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Abstract 

River morphology detection has been improved considerably with the application of remote 

sensing and developments in computer science. However, applications that extract landforms 

within the active river channel remain limited, and there is a lack of studies from tropical 

regions. This thesis developed and then applied a workflow employing Sentinel-2 imagery for 

seasonal and annual river landform classification. Image downscaling approaches were 

investigated, and the performance of object-based image segmentation was assessed. The area 

to point regression kriging (ATPRK) approach was chosen to downscale coarser 20 m 

resolution Sentinel-2 bands to finer 10 m resolution bands. All features were set or processed 

at 10 m resolution before applying support vector machine (SVM) classification. To improve 

machine learning classification accuracy, Sentinel-2 acquisitions across one year, which 

incorporates multiple seasons, should be used. For rivers with different hydrological or geology 

settings, the thesis considered collecting river specific ground truth data to build a training 

model to avoid underfitting of models from other hydrological/geological settings. Applying 

the workflow, three landforms (water, unvegetated bars and vegetated bars) were classified 

within the active channel of the Bislak, Laoag, Abra and Cagayan Rivers, north Luzon, the 

Philippines, between 2016 to 2021, respectively. The spatial-temporal river landform datasets 

enabled the quantitative analysis of the river morphology changes. Water and unvegetated bars 

showed clear seasonal dynamics in all four rivers, whilst vegetated bars only showed 

seasonality in the rivers located in the northwest Luzon (the Bislak, Laoag and Abra Rivers). 

This thesis employed correlated coefficients to investigate the longitudinal correlation between 

river landforms and active width. It was found that vegetated bar areas always have strong 

significant correlations (≥0.67) with the active widths in all four rivers, whilst correlation 

coefficients between vegetated bar areas and active widths in the wet season are higher than 

that in the dry season. Ensemble empirical mode decomposition (EEMD) was applied to detect 

landform periodicity; this method indicated that water and vegetated bars commonly showed 

synchronised fluctuations with precipitation, while unvegetated bars had an anti-phase 

oscillation with precipitation. In the case of EEMD, deviations from periodic consistency in 

river pattern may reflect the influence of extreme events and/or human disturbance. Coefficient 

of variation (COV) was then used to evaluate the stability of the landforms; results suggested 

that the interplay of faults, elevation, confinement and tributary locations impacted landform 

stability. Finally, tributary inflow impacts on the mainstem river were investigated for eight 
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tributaries of the lowland Cagayan River, also on Luzon Island. Longitudinal variations in 

channel morphology and stability, and temporal changes in landform frequency, using 

Simpson’s diversity index and COV, showed downstream widening associated with tributaries 

that was controlled by water discharge, with a secondary sediment flux effect. Overall, this 

thesis provided a novel example of combining remote sensing and GIS science, computing 

science, statistical science, and river morphology science to study the earth surface processes 

synthetically and quantitatively within river active channels in the tropical north Luzon, the 

Philippines. This work demonstrated how the fusion of techniques from these disciplines can 

be used to detect and analyse river landform changes, with potential applications for river 

management and restoration. 
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Notation 

The following symbols are used in this thesis: 

A area 

ANN Artificial Neural Network 

ATPRK area to point regression kriging 

AW active width 

BA unvegetated bar accuracy 

C confluence 

COV coefficient of variation 

CS component substitution 

D bedload grain size 

DEM digital elevation model 

DT difference of temperature 

EEMD ensemble empirical mode decomposition 

EMD empirical mode decomposition 

ENSO El Niño–Southern Oscillation 

EO earth observation 

EOF empirical orthogonal function expansion 

Eq. equation 

ESA European Space Agency 

EVI enhanced vegetation index 

F  bedload flux 

GEOBIA Geographic Object Based Image Analysis 

GPM IMERG Global Precipitation Measurement 

IMF Instinct Mode Function 

K-S Kolmogorov-Smirnov 

LiDAR Light Detection and Ranging 

LR logistic regression 

LSMS Large Scale Mean Shift 

LULC land use and land cover 

M mainstream/mainstem 

MEVI modified enhanced vegetation index 

MRA multi-resolution analysis 

MSI multispectral instrument 

NDMI normalised difference moisture index 

NDVI normalised difference vegetation index 

NDWI normalised difference water index 

NE northeast 

NN neural networks 

NW northwest 

OA overall accuracy 

OBIA Object Based Image Analysis 

P precipitation 

PACE Pre-Aerosol Clouds and ocean Ecosystem 

PCA principal components analysis 

Prop proportion 
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Q discharge 

R ratio 

RF random forest 

S Slope 

SAR synthetic-aperture radar 

SD standard deviation 

SDI Simpson's diversity index 

SLIC simple linear iterative clustering 

SP stream power 

SRTM Shuttle Radar Topography Mission 

SVM support vector machine 

T tributary 

TIR thermal infrared 

UAV Unmanned Aerial Vehicle 

USGS U.S. Geological Survey. 

VA vegetated bar accuracy 

VI vegetation index 

W width 

WA water accuracy 
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Chapter 1 - Introduction 

1.1. Automated River Landform Detection 

Remote sensing technology has been widely employed in studying spatial-temporal 

geomorphological change in recent years. Free-access earth observation data with revisiting 

time varying from 10 days (e.g. Sentinel-2) to 16 days (e.g. Landsat 9) and software tools (e.g., 

Python, R) allow studies over large areas and recent several decades, especially enable 

explorations in remote regions where ground data are difficult to access. However, use of earth 

observation data remains very limited in many tropical regions, particularly due to persistent 

cloud cover, especially in the rainy seasons, that limits the use of visible wavelength imagery. 

However, recent growth in the accessibility of open data and new tools to fuse/merge images 

(Henshaw et al. 2019; Wang et al. 2016) have increased the potential to derive sufficient 

information to reliably detect landform and landcover. Recent image analysis research uses 

both pixel-based analysis (Khatami et al. 2016) and object-based analysis (Demarchi et al. 

2020), often combined with image downscaling and machine learning classification, which 

together enhance spatial and temporal image interpretations and so extend understanding of 

geomorphological change with increasing spatial and temporal resolutions (Talukdar et al. 

2020).  

River morphology has been extensively investigated for several decades, using maps, aerial 

photography and, increasingly, satellite imagery (Baena-Escudero et al. 2019; Huylenbroeck 

et al. 2020; Rusnak et al. 2018; Smith et al. 2016). Many studies of river morphology and 

landform change are within temperate and Arctic regions (Bertrand and Liebault 2019; 

Demarchi et al. 2017; Vercruysse and Grabowski 2021), whilst river dynamics in the tropics 

remain less discussed (Dingle et al. 2019; Vijith and Dodge-Wan 2018), especially for remote 

areas. Many tropical regions experience frequent extreme weather events (e.g., typhoons, 

floods, extreme rainfalls). Highly variable water level, high turbidity and associated suspended 

sediment loads, high current velocity and mobile bed materials show important differences 

from temperate regions (Davies et al. 2008), although the lack of data from the tropics affects 

our ability to make reliable comparisons (Boulton et al. 2008). Hence, there is a pressing need 

to map river landform change in the tropical rivers more accurately and over larger areas. 

Machine learning provides one way to increase landform detection accuracy and to speed up 



 

17 

data collection. In many cases, mapping high spatial resolution in-channel landcover is very 

common and showing good classification performance (Demarchi et al. 2017). However, case 

studies of mapping high-resolution spatial-temporal landcover change using machine learning 

remain infrequent (Fazelpoor et al. 2022; Rodrigues et al. 2018; Zhiyi Fu 2020). Therefore, 

there is an opportunity to develop an efficient and straightforward operating workflow to 

enhance open data performance for river landforms classification. This development is the first 

goal of this thesis. The resulting spatial-temporal river landform datasets are then used to 

analyse the dynamics of the studied rivers, extending the database of Global River dynamics 

research into North Luzon, the Philippines. The rivers selected for this research are the Bislak, 

Laoag and Abra Rivers in northwest Luzon and the Cagayan River in northeast Luzon, the 

Philippines (Figure 1-1). 

 

Figure 1-1. Locations of the studied rivers in North Luzon, the Philippines. Background is 

IfSAR DEM data (Grafil and Castro 2014). Blue lines denote the studied extents of the Bislak, 

Laoag, Abra and Cagayan Rivers. 
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1.2. River landform dynamics and responses 

Given datasets of spatial-temporal classified river landforms (water, unvegetated bars, 

vegetated bars), the dynamics of these landforms and their spatial patterns can be investigated 

by a variety of approaches. To address the research objectives, in addition to visual inspection 

of sequential maps, this project uses statistical analysis, signal decomposition, landform 

frequency mapping and Simpson's diversity index mapping to detect patterns of river landform 

stability and change. Using multi-year continuous spatial-temporal data, investigation of 

spatial-temporal dynamics is applied to trace river landform developments (e.g., bar migration, 

vegetation growth and retreat). In the tropics, seasonality is a key factor impacting the landform 

detection and dynamics, and north Luzon exhibits distinct wet and dry seasons (Tolentino et 

al. 2022). Rivers show different behaviours in the dry and wet seasons, and external controls 

of channel setting (e.g., valley confinement, faults, tributaries, etc.) also influence the alluvial 

landforms. The annual wet and dry seasons cause variations in precipitation, temperature, and 

extreme event frequency that cause water drainage, sediment transport and vegetation growth 

to vary significantly between seasons. The seasonal dynamics of water drainage, sediment 

transport and vegetation processes cause adjustments to river landforms thereafter. For 

example, consistent high precipitation during the wet season brings high volumes of water and 

sediment. When input sediment volumes surpass the sediment transport capacity of the river, 

aggradation occurs, altering the bankfull width of the river (Candel et al. 2021). Persistent 

lateral or in-channel vegetated bars, which retain vegetation throughout both dry and wet 

seasons, protect these parts of the river system from being occupied by water channels.  

Using extensive data sets of spatial-temporal river landform change from automated 

recognition, this project investigated the dynamics of river landforms in dry and wet seasons 

and over several years. The studied river catchments range in spatial scale from 586 km2 

(Bislak) to 27,684 km2 (Cagayan). The Cagayan River is in a different climate zone to the other 

three rivers (Tolentino et al. 2016) and has less pronounced seasons compared to the rivers of 

northwest Luzon. The geological setting of the three northwest rivers produces contrasting 

patterns of confinement and drainage network structures, which are used to enhance 

understanding of river dynamics in this region. The larger Cagayan River has an extensive 

lowland reach and eight large tributaries that supply additional water and sediment to the 

mainstem of this lowland reach. Hence, the Cagayan River is used as a contrast with the steeper 
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rivers in the northwest, and also to specifically examine the impacts of tributaries on tropical 

river morphology and dynamics. 

Rapid tracing river landform by generating spatial-temporal dataset gives potentials to enhance 

knowledge of river dynamics and thus, provide the insights and advice for river management 

work. The patterns of river landforms can reflect the landcover/land use change in the region 

caused by altering water flows (e.g. seasonal floods or extreme precipitations, water storage by 

dams), sediment volumes (e.g. sediment transport, gravel mining), ecosystem behaviours (e.g., 

vegetation growing and retreating, anthropogenic farming and fishing). Quantitative spatial-

temporal analysis of river landform in this research enables to precisely detect landcover/land 

use change in the river channels, and therefore, encourages analysing reasons and processes 

making the river patterns. This work improves the efficiency of river dynamics analysis and 

predictions, which benefits the river restoration and management in the future. 

1.3. Research Objectives and Aims 

This project initially aims to develop a procedure for efficiently detecting and analysing spatial 

and temporal tropical river landform dynamics using free-access high resolution Sentinel-2 

acquisitions. The project is designed to build a ‘bridge’ between remote sensing technology 

and river geomorphology. Hence, having processed the available remote sensing data using 

new tools, a range of geomorphological analyses were investigated. The project is not only 

intending to extend remote sensing applications to river landform detection, but also to explore 

cutting edge river geomorphology research by novel use of open remote sensing data. 

To achieve the overall aim, the following objectives were identified:  

(1) to design and apply an automated river landform classification workflow using free 

Sentinel-2 multi-spectral data and validate with manually digitised ground truth data; 

(2) to further develop and evaluate the classification workflow in (1) by applying it to four 

rivers in North Luzon inter- and intra-annually, producing data for spatial-temporal analysis; 
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(3) to generate river landform (water, unvegetated bars and vegetated bars) spatial-

temporal classification maps for the Bislak, Laoag, Abra and Cagayan Rivers, using the 

classification workflow in (2); 

(4) to evaluate whether there is strong seasonality in the morphological dynamics of the 

North Luzon rivers and, if so, explore how the river landforms interplay with each other and 

with the active channel width; 

(5) to assess how the river landforms respond to external river channel settings (valley 

confinement, faults, tributaries, etc.); and, how does river morphology respond to tributary 

inflows; 

(6) to discuss how the generated data can be used to identify the impact of disturbance 

analysis on landforms change. 

1.4. Thesis Structure 

This thesis’ empirical chapters are based on papers that have been published (Chapter 4) or 

manuscripts submitted for publication and archived on pre-print servers (Chapter 5 and Chapter 

6). Further, 

(1) Chapter 1 briefly has introduced the motivation for designing this project and has 

proposed the main aim and objectives.  

(2) Chapter 2 reviews the relevant literatures. In this chapter, river geomorphological 

investigations and land surface detection research are introduced, and remote sensing 

applications to river morphology is reviewed.  

(3) Chapter 3 presents the data and methods used in this research. The field location and 

observations are introduced firstly, then the project workflow is presented to justify the 

approach used, and finally some of methods are used to derive and analyse river 

geomorphology information are presented. 

(4) Chapter 4 is from a published paper (doi: 10.1080/01431161.2022.2139164) in 

International Journal of Remote Sensing (Li et al. 2022). This paper investigated the optimal 
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workflow and models for river landform classification in the three northwest Luzon rivers. 

Accordingly, it establishes the principles for the river landform classifications used in the 

following chapters. 

(5) Chapter 5 is from a submitted paper to Earth Surface Process and Landforms (preprint 

doi: 10.31223/X5D66G). This paper presents spatial-temporal river landform classification for 

the northwest Luzon rivers, and analyses seasonality, the effects of channel settings and 

temporal change of landforms over five years. 

(6) Chapter 6 is from a submitted paper to Geomorphology (preprint doi: 

10.2139/ssrn.4392184). This paper presents spatial-temporal river landform classification for 

a larger river, the Cagayan River in northeast Luzon, over four years. The paper focuses on the 

river response to eight large tributaries joining the lowland mainstem of the Cagayan River. 

(7) Chapter 7 is a discussion that reviews all the classification for the four rivers, in four 

sections: River landform classification strategy; Seasonality in tropical river patterns of north 

Luzon; River landform dynamic change analysis; and, perspectives for future work.  

(8) Chapter 8 answers the research objectives and presents the conclusions from the whole 

thesis. 
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Chapter 2 - Background 

River pattern and landform changes are caused by multiple factors, including internal controls 

(e.g. processes of hydrology, sedimentology and ecology) and external controls (e.g. climate 

change, extreme events and human disturbance). River landscapes and its process in corridors 

are impacting each other under the frame of river systems (Ward et al. 2002). Hupp and Rinaldi 

(2007) suggested that water is the most proximal control on spatial patterns of perennial 

riparian vegetation in temperate fluvial systems. In the meantime, the riparian vegetation may 

also highly impact sediment erosion and deposition rates. Tropical river systems are often 

characterised by highly seasonal dynamics of water discharge and sediment loads (Milliman 

and Meade 1983; Syvitski et al. 2014), causing rapid channel migration or processes rates 

(Dingle et al. 2019). Additionally, human pressures on land use/cover can also alter the fluvial 

units’ spatial patterns and trends (e.g., water conservation, gravel mining, and farming) 

(Mainali and Chang 2018; Xu et al. 2018).  In recent years, many studies focused more on river 

management at reach scale, however, since the river landforms change at one location may 

induce the response of landforms at another location along the river, it is also important to 

establish network understandings at a larger scale (e.g., catchment scale) to maintain the river 

systematic sustainability (Gurnell et al. 2016). Hereby, integrating spatial-temporal landform 

patterns and processes from upstream to coast is essential to examining environmental controls 

and interactive schemes between the controls (e.g. bar stability response to stream power) in 

the river (Fausch et al. 2002; Gurnell et al. 2016; Ward et al. 2002), which provides insights to 

river structural complexity and river regulations/managements. 

2.1. Land Use and Land Cover (LULC) detection 

Land Use and land Cover generally refer to different concepts but are often used 

interchangeably (Hua 2017). Land Cover tends to describe the physical earth surface instead 

of human habitats which are defined as Land Use (Hua 2017). Along with the remote sensing 

technology development in recent decades, land change detection techniques have also been 

developed and extended (Singh 2010; Lu et al. 2010; Abd El-Kawy et al. 2011). Change 

detection was defined as the process of identifying differences in the state of an object or 

phenomenon by observing it at different times (Lu et al. 2010; Singh 1989). In practice of 

LULC change detection, multi-temporal remote sensing acquisitions provided accurate and 

timely data for quantitively observing the geographic objects and tracing the dynamics of the 
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LULC. Remotely sensed data has been applied to a variety of research. Lu et al. (2010) 

summarised ten aspects of research achieved by remote sensing, which are (1) land use and 

land cover (LULC) change; (2) forest and vegetation change; (3) forest mortality, defoliation 

and damage assessment; (4) deforestation, regeneration and selective logging; (5) wet land 

change; (6) forest fire and fire-affected area detection; (7) landscape change; (8) urban change; 

(9) environmental change (including drought monitoring, flood monitoring, monitoring coastal 

marine environments, desertification and landslide detection) ; and (10) other applications such 

as crop monitoring, shifting cultivation monitoring, road segments and change in glacier mass 

balance and facies. Beyond these aspects, a review of  change detection applications from 

Théau (2022) also suggested several new topics: (11) habitat fragmentation; (12) herbivory 

such as insect defoliation and grazing; (13) invasive species; (14) soil moisture conditions; (15) 

georisk (e.g., earthquakes, volcanoes, subtle deformation, structural integrity); (16) permafrost 

monitoring (e.g., surface temperature, tree line); (17) water quality (e.g., temperature, 

productivity); (18) aquaculture (e.g., productivity); (19) oil spill (e.g., detection, oil 

movement). 

There are a variety of methods to detect the LULC change. Singh (2010) illustrated ten 

techniques used in past decades: univariate image differencing; image regression; image 

ratioing; vegetation index differencing; principal components analysis (PCA); post -

classification comparison; direct multi-date classification; change vector analysis; background 

subtraction; Kolmogorov-Smirnov test (K-S test). Théau (2022) also referred additional 

methods: linear transformation such as PCA and tasseled-cap transformation; multi-temporal 

spectral mixture analysis; and combined approaches of above methods. Singh (2010) 

concluded that these conventional methods have not been widely compared to each other. A 

lot of research only selected two or three methods to do comparisons, and conclusions varied 

from different case studies. The simple techniques such as image differencing, can sometimes 

perform better than more sophisticated transforms like PCA method. However, sophisticated 

techniques are good at dealing with bigger and more complicated data. With the development 

of computer science, in recent years, machine learning method has attracted massive interests 

in recognising LULC change and achieved very good progresses in practice (Demarchi et al. 

2017; Demarchi et al. 2020; Liu et al. 2021; Maxwell et al. 2018).  

In past decades, multi-spectral, hyper-spectral and thermal infrared (TIR) remote sensing data 

have been the most favoured for monitoring LULC change (Gago et al. 2015; Gerhards et al. 
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2019; Govender, Chetty, and Bulcock 2007; Hook et al. 1992; Melis et al. 2020). Multi-spectral 

remote sensing system, which usually measure between three to six spectral bands within the 

visible to middle infrared region of the electromagnetic spectrum (Govender, Chetty, and 

Bulcock 2007), has been improved to more spectral bands with the remote sensing technology 

development. For example, Sentinel-2 mission achieved observing 13 bands for one acquisition 

(https://sentinels.copernicus.eu/web/sentinel/sentinel-technical-guides). Hyper-spectral 

remote sensing system usually captures many, very narrow, contiguous spectral bands 

throughout the visible, near-infrared, mid-infrared, and TIR portions of the electromagnetic 

spectrum (Govender, Chetty, and Bulcock 2007; Nalepa 2021). Although TIR data is included 

in the hyper-spectral remote sensing system, it has been widely and individually investigated 

for improving land surface detection quality in recent years. Remote sensors from satellite (e.g., 

Landsat, Sentinel, MODIS) and Unmanned Aerial Vehicles (UAVs) provide acquisitions 

containing the wavelengths which are sensitive for recognising different LULC types such as 

dry bare soil, green vegetation and clear water (Govender, Chetty, and Bulcock 2007). A 

variety of indices such as Normalised Difference Water Index (NDWI) and Normalised 

Difference Vegetation Index (NDVI) were developed to differentiate a specific landform with 

a range of wavelength from others (Lu et al. 2010). Section 2.1.1 and 2.1.2 will further review 

the research about LULC detections on water, soils and vegetation. 

2.1.1. Surface Water Detection 

Surface Water is a critical resource that form the basis of all life and needs to be conserved for 

the future generation (Bijeesh and Narasimhamurthy 2020; Govender, Chetty, and Bulcock 

2007). Whilst water can also be a source of inducing natural disasters such as floods and water 

logging (Gerhards et al. 2019). Therefore, it is essential to monitor and predict water change 

on the earth surface. Nowadays, remote sensing and Geographic Information System (GIS) 

technologies remain the most important role in detecting, measuring, and analysing water 

resources, drought and flood risk management (Wang and Xie 2018). For example, spectral 

response from remote sensing data can be used to determine whether the water body is pure or 

turbid, as pure water and turbid water have different spectral signature (Bijeesh and 

Narasimhamurthy 2020). Beyond of this, the special water issues (e.g., water resource 

mapping, satellite rainfall measurements, runoff simulation, flood induction mapping, etc.) 

were analysed and discussed by combining remote sensing, GIS, geostatistics and hydrological 

models together (Wang and Xie 2018). A work from Wang and Xie (2018) reviewed latest 
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remote sensing technology and sensors used for water detection (Table 2-1). Aside from the 

Table 2-1, the very popular Sentinel family from the Copernicus program has attracted a lot of 

attention since the first launch of Sentinel-1A in 2014 (Desnos et al. 2014). Sentinel satellites 

provided free-access moderate-high resolution data covering the world. For example, Sentinel-

2 multi-spectral imagery have been widely used in global remote regions where are lack of 

commercial satellite detections (Li et al. 2022). Schmitt (2020) fused Sentinel-1 and Sentinel-

2 on a pixel level to achieve the large-scale inland water mapping. Veettil et al. (2021) 

developed and automatic water extraction model through Sentinel-2 data and Google Earth 

Engine. Salama et al. (2022) presented a validation procedure for water quality products 

derived from Sentinel-2 (multi-spectral instrument) and Sentinel-3 (ocean and land colour 

instrument) in estuarine waters. Tarpanelli et al. (2021) illustrated the potentials of Sentinel-3 

for river discharge assessments. Sentinel programme has a shorter history than many other 

satellite programmes (e.g., Landsat and MODIS), in the future work, Sentinel family has a 

great potential to integrate issues of water detection and encourage more systematic research 

on land surface/ground water. 

Table 2-1. Latest remote sensing technology and sensors used for water resources, hydrological 

fluxes, drought and flood mapping (Wang and Xie 2018). Additional sensors/satellites 

reviewed in this thesis were denoted by *. 

Application Fields Specific Contents Examples of Sensors or Satellites 

Water resources Snow AVHRR, Terra/Aqua MODIS, Landsat, 

SSM/I, AMSR-E, CryoSat, Sentinel-

1/2/3*, Gaofen*, etc. 

Glaciers Landsat, ASTER, SPOT, ICESat, 

SRTM, Sentinel-2*, Gaofen*, etc. 

Soil moisture SSM/I, AMSR-E, SMAP, SMOS, 

Gaofen*, Sentinel-1/2*, etc. 

Groundwater GRACE, Sentinel-1* 

Shallow/coastal water 

depth* 

UAV*, RapidEye*, Sentinel-1*, etc. 

Lakes, reservoirs, rivers 

and wetlands 

MODIS, Landsat, SPOT, ICESat, 

GRACE, SRTM, Sentinel-1/2*, etc. 

Hydrological fluxes Precipitation NEXRAD, TRMM, GPM, etc. 

Evapotranspiration MODIS, Landsat, GRACE, MODIS*, 

MERSI-2*, AIRS*, Gaofen*, etc. 
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River. Reservoir or lake 

discharge 

MODIS, ENVISAT, Landsat, SRTM, 

ICESat, Sentinel-3*, etc. 

Drought/ flooding Drought and flooding MODIS, Landsat, Grace, UAV, AMSR-

E, SMAP, SMOS, ENVISAT, ASAR, 

Sentinel-1/2, etc. 

According to a review from Bijeesh and Narasimhamurthy (2020), there are four primary water 

delineation approaches, which are respectively single band methods, spectral index based 

method, machine learning based method, spectral unmixing based method (Figure 2-1). 

 

Figure 2-1. Methods used for water delineation of the current literatures (source: Bijeesh and 

Narasimhamurthy 2020). 

Single band methods extract water features by selecting a threshold value on the band, which 

easily cause mixing of water pixels with those of different cover types in some cases (Du et al. 

2012). Spectral Index based methods, such as Normalised Difference Water Index (NDWI), 

combined multiple bands of different reflectance for improved surface water detection (Rokni 

et al. 2014). Machine learning classification algorithms, such as random forest (RF), support 

vector machine (SVM) and neural networks (NN), are usually adopted to delineate surface 

water (Ma et al. 2017). Spectral unmixing is a process of decomposing a mixed pixel into its 

constituent spectra, which is also called as end-member extraction (Bijeesh and 

Narasimhamurthy 2020). There are also some other surface water delineation methods, such 

as a combination of spectral index and unmixing method (Luo et al. 2016), a combination of 

spectral index and machine learning method (Li et al. 2022). 

2.1.2. Vegetation and soils 

Similar to the illustrations in section 2.1.1, the way of capturing vegetation cover mainly relies 

on multi-spectral imagery or hyper-spectral imagery from sensors as examples in Table 2-1. 
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Apart from optical sensors referred in Table 2-1, acoustic sensors such as side-scan sonar, echo-

sounder (Abukawa et al. 2013; Nelson, Cheruvelil, and Soranno 2006) shows advantages in 

aquatic settings, as they perform well in turbid or optically deep waters, especially while 

detecting submerged aquatic vegetation (Rowan and Kalacska 2021). The remote sensing 

technology offers a practical and economical means to study vegetation over land area as well 

as underwater areas (submerged aquatic vegetation) for both marine and freshwater ecosystem 

(Xie, Sha, and Yu 2008).  

Before employing remote sensing technology to detect vegetation, it is crucial to identify the 

research either at vegetation community or species level (Xie, Sha, and Yu 2008). In general, 

images with low resolutions may be only adopted at vegetation community level, whereas 

images with higher resolutions are used for fine-detailed vegetation classification (i.e., 

vegetation species). Medium resolution imagery (e.g., Landsat TM and ETM+) are mostly 

beneficial for vegetation community level mapping (Xie, Sha, and Yu 2008). Medium to high 

resolution imagery have been explored for vegetation species detection in recent years. For 

example, Sentinel-2 (10- 60 m) has been employed to classify seven grassland plant 

communities with an overall accuracy of 0.78 by using SVM classifier (Rapinel et al. 2019). 

