wave energy occurs as molecules of the material have gained 

kinetic energy from the wave as it propagates through. Signal amplitude will degrade into 

heat when the density fluctuations in the material become out of phase with the sound 
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pressure fluctuation. As frequency increases, the molecules become more out of phase, 

losing more energy to heat. At frequencies higher than the relaxation frequency, the wave 

cannot perturb the equilibrium of the media and there is very little energy able to propagate 

in its translational form, leading to the majority of the wave energy being absorbed by the 

material  [74].  

Modelled simply, attenuation is a constant loss, 𝑎, of the wave power, which is uniform for 

each centimetre of path length. If the initial wave power is W0, then the corresponding power, 

W, throughout the material, as a function of time and depth, can be written as: 

𝑊(𝑥, 𝑡) = 𝑊0𝑒
−𝑎𝑥𝑒𝑖(𝑘𝑥−𝜔𝑡) (2.5) 

where k is the wave number and 𝜔 is the angular velocity, related by: 

 

By simply taking the natural logarithm of Equation 2.5, the attenuation, in nepers per cm, is 

For many purposes, it is more convenient to report this in terms of the pressure, or signal 

amplitude, V and to express the attenuation in decibels. 

𝑎𝑑𝐵 = −
20

𝑥
𝑙𝑜𝑔10 (

𝑉

𝑉0
) 

(2.8) 

This is a measurable quantity if the signal amplitude can be determined before and after 

travelling through a distance, x, within the tissue. 

Whilst attenuation is in theory a measurable quantity for biological materials, the practical 

application of measurement techniques can be challenging. The most widely adopted method 

in general acoustics is the transmission loss (TL) method, where the received signal from a 

system is measured before and after insertion of a tissue sample. This requires the 

propagation distance to be determined accurately, which may be difficult when dealing with 

extremely soft tissues, of which brain is an example. 

Two main approaches adopted in the literature are broadband and narrowband techniques. 

The choice usually depends on the usable bandwidth of the transducer, which depends on its 

design. A 10 MHz narrowband transducer has most of the waves’ energy concentrated at the 

centre frequency, with rapid spectral decay on either side, so it may have a usable frequency 

𝑘 =
2𝜋

𝜆
=
2𝜋𝑓

𝑐
=
𝜔

𝑐
 

(2.6) 

𝑎𝑁𝑒𝑝𝑒𝑟𝑠 = −
1

𝑥
𝑙𝑜𝑔𝑒 (

𝑊

𝑊0
) 

(2.7) 
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range only from 8 - 12 MHz.  On the other hand, a broadband transducer will have its energy 

spread over a range of frequencies, such as 5 – 15 MHz, but still peak at the centre frequency.  

The narrowband technique will find the TL, which is the difference in the natural logarithm 

of the voltage received by the transducer with and without the tissue sample present. Using 

Equation 3.8, this will give an attenuation result at a specific frequency, but it can be repeated 

at several different frequencies, if multiple transducers are available, to build up an 

understanding of the attenuation of the tissue over a larger bandwidth. Broadband 

techniques, on the other hand, utilize the whole range of energy spread across the bandwidth 

of the transducer, using the power spectrum from the received signal before and after 

insertion of the tissue. Typically, in such spectral analysis, a windowing, or apodization, 

function is used to remove side lobes in the frequency domain. A Hamming window is often 

used, defined in Equation 2.9:   

𝐻𝑎𝑚(𝑡, 𝐿) = {

1

2
[1 − cos (

2𝜋𝑡

𝐿
)] ,            0 ≤ 𝑥 ≤ 𝐿  

0                                               otherwise.

   

 

(2.9) 

 

where L is the gate length of the signal, which should be the length of the full received pulse 

in this case. The power spectrum from the received signal is given by: 

𝑊(𝑓) = |𝐹𝐹𝑇(𝑉(𝑡, 𝐿) ∗ 𝐻𝑎𝑚(𝑡, 𝐿)|2 (2.10) 

  

i.e., the squared magnitude of the fast Fourier transform (FFT) of the received signal with 

tissue present. The voltage can be replaced with the power spectrum in Equation 2.8 and, to 

account for the use of squared magnitude in Equation 2.10, the final value for attenuation 

should be divided by 2. 

In this case, the attenuation derived will be a continuous function over the usable frequency 

range, which will show an increase with frequency. However, the relationship is not 

straightforward. In the simplest approximation, which is still regularly adopted, the 

attenuation is assumed to increase linearly with frequency, i.e. an attenuation coefficient, 𝑎C, 

measured in dB MHz-1 cm-1 can be used to estimate the attenuation value of tissue at any 

given frequency. Therefore, the total attenuation of the tissue through a distance, d, will be 

given as: 

𝑎𝑇𝑜𝑡𝑎𝑙 = 𝑎𝐶𝑓𝑑 (2.11) 
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This can be a useful approach to compare different tissues, as often a range of frequencies is 

used in the literature to measure attenuation.  

Another approach is to plot the attenuation per centimetre over a range of frequencies, as 

shown in Fig. 2.6 for various biological media. Water has a much lower attenuation than 

tissue as it is easier to displace molecules in liquids than solids. Bone, and high-density 

materials, attenuate ultrasound rapidly, whereas soft tissues including liver and brain have 

moderate attenuation. The majority of the data available in the literature on attenuation are 

measured between 1 and 10 MHz, including for brain tissue.  

A recent study by Rabell-Montiel et. al measured attenuation values using a broadband 

technique from 12 - 35 MHz in murine brain, liver and kidney and found a combination of 

linear and frequency squared dependence to most accurately fit the results over the entire 

bandwidth [78]. This study indicates the attenuation of murine brain to be 10 dB cm-1 at 

conventional imaging frequencies, increasing to 25 dB cm-1 at 30 MHz. This is a very 

important consideration as information can be lost if useful signals are not detected by the 

transducer.  

 

Figure 2.6: Attenuation of various biological 

tissues, with associated power law of frequency 

dependence, from [79]. 

2.3.3 Acoustic Properties of Brain and Brain Tumour 

This section presents a summary of the acoustic properties of brain and brain tumour from 

the literature as these are key to the development of suitable phantom materials described in 
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Chapter 4. The complexity of human brain tissue makes it an extremely heterogeneous 

subject. For example, different acoustic properties have been measured between white and 

grey matter [76]. Nonetheless, it is accepted that the average density of normal human brain 

is 1040 kg m-3 and the acoustic velocity is 1550 ms-1 [80].  

A realistic brain tissue phantom was constructed for ultrasound thermal therapy using bovine 

gelatine powder dissolved in ethylene glycol. The density and acoustic velocity of this 

phantom were, respectively, 1040 ± 40 kgm-3 and 1545 ± 44 ms-1, with an attenuation value 

of 0.6 dB at 1 MHz [81].  Furthermore, a study in 2008 reported calculation of the acoustic 

attenuation of brain tissue and meningioma intraoperatively, to highlight the diagnostic 

capabilities of quantitative ultrasound parameters [38].  

The authors found the attenuation of healthy brain, 4.5 dB cm−1, to be significantly higher 

than the figure for benign tumour, 2.5 dB cm−1, at a frequency of 6 MHz. However, this 

conflicts with the results of a large study from 1968 which measured the properties of brain 

and several different types of brain tumours ex vivo [82]. It found that meningioma has a 

greater attenuation than healthy brain, and glioma (tumour of glial tissue) has an attenuation 

coefficient similar to but slightly more than for healthy tissue over the frequency range 5 - 

10 MHz.  A summary of attenuation results reported in the literature can be seen in Fig. 2.7 

[38], [76], [78], [82], [83]. Standards have been prepared for commercial phantoms by the 

International Electro-technical Commission (IEC) which recommend an acoustic velocity of 

1540 ms-1  and attenuation coefficients of 0.5 - 0.7 dB cm−1 for a frequency range of 2 - 15 

MHz, with a linear relationship between attenuation and frequency [84]. It is clear that the 

IEC standard, shown as a dotted line, would not adequately describe the acoustic properties 

of healthy brain tissue. 
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Figure 2.7: Summary from the literature of acoustic attenuation of 

healthy and cancerous brain tissue in human and animal studies. 

 

There is scarce literature available on the acoustic properties of brain tumour to aid in the 

development of a brain tissue specific phantom. One study measured the density, velocity 

and attenuation of a range of primary brain tumours and these results are displayed in 

Table 2.2[85]. 

Table 2.2: Reported values of acoustic properties of human brain tumours measured ex 

vivo. 

 Cases Density 

(kg/m3) 

Velocity 

(m/s) 

Acoustic 

Impedance 

(MRayl) 

Attenuation 

at 5MHz 

(dB cm-1) 

Attenuation 

at 10 MHz 

(dB cm-1) 

Meningioma 15 1061 1546 1.64 8.7 17.8 

Astrocytoma 12 1040 1503 1.56 3.9 8.5 

GBM 7 1041 1511 1.57 4.1 8.9 

Metastasis 7 1044 1519 1.57 6 11.9 

Normal Brain 62 1040 1550 1.61 5.0 10.0 

 

An accurate measurement of the bulk acoustic properties of brain tissue is imperative as 

attenuation must be compensated for in subsequent QUS analysis. 



25 

 

2.3.4 Scattering 

Attenuation measures all energy lost by insertion of the tissue into the acoustic path. 

However, the specific process which causes ultrasound to lose energy to the surroundings 

that is of interest here is through scattering. This occurs when ultrasound travels through a 

material with sub-wavelength inhomogeneities, such as any biological medium. Diffuse 

scattering is observed when the ultrasound wave meets a rough boundary of acoustic 

impedance mismatch, as a result of irregularities within the medium material, and diffracts 

ultrasound waves in various directions [86].  

A spherical wavefront is produced from a scattering source, or ‘scatterer’, which in turn may 

be incident on other scatterers in the material. The result is a speckled pattern in the B-mode 

image, such as in Fig. 1.1a. A schematic of this situation is shown in Fig. 2.8, which also 

shows an A-scan of the resulting ultrasound energy returning to the transducer from these 

interactions. The unprocessed ultrasound signal is referred to as the RF signal and is often 

filtered to try to improve the image quality. However, there is information contained in the 

small scattering signals which is crucial for tissue characterisation at a microscopic level.  

Any biological material will contain inhomogeneities and brain tissue is an organ of 

considerable microscopic complexity, so there will be significant variations in tissue 

microstructure [41]. Furthermore, tumour pathology observed using an optical microscope 

showed various sources of scattering including tumour nodules often arranged in clusters of 

50 - 150 m diameter. Given this complexity, it is not possible to model every fluctuation 

and inhomogeneity in tissues, so a statistical approach is taken to describe the size and 

distribution of scatterers within the material.  
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Figure 2.8: Diagram showing the formation of scattering over 3 timesteps when 

ultrasound is incident on a material containing scattering sources. The image on the 

right shows (top right) a typical received signal from these interactions, from [87]. 

There are two different approaches to obtain information about tissue microstructure from 

the RF data: spectral parameters can be used to analyse the RF data in the frequency domain, 

and echo envelope statistics compare the amplitude of the echo envelope of the RF data to 

statistical distributions. A typical RF data set and echo envelope signal for a tissue scattering 

region are shown in Figure 2.9, which highlights the difference between the RF data and 

echo envelope. 

 

Figure 2.9: Comparison of RF ultrasound data (red) 

and echo envelope data (blue) from chicken liver tissue. 
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The RF data is the voltage signal from the transducer from a tissue scattering region, V(t), 

and is measured experimentally. The echo envelope signal, A, is then the magnitude of the 

Hilbert transform of the signal response, defined for discrete time signals as [88]: 

𝐴(𝑛𝑇) =  |Ɦ(𝑉(𝑛𝑇))| =  
|

|

{
 
 

 
 
2

𝜋
∑

𝑉(𝑛𝑇)

𝑘 − 𝑛
;           𝑘 𝑒𝑣𝑒𝑛
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𝜋
∑
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(2.12) 

 

where T is the sampling period, the time difference between two sampling instants of an 

analogue signal. This relates to the sampling frequency, 𝑓𝑠, determined by the experimental 

set-up and should be at least twice the maximum frequency in the bandwidth of the 

ultrasound source to satisfy Nyquist’s sampling theorem: 

𝑇 =
1

𝑓𝑠
 

(2.13) 

2.4 THE ROLE OF IUS IN NEURO-ONCOLOGY- A LITERATURE REVIEW 

2.4.1 Conventional B-mode 

The bandwidth of a transducer is the usable frequency range and is typically 2 - 10 MHz 

which will allow an imaging depth of 12 - 5 cm. Probe shape is an important consideration 

as only a small opening of the skull – a ‘burr hole’ - is normally used to access the brain 

tissue. A summary of the different probes used currently in neurosurgery is shown in 

Fig. 2.10. The lines represent the excitation and reception paths of ultrasound waves outside 

the transducer which will form the shapes of the images produced.  

 

Figure 2.10: Ultrasound probes currently being used in neuro-

surgery [89]. 
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In this thesis, HF is considered to be above 15 MHz, with bespoke commercial HF ultrasound 

transducers typically operating with a centre frequency of 25 – 40 MHz. However, there 

have been limited reports of use in brain tissue [13]. No instances of ultrasound of 

frequencies higher than this regime being utilised for brain tumour detection were identified 

during the literature search. There have been many studies which concluded that 

conventional B-mode ultrasound is useful for visualising the tumour and boundary intra-

operatively [14] [20] [3] though all studies agreed that the brain-tumour boundary is difficult 

to locate in glioma patients. In a large patient study, Chacko et al. demonstrated that all 

tumours appeared hyperechoic, however clear margins were seen in only 71% of cases [16]. 

As surgery proceeds, artefacts make the boundary harder to visualise and often ultrasound 

images over-estimate tumour margins (Fig. 2.6a) [90]. Furthermore, in HGG, the invasive 

nature of the cancer and limited acoustic contrast between healthy and malignant tissue 

prevents the delineation of the two tissue types with conventional ultrasound, as illustrated 

in Fig. 2.11b. 

 

        

(a) 

 

  

(b) 

 

Figure 2.11: a) Resection cavity showing a light shadow (red arrows), which is an 

artefact, not residual tumour at 5MHz. This is due to differences in acoustic impedance 

of saline-filled cavity and brain tissue[27]. b) Intraoperative HGG image where 

tumour margins are difficult to fully delineate at 7 MHz. 

 

Coburger et al. investigated the use of a 15 MHz miniature linear array probe after near total 

resection in GBM patients (Fig. 2.12a) [18][91]. Sensitivity and specificity were calculated 

based on biopsy samples and histopathological correlation and then compared for HF IUS, 

conventional IUS and intraoperative MRI.  The highest sensitivity for residual tumour 

detection was found in intraoperative MRI (83%), followed by HF IUS (79%), and finally 

conventional IUS at 5 MHz (21%). This shows HF ultrasound gives image quality 

approaching that of intraoperative MRI, which could be due to the reduction in image 

artefacts as the probe is small enough to be placed inside the resection cavity. An example 

of the resolution capability at this frequency in visualising a GBM resection in vivo is shown 

in Fig. 2.12b. 
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(a) 

 

(b) 

 

Figure 2.12: a) Application of a hockey stick-shaped linear array probe 

[18]. b) High resolution (15 MHz) image of GBM showing necrosis (dark 

areas) and diffuse infiltration surrounding them [19]. 

A trade-off exists between image resolution and penetration depth due to the frequency 

dependence of attenuation. This is discussed in more detail in Chapter 3 but, in summary, as 

the wave propagates through the tissue, energy is absorbed through scattering and heat, so 

signals are significantly weaker at greater depths. Modern ultrasound machines maximise 

image depth by applying a time-gain control (TGC) to the image, meaning signals from 

deeper in the tissue are amplified more than those nearer the transducer [92]. At 30 MHz in 

brain tissue, typically the maximum penetration depth is 3 cm, which may prevent IUS from 

being used routinely in the operating room. 

The flexibility in the manufacturing of ultrasound probes means there are innovative ways 

to overcome these limitations. This is of use in transsphenoidal surgery, in which the surgery 

is carried out via the patients nose, by using a miniature probe [93]. It was also shown to be 

important in aiding in resection of superficial gliomas through a burr hole [54]. There are 

still challenges associated with manufacturing of small microultrasound arrays [94], as well 

as orientation problems for the surgeon. Alternatively, images of vasculature in the brain 

have been taken through the skull using a helmet containing 512 array elements operating at 

1 MHz [95] and transcranial low-frequency ultrasound has been used to distinguish brain 

tumours through suitable sections of the skull [96]. Furthermore, the use of ultrasound in 

neuro-oncology is not limited to conventional grayscale images. Ultrasound offers multiple 

sub-modality possibilities and recent studies have highlighted the potential of these 

additional approaches through clinical trials.  Summarised in Fig. 2.13, these sub-modalities 

of IUS will be briefly introduced in the following section. 
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Figure 2.13: Chart displaying the different imaging modalities currently being researched 

in neuro-oncology. The modalities are arranged depending on which biomarker 

(Echogenicity, vascularisation or stiffness) is being utilised. 

 

2.4.2 3D/ Neuro-navigation 

Neuro-navigation superimposes 3D MRI images into a coordinate system within the 

patient’s head. Real-time 3D ultrasound images are now being incorporated into such 

systems [19][97]. The SonoWand system (SonoWand, Trondheim, Norway) acquires a 

series of 2 - 300 2D images that are computed automatically into a 3D volume that can be 

displayed in any plane, including the familiar axial, coronal and sagittal views, which is 

beneficial to the surgeon (Fig. 2.8) [98]. 

Unsgaard et al. documented improved accuracy of 3D ultrasound in GBM surgery, owing to 

the team’s experience with ultrasound over time [99]. Before resection, both specificity and 

sensitivity were as high as 95% using real-time ultrasound. However, as resection began, 
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Figure 2.14:  Real-time B-mode images superimposed on preoperative MRI to ease the 

surgeon’s image interpretation [19]. 
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sensitivity became poor (26%) which meant a larger amount of tumour tissue appeared 

normal on the ultrasound image and may have been missed by the surgeon [100]. 

2.4.3 Harmonic Imaging 

Harmonic imaging makes use of the non-linear propagation of ultrasound in tissues. By 

selectively filtering out the fundamental frequency, it allows the transducer to receive only 

the (higher) harmonic frequencies. This comes with the advantages of higher frequency 

US, including increased axial and lateral resolution, decreased reverberation and side-lobe 

artifacts [19]. 

2.4.4 Doppler and Contrast Enhanced Ultrasound 

Due to their rapid formation, tumours have a more prolific blood supply than healthy tissue 

and will often have a main feeding artery [19]. Ultrasound undergoes the Doppler effect, so 

it can be used to image moving targets, giving a quantitative value of blood flow velocity. 

Many studies have concluded that Doppler imaging is useful to visualise tumour pathology 

and avoid damage to the main blood vessels during surgery [45]. Doppler imaging is a well-

established technique, and it has seen recent implementation with miniature probes in 

neurosurgery [18]. 

Contrast enhanced ultrasound (CEUS) involves the injection into the bloodstream of contrast 

agents, or microbubbles, which can then amplify signals coming from the blood vessels, as 

an improvement to traditional Doppler [15]. When excited by an ultrasound wave, these 

bubbles undergo contractions and expansions with a frequency depending on their radius. 

They then act like radial ultrasound sources themselves, with their behaviour detected and 

displayed overlaid on an original B-mode image.  

CEUS is well established in hepatology where it is considered to give the same image quality 

as MRI and CT, therefore being superior to B-mode imaging [101]. Prada et al. have 

published several studies observing that CEUS is able to highlight residual tumour masses 

in glioma surgery, especially when tumours have an ill-defined border in a conventional B-

mode image [102]. An example of the CEUS sequence of images is shown in Fig. 2.15, from 

one of the studies of Prada et al. in a GBM patient, and it is concluded that resolution is 

improved and allows imaging of microvasculature systems in glioma patients 

intraoperatively [103]. There are some limitations of this modality, for example, only one 

portion of the lesion can be analysed at a time and the probe must be accurately placed to 

gain as much information as possible in the limited time available. Care must also be taken 

with preparation and injection of contrast enhancement agent [101]. 
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2.4.5 Elastography 

Most tumours have different mechanical properties to surrounding tissue. Surgeons make 

use of this during surgery by palpating tissue to determine which to remove, with cancerous 

tissue being stiffer than healthy. The extent of which may depend on malignancy [104]. 

These differences in stiffness do not arise from the cells themselves, but from the material 

in the space in between cells: the extracellular matrix [105].  Elastography provides an image 

of tissue elasticity, either qualitatively or quantitatively. The main methods under 

investigation in neurosurgery are strain elastography and shear wave elastography (SWE).   

 

Strain elastography can provide an image showing the relative stiffness of one type of tissue 

compared to another. It makes use of the radiofrequency (RF) data pairs from conventional 

B-mode images, one of which is obtained with the transducer placed on the surface of the 

tissue and the other a compressed signal obtained by manually compressing the target [106]. 

In 2012, Selbekk et al. compared the contrast of B-mode imaging to strain elastography in 

gliomas [107]. The operator identified the tumour boundary and local maximum and 

minimum values of the amplitude were used to calculate contrast ratio. Strain elastography 

was shown to have a significantly higher contrast than B-mode alone, however images were 

still processed offline. The first real-time elastography images in neurosurgery were obtained 

in 2009 by Uff et al. [108] and the results showed excellent correlation with the surgeon’s 

assessment of stiffness. It was also noted that areas of high axial strain corresponded to slip 

locations on the brain-tumour boundary. The same team has further characterised this 

phenomenon, termed ‘slip elastography’ with experimentation and simulation to visualise 

the tumour margin [109]. Selbekk et al. also showed that the pulsations of the brain due to 

arterial pressure variations provided sufficient tissue movement to enable strain to be 

calculated [110]. Strain imaging could be used to differentiate between solid tumour and 

normal brain qualitatively, as indicated by the arrows in Fig. 2.16. However, this technique 

 

Figure 2.15: Intraoperative CEUS image of GBM case. In arterial phase, the main veins 

feeding the tumour can be seen, in peak and parenchymal phase it is possible to 

differentiate more viable and necrotic or cystic areas. In venous phase, multiple small 

veins draining towards the ventricle are visible [103] . 
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is highly dependent on the user and possible side effects of compressing brain tissue are not 

well understood. 

 

Figure 2.16:  Comparison between strain elastography image and ECG. 

The red arrow indicates tumour in elastography image; note the delay in 

pressure as blood travels from the heart to the brain, causing pressure on 

transducer [110]. 

 

Shear wave elastography (SWE) allows a quantitative measurement of stiffness by 

calculation of Young’s Modulus, a quantity used to measure stiffness of linearly elastic soft 

tissue. Instead of using external compression, shear waves are generated in the tissue by 

acoustic radiation force [111]. The propagation speed of the shear wave, typically only 

around 10 ms-1, is tracked using an ultra-fast US scanner [112]. Young’s modulus can be 

estimated once shear wave velocity is known. The Aixplorer system (Supersonic Imagine, 

Aix-en-Provence, France) was used in vivo during tumour neurosurgery to obtain values for 

the shear modulus of brain tissue and several types of brain tumours [113]. The mean 

Young’s modulus of healthy brain was found to be 7.1 kPa while both malignant and benign 

tumours were found to be stiffer, ranging from 11.4 kPa - 33.3 kPa. However, the anisotropy 

in stiffness of healthy brain tissue was illustrated using SWE in rat brains in vivo, for which 

the values varied from 2 - 25 kPa depending on location and orientation in the brain [114]. 

In his PhD thesis, Chan optimised the use of SWE in neurosurgery, assessing the effect that 

system settings had on the resulting image  [115]. He found SWE to be superior to B-mode 

imaging and comparable to MRI in brain tumour visualisation (Fig. 2.17). In comparison to 

histopathology, the use of SWE yielded a sensitivity of 94% and a specificity of 77%. The 

value of specificity is low compared to standard B-mode imaging (around 90%) and it 

corresponds to an overestimation in tumour volume, which could be especially problematic 

in neuro-oncology. However, this method is highly sensitive - there have been reports of 

SWE detecting MRI-negative lesions [116].  
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(a) 

 

(b) 

 

Figure 2.17 a) SWE vs B-mode, stiff (cancerous) regions are shown in red. 

b) SWE vs B-mode highlighting a lesion which is almost invisible on standard B-mode image  

[116]. 

 

SWE is promising as an improvement to B-mode ultrasound; however, only high-end 

ultrasound systems have the capability of ultrafast detection to measure the shear wave 

speed, which means the technique is not easily accessible to the majority of surgeons. 

Ultrasound has gone through considerable developments in recent years and can now offer 

a range of new imaging modalities as standard on many machines such as those produced 

by BK Medical® (GE Healthcare, USA), Canon Medical® and Siemens Healthineers®. These 

companies offer a range of equipment but all will include B-mode imaging, harmonic 

imaging, Doppler ultrasound and strain elastography, with the high-end machines also 

offering shear wave elastography [117]. As an example, the SonixTouch Q+ (BK Medical, 

2015) is a mid-range commercial machine that supports probes with centre frequencies of 

2 - 30 MHz. It also offers colour Doppler and strain elastography. Appendix I gives an 

insight into the capabilities of current clinical machines to image porcine brain in situ and 

ex vivo. 

An ultrasound-related method in early development is photoacoustic imaging, which allows 

interrogation of matter at the molecular level.  A laser is used to excite molecules and, with  

photon activation, the molecules then undergo characteristic non-radiative decay, producing 

ultrasonic waves dependent on the molecules excited [118]. In 2017, Dahal and Cullum 

investigated the ability of multiphoton photoacoustic spectroscopy to distinguish between 

healthy and malignant (WHO III glioma) brain tissue ex vivo at two different wavelengths 

[119]. The multiphoton (in this case two-photon) excitation is achieved by using a near 

infrared radiation source, and has been developed as it can reach molecules at greater depths 

(up to 1.4 cm) than conventional photoacoustic imaging [120]. The exact chemical species 



35 

 

responsible is unknown but the authors demonstrate photoacoustic imaging has a clear 

ability to distinguish between the samples. 

QUS is another sub-modality of ultrasound which has not yet been realised in glioma 

detection. It seeks to overcome the limitations of conventional ultrasound, such as the lack 

of acoustic contrast between healthy and cancerous regions, by extracting information on 

tissue microstructure from the ultrasound signal for tissue characterisation purposes. Some 

methods exploit the frequency dependence of the backscattered signal, while others focus 

on modelling the amplitude distribution of scattering to the physical distribution of 

scatterers. The following section presents a review of QUS as a diagnostic tool in other 

tissues and diseases. 

2.5 QUANTITATIVE ULTRASOUND 

2.5.1 Introduction 

QUS can be considered as assigning some numeric values to certain characteristics of the 

received tissue signal from the tissue scattering region. Scattering occurs when an ultrasound 

wave encounters an acoustic inhomogeneity at a scale similar to or smaller than its 

wavelength, λ. This occurs throughout many biological tissues, with the incident beam 

scattered in all directions, as visualised in Fig. 2.18.  

 

Figure 2.18: Scattering in tissues due to incident 

ultrasound source from the left. Structures of a 

similar size to λ will contribute to radial source of 

scattering as depicted by scattered beam. 

 

This causes the grainy, or speckled, appearance of B-mode ultrasound images. Alternative 

approaches of analysing the scattering component of the RF data were largely due to the 

work of Frederic Lizzi, whose group developed the theoretical framework behind ultrasound 

scattering in tissues [121]. The BSPS measures the amount of signal scattered back to the 
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transducer from the tissue region over the bandwidth of the transducer. The dependence on 

frequency was shown to give useful parameters for tissue characterisation, termed ‘Lizzi-

Fellepa parameters’ [23]. These parameters were based on the slope and intercept of the 

BSPS, when plotted against frequency, and can be used as system-dependent QUS 

parameters on their own. However, further work was done to relate them to a theoretical 

description for scattering within tissues [25].  

Biological tissue can be modelled as a homogeneous medium with randomly distributed 

spheres of a slightly different acoustic impedance to the surrounding medium [24]. The exact 

size and location of each individual scatterer cannot be determined but a statistical 

description of the average properties in a region of interest (ROI) may be extracted [122]. 

Specifically, ESD and EAC are key parameters that have shown significant differences in 

healthy and cancerous tissues. As they are derived from the power spectrum obtained from 

the tissue, they are often referred to as spectral-based QUS parameters. A comprehensive 

review of the areas in which both spectral and statistical QUS have contributed to diagnostic 

ultrasound was published by Oelze and Mamou in 2016 [123]. Studies of significant 

notability and relevance are discussed in the following sections, as well as the latest 

publications in the field since the review was released. 

2.5.2 Spectral- based QUS 

Compelling evidence has been published on the ability of spectral based QUS to detect 

cancerous regions in several soft tissues [26][124]. Early studies include work from Felleppa 

et al. who used the frequency-dependent backscatter to obtain estimates of scatterer size and 

concentration from ocular tumours [23]. Mamou et al. had great success characterising 

cancerous lymph nodes using this technique and found that metastatic nodes had an ESD 

larger than that in cancer free nodes (37.1 ± 1.7 mm versus 26 ± 3.3 mm) [36]. This trend 

can be seen through various studies; notably in 2003, Oelze  et al. illustrated that overall 

estimates of scatterer size were 44% larger inside rat mammary tumours than outside [25].  

However, as momentum began to grow in the technique, researchers pushed to a higher 

frequency range, which meant attenuation compensation became very important. Briefly, as 

attenuation is energy lost to the tissue as the wave propagates through it, to isolate the energy 

lost by scattering only, the bulk attenuation through absorption and reflection must be 

estimated and subtracted from the total attenuation. Moreover, the frequency dependence of 

the attenuation must be considered over the bandwidth of the transducer. Understanding of 

this complex issue has developed over the last 15 years and there are still controversies 
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around the appropriateness of the estimation today so it is discussed in mathematical detail 

in Section 3.3.3.  

2.5.3 Statistical-based QUS 

With the published successes of spectral-based QUS, interest grew in the analysis of the RF 

data in different ways to conventional B-mode processing. Researchers began to explore 

novel ways of describing the ultrasonic signals from the echo envelope of tissue regions. 

This envelope is obtained from the magnitude of the Hilbert transform of the RF data from 

a tissue scattering region [30] and is statistical in nature as it arises from the interference of 

a large number of randomly distributed scatterers [35]. This signal is then modelled 

mathematically to yield parameters to describe the organisation structure, density and 

concentration of scattering components [125]. Various models have been used in the 

literature to describe the echo envelope statistics, the most fundamental being the Rayleigh 

distribution which describes randomly located and densely packed scatterers [31]. Others 

include, but are not limited to, the Rice distribution [126], the K-distribution [127], the HK 

distribution [35] and the Nakagami distribution [128].  

The Nakagami distribution approximates the HK distribution and is the most commonly used 

model for tissue characterisation, due to its relative simplicity. The Nakagami shape 

parameter, m, has shown to be an accurate diagnostic tool in a wide range of applications, 

including parotid-gland injury detection, ophthalmology and vascular flow imaging [34].  