To train the SVM classifier model, Rapinel et al. (2019) carried out field sampling for plant 

communities at 2 m resolution to obtain the ground truth data. This is an example that medium 

to high resolution imagery has the potential to recognise the vegetation at the species level, 

however, it still mostly relies on assistance with field samplings at high resolution (1- 10 m) 

(Adagbasa, Adelabu, and Okello 2019; Demarchi, Bizzi, and Piegay 2017; Rapinel et al. 2019).  

Xie, Sha, and Yu (2008) reviewed a variety of vegetation classification algorithms, including 

traditional supervised classification (e.g., SVM and Maximum Likelihood Classification) and 

unsupervised classification (e.g., Hidden Markov Model), and some improved classifier such 

as Artificial Neural Network (ANN) and fuzzy logic approaches. In many cases of lacking 

ground truth references, spectral vegetation index (VI) such as Normalised Difference 

Vegetation Index (NDVI) and EVI (Enhanced VI) remains to be one of the most important 

tools for mapping vegetation covers (DeFries, Hansen, and Townshend 1995). In recent years, 

machine learning approaches, including traditional machine learning and deep learning, have 

widely been applied to LULC detection. It has been reviewed that supervised machine learning 

approaches achieved outstanding performance for classifying LULC and remain to be the most 

popular branch of LULC classification (Talukdar et al. 2020; Ma et al. 2017). 
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In addition, soils are critical foundations for vegetation (Davidson and Janssens 2006; Liu et 

al. 2008), and hence, for the vegetated bars in the river channel. Remote sensing played a 

critical role in detecting soil surface roughness and moisture (Anderson and Croft 2009), which 

encouraged distinguishing the vegetated soil surfaces from unvegetated bars in the river 

channel. For example, there also evidences that Thermal Infrared (TIR) has provided access to 

detect soil surfaces in recent research (Gago et al. 2015; Gerhards et al. 2019; Melis et al. 

2020). Proxies such as the day-night difference of temperature (DT) and Apparent Thermal 

Inertia, which can be obtained through remote sensing, have been successfully employed for 

detecting soil moisture (Hook et al. 1992; Melis et al. 2020). Moreover, the thermal inertia has 

the capacity for differentiating soils and rocks (high thermal inertia) from shales and gravels 

(low thermal inertia) (Melis et al. 2020). Therefore, according to the objectives of the research 

issues and available data (resources), designing an appropriate study level of vegetation 

mapping is very essential for selecting adequate sensors. Nevertheless, climate conditions 

(especially atmospheric conditions) and technical issues for image interpretation are also very 

important factors for sensors selection (Xie, Sha, and Yu 2008). 

The major sources of error found in LULC classification are the shadows of mountains and 

clouds (Bijeesh and Narasimhamurthy 2020). In river channels, mountains less likely affects 

LULC detection, but clouds and cloud shadows are unavoidable covering the remote sensing 

images, especially in the tropical regions where undergo frequent weather change (Kubota et 

al. 2017). Digital elevation models (DEMs) can be effectively used in combination with 

multispectral/ hyperspectral data to mitigate the effect of clouds in the image to obtain a higher 

classification accuracy (Bijeesh and Narasimhamurthy 2020). There are emerging efforts for 

reducing clouds effects on LULC detection. For example, with the planned launch of the Pre-

Aerosol Clouds and ocean Ecosystem (PACE) in 2022, and the data streaming from the 

Sentinel missions, Earth Observation (EO) technology is devoting for a long-term sustainable 

data flow, forming the basis for its operational use (Groom et al., 2019). Alternatively, using 

spatiotemporal data fusion to get a fused cloud-free image has been commonly adopted while 

doing seasonal LULC change studies (Lu et al. 2019). Therefore, considering 

clouds/shadows/mountains effects on the LULC detection and choosing an appropriate way to 

mitigate the cloud effects cannot be ignored. 

Choosing appropriate remote sensing products relies on preliminary knowledge of research 

objectives and data availabilities. In cases of LULC change studies, water, soils, vegetation, 
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anthropogenic structures, clouds, shadows are all factors which should be considered carefully. 

With developments of remote sensing techniques, more earth observation data and technique 

innovations are expected to strengthen LULC detection in the future. 

2.2. Geomorphic patterns and classification of rivers 

River morphology has been changing frequently due to climate change and human activities in 

the past decades (Grill et al. 2019; van Vliet et al. 2013), exhibiting a high degree of non-

linearity and complexity (Agnihotri, Ohri, and Mishra 2019; Boota et al. 2021). According to 

a review paper published in 2022, river morphology research has been gradually increasing 

since 2001, especially from 2015 to 2020 (Li, Yan, and Boota 2022). Scientists from different 

background studied river morphology from different aspects. For example, geomorphologists 

and geologists are interested in river patterns (planforms) and what that pattern reveals about 

river history and behaviours (Fotherby 2009; Schumm 1985). Sedimentologists focus on the 

distribution of sediment within the bend, bed forms within the channel, and sedimentary 

structures (Church 2006; Schumm 1985). Scientists of hydraulics pay attention to hydrological 

process of river formation (Crosato and Mosselman 2009). In practice, many studies 

synthetically analyse the river morphology change using knowledges from geomorphology, 

sedimentology, and hydraulics (Bridge and Demicco 2008; Cristiano, ten Veldhuis, and van 

De Giesen 2017; Ferguson 1987b). This thesis takes accounts of river pattern and pattern 

change as the foremost topics, whilst sedimentary and hydrology factors are combined to study 

the river processes and environmental controls on the river morphology. This section aims to 

review the river pattern studies and Chapter 6 will introduce more about river morphology 

research from aspects of sediment aggradation and deposition, and stream power. 

2.2.1. River pattern 

There are three major categories of stream channels according to the nature of materials 

through which a river flows, which are bedrock rivers, semi-controlled rivers, and alluvial 

rivers. Bedrock rivers and semi-controlled rivers are relatively stable and less concerned about 

river pattern change (Schumm 1985). The alluvial rivers, as consequences of having bed and 

banks composed of sediments which are transported by the stream, is the major type for 

analysing pattern change (Schumm 1985). The longitudinal pattern of a river is a complex 

structure, usually responding discontinuously at different spatial scales (Kondolf et al. 2016). 
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Frissell et al. (1986) presented an example of a hierarchical organisation of a stream system 

(Figure 2-2), which were: stream system (at 1000 m scale); segment system (at 100 m scale); 

reach system (at 10 m scale); pool/riffle system (at 1 m scale); microhabitat system (at 0.1 m 

scale). Kondolf et al. (2016) proposed that the appropriate philosophical underpinnings for 

channel classification depend on the purpose of the study and is specific in terms of scale and 

regional context. However, data availability of the studied area cannot be ignored when 

thinking about scale. There are three main data sources for collecting the data for river 

morphology research, which are remote sensing data, field sampling data and auxiliary data 

(e.g., statistical yearbooks, historical photos, street view pictures from social media or google 

maps, etc.) (Li, Yan, and Boota 2022). Among these data sources, remote sensing data are 

highly visited for monitoring river morphology, which accounts for 73% of the studied research 

in a hydromorphology review paper (Belletti et al. 2014). In practice, remote sensing data, field 

sampling data and field observation pictures, and some street view pictures (e.g. from google 

maps), are all resources to maximise knowledge of the river systems. To compact information 

deriving from these data and visualise river patterns efficiently, there are three approaches 

could be considered while extracting river information: (1) Segmentation, which is one of the 

properties of the longitudinal signal, plays a key role in classifying channel landforms without 

being totally arbitrary (Frasson et al. 2017; Kondolf et al. 2016). Frasson et al. (2017) defined 

three types of segmentation strategies which are on arbitrary length, identification of hydraulic 

controls and sinuosity. Although this method simplifies river patterns by a specific 

characteristic of the river, in the meantime, it is lack in presenting sophisticated information 

within the river channel; (2) Maps generation, carrying out the corresponding measurements 

and analyses, is an important tool presenting the morphological characteristics of rivers and 

offering valuable information for the river evolution with their rigorous mathematical 

foundation (Li, Yan, and Boota 2022; Nass et al. 2011). Maps of a specific theme presented 

continuous spatial information of specific characteristic(s) quantitatively and intuitively, which 

have been widely used in river system analysis; (3) Feature parameter extraction (e.g. Figure 

2-3), which is a crucial transition from qualitative to quantitative analysis of river morphology, 

has been developed by numerous parameters such as length, width, sinuosity index, braiding 

degree, the variability of the rivers over time (Li, Yan, and Boota 2022). To some extent, this 

method integrates segmentation and maps generation to extract river patterns by planform 

patterns and controls together.  
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Figure 2-2. Hierarchical organisation of a stream system and its habitat subsystems (source: 

Frissell et al. 1986). 

Leopold and Wolman (1957) quantitively classified channel patterns into straight, meandering 

and braided channel basing on relationships between slope and bankfull discharge, which was 

an early case of process-based classification. The process-based classification has been 

enlarged and revisited with additional patterns such as sinuous, anabranching (Figure 2-3), 

wandering and anastomosing rivers (Nanson and Croke 1992; Smith and Smith 1980) (Figure 

2-4). As the definition develops, six river patterns are commonly used nowadays, which are: 

straight (single relatively straight channel); meandering (single channel bending); wandering 

(transitional channel from single channels to fully braided channels); braiding (multiple 

channel networks with bars or islands); anabranching (multiple relatively stable channel 

networks with bars or non-flooding islands); anastomosing (multiple channel systems having 

major secondary channels that separate and re-join the main channel to form a network) rivers 

(Bridge and Lunt 2006; Carling, Jansen, and Meshkova 2014; Carson 1984; Leopold and 

Wolman 1957; Nanson and Knighton 1996; Schumm 1985). 
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Figure 2-3. A sketch of process-based channel pattern classification on sinuosity, braiding and 

anabranching degrees (source: Brice 1978; Li, Yan, and Boota 2022). 

 

 

Figure 2-4. Schematic diagram of river channel patterns classification (source: Li, Yan, and 

Boota 2022). 

Apart from the planform styles above, geomorphologists also developed principles to divide 

the river into different segments. For example, Fryirs, Wheaton, and Brierley (2016) divided 
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the river into segments according to the confining margin. Figure 2-5 shows how they defined 

the valley margin, valley bottom margin, channel margin, and hence confining margin. The 

river can be confined or partly confined on the longitudinal patterns. Along with gradient, 

discharge and sediment regime, valley confinement is a primary control on river morphology 

(Fryirs, Wheaton, and Brierley 2016). For example, valley confinement is identified as the 

determining factor of braided river in the central Platte River (Fotherby 2009). Garcia Lugo et 

al. (2015) indicated that confinement may result in different degrees of spatial variability of 

the bed topography. Carbonari, Recking, and Solari (2020) used flume experiments of gravel-

bed river physical model to suggest that lateral flow confinement influences bedload transport 

rate, however, differences in lateral flow confinement resulted in the same average active 

channel width (i.e., the width over which sediment transport occurs). Therefore, taking account 

of confinement in river morphology study is enhancing the comprehensive understanding of 

processes in the river and predict the river behaviours for river managements. 

 

Figure 2-5. Identifying different forms of confinement across a range of river types (source: 

Fryirs, Wheaton, and Brierley 2016). 
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Basing on the sedimentary concepts, Schumm (1963) classified rivers by the principles whether 

their beds are stable, eroding or aggrading, and further defined the river types through the 

dominance of suspended load, mixed load or bedload sediment transport. Church (2006) 

summarised channel patterns in the state of sediment supply, sediment calibre and channel 

gradient. River bars are the main landform in the channel and characterised as large sediment 

deposits, separating by channels, emerging during low flows (Crosato and Mosselman 2020). 

Nevertheless, river bars form important fluvial or riparian habitats (Crosato and Mosselman 

2020), and fluvial or riparian habitats also alter river bars formation and erosion (Bartley et al. 

2008). The river pattern can be defined by the bar mode, where alternate bars are typical of 

meandering rivers whilst multiple bars characterise braided rivers (Crosato and Mosselman 

2020). In straight and weak sinuous river channels, periodic bar development can enhance bank 

erosion, and hence resulting in longitudinal channel width variation, forcing channel expansion 

or contraction downstream (Bridge and Demicco 2008). Bars mobility can reflect the hydraulic 

process and impact the channel pattern change (Singh et al. 2017; Church 2006).  

Hierarchical classification has been widely accepted and applied to river morphology pattern 

research (Kondolf et al. 2016). From climate zone scale to reach-level scale (Kondolf et al. 

2016) and then diving into landform (i.e., water, bars, vegetated islands) scale (Jaballah et al. 

2015; Omer et al. 2020; Phiri et al. 2020), combining the conventional process-based 

classification with the landform-based classification using remote sensing data and 

technologies provides a great potential to explore the river morphology change and dynamics, 

and probably to investigate the fractal structures of river planforms and river’s fractal 

behaviours (Nur et al. 2016; Shen et al. 2011; Nikora 1991; Pentland 1984). 

2.2.2. Remote sensing application in river morphology detection 

Obtaining data from interpretation of images often includes the use of categorical information 

and expert-based opinions which may be biased by operators’ experience and can be 

inconsistent. These issues limit their implementation and may call into question their suitability 

for monitoring purposes, which demand objective and repeatable assessments. There is a 

pressing need for an operative, multi-scale framework for the evaluation of the hydro-

morphological status of river systems (Gurnell et al. 2016). Using Earth Observation (EO) 

datasets, geomorphological indices can be routinely quantified across multiple spatial scales, 

from sub-reach units up to entire basins, with continuous objective and consistent information 
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(Horacio, Ollero, and Perez-Alberti 2017). Precisely mapped in-channel morphological units, 

and their change over time, are important tools for understanding river morpho-dynamics. 

These data also provide useful indicators of changes in potential ecosystem productivity 

(Belletti, Dufour, and Piegay 2015). There is a rapidly increasing capacity to quantify rates of 

change using remote sensing data from an ever-increasing range of platforms, hence improved 

theoretical and empirical methods for analysing and predicting these rates are urgently 

required. Increased computing power and big data handling protocols are now enabling 

geographic classification to be used widely for understanding Earth processes, and statistical 

machine learning is an emerging approach in this field (Maxwell, Warner, and Fang 2018). For 

example, Lopez- Fuentes et al. (2017) trained and tested three different deep learning 

algorithms for the task of water segmentation to analyse video streams in real-time in order to 

automatically detect anomalies such as sudden water extent increases.  

For remote sensing image information detection, traditional machine learning approach is 

mostly to combine a software-derived segmentation with a traditional machine learning process 

(Ma et al. 2017). Machine learning has a strong ability to deal with big data and its analysis 

will be more objective. Nowadays, many algorithms have been developed to do machine 

learning in a lot of research fields (Jordan and Mitchell 2015). However, several main 

algorithms are commonly and widely used, which are Logistic Regression (LR), Support 

Vector Machine (SVM), Random Forest (RF) and Neural Network (NN). These algorithms 

have been applied in variety of classification cases and achieved relatively good results, whilst 

SVM performed well in the most cases of landscape classification studies (Ma et al. 2017). 

Deep learning is also a kind of machine learning which gains big popularity these years and it 

basically achieve by enhanced algorithms of Neural Network (Holden, Saito, and Komura 

2016; Ohsaki et al. 2017; Schneider and Guo 2018). For fluvial morphology studies, some 

researchers have achieved quite good classification results using SVM (Costa, Foody, and 

Boyd 2018; De Luca et al. 2019; Demarchi, Bizzi, and Piegay 2016). Therefore, in this 

research, SVM was firstly chosen as the machine learning algorithm. 

2.3. Remote sensing image segmentation and classification 

Section 2.2 illustrated that remote sensing data have been highly enrolled in the river 

morphology classification. Segmentation is one of the most important steps of remote sensing 

image analysis before doing the classification. Segmentation can be regarded as a pre-process 
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to differentiate studied geographical units from other units, substantially for extracting 

landcovers with homogenous nature (Frasson et al. 2017; Song et al. 2016; Ye et al. 2018). 

Applying classification within segmented extent can be more efficient with less noise from 

other landcover units. A variety of segmentation methods have been developed in recent 

decades of years. In this chapter, the segmentation methods are categorised into four items, 

which are planform-based method, contour-model based method, traditional object-based 

method and machine learning object-based method, respectively. The latter three items are 

based on remote sensing images, focusing on delineating geomorphological units from each 

other, while the first item is mainly based on geomorphological features, dividing rivers into 

segments.  

2.3.1. Planform-based method 

The planform-based method focuses on the features of landform information obtained from 

earth observation data, for example, digital elevation models. Attributes such as channel 

sinuosity and wetted width of rivers can be derived to segment the landscapes. Altenau et al. 

(2017) demonstrated the calculation of water surface heights and slopes from airborne Ka-band 

(defined as frequencies in the range 26.5- 40 GHz) measurements from the AirSWOT platform 

over the Tanana River, Alaska. Frasson et al. (2017) compared three different river 

segmentation strategies used to group river nodes into reaches: (1) reaches of arbitrary (fixed) 

lengths, which simply breaks up reaches at regular intervals measured along the rivers’ 

centrelines;  (2) hydraulic control reaches, which consists of identifying hydraulic controls by 

searching for inflection points on the water surface profile; and (3) sinuosity-based reaches, 

which takes into consideration river planform features, breaking up reaches according to 

channel sinuosity. Gailleton, et al. (2019) presented a segmentation approach for the 

reproducible extraction and quantification of knickpoints from river long profiles. The method 

extracts slope-break knickpoint locations using changes in channel steepness calculated by 

integrating a method of segmenting channels into reaches of different channel steepness (Mudd 

et al., 2014) and a denoising technique (Condat, 2013). 

2.3.2. Contour-model based method 

In recent years, research on active contour models has become increasingly popular (Han and 

Wu 2017). Contour model is usually achieved by defining land unit/object borders to generate 
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a parametric curve or contour (Han and Wu 2017). River remote sensing images can be 

considered to be composed of two parts, which are the river area and the background area. The 

segmentation of contour models aims to define the river contour and derive the river areas. 

Although the intensity of river area is low as well as uniform (homogeneous part) and 

background area is relatively high and complex (inhomogeneous), there are still a variety of 

interference areas of the remote sensing images, the intensities of which are similar to the river 

areas. To suppress the effect of these interference areas when segment the river remote sensing 

image, Song et al. (2016) proposed a novel active contour model based on cross entropy, which 

combines the cross-entropy information of the image to improve the curve accuracy. However, 

over-segmentation in some cases can deduce the generality of the models. To solve this 

problem, Han and Wu (2017) proposed a novel active contour model based on modified 

symmetric cross entropy, which can not only improve the segmentation accuracy but also 

enhance the segmentation efficiency. Li and Sheng (2012) proposed an automated scheme for 

glacial lake dynamics mapping using Landsat image and DEM based on a case study in the 

Himalayas, which was a kind of contour-based segmentation, and they delineated glacial lakes 

with multi-level changing segmentation thresholds. In their case, the automated threshold 

detection was achieved by bimodal histogram of NDWI. Active river channel extraction is one 

of contour-based segmentation methods. In this thesis, a new active channel extraction 

approach developed by Boothroyd et al. (2021) was introduced to extract the active river 

channel from the whole catchment, within which the river landform classification can be 

processed with less interference from background imagery signals. 

2.3.3. Traditional object-based method 

With many high-resolution remote sensing products available for free and new technique 

developments, some researchers also work on improving the segmentation accuracy with high 

quality images and new techniques. Up to the present, many water bodies products can be 

obtained from online websites, such as the Shuttle Radar Topography Mission (SRTM) water 

body data (Slater et al. 2006), which is an international research effort that obtained digital 

elevation models on a near-global scale from 56°S to 60°N. The resolution of the raw data is 

one arcsecond (30 m along the equator). Synthetic-aperture radar (SAR) images are also 

particularly popular in remote sensing image research these years as they can be downloaded 

from the Sentinel source freely. Ciecholewski (2017) reported a method of river channel 

segmentation in polarimetric SAR images, which obtained watersheds in combination with 



 

38 

average contrast maximisation. Duan et al. (2017) proposed a way to implement SAR Image 

segmentation based on convolutional-wavelet neural network and Markov random field. In a 

word, similar to the work of (Han and Wu 2017) above, the target of the proposed work is to 

enhance the accuracy of river channel segmentation.  

To understand the earth surface in more detail, the concept of object-based image segmentation 

was proposed and has been welcomed by many researchers. Object-based image segmentation 

is a so-called classification-based segmentation aiming to create a series of objects (Benz et al., 

2004). Meanwhile, Ye et al. (2018) gave a review of accuracy assessment for object-based 

image analysis based on per-pixel to per-polygon approaches. Comparing to the pixel-based 

image analysis, which has been tested by research based on 209 articles, the object-based image 

segmentation performs much better on geographical issues concerning land cover/ use 

classification (Ye et al. 2018). 

With the current urgent demand for automated segmentation methods, a variety of researchers 

are working for establishing frameworks for segmentation as well as classification to detect the 

dynamics of the earth surface. For object-based segmentation, the automated frameworks are 

productive combining remote sensing images and DEM data, as automated frameworks 

combine four spectral bands data of images and slope data to enrich the information for 

improving the segmentation accuracy. For example, (Dragut and Eisank 2012) tested an 

automated object-based classification of topography from SRTM data; Zhang and Xie (2013) 

processed HyMap Data to map vegetation in the Kissimmee River watershed; Demarchi et al 

(2016) segmented a river in Italy with very high-resolution images and Light Detection and 

Ranging (LiDAR) data. These works are all produced image objects with multi-resolution 

segmentation algorithm (Benz et al., 2004), which can be achieved directly in a software calling 

eCognition Developer. The multi-resolution segmentation algorithm is generally applied to 

segment river patterns into geomorphological objects, then with the machine learning method, 

the geomorphological objects were classified as geomorphological units. However, the 

eCognition Developer is a commercial software which is not free accessed. In this thesis, an 

alternative free-open software OrfeoTool box has been employed to generate the 

geomorphological objects basing on the layers from one remote sensing acquisition. It replaces 

the eCognition Developer but not changes the framework of the object-based image analysis. 

This kind of framework can achieve classification in an automated way, but it would be in the 

context of a hierarchical workflow. 
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2.3.4. Machine learning object-based method 

To enhance the universality of segmentation, some researchers derived ideas from machine 

learning. Machine learning uses computational algorithms to learn (analyse) large sets of data 

inputs and outputs, and train the machine to automatically recognise patterns or make decisions 

(Helm et al. 2020). Machine learning has been becoming an efficient tool in detecting a variety 

of image information. Machine learning has been adapted to management and prediction of 

risk events. For example, Lopez-Fuentes et al. (2017) proposed to use a water segmentation 

technique to analyse video streams in real-time in order to automatically detect anomalies such 

as sudden water extent increases. They trained and tested three different deep learning 

algorithms for the task of water segmentation and compare their performances. For remote 

sensing image information detection, machine learning approach is mostly combined software-

derived segmentation (see previous paragraph) with a traditional machine learning classifier 

such as support vector machine and random forest. 

Garcia et al. (2017) developed a machine learning approach for agricultural parcel delineation 

through agglomerative segmentation. This approach can be regarded as a machine learning 

object-based method and it follows the rule that each object is characterized not only by its 

spectral, shape or texture features, but also by its neighbour objects, its sub- and super-objects, 

of which the larger segments are referred to as super-objects of the smaller segments and the 

smaller segments are referred to as sub-objects of the larger segments (Johnson and Xie 2013).  

The machine learning object-based segmentation can be achieved by a theory of super pixel. 

A super pixel is a small, local, and coherent cluster which contains a statistically homogeneous 

image region according to certain criteria such as colour, texture, among others (Ren and Malik 

2003). Super pixels techniques enhance image segmentation in a cluster way, which do not 

focus on segmenting meaningful objects (Schick and Stiefelhagen 2011). The techniques 

performed well on reducing the influence of noise and intra-class spectral variability and 

preserving most edges of images. It can also improve the computational speed of the 

segmentation of meaningful objects (Achanta et al. 2012). Super pixel processing originated 

from the segmentation method called simple linear iterative clustering (SLIC) (Achanta et al. 

2012), which can only work in the RGB colour space. The SLIC version used in work of Garcia 

et al. (2017) corresponds to the work implemented by (Gonzalo-Martin et al. 2016), which 

extends the methods to work with multispectral images. The super-pixel technique is currently 
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tested in crop field classification research but have not been widely used in river patterns 

segmentation. Although the super-pixel technique has a high potential to well classify the river 

landforms, this thesis still focusses on doing the machine learning classification using the 

traditional object-based image analysis workflow to maintain the river patterns being classified 

in a more common way. However, the super-pixel method can be an example for river patterns 

classification in the future work. 

The methods illustrated above segment the river morphology at different scales, which inspires 

a hierarchical segmentation workflow for classifying river landforms at a finer scale for this 

research. Contour-based method can segment river channel from background context on the 

remote sensing images, and planform-based method divided the channel into reaches according 

to planform patterns. Then traditional object-based segmentation or machine learning object-

based segmentation can segment geographical objects within the river channels/reaches, which 

will be prepared for further object-based classification. 

Land surface detection/delineation and remote sensing image segmentation/classification were 

reviewed in this chapter, which provide technological background for river landform 

classification of this thesis. This chapter presented literatures using a variety of geomorphic 

pattern to analyse and interpret river processes and river morphology.  
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Chapter 3 - Methods 

3.1. Introduction 

Chapter 1 introduced the locations of the four studied rivers in the north Luzon, the Philippines. 

This chapter is introducing the four rivers quantitatively by preliminary investigations. The 

Bislak, Laoag and Abra Rivers lie in the same climate zone (marked by type I), but the Cagayan 

is in a different climate zone (marked by type III) according to research by Wichmann (1904). 

Table 3-1 listed measured data of studied main channel length and maximum elevation within 

this distance of length. It indicated that, with cases of four studied rivers, the smaller the river 

catchment, the steeper the averaged river slope. The averaged gradient of studied lowland 

Cagayan River is very flat, with finer riverbed sediment grainsize. Chapter 5 introduces the 

Bislak, Laoag and Abra River and investigate these three rivers synthetically. Chapter 6 

illustrates the Cagayan River dynamics and tributary impacts on the mainstem river.  

Table 3-1. Bislak, Laoag, Abra and Cagayan River preliminary investigations. 

River 

Name 

Catchment 

Area (km2) 

Main 

channel 

length 

(km) 

Maximum 

elevation 

(m) 

Averaged 

Gradient 

(m/m) 

Climate 

zone 

Start 

distance 

to the 

river 

mouth 

(km) 

Riverbed 

type 

Bislak 586 55.882 272.742 0.0049 I 0 gravel 

Laoag 1261 50.073 145.860 0.0029 I 0 gravel 

Abra 4893 93.350 141.163 0.0015 I 0 gravel 

Cagayan 27684 181.563 24.9 0.0001 III 28 sand/silt 

This thesis aims to assess river morphology change using free-to-access remote sensing data 

and tools. A workflow was designed (see Figure 3-1) for river landform change analysis in the 

active channels of the tropical Bislak, Laoag, Abra and Cagayan Rivers. This chapter outlines 

the processes carried out in this workflow and complement the methods that are detailed in 

Chapters 4-6. Chapters 4-6 each include descriptions of methods used to process images, 

generate morphological data and to analyse the results. In this chapter, some background to 

these methods is provided to justify the particular methods used in later chapters and to provide 

some technical details. In Chapter 7, four studied rivers were compared and discussed 

systematically from aspects of landform stability, diversity, seasonality, and geology controls. 

This chapter illustrates the methods and preliminary investigations. 
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Figure 3-1. Workflow outlining the methods used in this thesis. 

3.2. Materials 

3.2.1. Remote sensing data selection 

The studied rivers are within the tropics where climate is warm with distinct wet and dry 

seasons, and rates of landform change can be rapid. In the Sentinel-2 acquisitions, the remote 

sensing imagery could be reflecting different spectral ranges (Figure 3-2 a,b and d-f) and 

sometimes images were partly or fully obscured by heavy clouds (Figure 3-2 c) . Although 

there are existing methods for removing the clouds by splicing the remote sensing imagery 

with patches from neighbouring dates, the imagery from the neighbouring date provides a 

different spectral range which could make the spectral reflectance of the patched imagery 

inconsistent. As for the pre-processing object-based image segmentation depends on spatial 

relationships on pixel reflectance between neighbouring pixels, while clouds removing method 

would disturb the spatial relationships between neighbouring pixels. To avoid the potential for 

machine learning classification models within one imagery scene becoming unstable, all the 

imagery that is classified in this thesis is from a single original acquisition, without any use of 
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mosaic imagery. In practice of selecting remote sensing acquisitions, the cloud covering 

situations varied from different years. In the studies of the following chapters, two-month 

interval was set to collect Sentinel-2 acquisitions. However, due to cloud coverings, slightly 

longer/ shorter temporal interval could be decided by using the closest date, which is with clear 

river channel observation, to originally designed interval date. In the Bislak, Laoag and Abra 

Rivers, two-month/ three-month interval is mostly common for capturing images. However, in 

the Cagayan River, no clear imagery was observed in December to January and only one clear 

imagery was observed in February across four studied years, which sometimes made temporal 

interval being extended to four months. In addition to cloud cover problems, river landforms 

(Figure 3-2) show obviously different spectral reflectance from water, unvegetated bars and 

vegetation across the whole year. Therefore, in this thesis, multi-seasonal imagery with low 

proportions of clouds is used for image analysis and river morphology mapping. 

 

Figure 3-2. Samples of Sentinel-2 imagery for a section of the Bislak River captured on six 

dates at an approximate 2-month interval in 2019. 

3.2.2. Aerial images and field observation 

To have an intuitive sense of local landform types within the active channel, higher resolution 

aerial images were acquired, and field observation took place in 2019 at one of the sites used 
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in the thesis, the Bislak River. Aerial images were acquired as part of an airborne survey of the 

Bislak River on 21 March 2019.  A D8900 aerial camera was used to collect RGB imagery 

with a spatial resolution of 0.2 m. The aerial images came from a parallel project led by the 

PhD supervisory team, and were used to aid plans for field observations used in this thesis. 

Due to this ongoing project, more data are available for the Bislak than for the other three sites 

used in the thesis. Consequently, method development and testing were conducted primarily 

on the Bislak River. Field observation by the author took place in November 2019. From these 

field observations (Figure 3-3), the upper reach of the Bislak River was found to have 

sediments dominated by boulders and the water in the dry season is usually very clear and 

shallow, whilst the vegetation is quite sparse within the active channel. In the mid reach of the 

river, the sediments are much finer than that in the upper reach, an include silts, sands and 

gravels. Within this part of the river course, in-channel vegetation was observed to be 

widespread and locally dense. The lower reach has a mixture of gravel and sand sediments 

according to field observations, and is extensively mined for aggregates. Aerial visual 

observations show that the morphologies of the mid-reach (Figure 3-3iii) and of the lower reach 

(Figure 3-3vi) are very similar to each other, however, the sediment sizes in the mid-reach 

(Figure 3-3c) and in the lower reach (Figure 3-3f) show considerable variation. In this thesis, 

the focus is not on identifying sub-types of water, sediment, and vegetation. Instead, the focus 

is on three main types of landforms within the river channel, which are: water, unvegetated 

bars and vegetated bars. 
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Figure 3-3. Aerial images and their corresponding field ground pictures in 2019. (i)-(ii) are 

from the upper reach of the Bislak River; (iii)-(iv) are from mid-reach of the Bislak River; (v)-

(vi) are from lower reach of the Bislak River. 

3.2.3. Unsupervised classification using Sen2Cor tool 

To investigate how river landforms change in north Luzon, and to plan field research at an 

early stage, manually digitised maps created from Sentinel-2 Level 1C imagery were used. 

Figure 3-4a-c shows manually digitised landforms within a short reach of the Bislak River on 

three dates in 2018. The landforms were classified into the three types noted previously, which 

are vegetated islands (vegetated bars), bars (unvegetated bars) and river channels (water). 

Figure 3-4d presents that the locations of river channels changed significantly over the three 

dates in 2018. The water area increased due to seasonal rainfall from March to July and 

decreased from July to November within one year, which might indicate seasonal 

characteristics of landform change that follow the seasonal climate. 
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Figure 3-4. (a)-(c) Manually digitised river landform classification on three dates in 2018 in a 

short reach of the Bislak River. (d) overlay of the water extent from the images in (a)-(c). 

For Sentinel data analysis, Level 2A products with atmospheric correction are expected to 

perform better than Level 1C products (Drusch et al. 2012). Level 2A products can be derived 

from Level 1C products using the Sen2cor plugin tool in the SNAP software 

(https://step.esa.int/main/download/snap-download/previous-versions/).Sen2cor also provides 

an automated detection method for land cover. Through Sen2cor, a classification map was 

generated using the Level 2A product for 7 March 2018 (Figure 3-5b). The manually digitised 

map for 7 March 2018 is presented to allow a comparison with the Sen2cor based scene 

classification map. There are three types of landforms in the manually digitised map, whilst 

Sen2cor classified objects into five types of landcover and one unclassified type. In this case, 

a large proportion of objects alongside the river channel were attributed to unclassified units. 

Additionally, some manually digitised bars were attributed to unclassified units and some 

manually digitised river channels were classified as dark feature shadows in the Sen2cor based 



 

47 

classification map. Figure 3-5 suggests that the classification model from the Sen2cor plugin 

does not fit the landcovers within the studied river. For example, some water bodies were 

classified as ‘Dark feature shadow’ and unvegetated bars are not classified to one type of 

landcover. Meanwhile, some vegetated bars were not recognised in the Figure 3-5b. Therefore, 

a classification model fitting to the ground truths of the studied river was needed. In this thesis, 

a classification model was designed by a machine learning method, which has been widely 

used and agreed to be an efficient tool for processing remote sensing image classifications 

(Demarchi et al. 2016; Ma et al. 2017). 

 

Figure 3-5. Comparison of (a) a manually digitized classification map with (b) Sen2cor based 

scene classification map. 

3.2.4. Image Segmentation  

The machine learning procedure usually consists of four phases: data preparation; image 

fusion/downscaling; image segmentation; and, image classification. As described in section 

3.2.1, Sentinel 2 Level 1C data should be firstly processed into Level 2A using the Sen2cor 

tool. Then, four bands at 10 m resolution and six bands at 20 m resolution were prepared for 

image fusion/downscaling. Image downscaling is to downscale coarser resolution images into 

finer resolution images which can be achieved by a variety of approaches. These approaches 

are illustrated and compared in more details in Chapter 4. To analyse all bands at the same 

spatial scale, the six bands at 20 m resolution were fused into 10 m resolution by image 

downscaling methods. The procedure for selecting a good downscaling method is introduced 

and discussed in Chapter 4. Chapter 4 also compares and investigates an optimal model for 
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image classification. In the current chapter, only image segmentation will be introduced (Figure 

3-6). 

In this experiment, 15 features have been incorporated in the machine learning model. For 

example, band 6 of one Sentinel-2 acquisition can be chosen as one ‘feature’, and an NDVI 

map derived from the same Sentinel-2 acquisition can also be denoted as one ‘feature’. In the 

case of this thesis, the features are requested to be consistent with each other at spatial scale as 

well as from same date. The 15 features include four 10 m resolution bands and six 10 m 

resolution bands downscaled from 20 m resolution bands of Sentinel-2 acquisition, and five 10 

m resolution maps of environmental indices which are listed in Table 4-2 in Chapter 4. The 15 

features were composited firstly in the ArcMap 10.8, and then processed by Large Scale Mean 

Shift (LSMS) segmentation to obtain the geographical objects (one object is a patch of pixels 

with homogeneous nature). LSMS algorithm is an iterative way to find patches of related pixels 

neighbouring to an initial pixel and then envelop them into an object (Comaniciu and Meer 

2002; Ming et al. 2011). Thereby, the segmentation map contains an attribute with 15 features 

values, in which each segmented object has 15 features, whilst each feature was denoted by the 

mean value of all pixels in one object. Combining the channel segmentation map with the 

manually digitised map, every segmented geographical object was allocated to a ground truth 

type, which were: water, unvegetated bars, vegetated bars, and others. 

The LSMS generates a vector data file containing the regions extracted using the MeanShift 

algorithm, which can be adopted from Orfeo Toolbox software version 6.6.1 

(https://www.orfeo-toolbox.org/). There are three key parameters that need to be set accurately 

to generate a high-quality image segmentation, which are: spatial radius, range radius and 

minimum segment size. Spatial radius refers to the radius of the spatial neighbourhood for 

averaging, in which higher values will result in more smoothing and also longer processing 

times. Range radius corresponds to the threshold on spectral signature Euclidean distance to 

consider neighbourhood pixel for averaging, in which higher values will be less edge-

preserving and lower values will lead to less noise smoothing. Minimum segment size is set 

for merging segments that have the closest spectral signature. In practice, the three parameters 

need to be tested and adjusted multiple times until a good segmentation result (objects fitting 

to the land units properly) is achieved. Here, Figure 3-6d presents an example of good 

segmentation results using spatial radius (set by 7), range radius (set by 13) and minimum 
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segment size (set by 42), which were experimented for multiple times until geographical 

objects were bounded relative properly. 

 

Figure 3-6. Segmentation examples using Large Scale Mean Shift method.  (a) Sentinel-2 Level 

2A image for part of the Bislak River, 1.01.2018. (b) ATPRK image of the same area. (c)mean 

value of Band 6 in the ATPRK image after segmentation. (d) enlarged area (see boxes in a,b,c).     

3.2.5. Corrections on manually digitised ground truth objects 

The manually digitised ground truths are usually interpreted visually, which is unrealistic to 

apply at a pixel scale. For example, in Figure 3-7, the object (within the blue boundary in Figure 

3-7a) was classified as a unique object differing from surrounded objects (denoted by grey 

boundaries). This research defined landform by giving type of majority pixels to the object. 
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From the true colour image, although the object bounded in blue has a small proportion of 

vegetation, it was defined as unvegetated landform, but it is manually classified as vegetated 

landform in Figure 3-7b. It is very easy to generate a heterogeneous bar while doing manual 

digitisation, especially doing the classification at a large spatial scale. Although a typical 

landform can be allocated to the objects one by one after doing LSMS segmentation, the 

relatively rough digitising work can help saving a lot of time when there are massive objects. 

In a 19 km reach, the number of segmented objects can vary from c.1200 to 1500 so that manual 

classification of the segmented objects would be a big cost. 

 

Figure 3-7. Comparison of (a) LSMS segmentation map and (b) manually digitised ground 

truth map. See text for explanation of the blue box in (a). 

In the early stage of investigation on improving ground truth accuracy, a ‘mutual correction’ 

workflow was proposed. In this workflow, firstly, a 19 km reach of Bislak River was selected 

as the experimental area, and ten blocks were defined according to the equal distance along the 

river centreline and given a serial number (Figure 3-8). Then, ten blocks of sub reaches were 

divided into a training dataset and a testing dataset. 
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Figure 3-8. Ten sub reaches of the experimental area on the Bislak River with serial numbers. 

 

Figure 3-9. Ground truth object mutual corrections workflow. 
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Figure 3-9 gives an example of one mutual correction between Group 1 and Group 2. In this 

case, Group 1 was formed by sub reaches 1,2,3,5,7,8 which contains 798 objects in total, whilst 

Group 2 was combined by sub reaches 3,6,9,10 which contains 506 objects in total. Firstly, 

Group 1 was set as training dataset and Group 2 was the testing dataset. Then the SVM 

classification was processed on Group 1 and Group 2 giving an accuracy score of 0.85.  

Secondly, misclassified objects from Group 2 were manually verified on the spectral images. 

Thirdly, revised Group 2 was set as the training data and Group 1 was defined as the testing 

data. Then another round of SVM classification was engaged. The new classification accuracy 

is 0.88. Lastly, again, misclassified objects of Group 1 were manually verified on the spectral 

images. Thus, one procedure was completed, and ground truths of Group 1 and Group 2 were 

both corrected. 

To understand how well the mutual correction workflow worked, new combinations for two 

groups were selected. In this case, sub reaches 2,3,5,6,8,10 containing 692 objects were 

gathered as Group 1 and sub reaches 1,4,7,9 containing 612 objects were gathered as Group 2. 

Then Group 1 was trained, giving a validation accuracy of 0.9. After training in SVM, the 

model was tested on Group 2 and a test accuracy of 0.92 was obtained. The classification 

performance has been improved to some extent through correcting the ground truths. However, 

when the misclassified objects were referred back to the spectral image, there are still some 

objects classified incorrectly against the ground truths. This potentially requires another round 

of verifications using the same workflow. The experiment in this section suggested that the 

mutual correction workflow did improve classification against the manual digitised ground 

truth, but it may take several rounds on the workflow to get a well classified ground truth map. 

Therefore, in the practice of the following chapters of this thesis, allocating a typical landform 

to the segmented objects one by one remains to be the first option for manual digitising work. 

However, in the future study, when there are very high numbers of objects, the mutual 

correction workflow may be able to take advantage of new technology and tools to accomplish 

faster and better manual landform digitisation. 

3.3. Spatial-temporal dataset generation 

This thesis utilises spatial-temporal analysis to study the river landform change. Therefore, 

generating the spatial-temporal dataset along the rivers required the greatest effort through 

making river landform classification maps for each date throughout the studied time period. 



 

53 

Thiessen Polygons generation was achieved in ArcGIS Desktop 10.8. Tools used in 

ArcToolbox are denoted in italics below: 

Step 1. Use Collapse Dual Lines to Centreline tool to generate the centreline of the active 

channel (Figure 3-10a); 

Step 2. Split the centreline in Step 1 into predetermined equal distance segments (Figure 3-

10a); 

Step 3. Convert Feature Vertices to Points on the line segments in Step 2 and get output end 

points (Figure 3-10a); 

Step 4. Create Thiessen Polygons on the output end points in Step 3 (Figure 3-10b); 

Step 5. Clip the Thiessen polygons (Figure 3-10b) using the active channel shapefile (Figure 

3-10c) to get the ‘Thiessen-channel. shp’ layer; 

Step 6. Apply Zonal Statistics as Table to the river landform classification map (raster at 10× 

10 m) and ‘Thiessen-channel. shp’. By this way, the sum area of a specific landform within its 

‘Thiessen-channel’ segment can be calculated, which means the landform areas/proportions 

can be measured at an equal distance along the river. 
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Figure 3-10. The ‘Thiessen-channel’ segments generation procedure. See text for details. 

Considering the span of Sentinel-2 remote sensing data is very short for recognising the 

permanent vegetated islands, the active channel width includes distance across vegetated 

islands within the active channel. For the Bislak River, the selected active centreline was 

divided into 100 segments with approximate 410 m for each segment. For the studies in the 

other three rivers in the following chapters, the centreline would be divided into segments with 

equal distance at approximate 410 m, too. Through the procedure displayed in Figure 3-10, the 

active channel width at equal along-channel distances can also be calculated by converting the 

Thiessen polygons to line features. By measuring lengths of these lines, active widths along 

the river channel can be captured. This method is used in Chapter 5 and Chapter 6 to generate 

the spatial-temporal landform area/proportion and active channel width datasets, which enable 

the use of spatial-temporal statistics and analyses of the landform changes in the Bislak, Laoag, 

Abra and Cagayan Rivers. 

Alternatively, mapping the frequency of particular landforms is another way to present spatial-

temporal data. In this thesis, frequency maps were generated from rasterised river landform 

classification maps. The calculation was applied to 10× 10 m pixels using all the maps 
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generated for the studied period. |For example, in mapping water frequency, the procedure 

counts the number of pixels denoted by water, and divides number of times that water is 

recorded at each pixel by the total number of maps available at the same pixel location. 

Therefore, a water frequency map is generated which can also present how it is likely that water 

appears at a specific location based the full historical data set.  

In analysing the spatial-temporal data, the two approaches above are both important and 

performed well for different purposes. Therefore, choosing appropriate analysis tools is a key 

step before extracting the spatial-temporal information. 

3.4. Ensemble Empirical Mode Decomposition 

3.4.1. Sifting Procedures 

This project involves generation and analysis of time series of river landforms for four rivers. 

To detect the temporal changes in these data sets, Ensemble Empirical Mode Decomposition 

(EEMD) was used to decompose the temporal signals in the data. EEMD is appropriate as the 

data are likely to be non-stationary and the time series that are available are relatively short. 

This section illustrates the procedure for using Empirical Mode Decomposition (EMD), which 

is the first step of EEMD to sift the data into components, which are referred to as Intrinsic 

Mode Functions (IMFs). EMD is a signal decomposition method to directly extract the energy 

associated with various intrinsic time scales, which are the most important parameters of the 

system. To illustrate the method, consider a random time series 𝑥(𝑡), as shown in Figure 3-11 

(Kong et al. 2015), for which the EMD method can be explained by the following steps: 

Step 1. As shown in the Figure 3-11b, for the time series 𝑥(𝑡), the upper and lower envelopes 

are used to connect all the local maxima and local minima through fitting cubic splines. The 

mean value of the upper and lower envelopes is defined as 𝑚1(𝑡) (Figure 3-11b). 

Step 2. 𝑚1(𝑡) in Step 1 is subtracted from 𝑥(𝑡) and an IMF ℎ1(𝑡) is obtained as: 

ℎ1(𝑡) = 𝑥(𝑡) − 𝑚1(𝑡)                                            (3 − 1) 

Step 3. Regard ℎ1(𝑡) as a new data series, and repeat Step 1 and Step 2 for k times as: 
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ℎ2(𝑡) = ℎ1(𝑡) − 𝑚2(𝑡)                                                          

ℎ3(𝑡) = ℎ2(𝑡) − 𝑚3(𝑡)                                                         

⸽ 

ℎ𝑘(𝑡) = ℎ𝑘−1(𝑡) − 𝑚𝑘(𝑡)                                       (3 − 2) 

until it reaches to a stop criterion determined by Huang et al. (1998), which can be 

accomplished through limiting the size of the standard deviation (SD) computed from two 

consecutive sifting results as: 

𝑆𝐷𝐾 =  
∑ |ℎ𝑘−1(𝑡) −  ℎ𝑘(𝑡)|2𝑇

𝑡=0

∑ ℎ𝑘−1
2𝑇

𝑡=0 (𝑡)
                              (3 − 3) 

When 𝑆𝐷𝐾 is smaller than a predetermined value, the sifting process is stopped (Kong et al. 

2015). Huang et al. (1998) suggested that 𝑆𝐷𝐾 between 0.2 to 0.3 is a very rigorous limitation 

for the difference between successive siftings. In this case, the highest frequency component 

of the data series is denoted as the first IMF (Kong et al. 2015):  

𝐶1(𝑡) =  ℎ𝑘(𝑡)                                                   (3 − 4) 

𝐶1(𝑡) is expected to contain the finest scale or the shortest period component of the signal. 

Through the same way other lower frequency components are obtained as: 

𝐶2(𝑡) =  ℎ𝑘−1(𝑡)                                                               

𝐶3(𝑡) =  ℎ𝑘−2(𝑡)                                                               

⸽ 

𝐶𝑛(𝑡) =  ℎ1(𝑡)                                                   (3 − 5) 

Step 4. To obtain the residual of the decomposition, every IMF should be extracted from 

𝑥(𝑡) step by step: 
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𝑟1(𝑡) = 𝑥(𝑡) − 𝐶1(𝑡) 

𝑟2(𝑡) = 𝑟1(𝑡) − 𝐶2(𝑡) 

⸽ 

𝑟𝑛(𝑡) = 𝑟𝑛−1(𝑡) − 𝐶𝑛(𝑡)                                                (3 − 6) 

 

When the sifting process stops according to the decision equation (3-3), the residual 𝑟𝑖(𝑡) 

should become a monotonic function from which no more IMF can be extracted, or the residual 

becomes so small that it is much less than the predetermined value of substantial consequences 

(Huang et al. 1998). Therefore, according to the calculations above, the data can be presented 

in summary form as: 

𝑥(𝑡) = ∑ 𝐶𝑖(𝑡)𝑛
𝑖=1 + 𝑟𝑛(𝑡)                                             (3 − 7)                                          

Additionally, Huang (2004) explains how to calculate the mean period for IMFs, which is: 

𝑇𝑛 =
𝑁

𝑁𝑝
                                                             (3 − 8) 

Where T is the mean period of IMF, 𝑁 represents the total data series number and 𝑁𝑝 gives the 

total number of local maxima (number of peaks). 
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Figure 3-11. An example of a random data series decomposition using sifting method (source: 

Kong et al. 2015). For the random series (blue lines) in (a) and (b), the upper and lower red dot 

lines in (b) denote the envelopes of the random data series. The green line in (b) is the mean 

curve of the envelopes. (c) presents the results using sifting process to decompose the random 

series in (a) and (b). 
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3.4.2. EEMD 

In 3.4.1, the sifting process of EMD has been introduced. The method of Ensemble Empirical 

Mode Decomposition (EEMD) is derived from EMD and is used to solve problems of mode 

mixing in EMD by adding white noise to the signal (Huang 2004). The EEMD method is an 

effective signal detection tool for non-stationary data. For example, it has been widely used in 

detecting signal change and extracting signal information from the physical world to analyse 

natural disasters and human activity disturbance (Gaci 2016; Lei et al. 2009; Zhu and 

Malekjafarian 2019). A case study of using EEMD to decompose precipitation time series and 

IMF interpretation is shown in Chapter 5. The description of the EEMD algorithm is shown 

(Kong et al. 2015) as: 

Step 1. A random white noise series 𝑤𝑚(𝑡) is added to the data series 𝑥(𝑡): 

𝑥𝑚(𝑡) = 𝑥(𝑡) + 𝑤𝑚(𝑡)                                        (3 − 9) 

Step 2. 𝑥𝑚(𝑡) then is decomposed using EMD: 

𝑥𝑚(𝑡) = ∑ 𝐶𝑖,𝑚(𝑡)
𝑛

𝑖=1
+ 𝑟𝑖,𝑚(𝑡)                           (3 − 10) 

Step 3. Repeat Step 1 and Step 2 for M times using different white noise series. 

Step 4. Then the means of the corresponding IMFs can be calculated as: 

   𝐶𝑖(𝑡) =
1

𝑀
 ∑ 𝐶𝑖,𝑚

𝑀

𝑚=1
(𝑡)                                  (3 − 11) 

3.5. Simpson’s index of diversity 

Simpson’s diversity index (Simpson 1949) has been widely used for quantifying the diversity 

of plant and animal species (Keylock 2005), and is also considered to be a good tool for 

evaluating landscape diversity (Nagendra 2002). There are two concepts incorporated within 

Simpson’s diversity index, which are richness and evenness. In landscape classification cases, 

richness is measured as the number of landscape types per sample, and evenness is measured 
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as the abundance of the different landscape types making up the richness of the sample. In this 

thesis, river landform types are characterised at 10×10 m pixel resolution by transforming 

shapefile maps to raster maps in ArcMap 10.8. For example, there are 30 records at a specific 

pixel location from 30 dates, within which water shows 10 times, unvegetated bars appears 10 

times and vegetated bar records 10 times. Therefore, the richness of this case is 3 types (water, 

unvegetated bars and vegetated bars), whilst the evenness is very high because the three 

landforms captured the same opportunity (each has 10 times) in records, which indicates a very 

high diversity at this pixel location over the record period. Simpson’s index of diversity 

considers both richness and evenness. Simpson’s index is firstly calculated by the equation as: 

𝐷 =
∑ 𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
                                                   (3 − 12) 

where 𝐷  represents the Simpson’s diversity index, 𝑛  is the number of a specific type of 

landform over the record period and 𝑁 is the total number of all landforms. Using the Cagayan 

River as an example, there are 20 records in total at a specific pixel location (𝑁= 20), and it 

records water 7 times, unvegetated bars 7 times, vegetated bars 6 times and other type (e.g., 

clouds, shadows, etc.) 0 times, for which the calculation is: 

𝐷 =
7 × 6 + 7 × 6 + 6 × 5 + 0

20 × 19
                                  (3 − 11) 

Therefore, in this case, the Simpson’s index 𝐷= 0.3. To makes index follow the rule of the 

greater the value, the greater the sample diversity, the Simpson’s index of diversity (SDI) is 

defined by the equation as: 

𝑆𝐷𝐼 = 1 − 𝐷                                                      (3 − 12) 

Thus, the 𝑆𝐷𝐼 of the Cagayan River case above is 0.7 as calculated. SDI lies between 0-1 

(Keylock 2005; Nagendra 2002; Simpson 1949). In this study, the greater values of 𝑆𝐷𝐼 

indicate more diverse landform types and lower values show more stable conditions. Chapter 

6 and Chapter 7 presents mapping of Simpson’s index of diversity for the river landforms in 

the Bislak, Laoag, Abra and Cagayan Rivers. 
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This chapter introduced preliminary work of designing an appropriate method structure for this 

thesis. In addition, some basic steps for extracting spatial-temporal dataset, which were not 

included in Chapters 4, 5, 6, were presented. These preliminary and basic steps guided the 

research in the following chapters. 

3.6. Coefficient of variation 

This thesis analyses river landform temporal stability by the means of calculating coefficient 

of variation (COV) (Bedeian and Mossholder 2000) using temporal data at spatial distance. 

The equation of COV (𝐶𝑣) is presented as: 

𝐶𝑣 =
𝜎

𝜇
                                                              (3 − 13) 

Where 𝜎 represents the standard deviation of the temporal data while 𝜇 represents the mean 

value of the temporal data.  The higher value of COV indicates higher instability, vice versa. 

In the Chapter 5 and 6, along the longitudinal distance in each studied river, temporal area of 

each landform is calculated by COV to study the landform stability at a specific distance. This 

calculation does not provide richness and evenness information which are considered by 

Simpson’s diversity index. However, COV fast plots temporal data stability at distance, which 

enable us to intuitively visualize spatial stability change using a 2-D plot in a more efficient 

way, especially when comparing with other rivers together.  
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Chapter 4 - Enhancing performance of multi-temporal tropical river 

landform classification through downscaling approaches 
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Highlights 

• Choice of downscaling approach influences the performance of river landform 

classification from satellite imagery and should be considered in river and flood 

management. 

• An efficient and straightforward operating workflow was developed for automated 

river landform classification with high accuracy that supports an improved 

understanding of the use of machine learning approaches in river landforms 

recognition. 

• Freely available and easy-to-access remote sensing datasets can help extend the 

operating workflow to difficult-to-access or remote regions and allow for complete 

regional and/or national coverage. 