However, the most frequent instances of the distribution occur in breast tumour 

classification, owed to the pioneering work done by Shankar and Tsui in this specific 

application [127]. At the time of their work, the calculations involved for the HK parameters 

were problematic and computationally advanced, so they focused only on the Nakagami 

parameter. Their studies showed that the Nakagami shape parameter was significantly higher 

in the tumour, and thus sufficient to differentiate between healthy breast tissue and a 

fibroadenoma, which is  a solid, benign mass [129]. 

Despite the clinical success of the Nakagami parameter, researchers were still concerned 

with the approximations used in the model and the lack of distinct physical meaning of the 

shape parameter. As computer technology advanced, work was done by Cloutier and 

Destrempes in the 2010s to identify an accurate estimation method for the parameters of the 

HK-distribution. The two parameters used for tissue characterisation are the α parameter, 

which measures the number of scatterers per resolution cell, and the κ  parameter, which is 

the ratio of coherent to diffuse scattering power [125]. These can give insight into the 

underlying tissue microstructure, but still maintain a reasonable computation time. The HK 
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distribution has also been used extensively in measuring severity of fatty liver disease [37]. 

In 2020, Zhou et. al evaluated the effectiveness of the Nakagami parameter and the α 

parameter from the HK-distribution for imaging of hepatic steatosis in rats. They found α 

parametric imaging provided significant information associated with fat droplet size, thus 

suggesting a promising statistic for grading of steatosis, but they did not report on the time 

taken to form a parametric image [130]. Other successful applications of the HK-distribution 

include assessment of carotid plaque [131] and classification of rat mammary tumours [132]. 

2.5.4 Additional QUS parameters 

Many studies have used additional parameters to those stated above, which are extensions 

of a specific technique, e.g. the measurement of attenuation at the centre frequency of the 

transducer. Alternatively, there are additional parameters obtained from general statistics of 

the distribution of echogenicity within the ROI. There is often no theoretical grounding to 

justify the use of these parameters for the specific application, yet they can prove to be 

powerful for classification purposes. Examples include the mean value of the echo signal, 

and the variance of the grayscale value and the signal to noise ratio (SNR) [131]. There is 

an interesting divide between theorists and clinicians regarding the practicality of use of the 

additional QUS parameters as they hold no physical meaning yet could be efficient and 

practical to implement. A combination of all parameters will be explored in this thesis. 

2.5.5 Use in Neural Tissue 

There is a distinct lack of application of both spectral and statistical QUS in neural tissue. 

This may be due to the high demand for neural tissue in research, as it used in many fields 

such as clinical brain science. There is simply not enough availability of tissue to meet the 

demands of all researchers.  Nonetheless, a study conducted in 2008 collected unprocessed 

RF data from 20 patients intra-operatively [133]. Values of attenuation and BSC were 

calculated by using 10 distinct frequencies between 2.5 - 7.5 MHz. The attenuation 

coefficient of white matter in the cerebral cortex was found to be 0.94  0.13 dBcm-1, which 

is significantly higher than that of most tissue such as liver and muscle. The authors 

concluded that the differences in BSC in healthy and cancerous tissues occurred only in the 

upper frequency band of this analysis. Studies utilising spectral methods in the brain include 

the assessment of apoptosis in monkey [134] and Vlad et. al looked at simple spectral 

parameters to measure murine response to radiotherapy through the skull, with them found 

to be a reliable indicator of treatment [135]. Mouse skull is significantly thinner than human 

skull, so the same technique may not be feasible for human application. There have been no 

reports of statistical based QUS for brain tissue characterisation, however, the Nakagami 
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distribution was used to aid detection of landmarks in 2D ultrasound scans of the foetal brain 

[136].  

Realising the different capabilities of spectral and statistical methods, researchers began to 

incorporate an analysis of both methods into their studies. This was explored at 40 MHz in 

the detection of thyroid cancer where both the ESD and HK parameters had significant 

differences in cancerous and heathy thyroid in a mouse model [137]. The study concluded 

that HF QUS may enhance the ability to detect and classify diseased thyroid tissues. 

However, a more robust combination of the parameters is required to fully enhance the 

diagnostic capability of the technique and one way to do this is through machine learning 

(ML), which is discussed in detail in Chapter 3. 

2.5.6 Combination of QUS Techniques and Machine Learning  

ML is revolutionising diagnostic imaging by reducing human error. Image recognition is a 

potential route for ML to aid in diagnosis in ultrasound. Many studies have shown that 

integrating computer aided diagnosis with clinician feedback improves performance in a 

range of areas, including recognising benign and malignant breast masses in ultrasound 

images [138]. However, this requires high quality training data and clearly segmented brain-

tumour boundaries, which is not always possible with current ultrasound images, especially 

in glioma surgery.  

Other researchers have utilized QUS to its full potential for tissue characterisation by taking 

advantage of its quantitative nature and drawing on supervised classification methods of ML.  

Often clinicians are interested in a binary classification (healthy or cancerous) which is a 

well-established approach in ML [139]. A range of methods exist but the common idea is to 

take a range of parameters from a dataset and label each instance as ‘healthy’ or ‘cancerous’. 

This can be extended to a larger number of groups but binary classification is sufficient for 

the application. Next, a percentage of the labelled data is input to the classifier as training 

data. Then, the remaining data, which is unseen, can be used to test how well the classifier 

predicts the label. The most commonly adopted classification algorithms are KNN, SVM, 

random forest and decision trees [139]. The performance can be measured in terms of 

accuracy, or often a Receiver Operator Characteristics (ROC) curve will be used. The area 

under the curve (AUC) varies between 0 - 1, combining sensitivity and specificity to give 

the overall diagnostic performance [140].  

Mamou et al. utilized a combination of spectral and statistical parameters to characterise 

healthy and cancerous lymph nodes and found the ESD and k parameter from the HK-
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distribution to be the most reliable [36]. They were able to determine a ‘cancer likelihood 

percentage’ and then created a classification image by using the assigned score of each pixel 

and colour coding it according to: <25% = green, >75% = red and amber = otherwise.  

Fig. 2.19 shows the classification image, highlighting in red the areas of interest, which could 

then be compared to a stained section which the histopathologist could determine as correct. 

 

Figure 2.19: Classification of cancerous regions in excised lymph node (left) 

and histopathology image (right) [36]. 

 

In 2019 Nasief et. al exploited a total of 7 parameters, including the attenuation, Nakagami 

parameter and SNR to successfully classify carcinomas and fibroadenomas in excised breast 

masses [32]. Achieving a classification accuracy of 95% suggests this could become a non-

invasive technique for determining benign and malignant breast tumours. Another recent 

instance of the effectiveness of QUS with machine learning was a 29 MHz scanning system 

which could successfully identify cancerous regions in the prostate using QUS [39]. 

Attenuation was assumed constant in both healthy and cancerous tissue. The authors 

calculated 15 parameters in total but, instead of using every one for the classification, they 

explored a variety of sets of parameter combinations. The SVM achieved good classification 

performance, with an AUC of 0.79, when combining envelope statistics and spectral 

parameters. At the same time, Roy-Cardinal et al. adopted a multimodal ultrasound 

approach, as the system used was capable of estimating shear wave velocity. A combination 

of elastography and statistical QUS was used for classification. This study used a random 

forest ML algorithm to classify carotid artery plaque components with 95% accuracy [131]. 

2.6 CONCLUSIONS 

With research showing increased tumour resected correlates to marked improvements in 

patient prognosis, the challenge then becomes maximising the percentage of tumour resected 

in the OR. IUS has proven to be a useful adjunct in increasing tumour resection but still fails 
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to clearly depict the boundary as the surgery proceeds [13]. Higher frequency probes give 

greater resolution and hence can show clearer margins at the brain-tumour boundary. Trials 

thus far in neurosurgery have been conducted only up to 16 MHz, despite 71 MHz 

commercial probes being available for small animal use [141].  Elastographic techniques 

could offer additional contrast to improve differentiation. Strain elastography is easy to 

implement, however images acquired are operator dependent and there is unclear correlation 

with histopathology. SWE has a high sensitivity for identifying stiffer tissue, however it is 

only available in high end systems. CEUS and Doppler US are useful additions in instances 

where visualisation of tumour perfusion is sought.  

QUS is a broad field which analyses RF data in a different way to conventional imaging, via 

spectral or statistical methods. Both have shown potential for soft tissue characterisation in 

liver and breast and may be translatable to brain tissue. There are still issues identified in the 

literature with implementing some of the QUS techniques, such as attenuation compensation 

at high frequencies and efficient algorithm implementation for the HK parameters. A 

summary of the advantages and disadvantages of these techniques is shown in Table 2.3. 

More research must be conducted on the impact of these developing technologies on clinical 

outcomes by performing clinical trials on tumour resection with a large number of patients. 

This will ensure the overall utility of US technology in neuro-oncology is accurately 

evaluated. 

The results of the literature review suggest there are two key areas which offer potential to 

improve tumour delineation using ultrasound in the brain:  

• HF (>15 MHz) imaging of healthy and cancerous tissue for improved resolution and 

to probe smaller microstructures with shorter wavelengths. 

• QUS measurements of healthy and glioma tissue combined with ML classification 

to assess the differentiation capability of this technique. 
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Table 2.3: Advantages and limitations of ultrasound sub-modalities in neuro-oncology 

Technology Advantages Limitations 

B-mode US Speed of image acquisition. 

Simplicity. 

Low cost. 

High operator variability. 

Image artefacts give 

unclear diagnosis. 

Interpretation/ orientation 

problems. 

3D US Volumetric acquisition 

Possible with standard 3D 

US probes. 

Can be implemented into 

neuronavigation software. 

Slower than 2D US. 

Diminished image quality. 

High Frequency US High spatial resolution. 

More reliable visualisation 

of tumour margins. 

Poor depth of penetration. 

Smaller probes can cause 

orientation problems. 

Strain Elastography Visualises tumour elasticity 

variation. 

Gives greater contrast than 

B-mode alone. 

Unclear correlation with 

pathology. 

Induced strain risks trauma 

to brain tissue. 

High operator variability. 

SWE Highly sensitive 

visualisation of tumour 

margins. 

Reduced operator 

variability. 

High-end US system 

required. 

Over-estimation in tumour 

margins. 

CEUS Visualises tumour 

vascularity with greater 

contrast than Doppler. 

Involves invasive delivery 

of contrast agents. 

Field of view is constant 

during injection. 

Photoacoustic imaging Significant differences in 

absorbance ratios. 

No in vivo human trials.  

New technique, still needs 

established. 

Quantitative Ultrasound Visualises microscopic 

characteristics of tissue. 

Can be combined with a 

ML approach for user 

independent tissue 

characterisation. 

Limited information on use 

in brain tissue. 

Resolution of parametric 

image is much less than 

conventional US. 

2.7 CHAPTER SUMMARY 

This chapter introduced the current standard of care in brain tumour patients and highlighted 

the particularly poor prognosis for HGG patients. Then, the need for a real-time imaging 

modality was given, followed by a comprehensive review of the use of ultrasound in neuro-

oncology. This review highlighted the multimodality of ultrasound imaging and discussed 

the recent clinical trial successes of state-of-the-art imaging methods. Particularly, the 

manufacturing of HF probes with small footprints has allowed ultrasound to compete with 

the higher resolution imaging types for intraoperative tumour delineation. However, gliomas 
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are challenging to detect using B-mode images alone. The field of QUS, and its success in 

tissue characterisation was discussed, and importantly, its distinct lack of utilisation to date 

in brain tissue. It was concluded that the main focus in this PhD study should be the novel 

use of HF QUS applied to differentiation of healthy and cancerous neural tissue. 
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3 TECHNICAL BACKGROUND 

3.1 CHAPTER AIM 

This chapter describes the theory of both spectral and statistical QUS parameters, as well as 

providing an insight into ML algorithms for binary classification. First, the physics behind, 

the phenomenon of scattering within tissue is described mathematically, first in terms of the 

BSPS, which can be used to obtain spectral QUS parameters, and then by studying the 

statistics of the echo envelope. A general look at the various theoretical models of the echo 

envelope is given as context, before moving on to detailed explanation of the Nakagami and 

HK-distributions and their model parameters. The derivations of both spectral and statistical 

QUS parameters are provided; these have been studied for several decades but still have 

some controversies in practical implementation, which are also discussed. Finally, an insight 

into the mathematics of ML algorithms is provided, as these are used extensively in tissue 

characterisation, and the KNN and SVM techniques are introduced to provide a foundation 

for the binary classification work presented in this thesis. 

3.2 SPECTRAL QUS PARAMETER ESTIMATION 

Spectral parameters rely on the careful measurement of the frequency dependence of the 

BSPS. This is the amount of ultrasound energy received by the transmitting transducer 

operating in pulse-echo mode from a tissue scattering region [22]. It is obtained from the RF 

data from a transducer over a tissue ROI using Equation 3.10; however, it must be 

compensated to separate the scattering component from the total attenuation, as explained 

fully in Section 3.2.2.  

To obtain the spectral parameters, first an experimental power spectrum is obtained. This is 

then compared to a theoretically derived power spectrum from a general tissue scattering 

model of the same size as the ROI. The mathematics behind the backscattered power 

spectrum have been well established since the work done by Lizzi et. al in the 1980s [24]. 

This includes the crucial discovery that the power spectrum depends only on two tissue 

parameters: the ESD and EAC, for a given frequency and size of ROI [24]. By comparing 

the theoretically derived power spectrum to a measured power spectrum, the tissue 

parameters can be estimated. 
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3.2.1 Theoretical Description of Backscattered Power Spectrum 

Tissues can be modelled as random or structured distributions of small scatterers with 

slightly different acoustic impedance, Z, to the bulk tissue bulk, 𝑍0, which depends on the 

location [23]: 

The EAC, nz, is the product of this acoustic impedance mismatch and the number of 

scattering sources in the material. When ultrasound is incident on this tissue, each scatterer 

will cause reflections in all directions, which will in turn interfere with other scatterer 

reflections as they return to the transducer. This will result in the received RF signal being 

the sum of the reflected echoes from each individual contribution.  

The simplest model is to assume a random spatial distribution of scatterers throughout the 

tissue, and it has been shown this can be modelled as a random walk, equivalent to the sum 

of phasors [142]. Each contribution will have a random amplitude phase shift, depending on 

the size, distribution and relative acoustic impedance mismatch between scatterer and 

surrounding material [25]. 

The received signal amplitude, A, will be the phasor sum of the k individual components 

with initial angular frequency, 𝜔0, with amplitudes 𝐴𝑘 and phase shift 𝜃𝑘: 

Under the assumption that the tissue contains a sufficiently large number of scatterers, the 

RF data can be modelled as a Gaussian distribution of zero mean and standard deviation, σ: 

Conceptually, if ultrasound from a 10 MHz narrowband transducer is incident on tissue, the 

power spectrum of the tissue will move slightly higher over the bandwidth of the transducer 

as a result of various interferences of randomly placed scatterers.  

The frequency dependence of the RF data can be determined by finding an expression for 

the backscattered power spectrum, as a function of frequency, after assuming a Gaussian 

form factor. The acoustic form factor is determined by evaluating the Fourier transform of 

the spatial correlation function for the tissue medium.  

 

𝑧𝑣𝑎𝑟 =
(Z − 𝑍0)

𝑍0
. 

(3.1) 

𝐴 =  ∑ 𝐴𝑘𝑒
𝑖𝜃𝑘

𝑁−1

𝑘=1

 

(3.2) 

𝑃𝐴𝑟(𝑋) =  
1

√2𝜋𝜎2
𝑒
−
𝐴2
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In the special case of randomly positioned, spherical scatterers, the form factor is a function 

of the average ESD, 𝑎𝑒𝑓𝑓, and the frequency [29]: 

 

Lizzi et al. incorporated all relevant assumptions for beam pattern effects and the ROI size, 

L, to show that, in the frequency domain, the normalized, theoretical power spectrum is 

derived fully as [121]: 

𝑊(𝑓) =  
185𝐿𝑞2𝑎𝑒𝑓𝑓

6𝑛𝑧𝑓
4

[1 + 2.66(𝑓𝑞𝑎𝑒𝑓𝑓)2]
𝑒−12.159𝑓

2𝑎𝑒𝑓𝑓
2
 (3.5) 

where: 

L = gate length (mm) (the size of ROI) 

q = ratio of transducer aperture to distance to ROI 

f = frequency (MHz) 

𝑛𝑧 = EAC i.e. a product of n, the number of scatterers per mm-3, and zvar, the relative 

acoustic impedance of the scatterers and the surrounding medium. 

The average ESD and EAC can be estimated by applying a linear fit to the measured power 

spectrum from the scattering echoes and direct comparison with Equation 3.5, as derived by 

Oelze et al [25]. 

First, the power spectrum from a scattering source is expressed on a decibel scale: 

𝑆(𝑓) = 10𝑙𝑜𝑔𝑊(𝑓) = 10𝑙𝑜𝑔 {
185𝐿𝑞2𝑎𝑒𝑓𝑓

6𝑛𝑧𝑓
4

[1 + 2.66(𝑓𝑞𝑎𝑒𝑓𝑓)2]
𝑒−12.159𝑓

2𝑎𝑒𝑓𝑓
2
}  (3.6)  

Expanding this logarithm yields: 

𝑆(𝑓) = 10 log(185𝐿𝑞2𝑎𝑒𝑓𝑓
6𝑛𝑧) + 10 log(𝑓

4) 

              −10 log (1 + 2.66(𝑓𝑞𝑎𝑒𝑓𝑓)
2
) − 10(12.159𝑓2𝑎𝑒𝑓𝑓

2)𝑙𝑜𝑔𝑒  (3.7) 

 

Typically, q is small for HF sources, so an approximation can be made by assuming 

2.66(𝑓𝑞𝑎𝑒𝑓𝑓)
2
≪ 1 : 

log (1 + 2.66(𝑓𝑞𝑎𝑒𝑓𝑓)
2
) ≈ 2.66(𝑓𝑞𝑎𝑒𝑓𝑓)

2
𝑙𝑜𝑔𝑒  (3.8) 

Subtracting the 𝑓4 term and including this approximation yields: 

𝑆(𝑓) − 10 log(𝑓4)  ≈ 𝑀(𝑎𝑒𝑓𝑓
2)𝑓2 + 𝐼(𝑎𝑒𝑓𝑓

6𝑛𝑧) (3.9)  

𝐹𝐺𝑎𝑢𝑠𝑠(2𝑘) = 𝑒
−0.827𝑘2𝑎𝑒𝑓𝑓

2

 (3.4) 
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where 

and 

𝐼 = 10log [185𝐿𝑞2𝑎𝑒𝑓𝑓
2 𝑛𝑧] (3.11) 

       

Ultimately, if S(f) is measured for a specific tissue region, 𝑆𝑚𝑒𝑎𝑠(𝑓), the ESD and EAC can 

be found by equating 𝑆𝑚𝑒𝑎𝑠(𝑓) = 𝑆(𝑓) and modelling the left hand side of Equation 3.9 as 

a straight line in terms of the variable 𝑓2. 

𝑆𝑚𝑒𝑎𝑠(𝑓) needs careful consideration and should be measured over the bandwidth of the 

transducer. Different equations are used for single element transducers and linear array 

probes respectively [83]. The specific formulas for transducer systems used in this work are 

given in the methods sections in the relevant chapters. If the attenuation caused by the tissue 

over the ROI is not negligible, which is the case in brain tissue, then a compensation function 

is needed to accurately obtain 𝑆𝑚𝑒𝑎𝑠(𝑓). This is especially important at frequencies which 

will be used in the analysis here, higher than the conventional frequencies (>10 MHz), and 

thus needs particular attention.  

3.2.2 Attenuation Compensation 

Consider a tissue with an attenuation coefficient of 1 dB MHz-1 cm-1 being insonated at 

10 MHz, such as that in Fig. 3.1. If there is a 2 cm difference between regions A and B and 

one is required to obtain the backscattered power section from the entire tissue sample with 

no correction, there would be a 40 dB difference in the amplitude of signal received from 

the upper and lower regions of the tissue.  

 

Figure 3.1: Illustration of higher 

perceived scattering in Region A 

due to bulk attenuation. 

 

The difference between wavelets being scattered in Region A and Region B will be caused 

by frequency dependent losses, through absorption rather than the specific scattering the 

𝑀 = −4.34[12.159 + 2.66𝑞2]𝑎𝑒𝑓𝑓
2  (3.10) 



48 

 

modelled power spectrum can describe. Attenuation will diminish the contribution from 

scatterers in the deeper tissue region, reducing the phase components involved in the 

summation which will then be compared to the theoretical power spectrum. On top of this, 

the frequency dependence of attenuation must also be considered. This is the observation of 

increasing attenuation at increasing frequencies, such as that in Fig. 2.7, though there is 

debate around whether the relationship is linear, it is most commonly used in the literature. 

Both a linear model and experimentally derived attenuation function a(f) is used in this work. 

If the effects of frequency-dependent attenuation are not carefully considered, estimations 

of the scatter size and acoustic concentration will be inaccurate [143].  

A review of the evolution of attenuation compensation functions is given in [144], but for 

the present work, the state-of-the-art method for large attenuation values and a Hamming 

gating function is used, as derived by Oelze and O’Brian as [143]: 

𝐴𝑂𝑂
𝐻𝑎𝑚(𝑓) = 𝑒4𝑎0(f)𝑥0 [

2𝛼(𝑓)𝐿

1 − 𝑒−2𝑎(𝑓)𝐿
]

2

[1 + (
2𝑎(𝑓)𝐿

2𝜋
)

2

]

2

 

(3.12) 

where x0 is the distance between the source and gated region and a0(f) is the frequency 

dependent attenuation of the intervening tissue, typically water or phosphate buffer saline 

(PBS) solution. 𝑎(𝑓) is the frequency dependent attenuation in the tissue under investigation. 

This is often approximated as linear and based on literature values and even assumed to be 

the same for healthy and cancerous tissues. The work described here will involve QUS at 

HF, where there are limited measurements of the attenuation of brain tissue. Therefore, the 

attenuation function will also be measured before any subsequent QUS analysis.  

A summary of the various processes involved in determining the spectral based QUS 

parameters is given in Fig. 3.2. 
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Figure 3.2: Flow chart describing the steps needed to obtain model parameters from 

output voltage from a transducer to obtain the spectral QUS parameters. 

 

3.3 STATISTICAL PARAMETERS 

3.3.1 Introduction to echo envelope statistics. 

As discussed, scattering occurs when ultrasound is incident on random scatterers distributed 

within a tissue. This can be extended further to distinguish between coherent and diffuse 

scattering and there will often be a combination of these sources in any biological tissue. 

• Diffuse scattering leads to speckle in the image and occurs when there is a large 

number of scatterers in the ultrasound beam resolution cell with random phase. 

• Coherent scattering creates clear light and dark features and happens when the 

scatterers are in phase or there exists some periodicity to their organization. 

Drawing from the randomness of backscattered ultrasound, a quantitative, statistical 

approach to describe the distribution of  reflected signal amplitudes in various tissues has 

been useful for tissue characterisation [130]. The echo envelope statistics refer to a set of 

statistical parameters which are estimated based on modelling the echo envelope of 

ultrasound signals from a tissue scattering region [33].  

In ultrasound imaging, the Rayleigh distribution corresponds to the distribution of 

amplitudes in an unfiltered B-mode image, in the case of a high density of random scatterers 

with no coherent signal component [31]. The Rayleigh distribution was first introduced in 

1880 in the context of sound propagation. The Rice distribution also corresponds to a high 
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density of random scatterers (the diffuse signal component) but, in this case, combined with 

the presence of a coherent signal component of power [145]. The Nakagami distribution 

considers the same scatterers' configurations [146] but the two shape parameters of the HK 

distribution are intertwined into a single Nakagami parameter, m, as given in Equation 3.14  

[19]. Due to its simplicity, the Nakagami distribution has become the most widely adopted 

statistical model for tissue characterisation [33].   

A summary of the relationship between the theoretical distributions and scattering types is 

shown in Fig. 3.3. This diagram shows the types of ultrasound images that can be modelled 

by various distributions. The HK distribution can model images with any number of diffuse 

scatterers and any proportion of diffuse to coherent amplitude. The k distribution is 

appropriate for diffuse scattering alone and the Rician distribution only works when the 

number of diffuse scatterers tends to infinity. The Rayleigh distribution is applicable only 

for purely diffuse scattering from many scatterers [147]. Currently, the most relevant for 

tissue characterisation are the Nakagami distribution, for simplicity, and the HK-distribution, 

for a complete model [33]. 

 

Figure 3.3: Pictorial summary of the various scattering situations and 

corresponding statistical distributions, from [147]. 

3.3.2 The Nakagami Distribution 

The Nakagami distribution is a simplification of the HK-distribution and is defined by the 

following probability density function: 

 

where A represents the amplitude of the signal,  𝛤(𝑚) is the gamma function, 𝛺 is the scale 

parameter and m is the shape parameter of the Nakagami distribution [34]. m can be deduced 

from a moment-based estimator as follows: 

𝑃𝑁𝑎𝑘(𝐴|𝑚, 𝛺) =
2𝑚𝑚

𝛤(𝑚)𝛺𝑚
𝐴2𝑚−1exp (−

𝑚

𝛺
𝐴2) (3.13) 
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𝑚 =
(𝐴2)̅̅ ̅̅ ̅̅ 2

(𝐴2 − 𝐴2̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2
 (3.14) 

where ̅  represents the expectation value operator. The parameter m will take values from 

0 to 1, indicating changes in the envelope statistic from the pre-Rayleigh to the Rayleigh 

distribution [130].  

3.3.3 Homodyned K-Distribution 

The probability density for the echo amplitude when described by an HK-distribution is [35]:  

𝑃𝐻𝐾(𝐴|𝜀, 𝜎
2, 𝛼) = 𝐴∫ 𝑢𝐽0(𝑢𝜀)𝐽0(𝑢𝐴) (1 +

𝑢2𝜎2

2
)

−𝛼

𝑑𝑢
∞

0

 (3.15) 

 

where 𝐽0 is the Bessel function of the first kind and 𝜀, 𝜎2, and 𝛼 are the model parameters. 

Given an echo envelope signal measured experimentally from a tissue scattering region, the 

approach is to assume this signal follows the HK-distribution, with the goal to then solve for 

model parameters 𝜀2, 𝜎2 and α. 

If there exists a periodicity pattern in the position of the scatterers or if there exist strong 

specular reflections then a coherent (or deterministic) component, 𝜖2, appears in the received 

signal, because of long-range organization (relative to the wavelength) [125]. The remaining 

power (from the total signal power) is called the diffuse signal power, 2𝜎2𝛼 , and 

corresponds to the diffuse (or random) component, arising from a diffuse collection of 

scatterers.  

The ratio of these two powers is a detailed description of the level of structure in a given 

material and is a system independent parameter, termed the structure parameter, defined as: 

𝜅 =
𝜖2

(2𝜎2𝛼)
. 

(3.16) 

 

It is hypothesised that this will be key to understanding some differences between the 

microstructure of healthy growing tissues and rapidly forming cancers.  

These parameters can have huge diagnostic potential for tissue characterisation but obtaining 

them from the RF data is computationally intensive. A variety of methods exists, including 

even moments of the backscattered envelope, the SNR, even and fractional moments of the 

intensity, and the XU statistics[35][148]. The latter has been deemed better overall than the 

other estimators in terms of fast and reliable performance [125] and it is therefore the method 

adopted in this thesis. 
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3.3.4 Solving for QUS parameters from the HK-distribution 

The X and U statistics are defined in terms of the expectation value of the intensity, I = A2: 

𝑈 ≔ 𝑙𝑜𝑔𝐼̅̅ ̅̅ ̅̅ − 𝑙𝑜𝑔𝐼 ̅ = 𝑈𝐻𝐾(𝜀
2, 𝜎2, 𝛼) 

 
(3.17) 

𝑋 ≔
𝐼𝑙𝑜𝑔𝐼̅̅ ̅̅ ̅̅ ̅

𝐼 ̅
− 𝑙𝑜𝑔𝐼̅̅ ̅̅ ̅̅ =  𝑋𝐻𝐾(𝜀

2, 𝜎2, 𝛼) (3.18) 

where 𝑈𝐻𝐾  and 𝑋𝐻𝐾  are the theoretical expectation values obtained via evaluation of the 

integral from zero to infinity over the expressions of X and U, multiplied by the HK 

probability distribution given in Equation 3.15.   

The integration was performed by Destrempes et. al (given as a proof in Appendix A of 

[125]) to give two equations in terms of hypergeometric functions which can then be solved 

to accurately obtain the model parameters. 

First, a change of variables is used for convenience: 

𝜇 = 𝜀2 + 2𝜎2𝛼,            𝛾 =
𝜀2

2𝜎2
. 

(3.19) 

 

 Next, the theoretical expectation values for X and U are: 

where 𝛾𝐸  is the Euler constant [149],  𝜑  is the digamma function [150], 

𝐹𝑞(𝑎1,… , 𝑎𝑝;  𝑏1, … , 𝑏𝑞;  𝑧)𝑝  is the generalised hypergeometric series and 𝐾𝑝  denotes a 

modified Bessel function of the second kind of order p [151].  

 𝑈𝐻𝐾(𝛾, 𝛼) = −𝛾𝐸 − log(𝛾 + 𝛼) +  𝜑(𝛼)                

 −𝛾𝛼
𝛤(−𝛼)

𝛼𝛤(𝛼)
𝐹2(𝛼; 1 + 𝛼; 1 + 𝛼; 𝛾) + 𝛾

𝛤(𝛼−1)

𝛤(𝛼)1 𝐹3(1,1; 2,2,2 − 𝛼; 𝛾)2  

(3.20) 

𝑋𝐻𝐾(𝛾, 𝛼) = (1 + 2𝛼)

(𝛾 + 𝛼)
−

2𝛾
𝛼
2
+
1
2

(𝛾 + 𝛼)𝛤(𝛼)
𝐾𝛼+1(2√𝛾) 

+ 
𝛾𝛼

(𝛾 + 𝛼)

𝛤(−𝛼)

𝛤(𝛼)
𝐹2(𝛼; 1 + 𝛼; 1 + 𝛼; 𝛾)  1  

−
𝛾𝛼+1

(𝛾 + 𝛼)

𝛤(−1 − 𝛼)

(1 + 𝛼)𝛤(𝛼)
𝐹2(1 + 𝛼; 2 + 𝛼; 2 + 𝛼; 𝛾)1  

+
𝛾

(𝛾 + 𝛼)2
𝐹3(1,1; 2,2,1 − 𝛼; 𝛾)2  

−
𝛾

(𝛾 + 𝛼)

𝛼𝛤(−1 + 𝛼)

𝛤(𝛼)
𝐹3(1,1; 2,2,2 − 𝛼; 𝛾)2  

 

 

 

 

 

 

 

 

(3.21) 
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Despite their complexity, these two non-linear equations depend only on two model 

parameters λ and α, so can be solved if given values of X, U and I,̅ which are very easy to 

obtain experimentally from a tissue scattering region. An embedded binary search algorithm 

is used to solve for the required parameters, which must be done in three stages. The 

flowcharts that define this process are given in Figures 3.4-6 for convenience, and their 

translation into MATLAB code is given in Appendix II.   