Abstract 

Multi-temporal remote sensing imagery has the potential to classify river landforms to 

reconstruct the evolutionary trajectory of river morphologies. Whilst open-access archives of 

high spatial resolution imagery are increasingly available from sensors such as Sentinel-2, there 

remains a fundamental challenge of maximising the utility of information in each band whilst 

maintaining a sufficiently fine resolution to identify landforms. Although image fusion and 

downscaling methods on Sentinel-2 images have been investigated for many years, there is a 

need to assess their performance for multi-temporal object-based river landform classification. 

This investigation first compared three downscaling methods: area to point regression kriging 

(ATPRK), super-resolution based on Sen2Res and nearest neighbour resampling. We assessed 

performance of the three downscaling methods by accuracy, precision, recall and F1-score. 

ATPRK was the optimal downscaling approach, achieving an overall accuracy of 0.861. We 

successively engaged a set of experiments to determine an optimal training model, exploring 

single and multi-date scenarios. We find that not only does remote sensing imagery with better 

quality improve river landform classification performance, but multi-date datasets for 

establishing machine learning models should be considered for contributing higher 

classification accuracy. This paper presents a workflow for automated river landform 

recognition that could be applied to other tropical rivers with similar hydro-geomorphological 

characteristics. 



 

64 

4.1. Introduction 

Multi-temporal classification of river landforms is essential to understanding how river 

planform changes through time (Boothroyd et al. 2021) and reconstructing the evolutionary 

trajectory of river morphologies (Spada et al. 2018). Such changes manifest intra-annually, for 

example, as a result of seasonal changes in vegetation cover (Gurnell 2014; Serlet et al. 2018) 

or over longer timescales, as a result of variations in water and sediment supply or autogenic 

adjustments (Hohensinner et al. 2021; Mandarino, Maerker, and Firpo 2019; Vargas-Luna et 

al. 2019). Two technological developments offer the potential to realise multi-temporal river 

landform classification at catchment spatial scales, across multiple years. First, open-access 

archives of high spatial resolution imagery are increasingly available from satellite sensors 

such as Sentinel-2, which offer considerable potential for improving land cover investigations 

at the regional level (Phiri et al. 2020). Second, a variety of machine learning approaches have 

been developed and applied to achieve fast, objective and accurate land-cover mapping 

(Maxwell, Warner, and Fang 2018). Various landscape classifications have been demonstrated 

using Sentinel-2 over the past five years (Korhonen et al. 2017; Phiri et al. 2020; Sonobe et al. 

2018; Yang et al. 2017). However, the potential of Sentinel-2 to classify river landforms using 

a hierarchical object-based workflow has been less explored (Carbonneau et al. 2020; 

Demarchi, Bizzi, and Piegay 2016).  

When using data acquired by multi-resolution sensors such as Sentinel-2, a fundamental 

challenge for fluvial applications is to maximise the utility of information in each band whilst 

maintaining a sufficiently fine resolution to identify landforms. Lanaras et al. (2018) reviewed 

methods of enhancing the spatial resolution of remotely sensed multi-resolution images and 

differentiated these methods into three types: (i) pan-sharpening per band (e.g., area to point 

regression kriging, ATPRK); (ii) inverting an explicit imaging model (e.g., super-resolution 

method); and (iii) supervised machine learning based approaches.  

The ATPRK algorithm was originally developed for downscaling MODIS imagery (Wang et 

al. 2015) and was subsequently applied to Sentinel-2 imagery (Wang et al. 2016). In Sentinel-

2 image fusion cases, ATPRK was shown to outperform pan-sharpening per band approaches 

such as component substitution (CS) and multi-resolution analysis (MRA) (Wang et al. 2016). 

Sentinel-2 has four bands at fine resolution instead of one panchromatic band that covers a 

wider range of the spectrum. Before applying the ATPRK algorithm to Sentinel-2 data, a single 
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‘panchromatic band’ from four fine bands of the Sentinel-2 acquisition is required. In this case, 

‘hyper-sharpening’ was considered to extract a single band by two schemes, which are the 

‘selected band scheme’ (choose one band from four fine bands) and the ‘synthesised band 

scheme’ (synthesise one band using four fine bands), respectively (Selva et al. 2015). Wang et 

al. (2016) shows that the ‘synthesised band scheme’ contributes more accurate downscaling 

results when combined with the ATPRK approach. For the case of establishing the synthesised 

‘panchromatic’ band, Wang et al. (2016) calculated weights of each fine band using a 

regression model between the fine band and visiting coarse band. A linear combination of four 

fine bands was used to generate the synthesised band. Thereby, ATPRK not only utilises all 

four fine bands to achieve image fusion, but it also preserves the original spectral properties of 

the coarse band data from Sentinel-2 imagery.  

Brodu (2017) developed a geometry-based super-resolution approach, which aimed to 

compensate for the absence of a real panchromatic band. First, information shared by natural 

objects between neighbouring pixels is detected. Then, common aspects of the shared 

geometric information across all bands are extracted. In addition to common information, 

independent geometric information is separated from high-resolution bands and then applied 

to unmix the low-resolution pixels, but their overall reflectance should be preserved. The super-

resolution approach is available through the Sen2Res plugin in the widely used European Space 

Agency (ESA) SNAP software (del Rio-Mena et al. 2020; Freitas et al. 2019; Kuan et al. 2020; 

Laso et al. 2020).  

The ATPRK and super-resolution approaches incorporate relations between coarse and fine 

bands. In contrast, supervised machine learning approaches (e.g. deep neural networks) rely on 

example data. Although the machine learning approach is more adapted to complex and general 

relations, the need for large training datasets and high computing resources are obstacles to 

implementation (Lanaras et al. 2018), especially when applied at large spatial-temporal scales. 

In addition to the downscaling approaches above, the nearest neighbour resampling approach 

has been favoured to detect land cover from Sentinel-2 due to its simple computation and fast 

processing when downscaling coarse bands to fine bands (Daryaei et al. 2020; Kuan et al. 2020; 

Zheng et al. 2017). The nearest neighbour resampling approach assigns the value of the nearest 

coordinate location of the input pixel to the corresponding output pixel, and thus is a simple 

and efficient approach. However, nearest neighbour resampling is not suitable for applications 

that consider the textural properties of images because it can lead to pixel level geometric 
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discontinuities (Roy and Dikshit 1994). The development of these different approaches 

presents a need to assess the best approach to image downscaling before undertaking image 

segmentation and classification.  

This paper aims to compare the three resolution enhancing approaches above, and to identify 

the most accurate method for Sentinel-2 based tropical river landform classification. 

Specifically, the paper seeks to address the following questions: (Q1) Which image 

downscaling approach (ATPRK, super-resolution and nearest neighbour resampling) is 

optimal for classifying tropical river landforms? (Q2) For a single river, is multi-temporal 

training data required to classify landforms for multiple periods in a year? (Q3) Is the training 

model for one year transferable to other years? (Q4) Is the training model transferable to nearby 

rivers with similar hydrogeomorphic properties? 

4.2. Study Area 

The study area in northwest Luzon, the Philippines, experiences frequent tropical storms and 

cyclones, which bring heavy precipitation causing landslides and flooding in the region 

(Faustino-Eslava et al. 2013). The area is dominated by a sub-tropical East Asian monsoon 

climate (Liu et al. 2009). In the northwest Philippines, the wet season begins with increased 

rainfall around May to June and continues until rainfall decreases around October to November 

(Kubota et al. 2017).  

Our investigation focused upon three watercourses in Luzon: the Bislak, Laoag and Abra 

Rivers (Figure 4-1). These gravel-bed rivers are all characterised by planforms that include 

water, unvegetated bars and vegetated bars/islands. Relating to the spatial resolution of the 

satellite imagery available for analysis, image processing focused on sufficiently wide sections 

of the rivers that their morphology could be adequately resolved (Gilvear and Bryant 2016). 

The 39 km long section of the Bislak River has a mean width (MW) of 375 m; it is the shortest 

of the three rivers and has relatively small tributary inputs compared to the other two rivers. 

The 47 km long section of the Laoag River has a MW of 580 m and has three approximately 

equally sized tributaries, whose MW varies from 237 m to 424 m. The Abra River (MW:2441 

m, 82 km section length) has three main tributaries; one large tributary has a MW of 1804 m 

in upper lowland and has extensive agricultural development within the active channel. 



 

67 

 

Figure 4-1. (a) Study area showing locations of the (b) Bislak, (c) Laoag and (d) Abra Rivers 

in northwest Luzon, the Philippines. 

4.3. Datasets and methods 

4.3.1. Sentinel-2 imagery and ground truth digitisation 

Sentinel-2 provides imagery with 13 multispectral bands varying from 10 m to 60 m resolution 

and data availability since 23 June 2015. In this study, Sentinel-2 imagery acquired between 

January 2017 and December 2019 were analysed. Data were accessed through the USGS Earth 

Explorer Portal (https://earthexplorer.usgs.gov/; Table 4-1). A cloud-free Sentinel-2 image 

(with very small proportion of haze clouds) acquired on 1 January 2018, under growing 

vegetation and low water flow conditions, was initially used to develop a manually digitised 

ground truth map of landforms in the Bislak River (water: 1.93 km2, unvegetated bars: 6.28 

km2, vegetated bars: 6.15 km2). The ground truth map was used to assess the results from the 

three approaches to downscaling. To train and validate a multi-temporal model, Sentinel-2 
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acquisitions of the Bislak River for six dates in 2018 were selected for digitisation. To test the 

transferability of the multi-temporal Bislak training model to other years, Sentinel-2 

acquisitions on six dates in both 2017 and 2019 were used. To test the transferability of the 

training model to other nearby rivers, Sentinel-2 acquisitions of the Laoag River on six dates 

in 2018 and of the Abra River on six dates in 2019 were used. 

Table 4-1. Sentinel-2 acquisition dates for each river from 2017 to 2019. 

River 2017 (DD/MM) 2018 (DD/MM) 2019 (DD/MM) 

Bislak 
16/01, 16/04, 15/06, 

03/09, 28/10, 07/12 

01/01, 07/03, 01/05, 

10/07, 20/07, 18/09, 

07/11 

10/02/, 11/04, 30/06, 

29/08, 13/10,07/12 

Laoag - 
01/01, 07/03, 01/05, 

10/07, 18/09, 07/11 
- 

Abra - - 

11/01, 27/03, 16/05, 

25/07,  

13/09, 22/11 

4.3.2. Image Pre-processing 

The L1C image datasets were atmospherically corrected using Sen2Cor within the ESA SNAP 

software. Bands with 10 m and 20 m resolution were used to build the machine learning model. 

In this case, bands at 20 m resolution were processed to 10 m resolution using three 

downscaling approaches: super-resolution (Brodu 2017), ATPRK (Wang et al. 2016) and 

nearest neighbour resampling. The super-resolution approach used in this study was directly 

achieved by the Sen2Res tool in SNAP (version 7.0). The nearest neighbour resampling was 

also performed in SNAP while the ATPRK approach was run in MATLAB R2019a. 

In addition to the Sentinel-2 bands, five environmental indices (Table 4-2) were generated and 

incorporated into the machine learning model, resulting in a total of 15 features (10 multi-

spectral bands and 5 environmental indices) for the river landforms classification. The 5 

environmental indices have been widely used in a variety of studies for extracting vegetation 

and water extent from remote sensing images (Rokni et al. 2014). EVI2 was originally designed 

to be used for sensors without a blue band to produce an EVI-like vegetation index and may 

reveal different vegetation dynamics (Jiang et al. 2008). Therefore, in this research, we try to 

incorporate both EVI and EVI2 into our dataset to run the machine learning. 
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Table 4-2. Selected indices for processing classification. 

Features  Description 
Resolutio

n(m) 
Formula Reference 

NDVI Normalised 

Difference 

Vegetation 

Index 

10 (band 8- band 4)/ (band 8+ band 4) Carlson 

and Ripley 

(1997) 

NDMI Normalised 

Difference 

Moisture 

Index 

(Change in 

water 

content of 

leaves) 

10 (band 8-band 11)/ (band 8+band 11)  Bangira et 

al. (2019) 

NDWI Normalised 

Difference 

Water Index 

(Water 

content in 

water 

bodies) 

10 (band 3-band 8)/(band 3+band 8) Gao (1996) 

EVI  Enhanced 

vegetation 

index 

10 2.5× (band 8A-band 4)/ (band 

8A+6×band 4-7.5×band 2+10a)  

Huete et al. 

(2002) 

EVI 2 Enhanced 

vegetation 

index 

10 2.5× (band 08-band 4)/ (band 

8+2.4×band 4+10a)  

Jiang et al. 

(2008) 

 

4.3.3. Geographic Object Based Image Analysis (GEOBIA) machine learning 

GEOBIA was employed for image segmentation and classification. The Large-Scale Mean 

Shift (LSMS) algorithm in Orfeo Toolbox (version 6.6.1) was used for the segmentation of 

objects within the river channel. Three landforms within the river were defined by manually 

digitising water, unvegetated bars and vegetated bars. The objects were trained together with 

the manually digitised ground truth map and input into the Support Vector Machine (SVM) 

model and subsequently evaluated, following the workflow described in Figure 4-2. For the 

SVM model, regularisation parameter of 1.0 and scale radial basis function kernel were used 

and implemented using scikit-learn in Python 3.7. 
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Figure 4-2. Workflow for river landform classification. 

4.3.4. Downscaling choice 

Sentinel-2 images for the Bislak River on 1 January 2018 were used to compare the three 

downscaling approaches. In this case, the Bislak River was firstly divided into 10 blocks, using 

a 7:3 split for training and testing blocks. The numbers of training and testing objects are given 

in Table A1. Image processing efficiency and classification performance were assessed for all 

of the three approaches (Figure 4-2). The classification accuracy of each dataset was evaluated 

using the overall accuracy, precision, recall and f-1 score. The binary classification can be 

measured by building a confusion matrix which records correctly and incorrectly recognised 

examples (Sokolova, Japkowicz, and Szpakowicz 2006). Goutte and Gaussier (2005) 

considered each object with a binary label which accounts for correctness of the object, where 

true positive (TP) represents positive class being classified as positive; false positive (FP) 

represents negative class being classified as positive; false negative (FN) represents positive 

class being classified as negative; true negative (TN) represents negative class being classified 

as negative. Through this definition, accuracy, precision and recall are measured by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                                   (4 − 1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                (4 − 2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                  (4 − 3) 
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The F1 score can be interpreted as a harmonic mean of the precision and recall, where an F1 

score reaches its best value at 1 and worst score at 0 (Sokolova, Japkowicz, and Szpakowicz 

2006; Goutte and Gaussier 2005). F1 score can be calculated by: 

𝐹1 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                  (4 − 4) 

Beyond overall accuracy of the classification, per-class accuracies (water accuracy (WA), 

unvegetated bar accuracy (BA) and vegetated bar accuracy (VA)) were also considered. 

Table A1. Numbers of training and testing objects for landforms when applying the three 

downscaling approaches. 

Downscaling 

approach 

Dataset Number of objects 

Total Water Unvegetated 

bars 

Vegetated bars 

Resampling Training 747 71 456 220 

Testing 330 69 173 88 

ATPRK Training 751 76 455 220 

Testing 317 70 160 87 

Super-

resolution 

Training 10219 1432 4550 4237 

Testing 5262 794 2170 2298 

4.3.5. Optimal training model 

To investigate an optimal machine learning model, both the training and testing data selections 

were considered. This study started landform classification using a single-date model (for both 

training and testing datasets) and a six-date model (for both training and testing datasets). In 

this case, the training model (Figure 4-3) generated on 1 January 2018 was initially set (Table 

A2), and then tested on the whole reach (red extent of Figure 3) for the remaining five dates in 

2018. In this experiment, the ‘unknown units’ (e.g., urban structures, cloud and shadows, were 

named as ‘others’ and incorporated in the training model. To gain a better understanding of the 

classification performance of unknown units, the testing site from 10 July 2018, which is partly 

covered by clouds, was extended by 20 m outside the active channel boundary to incorporate 

urban pixels. In this way, a mixed group of ‘others’ was prepared for testing. 
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Figure 4-3. Selected imagery extent for building optimal training model in the Bislak River. 

Background is the true colour Sentinel-2 image dated 1 January 2018. 

 

Table A2. Numbers of objects used in the single-date model. 

Date Number of objects 

2018 Dataset Total Water Unvegetated 

bars 

Vegetated 

bars 

Others 

1 Jan  Training 1304 203 694 376 31 

1 Jan  Testing 380 92 188 100 0 

7 Mar Testing 1131 175 662 291 3 

1 May  Testing 1043 156 615 267 5 

10 July  Testing 1463 225 482 448 308 

18 Sept  Testing 1065 431 555 71 8 

7 Nov  Testing 1026 258 556 204 8 

Consequently, a modified approach was conducted on a new group of training and testing 

datasets. Firstly, a 19 km reach of the Bislak River (Figure 4-3) was selected as the 

experimental area within which ten sub-reaches were established, given serial numbers and 

allocated to either training or testing datasets (Figure 4-4). 
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Figure 4-4. Ten sub-reaches of the experimental area with serial number. Background is the 

true colour Sentinel-2 Level-2A image dated 1 January 2018. 

The training dataset (Table A3) was combined by objects from blocks 1,2,4,6,7 and 10 for six 

dates in 2018 (1 January, 7 March, 1 May, 20 July, 18 September, 7 November). In this case, 

we added the class ‘others’, which incorporate unknown objects (occupying 1.1% of whole 

data). With the SVM algorithm, the training model was established and validated on the objects 

from blocks 3,5,8 and 9 (Figure 4-4; partly shown in Figure 4-1b) of the same dates. 

Furthermore, imagery observations indicate that three landform types (water, unvegetated bar 

and vegetated bar) are always present and change locations within blocks 3 and 5 in different 

seasons. To assess the general performance of the machine learning model for different years, 

the training model was tested on the objects from blocks 3 and 5 of Bislak River in 2017 and 

2019 (Table A3). We avoided blocks that were obscured by clouds. 

Table A3. Numbers of objects used in the multi-date model. 

Sub-

reaches on 

dates 

Number of objects 

Dataset Total Water Unvegetated 

bars 

Vegetated 

bars 

Other 

6 dates in 

2018 

Training 3933 871 2112 908 42 

16/01/2017  Testing 216 42 136 38 0 

16/04/2017 Testing 225 32 146 47 0 

16/06/2017  Testing 130 24 86 20 0 

03/09/2017  Testing 210 59 74 77 0 
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28/10/2017  Testing 227 48 116 63 0 

07/12/2017  Testing 205 34 113 58 0 

01/01/2018 Testing 480 79 266 135 0 

07/03/2018 Testing 404 63 258 83 0 

01/05/2018 Testing 408 50 241 117 0 

20/07/2018 Testing 418 104 192 122 0 

18/09/2018 Testing 411 177 161 73 0 

07/11/2018 Testing 407 106 215 84 2 

10/02/2019 Testing 231 35 165 31 0 

11/04/2019 Testing 221 29 146 46 0 

30/06/2019 Testing 91 17 42 32 0 

29/08/2019 Testing 224 90 92 42 0 

13/10/2019 Testing 194 64 100 30 0 

07/12/2019 Testing 204 53 104 47 0 

4.3.6. Optimal testing dataset 

To investigate the performance of different testing datasets, three combinations of segmented 

objects were explored: (i) river objects from one single date; (ii) river objects from six dates in 

a year, including heavy cloud cover dates (over 30% heavy clouds covering the studied river); 

and (iii) river objects from four less cloudy (under 30%) dates in a year. Thus, in this section, 

the training dataset consisted of 7458 objects from the 10 Bislak sub-reaches of every two 

months (6 months in total) in 2018, including ‘water’, ‘unvegetated bar’, ‘vegetated bar’ and 

‘others’. To identify an optimal testing dataset, three forms of data tests were designed and 

applied to the machine learning model. Firstly, the training model was tested on channel objects 

from single dates in 2017 and testing accuracies were calculated. Secondly, the training model 

was tested on all channel objects of six dates in 2017, including days with heavy cloud cover 

(≥30%) acquisitions. Lastly, the training model was tested on all channel objects from four 

dates in 2017, representing the less cloudy (≤30%) acquisitions. Blocks 3 and 5 in Figure 4 

(Table A3) were extracted for the accuracy assessment. The classification performance was 

compared between the three testing scenarios and an optimal testing dataset was selected for 

further landforms classification analysis. The machine learning model was then applied to the 

Laoag and Abra Rivers to investigate the transferability of the model. The testing sub-reaches 

of these rivers are shown in Figure 4-1c and 4-1d. 
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4.4. Results and Discussion 

4.4.1. Comparison of downscaling approaches 

Figure 4-5 shows a sample of the segmentation results. The 20 m resolution bands of Sentinel-

2 were downscaled to 10 m resolution using the Sen2Res based super-resolution approach, 

ATPRK, and nearest neighbour resampling. The LSMS segmentation algorithm was 

subsequently employed to segment the composite bands processed by each approach into 

objects. As described in section 3.2.5, with multiple experiments for selecting parameters, the 

range radius and minimum segment size for the super-resolution approach shows a large 

difference compared to both resampling and ATPRK methods. Specifically, the super-

resolution approach requests only 1 minimum segment size for delineating the channel 

landforms well, while the resampling and ATPRK methods use 42 minimum segment sizes to 

differentiate the objects within the channel. The minimum segment size refers to the criterion 

that is set for merging adjacent small segments with the closest spectral signature after 

segmentation. Thus, different choices of parameters lead to different sizes of segmented 

objects. Moreover, the different segmentation procedures result in datasets of varying sizes at 

same spatial extent, with super-resolution capturing 154841 objects after segmentation, 

resampling retrieving 1077 objects, and ATPRK retrieving 1068 objects. 

 

Figure 4-5. Sample of segmentation results for (a) super-resolution, (b) resampling and (c) 

ATPRK. Segmented Objects are categorised by red boundaries. Background images are the 

composite of band 5 (central wavelength: 704.1 nm), band 6 (central wavelength: 740.5 nm) 

and band 7 (central wavelength: 782.8 nm) of downscaled Sentinel-2 Level-2A images dated 

1 January 2018. 
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The subsequent classification performances for the three approaches designed in section 4.3.4 

are displayed in Table 4-3. The ATPRK classification performed best among the three 

methods. However, in this case, the methods were compared at different object scales 

(minimum segment sizes are varying between three approaches, see Figure 4-5). To fit generic 

ground truths to the segmented objects well, the minimum segment size of image objects with 

ATPRK and resampling approaches was chosen as much larger than that with super-resolution 

approach. This means that segments from ATPRK and resampling images preserved more 

spatial geometric information since it is easier to find similar adjacent segments to represent 

spatial features. This might be explained by prior geometric interruptions of the super-

resolution method, which was introduced in section 4-1. Classification of water areas based on 

resampling implied that the misclassified water bodies always occur in narrow channels, whilst 

ATPRK performed well in these narrow channels. This result is expected, given that the 

difference between the expected spatial detail interpretation from ATPRK and the resampling 

methods, explained in section 4-1.  This initial experiment provided a first overall comparison 

of the three downscaling approaches for classification of the Bislak River’s landforms. The 

results indicate that the image downscaling approaches can be essential to process object-based 

classification using Sentinel-2 imagery. The results show that the ATPRK method can 

outperform the other approaches in rivers of the type found in this region. While resampling 

performs slightly better than ATPRK for the unvegetated bar and vegetated bar classification 

accuracies, when it comes to spatial details, the water accuracy is only approximately half that 

of ATPRK. Thus, the ATPRK approach was used to address research questions 2 to 4. 

Table 4-3. Accuracy assessments for resampling, ATPRK and super-resolution approaches. 

(All values range between 0 – 1, whereby 0 indicates the lowest accuracy and 1 indicates the 

highest accuracy.) 

 Accuracy Precision Recall F1-score WA BA VA 

Resampling 0.785 0.832 0.785 0.771 0.435 0.971 0.693 

ATPRK 0.861 0.871 0.861 0.859 0.871 0.950 0.690 

Super-resolution 0.681 0.707 0.681 0.676 0.484 0.842 0.596 

 

4.4.2. Training model investigation 

To determine the robustness of the training model based on 1 January 2018 data, the objects of 

the whole reach were used as a training dataset (Figure 4-6a red extent) and the model tested 
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on a different reach (Figure 4-6a white extent), located farther upstream in the catchment with 

fewer unknown objects (e.g., clouds and urban units). The cross-validation accuracy of the 

model was 0.91 and the test accuracy for this upstream reach was 0.929. Cross-validation uses 

different portions of the training data to train the model over k-folds or iterations and the 

validation assesses the model performance (validation accuracy). The final (optimised) model 

is then applied to the test set to provide an unbiased estimate of the final model (testing 

accuracy). The cross-validation accuracy and test accuracy were both very high which indicates 

the model fitted well to the upstream reach data. The accuracy of water classification was 

0.891, that of unvegetated bars was 0.941 and vegetated bars was 0.940. The lower accuracy 

of water might be caused by narrower channels in the upstream, making water objects more 

difficult to recognise in some places and leading to misclassification. Generally, the whole test 

accuracy is close to the validation accuracy, and the classifier performed well for classifying 

the landforms in the upstream reach on 1 January 2018. 

 

Figure 4-6. Classification on an upstream reach of Bislak River; (a) is the true colour Sentinel-

2 image with training and testing area, (b) is the manually digitised ground truth representing 
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white extent in (a), and (c) is the output classification. Background image is the true colour 

Sentinel-2 Level-2A image dated 1 January 2018. 

To investigate the training model (red extent in Figure 4-6a) performance across a broader 

temporal scale, five acquisitions over the Bislak River between 7 March 2018 and 7 November 

2018 were selected for testing. Table 4-4 displays the accuracies across all dates. It can be seen 

from Table 4-4 that the 1 January 2018 training model does not perform well for all dates in 

2018. The training model developed in the dry season fitted March and November images very 

well, both of which are in the dry season. The testing result was good (overall accuracy is 0.85) 

on 1 May 2018, which is a transition period between the dry and wet seasons. The 18 September 

had the poorest performance, which is at the end of the wet season. At this time in the year, it 

is likely that vegetation growth and suspended sediment load contribute to changes in the 

spectral properties of vegetated bars and water (Welber, Bertoldi, and Tubino 2012). In 

addition to water, unvegetated bars and vegetated bars, we incorporated a very small proportion 

(2%) of unknown units, which were named ‘others’, into the training model in this experiment. 

We tested performance using objects from 10 July 2018, including 308 objects defined as 

‘others’. Most objects in this category are urban structures aligned with the active channel of 

the river, and some are clouds or cloud shadows. The results showed that only 7 objects were 

misclassified (accuracy is 0.98), which implies the ‘unknown units’ are not the cause of low 

accuracies on 10 July 2018. Rather, these low accuracies are probably caused by the lack of a 

seasonal consideration in the training model. Thus, establishing an optimal training model for 

the research area should incorporate acquisitions across different periods during both the dry 

and wet seasons. 

Table 4-4. Accuracies on different dates in 2018 using training model from single date. (All 

values range between 0 – 1, whereby 0 indicates the lowest accuracy and 1 indicates the highest 

accuracy.) 

Date in 2018 OA WA BA VA 

07 March 0.90 0.96 0.91 0.87 

01 May 0.85 0.41 0.94 0.93 

10 July 0.61 0.40 0.86 0.48 

18 September 0.57 0.23 0.48 1 

07 November 0.92 0.94 0.89 0.99 

Consequently, the new modified training model established on sub-reaches across 

different seasons in 2018 was designed and tested on objects of different dates from 2017 to 

2019 (Table A3). Figure 4-7 combines the testing accuracies based on dates across the three 

years. The overall accuracy for the model is mostly between 0.80 and 0.90. The best classified 
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unit is unvegetated bar (most accuracies ≥ 0.90) and the poorest classified unit is vegetated bar 

(accuracies vary between 0.54 and 0.91). Vegetation types/ species/reflectance could probably 

cause the poor vegetation classification, which could be examined by higher resolution imagery 

or field evidence. Water can generally be well classified (accuracies mostly above 0.80) except 

for a few dates. These observations demonstrated that using data from multiple dates in 

constructing the training model can lead to performance that is superior to a single-date training 

model. 

 

Figure 4-7. Time series for the testing accuracy of the multi-temporal training model across 

three years (2017-2019). 

4.4.3. Testing dataset selection 

We investigated testing datasets for establishing an optimum machine learning model for river 

landform classification in the region. From the results presented in section 4.4.2, a multi-date 

training model is more favourable for local channel landform classification. Thus, we used a 

multi-date training model (section 4.3.5) to run testing to define an optimal testing dataset. The 

method has been described in section 4.3.6 and the test experiment accuracies are displayed in 

Figure 4-8. In general, the training model on 10 blocks in Figure 4-4 and tested on objects of 

four cloud free dates (Train_10_test_4) contributes the best performance for the river 

landforms classification. This model performed best for water and vegetated bars except in 

April 2017, when a single date testing dataset provided higher accuracies. However, for 

unvegetated bar units, the single date testing dataset obtained much lower accuracies compared 

to the multi-date testing dataset (including both heavy clouds and less clouds datasets) in April 

and September 2017. However, in the case of unvegetated bar units, the heavy cloud-based 

testing dataset performs slightly better than the dataset with less cloud. The testing results for 

unvegetated bars may be explained by the low water volume and high sediment exposure in 

the dry season. Additionally, most mis-classified vegetation objects were classified as 
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unvegetated bars (see Table 4-4), which is likely related to there being sparse vegetation in 

these objects. From results in this section, we suggest that considering the format of the testing 

dataset could help when deriving different objective classification results. To pursue an overall 

high accuracy classification when unvegetated bars are the dominant river landform, we 

recommend using a multi-date based, low cloud cover dataset to define the classification. 

Moreover, to study landform change in a season which is very short or that shows difference 

from the whole year, such as April in this case, a testing dataset from a single date might be 

more effective. 

 

Figure 4-8. Comparisons of three testing datasets evaluated by overall accuracy (OA), water 

accuracy (WA), unvegetated bars accuracy (BA) and vegetated bars accuracy (VA). 

4.4.4. Model performance in nearby rivers 

To explore the transferability of the developed machine learning model, further testing was 

performed in two nearby rivers: the Laoag and Abra Rivers. For the Laoag River, object 



 

81 

samples from six cloud free acquisitions in 2018 (Figure 4-1c) were collected for model testing. 

The total number of testing samples in the Laoag River is 2037 (training: testing ≈ 10:3). For 

the Abra River, object samples from six cloud free acquisitions in 2019 (Figure 4-1d) has 2424 

testing samples in total (training: testing ≈ 10:4). Tables 4-5 and 4-6 show the test accuracies 

for the Laoag River in 2018 and Abra River in 2019, respectively. Here, we used a multi-date 

based testing dataset to run the classification. 

Table 4-5. Test accuracies of Laoag River in 2018. (All values range between 0 – 1, whereby 

0 indicates the lowest accuracy and 1 indicates the highest accuracy.) 

Date  OA  WA  BA  VA  

01/01/2018  0.893   0.933   0.897   0.806  

07/03/2018  0.840   0.895   0.812   1.000  

01/05/2018  0.862   0.778   0.905   0.750 

10/07/2018  0.834   0.946  0.862   0.510 

18/09/2018  0.883   0.951   0.834   0.679 

07/11/2018  0.878   0.976   0.835   0.833  

2018 (whole year) 0.866   0.937   0.860   0.735  

 

Table 4-6. Test accuracies of Abra River in 2019. (All values range between 0 – 1, whereby 0 

indicates the lowest accuracy and 1 indicates the highest accuracy.) 

Date  OA  WA  BA  VA  

11/01/2019 0.852  0.879  0.955  0.573  

27/03/2019 0.892  0.875  0.955  0.770  

16/05/2019 0.878  0.831  0.978  0.674  

25/07/2019 0.859  0.861  0.965  0.765 

13/09/2019 0.892  0.979  0.915  0.815 

22/11/2019 0.864  0.946  0.978  0.662 

2019 (whole year) 0.872  0.901  0.959   0.721  

 

These results indicate that, for the whole year, the overall accuracies, water accuracies and 

unvegetated bar accuracies within nearby rivers are equal or above 0.86, while vegetated bar 

accuracies are equal or below 0.735. Specially, the vegetation accuracies of 10 July 2018 on 

Laoag River, and 11 January 2019 on Abra River are lower than 0.600. This lower accuracy is 

related to the low proportion of vegetated objects within the testing sub-reaches, which enhance 

the misclassification. Finer resolution remote sensing data might help to improve the vegetation 

accuracy for low or sparsely vegetated areas (Huylenbroeck et al. 2020). Most mis-classified 

vegetation objects were classified as unvegetated bars, and notably, the unvegetated bar 

classification performance is good (>0.812) across all dates of both rivers. The machine 
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learning model can be regarded as reasonably robust across the different rivers and is 

subsequently applied to further Sentinel-2 images to generate a dataset of river patterns within 

the region (Figure 4-9). 

 

Figure 4-9. Subset classification results of Bislak, Laoag and Abra Rivers across different times 

of different years. Complete classification coverages can be accessed from the link in the Data 

Availability section. 
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4.5. Conclusions 

This investigation shows the ATPRK approach to downscaling outperforms the alternatives of 

nearest neighbour resampling and super-resolution for river landforms classification. A new 

image processing workflow for the purpose of river landform classification was developed and 

tested across tropical rivers in the Philippines. We also demonstrated that using a multi-

temporal dataset across seasons to build a training model is superior to single-date and single-

season models. We recommend using testing data at similar temporal ranges to train data and 

achieve higher classification accuracy. Whilst the scale between ground truth mapping and 

image segmented objects could impact classification accuracy, our set of experiments (during 

image pre-processing, downscaling, segmentation, classification) demonstrate optimal 

data/image processing and river landforms classification modes to improve the classification 

performance.  The results show that the proposed workflow can be used for river landforms 

classification across three neighbouring catchments, and it is possible that the training model 

could successfully be applied to other tropical rivers in the Philippines and beyond with similar 

hydro-geomorphological characteristics. 
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Chapter 5 - Seasonal and annual tropical river pattern change 

detection using machine learning 
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Abstract 

Rivers in the tropics are more likely to exhibit seasonal changes in pattern than those in 

temperate regions because of strongly seasonal rainfall. However, such changes in seasonal 

tropical river patterns have not been widely investigated. Machine learning methods are used 

in this study with Sentinel-2 multispectral remote sensing images to classify active channel 

landforms (water; unvegetated bars; vegetated bars) of the Bislak, Laoag and Abra Rivers, 

north-west Luzon, the Philippines. River patterns are classified five or six times per year from 

2016 to 2020. Spatial and temporal trends were investigated, in the context of the rivers’ active 

width, valley confinement, tectonic setting and precipitation. Results show a variety of 

relationships between each landform unit and active width, but a strong correlation was shown 

between active width and vegetation area in dry and wet seasons. Rivers were divided into sub-

reaches based on observed patterns of water frequency and confinement; Ensemble Empirical 

Mode Decomposition (EEMD) was then used to decompose the landform time series and 

precipitation record. EEMD indicates that water and vegetated bars commonly show 

synchronised fluctuations with precipitation, while unvegetated bars have an anti-phase 

oscillation with precipitation. It also suggests that deviations from periodic consistency in river 

pattern may reflect the influence of extreme events and/or human disturbance. At the river 

system scale, faults perpendicular to the channel centreline were associated with an increase in 

vegetated bar stability. Overall, the interplay of faults, elevation, confinement and tributary 

locations impact landform stability. This investigation demonstrates that in tropical regions 

river pattern should be considered as a dynamic entity as characterising pattern from a single 

time period may misrepresent a river’s character. EEMD is also demonstrated to be an 

appropriate statistical technique in geomorphology to decompose datasets that are generated 

from contemporary applications of machine learning to remotely sensed imagery. 

5.1. Introduction 

River channel pattern is a function of a variety of factors including longitudinal gradient, 

stream power, transport capacity, and bank strength (Buffington and Montgomery 2022; 

Church 2006; Kondolf et al. 2016). Previous studies on river pattern classification (Demarchi, 

Bizzi, and Piegay 2017; Ham and Church 2012; Horacio, Ollero and Perez-Alberti 2017) have 

been typically approached from a temporally static perspective, focusing on categorising 

planform at low flow. Whilst this approach is adequate for many meandering rivers in 
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temperate regions, in other climate settings, the aerial proportions of water, exposed sediment 

and vegetation, which comprise the planform of a river, may substantially vary through a year 

(Ashworth and Lewin 2014). Braided rivers have more rapid and complex processes of channel 

formation (Ashmore 2013). Hicks et al. (2020) illustrated the chanllenges and pressures of 

braiding rivers in the New Zealand, which are going through extreme natural events and 

anthropogenic stresses such as braidplain conversion to farmland and invasive vegetation.  This 

is particularly pertinent for multi-channel rivers in tropical and sub-tropical climates, where 

rivers are strongly influenced by rapid vegetation growth rates, and significant seasonal 

variation in flows due to storms and typhoons (Syvitski et al. 2014). In addition, channel pattern 

may vary in response to variations in sediment supply from, for example, landslides (Abanco 

et al. 2021) and volcanic events (Gran and Montgomery 2005) or autogenic adjustments (Paola 

2017). In the last decade, archives of satellite imagery of a sufficiently high spatial resolution 

to map channel pattern have become available at a temporal frequency that enables inter- and 

intra-annual mapping (Boothroyd et al. 2021). This creates opportunities to investigate the 

spatial and temporal patterns of tropical rivers, which are characterised by a variety of channel 

forms (Latrubesse et al., 2005). To this end, here, we focus on assessing the multi-temporal 

dynamics of channel pattern for a set of three rivers in the Philippines. In doing so, we expand 

the representation of these relatively under-investigated tropical river systems (Dingle et al. 

2019) in our global scale understanding of river pattern dynamics. 

A variety of multi-temporal investigations have demonstrated how the fundamental fluvial 

landforms that define river pattern can be mapped from historical airborne and satellite imagery 

archives, typically by digitising and then quantifying the extent of water, unvegetated bars and 

vegetated bars (Corenblit et al. 2020; Dingle et al. 2019; Hajdukiewicz and Wyzga 2019; 

Hooke 2022; Mandarino, Maerker, and Firpo 2019; Reid and Brierley 2015; Saleem et al. 

2020). For example, Serlet et al. (2018) manually digitised water, unvegetated bars and 

vegetated bars in a channelised regulated river, from a set of aerial images that covered 80 

years, to investigate the co-evolution of alternate bars and vegetation along a 33 km long reach 

of the temperate, anthropogenically impacted Isère River, France. Whilst manual digitisation 

of maps and aerial imagery has been widely used to investigate the temporal and spatial 

dynamics of fluvial systems, including river pattern change, this approach is time consuming 

and potentially less objective than automated approaches. Machine learning (Jordan and 

Mitchell 2015) has been widely applied to automate landcover classification using remotely 

sensed satellite data, using both conventional (e.g., pixel- and object-based machine learning 
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strategies) and deep learning (e.g., convolutional neural network) approaches (Phiri et al. 2020; 

Prakash, Manconi, and Loew 2020). With respect to conventional approaches, a variety of 

algorithms are commonly used, including Logistic Regression (LR), Support Vector Machines 

(SVM), Random Forests (RF) and Artificial Neural Networks (ANN) (Holden, Saito, and 

Komura 2016; Ohsaki et al. 2017; Schneider and Guo 2018). In fluvial geomorphology, SVM 

has been demonstrated to perform well to classify fluvial landforms (De Luca et al., 2019; 

Demarchi, Bizzi, and Piegay 2016) but there are still few large scale or multi-temporal 

examples to achieve a widely operative, objective framework for consistent river system 

characterisation (Gurnell et al. 2016). 

To reap the benefits of analysing multi-temporal channel pattern data, an integration of spatial 

and temporal analysis is needed. However, existing practices mostly lack temporal statistical 

analysis of spatial series. Saleem et al.’s (2020) quantification of planimetric channel changes 

along a 112 km reach of the tropical River Padma, Bangladesh, for ten timesteps during a 100-

year period is a typical example; whilst changes in landform patterns are quantified, they are 

not analysed statistically. Whilst overlaying maps of different time periods is an intuitive and 

straightforward approach to present spatial-temporal changes, this approach is not suitable for 

big spatial-temporal data analysis. Rather, a statistical temporal analysis is needed to enable 

quantitative analysis of river system dynamics. One method with potential to achieve this is 

Ensemble Empirical Mode Decomposition (EEMD), which has been developed to undertake 

time series analysis in a variety of scientific fields (Huang et al. 1998; Ridder 2011; Wang and 

Zhang 2020), without requiring that the data are stationary. This method decomposes time 

series into several constituent components, each of which has a corresponding timescale, and 

a trend. Xu et al. (2019) employed EEMD to decompose vegetation indices from remote 

sensing imagery and temperature series, then investigated relationships between vegetation 

change and climate change. This demonstrates how EEMD can be applied to investigate earth 

observation data, which inspired the use of EEMD to decomposing landform time series in our 

investigation. 

In this paper, we apply a machine learning workflow (Li et al. 2022) to classify multi-temporal 

fluvial landforms rapidly and objectively from the mountain front to the coast for the tropical 

Bislak, Laoag and Abra Rivers in north-west Luzon, the Philippines.  The resulting dataset is 

then used to investigate four research questions: (1) What are the impacts of channel setting 

(i.e., active width, catchment size, confinement, tributaries, elevation) on landform (water, 
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unvegetated bars, vegetated bars) patterns? (2) How do landform areas and proportions vary 

spatially along each river? (3) What are the seasonal patterns in these landform distributions, 

how consistent are they across the three rivers, and what drives these patterns? (4) What multi-

year temporal trends are there in landform area across the sub-reaches of each river, and how 

do these relate to precipitation patterns? 

5.2. Study area 

Our investigation focuses upon three gravel-bed rivers in north-west Luzon, the Philippines: 

the Bislak, Laoag and Abra Rivers (Figure 5-1). For each river, the riverscape that was analysed 

included the river network in each catchment from the coast to a point upstream where channels 

were greater than 95% confined on both valley sides. This yielded study lengths of 39, 47 and 

82 km, respectively for the Bislak, Laoag and Abra Rivers. Compared to the other two rivers, 

the Bislak does not have a significant tributary input within the study area (Tolentino et al. 

2022). The Laoag has three similar sized tributaries and the Abra has three tributaries with 

different catchment areas. 

The island of Luzon is dominated by sub-tropical East Asian monsoon climate (Liu et al. 2009). 

Tropical cyclones (Cinco et al. 2016) are frequent and cause landslides, flooding and channel 

change in the region (Abanco et al. 2021; Abon, David, and Pellejera 2011; Kim 2019). 

Notably, more than 50% of tropical cyclone induced rainfall in the Philippines occurs in north-

west Luzon (Bagtasa 2017). In this region, catchments are characterised by strong seasonality 

of rainfall, with a wet season from May to October and a dry season from November to April. 

Mean annual rainfall in the Bislak catchment is 2019 mm, with a maximum monthly mean of 

546 mm in August (Tolentino et al. 2022). In the region where Bislak catchment in, averaged 

monthly rainfall increased from 1969 to 2018 (Tolentino et al. 2022). Climate change impacts 

in west and east Luzon are different; from analysis of 32 years of monthly rainfall distributions, 

rainfalls measured at all western stations of the Philippines (including stations in the west 

Luzon) increased (or decreased) synchronously, whereas rainfall fluctuations at eastern stations 

of the country propagated southward and can be influenced by the winter monsoon, which has 

long-term variability in the Philippines (Kubota et al. 2017). Additionally, an analysis of 

records from 1901 to 2013 indicated rainfall in north-west Philippines increased around May 

to June and decreased around October to November (Kubota et al. 2017). 
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Figure 5-1. (a) The Philippines; red box is the study area in north-west Luzon shown in (b); (b) 

The Bislak, Laoag and Abra catchments, with extents of riverscapes that were analysed shown 

as black lines. (c - e) PlanetScope satellite imagery (dated December 2019) showing 

representative reaches of each river (image centres: Bislak 18.23 N,120.65 E; Laoag 18.13 N, 

120.67 E; Abra 17.63 N, 120.68 E), with extents indicated on (b). (f - i) Oblique photographs 

of riverscapes along the Bislak River. 

5.3. Data and methods 

5.3.1. Sentinel-2 acquisitions 

The Sentinel-2 mission comprises a constellation of two identical satellites launched on 23 

June 2015 and 7 March 2017. The multispectral instruments (MSI) onboard the pair of satellites 

enable monitoring of the Earth’s land cover typically using 10 m resolution imagery across 

four spectral bands and/or 20 m imagery across six spectral bands (Korhonen et al. 2017; Phiri 

et al. 2020). Sentinel-2’s capability of revisiting all continental land surfaces between 56°S and 
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82.8°N every five days has encouraged many investigations on land cover dynamics of the 

Earth’s surface (Phiri et al. 2020; Sonobe et al. 2018; X. C. et al. 2017), including river change 

(Rabanaque et al. 2022; Spada et al. 2018). However, in tropical areas the presence of clouds 

can substantially reduce the frequency of Sentinel-2 imagery that is suitable for land cover 

mapping; for the three rivers in this study, imagery acquisitions with good visibility were 

sometimes spaced two to three months apart. Nevertheless, to investigate the seasonal changes 

in river patterns, we were able to obtain five or six Sentinel-2 Level-1C (Top-Of-Atmosphere 

reflectance) acquisitions from the USGS Earth Explorer portal (http://earthexplorer.usgs.gov) 

for every year between 2016 and 2020 (Figure 5-2). These acquisitions had less than 5% cloud 

cover across the channel area and were typically well temporally distributed throughout each 

year. 

 

Figure 5-2. The timing of Sentinel-2 imagery acquisitions used in seasonal change 

investigations, for the Bislak, Laoag and Abra Rivers. 

5.3.2. Geographic object-based image analysis 

Ten bands at resolutions of 10 m and 20 m from Sentinel-2 MSI acquisitions and five 

environmental indices calculated from the Sentinel-2 data were selected to prepare learning 

features for image classification. Atmospheric correction was then applied to Sentinel-2 Level-

1C products (Top-Of-Atmosphere reflectance) to generate Level-2A products (Bottom-of-

Atmospheric reflectance) using the sen2cor processor developed by the European Space 

Agency (Main-Knorn et al. 2017). Using the Level-2A imagery, the ATPRK image fusion 
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algorithm (Wang et al. 2016) was applied to downscale 20 m imagery to 10 m resolution (Li 

et al. 2022). Subsequently, the five water and vegetation environmental indices were calculated 

from 10 m bands (including original 10 m bands and downscaled 20 m bands). The five 

environmental indices were: normalised difference vegetation index (NDVI; Carlson and 

Ripley 1997); normalised difference moisture index (NDMI; Wilson and Sader 2022); 

normalised difference water index (NDWI; Gao 1996); modified enhanced vegetation index 1 

(MEVI1; Huete et al. 2002); modified enhanced vegetation index 2 (MEVI2; Jiang et al 2008). 

As NDMI, MEVI1 and MEVI2 were originally developed for Landsat and MODIS satellite 

imagery, for Sentinel-2 Level-2A downscaled imagery, indices tended to have values outside 

of a -1 to 1 range. To maintain bounded conditions (-1 to 1), we added a constant 10a to the 

denominator of each of these indices (A. R. Huete 1988; Ji et al. 2011). For this case, we tested 

the constants by giving integers to a. We found a = 4 maintained the range from -1 to 1 for 

NDMI and MEVI2, while a = 5 maintained the range from -1 to 1 for MEVI1 (Li et al. 2022). 

Consequently, a set of fifteen 10 m resolution layers were produced for each acquisition. These 

layers included the Sentinel-2 processed spectral bands, and the water and vegetation 

environmental indices. The set of layers were segmented into geographical objects (i.e., patches 

of pixels) using the Large Scale Mean Shift (LSMS) algorithm (Comaniciu and Meer 2002; 

Ming et al. 2011), employing open-access Orfeo Toolbox 6.6.1 software.  

To bound the segmented geographical objects within the river channel, we generated an active 

channel extent for each river. We first detected the annual averaged area containing water and 

unvegetated bars homogeneously within the active channel (Boothroyd et al. 2021). We 

automatically closed gaps in the annual active channel area caused by vegetated islands using 

standard image processing techniques. For vegetated bars connected to the active channel, we 

manually edited the active channel area to include the vegetated bars. In the active channel, the 

segmented objects were manually allocated into three landform units (water, unvegetated bars 

and vegetated bars) and no data units (objects obscured by clouds or scattered urban units) to 

generate the ground truth dataset. Subsequently, these object samples were ready for SVM 

machine learning. For the machine learning model, the training dataset was built with imagery 

data of the Bislak River from six dates in 2018; as reported in Li et al. (2022), including 

imagery from all seasons resulting in a higher model performance than only using data from a 

single season. The classification model was tested and assessed using overall accuracy (OA), 

water accuracy (WA), unvegetated bar accuracy (BA) and vegetated bar accuracy (VA). 
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Accuracy was assessed using images of the: Bislak River in 2017 and 2019; Laoag River in 

2018; and Abra River in 2019. 

5.3.3. Catchment-averaged accumulated rainfall totals 

There is a paucity of ground-based rainfall measurements in north-west Luzon, especially in 

catchment headwaters. To quantify and compare catchment-averaged accumulated rainfall 

totals for the periods between Sentinel-2 image acquisitions, we therefore used satellite-derived 

precipitation data from the Integrated Multi‐satellite Retrievals for Global Precipitation 

Measurement (GPM IMERG) mission. The satellite-derived precipitation estimates have a 

spatial resolution of 0.1° and a temporal resolution of 30 minutes (Huffman et al. 2019). Across 

the Philippines, satellite-derived estimates from GPM IMERG show good agreement with 

ground-based rainfall measurements from synoptic stations and automatic rain gauges but a 

paucity of ground-based rainfall measurements are reported in the Northern Cordillera 

mountains (Veloria et al. 2021). We ingested shapefiles for the Abra, Bislak and Laoag 

catchments into Google Earth Engine and clipped the global GPM IMERG product to each 

catchment’s extent. Due to variation in catchment size and shape, the number of GPM IMERG 

cell centres varied per catchment (Abra = 66; Bislak = 12; Laoag = 21). We calculated 

catchment-averaged accumulated rainfall totals (mm) per 10 days for the period between 1 

January 2016 and 10 July 2021. 

5.3.4. Ensemble Empirical Mode Decomposition 

Time series decomposition was applied to analyse temporal trends in the remote sensing 

results. Numerous signal decomposition methods have been applied to geomorphic data, many 

of which require data that are stationary (mean and variance constant over time). Our time 

series are short and are expected to contain seasonal cycles and potentially longer-term trends, 

all of which preclude a stationarity assumption. Processing methods for non-stationary data 

such as spectrograms, wavelets, and the empirical orthogonal function expansion (EOF), each 

have shortcomings when applied to data from physical measurements (Huang et al. 1998). An 

alternative approach, Empirical Mode Decomposition (EMD) has therefore been proposed to 

process non-stationary and non-linear series into components at different frequencies (Huang 

et al. 1998). Using this method, the decomposed component (signal) is referred as the Instinct 

Mode Function (IMF). Here, we use a derivative of EMD, Ensemble Empirical Mode 
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Decomposition (EEMD), which solves the mode mixing problem encountered in EMD by 

adding white noise to the signal (Mohguen and Bekka 2015; Torres et al. 2011). Specifically, 

EEMD provides a way to decompose our river landform time series which were sampled at 

unequal time steps due to the availability of cloud-free satellite images.  

EEMD was implemented using the PyEMD library in Python v3.6 (Laszuk, 2017). Since 

EEMD has not been widely used in geomorphology, we illustrate the technique for the Abra 

River precipitation time series (Figure 5-3). The same method was applied to precipitation data 

for the Bislak and Laoag Rivers and to the three river landform data sets. In this analysis, noise 

width was set to 0.2 and 100 trials were performed (Huang 2004; Ridder 2011). The 

precipitation series was decomposed into five IMFs and one residual series (Figure 5-3a), 

where each IMF corresponds to an instantaneous frequency, which is usually interpreted to 

have physical meaning at a characteristic time scale. The residual can be interpreted as the local 

mean trend of the original data (Huang et al. 1998). Figure 5-3a shows that the mean 

precipitation for the Abra River catchment has a decreasing trend over the past 5.5 years. 
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Figure 5-3. Ensemble Empirical Mode Decomposition (EEMD) on GPM IMERG catchment-

averaged (every 10 days) precipitation data from the Abra catchment. (a) Upper plot (blue) is 

the precipitation data for the Abra River catchment. The subsequent five plots (green) are 

decomposed Instinct Mode Functions (IMFs), and the lowest plot (purple) is the residual of the 

decomposition. (b) The significance of the IMFs, where T = mean period (years) and E = 

Energy density. The mean period, the energy density for the added noise and confidence bands 

are calculated using the method of Huang (2004). (c) IMF amplitude in quantity peak as a 

function of signal frequency from fast Fourier Transformation (Cerna and Harvey 2000). This 

shows the dominant frequencies of each IMF, which correspond to the main periods of the 

decomposed components. 

Previous work (Kong et al. 2015) has shown that the highest frequency signal (IMF1) can 

contain signal noise. To test the significance of all the IMFs, we used Huang’s (2004) method 

for the IMFs and for white noise (Figure 5-3b). All five IMFs (Figure 5-3b; blue dots) from the 

Abra precipitation data are significant (>99% level).  To investigate the possible physical 

meaning of these significant IMFs, the frequency against amplitude plot (Figure 5-3c) shows 

the main frequencies (periods) within each IMF. Each IMF contains instantaneous frequencies, 

so each IMF may be associated with more than one timescale if there are multiple peaks in the 

frequency series. For example, IMF4 has only one peak at a frequency of 1.09 year (400 days), 

whereas, the other IMF plots show multiple peaks, that may indicate multiple environmental 
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driving factors within the decomposed component. EEMD results from the precipitation data 

for both, Bislak and Laoag Rivers also produce single peaks for IMF4 (see supplementary 

Figure A1 and Figure A2), with an annual period (≈1.09 year), hence IMF can be used to 

analyse annual precipitation fluctuations. Similarly, IMF2 has a period of 91 days (Figure 5-

3c) and is interpreted as a seasonal fluctuation, the magnitude of which varies considerably 

between years (Figure 5-3a). Using the same decomposition method for landform area time 

series, we compare IMF4 for precipitation with similar frequency (period) for the landform 

data to identify temporal responses in river landform units to annual precipitation variability. 