The model parameters can then be found using the identities as the final step: 

𝜀2 =
𝜇𝛾

𝛾 + 𝛼
;                   𝜎2 =

𝜇

2(𝛾 + 𝛼)
 (3.22) 

Ultimately the goal is to create a function in computer code which takes the X, U and I ̅

parameters and returns the parameters 𝛾 and 𝛼 which can then be converted back to the 

model parameters using Equations 3.33 and 3.34. Implementation of these algorithms in the 

present work was achieved using MATLAB and they were validated with published values 

of α and γ, for a given input of X and U. The tolerance was set to 10-4 for algorithms 1 and 

2, respectively and the results are shown in Table 3.1.  

Table 3.1: Validation of algorithm implementation for 3 pairs of X and U values. 

Input (X,U) Output(α,γ) - 

Published 

Output (α, γ) –  

Present Algorithm 

(0.7166, -0.3935) (2.10, 3.10) (2.09, 3.09) 

(0.8, -0.3) (0.0747, 0.1508) (0.0743, 0.1497) 

(4, -1.5) (0.0287, 0.0059) (0.0279, 0.0058) 

 

There is good agreement with the published literature values and the algorithms developed 

in this study. This validation allows confidence in the computation of all subsequent work 

regarding HK parameters calculated from experimental data.  
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Figure 3.4:Algorithm for computing the function γ(α,X), from [125]. 
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Figure 3.5: Algorithm solving XHK= X and UHK = U simultaneously, 

from [125] . 

 

Figure 3.6: Algorithm for estimating the parameters ε2, σ2, α of the 

HK-distribution with the constraint that α is less than an upper bound 

αmax, adapted from [125]. 
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3.3.5 Other statistical parameters 

Various other statistics which do not stem from a theoretical distribution can still be useful 

for tissue characterisation and are efficient to calculate in real time.  

The echogenicity, E, of the signal amplitude can be thought of as a general statistical 

distribution. Moments of a distribution are quantitative measures related to the shape of the 

function's graph.  The mean, or expectation value of E, is given by: 

𝜇 = �̅� =
1

𝑁
∑𝐸𝑖

𝑁

𝑖=1

 
(3.23) 

The second central moment is the variance of the distribution, or standard deviation. 

𝜎𝑣𝑎𝑟
2 = 

1

𝑁
∑(�̅� − 𝐸𝑖)

2

𝑁

𝑖=1

 

(3.24) 

The third central moment, or skewness, measures the asymmetry of the distribution, and can 

take a positive or negative value depending on whether it skews to the left or right. The 

fourth central moment is a measure of the heaviness of the tail of the distribution, compared 

to the normal distribution of the same variance; it is always strictly positive.  

The normalised n-th central moment is easily obtained via MATLAB and is given 

mathematically as [152]: 

for the random variable, E. Despite their simplicity, all central moments are dimensionless 

quantities, meaning they are representative of the distribution, independent of any linear 

change of scale. Although implicit, this means these values are invariant under scaling of the 

mean, or independent of the initial energy of the system.  

The effect of frequency on the value of the higher order moments has not been reported. 

Regardless of their lack of physical relevance to underlying microstructure, they could still 

show changes in healthy and cancerous tissue and are often included as additional features 

in a ML algorithm. 

3.4 MACHINE LEARNING 

Developments in computing over the last few decades have allowed ML and artificial 

intelligence to increase the diagnostic potential of many medical imaging modalities. 

𝜇𝑛
𝜎𝑛
=

(𝐸 − 𝜇)𝑛

[(𝐸 − 𝜇)2]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑛
2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(3.25) 
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Algorithms can be written to detect patterns in the numerical values of measured parameters 

in different tissue pathologies to predict which pathology a new set of measurements is most 

likely to come from. This can be applied to the current study which measures a range of QUS 

parameters and is interested in determining whether the tissue is healthy or cancerous. 

3.4.1 Binary classification 

Binary classification is a supervised type of ML in which a function uses a range of methods 

to make a prediction of a defined label based on the input data. It requires a labelled data set 

to train the classifier, for example, a selection of data which has already been categorised 

into healthy or cancerous. A function will then be created to recognise patterns between the 

parameters in the specific categories and this function can be used to predict the label of 

uncategorised data.  

For example, cancerous samples are usually considered as the ‘positive’ case and healthy 

tissue is considered a ‘negative’ result. The algorithm will predict if an unknown sample 

should be labelled positive or negative. The larger the training set, the more specific and 

accurate the algorithm tends to be.  This is of huge clinical relevance as certain measurements 

could be collected in known healthy and cancerous tissues, which will then be used to train 

a classifier to predict whether an unknown tissue is more likely to be healthy or cancerous 

in a clinical setting. This is a powerful tool which can collapse several complex 

measurements around tissue characterisation into a single labelled prediction ‘healthy’ or 

‘cancerous’.  Often, ML technology is integrated into a clinical setting gradually, with ethical 

considerations needed. It should be seen as another aid to the surgeon, who should ultimately 

make the final decision. 

3.4.2 K-nearest neighbours 

The KNN algorithm is a simple algorithm for classification. It is based on calculating the 

Euclidean distance between a test point and k neighbouring labelled data points. Fig. 3.7 

shows a 2-D illustration of this, where the test point is marked in black, and the two possible 

classes are shown in red (positive) and green (negative). The distance is not limited to 2-D 

space and, depending on the number of parameters, n, available, can be extended to n 

dimensions.  
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Figure 3.7: 2-D visualisation of the KNN framework for 

binary classification. In this case it is important to 

consider the number of neighbours as it may change the 

predicted class of the test point. 

 

The number of neighbours is often an input to the model and should be optimised to give the 

most accurate results. Typically, between 5 - 50 data points are used, depending on the size 

of the dataset. Next, the Euclidean distance, d, is calculated between the test point, p, and a 

neighbour, q, by the n-space distance formula: 

𝑑(𝑝, 𝑞) =  √∑(𝑝𝑖 − 𝑞𝑖)2
𝑛

𝑖=1

 

 

(3.26) 

The algorithm will then label the test point as whichever category is most commonly in 

closer proximity to the test point. 

3.4.3 Support Vector Machine 

A SVM is an algorithm which tries to find an optimal hyperplane, which separates two or 

more distinct data sets, so unseen data can be classified depending on its location relative to 

that hyperplane. A hyperplane is a subspace whose dimension is one less than its ambient 

space, which is the number of features considered in the algorithm [153]. Therefore, in a  

2-D space, the hyperplane will be a line and in 3-D space it will be a 2-D plane. It is harder 

to visualise for higher dimensions, but they exist in n-space. The support vectors are the 

points that are closest to the hyperplane and are used to create a separating line, the margins 

between which should be maximised to generate optimal separation. An example of this in 

a 2-D space is shown in Fig. 3.8. 
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. 

Figure 3.8: Example of a linear kernel SVM showing optimal 

hyperplane as a solid black line with support vectors on 

positive and negative cases, from [154]. 

 

Once the support vectors are found, the test data are labelled positive or negative according 

to their position relative to the optimal hyperplane, by use of the dot product with a vector 

perpendicular to the hyperplane [155]. For example, in Fig. 3.13, the test data point indicated 

in black would be labelled positive as its position has crossed the linear hyperplane into the 

positive sub-space. 

Often the dataset will not have a linear separation and will require a kernel to find the 

optimum hyperplane. A kernel refers to a method that allows application of linear classifiers 

to non-linear problems by mapping non-linear data into a higher-dimensional space [156]. 

The mathematics behind minimising the empirical error on classification while considering 

the complexity of the hypothesis space require an algebraic topology framework to explain 

fully [157]. In this analysis it was restricted to linear, quadratic and Gaussian kernels.  

3.4.4 Evaluating the performance of a classifier 

After the classifier has predicted the label of the test data, the performance can be quantified 

to compare it to other methods or classifiers. This is achieved using a confusion matrix, 

which is an illustration of how the predicted results compare with reality. For the simple case 

of binary classification, there are four outcomes for each prediction. If a tumour sample is 

classified as a positive case, and if it is correctly labelled positive, it is a true positive (TP). 

However, if it is incorrectly labelled healthy (negative), this corresponds to a false negative 

(FN), and in this context, it may result in the unnecessary removal of healthy brain tissue. 

Similarly, a negative case classified correctly is a true negative (TN) but if it is incorrectly 

labelled positive it is a false negative (FP). This is summarised in Fig. 3.11. 
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Figure 3.11: Confusion matrix for binary 

classification where tumour = positive case 

and healthy = negative case. 

 

While other applications may look at a weighted analysis, aiming to maximise positive case 

detection, it may be argued that it is equally unfavourable to remove healthy brain tissue as 

it is to miss cancerous tissue. Therefore, the overall percentage accuracy of the classifier is 

considered in this thesis and maximised. The accuracy is given in terms of the outcomes in 

Equation 3.27.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝑇𝑁
 

(3.27) 

                  𝐹1 = 
𝑇𝑃

𝑇𝑃 +
1
2
(𝐹𝑃 + 𝐹𝑁)

 
(3.28) 

 

The precision of a classifier is the ratio of correctly identified positive cases to the total 

number of cases and the recall is the ratio of correctly identified negative cases to total 

negative cases. The F1-score is the harmonic mean of the precision and recall of the classifier. 

This measures the effectiveness of retrieval when precision and recall have equal importance 

[158].          

k-fold validation is a resampling procedure where the separation of training and testing data 

is repeated k times to remove any bias in the training vs testing data subsets. The accuracy 

and F1 score are calculated for each ‘fold’ and the average results over k-folds are a more 

robust metric for algorithm performance; therefore, this is the method adopted in this thesis. 
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3.5 CONCLUSIONS 

The main conclusions drawn from this chapter are as follows: 

1. Biological materials are far more complex and heterogenous than allowed by 

descriptions with a bulk parameter such as speed of sound and attenuation. 

Nonetheless, these descriptions are necessary to make any sort of predictions about 

wave propagation and are the basis of medical imaging and QUS parameter 

estimation. 

2. The frequency dependence of the BSPS contains valuable information about the size 

and distribution of scattering within tissue, which links to tissue microstructure and 

so could be useful for cancer detection. 

3. The simplest model of scattering in tissues is the Gaussian model (random walk) 

which is used to give the BSPS in terms of physical parameters which describe 

scattering in tissues. 

4. The HK-distribution is the most complete statistical model of the echo envelope, 

providing two system-independent parameters for tissue characterisation: 𝛼 , the 

scatter clustering parameter, and the structure parameter, 𝜅 . The Nakagami 

distribution is an approximation, which yields one parameter that is still useful in 

some cases, and computation time is significantly less. 

5. Any numeric parameter can be used to aid ML characterisation, including 

standardised moments of a general statistical distribution in the context of the B-

mode pixel intensity. 

6. Binary classification algorithms, such as KNN, and SVM see data as having the 

choice of two labels and will use the training data to determine whether it is more 

probable for a particular test point to be labelled positive or negative.  

3.6 CHAPTER SUMMARY 

This chapter presented a theoretical description of ultrasound scattering interaction with 

tissues. Bulk material properties, such as the speed of sound and attenuation were discussed 

for brain tissue in the literature. An appropriate estimation of these is crucial to accurately 

measure QUS parameters. An overview of scattering in tissues was given, followed by the 

mathematical framework for spectral based parameters. A key finding was that the frequency 

dependence of the BSPS can be modelled to depend only on the ESD and EAC. The theory 
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underpinning statistical analysis of the echo envelope was given, with a review of several 

distributions which have been used in an ultrasound context. Notably, the HK-distribution 

is the most accurate model but the estimation method for the model parameters is complex. 

However, it is repeatable as the values obtained agree with published results. All QUS 

parameters may be combined to create an n-dimensional space in which ML algorithms can 

predict the outcome of a specific measurement, using previous results as training data. 
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4 QUANTITATIVE ULTRASOUND DIFFERENTIATES PHANTOMS OF BRAIN 

AND BRAIN TUMOUR 

4.1 CHAPTER AIMS 

This chapter has three key aims which relate to using phantom materials as a substitute for 

brain tissue to explore QUS analysis. Firstly, the aim was to identify suitable acoustic 

phantoms to represent brain and brain tumour via a literature search and acoustic 

characterisation of bulk properties then, secondly, to provide a proof-of-concept study by 

using QUS to differentiate the two tissue types. Finally, work was done to study the effect 

of freezing and fixation of the QUS parameters via measurements from fresh and preserved 

tissues, in order to determine if preserved tissues can be used as reasonable models for in 

vivo application of QUS. 

4.2 INTRODUCTION 

4.2.1 The Need for Acoustic Phantoms 

Fresh samples of human brain and brain tumour of an adequate size are difficult to obtain 

for various logistical, safety and ethical reasons. Firstly, it can be difficult to obtain fresh 

samples of healthy tissue due to the rapid deterioration of brain tissue when removed from 

the body, as neuronal cells die very quickly in the absence of glucose and oxygen [159]. This 

limits the tissue sources available geographically while conducting laboratory-based 

experiments. Secondly, tumour tissue of an adequate size is difficult to obtain as the tumour 

is often ablated in small sections and the tumour bulk should be retained for pathology tests 

and further cancer research [160]. While there is still a possibility to conduct an ex vivo trial 

in the OR, the feasibility of a new technique must have sufficient evidence to take it to 

clinical trial stage. It was therefore important to consider other tissue options for the 

exploration stage of the present project. A summary of the options for sources of brain tissue 

is displayed in Table 4.1, with colour indicators representing key factors to consider, namely, 

suitability, cost and ease of supply. The colour coding refers to ‘ideal’ = green, ‘moderate’= 

orange and ‘not ideal’ = red’ for this work. 
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Table 4.1: Summary of Tissue Exploration Options 

 In vivo 

Human 

Tissue 

Fresh 

Human 

Tissue 

Frozen 

Human 

Tissue 

Animal 

Brain 

Tissue 

Acoustic 

Phantoms 

Suitability High  High Moderate Low Low 

Cost High High Moderate Moderate Low 

Ease of Obtaining Low Low Moderate Moderate High 

 

It would be ideal to test the technique on in vivo human tissue; however, given the lack of 

exploration of QUS in brain tissue and the time needed to go through ethical approval for a 

clinical trial, it was considered unlikely this could occur within the time constraints of the 

PhD. Excised tissues are another option, where measurements could be taken adjacent to the 

OR and the tissue would be fresh, ex vivo. However, the impact of the Covid-19 pandemic 

caused further safety restrictions on and collaborations with medical centres. It is possible 

to obtain human tissue samples from tissue banks, which was achieved with results presented 

in Chapter 5, but this may not have been possible without the preliminary phantom work, 

which may also have value in other research.  

In tissue banks, the tissue is preserved in some way, typically done by either fixation with 

formaldehyde or freezing at -80℃. Research on the effects of freezing and fixation on QUS 

parameters has been limited, but it is known that some acoustic properties, such as the 

attenuation and BSC, change significantly in soft tissues after preservation [83]. These 

tissues may thus have a problem with in vivo translatability. Another solution may be to use 

an animal brain as it is easier to obtain fresh tissue or even to conduct a study in vivo. 

However, there are problems associated with animal tumour models, as typically a murine 

model is used which comes with limitations such as: much smaller brain size, different 

thickness of skull and extensive ethical steps involved to conduct the study. Therefore, the 

best course of action for a proof-of-concept study as part of the present project was to find 

and use the most suitable ultrasound phantoms to mimic brain and brain tumour and create 

a QUS-based characterisation tool. 

4.2.2 Ultrasound Phantoms 

Ultrasound phantoms are necessary for the advancement of medical ultrasound techniques 

as it is complicated and expensive to obtain human tissue on a regular basis. In contrast, 

phantoms are materials made to mimic the material under investigation in terms of acoustic 

velocity, acoustic impedance and attenuation [161]. They are easier and cheaper to obtain 
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and often have a shelf-life of at least several months [162]. Common phantoms for soft 

tissues can be manufactured in the laboratory, for example agarose or polyvinyl alcohol 

(PVA) –based materials. Alternatively, commercial phantoms can be purchased which are 

primarily used for training and quality monitoring of developing and operational US system, 

with examples of suppliers including CIRS® Inc [163] and Blue Phantom [164]. These are 

usually expensive and application specific. Currently there is no company which offers a 

brain tissue specific phantom, but Delta Neurosurgical, which manufactures ultrasound 

neurosurgical simulators [165], suggest the use of ‘children’s jelly food’ to act as brain tissue 

[166]. It is crucial that the phantoms are ultrasound-specific and approach an equivalence to 

human tissue in the desired frequency range of interest.  

Section 3.2.3 gave a review of the acoustic properties of healthy and cancerous brain tissue. 

Recently, Stewart et al. set out to determine which readily available tissue or phantom has 

similar mechanical properties to brain and brain tumour [104]. Through testing many tissue 

mimicking materials, they found that chicken liver and chicken gizzard muscle gave the 

greatest likeness to brain and brain tumour, respectively. In addition, several neurosurgeons 

agree with the finding that these tissues are mechanically similar, just by using palpation, 

and Stryker Medical uses chicken liver regularly for quality testing of their ultrasonic 

aspirator [167]. Furthermore, these tissues are available at many Halal butchers at very low 

cost.  

The work described in the next section aims to validate the use of these materials for 

ultrasonic testing purposes, with the acoustic properties measured and compared with values 

from the literature for healthy brain and glioma tissue. 

4.3 METHODOLOGY 

The following sections explain the methodology for experimentally measuring and 

calculating the acoustic impedance and attenuation of soft tissue samples, followed by the 

procedure for obtaining RF data using a research ultrasound system for QUS analysis. A 

study is also described which measured the effect of freezing and fixation on QUS 

parameters.  

4.3.1 Validation of Acoustic Phantoms 

4.3.1.1 Acoustic Impedance 

The acoustic impedance was determined via measurement of density and speed of sound 

then using Equation 3.2.  
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Fresh chicken liver and gizzard were purchased from a Halal butcher on the first day of 

delivery, meaning tissue were harvested less than 24 hours since death. They were then cut 

into small sample sections with a typical size of 1 cm (D) x 2 cm (W) x 2 cm (L) with a 

scalpel as shown in Fig. 4.1. Each sample was then placed on a 4-digit scale to accurately 

determine the mass. 

 

 Figure 4.1: Sample sections of chicken liver (left), and gizzard 

(right) for acoustic characterisation.  
 

The volume of each sample was estimated via the Archimedes Method, i.e., from the volume 

of water displaced by the tissue when fully submerged. The mass of a test tube with water 

in it was measured, which allowed the starting volume to be calculated. The tissue was then 

placed in the test tube and the combined weight was measured. The volume of the tissue is 

simply the volume difference between the full container and the volume of water present 

with tissue, which could be calculated using the mass of tissue and the density of water, 

𝜌𝑊ater = 997 kg m-3. 

The process is summarised in Equation 4.2 which gives the full calculation for the density 

of tissue sample.  

ρTissue =
mTissue

VTissue
=

mTissue

VTotal−VWater
    =

mTissue

ρWater(mWater−(mTotal−mTissue))
     (4.1)                 

where 𝑚𝑇𝑖𝑠𝑠𝑢𝑒 , 𝑚𝑊𝑎𝑡𝑒𝑟 , 𝑚𝑇𝑜𝑡𝑎𝑙  are the masses of the tissue, of the container with only 

water, and of the water and tissue combined, respectively.  This procedure was repeated for 

15 samples of both liver and gizzard and the mean and standard deviation were obtained. 

For speed of sound calculation, tissue was again cut into slices, however this time care was 

taken to ensure two sides were as parallel as possible to ensure a uniform thickness, as shown 

in Fig. 4.2. Each sample was placed on a sample holder, which was designed to surround the 

transducer and allow the sample to sit parallel to the transducer face as shown in Fig. 4.2a. 

The experiments were conducted at room temperature. A single-element 10 MHz immersion 

transducer was used for pulse-echo testing, connected to an ultrasonic pulser-receiver 
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(DPR300, JSR – Imaginant, NY, USA) operating in pulse echo mode. The receiver output 

from the pulser-received was connected to an oscilloscope (InfiniiVision 2000 X-Series, 

200 MHz, Keysight Technologies, CA, USA). Once a steady reflection pattern was seen, the 

oscilloscope was paused and the time, Δt, between peak positive values in successive echoes 

was measured using the oscilloscope measuring function. A typical transducer response from 

the oscilloscope is shown in Fig. 4.3b, with Δt indicated. The echoes correspond to the pulse 

reflecting from the top and bottom surface of the tissue. The speed of sound in the tissue, c, 

can then be calculated by:  

     𝑐 =
2𝑑

∆𝑡
     (4.2) 

where d is the thickness of the sample. 

 

 

                            (a) 

 

      (b) 

Figure 4.2: Speed of sound measurement showing (a) Sample of chicken 

gizzard placed on transducer for pulse-echo testing, (b) typical 

transducer response from experimental set-up. 

 

This procedure was repeated for fifteen samples of both liver and gizzard and the average 

value was taken. The relative error on the acoustic impedance is calculated by the sum of 

the relative errors from the density and acoustic velocity: 

𝛥𝑍 = 𝑍√(
𝛥𝜌

𝜌
)
2

+ (
𝛥𝑐

𝑐
)
2

 

(4.3) 

                                           

4.3.1.2 Attenuation 

Calculation of attenuation was based on a narrowband TL measurement [168]. This gives a 

relative measure of the frequency-dependent decrease in amplitude of an ultrasound pulse, 
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expressed in decibels, incurred when a sample is inserted in the path of an acoustic 

propagating beam.  

The study was performed in a water bath with a needle hydrophone (0.2 mm diameter, with 

8 dB preamplifier, Precision Acoustics Ltd, Dorset, UK) positioned at 10 cm from the 

transducer in a tank of degassed water as shown in Fig. 4.4. 

 

Figure 4.3: Experimental set-up for attenuation 

measurement via TL. 

 

A needle hydrophone is a narrow and submersible polyvinylidene fluoride (PVDF) 

transducer designed to provide a highly sensitive voltage signal proportional to the acoustic 

pressure experience by the active element [169]. An empty sample holder was placed in the 

acoustic path and measurements were taken for the reference voltage, VREF. Next, a tissue 

sample of known thickness was encased in agar to hold it securely in the sample holder and 

a reduced voltage was recorded by the hydrophone, VSAMPLE. The TL, in dB, due to the 

insertion of the tissue sample via the through-transmission method can then be calculated:  

TL =  −10 log10
VSAMPLE
VREF

 
(4.4) 

The attenuation caused  by a sample at a specific frequency can be calculated (in dB cm-1) 

by dividing the TL by the sample thickness and correcting for the attenuation due to the 

displaced water of identical thickness, given by [170]. 

α =
TL

d
+ αWATER 

(4.5) 

This procedure was carried out using immersion transducers designed to operate at three 

different frequencies: 1 MHz, 5 MHz and 10 MHz (all unfocused immersion transducers, 
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Olympus Scientific Solutions Technologies, MA, USA). Measurements were repeated five 

times for each of the fifteen samples at each frequency and the attenuation coefficient was 

estimated as the gradient of a best-fit straight line through the average values found for each 

frequency. The attenuation of agar due to the very thin layer at these frequencies was 

assumed negligible. 

4.3.2 QUS Analysis 

4.3.2.1 QUS Data Acquisition 

For the QUS study, the tissue was prepared in the same way as for the acoustic 

characterisation study. The experimental set-up consists of the tissue sample submerged in 

water and placed on a quartz flat below the centre of a 5 - 11 MHz linear array probe 

(Verasonics, Inc., WA, USA) connected to a Vantage 128 ultrasound research system 

(Verasonics, Inc. WA, USA) as shown in Fig. 4.6a. The probe has 128 elements and a centre 

frequency of 8 MHz. The ultrasound research system is a completely programmable imaging 

system which varies from commercial systems in that users can access the RF data, a feature 

which is imperative for QUS. Furthermore, all aspects of image processing can be 

customised by the user using the MATLAB (The Mathworks, Cambridge, UK) environment.  

The system was programmed to provide a plane wave by excitation of all elements 

simultaneously then to acquire and store the RF data received by each element. A gain of 

20 dB was applied to the entire received signal, and no TGC was used in this study, as 

compensation for attenuation is done during spectral analysis. One pulse-echo acquisition is 

referred to as a ‘frame’ of data. The sampling rate was 31.25 MHz, and the imaging depth 

was 5 cm. 64 frames were stored in each acquisition as a .mat file with dimensions 4096 x 

128 x 64 samples in the host computer.   
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For processing, the RF data sets were loaded into a custom MATLAB framework and the 

averages of the 64 frames were taken. The echo envelopes of the resulting dataset were 

compressed using a suitable dynamic range to display a B-mode image, allowing the user to 

select a tissue ROI as shown as a dashed square in Fig. 4.4b. The water-tissue interface 

occurs at a depth of around 7 mm, and an example of tissue ROI is marked, measuring 

around 12 mm x 12 mm, with the strong reflections and reverberations from the quartz flat 

evident in the lower region of the image.  

4.3.2.2 Parametric Image Formation 

To obtain a parametric image, the ROI was divided into windows of 3 mm x 3 mm, 

corresponding to at least 10 wavelengths in the axial direction, and 12 transducer elements 

in the lateral direction. The windowed RF data were input into an algorithm which calculates 

13 QUS parameters for that specific window location.  

To increase the resolution of the parametric image, a sliding window was used with 66% 

overlap. This percentage was chosen so parameters to be calculated for the larger window, 

which satisfies the minimum of 10 wavelengths requirement, but the resulting parametric 

image has a pixel value for each 1 mm x 1 mm region, which is sufficient resolution for 

binary classification. This was achieved by measuring the QUS parameters for the top left 3 

mm x 3 mm region, then sliding the window over 4 elements, which corresponds to a width 

of ~1 mm, and measuring subsequent QUS parameters for the new 3 mm x 3 mm window. 

After the entire width of the image was covered, the window returned to the left-hand side 

 

Figure 4.4: (a) Experimental set-up of data acquisition from tissue using Verasonics 

Vantage system. (b) Typical B-mode image of tissue placed on top of quartz flat 

submerged in water. 
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but slid down 1mm in depth and a set of QUS parameters for the new window was calculated. 

The process was repeated until the entire ROI was covered.  

Once the larger sections had associated results, a spatial average could be computed from 

the overlapping regions to achieve a pixel resolution of 1mm, as shown in Fig. 4.5, albeit 

with some correlation between values in successive pixels. Details of the calculation of 

parameters from the windowed RF data are provided in the following sections. 

 

Figure 4.5: Diagram showing the sliding window technique for QUS parametric image 

formation. 

 

4.3.2.3 Scatterer size and acoustic concentration 

For each window location, calculation of scatterer size and acoustic concentration begins by 

multiplying each line segment in the ROI voltage data, VTis, by a time gated Hamming 

weighting function to adequately window the region while suppressing spectral lobes [23]. 

The gate length, L, was 3 mm as this corresponds to the window size. Then, an FFT 

algorithm is applied to compute power spectra as a function of frequency. The limits of the 

frequency of interest were specified by the bandwidth of the transducer (5 – 11 MHz). The 

squared magnitudes of the resultant spectra from each scan line are then averaged to estimate 

an average power spectrum from the region, 𝑊𝑇𝑖𝑠: 

𝑊𝑇𝑖𝑠(𝑓) = |𝐹𝐹𝑇(𝑉𝑇𝑖𝑠(𝑡, 𝐿) ∗ 𝐻𝑎𝑚(𝑡, 𝐿)|
2 (4.6) 
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This spectrum is then divided by a reference spectrum to remove system dependence on the 

measurements, specifically the transfer function of the transducer elements and the 

excitation of the pulse. The reference spectrum, 𝑊𝑟𝑒𝑓, is obtained by following the same 

analysis to obtain the tissue power spectrum but using the voltage from the reflection from 

a quartz flat situated in a water bath with no tissue present.  

The average experimental BSPS coefficient, Smeas(f) of the tissue was estimated using the 

formula derived by Insana et. al. for array transducers [171]: 

where Y is the axial distance from the transducer to the centre of the ROI, D is the active 

area of the 12 transducer elements, and p, w and h are the pitch, width and height of the 

elements, respectively. R is the reflection coefficient of a water and quartz interface, 

calculated from Equation 3.3. A(f, L) is an attenuation compensation function for a 

Hamming gated signal [172], given in Equation 3.19.  

The ESD and EAC were estimated by expressing the compensated power spectrum in 

decibel form and applying linear regression to solve for slope and intercept values in 

MATLAB, as described in Section 3.3.1. 

4.3.2.4 Statistical Methods 

By assuming the echo envelope signal amplitude is distributed according to the HK-

distribution (Equation 3.27), more descriptive statistics can provide additional QUS 

parameters. For tissue characterization, two parameters in particular are commonly quoted, 

as noted previously, as they are invariant under scaling of the mean intensity: the scatterer 

clustering parameter, 𝛼, and the structure parameter 𝜅  [33]. The algorithms necessary were 

coded using three separate functions in MATLAB, corresponding to the flowcharts in 

Section 3.5. The main parametric imaging system calls these functions to populate the QUS 

parameter array for each window. In summary, the experimental results for X and U, from 

the intensity of the signal within the windowed region, are used to solve for the model 

parameters using the non-linear equations for X and U. The X and U statistics, all 3 model 

parameters and 𝜅 are included for machine learning classification.    

More general statistics, based on the pixel intensity of the B-mode image were also included 

in the analysis. After log compression of the RF data, the image is displayed according to 

the dynamic range. In this study, a dynamic range of 80 dB was used and the distribution of 

S(𝑓) =
6(𝑌 +

𝐿
2)

2𝑝2

𝐷𝐿𝑤2ℎ

𝑅2

4
𝐴(𝑓, 𝐿)

1

𝑁
∑

𝑊𝑇𝑖𝑠(𝑓)

𝑊𝑅𝑒𝑓(𝑓)

𝑁

1

 

    

(4.7) 
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echogenicity values was modelled to yield the variance and higher moments of the values 

for a given windowed region. This dynamic range was most suitable for optimum image 

quality after experimenting with a sliding scale between 50 – 100 dB. The expectation value 

of the echogenicity, E, can be written as �̅�, and the higher moments of these first order 

statistics are written as 𝐸𝑛̅̅ ̅ for the n-th central moment. 

4.3.2.5 Tolerance Optimisation 

A further study of the efficiency of the algorithm which solves for the HK parameters was 

explored by optimising the tolerance levels in the binary search algorithm. The initial values 

were chosen as stated in the original publication as 10-4 [125]. However, this was explored 

further to minimise computation time as this affects whether these parameters are suitable 

for real-time characterisation. The analysis was conducted on a PC with the following 

specification: Windows 10 64-bit operating system, Intel Core i7-9700K CPU @ 3.60 GHz, 

16 GB RAM.  

One set of X,U statistics was used to evaluate the effect of changing the tolerance level on 

the computed values of  and γ. These were based on typical values from soft tissue 

(X = 1.4106, U = -0.7031). The reference result for these parameters was found using the 

initial tolerance values to give α = 0.5123, γ = 0.0469 in a time of 22.3 seconds. Next, the 

tolerance levels were incrementally increased from 0.0001 to 0.01 and the varying results 

for α and γ for these levels were saved. The time taken and percentage error from the original 

value were also recorded. 

4.3.3 Machine Learning Implementation 

The KNN classification algorithm was trained using k = 5 and all QUS pixel data as features. 