5.4. Results 

5.4.1 Machine learning model classification performance 

The SVM classification training model was built from six dates of Bislak River imagery, 

distributed across all seasons in 2018. Table 5-1 summarises the model’s performance for 

selected years for the three rivers. Overall Accuracy (OA) exceeds 0.86 for all rivers, indicating 

that the machine learning model has an appropriate efficiency to classify fluvial landforms for 

rivers in north-west Luzon. Although the recognition efficiency of vegetated bars is lower than 

that of water and unvegetated bars, Vegetation Accuracy (VA) still exceeds 0.70 for all test 

cases. To illustrate the classification, Figure 5-4 presents the classification results across 

different seasons in 2019, for the Abra River. The spatial distribution of landforms suggests 

there could be a seasonal cycle of river pattern change; vegetation extent and water cover 

increased between March and September and decreased between September and January of the 

next year. 

Table 5-1. Assessment of SVM classification performance for the Bislak, Laoag and Abra 

Rivers for a selection of years. For each metric, a value of 1.0 would indicate perfect agreement. 

River (Year) Overall  

Accuracy 

(OA) 

Water  

Accuracy 

(WA) 

Unvegetated 

Bar Accuracy 

(BA) 

Vegetated Bar 

Accuracy 

(VA) 

Bislak (2017) 0.904 0.883 0.981 0.752 

Bislak (2019) 0.897 0.868 0.948 0.789 

Laoag (2018) 0.866 0.937 0.860 0.735 

Abra (2019) 0.872 0.901 0.959 0.721 
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Figure 5-4. Classified river landforms for a segment of the Abra River during a one-year period. 

Seasonal variation in landforms is evident during the year. 

5.4.2 River landform classification 

Following the acceptable performance of the SVM machine learning model, the model was 

then applied to classify river landforms for the 5.5 year long imagery dataset, for the three 

rivers. Figure 5-5 shows how the proportions of water, unvegetated bars and vegetated bars 

change longitudinally and temporally. A proportional cover approach is used to show the data 

because it removes the influence of active width (AW) on observed change. From a spatial 

perspective, the results show a variety of landform changes from downstream to upstream. In 

general, for all three rivers, there were higher proportions of vegetated bars for reaches that 

have greater active widths (AWs). For the Laoag and Abra Rivers, reaches located closer to 

the sea had greater proportions of water extent relative to mid- and upper reaches. This may be 

due to the contribution of tributary inflows to these rivers. However, in other ways the Laoag 

and Abra rivers are different. The lower reach of the Laoag River had a relatively high 

proportion of vegetation whilst the proportion of bars is relatively low compared to the mid- 

and upper- reaches. For the mid reach (9 - 32 km from the sea) of the Abra River, the vegetated 
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bars occupied a lower proportion of the reach relative to mid-reaches of the Laoag River. For 

this reach, the proportion of vegetated and unvegetated bars were relatively similar.  

Temporal patterns in landform proportions (Figure 5-5) were synchronised across the three 

rivers, showing yearly variation throughout the study area for each river. In general, the 

proportion of vegetation started to increase after late May and then decreased before early 

February in the subsequent year. These annual dynamics can also be seen in the mapped 

landform changes for the Abra River in 2019-2020 (Figure 5-4). For many reaches, Figure 5-

5 indicates that there were corresponding temporal changes in water proportion. However, for 

some reaches, there was a slight increase in vegetated bar proportion and a decrease 

unvegetated bar proportion, whilst the water proportion remained stable. This phenomenon 

probably indicates seasonal vegetated island development. 

 

Figure 5-5. Longitudinal and temporal variation in landform proportions, and active width 

(AW), of the Bislak, Laoag and Abra rivers between February 2016 and July 2021. Distance 

starts from the estuary to the upstream. Classification maps are available from the digital data 

supplement (available after peer-review). 

To analyse and compare temporal changes in landform pattern from a spatial perspective, the 

three rivers were segmented into sub-reaches based on water frequency and river confinement. 

Figure 5-6 and Figure 5-7 shows five-year water frequency maps for the Bislak, Laoag and 

Abra Rivers, together with contextual information on topography, fault lines (PHIVOLCS 

2015) and confinement. Confinement was assessed by overlaying the active channel extent 
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with the mapped valley floors. Valley floors were manually mapped in GIS using a nationwide 

DEM (Grafil and Castro, 2014). We defined the valley margins morphologically, by 

identifying breaks in slope from relatively flat, low elevation areas to relatively steep hillslopes. 

Segment divisions were set when: (i) the water frequency map showed a change in river pattern 

from multi-thread to single thread, or vice-versa; (ii) there was a change from unconfined to 

confined valley, when over 90% of the proportion of the river was confined on both banks; and 

(iii) there were confluences. The Bislak, Laoag and Abra Rivers were segmented into 9, 10, 

and 16 sub-reaches respectively. 

Figure 5-6 shows that faults in the study region, and thus geological structure and position of 

high ground, are generally oriented north to south, Thus, rivers would typically flow along this 

approximate axis. An example from the Bislak River (Figure 5-6a) provides a view of river 

cutting through the high ground to reach sea (base) level to the immediate west. As rivers can 

incise at about the same rate as mountain uplift (often about 1mm/year) (Maxwell et al., 2018), 

incised meanders in the Bislak River provide evidence for river downcutting during uplift. Sub-

reach 7 and 8 of the Bislak River might be a graben with faults on both sides where the hills 

are uplifting and the basin in the middle is subsiding. 
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Figure 5-6. River segmentation of the Bislak, Laoag and Abra Rivers. 
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Figure 5-7. Landform frequency maps for the (a) Bislak, (b) Laoag and (c) Abra Rivers. 
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5.4.3 Active width impacts on area and proportion of landforms 

To examine the potential relationships between active width (AW) and the three landforms, 

mean values of area and proportion in the dry and wet season were investigated for the three 

rivers, using data from each river segment (Table 5-2). Results for the areal analysis of the 

Abra River are shown in Figure 5-8 whilst results from the proportional analysis for the Laoag 

River are shown in Figure 5-9. Supplementary figures (A3 to A6) show the results for the other 

area and proportion combinations for the three rivers. Correlation coefficients were calculated 

between AW and mean landform area/proportion, for dry and wet seasons. Figures A7 to A12 

present the correlation coefficients for the five-year duration time series, from February 2016 

to November 2020. Overall, the data in Figures 5-8 to 5-9, and A3-A12, enable both spatial 

and temporal trends in the relationship between AW and landforms to be investigated; these 

are considered in turn in the next two sub-sections.  

With respect to landform area (Table 5-2, Figure 5-8b, A3 and A4), there are positive 

correlations between the three landforms and AW across all three rivers (Areawater < Areaveg < 

Areabars in the Bislak River, generally Areawater< Areabars< Areaveg in the Laoag and the Abra 

Rivers). Water area is moderately impacted by AW in this region. This contrasts to vegetation 

and bars, which are strongly controlled by AW. The results also indicate that the strength of 

the correlation between AW and vegetation area perhaps relates to river catchment spatial 

scale, since the coefficient values of AW-Areaveg in the three rivers increases with catchment 

size. In addition to relationships between landforms and AW, Areaveg and Areawater also have a 

significant moderate correlation (0.71 in Bislak River; 0.64 in Laoag River; 0.61 in Abra River) 

in dry season. 

For proportional analysis (Table 5-2, Figure 5-9b and A5, A6), only Propveg in Abra River has 

a moderately high and significant correlation with AW (>0.60 in both dry and wet seasons). 

The correlation between Propveg and AW in the Laoag and Bislak Rivers were both significant 

weak positive (<0.6), with the coefficient in Bislak River lower than that in Laoag River. For 

this case, the spatial scale of the river probably also has an impact on the correlations between 

vegetation proportion and active width in the region; this is an example of the river scale 

impacts on vegetation area and active width that were discussed above. For the Bislak and 

Laoag River, no high or moderate correlation coefficients (≥0.6 or ≤-0.6) between Proplandform 

(any landform proportion) and AW were observed. However, during the dry season, across all 
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three rivers, Propwater and Propbars all had a strong significant negative correlation (≤-0.7). 

Moreover, in the wet season of Laoag River, Propwater and Propbars had a strong significant 

negative correlation (-0.79), which is different from the other two rivers. Additionally, Propveg 

and Propbars had negative correlations (<-0.6) in the Bislak River for both seasons; in the Laoag 

River, a negative correlation (-0.64) only occurred in the dry season. By contrast, for the Abra 

River, there was only a weak negative correlation (-0.47) between Propveg and Propbars.  

 

Figure 5-8. (a) Longitudinal trend in active width (AW) and mean area of three landforms 

(water, unvegetated bars, vegetated bars) for the Abra River, for wet and dry seasons. (b) 

Matrix plots represent correlations between mean values of landform areas and AW. 

Histograms illustrate mean value distributions at equal spaced spatial distance along the river. 

Kernel distribution estimation is shown using contour plots. Tables above each matrix plot 
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summarise correlation coefficients (r) and associated statistical significance (p) between 

landform areas and AW in wet season and dry season. 

 

 

Figure 5-9. (a) Longitudinal trend in active width (AW) and mean proportion of three 

landforms (water, unvegetated bars, vegetated bars) for the Laoag River, for wet and dry 

seasons. (b) Matrix plots represent correlations between mean values of landform proportions 

and AW. Histograms illustrate mean value distributions at ~410 m spatial distance along the 

river. Kernel distribution estimation is shown using contour plots. Tables above each matrix 

plot summarise correlation coefficients (r) and associated statistical significance (p) between 

landforms proportion and AW in wet season and dry season. 
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Table 5-2. Correlations between landforms and active width (AW) for the Bislak, Laoag, Abra 

Rivers for wet and dry seasons. r refers to correlation coefficient, where r≥ 0.60, text is bold. p 

refers to significance.  

Approach River Season 
Water-AW Bar-AW Veg-AW 

r p r p r p 

Area 

Bislak 

 

Dry 0.46 <0.001 0.86 <0.001 0.67 <0.001 

Wet 0.60 <0.001 0.78 <0.001 0.76 <0.001 

Laoag 

 

Dry 0.64 <0.001 0.73 <0.001 0.81 <0.001 

Wet 0.69 <0.001 0.50 <0.001 0.86 <0.001 

Abra 

 

Dry 0.63 <0.001 0.78 <0.001 0.82 <0.001 

Wet 0.67 <0.001 0.74 <0.001 0.88 <0.001 

Proportion 

Bislak 

 

Dry -0.45 <0.001 0.18 0.087 0.31 0.002 

Wet -0.41 <0.001 -0.09 0.404 0.42 <0.001 

Laoag 

 

Dry 0.10 0.292 -0.34 <0.001 0.50 <0.001 

Wet -0.07 0.467 -0.25 0.008 0.53 <0.001 

Abra 

 

Dry -0.24 0.001 -0.17 0.014 0.61 <0.001 

Wet -0.35 <0.001 -0.32 <0.001 0.65 <0.001 

The above analysis indicates that the relationship between AW and each of the three landforms 

varies between wet and dry seasons. To further investigate this relationship, from a temporal 

perspective, we selected the combinations that had above moderate correlation (>0.6). Then 

we calculated the correlation coefficients for specific dates, instead of using mean values for 

the wet and dry seasons, with the objective of minimising the temporal range of significant 

high correlations. The results are shown for the three rivers in Figures A7-A12, for area and 

proportion respectively. The correlation between Areaveg and AW was commonly high for the 

three rivers. Specifically, vegetation area shows higher correlation to the AW in the wet season 

compared to that in the dry season. However, for each river, the first dry date was always 

associated with a high correlation between Areaveg and AW, indicating there is a lag in AW 

impacts on vegetation area. The strongest correlations between AW and Areaveg occurred from 

early July to early December every year. The AW correlations to Areabar were also similar for 

the three rivers. However, for the Bislak and Laoag Rivers, Areabar was overall more 

synchronised with AW in the dry season. Beyond relationships with Area, the proportional 

analysis showed that the increase in Propwater corresponded to a significant decrease in Propbar 

across all three rivers in dry season but for the Bislak River only in the wet season. This may 

be due to the lower proportion of vegetation growing in the wet season in the Bislak River. 

Besides, late January to mid-March contributed the strongest correlation between Propwater and 

Propbar. This period could also be regarded as the time period in which vegetation has the least 

impact on the channel. Additionally, the correlations between Propveg and Propbar in the Laoag 

River are moderate to high from April to June, whilst these correlations for the Bislak River 
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varied across the five years. The reason of this difference between these two rivers could not 

be determined.  

5.4.4 Temporal changes in sub-reach landforms 

Temporal patterns in landform areas across the sub-reaches of each river were assessed using 

the EEMD to decompose time series of classified water, unvegetated bar and vegetated bar 

areas. Data for at least 32 dates covering >5.5 years were used. As noted in section 5.3.4, the 

IMF4 component of precipitation represents annual periodicity (c.12-13 months). For landform 

areas, the IMF2 components from the three rivers and three landform types typically had one 

main frequency, also with a period of around 12-months (Figure 5-10). Where the period of 

the IMF2 component is not 12 months, this reflects weak or absent seasonality in some years. 

The decomposition shows that water and vegetated bar areas are close to being in phase with 

precipitation, with a lag of between 1 and 3 months. Unvegetated bar areas are close to anti-

phase with precipitation, with peak areas always between March and May. Most sub-reaches 

of the three rivers show vegetation area expansion during September to December, with water 

surface area being maximum in August to November. Comparing the EEMD results with 

valley-scale geomorphology (Figure 5-6), there is no clear evidence that channel confinement 

controls annual changes in landform areas. 

There are some periods of several months when the landform areas did not change 

significantly, even though precipitation followed the normal seasonal trend (Figure 5-10). In 

some cases, this reflects data gaps due to clouds obscuring the river in some images. For 

example, the Bislak River, reaches 2 and 3 (Figure 5-10, light grey shading) remained constant 

during 2017 due to data gaps, which also affected the Bislak River reach 5 in 2016. 
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Figure 5-10. Ensemble Empirical Mode Decomposition (EEMD) IMF for precipitation (P; IMF 

4) and landform (water, unvegetated bars, vegetated bars; IMF 2) areas. IMF 2 data (blue lines) 

are presented for sub-reaches (numbers as in Figure 5-6) for the Bislak, Laoag and Abra Rivers. 

In all cases, the periodicity is c.12-13 months. Red vertical lines are at each annual peak. 

Periods with light grey shading are not consistent with neighbouring reaches, whereas the light 

green shading shows periods that are consistent. See the text for explanations. 



 

107 

Where data are available continuously, the EEMD analysis could potentially provide an 

approach to detect anthropogenic disturbance such as gravel mining. For example, in Abra 

River reach 2 in 2021, the water area maintained close to its peak value and the unvegetated 

bar area remained low (Figure 5-10, light grey shading), although the area of vegetated bars 

followed a typical seasonal pattern (light green shading). When we refer to the spectral imagery 

in Figure 5-11, the unvegetated bars area was occupied, an obvious artificial bank was changed 

(in red circle) and water area was extended (in blue circle) between 11 March 2020 and 11 

March 2021. As well as bank construction, these changes may also be affected by gravel mining 

activities. If mining is important, changes may be expected in active width (AW) over 

succeeding years (Bertrand and Liebault, 2019). 

 

Figure 5-11. Detection of morphology change (in red and blue circle) between 2020 and 2021 

in sub reach 2 of Abra River. 

5.5. Discussions  

5.5.1 River pattern classification 

A hierarchical workflow (Li et al. 2022) has been applied to three rivers intra-annually, using 

free-to-access remote sensing data. The workflow adopted object-based analysis, as 

recommended by previous land surface classification investigations (Demarchi et al. 2016; Ma 

et al. 2017; Phiri, Simwanda, and Nyirenda 2021; Phiri et al. 2020). We applied the ATPRK 

algorithm to enhance the 20 m resolution Sentinel-2 imagery to 10 m resolution images. 

ATPRK was shown to be effective on Sentinel-2 imagery fusion by Wang et al. (2016) and has 

been confirmed by Li et al. (2022) and our implementation here. However, we suggest it is 
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essential to carefully choose and test downscaling approaches before applying object-based 

image classification. In addition to image downscaling, we also employed the LSMS algorithm, 

in open-source Orfeo-Toolbox, to perform an object-based segmentation. Ma et al. (2017) 

found that 80.9% of previous investigations have used commercial e-cognition software in their 

review of different software that has been applied to segment remote sensing imagery. Here, 

we obtained good classification results (overall above 0.86 in yearly overall accuracies for the 

three rivers) by using open-source software. Since Sentinel-2 is one of the most suitable 

satellite missions for monitoring vegetation with a medium to high spatial and temporal 

resolution, our investigation demonstrates the potential use of an open-source software 

workflow in fluvial settings. 

Our classification results demonstrate that generating an active channel extent from multi-

temporal data is useful for bounding the segmented geographical objects. This approach is 

especially important for the characterisation of tropical river dynamics as landforms within the 

active channel change more frequently than those in temperate settings due to the relatively 

high frequency of high flow events and strong seasonal effects. The latter have been described 

as the dominant feature of most tropical rivers (Syvitski et al. 2014). Due to the strong 

seasonality that is characteristic of the climate in north-west Luzon, we found that the single 

date-based machine learning model poorly fitted to imagery from a different season, whilst a 

multi-date based model was able to achieve higher accuracy across different dates of the year. 

From field observations, vegetation composition and condition vary seasonally, especially at 

the edges of the active channel due to agriculture development practices. For example, for a 

sub-reach of the Abra River (Figure 5-12) we identified that patches of water disconnected 

from the main channel on 11 January 2019. Looking at the same location over 5 years, we 

found the similar scattered water patterns between January and February in every year. 

Seasonal vegetation and soil moisture could be the reason that impacted the water retention 

(Milly 1994; Werner, Sanderman, and Melillo 2020). However, as for agricultural practices 

observed on the vegetated islands (Figure 5-12) of the sub-reach of the Abra River, the 

scattered water patches during January and February probably be related to irrigation practices, 

resulting in soil nitrate solubilization, transport and in upward migration of the groundwater 

piezometric head (Pinardi et al. 2022). Therefore, from the seasonal water patches (Figure 5-

12), there is a potential to recognise the hotpot of soil nitrogen budget dynamics. Overall, the 

seasonal variations in the active channel led us to consider a multi-season classification model 

for change detection in the studied rivers. 



 

109 

 

Figure 5-12. Mapped morphologic seasonal change and yearly change in a sub-reach of Abra 

River. 
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5.5.2. Spatial river landform sensitivity to channel settings 

Whilst longer-term (>50 year) geomorphological processes, linked to tectonics, regional 

catchment settings and sediment supply, can cause changes in channel pattern (Baena-Escudero 

et al. 2019; Corenblit et al. 2020; Gilvear 1999), we constrained our study to a relatively short-

term scale. In this section, we investigate landform stability, by establishing a covariance series 

of each landform area along each river, from downstream to upstream, for the 5.5-year time 

period. The coefficient of variation (COV) of a distribution is measured by the ratio of its 

standard deviation to its mean. This is designed to enable the comparison of series with 

different mean values. Large values of COV are associated with more dispersed distributions 

(Yang and Lo 2000). In this study, large values of COV represent high instability of the 

temporal landform data. We used a moving average window (9 data points) to smooth the COV 

series.  

Figure 5-13 shows the longitudinal distribution of COV results, with confinement, faults and 

tributary locations indicated. Interpreted together with Figure 5-6, in general where faults are 

perpendicular to the channel centreline, vegetated bar stability increases. Conversely, where 

faults are at oblique angles to the channel centreline, vegetated bar stability decreases. 

Additionally, greater variability in the location of wetted areas is observed downstream of 

faults (for example, downstream of 11 km in the Abra River), which may reflect decreased 

gradient downstream of these faults. Where faults influence valley slope channel pattern 

adjusts, potentially leading to changes in sinuosity (Zámolyi et al. 2010), incision or the onset 

of wandering or braided behaviour. A sinuous reach downstream of the fault on the Bislak 

River at 27 km (Figure 5-6) indicates that the fault affects valley gradient and so causes 

increased meandering (Zámolyi et al. 2010). 

Tributaries provide inputs of water and sediment that may impact mainstem morphology 

depending on the scale of these inputs and the calibre of introduced sediment (Ferguson & 

Hoey, 2008). In the Laoag River (Figure 5-13), the area occupied by water is highly unstable 

upstream of the confluences where three significant tributaries joining in (ca. 33-40 km 

downstream; Figure 5-6, reach 7 and 8), whilst unvegetated bars remain stable and vegetated 

bar proportions are relatively low but showing seasonality (Figure 5-5) in this reach. In the 

meantime, Figure 6 shows that the water frequency is extremely low in this reach. In this case, 

downstream of tributaries the wetted channel becomes more stable. A similar result is observed 
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for some tributaries in the Laoag and Abra Rivers where the wetter area becomes somewhat 

more stable downstream of tributary inputs. The impacts of tributaries depend on their sediment 

loads which we have not been able to quantify, and tributary locations are likely to be 

determined by fault locations and lithological changes. Hence, further investigation is required 

to understand the impacts of tributaries on channel form. 

 

Figure 5-13. Channel settings, including active width, degree of confinement (confined / partly 

confined / unconfined), compared to the covariance (COV) spatial landform series for the 

Bislak, Laoag and Abra Rivers (water, unvegetated bars and vegetated bars shaded in thick 

lines are represented by smoothed values). Distance starts from the estuary to the upstream. 

Fryirs (2017) reviewed challenges in analysing river sensitivity in geomorphology and argued 

that each river has its own history and ability to response to a given disturbance; this is also 

demonstrated in our investigation. Even though the three studied rivers are located near to each 

other and in the similar hydrological/climate system, the abilities they have to response to 

channel setting change are different. For example, in the Bislak River, unvegetated bars are 

extremely sensitive to continuous confined reach, whilst the unvegetated bars are also sensitive 

to partly confined reaches in the Laoag River. However, the unvegetated bars shows less 

sensitivity to the confinement in the Abra River. The Bislak River (0.0049 m/m) is significantly 

steeper than the Laoag (0.0029 m/m) and Abra (0.0015m/m) Rivers, which may lead to higher 
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sediment transport capacity in the Bislak. Moreover, averaged active width of the Abra River 

(2.626 km) is much wider than that of the Laoag (0.581 km) and Bislak (0.375 km) Rivers. In 

this study, steeper (i.e., those with higher sediment transport capacity) and narrower rivers tend 

to be more sensitive to lateral confinement. Transport capacity, sediment availability and lateral 

confinement interact to determine the locations of transport reaches and sedimentation zones 

(Church and Jones, 1983), and hence bar stability. 

5.6. Conclusions 

This investigation used a SVM machine learning method to classify tropical river landforms 

from multispectral, multi-temporal satellite imagery. Applied to three gravel-bed rivers in the 

Philippines, the machine learning method enabled rapid and objective classification of water, 

unvegetated bars and vegetated bars from Sentinel-2 imagery between 2016 and 2021. The 

overall accuracy (OA) exceeded 0.86 for all rivers, indicating that the model had an acceptable 

classification performance to analyse and interpret seasonal and annual changes in tropical 

river pattern. 

Our results show longitudinal and temporal variation in landform areas and proportions (Figure 

5-5). Longitudinal variation is strongly influenced by channel setting (e.g., active width, 

catchment size, confinement, tributaries and elevation). Landform areas are significantly 

correlated with active width (Figure 5-8 and 5-9), with the strongest correlation found between 

active width and vegetated bar area. Assessing longitudinal landform stability through the 

coefficient of variation (Figure 5-13), differences in gradient and the influence of faults 

demonstrated how rivers in similar hydrological/climate regimes can have different river 

sensitivities. Temporally, we show synchronous changes in the area/proportion of landform 

units between rivers. During the dry season, increases in the proportion of water corresponds 

to significant decreases in the proportion of unvegetated bars in the Bislak and Abra Rivers, 

whilst the relationship applies to both the wet and dry seasons of the Laoag River. The finding 

suggests the need to consider tropical river pattern as a dynamic entity; characterising river 

pattern from a single time period may not fully represent the considerable impact of seasonal 

change. 
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Temporal patterns in landform areas across sub-reaches of each river were assessed using 

Ensemble Empirical Mode Decomposition (EEMD) to decompose time series of classified 

water, unvegetated bar and vegetated bar areas (Figure 5-10). For landform areas, the IMF2 

components from the three rivers and three landform types typically had one main frequency 

with a period of around 12-months. The data suggest water and vegetated bars commonly have 

a synchronised fluctuation with precipitation (close to in-phase), while unvegetated bars have 

an oscillation close to anti-phase with precipitation. The peak area of water and vegetated bars 

have a 1 to 3 months lag from the peak of precipitation in each year, while the peak for 

unvegetated bars occurred between March and May of every year. The time series 

decomposition method has capacity to detect local (sub-reach) abrupt change through 

consistency of the decomposed signal; deviations from periodic consistency in river pattern 

may reflect the influence of extreme events and/or human disturbance. We recommend EEMD 

as an appropriate statistical technique in geomorphology to decompose datasets that are 

generated from contemporary applications of machine learning to remotely sensed imagery. 
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Chapter 6 - Response of a lowland tropical river to tributary inputs, 

Cagayan River, the Philippines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following chapter is a reformatted version of a manuscript submitted to the 

Geomorphology, by Qing Li, Trevor B. Hoey, Richard D. Williams, Brian Barrett, and preprint 

available at http://dx.doi.org/10.2139/ssrn.4392184. 
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Abstract 

Tributaries add water, sediment, nutrients and organic materials to river mainstems. Increased 

discharge, and potentially total stream power, at confluences impacts river morphology at these 

junctions and downstream. We estimate stream power ratios of tributaries to the mainstem, 

based on catchment area, averaged accumulated precipitation, and slopes of the tributary river 

and the mainstem immediately upstream of the confluence. Using freely available Sentinel-2 

imagery and Geographical Object-based Image Analysis (GEOBIA), we automatically 

classified river landforms from 2018 to 2021 in the tropical lowland Cagayan River, the 

Philippines, with eight significant tributaries. Multi-year classification enables assessment of 

annual dry-wet season and inter-annual variability. The machine learning model classified 

three landform types within the active channel: water, unvegetated bars, and vegetated bars. 

Accurate classification (overall accuracy of 0.939) was obtained from data spanning both wet 

and dry seasons. The Cagayan River is predominantly meandering with frequent stable reaches. 

Unstable reaches, many associated with tributary inputs, show seasonal dynamics in water and 

unvegetated bar areas in all years. Longitudinal variations in channel morphology and stability, 

and temporal changes in landform frequency (using Simpson’s diversity index and coefficients 

of variation) show widening associated with tributaries that is controlled by water discharge, 

with a secondary sediment flux effect. Local widening and unstable bars are located around 

confluences, but most other reaches contain very little bar development, in part due to 

anthropogenic confinement. High landform diversity in confluence zones reflects local 

sediment deposition and provides riverine habitat diversity.     

Highlights 

• Tributary to mainstem stream power ratio explains channel adjustment at confluences 

in a large lowland tropical river 

• Water and unvegetated bars respond to wet-dry season flow changes 

• Bankfull width increases downstream of confluences which is explained by increased 

discharge 

• Sediment loads exert a secondary control on channel morphological and habitat 

diversity, and width adjustment 
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• Tributary influence in this lowland river is consistent with previous studies from high 

gradient, coarse-bed catchments 

6.1. Introduction 

Tributaries add water, sediment, and organic materials to river mainstems (Benda et al. 2004; 

Ferguson and Hoey 2008). Confluences between tributaries and main channels are important 

geomorphological and ecological nodes, which control the downstream routing of water and 

sediment, and can generate preserved fluvial deposits (Simon et al. 2018) that may concentrate 

economic minerals (Rodríguez et al. 2018). As a consequence of the increased channel capacity 

necessary to transfer the additional water supplied by a tributary, channel widths increase 

downstream of confluences (Ferguson and Hoey, 2008). Channel morphology, in addition to 

width, changes both upstream and downstream of tributary inputs, particularly when coarse 

and/or high volumes of bedload are supplied (Rice and Church 1998). The morphological 

response to tributary inputs depends on the ratio between tributary discharge and that of the 

mainstem, and also on the capacity of the mainstem to transport the additional sediment 

supplied by the tributary (Ashworth and Lewin 2012; Ferguson and Hoey 2008; Rice and 

Church 1998; Singer 2008). However, in many cases tributaries produce no significant 

morphological response in the mainstems. In some circumstances, the additional discharge and 

sediment load provided by a tributary are accommodated by equilibrium responses in the main 

river (Candel et al. 2021), but there are many geomorphological conditions that may preclude 

such equilibrium response as may anthropogenic impacts (e.g. impoundments) (Zhao et al. 

2017). Studies from high gradient rivers with abundant coarse sediment supplies (Kaushal et 

al. 2020; White et al. 2018; Swanson and Meyer 2014; Rice and Church 1998) show that excess 

coarse sediment is frequently delivered by tributaries, generating an upstream backwater and 

steepening of riverbed slope downstream of the junction in order to maintain sediment dispersal 

downstream (Rice 2017). Tributaries’ impacts on mainstem sediment storage may be also 

controlled by valley confinement, lithological variations, past depositional history, and 

upstream sediment connectivity (Rice and Church 1998; Swanson and Meyer 2014).  

Lowland rivers, which have predominantly sand or finer beds, are theoretically estimated to 

reduce their gradient by c.14% as their wider and deeper channels transport sediment more 

efficiently than the mainstream upstream of the confluence (Ferguson and Hoey 2008). The 

width adjustment in such rivers will also depend on the relative strength of the riverbank 
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materials (Kleinhans 2010; Nanson and Croke 1992; Schumm 1960). The dominant 

morphology in lowland rivers is meandering, although rates of lateral migration vary 

considerably (Horton and DeCelles 2001; Nanson and Knighton 1996). As such, away from 

confluence zones these rivers exhibit forced bars that remain stable, either absolutely or 

relatively to the channel thalweg, over multi-decadal timescales (Crosato and Mosselman 

2020). Confluences may also contain bars that are forced by local geometry, including the 

confluence angle (Ashmore et al. 1992; Crosato and Mosselman 2020). However, inputs of 

large sediment volumes from tributaries may also produce free bars around and downstream of 

the confluence that evolve and migrate in response to variations in flow and sediment load 

(Cordier et al. 2020; Crosato and Mosselman 2020). Hence, multi-annual variability in bars 

close to tributary junctions provides a means for inferring the nature of the tributary inputs in 

terms of discharge, sediment flux and grain size. 

Large river basins with low stream gradients are abundant throughout the tropics and represent 

analogues for many ancient fluvial deposits (Fielding et al. 2018; Gibling 2006; Latrubesse et 

al. 2005). In the wet tropics, frequent high magnitude events transport high suspended and bed 

sediment loads from rapidly eroding catchments (Saleem et al. 2020; Syvitski et al. 2014). 

Rapid seasonal vegetation development and erosion on bars cause local bank erosion and 

channel incision that generates multi-decadal channel change (Boothroyd et al. 2021; Dingle 

et al. 2020; Saleem et al. 2020). The grain-size and organic materials in tropical rivers also 

vary from temperate regions (Liu et al. 2009). Together, these factors suggest that tropical 

rivers may be more dynamic than rivers of the same size in temperate regions. For example, 

Dingle et al. (2019) reported higher lateral migration rates in the Cagayan River, the 

Philippines, than from temperate rivers and present an example of a highly dynamic complex 

confluence zone. However, Simon et al. (2018) found that confluence mobility over 40 years 

in the Amazon basin was less than in the Ganges-Brahmaputra-Meghna (GBM, temperate) 

basin.  

The impact of a particular tributary on the mainstem river can be expressed as a function of 

ratios between tributary and mainstream discharge (QR), bed load flux (FR) and bed load grain 

size (DR) (Rice 2017). The capacity of both channels to transport sediment is also a function of 

the tributary to mainstem stream power ratio (SPR), where stream power SP = QS in which S 

is river slope immediately upstream of the confluence and  is water density (Kaushal et al. 

2020; Yang and Stall 1974). Where discharge data are scarce, for convenience catchment 
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discharge is replaced by catchment area (A) or area × precipitation (A×P), and the impact of 

tributaries has been correlated with AR (Rice and Church 1998; Benda et al. 2004). These scale 

ratios are highly autocorrelated, although numerical modelling suggests that FR and DR exert 

greater controls over tributary impact than does QR, at least in the case of coarse bed material. 

Assessment of multi-year and seasonal patterns of river morphological change, including 

tributary impacts, can use both long sequences of Earth Observation data and intra-year data 

(Dingle et al. 2019; Jézéquel et al. 2022; Kaushal et al. 2020; Simon et al. 2018). Acquisition 

of images across wet and dry seasons allows seasonality and longer-term trends to be 

differentiated (Li et al. 2023). Here, we use a river landform classification workflow (Li et al. 

2022) and freely available Sentinel-2 imagery to generate maps of water, unvegetated bars and 

vegetated bars during wet and dry seasons over five years for the lowland Cagayan River, the 

Philippines. Using these data and catchment information, we address the following questions: 

(1) Do fluvial landforms in the lowland Cagayan River show seasonality? (2) How does river 

morphology respond to tributary inflows? and (3) How does river planform morphology (e.g., 

active channel width, bar size and vegetation cover) and temporal diversity relate to QR, FR and 

SPR for tributaries entering the Cagayan River?   

6.2. Study Area 

The 27,684 km2 Cagayan catchment (Figure 6-1) experiences heavy precipitation, frequent 

tropical storms and cyclones, flooding, landslides and earthquakes (Faustino-Eslava et al. 2013; 

Bautista and Oike 2000). Deforestation across Luzon Island (Forest Management Bureau 2013; 

Dingle et al. 2019) may impact sediment dynamics in parts of the catchment. Previous 

investigations have shown that the Cagayan River meander migration rates are higher than 

equivalent rivers in temperate regions (Dingle et al. 2019). Of the three climate types in Luzon 

Island, the Cagayan River is in Climate Zone III (Basconcillo et al. 2016; Tolentino et al. 2016), 

characterised by strong seasonality. Monthly rainfall statistics (1977-2009) show that annual 

rainfall in the Cagayan increases to a peak in October, associated with the winter monsoon 

(Kubota et al. 2017).  

Forced bars (e.g. the mid-channel bar marked on Figure 6-1d) are common in the Cagayan 

River, with vegetation density on these surfaces changing through the year (Figure 6-1d and 

1e). Over 95% of the mainstem segment (Figure 6-1c) investigated here is incised into Plio-
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Pleistocene sediments (Liu et al. 2009). No faults cut through the mainstem of the river (Liu et 

al. 2009). The studied segment of the Cagayan River is predominantly meandering; the 

remaining 9.7% is braided. Mapping shows that 22.6% of the channel in the study area is 

confined by either valley margins or artificial banks. The mean active width of the mainstem 

reach is 604 m, ranging from 220 m to 2009 m. Eight significant tributaries enter the Cagayan’s 

mainstem along the reach (Figure 6-1c), introducing additional water discharge and sediment. 

Anthropogenic structures, including bridges (Figure 6-1d and 1e; Boothroyd et al. 2021), and 

flood and erosion protection structures are observed along the Cagayan River. Dingle et al. 

(2019) quantified rates of confluence and lateral channel migration in the Pinacanauan de 

Ilagan River, a tributary of the Cagayan River, and its tributaries (Bintacan and Abuan Rivers). 

They found that aggradation and channel width increased on the lower gradient alluvial plain 

due to high sediment supply from the catchment headwaters.  

The Cagayan bed is predominantly sand and silt (JICA-DPWH 2002), and riverbanks are 

predominantly silty. Tributaries in the upper catchment deliver significant quantities of gravel 

(Dingle et al. 2019; JICA-DPWH 2002) that lead to local aggradation and infilling of the Magat 

Dam. Bank erosion is locally significant, with both mass failure and granular erosion observed 

throughout the lowland catchment. Liu et al. (2009) report moderate chemical weathering in 

clay (<2m) fractions, but low weathering rates in coarser (<63m) sizes in the Cagayan River. 

High flow events are associated with highly turbid water (Figure 6-1d,e), and although high 

transport rates and sediment yields are estimated in the upper catchment (2600 m3.km2.yr-1 in 

the Magat Dam; JICA-DPWH 2002), the lower reaches are considered to be in equilibrium 

with only 25% of material in the distal reach moving as bedload and suspended and wash loads 

being exported to the ocean (JICA-DPWH 2002). 
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Figure 6-1. Cagayan River study area: (a) Global location of the Philippines. (b) The Cagayan 

River network on Luzon Island, the Philippines. (c) Study segment of the Cagayan River 

showing the location of remote sensing landform classification training and test areas, where 

T1-T8 are major tributaries. Reaches in the wet (d) and dry (e) seasons; (d) and (e) are true 

colour images from Sentinel-2 acquisitions.  

6.3. Data and Methods 

6.3.1. Tributary rivers and sub-catchments 

The river network of the Cagayan catchment (Figure 6-1b) was extracted using the Hydrology 

Toolbox in ArcMap 10.8, using IfSAR DEM (5 km) data (Grafil and Castro 2014). This dataset 

was then used to define junction points along the lowland Cagayan River (Figure 6-1c). The 

Hydrology Toolbox required the positioning of pour points; user-supplied points to mark the 

cells of highest flow accumulation (Magesh et al. 2013). We firstly chose a place very slightly 

upstream to the junction point which is between mainstem water channel and tributary water 
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channel, and then set the pour point. When manually setting the pour point at a distal tributary 

river, the area that drains to the distal tributary river can be derived (AT). Similarly, setting the 

pour point at the mainstem, immediately upstream of the junction between the mainstem and 

the tributary river, provides the mainstem sub-catchment area accumulating to the pour point 

(AM). At each junction, we marked pour points respectively for the distal tributary river and the 

mainstem. The ratio between these areas, AR, is used to calculate the relative size of the 

tributary catchment where it joins the mainstem. Benda et al. (2004) found that the ratio of 

tributary basin area to mainstem basin area was a good predictor of tributary impacts for both 

humid and semi-humid regions. The area ratio 𝐴𝑅 is calculated as: 

𝐴𝑅 =
𝐴𝑇

𝐴𝑀
                                                        (6 − 1) 

 

6.3.2. Precipitation 

Although a gauging station network in the Philippines is being established (Lagmay et al. 

2017), discharge records are typically short in temporal duration, characterised by data gaps 

and there is considerable rating curve uncertainty. To overcome this data challenge, we used 

peak precipitation data to compensate for a lack of bankfull water discharge data, since 

precipitation typically has a very close relationship to water discharge (Friedman et al. 2021; 

Setti et al. 2020; Zhao et al. 2017). Due to the dearth of high temporal and spatial ground-based 

precipitation measurements (Veloria et al. 2021), we used satellite-derived precipitation data 

from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM 

IMERG) mission (Huffman et al. 2019). These data are at a spatial resolution of 0.1° and a 

temporal resolution of 30 minutes. Veloria et al. (2021) reported that precipitation data 

measured by GPM IMERG have a good correlation with ground rainfall measurements in the 

Philippines. Therefore, in this study, we calculated catchment-averaged accumulated 

precipitation totals (mm) every 10 days for the duration of the landform classification time 

period: 20 January 2018 to 10 January 2022. We computed peak accumulated precipitation 

(per 10 days) for years 2018, 2019, 2020 and 2021 and then averaged them to obtain a four-

year peak accumulated precipitation map (Figure 6-2a). The precipitation ratio 𝑃𝑅  between 

tributaries and the mainstem was calculated as: 
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𝑃𝑅 =
𝑃𝑇

𝑃𝑀
                                                          (6 − 2) 

where 𝑃𝑇  is the average of the annual maximum accumulated 10-day precipitation in the 

tributary catchment, and 𝑃𝑀 is for the main catchment upstream of the confluence.  

 

Figure 6-2. (a) Averaged annual peak accumulated precipitation (10 days) for 2018-2021 in the 

Cagayan catchment, based on analysis of Integrated Multi-satellite Retrievals for Global 

Precipitation Measurement (GPM IMERG) data. (b) Digital Elevation Model of the Cagayan 

catchment, from 5 m resolution IfSAR data (Grafil and Castro 2014). White lines show the 

mainstem and tributary network. T refers to tributary. 

6.3.3. Elevation and Slope 

Longitudinal gradient can be used along with a discharge estimate as a proxy for sediment 

transport capacity (Ferguson and Hoey 2008). Mean average slope was calculated from the 

total elevation change over a distance x upstream of the confluence along both the tributary 

and main channels as in Eq. (6-3):  
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𝑆 =  
𝐸𝐷 −  𝐸𝑜

𝑥
                                                      (6 − 3) 

Where 𝐸𝐷 means the elevation at 𝑥 distance while 𝐸𝑜 means the elevation at the confluence. 

As above, the slope ratios SR are defined by tributary slope (𝑆𝑇) and mainstem slope (𝑆𝑀): 

𝑆𝑅 =
𝑆𝑇

𝑆𝑀
                                                           (6 − 4) 

where the distance x was taken as 5 km for both mainstem and tributary channels to avoid 

further confluences along the tributary channels. No abrupt gradient changes were observed on 

the tributaries or mainstems within 5 km of any of the confluences. 

6.3.4. Stream Power ratio 

Ratios of tributary to mainstem discharge (QR), bed load flux (FR) and bed load grain size (DR) 

control the mainstem responses to tributaries (Ferguson and Hoey 2008). Total precipitation 

(P) indicates water supply estimated at the pour point of the catchment (Pinardi et al. 2022). In 

some cases, drainage area is used as a surrogate for sediment and water discharge (Benda et al. 

2004). As there is a paucity of measured discharge, sediment bedload flux and bedload 

grainsize from field observations, we used 𝑃𝑅 × 𝐴𝑅  as a proxy for QR. The flux ratio FR 

depends on stream power and sediment size. In the absence of grainsize data for each site, we 

propose a stream power ratio (SPR) to indicate the relative sediment transporting capacity of 

the tributary and the mainstem: 

𝑆𝑃𝑅 ∝  (𝐴𝑅 × 𝑃𝑅 × 𝑆𝑅)                                                 (6 − 5) 

We hypothesize that a high SPR tends to deliver a greater amount of typically coarser sediment 

to the mainstem than a low SPR which deliver less and typically finer sediment. Thus, the SPR 

calculation provides a metric to infer bedload grainsize around the confluence and patterns of 

downstream aggradation. 
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6.3.5. Support Vector Machine (SVM) landform classification 

An automated multi-temporal river landform classification workflow, previously applied to the 

Bislak, Abra and Laoag Rivers in North-West Luzon (Li et al. 2022) was adopted here to 

classify the active channel into water, unvegetated bars and vegetated bars. The Bislak, Abra 

and Laoag Rivers share similar hydro-geomorphological characteristics to the Cagayan River 

and its tributaries. In summary, the workflow first involved processing Sentinel-2 Level 1C 

imagery to Level 2A imagery. Subsequently, six 20 m Sentinel-2 bands were downscaled to 

10 m resolution using area-to-point regression kriging (Wang et al. 2016). Five environmental 

indices were then calculated using ten bands (six downscaled 10 m bands; four original 10 m 

bands). These indices were: normalised difference vegetation index (NDVI; Carlson and 

Ripley 1997); normalised difference moisture index (NDMI; Wilson and Sader 2022); 

normalised difference water index (NDWI; Gao 1996); modified enhanced vegetation index 1 

(MEVI1; Huete et al. 2002); and modified enhanced vegetation index 2 (MEVI2; Jiang et al.  

2008). The ten 10 m bands and five environmental indices were then prepared as machine 

learning features for the landform classification. The active channel extent was generated using 

the method of Boothroyd et al. (2021), using Google Earth Engine. We automatically closed 

gaps in the annual active channel area caused by vegetated islands using standard image 

processing techniques. For vegetated bars connected to the active channel, we manually edited 

the active channel area to include the vegetated bars. Within the active channel, we defined 

training and testing areas for building the SVM machine learning model (Figure 6-1c). Large 

Scale Mean Shift segmentation (Orfeo Toolbox version 6.6.1) and Support Vector Machine 

(SVM) classification were combined to achieve Geographic Object Based Image Analysis 

(GEOBIA). The SVM classification was run with a regularisation parameter of 1.0 and a scale 

radial basis function kernel, completed using scikit-learn in Python 3.7. 

In the study area, we analysed Sentinel-2 acquisitions for twenty dates from 2018 to 2021 

(Table 6-1). The acquisition dates of each year covered different seasons and were evenly 

spaced, with the exception of the December to February period when clouds obscure the study 

area. Imagery with cloud coverage or shadowing over fluvial areas of interest were rejected 

due to their detrimental effect on landform classification accuracy when applying GEOBIA (Li 

et al., 2022). Data from five dates in 2019 were chosen to build the machine learning model to 

classify three landforms: water; unvegetated bars; and vegetated bars. The training dataset had 

31,446 objects. The test dataset had 14,417 objects. The ratio of training to test data was 2:1. 
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The training and testing data were manually digitised through supervised remote sensing 

imagery interpretation. The classification performance was assessed by overall cross 

validation, overall accuracy, precision, recall and F1 Score. In addition to the overall 

classification assessment, we also analysed the water accuracy, unvegetated bar accuracy and 

vegetated bar accuracy. When an accurate machine learning model was developed, the 

landform classifications were applied to the years 2018, 2020 and 2021. 

Table 6-1. Sentinel-2 acquisition dates for the Cagayan River from 2018 to 2021. Dates are in 

the format of DD/MM. 

Year 2018 2019 2020 2021 

Dates 19/03 

18/05 

02/07 

05/09  

09/11 

19/03 

03/05 

07/07 

20/09  

04/11 

12/02 

13/03 

12/05 

16/07  

09/09 

23/11 

28/03 

17/05 

01/07 

14/09 

From the classified images, some areas such as main channels or stable islands with mature 

vegetation are within the same landform type at all dates, whereas other parts of the river show 

frequent changes. These differences in landform consistency were described using Simpson’s 

diversity index (SDI; Simpson 1949), defined as: 

𝑆𝐷𝐼 = 1 −  
∑ 𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
                                        (6 − 6) 

where 𝑛 is the number of a specific type of landform over the record period and 𝑁 is the total 

number of all landforms. 𝑆𝐷𝐼  lies between 0-1, with larger values denoting more diverse 

(unstable) record and lower values indicating relatively more consistent (stable) records. 

Bankfull widths were measured using the water frequency maps from 2018 to 2021. Measured 

widths include all areas of the channel that are occupied by water on at least 10% of the images. 

This threshold excludes two dates when imagery shows overbank flood events. Following 

Dingle et al. (2019), bankfull width was measured 100 m upstream and downstream of the 

confluence. 
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6.4. Results 

6.4.1. Tributary stream power  

The lowland segment of the Cagayan River mainstem that is investigated here flows in an 

approximately northerly direction, ends at 28 km away from the sea mouth. Eight tributary 

rivers (numbered in Figure 6-1) and basins (Figure 6-3) were identified using the ArcGIS 10.8 

Hydrology Tool and the 5 m spatial resolution IfSAR DEM. Table 6-2 shows the values of AR, 

PR, SR and SPR that were computed for each tributary junction. 

Table 6-2. Ratios of tributary to mainstem area (AR), precipitation (PR), slope (SR) and stream 

power (SPR) for each tributary in the segment of the Cagayan River. 

Tributary AR PR SR SPR 

1 0.017 0.021 0.000 0.000 

2 0.215 0.198 5.679 0.241 

3 0.050 0.065 1.626 0.005 

4 0.021 0.026 4.556 0.002 

5 0.034 0.045 1.784 0.003 

6 0.019 0.024 19.444 0.009 

7 0.128 0.135 360.360 6.238 

8 0.257 0.324 1.626 0.135 

Figure 6-3 also shows the tributary impact indicators. The figures show the values relative to 

the largest value of each ratio for the eight tributaries; data are visualised in this way to assist 

comparison of the relative magnitude of each ratio. AR and PR have very similar spatial patterns, 

whereas SR and SPR exhibit greater variability. For all the ratios, T1 has the least impact of the 

eight tributaries. Some tributaries that have high values of AR and PR have lower values of SR 

and SPR. For example, T8 was recognised as the most important tributary based on the value 

of AR and PR but was the second least important tributary based on the value of SR. T6 was the 

second least important tributary based on the AR and PR values but was recognised as the second 

most important tributary from its SR value. T2 shows relatively high importance from values 

of AR, PR, SR and SPR. T7 was shown to be a tributary of moderate to high importance based on 

AR and PR but SR increased its relative importance yielding a very high SPR compared to the 

other seven tributaries. All indicators show T3, T4 and T5 have low to moderate impact on the 

mainstem. The results show that, even though AR, PR and SR were all recommended as the 

indictors for analysing tributary impacts in previous studies, their individual application causes 

differences in the relative importance of each tributary. Thus, applying a synthesised indicator 

(SPR) is a more integrative approach to understanding tributary impacts. 
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Figure 6-3. Ratios of tributary to mainstem area (AR), area times precipitation (AR×PR), slope 

(SR) and stream power (SPR) for each tributary in a segment of the Cagayan River. Ratios are 

shown as proportional symbols, normalised by the largest value among the eight ratios. T1 to 

T8 are in the direction from north to south. 

6.4.2. River landform classification 

For the 2019 test dataset, the overall cross validation accuracy for the identification of water, 

unvegetated bars and vegetated bars was 0.938 and the overall testing accuracy (OA) was 

0.939. Precision, recall and F1 Score were 0.939, 0.939 and 0.938 respectively. Additionally, 

the water accuracy (WA) was 0.971, unvegetated bar accuracy (BA) was 0.915 and vegetated 

bar accuracy was 0.896. These assessments with high performance showed that the river 
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landform classification was reliable and suitable for application to data for the neighbouring 

years. To compare the landforms at different active channel width, we calculated the proportion 

of each landform along the studied river from 19 March 2018 to 14 September 2021 (Figure 6-

4). We used the valley bottom line, obtained using the ArcGIS Hydrology Toolbox, to extract 

elevation from and plot variation in longitudinal gradient. To provide a longitudinal reference 

system to plot spatial changes in landforms, we used the centreline of the active channel. 

 

Figure 6-4. Longitudinal variation in elevation, active width and river landform proportion 

(water, unvegetated and vegetated bars) for a segment of the Cagayan River, the Philippines. 

Distance to downstream is measured from a point 28 km upstream of the sea. Landform 

proportions are shown from 19 March 2018 to 14 September 2021. Elevation is shown along 

a transect that corresponds to the longitudinal valley bottom. Active width and landform 

proportions are shown along a transect that corresponds to the centreline of the active channel. 

The valley bottom line is c.10 km longer than the channel centreline. Vertical dashed lines on 
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the figure indicate tributary locations. Relative SPR values (0 to 1 scale, where 1 is the largest 

measured SPR ratio) are noted on the elevation plot. 

We observed that unvegetated bars showed strong seasonality along the whole segment of the 

Cagayan River. Water seasonality was found in reaches where the active channel width 

dynamically changed, corresponding to seasonal flow variation. Vegetation was not found to 

be as seasonally dynamic as unvegetated bars and water. However, in some reaches, vegetation 

proportion increased and then decreased for a short period of time during the years 2018 and 

2021 (e.g., c. 30 km and 135 km). This may indicate a longer periodicity of vegetation change 

compared to the yearly seasonal changes shown for water and unnegated bars. However, higher 

temporal resolution data were not available and thus the periodicity of vegetation dynamics 

couldn’t be further investigated. In addition to seasonality, a longitudinal spatial trend was also 

found. A lower water proportion and higher unvegetated bar proportions were characteristic of 

reaches from 30 to 152 km downstream (using the valley bottom line reference). Conversely, 

reaches with gentle gradients (0 to 30 km downstream; 152 to 181 km downstream) were 

characterised by a higher proportion of water and a lower proportion of unvegetated bars. The 

highest proportions of vegetated bars were mostly characteristic of wide, active channel 

reaches. 

6.4.3. Landform Frequency 

Figures 6-5a to 6-5c show frequency maps of water, unvegetated bars and vegetated bars in a 

reach of the Cagayan River, generated from twenty dates from 2018 to 2021. An example of a 

classification from a single date, 12 February 2020, is shown in Figure 6-5d. This classification 

shows areas of both unvegetated and vegetated bars were not as large in extent as shown by 

the historical analysis (Figures 6-5b and 6-5c), which show high frequencies of these 

landforms. However, water on 12 February 2020 covered most areas that are associated with 

high frequency water extent (Figure 6-5a). Figure 6-5b and 6-5c also presents four typical 

vegetated bars. Bar 1 was an in-channel migrating bar with vegetation growing at the front 

head of the bar. Bars 2, 3, 4 were point bars aligned with the edge of the active channel. Bars 

1 and 2 both captured stable (high probability) vegetated area in the middle of the bar and 

unstable (less probability) vegetated area outwards. Bar 3 was regarded as a stable point 

vegetated bar with vegetation growing evenly across the bar. Bar 4 was a very young, vegetated 

bar with well-proportioned vegetation growing on it. The frequency maps of three landforms 

illustrated a temporal river history from remote sensing images, compensating the field work 
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in the remote regions and extending the study extent for a more comprehensive understanding 

of the river change. 

 

Figure 6-5. (a)-(c) Landform frequency of studied period; (d) landform classification on 12 

February 2020; (e) True colour Sentinel-2 image on 12 February 2020. White rectangles 

represent typical vegetated bars. 

In previous studies, the NDWI derived from near infrared and visible (green) reflectance band 

was used to classify the water extent and calculate river width (Andreadis et al. 2013). We 

considered here more features captured from satellite images to generate the water extent and 

therefore river width. Since the span of Sentinel-2 data is very short (less than ten years), 

permanent vegetation or bank cannot be defined and recognised. Alternatively, in this study, 

the water frequency extent is considered as a reference to measure the bankfull water width. 

6.5. Analysis and discussion 

6.5.1 Slope increase and bankfull width expansion 

The impacts of water and sediment inputs from tributaries on mainstem geomorphology 

depends on the capacity of the combined flow to transport the total sediment delivered by the 

mainstream and the tributary. Hence, the relative water discharge, sediment flux and sediment 
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grainsize have been shown empirically (e.g., Rice and Church 1998; Rice 2017) and from 

modelling (Ferguson et al. 2006; Ferguson and Hoey 2008) to control riverbed slope, grainsize 

and, by implication, planform morphology in confluence regions. Where tributaries supply 

large volumes of relatively coarse material induce mainstem sediment storage, aggradation, 

upstream slope reduction and downstream slope increases (Rice and Church 1998; Rice 2017; 

Swanson and Meyer 2014). The downstream reach length over which the tributary influence 

remains significant depends on valley-scale geomorphology which may be autogenic in 

alluvial rivers or controlled by variations in lithology, tectonics and/or catchment geometry 

(Hassan et al. 2005; Menting et al. 2015; Rice and Church 1998). In lowland reaches with sand 

or finer sediment, material input from tributaries can be dispersed over long reaches (Hungr et 

al. 1984). Less frequently studied are cases where the sediment transport capacity downstream 

of the tributary input exceeds the sediment supply hence causing channel incision, lateral 

instability and/or channel widening (Soar et al. 2017).  