The number of neighbours was chosen to be 5 after inspection of the data and quick 

experiments with k=5, k=20 and k=50. It was found the smallest number of neighbours  

(fine KNN) was most appropriate for this specific dataset.  A 6 fold validation method was 

used, where the data from 10 of the 12 samples of each tissue type, were randomly chosen 

and used as training data for the machine learning classifier, as then repeated for the other 5 

permutations. This resulted in 800 sets of training  data  for liver and 650 for gizzard, as liver 

was thicker on average, so had a larger ROI, and more associated pixel results. The QUS 

pixel results are used as features for binary classification. The pixel results from the 

remaining two samples were not seen by the classifier, and they were used to test the 

classifiers’ ability to correctly label a result as ‘liver’ or ‘gizzard’, with the label ‘liver’ 

(phantom healthy tissue) taken as being the positive outcome.  These labels were used to 

generate a confusion matrix which can then describe the sensitivity and specificity of a 
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classifier as shown in Fig. 4.6. A good classifier aims to maximise the TP and TN values, 

while minimising the off-diagonal elements.  

 

 

 

 

 

 

 

  

This process was repeated six times and an average confusion matrix was obtained from 

which accuracy and F1-score could be calculated.  

To investigate which of the thirteen parameters held most diagnostic potential, different sub-

groups were created. Parameters were separated by statistical and spectral methods, but also 

a consideration was made as to which ones would be obtained in real-time. A summary of 

the groups of QUS parameters is shown in Table 4.2. The binary classification process was 

repeated for each subgroup, including calculation of accuracy and F1-score. 

Table 4.2: Summary of QUS parameters used in machine learning training algorithm. 

  Symbol Description 

N
ea

r 
re

a
l-

ti
m

e
 S

p
ec

tr
a
l 𝒂𝒆𝒇𝒇 ESD 

𝒏𝒛
 EAC 

S
ta

ti
st

ic
a
l 

�̅� Mean of pixel intensity 

𝑬𝟐̅̅̅̅  Variance of pixel intensity  

𝑬𝟑̅̅̅̅  Skewness of pixel intensity 

𝑬𝟒̅̅̅̅  Kurtosis of pixel intensity 

𝑬𝟔̅̅̅̅  6th moment of pixel intensity 

X X-statistic 

 𝑼 U-statistic 

 𝜺𝟐 Coherent signal power 

 𝝈𝟐 Diffuse signal power 

 𝜶 Scatter clustering parameter 

 𝜿 Structure parameter 

 

 

Figure 4.6: Confusion matrix for 

liver and gizzard classification. 
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4.3.4 Effect of Freezing and Fixation 

In a separate study, further fresh chicken liver and gizzard were purchased from a Halal 

butcher. 30 samples of each tissue type were prepared using a surgical scalpel as in 

Section 4.3.1.1. Ten samples of each tissue type were analysed fresh, while ten were frozen 

and ten were placed in a sealed container with 4% paraformaldehyde for 24 hours. The 

experimental set-up is the same as that displayed in Fig. 4.5a and the data acquisition and 

QUS analysis are the same as those described in the previous sections. However, instead of 

a parametric imaging approach, the gate length, or depth, was set at 1 cm for all samples to 

take measurements over the whole tissue thickness. A larger gate length will improve 

statistical accuracy, but results in only one set of QUS parameters for each sample.  

The parameters from fresh liver and gizzard were measured first. 24 hours after sample 

preparation, the frozen tissue was removed from a -20℃ freezer and allowed to defrost in a 

tepid water bath while still in their packaging. The fixed samples were handled wearing 

gloves, but were analysed using the same procedure outlined above, and this was repeated 

once more when the frozen samples had fully defrosted. 

Four key QUS parameters which are system independent and have physical meaning behind 

them were investigated in this study, which is imperative for tissue characterisation.  The 

parameters measured were ESD, EAC,  and  , the calculation procedures for which have 

already been discussed. These were calculated for samples of fixed, fresh, and frozen tissue 

and a t-test was used to determine if there were significant differences in the results from 

preserved tissues compared to fresh tissue. 

4.4 RESULTS AND DISCUSSION 

4.4.1.1 Acoustic Impedance 

The mean and variance of the measured results for density and acoustic velocity are shown 

in Table 4.3.  

Table 4.3: Results of acoustic impedance measurements for liver and gizzard 

 Density  

(kg m-3) 

Acoustic velocity 

(m s-1) 

Acoustic Impedance 

(MRayl) 

Chicken Liver 1047 ± 23 1539 ± 85 1.64 ± 0.09 

Chicken Gizzard 1051 ± 8 1510 ± 44 1.59 ± 0.05 
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Most tumours and healthy brain tissue fall in the density range 1040 - 1091 kg m-3 and 

velocity within 1503 - 1550 ms-1. The values observed for liver and gizzard certainly do fall 

within these brackets.  

The uncertainties in the acoustic impedance values may be from the uncertainties in the 

volume calculation, resulting from limitations in the Archimedes method. As the test-tube 

had to be full of water, even filling the container by eye could result in discrepancies in the 

amount of water present in each measurement due to surface tension. However, the 

difficulties involved in cutting soft tissue to a perfect geometric shape outweighed this 

concern. Soft tissue slicing machines do exist and should be considered in further studies in 

this field. 

In general, there was a larger uncertainty in the speed of sound calculation than in volume, 

which most likely comes from the thickness measurement of the sample. An accurate 

measurement of the thickness of fresh tissue was difficult using callipers as the material can 

easily deform. Maximising the size of tissue sample used would diminish the contribution 

of these errors. 

4.4.1.2 Attenuation 

The results for the attenuation via the TL method are shown in Fig. 4.7 for each frequency 

under investigation. The error bars indicate the variance on the mean at each point. A linear 

frequency response was assumed in this study, which utilised conventional ultrasound 

frequencies, so the attenuation coefficient, αC, measured in dB MHz-1 cm-1, is the gradient 

of the line of best fit through the results at each frequency. 
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Figure 4.7: Attenuation values, with error bars showing uncertainty in 

chicken liver and gizzard over 1 – 10 MHz range. 

The error in the attenuation coefficient is the error in the gradient of the line of best fit. This 

is calculated by finding the line of best fit through the extremes of the error bars, so as to 

find maximum, mmax, and minimum, mmin, values of gradient. The uncertainty in the gradient 

is then given by: 

ΔαC =
mmax −mmin

2
 (4.8) 

The attenuation coefficients were 0.66 ± 0.16 and 0.81 ± 0.18 dB MHz-1 cm-1 for liver and 

gizzard respectively. When compared to the results of the literature review in  

Fig. 3.2, the results for liver agree well at 5 MHz with those for healthy brain in vivo and it  

would be expected that there would be further agreement if the data were extrapolated to 

10 MHz with a linear trend [133]. Chicken gizzard figures agree well with the ex vivo results 

for GBM, further evidencing its suitability as a malignant tumour phantom [85]. The results 

emphasise the similarity between the two tissue types in terms of acoustic characterisation 

and the error analysis highlights the heterogeneity of the tissue samples.  

Values in the literature for human samples manifest significant variation and, importantly, 

the two reported instances of ex vivo cancerous brain tissue show attenuation in glioma to be 

only slightly above the values for healthy brain, whereas meningioma shows a larger 

difference. Chapter 5 shows that GBM has a slightly higher attenuation than healthy brain 

tissue at 25 MHz. As attenuation is derived mainly from an absorption component and a 

scattering component, it is a good macroscopic measure of scattering within a tissue. It is 

thus possible to conclude that the results here are evidence that liver and gizzard are 

reasonable phantoms for white matter and glioma tumour over the present frequency range 

of interest. This is in agreement with Stewart et al., who concluded these were suitable 

phantoms in terms of steady-state mechanical properties. On a microscopic level these 

phantoms may not be adequate to describe the complex nature of brain tissue, but they are 

suitable for proof-of-concept studies. 

4.4.1.3 B-mode Images 

B-mode images of liver and gizzard were created from the RF data and are displayed in 

Figure 4.8. The acoustic similarity in these two tissue types is evident in the conventional 

ultrasound image as it is difficult to distinguish between the liver and gizzard samples from 

the B-mode images alone. 
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Figure 4.8: B-mode images of liver and gizzard samples obtained with Verasonics L15-8 

array. 

 

4.4.1.4 QUS Results 

Fig. 4.9 shows the numerical results for some QUS parameters for all 1 mm x 1 mm sections 

of tissue via the sliding window technique. Results for liver samples are displayed in blue, 

whereas gizzard is coloured red. There is a distinct clustering of data into liver and gizzard 

regions, even when considering the 2-dimensional visualisation here. The echogenicity has 

a higher variance in liver samples than in gizzard but there was generally a spread over all 

samples. The spectral parameter saw very distinct regions of values for each sample, as 

shown in the small clusters in Fig. 4.9b. This indicates the parameters are very dependent on 

the sample used, which may indicate issues with alignment between measurements.  

The X and U parameters for HK-distribution analysis give a reasonable separation on their 

own, before the complex algorithms have been used to solve for the model parameters, which 

is an interesting result. α tends to take a higher value in gizzard samples than in liver which 

suggests there is higher organisation in gizzard tendons.  There is notable discretisation of 

results for κ which may be due to the tolerance values of the algorithms involved in solving 

the non-linear equations of X and U. The algorithm was tested using published values of α 

and γ, for a given input of X and U, with the tolerance set to 10-4 for both algorithms 1 and 

2, respectively. The tolerance level can be optimised for the specific application to ensure a 

trade-off between accuracy and computation speed; this will be discussed in Section 4.4.2.5. 
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4.4.1.5 Parametric Images 

Parametric B-mode images are formed by assigning each pixel a colour based on the 

parameter value in that ROI, with reasonable colour bar axes. This type of image was 

produced for all thirteen QUS parameters for all samples. Examples of four parametric 

images for two samples of liver and gizzard are displayed in Fig. 4.10 The images highlight 

the significant differences in the parameter values for liver and gizzard for selected spectral, 

statistical and echogenicity parameters. The scatterer size was found to be significantly 

higher in gizzard, suggesting that the scattering sources are larger agglomerations of 

scatterers, further evidenced by a higher clustering parameter. There was also a larger 

variance in echogenicity values in gizzard and a lower value of skewness of the echogenicity 

distribution.  

The images show that all the parameters exhibit classification potential, but there are still 

some outlying pixel results for some parameters. Whilst pixel values were seen to be fairly 

consistent throughout relatively large regions within each sample, the “edge effect” was 

observed. This is an artefact of the sliding window method that exists because the pixel 

values around the edge tend to be different to those in the bulk of the sample. It is particularly 

 

Figure 4.9: QUS parameter results for 1 mm x 1 mm regions. a) Two echogenicity 

parameters showing distinct clustering of results for liver and gizzard. b) Spectral 

parameter results highlighting the very small intra-sample variance. c) The X and U 

statistics used to estimate the HK parameters. d) The results for the scatter clustering 

parameter and structure parameter. 
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evident in the liver samples and could be reduced by using a larger window percentage 

overlap. The parametric image alone would provide additional information to the 

conventional B-mode image in this case to aid in tissue identification. 

 

 

Figure 4.10: QUS images from two samples of both liver and gizzard. Parameters shown 

are scatterer size, scatter clustering parameter, echogenicity variance and skewness, with 

colour bars based on maximum and minimum values for both individual tissue types 

There will always exist a trade-off between parametric image spatial resolution and 

confidence in statistical QUS measurements. At the frequency used here, it is possible to 

obtain reliable estimates over 3 mm sections of tissue, however increasing the frequency of 

the ultrasound will result in shorter wavelength. Hence, there will be a smaller restriction on 

the window size and a higher resolution parametric image could be produced. The ideal 

window size, or gate length,  has been considered in various studies of spectral parameters 

[25], [173] but there are fewer studies relating to HK parameters. In the present study, 

Fig. 4.11 shows the effect of ROI size on the HK parameters, 𝛼  and 𝜅  in a) and b) 

respectively. The results approach a limiting value at around the 3 mm window dimension, 

which corresponds approximately to 10 times the wavelength of ultrasound in tissue at 

5 MHz, supporting the present choice. 
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Figure 4.11: Effect of ROI size on HK-distribution parameters showing approach of the 

true value when ROI size exceeds 3mm.  

 

4.4.1.6 Machine Learning Classification 

Initially, all 13 QUS parameters were used to train a binary classifier. The method chosen 

was the KNN algorithm, using 5 neighbours. The number of neighbours was chosen as 5 as 

this was a low number of neighbours with regards to this data set, and could have been 

increased and optimised if required, but this was not necessary as k=5 was sufficient. After 

inspecting the data, various parameter sets were chosen in an attempt to reduce the number 

needed for analysis. These subsets were all tested using randomly chosen training and testing 

samples, and this process was cross-validated by repeating it six times to avoid over-fitting. 

The accuracy and F1-score for various parameter sets over 6 folds are shown in Table 5, 

along with the mean value. Unsurprisingly, the classifier with the highest accuracy, on 

average, used all 13 parameters, which achieved an accuracy of 95.5% and an F1-score of 

0.944. This is compelling evidence for QUS as a means of tissue characterisation, though 

the question of the match between the phantom materials and human tissue remains. 

To demonstrate this further, the binary classification results for the pixels of each test sample 

were superimposed on the original B-mode images, as shown in Fig. 4.12. This highlights 

how a classification image can provide useful information to the B-mode image which aids 

tissue differentiation in tissues which are indistinguishable by B-mode image alone. 
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Table 4.4: Accuracy and F1-score for various parameter sets. 

 All parameters Near-real time Spectral Statistical 

 Accuracy F1-

score 

Accuracy F1-

score 

Accuracy F1-

score 

Accuracy F1-

score 

Fold 1 90.3% 0.870 90.6 0.876 79.9% 0.767 80.5% 0.762 

Fold 2 97.9% 0.974 97.9 0.974 61.8% 0.525 85.1% 0.814 

Fold 3 96.3% 0.951 92.0 0.887 79.3% 0.642 66.3% 0.76 

Fold 4 96.7% 0.956 97.7 0.970 80.7% 0.678 71.0% 0.664 

Fold 5 95.4% 0.940 935 0.914 82.4% 0.725 84.3% 0.819 

Fold 6 96.9% 0.968 97.8 0.979 95.7% 0.957 67.3% 0.639 

Average 95.5% 0.944 94.9% 0.933 79.9% 0.715 75.7% 0.743 

 

 

 

 

 

 

 

The classification images in particular testing samples were from fold 6, corresponding to 

an accuracy of 96.9%, with almost all of the incorrectly identified pixels located at the edges 

of the images. This may be due to the ‘edge effect’ where these pixels use less data to 

calculate the results, so may be less accurate. As noted previously, this problem could be 

overcome in the future by using a larger window overlap or a higher frequency of ultrasound 

to allow more wavelengths within a smaller window to provide greater statistical accuracy. 

More often gizzard was incorrectly labelled as liver, which may be due to inhomogeneities 

of different acoustic properties to the majority of gizzard samples. The classifier would 

assume that particular pixel came from a liver sample as the QUS parameters, which were 

used as features, are much closer to the results of the training data for liver. 

Despite these promising imaging results, the time it took to form them was around 25 min. 

due to the complexity of the algorithms involved in estimating the HK-distribution 

parameters. An interesting alternative would be to omit these and look only at parameters 

which could be obtained in a timely manner, i.e. quasi-real time parameters, Table 4.2, taking 

 

Figure 4.12: Pixel prediction of liver and gizzard. Binary results from fold 6 of 

the classification algorithm are superimposed on B-mode image. 
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into account the target application of real time tissue categorisation intraoperatively. Taking 

this approach, the accuracy dropped only from 95.5% to 94.9% when considering these 

parameters, which would still be sufficient for real-time characterisation.  

From Table 4.4, another approach studied was using only spectral parameters and it was 

intriguing to see the high variance in classification accuracy and F1-score results. This 

indicates an algorithm which is too finely tuned to the dataset, and given the small sample 

set here, the random choosing of the test samples had a huge effect on the classification 

performance. However, on average the spectral results still performed better than the 

statistical results alone. Looking at the results from the statistical methods, a high number of 

pixels were incorrectly labelled. This indicates an overlap in the numerical results in the HK 

statistics from liver and gizzard, meaning these parameters are not suitable for differentiation 

at this frequency.  It is important to note that the combination of all QUS parameters provides 

more dimensionality in the classification algorithm, achieving higher results, but using all 

parameters comes at a cost. 

4.4.1.7 Computational Cost 

The computational cost is important if QUS is to be used as a real-time imaging tool for 

intraoperative tissue identification. The time taken to image a 1 cm x 1 cm region, similar to 

the images shown here, was calculated for the various parameter sets: echogenicity values 

alone were the quickest, with an average time of 4.7 seconds, followed by spectral 

parameters which took 6.3 seconds.  

The algorithms involved in solving for parameters of the HK distribution require a tolerance 

value, which can be tuned to give more accurate or faster results. The tolerance value used 

in this study was 0.0001 for both 𝛼 and 𝛾 estimations. This resulted in a total time for a 1 

cm x 1 cm QUS image of 22 minutes. To reduce computation time, the tolerance values were 

explored and the results in Fig. 4.15 show the time in sec. it took to compute  and  while 

varying both tolerance levels. It can be seen that the time taken reduces linearly while the 

tolerance values increase exponentially. 
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Figure 4.13: Computation time for HK parameters for 

various tolerance values in both α and . 

 

 

 

 

 

 

 

 

 

The percentage error in γ is shown in Fig. 4.14 against both tolerance levels. There are two 

key observations from this result: areas of sudden decrease in accuracy are seen, and the 

results are far more dependent on the α tolerance value than the γ. With a threshold of 

maintaining a 5% accuracy in γ, the point on the graph with the highest tolerance values 

which satisfies this is indicated as t1 = 0.01778 and t2 = 0.0001995. Using the previous 

figure, it can be seen that these tolerance values correspond to a computation time of 10.78 s. 

This is less than half of the original time with minimum tolerance values, which will speed 

up analysis dramatically; however, it is still a slow computation on a standard PC. In terms 

of computational cost, it would be optimal to use only spectral and echogenicity parameters 

while working towards real-time application.  

It is clear from these results that the overall estimator is not suitable for real-time imaging. 

Considering even a small ROI with limited resolution, for example around 60 pixels, the 

 

Figure 4.14: Percentage error in  estimation for varying 

tolerance values. 
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parametric image will take 11 minutes 10 seconds to form. The estimation of parameters 

would deviate too greatly from the best estimate if the tolerance values were reduced any 

further. Given the quick calculation of the X and U statistics and that there is no classification 

improvement when including these results, one can conclude that parametric imaging of the 

model parameters of the HK-distribution is not feasible in real-time. However, they may still 

be useful in the OR if only one set of model parameters are obtained for a specific ROI. 

Simple statistics of the echogenicity and spectral parameters can provide adequate tissue 

differentiation for these specific tissues. 

4.4.1.8 Effect of Freezing and Fixation 

The results for the four QUS parameters of interest in the three tissue states, i.e. fresh, frozen 

and fixed, are displayed in Fig. 4.15. 

 

Figure 4.15: Boxplot of results from fresh, frozen and fixed liver and gizzard.                                                                                

a) scatterer size, b) acoustic concentration, c) scatterer clustering parameter  

d) structure parameter. 

 

 Some parameters were affected more than others due to fixation or freezing. The scatterer 

sizes in all instances of liver were around 15 - 35 microns, while gizzard remains much 

higher at around 40 - 55 microns, in agreement with the results from Section 4.4.1.4. The 

key observation here is that the interquartile range, indicated by the box, does not move 

considerably when the tissue is preserved via freezing or fixation. This makes sense 
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physically as both freezing and fixation should not alter the cell size significantly. On the 

other hand, the acoustic concentration, Fig. 4.15b, sees a marked decrease in frozen and fixed 

tissue, in both liver and gizzard. This parameter relates physically to the acoustic impedance 

mismatch between the scattering sources and surrounding material in the tissue. Under 

manual palpation, the tissue felt noticeably stiffer after fixation, corresponding to an increase 

in speed of sound and therefore in acoustic impedance in the whole tissue, which will alter 

the acoustic concentration parameter. The scatter clustering parameter and structure 

parameter relate to the microstructure distribution of scatterers and they varied slightly 

depending on the tissue state. 

These results provide another view to highlight the differentiation power of specific 

parameters. For example, the values of scatterer size and  are noticeably different in liver 

and gizzard, whereas the scatter clustering parameter does not show much distinction 

between tissues.  

In order to provide a quantitative measure of whether QUS parameters were significantly 

affected by preservation, P-values comparing results from fixed and frozen tissue to the 

values for fresh tissues were calculated for each parameter and a P-value of 0.005 was used 

in a t-test to test for significance. Table 4.5 shows that the majority of QUS parameters were 

not significantly changed by the process of preservation, but those highlighted in bold were.  

Table 4.5: P-values from t-test comparing frozen and fixed QUS parameters. 

 

 

It is expected that the acoustic concentration parameter produced significant changes to the 

results of fresh tissue and, interestingly, this occurred for frozen tissue more often than fixed. 

There must therefore be alteration to the mechanical properties of cells during the freezing 

process which causes this. It was also helpful to observe that while there were some slight 

differences in the HK-distribution parameters, the results for α and κ were not significantly 

altered by preservation. This indicates that most QUS measurements on frozen and fixed 

samples should not significantly change the results, which gives promise to utilize frozen 

    QUS Parameter Liver Gizzard 

 Fixed Frozen Fixed Frozen 

ESD 0.069 0.052 0.047 0.270 

EAC 0.001 0.006 0.057 0.011 

α 0.539 0.677 0.457 0.987 

κ 0.953 0.683 0.834 0.601 
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and fixed samples of human brain and brain tumour tissue in a future study with direct 

clinical application. However, not all parameters followed this promising trend, as evident 

in the acoustic concentration parameter. This may be due to the change in acoustic 

impedance which has been reported to occur during freezing and fixation. 

4.5 CONCLUSIONS 

Determination of Acoustic Phantoms 

This chapter covered the available literature on the acoustic properties of human brain and 

brain tumour tissue and found there are limited results in vivo, and the tissues are 

heterogeneous so cannot be characterised generally. It is concluded the acoustic properties 

for brain and brain tumour depend significantly on the region of the brain and the type of 

tumour tissue, so it is difficult and inaccurate to say one can find materials which are acoustic 

phantoms for brain and brain tumour in general. However, the results of acoustic 

characterisation of chicken liver and gizzard muscle have indicated that liver is a reasonable 

model for healthy, white matter and gizzard is a reasonable model for malignant brain 

tumours, such as GBM.  

This finding is further evidenced by mechanical properties [104] and by medical device 

manufacturers who use liver to test brain tissue ablators. However, the accuracy of the 

underlying tissue microstructures as models of human brain tissue may be limited. It is still 

unclear if the complex sub-resolution configurations of real brain tumour tissue can be 

simplified in this way. Nevertheless, the macroscopic acoustic properties indicate that these 

materials are suitable for preliminary studies of QUS for tissue characterisation and 

parametric imaging. 

The ability of QUS to aid classification 

The work described in this chapter implemented a variety of QUS methodologies for chicken 

liver and gizzard. Firstly, RF data was collected from 1.2 cm x 1.2 cm samples of liver and 

gizzard and used to form conventional B-mode images, in which the tissues were almost 

indistinguishable. Two QUS parameters came from the tissue power spectrum. All statistics 

involved in the HK model estimation were included and simple statistics based on the 

echogenicity values were assigned to give 13 in total. The differences in QUS parameters 

were enough to correctly classify the two tissue types using an unsupervised machine 

learning approach. This demonstrates that QUS and binary classifications can correctly 

differentiate two materials which are acoustically similar. In terms of diagnostic value and 

real-time optimisation, the combination of echogenicity and spectral parameters reduced the 
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parametric imaging time to 6.3 seconds, while still achieving a high classification accuracy 

for the ultimate goal of real-time tissue differentiation. 

The present study assumed that a good macroscopic ultrasound phantom corresponds to a 

good QUS phantom. It is not clear if the complex sub-resolution configurations of real brain 

tumour tissue can be simplified in this way. Nevertheless, a framework has been 

demonstrated which can classify phantom materials using a research ultrasound system, with 

encouraging results. Chapter 5 will utilise this framework to measure QUS parameters from 

ex vivo human brain tissue and GBM to fully test the capability of ML assisted tissue. 

differentiation. 

The effect of freezing and fixation on QUS parameters 

The ESD, EAC, α and κ can be used to describe tissue microstructure independent of the 

ultrasonic system used, and thus have potential for clinical diagnosis. However, it is not clear 

whether parameter results from ex vivo trials are directly translatable to in vivo tissue. It was 

found that the EAC was significantly altered after the preservation process, however 

statistical parameters from the HK-distribution and ESD were not altered. This is most likely 

due to the mechanical changes which take place during freezing and fixation altering the 

acoustic impedance of the entire tissue, which has a direct effect on the EAC. Thus, care 

should be taken when interpreting results of this parameter in the ex vivo work, while there 

is confidence the other parameters are clinically relevant. It is important to note that the way 

in which the microstructure of liver and gizzard changes due to fixation may not necessarily 

be the same as in brain tissue; however, it is of interest to observe the effects on QUS 

parameters in these two soft tissues.  

4.6 CHAPTER SUMMARY  

This chapter began by introducing the importance of phantoms in medical research due to 

the difficulties in obtaining fresh human tissue to work with. The first aim of the chapter was 

to review the literature to identify suitable phantoms for brain and brain tumour. Having 

identified chicken liver and gizzard as possible materials, a full acoustic characterisation, in 

terms of acoustic impedance and attenuation, was carried out to validate their use for 

subsequent exploration. Next, QUS techniques were implemented on the phantom tissues 

and used to form parametric images, which themselves were useful for characterisation. All 

QUS parameters were used to train a binary classifier to predict whether a sample was liver 

or gizzard. The potential of this technique is evidenced by the high average accuracy of the 

classifier. Finally, the effect of freezing and fixation on QUS parameters in the phantoms 
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were studied to aid decisions about obtaining tissue for further work. In such future work 

with preserved tissue samples, less emphasis should be placed on the EAC parameter as this 

would not have translatable in vivo results. 
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5 HIGH FREQUENCY QUANTITATIVE ULTRASOUND DIFFERENTIATES 

HEALTHY AND GLIOBLASTOMA SAMPLES EX VIVO 

5.1 AIM OF CHAPTER 

Chapter 4 saw successful implementation of QUS techniques in a linear array operating at 

conventional imaging frequencies in tissue phantoms. This chapter builds on previous 

methods and applies the techniques on ex vivo human brain and GBM samples. Specifically, 

the aim of this chapter is to assess the ability of QUS parameters to differentiate between the 

two tissue types using both linear array transducers and single element microultrasound 

sources in order to determine which frequency and configuration is optimal for classification. 

Therefore, the objective of this study is to obtain an accurate estimation of the parameters 

over the entire tissue sample volume and determine if there are significant differences in the 

two tissue types, which can be used for ML classification. It begins with the process of 

obtaining human tissue samples for medical research, followed by sample preparation and 

the estimation of speed of sound (SoS) and attenuation at LF. It then moves on to a full QUS 

analysis with a HF 25 MHz linear array, and finally a complete microultrasound analysis at 

74 MHz.  

5.2 INTRODUCTION 

Tissue banks are a source of human tissue for scientists, where patients have donated their 

bodies for medical research. The samples must be preserved, so are typically available fixed 

in formalin, or frozen, which is done with liquid nitrogen vapour to ensure a fast-freezing 

process. There is far more availability of diagnostic slide samples, which measure 25mm 

(W) x 75mm (L) x 0.02 mm (D) and are used in clinical brain sciences, however the small 

dimensions are not useful for ultrasound tissue characterisation.  

There is evidence showing fixing the tissue samples has a greater effect on the mechanical 

properties of brain tissue [83]. Section 4.5 explored the effect freezing and fixation had upon 

QUS parameters measured in chicken liver and gizzard and concluded there were only 

significant changes in the EAC in frozen and defrosted tissue. It is most suitable to obtain 

snap-frozen samples, which is possible through a brain tissue repository such as the 

Edinburgh Brain Bank (University of Edinburgh, UK) [174]. The largest available healthy 

tissue available for this study was determined to be ~ 1 cm3 samples of central white matter, 

from the brain as indicated in Fig. 5.1.  
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Figure 5.1: Region of healthy 

human brain used for this study. 

Image courtesy of Edinburgh 

Brain Bank. 

This repository only holds samples of healthy brain, so cancerous tissue was obtained from 

Oxford Brain Bank (Oxford University Hospitals NHS Trust, UK), facilitated by Brain UK 

(University of Southampton, UK). Cancerous tissue is a precious resource for researchers 

and studies involving human tissues need sufficient evidence that it will be of benefit to 

patients. Therefore, use must be approved by the relevant ethics committee. The full 

application form which includes a lay summary, technical background, methods, and 

potential benefit for patients, which was approved by Brain UK, is given in Appendix III 

with ethical approval confirmation given in Appendix IV.   Next, a risk assessment must be 

carried out when bringing human tissue into the university, with a particular duty of care 

needed to prevent blood borne infections such as Hepatitis B.  Finally, tissue must be 

incinerated after use. After necessary considerations, the frozen tissue samples were 

delivered within the same day and on dry ice from the source institution to the university 

and immediately placed back into storage at -80 ⁰C. 

There are some considerations to make in the experimental design when moving from 

phantom materials to human brain tissue. Currently tissue is placed in a water bath on a 

strong reflector, for several minutes during the scans. Brain tissue deteriorates very quickly 

at room temperature. If several scans must be acquired, this may alter the acoustic properties 

of the tissue over the course of the experiment. A preliminary study with lamb brain was 

conducted to find the optimal time brain tissue could spend in a water bath before 

deterioration. This is particularly important when using a motorised scanning system, as 
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there will be a trade-off between the number of scans acquired over the tissue volume and 

the time taken to do so. It would be beneficial from a statistical estimation standpoint to have 

as much data as possible however, this is only meaningful if the tissue has maintained its 

acoustic properties.  

A small section of lamb brain was placed in a water bath. After 15 minutes, the tissue had 

begun to deteriorate as there were visible flakes of tissue separating from the main sample 

bulk. Furthermore, there was a noticeable increase in tissue thickness due to osmosis as 

shown in Fig. 5.2a-c. This is the spontaneous movement of water from a high to a low water 

potential though the semi-permeable membrane in the tissue cells [175]. A buffer solution 

such as PBS (ThermoScientific PH level = 7.4) can prevent this as it has the same osmolarity 

as that for human cells so should not result in any absorption; this was observed in  

Fig. 5.2d-f. The experiments were conducted at room temperature. 

   

   

t = 0 hr t = 15 mins t = 30 mins 

Figure 5.2: Effect of time on submerged tissue over 30-minute time interval. a-c shows 

the tissue thickness increasing over the 30-minute period when using water. e-f shows 

almost no absorption by the tissue over the same time interval. 

For all QUS experiments involving human brain tissue or tumour, PBS was used instead of 

water and the maximum time tissue was submerged was limited to 15 min. 

5.3 METHODOLOGY 

5.3.1 Sample Preparation 

Ten samples of healthy cortical white matter were obtained from the Edinburgh Brain Bank 

(Ref TR76/20) and eight GBM samples were obtained via Brain UK (Ref 20/013). The 

details of the human tissue samples are given in Table 5.1. 

a) b) c) 

e) d) f) 
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Table 5.1: Details of Human Tissue Samples. 

IDENTIFIER TISSUE AGE SEX 

H1 Central White Matter 57 M 

H2 Central White Matter 40 F 

H3 Central White Matter 55 M 

H4 Central White Matter 58 M 

H5 Central White Matter 49 F 

H6 Central White Matter 65 F 

H7 Central White Matter 57 F 

H8 Central White Matter 34 M 

H9 Central White Matter 57 M 

H10 Central White Matter 39 M 

GBM1 GBM 66 M 

GBM2 GBM 54 F 

GBM3 GBM 44 F 

GBM4 GBM 62 F 

GBM5 GBM 48 M 

GBM6 GBM 46 F 

GBM7 GBM 64 M 

GBM8 GBM 73 M 

 

 

Figure 5.3: A typical sample of 

healthy white matter. 

A typical sample is shown in Fig. 5.3. The dimension of the sample into the page is referred 

to as the thickness throughout this chapter for acoustic characterisation purposes. The 

maximum thickness of the samples was measured with digital callipers to four decimal 
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places. This was done when they were still frozen to ensure the tissue did not deform under 

the pressure of the callipers. The healthy samples had a mean thickness of 5.29 mm, ranging 

from 3.56 to 7.11 mm, whereas the GBM samples were smaller, on average, with a mean 

thickness of 2.01 mm, ranging from 1.56 mm to 2.36 mm.   

It would not be possible to conduct a LF ultrasound analysis of the GBM samples due to the 

small sample size and recommendation of 10 wavelengths of thickness for QUS analysis 

[26]. However, it was considered useful to study the larger samples of healthy tissue over 

this frequency range to measure bulk acoustic properties. Furthermore, it would be 

advantageous for comparison purposes to have similar sample sizes for healthy tissue and 

GBM. Besides, the microultrasound scanning system was limited by the hardware to have a 

maximum imaging depth of 7 mm, which was not suitable for the available healthy brain 

samples. Smaller samples of healthy brain were therefore carefully cut from the larger 

healthy samples using a surgical scalpel to a comparable size to the GBM tissue (average 

thickness = 2 mm). Fig. 5.4 summarises the three cases of samples considered and shows the 

size of the tissue samples received.  

To summarise, due to the limited thickness in the GBM sample, the data were obtained using 

three different acquisition systems as follows: 

• Analysis of healthy brain tissue using Verasonics LF linear array (11 - 5 MHz) 

• Analysis of healthy tissue and GBM using Verasonics HF linear array (35 – 16 MHz)  

• Analysis of healthy tissue and GBM using single element LNO transducer in 

microultrasound scanning system (74 MHz) 

 

 

Figure 5.4: Samples for data acquisition using the Verasonics linear arrays. a) Whole 

healthy sample with LF transducer. b) Smaller section of a healthy sample with HF 

transducer. c) GBM sample with HF transducer. For scale, the quartz flat is 2.5cm in 

diameter. 

All scans were completed within 6 hours of initial defrosting and samples were kept 

refrigerated while not being imaged. The Verasonics data acquisition was done first,  
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followed by LNO microultrasound scanning. Details of the data acquisition for each process 

are discussed in the following section. 

5.3.2 Verasonics Data Acquisition 

Due to the small sample size, there was less emphasis on parametric image formation for 

this procedure. Instead, the aim was to obtain an accurate measure of the QUS parameters 

from the whole tissue sample. The Vantage 128 Research Ultrasound system (Verasonics, 

Seattle, USA) was used in a novel way to insonate the tissue samples which could be used 

to form images and obtain QUS parameters by exciting and receiving on elements 1 – 128 

of the linear array sequentially. This is in contrast to the use of the array in the traditional 

sense, where the elements are excited in specific patterns to focus the beam to a specific 

point or to steer it at a specific angle. The approach was beneficial for an initial study into 

QUS characterisation as the individual elements transmit signals of sufficient intensity to 

produce useful data in a simple protocol that permitted more straightforward analysis than 

would have been the case with conventional beamforming. Besides, the samples were 

smaller than the footprint of the probe so ultrasound from the elements where there was no 

tissue present would have caused unwanted interference and reflections from the quartz flat. 

The experimental set-up is the same for the LF and HF linear arrays, as displayed in Fig. 5.6. 

However, the sampling and post processing is slightly different for the HF measurements 

and will be discussed separately. 

A quartz flat was placed in a clear plastic container and filled with PBS. This container was 

then secured to the surface of a goniometer to allow accurate alignment of the reflector. The 

probe was clamped approximately 2 cm above the quartz and was connected to a 3-axis 

manual motion stage. This allows the transducer to remain aligned to the quartz flat yet 

enables movement over a 1 cm region. To achieve alignment, a real time imaging script was 

used to display a B-mode image from the transducer as the goniometer was adjusted to 

ensure the bright reflection of the quartz flat in the B-mode image was a horizontal line.  A 

reference scan was taken with only the quartz present, then the tissue was placed directly 

under the transducer face on the quartz flat for sample acquisition.  

Sequential element excitation was achieved by programming additional ‘acquisition events’ 

into the software, giving enough time for the entire pulse-echo response to be recorded 

before moving on to the next element, as visualised in Fig. 5.5. The TGC was set to zero and 

the raw data were recorded into an empty receive buffer one column at a time, corresponding 

to each array element. After the 128 elements had each transmitted and received a signal, 

this was considered as one ‘frame’ of data and a near real time image was displayed on the 
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computer screen. A total of 50 frames were captured and the average result was used in the 

QUS analysis to reduce random noise. 

 

Figure 5.5: Event sequence for individual element transmit and receive with linear array. 

For LF analysis, the transducer was excited by a burst with a centre frequency of 8 MHz as 

displayed in Fig. 5.6. The received signal from each element was sampled at 31.25 MHz, 

which satisfied the Nyquist limit for the whole transducer bandwidth. 2176 samples were 

stored, allowing an imaging depth of 5.36 cm, which was more than sufficient for the present 

application. This process was repeated 50 times until a receive data array containing the raw 

received data could be saved as a matrix data .mat file for all 128 elements for 50 frames. 

An initial set of data was recorded with the tissue placed so the transducer was insonating a 

slice of the tissue in the front region, then the transducer was moved 0.1 mm backwards. 

This process was repeated for eight different locations, or slices, through each healthy 

sample, to allow a manual full volume scan which maximised information while still 

minimising the time the tissue spent in the liquid. Then, the procedure was repeated for the 

ten samples of healthy tissue. 



97 

 

 

Figure 5.6: Pulse echo response from one array 

element of the Verasonics L11-5v transducer. 

 

For HF data acquisition, the Verasonics was programmed in the same way as described 

above, however an interleaving sampling technique was used to achieve a sampling 

frequency of 125 MHz. This was done by effectively doubling the upper limit of the analogue 

to digital conversion process in the hardware (62.5MHz) by combining the receive data from 

two successive transmit and receive acquisitions, shifted by half of the sampling period 

relative to one another. This increased the time taken to form a B-mode image so 20 frames 

of receive data were saved during each scan. The scans were made at 5 different locations in 

the small tissue sample by moving the position of the transducer above the tissue with the 

manual stage after all 20 frames were saved. This was repeated for the ten samples of healthy 

tissue and eight samples of GBM, with a reference scan taking place before each sample. 

5.3.3 LNO Data Acquisition 

A 74 MHz LNO transducer, as displayed in Fig. 5.7a, was mounted to a pair of orthogonally 

positioned linear motors to collect RF data via a pulser/receiver unit (DPR500, JSR 

Ultrasonics, Pittsford, USA) at 800 MHz using a National Instruments device (NI 5772, 

National Instruments, Newbury, UK). The data were then transferred to the host computer 

as in Fig. 5.7b. There was no TGC; a constant gain of 40 dB was used in the pulser/receiver 

unit. 
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Figure 5.7: Experimental set-up for automated scanning of human brain tissue. a) 74 MHz 

LNO single element transducer. b) Diagram of data acquisition set-up. 

 

A high-resolution volume scan of the tissue samples was achieved with a LabVIEW-based 

program written for the scanner. The samples were placed in a PBS bath atop a quartz flat 

and a stepped scanning approach was used to acquire A-scans over a 7 x 10 mm2 region. 

Scanning steps of 0.01 mm in the X-direction and 0.5 mm in the Y-direction were used, so 

it could be considered as a high-resolution B-scan, in the x-direction, for 20 different slices 

of the tissue, as visualised in Fig. 5.8. The total scan time was 12 minutes, which allowed  

acquisition of data precisely enough over the tissue volume, while minimising the time that 

the tissue spent in the liquid. 

 

Figure 5.7: Plan view of stepped 

scanning system over the entire tissue 

volume using LNO transducer (Tx). 

 

For each scan location, 32 pulse-echo acquisitions were performed, and the average of these 

independent acquisitions was saved. The data were saved in the filename convention 
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“Tissuetype_Ylocation_avg.txt” and contained the stepped scanned data over the entire 

X-direction for that particular Y-location. This continued until all Y-locations were covered. 

First, a reference signal was obtained which did not have tissue present, only PBS and the 

quartz flat, which was placed at the transducer’s focal distance of 7 mm. The pulse-echo 

response was obtained in order to account for the system settings. Then tissue samples were 

placed successively on top of the quartz flat and the scan was repeated, so each XY location 

had its respective reference and tissue signals for QUS analysis. 

5.3.4 B-mode Image Formation 

Formation of B-mode images followed a similar methodology, independent of the 

acquisition method used, however three custom Matlab scripts (Matlab 2019b, Mathworks, 

UK) were used for the three acquisition methods, named LF Verasonics, HF Verasonics and 

LNO for convenience. Each script contained the algorithms for the entire analysis, including 

B-mode image formation, acoustic characterisation and the various QUS methodologies. 

Firstly, the tissue data for one slice were imported into the script to take the average over 

each frame in the Verasonics data. This was not a necessary step for the LNO data. Then the 

envelopes of the average received data were compressed and assigned echogenicity values 

using a dynamic range of 80 dB. This range was deemed most suitable for optimum image 

quality after using a sliding scale between 50 – 100 dB.  

5.3.5 Acoustic Characterisation 

The software used for acoustic characterisation and QUS parameters in this study was 

modified to account for the slight inconsistencies in tissue thickness. Firstly, the B-mode 

image was displayed and the user was asked to select a ROI which should be suitably chosen 

as the area where the maximum thickness remained uniform, such as that displayed in 

Fig. 5.9. This was the only region in which the absolute thickness could be reliably measured 

frozen. While this reduced the number of A-scans used in subsequent analysis, it had the 

benefit of preventing uncertainties in tissue thickness propagating into errors in speed of 

sound (SoS) and attenuation measurements, which would then lead to inaccuracies in the 

spectral parameter estimates. 
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Figure 5.8: Example of B-mode image with 

selected ROI used in acoustic characterisation 

highlighted in yellow. 

 

The A-scans from a suitable ROI were then displayed and the SoS was calculated using the 

difference in the times of flight between the received signal from the quartz with and without 

the tissue. This is shown in Fig. 5.10, where the signal has arrived sooner in the tissue sample, 

as the SoS in brain tissue is faster than in PBS. The difference in time between signals can 

be used to measure the SoS using the following equation: 

𝑐𝑠 = (
1

𝑐𝑃𝐵𝑆
−
∆𝑇

2𝑑
)
−1

 
(5.1) 

where cPBS is the SoS in PBS, taken as 1505 ms-1 [176]. 

An estimate for the SoS was made using the A-scans in each tissue slice and 5 slices were 

acquired in each sample, leading to n = 50 measured results for healthy tissue and n = 40 

measurements for GBM. The mean and standard deviation were calculated for each tissue 

type. 

Fig. 5.10 shows a marked decrease in signal amplitude due to the attenuation of the tissue, 

however a broadband substitution technique was used to obtain the frequency dependent 

attenuation function over the frequency range specified by the bandwidth of the linear arrays, 

and over the range 66 - 80 MHz for the LNO transducer. 
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Figure 5.9: Examples of the received signals from the quartz flat with 

(red) and without (blue) the brain tissue present. 

 

The attenuation function is calculated from the quotients of the power spectrum with and 

without tissue and is given as : 

𝑎(𝑓) =  
10

2𝑑
 log10

𝑊𝑇𝐼𝑆(𝑓)

𝑊𝑅𝐸𝐹(𝑓)
+ 𝑎𝑃𝐵𝑆 

(5.2) 

where WTIS and WREF are the power spectra of the reflections from the quartz flat with and 

without intervening tissue, respectively, and are found using Equation 3.10, where aWATER is 

the attenuation of water displaced by insertion of the tissue. The factor of two on the 

denominator comes through the fact it is measured in a pulse-echo set up, so the total 

propagation distance is double the tissue thickness. The attenuation function was measured 

for each suitable element individually for the Verasonics arrays, using each slice and all 

samples.  

5.3.6 QUS analysis 

Spectral Parameters 

The ESD and acoustic concentration were estimated in the procedure described in Section 

3.3. The attenuation compensation used in each measurement was the attenuation function 

calculated in the tissue for that specific element from the TL method described above. In this 
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study, due to the small sample size, the gate length was taken as the whole tissue thickness. 

The calibrated power spectrum was found for each A-scan and the parameters were 

calculated based on the average power spectrum over the entire sample volume.  

Statistical Parameters 

The echogenicity values from the B-mode images provide a statistical dataset where 

centralised moments can be calculated and used for differentiation. The first six central 

moments of the pixel intensity in the tissue ROI were calculated for each slice of tissue, 

typically consisting of 40 - 60 A-scans. 

The HK parameters were estimated using the algorithm described in Section 3.4.4, with a 

tolerance value of 10-4 for both algorithms to favour accuracy over speed.  A modification 

was made to reduce computation time, which uses the whole ROI to obtain average X and 

U statistics instead of estimating the parameters in each individual A-scan as was done in 

Chapter 4. This meant an average parameter value for each B-mode image could be found 

in 10.2 s on average. 

5.3.7 Machine Learning Capabilities. 

A comparison between healthy tissue and GBM could be made using the parameters 

obtained in the HF Verasonics and microultrasound analyses. Firstly, a student’s t-test was 

conducted on parameter results to test for significant differences using a confidence interval 

of 0.05. Then, the full set of QUS parameters, as given in Table 5.2, was used to train a ML 

classification algorithm using the Classification Learner Toolbox in MATLAB (Version 

2019b). This was achieved by creating a table of all QUS results from both tissues, with an 

additional column containing the label ‘Healthy’ or ‘Tumour’.  This could then be imported 

into the Classification Learner Toolbox which launches a GUI where the user can select 

which QUS parameters should be used as features and which validation method to use. An 

8-fold validation method was used and the overall performance in the confusion matrix was 

recorded.  
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Table 5.2: Summary of QUS parameters used as features for ex vivo study. 

 

The limited data available from the small samples at 25 MHz meant only an initial trial of 

the potential of the technique was conducted at this frequency using a SVM. The 

microultrasound scanning produced more robust data acquisition so there were more QUS 

results to allow a greater exploration. GBM samples were taken as the positive case and three 

classifiers were considered: a KNN with a number of neighbours of 5, linear SVM and 

Gaussian SVM. Two key subsets of parameters were considered: those obtainable in real-

time, and specifically only the HK results. 

5.4 RESULTS AND DISCUSSION 

5.4.1 Acoustic Characterisation 

5.4.1.1 Verasonics Results 

The average SoS of healthy brain tissue was found to be 1551.8 ± 18.7 while that of GBM 

was slightly higher at 1560.4 ± 23.3. The higher SoS suggests a slighter higher stiffness in 

the material, especially taking into account the fact that tissue with more internal structure 

may be expected to have a lower SoS. However, a t-test was conducted on the results, and 

this was not a significant difference (P=0.33). The source of the errors is most likely the 

thickness measurements, as any discrepancies in those would propagate an error in the SoS 

measurements. Care was taken to use data from the region where the most accurate thickness 

measurement was taken. 

  Symbol Description 

N
ea

r 
re

a
l-

ti
m

e
 S

p
ec

tr
a
l 𝒂𝒆𝒇𝒇 ESD 

𝒏𝒛
 EAC 

S
ta

ti
st

ic
a
l 

�̅� Mean of pixel intensity 

𝑬𝟐̅̅̅̅  Variance of pixel intensity  

𝑬𝟑̅̅̅̅  Skewness of pixel intensity 

𝑬𝟒̅̅̅̅  Kurtosis of pixel intensity 

𝑬𝟔̅̅̅̅  6th moment of pixel intensity 
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 𝜶 Scatter clustering parameter 
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The attenuation of the larger, healthy brain samples using the LF Verasonics array is shown 

in the same diagram as the results for both smaller tissue samples in Fig.  5.14. A linear fit 

was ideal for the data as shown in Fig 5.14a, however when the graph was forced to have a 

zero intercept, a polynomial of order two was a more suitable fit. GBM sample 7 had 

abnormally low (near zero) attenuation results. This was the thinnest of the samples and 

upon further inspection, the tissue had been torn under the pressure of the tweezer used to 

handle it during the experiment. This sample was therefore discounted from the average 

results as the true path length was ambiguous. On average, the GBM samples had a higher 

attenuation value in the HF range but had significantly higher standard deviation on the 

mean. At the centre frequency, 25 MHz, the results were 29.9 ± 1.6 dB cm-1 and 

34.8 ± 4.3 dB cm-1 for healthy tissue and GBM respectively, indicating a 4.9 dB cm-1 

difference on average.  

After a thorough literature search, it is thought this is the first report of attenuation 

measurements in human brain and GBM above 10 MHz, with comparable studies limited to 

animal tissues. At 10 MHz, the result for healthy brain is 14 ± 2.02 dB cm-1, which is similar 

to, although slightly higher than, the result of Schiefer in 1968, who found healthy brain to 

be around 10 dB cm-1 [85].  The results show there may be a possibility to use attenuation 

alone to distinguish the two tissue types at this frequency, so the attenuation value at the 

centre frequency for each scan was included as an additional QUS parameter.  

There have been some reports of HF ultrasonic characterisation in mouse brain, which was 

found to have an attenuation value of 30.7 dB cm-1 at 32 MHz [78], lying 5 dB lower than 

the result from human healthy brain. The standard deviation increased with frequency in all 

measurements, perhaps due to the lower initial signal energy, as this is at the extreme of the 

transducer’s bandwidth. Efforts were made to reduce this effect by maximising the number 

of measurements taken from each sample in the time available by utilizing the array as 

providing 40 - 60 independent attenuation estimates and taking acquisitions at five separate 

locations within the tissue. 
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Figure 5.10: Average attenuation of healthy and GBM samples using L35-16 and L11-5 

probes. a) The dotted line indicates a single ideal linear fit. b) Polynomial fit with zero 

intercept.  

5.4.1.2 Microultrasound Results 

Fig. 5.12 shows a set of 70 averaged A-scans from the microultrasound scanner through both 

a GBM sample (Fig. 12a) and a reference scan in Fig. 5.12b.  Inspecting the magnitude of 

the received signal from the quartz flat in both cases, as indicated with blue arrows, shows 

it has remained the same with and without intervening tissue. The insertion of a small tissue 

a) 

b) 



106 

 

sample should cause a decrease in the received signal from the quartz flat, which is then used 

to calculate attenuation through the TL method. However, the initial results lead to a near 

zero attenuation measurement. Further investigation found that the data had been clipped, 

stopping abruptly at a limiting value, highlighted in Fig. 5.15a. Clipping is a type of 

distortion in digital signal processing often seen in the presence of high gain, where the 

hardware has a limitation on the range of values to which data can be assigned.   

As this gives a distorted magnitude of the reference signal, it was not possible to obtain the 

attenuation results though the TL method in this experimental set-up. Furthermore, the BSPS 

and associated spectral parameters rely on a calibrated measurement of the power spectrum 

of the system, which would be erroneous if the analysis were based on the clipped data.  For 

this reason, the system independent spectral parameters and attenuation had to be omitted 

from this analysis. This issue was not noted in the scanning system set-up previously.  The 

40 dB gain was routinely used in microultrasound imaging, as it was necessary to extract 

scattering data from tissue above the noise floor. This is ultimately a drawback of spectral 

based QUS parameters based on the method of a reference from a quartz flat at HF; one 

solution is to procure a data acquisition system suitable for this specific application. 

There is an alternate approach to estimate the attenuation via an in-vivo approach, which 

does not require a reference scan, and this is discussed in Chapter 7. Nonetheless, the 

magnitude of the tissue signal region is not affected by clipping so the statistical parameters 

can still be studied, and B-mode images can be created. 

 

Figure 5.11: Pulse-echo response from LNO scanning set-up highlighting clipped data 

acquisition. a) Response with intervening tissue, as indicated in the red arrow. b) 

Reference response from only quartz flat.  
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5.4.2 B-mode Images 

5.4.2.1 Verasonics Results 

B-mode images of healthy tissue brain samples at LF are displayed in Figure 5.13.  

  
 

  

 

 

 

 

Figure 5.12: Six B-mode images of healthy human brain tissue from the LF Verasonics 

linear array. The scan number for a specific sample is indicated by the subscript of the 

sample number. 

Fig. 5.12a-c show examples of three different slices of the same sample, highlighting minute 

inhomogeneities within the tissue over different locations within the same sample. The 

quartz flat appears as the bright horizontal line at 12 mm depth, yet the brightness is 

dramatically reduced over the regions of maximum thickness due to attenuation. d-f show 

one slice of three other samples, showing variations in size and shape of samples, and how 

all appear echogenic in the B-mode images. The effect of attenuation is observed even within 

the tissue sample, particularly in Fig. 5.11e, where the intensity of the pixels reduces with 

depth of tissue. The non-uniformity in thickness of sample is particularly evident in d and f. 

The B-mode images are essential to navigate to suitable regions of interest for bulk acoustic 

properties of the samples. Care was taken to choose regions where thickness is uniform in 

order to minimise thickness variations in SoS and attenuation measurements. 

Typical B-mode images for healthy tissue and GBM samples at 25 MHz are shown in 

Fig. 5.13. When analysing the data, due to some asynchronies in the interleaving sampling 

a b c 

d e f 
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technique in the Verasonics, the data had to be manually checked to include only correctly 

processed frames. This reduced the number of frames from 20 to 12 and the averages of 

these were taken to form one B-mode image; this was found to be still sufficient to remove 

random noise. 

All images have a dynamic range of 80 dB, however the appearance of the tissue samples 

varies significantly between samples of the same tissue type. For example, the healthy 

samples in Figs. 5.13a and 5.13c have significantly less visible scattering within the tissue 

than the sample in Fig. 5.13d. The magnitude of the PBS-tissue interface also varies 

depending on tissue type and sample size, but in general is brighter in the GMB samples, 

indicating a higher acoustic impedance in the material. Assuming the tissues have similar 

densities, this result would correspond with the higher SoS measurements in GBM found in 

the previous section. Fig. 5.13e-g have much brighter PBS-tissue interfaces when compared 

to 5.13h, which was the smallest of all samples received.  

As these images are produced purely from single elements operating independently, they are 

not using the full potential of a linear array for imaging, but the tissue samples can still 

clearly be observed through this basic image processing. Commercial probes operating at 

this frequency using all elements to focus the beam over the tissue region would produce a 

more detailed image. Despite this, there may still be differentiation potential from the B-

mode images alone in the larger samples as there tends to be higher echogenicity in the GBM 

samples. Additionally, it was necessary to utilise the array in the way described to explore 

QUS fully, given the small sample sizes. The variation in sample thickness is more evident 

in the HF images, and it would not have been meaningful to transmit and receive on the 

entire array to measure attenuation as there is up to a 50% uncertainty in tissue thickness 

over the entire sample. Similarly, the images are used to choose a suitable rectangular ROI 

for further QUS analysis. 
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Figure 5.13: B-mode images of smaller samples of healthy tissue and GBM using L36-16 

probe elements excited individually and 80 dB dynamic range. 

 

5.4.2.2 LNO Results 

Figure 5.14 shows the B-mode image results from three samples of both healthy and GBM 

tissue at three evenly spaced locations through the scanned tissue volume. Each image 

measures 8 mm (H) x 7 mm (D). The true shape of the samples is revealed, highlighting the 

non-uniformity of sample thickness and even possible tears in the sample, particularly GBM 

sample 1.
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It is more evident in these scans that GBM samples show a higher echogenicity within the 

tissue than healthy tissue samples do, which would correspond to higher coherent scattering 

within that region. It was surprising to see the limited scattering in healthy brain tissue, where 

it is hard to distinguish any coherent scattering above the noise level. This suggests a gain 

of higher than 40 dB should have been used. However, another observation is that the tissue-

PBS interface varies significantly within the tissue type and samples, though this may 

depend on the angle the tissue surface makes to the transducer surface. Healthy sample 2 

shows the highest reflection and also appears to have the surface most parallel to the 

transducer aperture. In clinical practice, this variation should not be observed as the 

transducer would be in direct contact with the tissue with a layer of gel as couplant. In the 

present specific set-up, the difference in echogenicity within the tissue, while using the same 

dynamic range, makes it possible to differentiate between the tissue types from B-mode 

image alone. 

5.4.3 QUS Results using Linear Array 

The boxplots which follow show the average results from every scan of all samples in the 

analysis, healthy (n=48) and GBM (n=40). The full range is shown by the dotted lines and 

the median value is indicated by the red line. The result of the student t-test is also shown in 

red on each figure. The only two parameters which showed significant (P<0.05) differences 

in the two tissue types were the mean value in the ROI and the EAC.  The results from each 

system independent parameter are now discussed in more detail. 
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Figure 5.15: QUS parameters boxplots indicating the QUS results over each tissue scan 

for healthy (n = 48) and GBM (n = 40). 

Fig. 5.15a-b show the results for spectral parameters. The scatterer diameter varied 

significantly in GBM, with the range spanning 18 - 57 μm.  The mean result for healthy 

tissue was 27.7 ± 11.6 μm and it was slightly higher for GBM at  

35.1 ± 14.9 μm. For context, the wavelength of ultrasound at this frequency is 63 μm, and 

typical neuronal cell nuclei are much smaller, usually around 5 - 20 μm. One interpretation 

of a larger ESD is that the larger number of cells in a tissue volume in cancerous tissue 

causes the incident wave to behave as if a group of cells was a scattering source, which 

explains the ESD being larger than typical neuronal cells. 
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There were significant differences in the EAC, as shown in Fig. 5.15b. In particular, the 

values remained positive for healthy samples and were mostly negative for GBM samples. 

This relates physically to the acoustic impedance mismatch from scattering sources, and 

implies that, in GBM samples, the acoustic impedance of the scattering sources is lower than 

that of the surrounding material, whereas in healthy tissue the scattering sources have higher 

impedance. The change in sign between different tissue types has been reported in the 

literature in rat mammary tumour models and became a key parameter for differentiation 

[26]. Whilst there is clearly some potential for this parameter to differentiate the two tissue 

types, Chapter 4 showed that this is not an accurate measurement for in vivo tissue, as the 

EAC showed significant differences in fresh and frozen tissue.  

Fig. 5.15c shows the skewness of the assigned echogenicity value, displaying a slight but 

not significant decrease in the case of GBM. Fig. 5.15d shows the mean echogenicity value, 

which was significantly higher in tumour tissue, aligning with the observation that tumour 

appears echogenic, or brighter compared to the surrounding brain tissue in vivo.  

The mean Nakagami parameter values shown in Fig. 5.15e were 0.71 ± 0.18 and 0.78 ± 0.20 

for healthy tissue and GBM respectively, which indicates they have both conformed to pre-

Rayleigh statistics, except for a few cases of the GBM where it approached 1. A higher 

Nakagami parameter indicates GBM has a slightly higher concentration of scatterers 

globally [129]. The scatterer clustering parameter, from the HK-distribution is shown in Fig. 

5.15f. There was an increase in the median result for the scatter clustering parameters in 

GBM, but this was not significant. A greater value indicates a greater acoustical 

homogeneity within the scattering medium [131] which, again, provides a quantitative 

measure of what may be physically true intuitively. 

For eight cases of healthy tissue and eleven samples of GBM, it was not possible to obtain 

the EAC and ESD due to a break down in the theoretical model. The scatterer diameter 

depends only on the gradient of the, assumed linear, attenuation-compensated power 

spectrum from the tissue region. This study did not assume a linear frequency dependence, 

which is commonly used in the literature, and instead used the experimentally derived 

broadband attenuation function, which could vary from sample to sample. There was always 

a general increase in attenuation with frequency; however, in a minority of cases this 

fluctuated drastically over the bandwidth, which resulted in a non-linear power spectrum. 

The most extreme example of the resulting calibrated power spectrum is shown in Fig. 5.16b, 

with a more typical example shown in Fig. 5.16a. Where the power spectrum had poor 

correlation to the linear approximation, this would result in a small, or sometimes positive 
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gradient. From Equation 3.22, this resulted in an imaginary ESD, which makes no sense 

physically. This would propagate into an imaginary EAC, and thus these specific samples 

had to be omitted from the analysis. This is worth mentioning, as it is a fundamental 

limitation on the linear approximation in the theoretical framework of spectral based QUS 

and it not usually observed at lower frequencies. As additional work is done in future in 

attenuation measurements at HF in soft tissues, the most suitable power law compensation 

may be used to provide a more robust parameter estimation method when the linear 

approximation fails. 

 

Figure 5.16: Compensated power spectrum of two samples of healthy tissue. a) Typical 

compensated power spectrum from soft tissue. b) Atypical power spectrum, seen in two 

samples of healthy tissue and eleven samples of GBM caused by a non-linear attenuation 

compensation function. 

 

An initial look at the ML potential of several combinations of parameters is shown in 

Fig. 5.17. While none of the statistical combinations shows much delineation in the two 

tissue types in 2-D, Fig. 5.17b-c, the significantly lower values of acoustic concentration are 

evident in the tumour samples in Fig. 5.17a. Due to the uncertainty around the effect of 

freezing on the EAC parameter, two separate analyses were done where it was still included 

in the binary classification analysis.  
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Figure 5.17: Scatter plots of several combinations of QUS 

parameters for healthy and GBM samples. a) ESD vs EAC. 

b) HK statistics. c) General statistics of pixel intensity. 

 

 

 



129 

 

HGG was taken as the positive case and the predicted results are shown in Table 5.3. 

Table 5.3: Classification Results with Gaussian SVM 

Instance TP FP FN TN Accuracy F1-score 

Gaussian SVM (All parameters) 21 6 1 41 89.9 0.857 

Gaussian SVM (EAC omitted) 20 7 2 40 87.0 0.82 

Gaussian SVM (Only HK) 8 19 4 38 66.7 0.41 

 

The total accuracy over 8-folds with all parameters was 89.9% with an F1-score of 0.857. 

This is an encouraging result regarding the potential of spectral-based QUS parameters at 

this frequency. When the EAC parameter was omitted from the analysis, the accuracy 

dropped to 87.0%. This is still a modest result considering there is no distinct clustering of 

the results in the 2D plots in Fig. 5.17b-c. The HK parameters alone do not show delineation 

in Fig. 5.17b, but a model using only these parameters was also tested, yielding an accuracy 

of 66.7%. This classifier had a particularly low sensitivity to detecting GBM samples, as 

evident in the low F1-score of 0.41. It can be concluded that at this frequency, the HK 

parameters were not able to delineate the two tissue types with useful accuracy.  

Nevertheless, the results highlight the power of ML as a multiparametric approach, as 

utilising all parameters was able to accurately characterise the data.  There were twelve 

parameters used in total, so the SVM would create an 11-dimensional hyperplane to best 

separate the data, which may see clearer clustering of the datatypes than the limits imposed 

by 3D.  

The restricted sample sizes and small number of unique samples limited the amount of data 

available for testing. A full analysis comparing other ML strategies was not conducted on 

this data but is explored, with a much larger number of samples, in Chapter 6 through 

simulation. 

5.4.4 LNO QUS Results 

As discussed in Section 5.4.1, the limitations of the system hardware meant only statistical 

parameters could be considered to be derived from the microultrasound data. The results are 

displayed, as well as the significance values, in boxplots in Fig. 5.18. 
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Figure 5.18: Statistical results of LNO QUS analysis. a) The mean value was significantly 

higher in tumour tissue. b) The echogenicity varied more in GBM. c) The kurtosis also 

showed to depend on tissue type. d) The structure parameter was significantly higher in 

healthy tissue. 

The general statistical results in Fig. 5.18a-c all showed significant differences between the 

healthy tissue and GBM. The mean value was five times higher, on average, within GBM 

than healthy tissue. There were also significant differences with the standard deviation of 

the intensity within the GBM sample, as well as the kurtosis and higher order moments.  

Physically, the standard deviation can relate to the texture of the resulting greyscale image, 

and GBM samples exhibit a larger variance in that parameter than do healthy samples. 



131 

 

A parameter which increased substantially in this frequency regime, when compared to the 

results at 25 MHz, is the Nakagami parameter. It now takes an average value of 0.95 ± 0.04 

for healthy tissue and 0.89 ± 0.09 for GBM. The values tend towards 1, however they only 

reached this value in five cases of healthy tissue and three of GBM.  At a wavelength of 

20 m, ultrasound could be probing a higher number of scattering sources, with the 

combination of their interference causing the echo envelope to move towards Rayleigh 

scattering. The majority of the results lie in the pre-Rayleigh regime and HK parameters are 

still relevant to consider. 

The only parameter which did not demonstrate a significant difference between healthy 

tissue and GBM was the α parameter from the HK-distribution. This would indicate a similar 

level of acoustic inhomogeneity within healthy and GBM samples. The results here lie in 

the same range (1 - 5)  to those obtained  ex vivo in the liver of rats, with a higher α value 

corresponding to more severe cases of fatty liver disease [130]. A higher value of κ was 

found in the healthy tissue samples which reveals the presence of a larger coherent 

component, due to periodic, or highly structured spatial organisation of scatterers [35]. In 

the case of GBM, which had a lower value of κ, this infers a highly unstructured spatial 

organisation of scatterers [30].   

The results of the HK parameters and mean value are visualised in a 3D scatter plot in 

Fig. 5.19, which also shows the X and U statistics. 
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Figure 5.19: HK parameter results from LNO B-scans. a) α, κ and 

mean value. b) X and U statistics. 

Binary classification seems very feasible from the 3D visualisation in Fig. 5.20a. The scatter 

clustering parameter alone does not hold much potential for classification, however 

combined with the mean and, importantly, the structure parameter, the two datasets group 

into distinct regions. Inspection of Fig. 5.19b shows the correlation between the X and U 

statistic and suggests a linear hyperplane could be found which could successfully separate 

the red and blue data points. The KNN and SVM will both be explored for these two 

parameters sets.  

The ability of the HK parameters to correctly classify healthy and cancerous data was 

explored via binary classification over eight folds. The results using only the α and κ values 

are shown in Table 5.4. 
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Table 5.4: Classification results using only HK model parameters, α and κ. 

Classifier TP FP FN TN Accuracy F1-score 

SVM Linear 54 3 2 67 96.03175 0.955752 

SVM Gaussian 54 3 2 67 96.03175 0.955752 

KNN (k=5) 54 3 5 64 93.65079 0.931034 

 

The highest performing classifiers were the SVM with linear and Gaussian kernels which 

both achieved accuracies of 96.0%. The KNN followed close behind at 93.7%, using five 

neighbours. The results show that the HK parameters alone are able to classify healthy and 

GBM in this ex vivo set-up. Computation with these parameters took 10.7 seconds, on 

average, to obtain from the X and U statistics, which cannot be considered a real-time result; 

however, they should not be ruled out for in vivo use.  

X and U are defined in Equations 3.20 and 3.21 respectively and are efficient statistics for 

HK model parameter estimation but hold no physical interpretation. Nevertheless, they are 

obtainable in real time and so there is motivation, from a practical perspective, to consider 

the capability of these statistics alone to differentiate between healthy and cancerous 

samples, the results of which are given in Table 5.5. 

Table 5.5: Classification results using only X and U statistic. 

Classifier TP FP FN TN Accuracy F1-score 

SVM Linear 50 7 2 67 92.85714 0.917431 

SVM Gaussian 41 16 13 56 76.98413 0.738739 

KNN (k=5) 45 12 11 58 81.74603 0.79646 

 

The linear SVM outperformed the Gaussian SVM and KNN significantly in this study. This 

is due to the strong correlation between the X and U statistics as they are both dependent on 

the mean value, as observed in Fig. 5.19b. There is only a 3.2% reduction in accuracy while 

using these parameters, when compared to the system independent model parameters when 

considering the linear SVM. On the other hand, the Gaussian SVM and KNN saw reductions 

in accuracy of 19.1% and 12.1% respectively.  In these cases, despite taking several seconds 

to obtain, there is diagnostic value in obtaining the model parameters, as even a 3.2% 

accuracy drop corresponded to four samples being incorrectly labelled. Besides, this time 

could be easily incorporated into the surgical environment, and the use of a more powerful 

computer or cloud computation could see a reduction. Whether parametric images, which 

will need 10.7 sec for each pixel, are feasible in real-time is a topic for future consideration. 
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Furthermore, the α and κ parameters hold an additional advantage as they are system 

independent, so a model used to train these could theoretically be implemented into any 

transducer system with different power and frequency, whereas a new model would have to 

be trained if the parameter values depend on the mean. 

5.4.5 Limitations of this study 

The tissue thickness is of fundamental importance in acoustic characterisation and ideally a 

larger tissue sample should be used to obtain an aggregate of the speed of sound or 

attenuation in a material. At 25 MHz, the samples were around 30 wavelengths in thickness, 

which may not be large enough to have confidence in the results. However, by utilising 

multiple single element acquisitions over different locations in the tissue, the data driven 

approach allowed greater confidence in these estimations. 

Some improvements could be made to the Verasonics data acquisition, to automate a more 

efficient volume scan.  Currently the transducer is held in place by a clamp-stand connected 

to a manual stage which was moved to five locations to acquire data from different locations.  

The Verasonics has a trigger function which means it could be incorporated into an 

automated scanning system to allow more systematic scanning, which would generate more 

data for the same sample size. 

There were various hardware challenges associated with HF data acquisition. This was first 

encountered when using the Verasonics system, where the hardware was limited by a 

maximum sampling frequency of 62.5 MHz. The solution is to use an interleaved sampling 

technique, which will effectively double the frequency so it will then satisfy the Nyquist 

limit. This comes with an added complexity when programming acquisition events for a 

custom transmit and receive pattern. The second challenge was encountered using the 

microultrasound scanning system, as the gain required to analyse the tissue signal caused the 

large reflection from the quartz to be clipped. This meant attenuation and associated spectral 

parameters could not be accurately measured, suggesting further work in design of the 

experimental set-up. 

The ML results should be taken as a preliminary study, especially in the case of the 

Verasonics, as the total number of data points used for testing was 29, which used half of all 

available data. Small fluctuations in performance will have a large effect on the percentage 

accuracy in such a small study, so it is imperative to explore this fully with adequate data. 
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5.5 CONCLUSIONS 

The attenuation of GBM is higher than that of healthy brain at 25 MHz. 

Bulk acoustic parameters were successfully obtained from ex vivo human tissue samples 

using two Verasonics linear arrays. GBM had a slighter higher speed of sound than the 

healthy samples, by 9 ms-1 on average. The values of attenuation at the centre frequency of 

25 MHz were 29.9 ± 1.6 dB cm-1 and 34.8 ± 4.3 dB cm-1 for healthy and GBM respectively, 

indicating a 5.1 dB difference on average, however there were variations in each sample. 

The combination of LF and HF results allowed the attenuation of human brain to be mapped 

from 5 - 35 MHz, the first study in human tissue since the 1970s. Previous literature suggests 

a linear attenuation coefficient of 0.6 dB MHz-1 cm-1 in human brain, however the results 

presented here conclude that 0.9 dB MHz-1 cm-1 would be more accurate. This result has 

profound impact on the QUS analysis too, as often attenuation is mentioned only as a means 

to correctly estimate the spectral parameters, when in fact the attenuation measurement itself 

was found to be a potentially useful parameter for tissue characterisation. 

ML-enabled QUS differentiates healthy brain and GBM at 25 MHz.  

The Verasonics HF QUS analysis implemented two novel techniques. The first was to use 

an array with sequential single-element analysis, as a way to bridge the gap between 

microultrasound scanning and clinical imaging arrays. This allowed 40 - 60 independent A-

scans of useful data from a rectangular tissue ROI to be used for subsequent QUS analysis. 

The second technique was in regard to the spectral parameters, where usually studies 

assumed a linear dependence on attenuation, however, the present study utilised an 

experimentally derived attenuation function. At the high frequencies studied, this had a huge 

effect on the compensated BSPS, which meant linear estimation broke down in these cases. 

A solution needs further work.  

In this study there were significant differences only between the acoustic concentration and 

mean value in the ROI (P < 0.05). However, there were trends in the statistical QUS 

parameters which were sufficient to train a binary classifier, achieving an accuracy of 87% 

using attenuation, ESD and statistical parameters. 

Values of HK parameters give near perfect classification at 74 MHz. 

The microultrasound scanning allowed a more sophisticated set-up to acquire a complete 

volume scan of the tissue samples. However, acquisition issues with the clipping of data 

meant that the tissue signals could not be correctly calibrated, and consequently attenuation 

and spectral parameters could not be obtained. The importance of accurate, undistorted raw 

data collection must be emphasised for correct implementation of spectral techniques in the 
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future or, alternatively, a move towards a reference-free approach in the attenuation 

measurements.  

The statistical measurements indicated that random and incoherent scattering increased in 

both tissues when moving to a smaller wavelength source. HK parameters allowed a physical 

description of scattering in tissues and, importantly, are a non-invasive technique which can 

correctly identify cancerous samples, achieving 96.0 % accuracy using α and κ alone. While 

there was value in understanding the model parameters from a physical perspective, when 

the analysis was repeated using only the X and U statistics, the accuracy did not greatly 

decrease, bringing to light a trade-off between computation time and accuracy. 

Despite the small sample thickness and number of unique samples, this initial study supports 

the conclusion that QUS has the ability to aid HGG identification at 25 and 74 MHz. Only 

the GBM was explored in this study, as the most malignant type of primary brain tumour, 

which makes it the easiest to differentiate with a technique like QUS. A future study should 

explore the technique in the context of lower grade glioma and other tumours of the brain.  

5.6 CHAPTER SUMMARY 

This chapter described the implementation of innovative QUS techniques to distinguish 

healthy and HGG tissue. To start, it reported the bulk acoustic properties from human brain 

and GBM at what is believed to be above the highest frequency recorded in the literature, 

finding that both speed of sound and attenuation increased in cancerous tissue. The HF QUS 

analysis found that only the mean echogenicity value and the scatter clustering parameter 

were significantly different; however, combined with ML, this could still achieve a 

classification accuracy of 87%. Microultrasound scanning provided a more robust method 

of data acquisition but there were challenges encountered obtaining the attenuation estimates 

and spectral parameters. Nonetheless, the HK parameters alone were able to separate the 

data with near perfect accuracy, suggesting value in bringing forward this technique to an in 

vivo clinical trial.  This chapter also necessitates future work with a larger dataset and 

exploration with differing grades of glioma to test ML-enabled QUS to its full potential.  
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6 DIFFERENTIATION OF LOW- AND HIGH-GRADE GLIOMA FROM 

HEALTHY BRAIN IN FINITE ELEMENT ANALYSIS 

6.1 CHAPTER AIM 

Chapter 5 demonstrated the ability of ML to accurately identify healthy and HGG samples 

using microultrasound. This chapter aims to extend the study to various malignancy levels 

of brain tumour through an in-silico study. To achieve this, 2D representations of the 

acoustic properties of cells and interstitial material within neural tissue were created, based 

on histopathology slides of healthy, LGG and HGG human brain samples.  After image 

preparation, the models were imported into FEA modelling software to study the interaction 

of ultrasound with their microstructures. Specifically, the purpose was to obtain a database 

of QUS results in silico from healthy and cancerous brain tissue to determine the 

characteristics of ML - SVM vs KNN - best suited to classification using QUS results. It was 

also intended that the QUS results might be compared to those found in healthy and GBM 

samples in Chapter 5.  

6.2 INTRODUCTION 

The real potential of ML capability is tested when a study is extended to a larger number of 

samples. The main limitation of the studies described in Chapter 5 was the lack of available 

tissue. If an accurate model of healthy and cancerous brain tissue could be created, based on 

more readily available diagnostic slide images, then this would allow an increase in the size 

of the study. Furthermore, it need not be limited to only consider GBM samples, which is 

the name given to HGG. LGG could also be explored, corresponding to WHO grades I - III. 

6.2.1 FEA Software 

OnScale, previously PZFlex (Redwood City, CA, USA) is a software package which is 

commonly used for transducer design, development and material characterisation of novel 

piezoelectric materials. It is an explicit piezoelectric solver which makes it ideal for 

mechanical wave propagation [177]. In this study, the aim was to mimic the response from 

a Verasonics L35-16 MHz array element, for comparison with the previous study. Typically, 

FEA software packages will include a database of bulk material properties needed to model 

interaction with the wave equations at each time step, including stiffness, attenuation, and 

acoustic impedance. However, this suggests a constraint to model brain with only one 
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acoustic impedance, not accounting for the sub-wavelength fluctuations which give rise to 

scattering. 

6.2.2 Acoustic Impedance of Brain Microstructure 

It is well documented that the acoustic impedance of cell nuclei is higher than that of 

surrounding cytoplasm from acoustic impedance microscopy [178]. Measurement is 

possible using a technique frequently referred to as scanning acoustic microscopy (SAM) in 

the literature. This involves the use of a microultrasound scanner, typically operating at over 

100 MHz, to determine the acoustic impedance of tissue with extremely high spatial 

resolution (<10 μm) but having a maximum penetration depth of only a few mm [179]. There 

are no reports of SAM in human brain to date, however Soon et. al published the use of SAM 

to measure the effects of anti-cancer drugs on glioma management in a rat model [180]. The 

values for the acoustic impedance values, in MRayl, of the cell nuclei and surrounding 

material of healthy and cancerous rat glial tissue are given in Fig. 6.1.  

 

 

Figure 6.1: Acoustic impedance microscopy image from rat brain tumour model from 

[180]. a) healthy glial tissue and b) GBM tissue. 

 

There are some key observations from Fig. 6.1. Firstly, there are clearly more features with 

higher acoustic impedance in the GBM tissue compared to healthy tissue due to the higher 

concentration of cell nuclei.  Also, there is no increase in acoustic impedance in the cell 

nuclei in tumour, there are just more of them, Finally, there is around a 10% acoustic 

impedance difference between the cell nuclei (1.75 MRayl) and the surrounding tissue 

(1.55 MRayl). The cell bodies are denser, hence have a higher impedance, and the mid-range 

impedance values are tracks from glial cells. Assuming a similar acoustic impedance 

mismatch between cell nuclei and cytoplasm in human brain as in rat brain, 2D acoustic 

impedance maps can be created based on the distribution of cell nuclei in histopathologic 

images from human brain. 
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The method preferred by pathologists for viewing cellular structures in human tissues is 

haematoxylin and eosin (H&E) staining; haematoxylin is basic and stains acidic structures 

such as DNA and RNA of cell nuclei blue, while eosin is acidic and stains basophilic 

structures such as cytoplasm proteins pink [181]. An example of an H&E stained slide for 

healthy, LGG and HGG tissues is shown in Fig. 6.2. 

 

 

Figure 6.2: H&E stained diagnostic slide image of A) healthy brain tissue, B) 

LGG and C) HGG, from [182]. 

 

In general, within tumours there is a greater level of heterogeneity and an increased number 

of cell nuclei over a given region, up to four times as many in HGG when compared to 

healthy tissue [183].  In these diagnostic images, there is a clear distinction, but they require 

removal of the tissue and additional time, making the approach unsuitable for routine 

intraoperative use. The challenge is to determine which regions are cancerous using non-

invasive techniques. Furthermore, the level of malignancy may not be known to the surgeon 

during operation, so combining LGG and HGG data to compare with healthy data is of 

interest from a clinical perspective. 

The approach taken here is to use images such as those in Fig. 6.2 to isolate the cell nuclei 

from the surrounding material, to allow a binary acoustic impedance map to be created as an 

in-silico test sample. Ultrasound wave interaction can be studied in a pulse-echo setting, 

QUS analysis will be performed on the outputs, and parameters obtained will be used to train 

a classifier into three classes: healthy tissue, LGG and HGG. 

6.3 METHODOLOGY 

6.3.1 Pathology Image Preparation  

Ten digitised microscope images of frontal healthy white matter were obtained directly from 

the lab of the Edinburgh Brain Bank and transferred via Dropbox in SVS format at 40x 

magnification. The level of detail in these files means one slide image is typically around 
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20 GB, hence requiring a process to follow for downloading the files. Microscope images of 

both LGG and HGG tissue were obtained from the Genomic Data Commons Portal, an 

online database for cancer researchers managed by the  National Cancer Institute (Projects 

TCGA-LGG and TCGA-HGG ) [184]. To access these high-resolution microscope images, 

the manifest for the project is downloaded from the database website, then the SVS files are 

retrieved using Openslide software in a Python script [185].   

It would not be feasible to model an entire image in FEA. Instead, isolated samples were 

considered, of the same width as a typical single element transducer. This allowed many 

samples to be considered from only one image. The images were taken from random 

placement of 30 500 μm2 tiles, as indicated in red squares in Fig. 6.3. 

  

 

Figure 6.3: Selection of  30 500 micron2 tiles in a LGG image, 

avoiding blood vessels (black arow) and tissue breakages 

(white areas within tissue). 

 

This placement allows a nonbiased selection of regions from all four quadrants of the full 

image, which is beneficial to account for the heterogeneity of the sample. It was achieved 

by initially generating random coordinates in MATLAB. Then a visual inspection was 

carried out to ensure all tiles covered tissue regions only, avoiding structures such as blood 

vessels and tissue tears. If a tile was created in an unsuitable area, the random coordinates 

were generated again until a suitable region was found. 

As the original images were taken in different laboratories, the microscope used, thickness 

of sample and duration of staining varies for each slide. The pixel values must therefore be 

normalised for each slide image, to account for contrast variability, which can be achieved 

using QuPath, open source bioimage analysis software (University of Edinburgh, UK). After 

normalisation of pixel intensities in each image, QuPath enables filtering of haematoxylin 

2mm 
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staining so only cell nuclei appear in the image, and cytoplasm and proteins are not 

displayed. Furthermore, minimum and maximum thresholding values can be set on the 

normalised image, which gives optimal delineation of cell nuclei. The differential staining 

allowed a binary image to be produced, with cell nuclei appearing white and the surrounding 

material as black. Examples are shown for healthy tissue, LGG and HGG in Fig. 6.4. 

 

 

Figure 6.4: Binary image creation for 3 example tiles. The 

original image must be normalised to account for 

interlaboratory differences before filtering cell nuclei and 

creating a binary image. 

 

A high resolution .tif file of each cropped region was exported using ImageJ (ImageJ v1.57, 

National Institute of Health, USA) and converted to greyscale. The greyscale image was then 

smoothed by a Gaussian filter to eliminate ambiguous regions and fill in cell nuclei where 

haematoxylin staining was uneven. After the image contrast settings were saved, 30 tiles of 

size 500 μm2 were saved using the following filename system: ‘TissuetypeX_Y’ where Y 

indicated the slide number, and X indicated the tile number. As 30 tiles were created from 

each slide, there are 300 tiles for each tissue type, allowing 900 total pulse-echo simulations. 
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6.3.2 Meshing 

While the previous section explained the generation of 900 suitable tiled high-resolution 

images, a further step is required to make this geometry translatable into the grid of FEA.   

OnScale allows a table as an input to site material properties as a direct map from each row 

and column to the corresponding box location in the simulation. The following material 

properties were used for the cell nuclei and surrounding material, based on results of SAM. 

Table 6.1: Acoustic Properties of Materials in the Model 

Strucure Material Name (Identifier) Density Velocity Impedance 

Cell Nuclei Brain_scat (1) 1050 1560 1.65 

Cytoplasm Brain (2) 1030 1540 1.57 

 

A program was developed in MATLAB (Version 2019b) which takes in the binary image, 

meshes it based on the box size required for the simulation and returns a table. This was 

achieved based on the mean pixel intensity of the pixels within the box, for example if more 

white pixels were present in a specific box location, it would be labelled as cell nuclei 

material and return ‘1’. The output is a table, of 1s and 2s, which has the exact number of 

rows and columns as x and y locations in the simulation, so a direct mapping can occur. 

The mesh size was chosen which optimised resolution of circular structures, while still 

maintaining a reasonable computation time. Resolving the circular structures of cell nuclei 

with a square mesh meant a box size of 0.8333 microns was required, which corresponds to 

60 elements per wavelength at 25 MHz, more than four times the minimum number required 

by the OnScale solver [177]. The scale of the geometry with mesh size is shown here in 

Fig. 6.5 for a small region. 
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Figure 6.5: Optimised resolution of material geometry 

within simulation with gridlines representing model 

mesh size. 

A visual summary of the steps involved in taking a microscope image and converting it into 

a mesh geometry for FEA is shown in Fig. 6.6. 

 

 

 

 

  

Figure 6.6: Steps involved for meshing pathology image into a binary acoustic impedance 

map for HGG. a) Original Image. b) Greyscale image filtered with Haematoxylin staining. 

c) Image smoothed with Gaussian filter. d) Final binary map in lower resolution used for 

acoustic impedance assignment in FEA. 

6.3.3 Time-varying Pressure Input 

Now a suitable tissue model could be generated, the ultrasound must be added to the 

simulation. One approach is to model an entire single-element transducer and optimise the 

piezoelectric material, backing and matching layer(s) to suit the application of interest. 

However, OnScale more simply allows a time-varying pressure input which can be used to 

model the pressure response from an ultrasound probe. In that way, the entire transducer 

could be removed from the simulation and replaced with a replica of the pressure from probe 

of interest. This also realises a smaller model, reducing simulation time. The HF Verasonics 

a) b) c) d) 
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probe from the previous study, Chapter 5, was chosen as the target probe, with an impulse 

response in the time and frequency domains given in Fig. 6.7. 

 

Figure 6.7: Pressure excitation used in pulse-

echo simulation 

This was measured by digitising the voltage response from one element of the linear array 

and resampling it to have the same sampling period as the time-step in the simulation. Since 

OnScale calculates the time-step as the minimum time needed to fully model one wavelength 

in each material at a particular frequency, it was easier to specify this explicitly in the code 

as 0.173793 x 10-8 seconds, the minimum required for the upper frequency limit. 

6.3.4 Running the simulation 

The base simulation consists of one pulse-echo burst, using the pressure input, over a region 

of water measuring 700 x 500 μm2. Code was constructed in MATLAB which automatically 

generates a Flex table to overwrite the water area successively in the simulation for all 900 

binary images required for the analysis.  There was also a 200 μm layer of water in the 

simulation, to act as a couplant. MATLAB automated the process of running OnScale using 

the command prompt, so all 900 simulations would run automatically with only the geometry 

and output file name changing for each iteration. The resulting acoustic pressure at each 

node and at each time-step for the entire simulation was output in a Flex history file, typically 

50 MB in size. 

6.3.5 QUS analysis 

The first step in QUS analysis is to convert the Flex history file into total pressure response 

incident on the transducer surface. The perceived transducer response was found by 

performing a line integral over the simulated transducer surface at each time-step.  
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Using this, for each of the 900 simulations and one reference scan which only contained 

water, QUS processing could proceed as described previously. A reference scan was carried 

out by replacing the tissue material with only water and creating a fixed boundary at the end 

of the simulation, i.e. with a reflection coefficient of 1. 

The attenuation was found directly from the pressure measurements using the TL method 

and Equation 6.1. 

𝛼𝑇𝐼𝑆(𝑓) =  𝛼𝑊𝐴𝑇𝐸𝑅(𝑓) +
20

2𝑑
𝑙𝑜𝑔 (

𝐹𝐹𝑇(𝑃𝑇𝐼𝑆𝑆𝑈𝐸)

𝐹𝐹𝑇(𝑃𝑅𝐸𝐹)
) 

where 

(6.1) 

𝑎𝑇𝐼𝑆 = Attenuation of tissue (dB cm-1) 

d = Thickness of tissue in cm 

𝑃𝑅𝐸𝐹 = Pressure amplitude of reflection without tissue present 

𝑃𝑇𝐼𝑆𝑆𝑈𝐸  = Pressure amplitude with tissue  

𝑎𝑊𝐴𝑇𝐸𝑅 = Attenuation due to water displaced by tissue (dB)  

This gives attenuation as a continuous function of frequency over the range 16 – 35 MHz. 

Two QUS parameters were obtained from this graph, the first being the value of the 

attenuation at the centre frequency and the second being the rate of change of this function 

at the centre frequency (25 MHz), termed ‘mid-band fit’.  

The attenuation-compensated BSPS from the tissue scattering regions was determined using 

the derived attenuation function and Equation 3.20. In this study, as the transducer 

characteristics were not defined, it was not possible to obtain the system independent spectral 

parameters (ESD and EAC). Besides, considerations would have to be made as to the 

theoretical power spectrum to compensate for the 2D nature of the simulation. The spectral 

slope, BSPSM, and intercept, BSPSI, of the BSPS from the tissue region were estimated by 

applying linear regression to the compensated BSPS.  

Statistical parameters were obtained by finding the central moments of the echo envelope 

distribution up to the 6th moment. More specific parameters were also obtained, including 

the Nakagami shape parameter, the X and U statistics and the system independent HK-

distribution parameters, α and  κ, using the techniques described in Section 3.3.4. 

All QUS parameters were saved to a spreadsheet, with the columns corresponding to each 

QUS parameter and a final column added for the tissue label ‘Healthy’, ‘LGG’ or ‘HGG,’ in 

preparation for classification. 
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6.3.6 Machine Learning Classification 

In this study, all suitable QUS parameters were used to explore 5 classification algorithms: 

• SVM with Linear kernel 

• SVM with Gaussian kernel 

• KNN with 5 neighbours (fine) 

• KNN with 10 neighbours (medium) 

• KNN with 50 neighbours (coarse) 

The final spreadsheets of QUS results were randomly separated into 8 subsections to perform 

an 8-fold validation. Briefly, 7 of the subsections were imported into the Classification 

Learner app (MATLAB Version 2019b) which can train all models simultaneously, and the 

remaining group was left to test the algorithm on unseen data. ‘Healthy’ was taken to be the 

negative case and glioma was the positive case in both HGG and LGG analysis. The 

confusion matrices for the three highest performing classifiers in each case were recorded. 

The accuracy and F1-score were then calculated for each fold and the average was taken. 

Three cases are considered: Healthy vs HGG, Healthy vs LGG, and a final case where LGG 

and HGG data are combined to produce a ‘Glioma’ class of 600 samples to determine the 

ability to identify Healthy vs Glioma. 

6.4 RESULTS AND DISCUSSION  

6.4.1 Running the Simulation 

A single pulse-echo sequence had a runtime of around 3 min and the entire study of 900 

samples took 45 hours to complete. Snapshots of the acoustic pressure over the entire 

simulation are shown in Fig. 6.8, with an example of each of the three tissue types. The 

pressure excitation is incident from the left and interacts with the tissue boundary. At 0.2 μs, 

a percentage of the wave is transmitted through the tissue, while some is reflected to the left. 

At 0.6 μs, interference patterns are observed to the left of the images as a result of reflections 

from the scattering sources within the material. There is an obvious increase in magnitude 

of scattering in cancerous tissue, especially in HGG. 
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6.4.2 QUS Results 

The QUS results for the 25 MHz pressure excitation are shown in Fig. 6.9a-d, with healthy 

tissue data shown in green, LGG in blue and HGG in red. Fig. 6.9a displays the attenuation 

and mid-band fit, the former falling into the narrow range of 20.3 – 20.8 dB cm-1 which is 

attributed to the fact that attenuation was not modified in this simulation, and both materials 

used the OnScale database for material properties. In brain tissue attenuation is 

0.6 dB MHz-1 cm-1. The attenuation values appear slightly lower on average for healthy 

tissue, with higher values for LGG and HGG, which is explained through more energy lost 

through scattering as evident in Fig. 6.8. 

 

Figure 6.8: Pulse-echo responses of pressure waves incident from the left, showing 

interaction with tissue microstructure for the three tissue types over the entire simulation 

timeframe. 
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Figure 6.9: Paired QUS parameter results for healthy tissue (green), LGG (blue), and 

HGG (red). a) Attenuation Midband fit vs value at centre frequency. b) Lizzi parameters: 

BSPS intercept vs slope. c) Intensity statistics, variance vs mean. d) X-statistic vs 

Nagakami shape parameter. 

  

Fig. 6.9b shows the intercept vs slope for the BSPS. The intercept is related to the overall 

magnitude of the BSPS, and this is highest in the red data points of HGG, but with significant 

overlap with LGG data. There is still a discernible linear trend, and subtle separation between 

healthy tissue and HGG, which may be suited to interpretation with a linear SVM. 

The simple statistics of the mean and variance of the intensity within tissue scattering regions 

are displayed in Fig. 6.9c. Intuitively, the average values of the signals from the scattering 

regions should be higher in regions where there is a higher concentration of scatterers, which 

is observed. The variance is an example of a parameter which has no trend associated with 

tissue type. 

The X statistic and Nakagami parameter are shown in Fig. 6.9d. This graph looks the least 

promising for classification, and a large portion of the results have a Nakagami shape 

parameter of 1, which means it reduces to the Rayleigh regime (see Fig 3.8 in Chapter 3) 

which means it is not meaningful to continue the analysis in the context of the HK-
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distribution parameters (as κ→0). This may relate to a limitation of the study as every 

individual cell nucleus was modelled with a different acoustic impedance, which causes an 

artificially large number of scatterers. Since this is not observed in reality, it implies not 

every individual cell is seen as a scatterer, which has been discussed in the literature [186].  

For this reason, only the attenuation, backscatter, 1st order moments and X and U statistics 

are used in the QUS classification algorithm, which is also convenient as they can be 

categorised as the near real-time parameters. In Figures 6.9a-c, there is an observable 

distinction between healthy and HGG results, while the LGG data in blue appear as a mid-

range result. 

Table 6.2: Summary of QUS Parameters used in Classification Alorithms. 

Symbol Description 

𝛼𝐶𝑒𝑛𝑡𝑟𝑒 Attenuation value at centre frequency 

𝛼𝑆𝑙𝑜𝑝𝑒 Attenuation slope at centre frequency 

𝐵𝑆𝑃𝑆𝐼 Intercept of modelled BSPS 

𝐵𝑆𝑃𝑆𝑀 Slope of modelled BSPS 

𝐸[𝐼] = 𝜇 Mean of echoenvelope detected data 

𝐸[𝐼2] Variance of echoenvelope detected data 

𝐸[𝐼3] Skewness of echoenvelope detected data 

𝐸[𝐼4] Kurtosis of echoenvelope detected data 

𝐸[𝐼6] 6th Moment of echoenvelope detected data 

 

6.4.3 Classification Performance 

The results of the confusion matrix, accuracy and F1-score for the three cases (healthy tissue 

vs LGG, healthy vs HGG and healthy vs glioma) over 8 folds are shown in Tables 6.3 – 6.5.    

Figure 6.9 a and b show clear separation in red data (HGG) and green data (healthy) so the 

high classification results for Healthy vs HGG are unsurprising.  This aligns with the results 

of the previous chapter which showed bulk attenuation  could be a  key parameter to 

distinguish  the two tissue types at this frequency. 
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Table 6.3: Classifier results for healthy (negative) vs HGG (positive) 

 

 

 

 

 

    Gaussian SVM     Linear SVM       KNN (5 neighbours)  

Healthy vs 

HGG TP FP FN TN Accuracy F1-score TP FP FN TN Accuracy F1-score TP FP FN TN Accuracy F1-score 

Fold 1 60 0 1 59 99.16667 0.991736 59 1 2 58 97.5 0.975207 51 9 14 46 80.83333 0.816 

Fold 2 59 1 2 58 97.5 0.975207 58 2 2 58 96.66667 0.966667 54 6 15 45 82.5 0.837209 

Fold 3 58 2 0 60 98.33333 0.983051 58 2 3 57 95.83333 0.958678 55 5 13 47 85 0.859375 

Fold 4 59 1 1 59 98.33333 0.983333 57 3 1 59 96.66667 0.966102 54 6 10 50 86.66667 0.870968 

Fold 5 59 1 1 59 98.33333 0.983333 57 3 1 59 96.66667 0.966102 52 8 16 44 80 0.8125 

Fold 6 60 0 4 56 96.66667 0.967742 58 2 2 58 96.66667 0.966667 55 5 11 49 86.66667 0.873016 

Fold 7 58 2 2 58 96.66667 0.966667 60 5 0 60 96 0.96 53 7 15 45 81.66667 0.828125 

Fold 8 58 2 1 59 97.5 0.97479 58 2 1 59 97.5 0.97479 54 6 8 52 88.33333 0.885246 

Average         97.8% 0.979         96.7% 0.96         84.0% 0.85 



151 

 

Table 6.4: Classifier results for healthy (negative) vs LGG (positive) 

    Gaussian SVM     Linear SVM       KNN (5 neighbours)    

Healthy vs 

LGG TP FP FN TN Accuracy F1-score TP FP FN TN Accuracy F1-score TP FP FN TN Accuracy F1-score 

Fold 1 39 21 15 45 70 0.68421 45 15 23 37 68.33333 0.70313 49 11 14 46 79.16667 0.796748 

Fold 2 42 18 13 47 74.1667 0.73043 42 18 21 39 67.5 0.68293 48 12 14 46 78.33333 0.786885 

Fold 3 44 16 15 45 74.1667 0.7395 46 14 21 39 70.83333 0.72441 52 8 14 46 81.66667 0.825397 

Fold 4 42 18 17 43 70.8333 0.70588 41 19 13 47 73.33333 0.7193 52 8 19 41 77.5 0.793893 

Fold 5 49 11 12 48 80.8333 0.80992 50 10 18 42 76.66667 0.78125 47 13 16 44 75.83333 0.764228 

Fold 6 43 17 10 50 77.5 0.76106 37 23 10 50 72.5 0.69159 49 11 11 49 81.66667 0.816667 

Fold 7 41 19 19 41 68.3333 0.68333 44 16 18 42 71.66667 0.7171 50 10 17 43 79.02778 0.797303 

Fold 8 41 19 16 44 70.8333 0.70085 39 21 17 43 72.08333 0.71943 52 8 18 42 79.00463 0.797395 

Average         73.3333 0.7269         71.61458 0.71739         79.02488 0.797314 
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Table 6.5: Classifier results for healthy (negative) vs glioma (positive) 

    Gaussian SVM     Linear SVM    KNN (5 neighbours)     

Healthy vs 

Glioma TP FP FN TN Accuracy F1-score TP FP FN TN Accuracy F1-score TP FP FN TN Accuracy F1-score 

Fold 1 108 12 26 34 78.8889 0.85039 106 14 31 29 75 0.8249 51 9 14 46 80.83333 0.816 

Fold 2 110 10 22 38 82.2222 0.87302 108 12 27 33 78.33333 0.84706 54 6 15 45 82.5 0.837209 

Fold 3 103 17 25 35 76.6667 0.83065 98 22 29 31 71.66667 0.79352 55 5 13 47 85 0.859375 

Fold 4 107 13 20 40 81.6667 0.8664 106 14 23 37 79.44444 0.85141 54 6 10 50 86.66667 0.870968 

Fold 5 111 9 29 31 78.8889 0.85385 108 12 36 24 73.33333 0.81818 52 8 16 44 80 0.8125 

Fold 6 108 12 22 38 81.1111 0.864 111 9 34 26 76.11111 0.83774 55 5 11 49 86.66667 0.873016 

Fold 7 110 10 26 34 80 0.82305 100 20 23 37 76.11111 0.82305 53 7 15 45 81.66667 0.828125 

Fold 8 110 10 28 32 78.8889 0.85271 106 14 28 32 76.66667 0.83465 54 6 8 52 88.33333 0.885246 

Average     79.8 0.85     75.8 0.83     84.0 0.85 
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Consistently, the three highest performing classifiers were linear SVM, Gaussian SVM and 

fine KNN, using only 5 neighbours. All classifiers were significantly better at distinguishing 

HGG, as opposed to LGG, from healthy tissue.  

Table 6.3 shows that the Gaussian SVM achieved a near perfect classification (98.7%) for 

HGG detection, followed closely by the linear SVM at 96.7%. The k=5 KNN algorithm 

consistently outperformed the other KNN algorithms using a higher number of neighbours 

by 3 - 5% but still the maximum accuracy achieved was only 85%. In the case of HGG 

identification, the SVM had the highest accuracy at 97%.  

However, in the case of LGG identification, Table 6.4, the KNN was the highest performing 

classifier, achieving 79% accuracy while the Gaussian SVM sat at 73.3%. The F1-scores 

followed a similar trend, with KNN achieving the highest at 80%, then followed by Gaussian 

and linear SVM with 73% and 71% respectively. Despite the results being much lower than 

for HGG, it is a still a moderate F1 score, indicating the QUS analysis did aid classification 

to a reasonable degree. 

In the combined study of healthy tissue vs glioma, all algorithms improved on their score 

from LGG detection alone. The KNN achieved an accuracy of 84% which is slightly higher 

than SVM, which achieved 79.8% in this instance. 

There is a noticeable imbalance between the FP and FN results in all classifiers in Table 6.5, 

with FN values higher in all three classifiers. The F1 score is a combination of the precision 

and recall of the diagnostic test. This indicates a significantly lower recall ability, so glioma 

samples were regularly incorrectly identified as healthy by the classifier. One reason for this 

could be that there is a noticeable difference between the cell densities in LGG and HGG, 

and so the classifier would mislabel LGG as healthy, as those samples did not exhibit such 

extreme scattering behaviours as HGG. Also, there was a level of heterogeneity in the 

healthy samples. The   average number of scatterers varied significantly within each slide, 

and within different samples, despite all being a central white matter region. This resulted in 

the healthy samples having parameter results over a fairly large range.  

Cancer detection in general requires a high specificity, or recall, as it is more detrimental for 

the patient to incorrectly label a cancerous sample as healthy but, for the application of brain 

tumours, both are argued to be equally important here and the goal is to increase overall 

accuracy. The KNN and SVM are among the simplest binary classifiers to implement, but 

there is a vast number of binary classification methods. Among them exist decision tree, 

random forest adaptive boosting and neural network, with particular recent interest in the 
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latter [139]. Nevertheless, it is clear that SVM can identify HGG samples with near-perfect 

accuracy, and both it and KNN are able to classify glioma samples with moderate accuracy. 

There is therefore every possibility that this could be a useful adjunct in neurosurgery as it 

will provide the surgeon with potentially beneficial information. 

The results for each fold are shown for this study as it is useful to see the range of accuracies 

over each of the eight instances of classification. The data has been grouped into eight 

sections and sequentially, one group is used as the testing set, while the other seven are used 

to train the classifier.  In the case of the Gaussian SVM HGG classification, the results for 

each fold vary from 96.9 - 99.1% which indicate this is a consistently high performing 

algorithm. Yet in the LGG classification the results varied from 68.3 – 80.8% accuracy 

which is a much larger variation over each fold. This is an important consideration in the 

case of healthy tissue vs glioma in Table 6.5. While the Gaussian SVM and KNN have a 

similar level of accuracy, the range of accuracies in the SVM are only 5% when compared 

to the 12% span of the KNN. When determining the most reliable classifier it may not always 

be the option with the highest average accuracy but instead the one with the most consistent 

performance. The variation in results shows the advantage of k-fold validation as a measure 

of performance over a single instance result. 

6.4.4 Comparison to ex vivo results 

Attenuation values at 25 MHz observed in Fig. 6.9a are much lower than those measured at 

the same frequency in the experimental work described in Chapter 5. The modelled tissue in 

OnScale was set to an attenuation of 0.6 dB cm-1 MHz-1 from the material library, which is 

assumed to be based on the literature measured to only 10 MHz. Future work at high 

frequencies should be used to confirm that an alternate model should be used for attenuation 

which is at the correct magnitude over a higher frequency range.  

In the case of the Nakagami parameter, the results agree with the experimental data that 

healthy tissue has a lower value, on average. However, there were a larger number of samples 

of GBM in the simulation study than in practice where m → 1. This could be caused by the 

oversimplification of scattering sources in the FEA model. 

6.4.5 Limitations of this study 

A key simplification in this study was isolating tissue sections to contain only cell nuclei as 

scattering sources. It is clearly an approximation that the complex material microstructure 

of tissues stained with eosin can be assigned a single impedance value representative of that 

region. In reality, there could be various causes of scattering in glial tissue. In a study in 
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biophantoms, researchers  concluded that scatterers are most probably the whole cells or 

clusters of cells, rather than individual nuclei alone [187]. A more gradual change in acoustic 

impedance, as observed in Fig. 6.1 may have had greater suitability for the present study. 

Additionally, the study disregarded other structures such as blood vessels despite their 

presence containing some diagnostic potential. In fact, it was more difficult to select regions 

avoiding blood vessels in the HGG images than the LGG, which aligns with observation of 

increased microvasculature in HGG from techniques such as contrast enhanced ultrasound 

[103]. An improvement on this study would have seen the inclusion of acoustic properties 

of blood cells and vessels to provide a more extensive model of all scattering sources in soft 

tissue.  

This study was also limited in its confinement to 2D. It is not clear whether incorporating a 

third dimension would improve the classification potential of this technique. A possibility 

for 3D modelling is to prepare histology slides in-house to provide fine slices of 2D data, 

which could then be extrapolated to 3D. This was achieved by Mamou in his PhD thesis, 

where he created 3D acoustic impedance maps of rat mammary tumours [188]. The SAM 

results allowed inclusion of up to five materials to be represented in the acoustic impedance 

map: cell nuclei, cytoplasm, fat, red blood cells and surrounding material.  Without acquiring 

both SAM and H&E slide images in the lab, it would not be possible to allow a more complex 

mapping. When moving to 3D geometries, the model time or computing resources would 

need some additional consideration; however, if accomplished, the move would allow 

comparison with 3D scattering theories and estimations of system independent spectral 

parameters. 

6.5 CONCLUSIONS 

Upscaling the available QUS data from healthy and cancerous tissue gave an insight into the 

capabilities of simple binary classification for non-invasive tissue characterisation. The main 

conclusion was that it is far easier to differentiate between healthy tissue and HGG than 

between healthy tissue and LGG. A near perfect Gaussian SVM classifier could be created 

based on real-time QUS parameters including the attenuation slope and centre frequency 

value as a parameter for classification. However, when applying the same method to LGG 

classification, the accuracy dropped 24.5%, to 73.3%. Interestingly the KNN improved upon 

this result which gives the finding that it is not possible to resolve that one ML approach is 

more suitable for QUS analysis than another, with a major issue being that the choice is data 

specific.  
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An important finding with regard to the statistical modelling of the echo envelope was that 

the distribution collapsed to the Rayleigh distribution, which modelled a large number of 

random scatterers. As this is not what has been observed in practice, it is either a limitation 

of the binary acoustic impedance map or evidence that individual cell nuclei cannot be 

considered as scattering sources. Despite the limitations in this study concerning the 

oversimplification of microstructure, it was interesting to see that the combination of HGG 

and LGG to create a glioma group marginally improved the results to 84%. However, due to 

the large differences in LGG and HGG, the recall of the classifier was reduced and LGG was 

often incorrectly labelled as healthy. It is therefore fair to say that the small-scale structure 

differences in healthy and glioma tissue in reality will alter the received signal and this 

change is detectable and classifiable with QUS and ML.  

6.6 CHAPTER SUMMARY 

In this chapter, QUS parameters were able to distinguish between healthy tissue and HGG 

in silico with a 97.8% accuracy, while achieving only a 79% accuracy when classifying 

healthy tissue and LGG samples with the same approach. 900 tiles from diagnostic slide 

images of healthy tissue, LGG and HGG were used to create a binary acoustic impedance 

map in FEA by filtering the H&E staining to create a binary image meshed to a specific 

simulation geometry. The pulse-echo simulation mimicked that of a single element from the 

Verasonics L35-16v probe and pressure outputs throughout the entire simulation geometry 

were saved. The received pressure was used to estimate QUS parameters based on 

attenuation, the BSPS and statistics of the echo envelope. Utilising all parameters, the SVM 

outperformed the KNN technique and achieved a near perfect classification score to 

differentiate healthy tissue from HGG. However, the KNN technique was more accurate 

than a SVM in distinguishing between healthy tissue and LGG samples, though the accuracy 

was significantly lower at 79%. This study brought to light that the real challenge is to 

discern healthy tissue from LGG samples, as opposed to HGG, and this was accomplished 

with QUS and a binary classification algorithm. 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 AIM OF CHAPTER 

This chapter aims to compile the main findings from the original work contained in this 

thesis and provide guidance for further progress of research in this field. The main 

conclusions and questions raised from each of the preceding chapters are discussed. 

Particularly, the novelty of applying the techniques to brain tissue warrants future work, 

namely in validation of results found and consideration of LGG brain tumours. The 

preliminary results are encouraging for an in vivo trial and the steps needed to realise this 

aim are suggested.  

7.2 CONCLUSIONS 

The primary objective of this thesis was to explore the ways in which ultrasound could be 

used to differentiate healthy and diseased neural tissue for reasons described in Chapter 2. 

The literature review confirms there is a need for an interoperative imaging tool to aid glioma 

detection, and ultrasound is an attractive solution. The potential of QUS, described in 

Chapter 3, to add an additional quantitative layer of information in the application of brain 

tumour characterisation was determined to be the area of the focus for the remainder of the 

project. Overall, this study lays the groundwork in the field of HF QUS applied to brain 

tissue and the following conclusions are drawn. 

7.2.1 Machine Learning-enabled QUS for Tissue Characterisation 

The phantom work presented in Chapter 4 was essential for setting up a ML-enabled tissue 

characterisation system. It was found that chicken liver and gizzard muscle were reasonable 

soft tissue phantoms to test the experimental set-up for QUS parameter estimation. This 

verified that a modern research ultrasound system can be used to implement QUS ultrasound 

techniques and display quasi-real time parametric images. However, an important finding 

was that it was not feasible to image a 1.5 x 1.5 cm2 region with a pixel size of 1 x 1 mm2 

with the HK parameters intraoperatively. This is due to the time needed for computer 

solutions using the embedded binary search algorithms for each window, which took over 

10 minutes.  Using only real time parameters, QUS was able to correctly label liver and 

gizzard samples with an average accuracy of 95.5%. This chapter also noted that statistical 

QUS parameters did not change significantly when the tissue was fresh, frozen, or fixed, but 

the EAC did change in the case of fixed tissue. This result was used to aid the decision of 

which preserved ex vivo tissue to use in the following study as it would be highly 



158 

 

advantageous if acoustic properties were applicable in future comparisons to ex vivo 

measurements. 

7.2.2 Acoustic Characterisation 

The thesis contributed to current knowledge of the acoustic properties of healthy brain tissue 

and GBM through measurements of attenuation and speed of sound. The SoS estimates agree 

with current literature, but attenuation was slightly higher than the latest reports in human 

brain tissue at LF, indicating an attenuation coefficient closer to 0.9 dB MHz-1 cm-1. The 

frequency range was extended to 35 MHz for the first HF measurement of attenuation, which 

found the attenuation of GBM to be 5.1 dB higher than healthy tissue at a centre frequency 

of 25 MHz. The conclusion drawn from this was that the attenuation value itself can act as 

an additional QUS parameter to aid differentiation between healthy and cancerous tissue, so 

should be included in the binary classification results. 

7.2.3 Differentiating Healthy and HGG Neural Tissue using QUS 

The preliminary analysis of HF QUS results showed that a 25 MHz system is able to measure 

all QUS parameters successfully using a linear array exciting each element sequentially. This 

novel acquisition method was utilised as the simplest way to derive a large number of QUS 

results from the small tissue samples available, which allows an aggregate measure of the 

statistical parameters and provides five sets of results per sample. It is also applicable 

intraoperatively. The average results were found, and the EAC and mean echogenicity had 

significant differences in the two tissue types when analysed with conventional student’s t-

test. All results were then used to train a classifier which achieved an 89.9% accuracy, 

highlighting the benefits of a multiparametric approach. 

7.2.4 Microultrasound  Analysis 

The analysis at 74 MHz pushed QUS beyond the boundaries of current knowledge with HF 

implementation, with several key findings. Firstly, it is imperative to ensure the data 

acquisition system is compatible with the high level of gain required to collect data from the 

tissue region in the presence of attenuation, without losing information through clipping 

distortion. Despite this main challenge, the images formed gave a crucial insight into the 

difference in scattering level observed through speckle at this scale. The general statistics 

from the B-mode pixel intensity found the mean value to be significantly higher in cancerous 

tissue, which is expected, and this additional quantitative layer may be useful on a clinical 

level. Using the HK-distribution parameters, the tissues could be categorised correctly with 

96.0% accuracy. This supports the relevance of the model parameters of the HK-distribution 
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in the context of tissue characterisation. While the computation time limits the capability for 

real time imaging, it is still possible to obtain one set of HK parameters in a reasonable time, 

so these parameters should not be ruled out for clinical use. The availability of processing 

through network connection from the OR to the computing cloud is also worth considering. 

7.2.5 QUS in FEA 

Difficulties in data acquisition, in sourcing a large number of tissue samples and in working 

with them to obtain consistent data were overcome in the FEA analysis. This study simulated 

the HF QUS study with research ultrasound array elements but used over 900 2D tissue 

models in the analysis. The main finding was that ML-enabled QUS can identify HGG much 

easier than it can LGG. This agrees with the literature, that the acoustic contrast between 

healthy and LGG is much less, so it is harder to differentiate. This was quantified by an 

average of 10.2% lower classification accuracy for LGG when compared to HGG and 

brought into question whether the most valuable ex vivo tissue sample to source was the 

HGG.  

After this study was conducted, discussions of the results with a neurosurgeon (Dr M.Draz, 

Queen Elizabeth University Hospital, Glasgow) revealed it is not necessarily harder to 

visualise HGG over LGG in the OR, as was the initial aim of this study. The detection of 

LGG would make the most impact on patient prognosis, as a full resection could make a 

large improvement to a patient’s lifespan, which sadly is not the case for GBM. At this level 

of malignancy even several cells left unresected will continue to divide and multiply until 

eventually the cancer has returned. Patients with LGG have a better overall prognosis with 

complete resection and chemotherapy.   

It was an essential step to conduct the ex vivo work using the most extreme differences in 

tissue microstructure, between healthy and HGG, to prove the capabilities of QUS in 

combination with HF ultrasound. Now, it must be applied to a more challenging 

differentiation task, which will require some innovative improvements through data 

acquisition, more sophisticated methods of binary classification, and utilisation of FEA to 

its full potential. 

7.3 RECOMMENDATIONS FOR FUTURE WORK 

7.3.1 In vivo QUS 

Thus far, all experiments were carried out in a laboratory setting but, with intended 

application in an intraoperative device, it is imperative to test the feasibility of these 
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techniques in vivo. In particular, there is difficulty obtaining the attenuation of tissues, and 

thus spectral parameters, without a reference scan and excised tissue of known thickness. 

There have been several studies published on in vivo methods to determine attenuation 

through either the spectral shift method or amplitude decay using the B-mode image alone 

[189]. Recent techniques have been adopted, which are often used in the context of QUS, 

known as the reference phantom method. This uses a well-characterised material to estimate 

the linear attenuation coefficient and BSC of tissue from the ratios of signals received from 

the sample and reference phantom based on the frequency dependence at a given depth [190].  

However, the phantoms can be difficult to manufacture and are not well characterised at high 

frequencies. There are some methods which allow an in vivo attenuation measurement using 

the unprocessed data, based on measuring average decay of the received signal through the 

tissue [191].  Most ultrasound systems in the OR are qualitative, so only an image is 

available, in which TGC may be applied. If access to raw data is required, then a system 

with research capabilities should be considered.  

The full potential of the Verasonics Vantage System in an in-vivo setting must be explored. 

It has the capability to display real-time, high quality images, while still allowing parallel 

collection and processing of the RF data. This would allow an in vivo attenuation estimation 

and statistical approaches to be considered on the echo envelope. As well as this, there is 

almost limitless flexibility in transmission modes which could be explored. This work saw 

implementation of 60 elements of a linear array transmitting simultaneously in Chapter 4, 

then all elements transmitting and receiving sequentially in a HF array Chapter 5. Some 

examples of innovative methods for data acquisition in the context of QUS are listed here: 

• Using a linear array to transmit and receive in a sweeping window sequence using a 

smaller aperture, for example, using only 8 elements to transmit and receive before 

shifting several elements and repeating the process over the full 128 elements. This 

would allow a larger signal to be directed to the tissue region at any given time while 

still maintaining high resolution in a QUS parametric image.  

• Full matrix capture: where one array element transmits, and then all 128 receive. 

This is typically used in non-destructive testing [192] but, if incorporated into the 

context of BSC measurements with sufficient system sensitivity, it would maximise 

the information from the raw data received. 
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• Custom transducer design, powered by Verasonics. The system in not limited to 

using commercial probes, so a custom array specifically for neurosurgical 

application could be used, granted the upper frequency does not surpass 62.5 MHz. 

As the next step towards in vivo QUS, it is recommended an animal trial is conducted, with 

the aim of using the Verasonics system on porcine brain, obtaining attenuation, spectral and 

HK parameters of healthy brain tissue.  

It is also possible to use the Verasonics on human patients in the operating theatre, so long 

as relevant ethical approval and risk assessments are in place. This will require measurement 

of the output acoustic pressure of the transducer while it is operating for the required 

application, to ensure it does not exceed the maximum mechanical index (MI) deemed safe 

for human use. The MI quantifies the bioeffects from the acoustic beam and should not 

exceed 1.7 as stated in the guidelines for safe ultrasound imaging by the British Medical 

Ultrasound Society [193]. In preparation for this application, a measurement was made using 

a needle hydrophone placed 1 mm in front of the LF Verasonics array when exciting all 

elements at a maximum voltage of 50V. The output pressure measured by the hydrophone 

was used to calculate the MI over a 2D scan and the results are shown in Fig. 7.1. 

 

Figure 7.1: MI from Verasonics using 

acoustic pressure measurements from needle 

hydrophone. Image courtesy of Dr Alex 

Moldovan. 

 

The results show that the pressure output is safe for use on human tissue, and may be feasible 

to utilise this probe in a clinical trial. However, especially at higher frequencies, 

considerations should also be made to the Thermal Index (TI), which measures the thermal 

bioeffects from the ultrasound source. A similar map should be made of the thermal effects 

from this probe before application for clinical trial. The ultimate aim would be to assess the 
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ability of ML-enabled QUS to correctly predict glioma regions in vivo. The binary classifier 

accuracy will be determined based on labels given by a clinician as the ground truth. If 

successful, this would act as a non-invasive aid to the neurosurgeon.  

Alternative approaches to the method described above for measuring BSC include the 

reference phantom method, which allows a quick and simultaneous measure of the 

attenuation and BSC [194].  In short, signals are compared to a reference phantom, usually 

agarose with embedded scatterers of known attenuation and BSC is calculated from Faran’s 

scattering theory [29][195]. Importantly the distribution of scatterers must be known, so the 

laboratory set-up involved to accurately prepare a suitable phantom is time-consuming 

[196].  

7.3.2 Further FEA Exploration 

One area in which FEA will have immense value is in custom device prototyping. Often, in 

neurosurgery a burrhole is used to conduct the surgery and so typical linear arrays may not 

be suitable for this application. As an extension to the study described in Chapter 5, a full  

3-D piezoelectric device could be simulated, so parameters such as ESD and EAC could be 

found. FEA would allow easy manipulation of device configuration for proof of concept, 

such as the number of elements and  centre operating frequency, which can then be optimised 

for this specific application. This would, however, require a representative 3-D model of 

healthy and cancerous brain tissue. 

As discussed in Chapter 5 the model could be improved by considering other material 

properties present in the samples. The creation of 3D impedance maps could also be realised 

through histology slices.  

7.3.3 Reference Free  QUS 

Traditional QUS and binary classification approaches were utilised in this thesis and shown 

in Chapter 3 to have a strong theoretical framework, which has developed over several 

decades. Fairy simple ML classification was used to explore their potential for However, 

there are various improvements on the current study, namely optimisation of the feature 

selection. In the present study, all features received the same weighting, and different 

combinations of features were used to train different algorithms to determine the most 

valuable parameters. An improvement to this approach would be to incorporate feature 

weighting into the classification algorithm, which may improve accuracy. This is achieved 

by estimating the relative importance of each feature for the specific classification task, and 

assigning it a corresponding weight, in which higher weighing features have more influence 
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in the classification task. Another improvement could be use of a ensemble methods, which 

combines the predictions of several models, and has been shown to improve accuracy and 

robustness of a single model. This can be achieved ether by averaging or boosting methods 

to produce an improved estimator [197]. 

To realise the full potential of ML in tissue characterisation with ultrasound, recent studies 

are moving away from traditional QUS methods. Both spectral and statistical methods have 

their drawbacks. It was noted that most implementations of spectral methods require a 

reference scan, which is a hindrance to its use in vivo as it could cause disruption in a clinical 

setting. Termed reference-free QUS, some initial studies are using a convolutional neural 

network (CNN) for tissue classification as a means of eliminating the need for a reference 

step.  

CNNs are a type of supervised machine learning. A CNN learns a non-linear mapping from 

the input (backscattered RF data) to the output (pathologic index healthy tissue or tumour). 

It achieves this via stacking multiple connected convolutional filter layers at different 

resolutions. The learned features from the layers can then be concatenated into a vector and 

classified by fully connected layers. Recently, a CNN outperformed the classification 

utilizing the QUS parameters combined with a support vector machine in differentiating 

between low and high lipid liver levels, with accuracies of 74% versus 59% on the test data 

[198]. Therefore, although the CNN did not provide a physical interpretation of the tissue 

properties, e.g., attenuation of the medium or scatterer properties, it had much higher 

accuracy in predicting fatty liver state and did not require an external reference scan. 

Furthermore, there is no requirement for the input to the CNN to be raw data, and the image 

data alone could be used. 

In the present study, work was carried out as a preliminary step to conduct a short, in vivo 

reference-free study in glioma patients at the Queen Elizabeth University Hospital, Glasgow. 

However, time constraints and the COVID-19 pandemic meant the study was not feasible. 

The research protocol is given as in Appendix V.  

Briefly, images would be collected from glioma patients using a Flex Focus 800 clinical 

ultrasound machine (BK Medical, Denmark) with a specialised craniotomy probe with a 

bandwidth of 4 - 10 MHz (Probe 8862, BK Medical).  Identical system settings would be 

used for all images and they would be saved in a specific pre-set. Then before tumour 

resection, the surgeon would identify the cancerous region in several B-mode images, which 

could be annotated. This procedure would be repeated over the course of tumour removal 
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until the surgeon stopped, then all the data would be used to train a ML algorithm to identify 

cancerous regions on the B-mode images, using the surgeon’s initial judgement as ground 

truth.  

ML has already shown to be powerful at aiding brain tumour detection in medical images 

[199]. However, most research has focused on CT and MRI data, so the use of ultrasound 

images features and ML, particular in brain tumour application is still in its early stages. 

Whether QUS-based or reference free, it is predicted that more ML technology will be 

integrated in tissue characterisation in the future. The ultimate goal is not that these will 

replace the judgement of the surgeon but rather aid them to increase the extent of tumour 

resected and improve patient prognosis. 
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APPENDIX I: In situ and 3D ex vivo Imaging of Porcine 

Brain over Frequency Range 14-30 MHz. 

Aim: To test the ability of current state of the art ultrasound imaging systems to image the 

neuroanatomy of a porcine brain using two probes operating at centre frequencies of 14 MHz 

and 30 MHz respectively. This was carried out both in situ and ex vivo using a SonixTouch 

Q+ (BK Medical, 2015) clinical ultrasound machine. 

Methodology: During an in vivo pig trial for the Sonopill program at Dryden Farm, 

University of Edinburgh, there was an opportunity to image one porcine brain in situ, and 

harvest two brains for ex vivo imaging. Directly after euthanasia, the skull was removed by 

the mortician to reveal the brain as shown in Fig. 1. 

a) 

 

   b)       

        

 

Fig. 1 (a) Base of skull before removal  

(b) Exposed brain tissue after dura removal. 

Ultrasound scans were performed by using both the linear 5 - 14 MHz and linear 15 - 40 

MHz probes. Sagital and coronal scans were captured in static images and video. Several 

landmarks were identified such as the cerebellum, ventricles, central sulcus, blood vessels 

and corpus callosum. All image and video data was saved onto the BK machine and could 

be transferred to a PC. After scanning the brain was removed from the cranial cavity by the 

mortician. The tissue specimen was washed and placed in a sealable container which was 

then filled with a solution of 2% formaldehyde diluted with PBS solution. The container was 

then placed in a fridge while the second pig trial took place.  

The same procedure was carried out on Pig 2, and both brains were triple packaged and 

labelled ‘EXEMPT ANIMAL SPECIMEN’ along with suitable warnings regarding the 

formaldehyde. They were transported to the University of Glasgow in a journey that took 

approximately 80 mins. The following day, one brain was removed from the formaldehyde 

solution and placed in PBS. The structure of the brain had been maintained and the tissue 

did not feel artificially hard but had a stiffer texture than fresh tissue.  
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The footprint of the transducer was smaller than the width of the brain, so to obtain a full 

volume acquisition, the probe was clamped to a 2-axis motor and scanned over the entire 

tissue volume (Fig. 2). This was beneficial as it allowed a steady acquisition at the same 

distance to the brain tissue. For the strain elastography acquisition, the brain was incased in 

agar and the motor lowered the transducer to provide a pressure on to the agar to allow 

strain imaging to occur. 

 

Figure 2: Motorised scanning of porcine brain with 

commercial ultrasound system. 

  

Videos of the scans from the SonixTouchQ+ were processed in MATLAB (The 

MathWorks, 2017b) to extract each frame and concatenate parallel scans. ImageJ was used 

to create an interactive 3D volume, which were then processed to be shown in the coronal, 

sagittal and axial planes. 

Results: Images shown below were taken using the 14 MHz probe in situ, the image depth 

is 5 cm for all images. Clear structures can be seen from main blood vessels in the centre 

of the brain. The cerebellum, which is the structure located toward the spinal cord, can also 

be seen in final image in the coronal scans in Fig. 3a. In the sagittal scans, the folds of the 

cerebral hemisphere can be seen. The dynamic range is only 40 dB, which may have been 

too low to pick up any scattering in brain parenchyma.  
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Brain 1 Coronal in situ scans. Images taken from a video moving from the eyes to 

the back of the skull 

 

Central Sulcus Corpus Callosum 

and ventricles 

Corpus Callosum 

and Basal Ganglia 

Cerebellum 

 

Brain 2 Coronal in situ scans, again scanning from eyes to back 

Central Sulcus  

 

Blood Vessels Ventricles and blood 

vessels 

Cerrebellum 

 

Brain 1  Sagittal in situ scans from left to right. 

Left lateral 

Ventricle 

Blood vessels/ 

central sulcus 

Corpus Callosum/ 

Basal Ganglia 

Right lateral 

ventricle 

Figure 3: 14 MHz array scanning of porcine brain in situ. a-b are coronal views whereas c 

is achieved by rotating the probe 90°. 

The results of the motorised scanning are shown in Fig. 4, which used a dynamic range of 

70 dB. 

c

) 
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The key difference between the scans at 14 MHz and 30 MHz, particularly in the coronal 

view is the delineation of white and grey matter only occurs at the higher frequency. The 

various gyri and sulci (folds in the cerebral hemisphere) are much more pronounced in the 

sagittal scans at HF. The ventricle is shown clearly at 14 MHz, but the HF scan shown did 

not occur deep enough into the brain to show these. Ultimately, it is clear there is increased 

resolution, yet comparable scattering observed with the two probes. 

 

Figure 5: Elastography images of porcine brain. Red indicates regions of higher 

stiffness, whereas blue shows regions of lower stiffness. 

 

The elastography images show the brain is stiffer than the surrounding agar encasing it, 

however the resolution is significantly reduced, especially in the 30 MHz scans. The 

ventricle is observed as the blue region within the brain in the sagittal view using the 14 

 

Figure 4: B-mode images using two transducers. Key for anatomical structures: Ventricles (V), 

Corpus Callosum (C),  Blood vessels (B), Sulci (S), White Mater (W), Grey Mater (G) 
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MHz. The resolution dropped considerably with depth, as the force may not have been 

enough to deform deeper structures in the brain due to its material properties. 

Conclusions: The 30 MHz scans show superior resolution but cannot reach structures 

deeper than 3cm. It was sufficient to delineate white and grey matter, so could be of use in 

identifying healthy and cancerous regions in vivo. However, this scanning technique did 

not yield high quality elastography images as more compressional force is required.  
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APPENDIX II: Algorithms involved in computation of 

HK parameters from X and U statistic. 

% Algorithm for calculating function gamma alpha X - Figure 4 

Flow 

function gam_out = gam_alphaX(alpha,X) 

    gam_1 = 0; 

    gam_2 = 1; 

    T = 0.0001; 
  

    while solve_X(alpha,gam_2) >= X 

        gam_2 = gam_2 + 1; 
         

    end     
     

    while abs(gam_2-gam_1)>T 

            gam = (gam_1+gam_2)/2; 

            if solve_X(alpha,gam) <= X 

                gam_2=gam; 

            else 

                gam_1= gam; 

            end 

    end 

     gam_out(1) = gam_1; 

end 

 

% Algorithm for HK-distribution parameters - Figure 5 flow 

chart 

function [a_out,g_out]= find_gam_alpha(X,U) 

    a_1=0; 

    a_0 = 1/(X-1); 

    T=0.0001995; 

    if X<= 1 

        a_2 =1; 

        gam = gam_alphaX(a_2,X); 
     

        while solve_U(a_2,gam) >= U 

            a_2= a_2 +1; 

            gam=gam_alphaX(a_2,X); 

        end   
     

    else  

        a_2= a_0; 

    end 
  

    while abs(a_2-a_1)>T  

        a = (a_1+a_2)/2; 

        gam = gam_alphaX(a,X); 
     

        if U>=solve_U(a,gam) 

            a_2=a; 

        else 

            a_1=a; 
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    end 

    a_out = a; 

    g_out = gam; 

end 

 

%Algorithm for HK dist - flow 6 

function [eps,sig,alpha] = find_parameters(X,U,I) 

    a_max = 59.5; 

    if X<=1 

        a_star = a_max; 

    else 

        a_0 = 1/(X-1); 

        a_star= min(a_0,a_max); 

    end 

    g_star =gam_alphaX(a_star,X); 

    if U>= solve_U(a_star,g_star); 

        [alpha_sol,gamma_sol] = find_gam_alpha(X,U); 

    else 

        gamma_sol = gam_alphaX(a_star,X); 

        alpha_sol = a_star; 

    end 
     

    eps = I*gamma_sol/(gamma_sol+alpha_sol); 

    sig = I/(2*(gamma_sol+alpha_sol)); 

    alpha = alpha_sol; 

 

%Function to calculate X-Statisitc for given alpha and gamma 

values 

function X_out =calc_X(alpha,gam) 

    X_out = (1+2*alpha)/(gam+alpha) - 

2*gam^(alpha/2+1/2)*besselk(alpha+1,2*sqrt(gam))/((gam+alpha)

*gamma(alpha))+(gam/(gam+alpha))*(hypergeom([1,1],[2,2,1-

alpha],gam)-(pi/sin(pi*alpha))*gam^(alpha-1) 

*hypergeom(alpha,[1+alpha,1+alpha],gam)/(gamma(alpha)*gamma(1

+alpha))+(pi/sin(pi*(alpha+1)))*gam^alpha*hypergeom(1+alpha,[

2+alpha,2+alpha],gam)/(gamma(alpha)*gamma(2+alpha)*(1+alpha))

-alpha/(alpha-1)*hypergeom([1,1],[2,2,2-alpha],gam)); 
    

end 

%Function to calculate U-Statisitic for given alpha and gamma 

function U_out = calc_U(alpha,gam) 

    U_out = -double(eulergamma)-

log(gam+alpha)+psi(alpha)+pi*gam^alpha*hypergeom(alpha,[1+alp

ha,1+alpha],gam)/(sin(pi*alpha)*alpha*gamma(alpha)*gamma(alph

a+1))+gam*hypergeom([1,1],[2,2,2-alpha],gam)/(alpha-1); 

end 
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APPENDIX III: Application form for Human Tissue 

samples.

Name of Research 

Study: 

Quantitative Ultrasound Differentiates High Grade Glioma and 

Healthy Brain Tissue ex vivo 

Principal Investigator (PI) Contact Information 

Name: Hannah Thomson 

Name of Organisation: University of Glasgow 

Division or Department: Centre for Medical and Industrial Ultrasonics, School of 

Engineering 

Contact email: 

h.thomson.3@research.gla.ac.uk

Contact 

telephone: xxxxx

Full Postal 

Address: 

Hannah Thomson  

James Watt School of Engineering, 

James Watt South Building,  

Engineering Way, University Avenue, 

Glasgow, G12 8QQ 

Contact Person (if different from PI named above) 

Name:  Sandy Cochran 

Name of Organisation:University of Glasgow 

Division or Department: Centre for Medical and Industrial Ultrasonics, School of 

Engineering 

Contact email: 
sandy.cochran@glasgow.ac.uk 

Contact telephone: 

Full Postal 

Address: 

Sandy Cochran  

James Watt School of Engineering, 

James Watt South Building,  

Engineering Way, University Avenue, 

Glasgow, G12 8QQ 

Name of Research Governance Sponsor *: University of Glasgow 

*This is usually the institution where the research is taking place (not BRAIN UK).  It is to ensure

compliance with and support from the sponsoring local institute and needs to be done before the 

study becomes active.  
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Has the study received a favourable opinion from a UK Research Ethics 

Committee? Yes/No 

If ‘yes’ please provide a copy of the approval letter from the Ethics Committee.   

 

  

Has the study secured funding? Yes/No 

If yes please provide the source and period of funding:  

UK Engineering and Physical Sciences Research Council (EPSRC) National Productivity and 

Investment Fund studentship, with Stryker Medical Devices 

 

1. Details of tissue and/or data requirements 

Please summarise the cases you require and include all of the following information: 

• Number of cases  

• Diagnosis 

• Data relating to the cases that you require 

• If you have identified potential cases, please provide the details  

Number of cases: Min 5, ideal 10: 

Diagnosis: Glioblastoma Multiforme 

Data: Age,sex, PM delay  

Cases identified: None 

 

 

 

Type of tissue required*Please highlight those that apply  

Post-mortem       

Biopsy (from living patients) 

Formalin Fixed Paraffin Embedded (FFPE) 

Frozen 

None (Data Only) 

Other*Please 

specify 
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2. Study Protocol 

Please complete the sections below thoroughly and concisely.  Omissions and incomplete 

sections will result in a delayed review process.  If available, please also attach a copy of 

local or external peer review of the study.  Please feel free to contact us for advice. 

 

• Study Title: Quantitative Ultrasound Differentiates High Grade Glioma and 

Healthy Brain Tissue ex vivo 

 

• Contacts And Co-Investigators (If Applicable) 

Both investigators are listed above. 

 

• Lay Summary 

When someone is having an operation on their brain to remove cancerous tissue, it can be 

difficult for the surgeon to know where the cancerous tissue ends and the healthy tissue 

begins. Ultrasound is a useful tool which can quickly provide images to help visualise 

different tissues in the body, including the brain. However, it is currently limited in 

resolution, so the images are not very clear at showing all the cancerous areas the surgeon 

should remove. When ultrasound is introduced into tissue, it scatters in all directions 

because of the very small cells that make up the tissue, just as light scatters in mist or fog. 

However, the ultrasound will scatter differently in cancerous areas because there are more 

cells grouped closer together in these regions. If these signals are carefully analysed in 

samples of healthy and cancerous brain tissue, that may allow us to pin down certain 

values, called quantitative ultrasound parameters, which will tell us more about the 

underlying organisation of the cells in the tissue. A notable difference in these values in 

tissue may then tell us if it is healthy or cancerous, allowing us to improve the normal 

ultrasound images. It may even be possible to train a computer program to advise the 

surgeon whether or not tissue is cancerous or healthy, allowing them to carry out more 

complete removal of brain tumours. 

 

• Abbreviations 

QUS   Quantitative Ultrasound 

MRI  Magnetic Resonance Imaging 

RF      Radio-frequency 

 

• Background 

o Literature review  

Brain shift causes errors when using high resolution preoperative MRI images during 

tumour removal surgery, so there is need for a real-time update  [7]. Furthermore, as 
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tumour surgery proceeds, especially in glioma resection, the margins of tumour 

boundaries can become difficult to determine due to lack of acoustic contrast between the 

tumour and healthy tissue. There is evidence showing that the use of ultrasound as a real-

time update can increase the completeness of tumour resection in neuro-oncology [13]; 

however, there is still difficulty to completely delineate the most infiltrative tumour types. 

Quantitative ultrasound (QUS) infers properties describing tissue microstructure by using 

mathematical scattering theory and statistical modelling to model ultrasound interaction 

with tissue structures [200]. QUS has shown success in identifying cancerous regions 

including ocular tumours, detecting lymphatic metastases, classifying breast masses, and 

identifying tumours in the prostate [32][201]. To date, there has been only one report of 

measurement of attenuation and backscatter coefficients in the human brain and 

meningioma in vivo, with promising results [133]. There has been no report of any of other 

QUS parameters in any mammalian brain, ex vivo or in vivo, or tumour for differentiation.  

 

• Clear explanation of research 

 

Scattering arises when ultrasound is incident upon an acoustic inhomogeneity smaller 

than its wavelength (< 200 microns at 7.5MHz). Tissue constituents, when modelled 

mathematically, can cause ultrasound to scatter incoherently and the backscattered data 

can be used to obtain specific parameters (e.g. scatterer size, structure parameters).  

 

The list of quantitative ultrasound parameters that are planned to be measured are as 

follows: 

• Bulk properties - attenuation and backscatter coefficient; 

• Echogenicity parameters - moments of the distribution of echogenicity values 

assigned; 

• Spectral parameters of US signals received - Lizzi parameters, scatterer size and 

acoustic concentration 

• Statistical parameters - Nakagami parameters, scatter clustering parameters, 

homodyned K-distribution parameters 

 

Direct examination and machine learning will be used to determine whether any 

combination of these parameters can differentiate glioma from healthy tissue. 

 

o Potential benefits 

 

A short-term benefit of this research is to allow the first application of QUS in neural 

tissue, which will help understanding whether ultrasound scattering in brain tissue can be 

described by general ultrasonic scattering models. 
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If key differences are found in the distribution and size of scattering sources in healthy and 

cancerous neural tissue then a medium-term benefit of this study will be to support trials 

to study the technique in vivo.  

 

Furthermore, a related study is planned to look at the effect of freezing on these QUS 

parameters. If the results from frozen tissue can be translated to in vivo measurements, 

then a long-term benefit from this study will be improved glioma resection as a result of 

tissue classification based on real-time QUS imaging, if the hypothesis is proved. 

 

Feasibility/time scale 

• A MATLAB framework has already been developed to calculate the QUS 

parameters from small samples of tissue phantoms. 

• The necessary QUS measurements on the glioblastoma tissue will take only one 

day. 

• The data from healthy samples will depend on availability in the Edinburgh Tissue 

bank and are expected to be available in early 2021. 

• Once all the data are acquired, the analysis can begin: various machine learning 

classifiers will be tested to differentiate the tissue types, with plans to have a 

manuscript for publication prepared by April 2021. 

 

• Aims 

The first aim of this study is to measure QUS parameters accurately from small 

sections of ex vivo glioblastoma. This will be achieved by analysing raw ultrasound 

data scattered back to an ultrasonic array transducer after insonation by plane waves 

using code written in MATLAB. The second aim is to use these results to test the 

ability of QUS to differentiate between healthy tissue samples and glioblastoma ex 

vivo. This will be achieved by repeating the measurement process for healthy white 

matter tissue from another MRC institute  

 

• Study Design and Methods 

o Inclusion and exclusion criteria 

Inclusion: Samples which are histologically verified as being wholly glioblastoma  

Exclusion: Samples should have a minimum size of 3 mm x 3 mm x 3 mm. 

 

o Methodology - use of tissue 

To achieve the aims, we will use a Verasonics research ultrasound system (Vantage 

128, Verasonics, Kirkland, WA, USA) (Fig. 1a) to test tissue samples and store 

unprocessed radio-frequency data from the insonated tissue. Data is acquired first 

from a reference reflector and then from the tissue sample placed above the reference 

reflector (Fig 1b). QUS parameters are calculated over 3 mm x 3 mm regions, using a 

sliding window technique for the entire tissue volume, with digital signal processing 
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code written in MATLAB. The sliding window technique will allow maximum data 

acquisition for the small tissue volume, which will reduce variance in the QUS 

parameters. The measurements will be made with a probe operating at conventional 

medical ultrasound frequencies (L11-5 MHz) and with one operating at high frequency 

(L35-16 MHz) to probe smaller acoustic inhomogeneities in the tissue. Average 

estimates will be obtained for each sample by conducting multiple data acquisitions for 

each scan (100 averages). Then these scans will be repeated over the entire tissue 

region to obtain the estimates over a different acoustic path in the tissue. At least 20 

different ‘slices’ through the tissue volume will be used to ensure the estimates 

obtained from limited tissue sizes still have the statistical power to carry out this 

research 

  

Fig. 1 Verasonics Vantage system 

with 5 - 11 MHz probe 

 Experimental Set-up for data acquisition 

from tissues 

 

o Justification for sample size 

In order to obtain an accurate statistical representation of ultrasound scattering in 

tissue, the region studied should be at least 10x the wavelength of ultrasound in 

the medium [26]. This corresponds to around 3 mm in brain tissue at the lowest 

ultrasound operating frequency. The heterogeneous nature of both brain and brain 

tumour means there could be high inter-sample variability in the QUS 

measurements. Therefore, ten samples are requested to ensure there is sufficient 

data to train and test a machine learning classifier. 

 

• Analysis 

Using the sliding window technique, repeated measurements and different 

orientations of the sample we will maximise the amount of QUS data from each 

sample. Both intra- and inter- sample variability will be assessed by first preparing 

a Q-Q plot to confirm that the results are normally distributed for each QUS 

parameter, followed by the appropriate hypothesis test. 

 

The ability of the binary classifier to correctly identify whether a result comes from 

a healthy sample or glioblastoma will be analysed using 80% of the results for 

training and 20% for testing. The accuracy of the predicted class will be 

a b 
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determined by generating a confusion matrix and calculating the area under the 

receiver operating characteristic (ROC) curve [140]. 

 

• Publication 

This study will include novel research in the field of QUS in neuro-oncology and 

will advance the topic of real-time tissue differentiation significantly. A reviewed 

journal paper detailing the ability of QUS to differentiate high grade glioma and 

healthy brain tissue ex vivo will be prepared for publication in a high-impact 

technology journal such as IEEE Transactions on Medical Imaging (IF 9.7) or a 

specialised journal such as Ultrasound in Medicine and Biology (IF 2.5). 

 

• Further Work 

This ex vivo trial is the first step toward in vivo application. Another study is 

planned to compare QUS measurements in vivo, ex vivo and in tissue that has 

been frozen to study the extent at how the QUS parameters change in these three 

situations. This will be done on healthy ovine or porcine brain tissue. Depending 

on the results, we plan to move towards an in vivo human trial in 2022, with data 

obtained from ultrasound scans on patients’ brains during neurosurgery.  
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 APPENDIX IV: Ethical Approval Letter

Hannah Thomson 

James Watt School of 

Engineering James Watt 

South Building Engineering 

Way, University Avenue 

Glasgow 

G12 8QQ 

UK BRAIN ARCHIVE 

INFORMATION NETWORK 

Director: Prof James AR 

Nicoll Deputy Director: 

Dr David Hilton email: 

brainuk@soton.ac.uk 

Phone : +44 23 8120 

8560 

www.brain-uk.org 

11th December 2020 

Dear Hannah (cc: Prof Cochran), 

BRAIN UK Ref: 20/013 Quantitative Ultrasound Differentiates High Grade Glioma 

and Healthy Brain Tissue ex vivo 

After review of the information provided by you, I am pleased to inform you that the above study 

has been granted approval by BRAIN UK. As this study conforms to the criteria laid down by the 

South Central – Hampshire B Research Ethics Committee (REC) it may proceed under the 

generic Ethical Approval given by this REC. A copy of these acceptance criteria is attached for 

your information and records. 

I will forward the contact details for Participating Centres that are able to potentially provide you 

with tissue for your study once they have confirmed their participation. Please note that you 

must register your study with the relevant Research and Development office prior to being able 

to obtain tissue from any of these sites. 

Please note that you must obtain separate ethical approval for any cases obtained outside of 
BRAIN UK. 

Once you have received the tissues, please email brainuk@soton.ac.uk confirming the lab 

numbers and supplying centre/s of the received samples. This allows us to enhance the service 

both in terms of improving the sample information held within BRAIN UK and by encouraging 

collaboration amongst researchers using similar samples. We will not share any details but may 

highlight that other research is being done either on the same samples or in the same area of 

research in order for you to consider if collaboration is appropriate. 

Additionally, you are also obliged to provide BRAIN UK with annual updates concerning the 

progress of your study and to deliver evidence of the conclusion of your study. Any material 

published as a result of the use of tissue derived via BRAIN UK must also be acknowledged 

accordingly. Please do not feel that you must wait until the annual report to tell us about any 

publications or research output for this study; you can email details to brainuk@soton.ac.uk at 

any time and we will include these within a pre-filled annual report for your convenience. 

Further information regarding these obligations is covered in greater detail in the attached 

Terms and Conditions which you have agreed to abide by. If you have any further questions or 

mailto:brainuk@soton.ac.uk
http://www.brain-uk.org/
mailto:brainuk@soton.ac.uk
mailto:brainuk@soton.ac.uk
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require further clarification then please do not hesitate in contacting BRAIN UK. 

We would like to thank you for using BRAIN UK and we would like to wish you every success 

with your current and future research undertakings. 

Yours sincerely, 

Prof. James A R 

Nicoll BRAIN 

UK Director 

Mailpoint 825, Level F, Laboratory and Pathology Block, Southampton General Hospital, SO16 6YD 



201 

APPENDIX V: Research Protocol: Reference free QUS 

in GBM patients 

Research Protocol – Quantitative Ultrasound in 

Neuro-oncology 

Hannah Thomson , Prof. Sandy Cochran and Dr Mohammed Draz 

Title: Reference Free Quantitative Ultrasound for 

Intraoperative Brain Tumour Identification 

Chief Investigator: Hannah Thomson, PhD Student, University of Glasgow 

h.thomson.3@research.gla.ac.uk, xxxxxxxxxxx

Investigators: Professor Sandy Cochran, University of Glasgow 

Sandy.Cochran@glasgow.ac.uk 

Dr Mohammed Draz, Queen Elizabeth University Hospital 

Funder: European Research Council (EPSRC) 

Stryker Medical Devices 

Lay Summary 

During brain tumour removal surgery, the high quality MRI images become out of date as 

the brain moves during the operation[7]. Ultrasound is routinely used as a real-time 

imaging technique to locate the tumour accurately, however, it can be difficult to see the 

boundaries of the tumour clearly using conventional ultrasound images. The speckled 

appearance of an ultrasound image is caused by scattering within the tissue when 

ultrasound interacts with tissue microstructure. These speckled patterns may be difficult for 

humans to interpret, but it is hypothesised that a computer could analyse the images and 

detect differences in the speckled pattern between healthy and cancerous regions. If a large 

number of images are used, the computer could learn to classify regions of the image into 

healthy and cancerous areas in almost real time, to provide valuable information to help the 

neurosurgeon detect any residual tumour. This would maximise the amount of tumour 

safely removed and improve patient prognosis.  

Introduction 

Rationale 

Ultrasound is a useful real-time imaging modality used to localise the brain tumour after 

craniotomy. A real-time image is needed due to brain shift, where the high resolution MRI 

images become out of date as the surgery proceeds, meaning it can be difficult to localise 

the tumour using the registered images alone[97]. However, the resolution of ultrasound 

images is less than MRI, and particularly in glioma cases, the lack of acoustic contrast 

mailto:h.thomson.3@research.gla.ac.uk
mailto:Sandy.Cochran@glasgow.ac.uk
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between healthy and cancerous tissues means ultrasound fails to clearly depict the margins 

of the tumour [100]. There is the need for a high resolution imaging tool which can detect 

cancerous regions of tissue intraoperatively to improve the extent of resection and hence 

patient prognosis [6]. 

Background 

Ultrasound is completely safe to use directly on the human brain with commercial 

equipment and has been shown to aid tumour differentiation and improve the extent of 

tumour resected in brain tumour surgery[4-5], however fails to clearly depict glioma 

margins after surgery proceeds. 

Ultrasound images typically have a grainy structure to them, and these patterns arise from 

scattering in tissue, when ultrasound encounters an acoustic boundary of a size smaller 

than its wavelength [60].  Tissue can be modelled mathematically in terms of scattering 

sources, such as cell nuclei, and surrounding material. The scattering of ultrasound in soft 

tissues has been studied extensively and parameters relating to tissue microstructure can be 

found which hold valuable diagnostic information [25]. The concentration of scatterers in 

cancerous tissue is hypothesised to be higher than that of healthy tissue, and these 

parameters can be used into a machine learning algorithm to characterise tissue. So far it 

has shown success in differentiating  healthy and cancerous tissue of different types, such 

as ocular tumours [23], breast masses [32] and prostate cancer detection  [39]. The raw 

ultrasound data is needed to relate the tissue to the theoretical background, however a 

preliminary study into the ability of ‘reference-free’ quantitative ultrasound would be 

extremely valuable for this field. This is where the images alone can be used to define  

regions of interest, conduct a statistical analysis on the pixel values of the regions, and 

detect patterns which the human eye cannot in order to classify the tissues. This would 

involve obtaining a large data set of ultrasound images of glioma tumour intraoperatively, 

before surgical resection, to train a classifier to detect which speckled patterns in the image 

correspond to the cancerous tissue, and which are healthy. The ability of the classifier will 

be assessed by using 80% of the data obtained to train and the remaining data to test. The 

surgeons initial label of the tumour region will be used as ground truth. 

Potential risk and benefits 

This study will add no additional risk to the patient to carry out as we are obtaining 

ultrasound images prior to tumour resection, and after craniotomy, which is already routine 

practice . Yet, it would be extremely valuable as it is the first test of reference free 

quantitative ultrasound to detect brain tumours. The long term benefits, based on the 

results of this study, would be the development of a tool which can accurately detect 

residual tumour intraoperatively, allowing a larger percentage of tumour to be removed, 

which improves patient prognosis in both low and high grade glioma [5].  

 

Aims and Objectives 

The aim of this study is to assess the ability of quantitative ultrasound and machine 

learning classification to correctly identify cancerous glioma tissue using a data set of B-

mode images from 30 glioma patients. 

The objectives required to meet this aim are: 

- Obtain at least 10, high quality ultrasound B-mode images, from glioma patients 

before tumour resection with identical system settings in each case. 

- Carefully label, with help from attending neurosurgeon, the image of regions of 

healthy neural tissue, oedema, and tumour. 
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- Use this information to train a machine learning classifier, based on the statistics of 

the pixel values in the labelled regions. 

- Form classification images from these results, where regions which are likely to be 

cancerous are clearly identified. 

Methodology 

Equipment 

This study will use the BK flex Focus 800 ultrasound machine with the craniotomy 8862 

probe operating between 4 and 10 MHz, which is currently used in the neurosurgical 

theatre as shown in Figure 1. 

  

Figure 1: BK Flex Focus Ultrasound Machine (left) with craniotomy probe 

(right). 

The system settings (gain, dynamic range, focus, brightness)  must be identical over all 

participants. These settings can be saved onto the BK system as a custom pre-set named ‘ 

HTOncologyStudy’ to allow this imaging mode to be easily switched to in the operating 

theatre, while keeping all settings identical.  

 

Data Acquisition 

During glioma removal surgery, the neurosurgeon will use the BK machine with this pre-

set to localise the tumour as is the standard practice after craniotomy. A clean image will 

be taken, allowing them to identify the region most likely to be cancerous on the B-mode 

image and an annotated image will also be saved which clearly labels the glioma tissue. 

Each image acquisition should take no more than 30 seconds. This will be repeated 10 

times, to image the tumour from different  locations and angles, and to allow a larger 

training data-set while still causing minimal disruption to the surgery.  

Anonymisation of Data 

The image data set held on the BK machine will be given an anonymous ID based on case 

type and the date. The data will then be transferred to a University of Glasgow PC to allow 

data analysis to take place. 

Inclusion/ Exclusion criteria 

This study will include all adult cases of low and high grade glioma tumour removal 

surgery where the craniotomy scheduled is greater than 3cm x 1cm to allow the  use of the 

BK Craniotomy 8862 probe over a 3-4 month period.  Metastasis and meningiomas will 

not be considered in this study as they are generally more encapsulated, whereas the real 



204 

 

value would come from the more invasive nature of glioma. The proposed number of cases 

is 30 to allow a full assessment of the potential of this technique and based on the report 

from last year’s surgeries this is a viable number of cases to occur over a 4 month 

timeframe. 

Data Processing 

The images will be divided into regions of 1mm x 1mm, corresponding to 10 pixels by 10 

pixels. These 100 pixels will be analysed and the statistical distribution which describes the 

intensity values will be modelled to determine parameters for binary classification. 80% of 

the images will have labels (‘Healthy’ or ‘Cancerous’) associated to the pixels, and this 

information will be used to predict the cancer likelihood map on the remaining 20% of the 

images. 

Safety considerations 

Imaging will be carried out using a commercial ultrasound system operating at acoustic 

powers which cause no additional damage to humans. The only safety consideration is the 

time taken to acquire the images, if we are advised there is any potential risk to the patient 

by taking the five minutes to acquire the data, then this patient will not be included. 

Statistical considerations 

The ability of this technique to detect glioma tissue in a conventional ultrasound image will 

be tested by training with 80% of the data and testing with 20%. For the study to have 

statistical power, it would be ideal to have 5 images to test the classification algorithm. 

This corresponds to 25 cases minimum, and the requested sample size is 30. The method of 

analysis, to find the accuracy of the classification results, is determined by generating a 

confusion matrix and calculating the area under the receiver operating characteristic (ROC) 

curve [140]. 

Funding 

This study will be part of the final year experiments of Hannah Thomson’s PhD project at 

the University of Glasgow entitled ‘Ultrasonic Differentiation of Healthy and Diseased 

Neural Tissue’ and is fully funded, with budget allowance, until June 2022 by the 

European Research Council and Stryker Medical Devices (award reference number 

00395278). This study requires no additional equipment or software to carry out, therefore 

no additional costs are anticipated. 

Expected Outcomes of the Study 

This study will include novel research in the field of QUS in neuro-oncology and will 

advance the topic of real-time tissue differentiation significantly. A reviewed journal paper 

detailing the ability of QUS to differentiate high grade glioma and healthy brain tissue ex 

vivo will be prepared for publication in a high-impact technology journal such as IEEE 

Transactions on Medical Imaging (IF 9.7) or a specialised journal such as Ultrasound in 

Medicine and Biology (IF 2.5). Further to the publication arising from this work, the study 

will indicate if there is potential for an intraoperative tool which can be trained in real-time 

to allow a patient specific imaging device which can aid neurosurgeons in the decision of 

healthy or cancerous tumour. The long term benefits, such as greater extent of tumour 

resection and improved prognosis for glioma patients, could be possible with some further 

work in this field, thanks to this study which was the first assessment of QUS for cancer 

detection in glioma patients. 
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