Table 6-3. Slope and bankfull width changes after tributary inputs to the main Cagayan River 

(Sd: 5 km downstream averaged slope; Su: 5 km upstream averaged slope; Wd: 100 m 

downstream width; Wu: 100 m upstream width; QR = AR×PR). 

Confluence AR QR SR SPR Width 

adjustment 

(Wd-Wu) /Wu 

Slope 

adjustment 

(Sd-Su) 

C1 0.017 0.000343 0.00 0.000 -0.26 0.000 

C2 0.215 0.0425 5.68 0.241 0.19 -0.060 

C3 0.050 0.00324 1.63 0.005 -0.11 -0.043 

C4 0.021 0.000548 4.56 0.002 0.14 0.091 

C5 0.034 0.00153 1.78 0.003 0.09 0.013 

C6 0.019 0.000466 19.4 0.009 0.01 0.312 

C7 0.128 0.0173 360 6.240 0.07 0.197 

C8 0.257 0.0832 1.63 0.135 0.48 -0.123 

Tributaries entering at C4, C5, C6 and C7 produce steeper downstream mainstem slopes, 

whereas C1 has a very low gradient downstream reach (Figure 6-4) with very low mainstem 

power. In most cases, increases in relative bankfull width coincide with downstream steepening 

(C4, C5, C6, C7). Bankfull width decreases at C3, where slope also decreases downstream of 

the confluence, and C1 where there is no measurable difference in channel slope. In the 

remaining cases (C2, C8), slope decreases, and width increases are observed. T4, T5, T6 are 

all measured as low stream power supplying to the mainstem. In this case, slopes after C4, C5, 

C6 increased significantly. These may indicate T4, T5, T6 taking coarser sediments which 

deposited immediately, inducing channel aggradation near the confluence. Additionally, slope 
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increased dramatically right after C6 and C7, where T7 measured as high stream power ratio 

to mainstem. This can be explained either by relative high ability of sediment transport causing 

by high stream power ratio or high volume of coarse sediment supplies from the tributary river.  

To understand how the tributary impacts mainstem bankfull width, we calculated predicted 

downstream width (Dingle et al. 2019) by Eq. (6-7):  

𝑊𝑢
2 + 𝑊𝑡

2 = 𝑊𝑑
2                                                 (6 − 7) 

Where Wu
 is upstream width, Wt

 is tributary width and Wd is downstream width. The predicted 

downstream width and observed downstream width were plotted in Figure 6-6a. Only tributary 

T1 has a predicted: observed width ratio less than 0.5 (or greater than 2.0), with the observed 

downstream width being much lower than that predicted. T1 joins at the anabranch on the right 

edge of an in-channel bar (Figure 6-8) with a very low stream power contribution. Therefore, 

downstream width was not impacted by T1 joining the mainstem. T3, T4 and T5 all have a 

relatively low stream power ratio, but downstream widening was still close to the predicted 

width. The widths of T2 to T7 were not observed to deviate a lot from predicted downstream 

width, even if T7 captured a very high stream power ratio.  

Logarithmic values of the stream power ratio were also plotted against ratios of downstream 

width to upstream width (Figure 6-6b). The stream power calculation in this study was unable 

to account for sediment grainsize, therefore an explanation for the points that deviate from the 

line of agreement in Figure 6-6a may have been caused by variations in sediment transport 

capacity due, in part, to sediment grainsize. In Figure 6a, T4, T5 and T8 are located below the 

1:1 line (red line), indicating that sediment grainsizes from tributaries were coarser than that 

from the mainstem at confluences. Similarly, T1, T2 and T3, which are located above the 1:1 

line, may indicate finer sediment input to the mainstem. From field observations (JICA-DPWH 

2002) supplemented by Google Earth Street View pictures taken from bridges across the 

Cagayan River (Table 6-4), bank sediments upstream of C8 tend to be a mixture of clay and 

silt, which were widely vegetated, whilst sediments exposed on the T8 riverbed were sandy 

and less vegetated. Street View pictures also suggest sediments from T7 were siltier than the 

mainstem upstream of C7, with dense vegetation. Street View for T6 was captured too far from 

the confluence to offer useful imagery. Table 6-3 indicated that SPR at C6 was relatively low, 

around which T6 may not have the enough energy to transport the coarse sediments observed 
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in Table 6-4 to the mainstem. Fine sediments from T7 and coarse sediments from T8 can also 

be implied in Figure 6b, where bankfull width expansion (increasing value of downstream 

width/upstream width) was expected to be impacted by stream power. However, this 

relationship can be controlled by sediment size between tributaries and mainstem as well. 

Coarser sediments from tributaries with high SPR may lead to deposition and increased bankfull 

width, whilst finer sediments from tributaries with very high SPR may reduce the bankfull 

width. However, from the studied tributaries, we still suggest that SPR has a positive linear 

relationship with downstream bankfull width expansion, especially when the sediment size 

difference between the tributary and mainstem is not obvious whilst SPR is high. 

Table 6-4. Sediment evaluations from Google Street View pictures on the nearby bridges. 

Confluence Upstream Tributary Downstream Tributary to Upstream 

C1 - - - - 

C2 - - - - 

C3 - Silt-clay  - 

C4 - - - - 

C5 - Sand Sand - 

C6 Clay Sandy gravel Sand Coarser 

C7 Sandy clay Silt - Finer 

C8 Clay-Silt Sand - Coarser 

 

 

Figure 6-6. (a) Relationship between predicted (from Eq. 6-7) and observed bankfull river 

width. (b) Width changes downstream of tributaries as a function of stream power ratio (SPR). 
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6.5.2. Landform diversity at confluences 

Tributaries abruptly introduce sediment and organic material in the vicinity of confluences and 

trigger a variety of morphological responses, including increases in channel width, pool depth 

and occurrence of bars (Benda et al. 2004). We calculated the coefficient of variations (COVs) 

of the three classified river landforms, using temporal landform area to trace landform diversity 

from 2018 to 2021 (Figure 6-7). COVs of water and unvegetated bars have an anti-phase 

fluctuation in most reaches of the river (Figure 6-7), whilst vegetated bars were not observed 

to have a consistent in-phase or anti-phase fluctuation. This suggests water and unvegetated 

bars are the dominant landforms in the active channel and their dynamism is not affected by 

tributary inputs. However, vegetated bars are more sensitive to these abrupt changes. We 

observed that T2, T6 and T7, surrounding the 1:1 line (Figure 6-6a), showed temporal 

instability (vegetation growth and decay) in the vicinity of confluences, while vegetated bars 

were relatively stable below C1, C3, C4, C5 and C8 (Figure 6-7). 
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Figure 6-7. Longitudinal trends in active width and confinement, with positions of 

anthropogenic bank structures. (b-d) Longitudinal trends in coefficient of variation (COV) for 

water area, unvegetated bar area and vegetated bar area. 

Confluences have been identified as hotspots for ecological and topographic diversity (Benda 

et al. 2004; Rice 2017). We employed Simpson’s diversity index (SDI) (Simpson 1949) to 

represent landform diversity at 10 m pixel resolution (Figure 6-8). Migrating bars (Crosato and 

Mosselman 2020) are observed downstream of confluences C3, C4 and C5. In these locations, 

the outer edges of the bars were characterised by high diversity (Figure 8, in red circle). T3, T4 

and T5 have the lowest SPR values, except for T1 (SPR = 0). We suggest that low SPR leads to 

only limited activation of downstream bars, concentrated around bar margins. A parallel 

example is the migrating bar downstream from confluence C6. With medium SPR, the three 

landform types changed very frequently at this downstream migrating bar (red circle, Figure 

6-8). Tributaries that were characterised by high SPR (T2, T7 and T8) corresponded with stable 

landforms downstream of their confluences with the mainstem. Figure 8 also shows that 

bridges are associated with high landform diversity in the vicinity of the structures, 

corroborating a finding by Boothroyd et al. (2021) from analysis of bridge structures in the 

Philippines over a longer temporal duration. As the studied segment of the Cagayan contains 

extensive stable reaches, the roles of locally unstable reaches, those disturbed by bridges, and 

others adjacent to confluences are important sources of habitat and geomorphic diversity. 
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Figure 6-8. River landform diversity measured using Simpson’s Diversity Index (SDI) at river 

confluences along a segment of the Cagayan River. SDI is in the range 0 (the same landform 

type present on all images) to 1 (each landform type is present in 33.3% of the available images). 

Darker shading shows where landform types vary most between images during the four-year 

study period. Both forced bars (e.g., point bars on (d), (e), (g) and (h)) and free bars (bar 

complexes on (a), (d), (f) and (g)) show high diversity due to unvegetated sediment deposits 

being colonized by vegetation during dry seasons. 

6.6. Conclusions 

Fluvial landforms in the active channel of the lowland Cagayan River were classified for a 

four-year period, 2018 to 2021. Throughout the study area, strong seasonality was found in the 

extent of water and unvegetated bars, whilst some sub-reaches showed seasonality in vegetated 

bar extent. We established a parameter SPR to represent the stream power ratio of tributaries to 

the mainstem, from the product of ratios of catchment area, basin averaged accumulated 

precipitation and slope immediately upstream the confluence. Results showed that tributary 

inflows with a high SPR cause an increase to the longitudinal slope downstream. Downstream 

bankfull width changes were less clearly associated with stream power and may be related to 
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sediment size which affects sediment transport rates. Tributary inflows can trigger downstream 

morphological change. In addition to river morphological responses to tributary inflows, we 

found SPR can also be related to landform diversity downstream from confluences. Moderate 

to low SPR was associated with the development of migrating bars downstream, whilst high 

SPR was associated with constant channel diversity downstream. Thus, SPR may be an 

important indicator for analysing and predicting tributary river impacts in the regions without 

sufficient water discharge and sediment data to use these variables for analyse the response of 

mainstems to tributary inputs. Since most previous investigations on mainstem response to 

tributary inputs have been conducted in upland temperate regions, this investigation diversifies 

the global database in considering a lowland, tropical river where rates of seasonal vegetation 

growth are very high. Further investigations of tributaries in tropical settings are encouraged. 
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Chapter 7 - Discussion 

The overall aim of the thesis is to develop an efficient workflow to classify the inter- and intra-

annual river landforms in the river active channel. With river landform datasets classified 

accurately from remote sensing imagery, the seasonality and landform diversity can be 

analysed quantitatively together with channel settings. In this thesis, I studied four rivers 

located in north Luzon, the Philippines. They are the Bislak, Laoag, Abra Rivers in Northwest 

Luzon and the Cagayan River in Northeast Luzon. The Bislak, Laoag and Abra Rivers lie in 

the same climate zone, but the Cagayan is in a different climate zone (Figure 7-1) (Wichmann 

1904), which leads to variations in precipitation, vegetation species, and hydrology between 

the four rivers. The rivers also lie in different geological and tectonic regimes, with the 

Northwest catchments being relatively small (586-4,893 km2) and showing strong tectonic 

control, whereas the Cagayan is a large (27,684 km2) inter-montane catchment. Dynamic 

fluvial processes controlled by hydraulics, vegetation and sediments increase control of the 

river landforms and their patterns of change. The accuracy and ease of recognising these 

landforms from Earth observation data is also dependent on these processes and rates of 

landform change. The variations (i.e., in climate, precipitation, sediment, channel settings) in 

the Bislak, Laoag, Abra and Cagayan Rivers provide good cases for analysing and comparing 

factors impacting river landform dynamics.   
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Figure 7-1. (a) Locations of Bislak, Laoag, Abra and Cagayan River catchments in north Luzon. 

(b) Climate types in North Luzon (source: Tolentino et al. 2016). 

Both climate zones in which these rivers lie show strong seasonality in precipitation. In 

previous chapters, seasonality of river landforms (vegetated and unvegetated bars) was found 

in all four rivers. However, relationships between the landform extent and active channel width 

show differences between the dry and wet seasons. In addition to seasonality, spatial-temporal 

analysis of the river landforms was used to examine landform dynamics over four (for the 

Cagayan River) or five (for the Bislak, Laoag and Abra Rivers) years. Chapters 5 and 6 

presented a variety of spatial-temporal analysis methods. In this chapter, these methods are 

discussed and compared, and their implications for river dynamics are considered.  

There are four sections in this chapter: river landform classification strategy, seasonality of 

river landforms in North Luzon, spatial-temporal analysis application and perspectives for 

future work. 

7.1. River landform classification strategy 

In Chapter 4, the machine learning model established on data from the Bislak River was shown 

to apply to three rivers (Bislak, Laoag and Abra Rivers) in Northwest Luzon (characterised as 
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ModelNW). However, when ModelNW was applied to the Cagayan River in Northeast Luzon, 

the classification performed poorly (Figure 7-2), so a new machine learning model ModelNE 

was designed for classifying river landforms in the Cagayan River (Figure 6-1, Chapter 6). 

However, the classification using ModelNW did perform relatively well for the Cagayan (Figure 

7-2a and 7-2c) during the dry season. In this case, model performance differences might be 

caused by either the model itself or training data used for building models. Table 7-1 lists 

several key aspects for building both ModelNW and ModelNE. All the models used in this project 

selected 15 features (four bands at 10 m resolution from Sentinel-2 acquisitions, six bands at 

10 m resolution from downscaled Sentinel-2 acquisitions and five environmental indices as 

presented in Table 4-2) and the feature types of all models were kept the same. Similarly, the 

parameters used for segmenting the image objects were not changed when building different 

models. Consequently, in this case, feature selection and object segmentation procedures 

cannot answer the reason of difference between two classification performances. In Chapter 4, 

it was found that, data from multiple dates can help improve model classification performance, 

and it is unlikely to cause classification accuracies under 0.5. Meanwhile, data from 

neighbouring years were believed to be transferable when undertaking machine learning 

classification (Chapter 4). Therefore, factors (Year and Month) in Table 7-1 were not 

considered as dominant reasons for poor classification. To investigate whether more training 

samples would contribute to high classification performance, ModelNW was firstly applied to 

an upland segment of the Bislak River (Figure 4-6, white extent) on 1 January 2018. For this 

area, the overall accuracy was 0.842, water was 0.769, unvegetated bar was 0.899 and 

vegetated bar was 0.810. Subsequently, ModelNE was applied to this segment, and the 

classification remained very poor. The overall accuracy was 0.247, water was 0.228, 

unvegetated bar was 0.074, and vegetated bar was 0.59. These results imply that training data 

size cannot explain the difference between the two models. Additionally, these two models 

both used a support vector machine (SVM) classifier to classify the river landforms. It has been 

shown that SVM was a reliable classifier in all four studied rivers (Chapter 4, Chapter 5 and 

Chapter 6). 
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Figure 7-2. Landform classification maps in the Cagayan River using ModelNW and ModelNE. 

(a)-(f) were derived from ModelNW and (g)-(l) were derived from ModelNE. 

 

Table 7-1. Comparisons between machine learning models used in three rivers of Northwest 

Luzon and the Cagayan River. 

Factors ModelNW ModelNE Note 

Feature selection 15 features 15 features same 

Object segmentation 3 parameters 3 parameters same 

Year 2018 2019 - 

Month Jan, Mar, May, July, 

Sept, Nov 

Mar, May, July, 

Sept, Nov 

- 

Acquisition date  6 dates 5 dates Not same 

Training samples 7,458 objects 31,446 objects Not same 

Machine learning SVM SVM same 

There may be several reasons causing land reflectance differences in spectral bands within the 

rivers: water discharge; sediment transport; vegetation density/species, etc. Whilst these factors 

can be controlled by climate, ENSO activities, drainage networks (e.g., tributary inputs) and 

the scale of the river (Bijeesh and Narasimhamurthy 2020; Li, Dang, et al. 2022; Nelson, 

Cheruvelil, and Soranno 2006; Yu et al. 2013). Table 7-2 illustrates nine types of Earth surface 

observations and measurements in the Bislak, Laoag, Abra and Cagayan Rivers. In Table 7-2, 

landform proportions along each river were averaged (spatial data series at distance) and 

calculated mean value of dates over year 2018-2020 (temporal data series at date). Therefore, 
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the averaged mean landform proportion over the three years is a spatial-temporal index. In 

Figure 7-1, note that the Bislak, Laoag and Abra Rivers are in the same climate zone (type I), 

while the Cagayan River is in climate type III. Although the Cagayan River catchment is much 

larger than the Bislak, Laoag and Abra River catchments, the mean accumulated precipitation 

over three years in the four river catchments (Table 7-2) were similar (7242-8405 mm). As 

catchment area is greater for the Cagayan, the total precipitation in the Cagayan catchment is 

much higher than that in the three rivers of the Northwest Luzon. Therefore, the Cagayan 

mainstem would have higher water supply, which leads to the highest averaged proportion of 

water being found in the Cagayan River (Table 7-2). Meanwhile, the active channel width in 

the Cagayan is only 0.604 km on average, which is merely slightly wider than the Laoag River 

(average width 0.581 km) and much lower than the Abra River (2.626 km). Figure 7-2 shows 

that ModelNW only performed well on 12 February, and in most cases poorly identified water 

extent but produced relatively good classification for unvegetated bars and vegetated bars.  

The above results may indicate that water reflectance in the Cagayan River is different from 

the Bislak, Laoag and Abra Rivers. From the water frequency maps of the four rivers, braided 

channel reaches were identified and the percentages of the whole rivers that are braided were 

calculated relative to the river centrelines (Table 7-2). Braided rivers, characterised by 

multiple, unstable channel and ephemeral bars formed by intense bed-load transport, usually 

occur in environments associated with high flow energy, coarse sediment and limited 

development of riparian vegetation (Ashmore 2013). 54.8% of the studied length of the Abra 

River was characterised as braided, whilst braided reaches occupied 20.5% and 28.5% for the 

Bislak River and Laoag River, respectively. However, only 9.7% of the length of the Cagayan 

River was detected as braided. These findings suggest that, compared to the Bislak, Laoag and 

Abra Rivers, the Cagayan River is predominantly single thread and due to its lower gradient 

has lower flow energy and bed-load transport capacity. These factors lead to a stable planform 

morphology, which is also evident from the lower Simpson’s diversity index (Table 7-2) in 

most reaches of the Cagayan. Reflectance of the water surface can also be influenced by water 

energy dissipation and sediment transport that can induce surface water waves at different 

scales (Zeng, Richardson, and King 2017). Additionally, regional climate variability may affect 

reflectance through impacting water chemistry, for example through Chlorophyll-a (Chl-a) 

concentration (Park, Park, and Kang 2022). Water reflectance could be impacted by these 

factors and also water depth, turbidity, coloured dissolved organic matter (CDOM) and others 

(Odermatt et al. 2012; Chen et al. 2014; Matsushita et al. 2015; Knudby, Ahmad, and Ilori 
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2016; Watanabe et al. 2016; Song et al. 2017; Zeng, Richardson, and King 2017). In the case 

of shallow waters in the more braided Northwest Luzon rivers, sediment particles or vegetation 

in the water or growing on the bottom substrate can also impact water reflectance (Mobley and 

Mobley 1994; Zeng, Richardson, and King 2017). Therefore, considering variabilities of 

climate and river morphology is essential when applying machine learning models to river 

landform classifications in different rivers. 

Table 7-2. Earth surface observations and measurements in the Bislak, Laoag, Abra and 

Cagayan Rivers. 

Earth surface observation  Bislak Laoag Abra Cagayan 

Climate type (Figure 7-1) I I I III 

Mean accumulated 

precipitation (mm) of three years (2018-

2020) 

7795 8190 8405 7242 

Catchment area (km2) 586 1261 4893 27684 

Averaged active channel width (km) 0.375 0.581 2.626 0.604 

Averaged mean water proportion (0-1) over 

three years (2018-2020) 

0.202 0.240 0.258 0.752 

Averaged mean unvegetated bar proportion 

(0-1) over three years (2018-2020) 

0.626 0.615 0.561 0.165 

Averaged mean vegetated bar proportion 

(0-1) over three years (2018-2020) 

0.162 0.140 0.153 0.065 

Braided reach length percentage of the 

whole studied river segment 

20.5% 28.5% 54.8% 9.7% 

Averaged Simpson’s diversity index (0-1) 

of studied periods (5 years for the Bislak, 

Laoag and Abra Rivers, and 4 years for the 

Cagayan River) 

0.310 0.297 0.267 0.232 

 

7.2. Seasonality in tropical river patterns of north Luzon 

Chapter 5 illustrated correlations between active channel width (AW) and the three landforms’ 

areas and proportions in the dry and wet seasons. Chapter 6 did not focus on the seasonality of 

relationships for the Cagayan River. This section presents the seasonality of results from the 

Cagayan River, and then compares this with results from the Bislak, Laoag and Abra Rivers. 

Considering the interplay of AW with landforms’ areas, correlation coefficients were 

calculated between AW and the three landforms’ areas (Figure 7-3b). In the Cagayan River, a 

strong correlation was found between AW and unvegetated bar area (0.84 in the dry season, 

0.83 in the wet season). AW and vegetated bar area have a moderate to high correlation (0.69 
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in the dry season, 0.73 in the wet season), whilst AW and water area give a moderate to high 

correlation (0.74) in the wet season but a moderate correlation (0.51) in the dry season. In the 

Cagayan River, the areas of unvegetated and vegetated bars gave a higher correlation (0.61) in 

the wet season than the dry season (0.51). However, in the Bislak, Laoag and Abra Rivers, 

vegetated bar and unvegetated bar areas produce very low correlations in both seasons. In the 

Cagayan River, water area was always the dominant landform in the wet season, but was 

surpassed by vegetated bars, or unvegetated bars in some wider reaches, in the dry season 

(Figure 7-3a). The correlations between AW and landform proportions (Figure 7-4) show very 

significant negative correlation coefficients between water and unvegetated bar proportions in 

both dry and wet seasons. Moreover, this relationship is higher in the dry season than in the 

wet season, and it is coherent between all four rivers in this study. In Figure 7-3b, the AW of 

the Cagayan River remained substantially below 1 km, locally being between 1- 2 km. Where 

AW is under 1 km, water area and unvegetated bar area both show positive correlation to AW 

during either dry or wet season. Vegetated bar areas were extremely low compared to water 

and unvegetated areas (dot and histogram graph), and vegetated bar area increased mildly with 

AW getting wider when AW below 1 km. However, when the AW is above 1 km, the vegetated 

area increased dramatically. In previous studies, ‘thresholds’, above which certain patterns 

emerge, were identified as a function of bed sediment size, which can discriminate and predict 

bar patterns (or parallel channels) well (Henshaw et al. 2019; Kleinhans and van den Berg 

2011). For instance, when the river is too narrow and deep with high stream power, the excess 

energy would be spent on channel enlargement (Kleinhans and van den Berg 2011). Channel 

widening can help bars development, for establishing a less uniform bed topography that 

enhances habitat heterogeneity (Crosato and Mosselman 2020). Bar formation is key to 

discriminate rivers from braiding to meandering. Using the case of the Cagayan River, the 

empirically derived threshold of AW-vegetation could probably reflect sediment motion, and 

then potentially indicate the onset of meandering with chute and scroll bars, and moderate 

braiding (Henshaw et al. 2019; Kleinhans and van den Berg 2011). In this case, where AW is 

above 1 km, the river pattern would be predicted to getting more stable with an onset of 

meandering. Additionally, in the Cagayan River, AW had a highly significant negative 

correlation with water proportion, while AW and water area show a moderate significant 

positive correlation. These results indicate that, although water area increases as AW increases, 

the rate of water area enlargement was much lower than the AW widening rate. The same 

phenomenon is also seen to some extent in the Bislak River but was not observed in the Laoag 
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or Abra Rivers (Table 7-3). These differences might also be related to the braiding and 

wandering channel patterns in the Laoag and Abra Rivers.  

 

Figure 7-3. (a) Longitudinal trends in active width (AW) and mean area of three landforms 

(water, unvegetated bars, vegetated bars) for the Cagayan River, for wet and dry seasons. (b) 

Matrix plots representing correlations between mean values of landform areas and AW. 

Histograms illustrate mean value distributions at ~440 m intervals along the river. Labels 

summarise correlation coefficients (r) and associated statistical significance (p) between 

landforms’ areas and AW in wet and dry seasons. 
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Figure 7-4. Matrix plots to represent correlations between mean values of landform proportions 

and AW. Histograms illustrate mean value distributions at ~440 m intervals along the river. 

Labels summarise correlation coefficients (r) and associated statistical significance (p) between 

landforms proportion and AW in wet and dry seasons. 

In Chapters 5 and 6, seasonality in river landforms was reported and discussed for the Bislak, 

Laoag, Abra Rivers and the Cagayan River, respectively. In Section 7.1 it was noted that 

climate should be one factor impacting the variability in river landform classifications. 

Therefore, this section aims to compare the seasonality differences between rivers in two 

climate regions. In Chapter 5, periods with 10-day mean accumulated precipitation consistently 

below 100 mm were defined as dry seasons, whilst periods starting from the first time when 

10-day mean accumulated precipitation above 100 mm to the start of next dry season were 

defined as wet seasons. Using this definition, dry seasons and the time of peak precipitation in 

all the studied rivers were sorted and are listed in Table 7-3. In most cases, the dry seasons 
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were synchronous in the Bislak, Laoag and Abra Rivers, while in the Cagayan River, dry 

seasons were shorter and commenced later than the other three rivers before 2020. In 2020, the 

dry season in the Abra and Cagayan Rivers was slightly later than that in the Bislak and Laoag 

Rivers, whilst peak precipitation in all four rivers was observed in October 2020. These results 

indicate that seasonality in precipitation in the two climate zones was not significantly different 

in the study years. Precipitation is strongly affected by circulation change on local scales (Naik, 

Seager, and Vecchi 2010; Bony et al. 2013; Chadwick, Boutle, and Martin 2013; Forster et al. 

2016). Moreover, rapid circulation changes are not only being associated with changes in 

atmosphere absorption but are also being linked to rapid land surface response (Bony et al. 

2013; Forster et al. 2016; Richardson et al. 2018). This suggests that it may be valuable to 

analyse river landform area changes between and during wet and dry seasons to assess potential 

different landform responses between the four rivers. Table 7-3 shows that in all four rivers, 

the AW and three landform areas all show positive relationships. However, correlation 

coefficients of AW with water area and AW with vegetated bar area in the wet season were 

both higher than that in the dry season, whilst correlation coefficients of AW with unvegetated 

bar area were lower in the wet season than in the dry season. The statistical relationships imply 

that water area and vegetated bar area responded to the active channel width more strongly 

during the wet season, indicating that seasonality should be considered while assessing the 

channel settings impact on river landform changes. 

In the dry season, the correlations between AW and landform areas in the Bislak and Cagayan 

Rivers were showing similar coefficients, whilst AW- landform areas were showing similar 

coefficients between the Laoag and Abra Rivers. Table 7-2 indicates that mean accumulated 

precipitation over three years (2018-2020) in the Bislak and Cagayan Rivers were lower than 

those in the Laoag and Abra Rivers. Also, as noted previously, braided reach percentages in 

the Bislak and Cagayan Rivers were lower than those in the Laoag and Abra Rivers. These 

findings indicate that, except for AW and water area correlation during the wet season, 

precipitation strength and channel stability can impact the strength of river landform 

correlations with the active channel width. In the wet seasons, the water area may reach the 

bankfull width. However, when the river channel is confined, either naturally or 

anthropogenically, the channel may reach close bankfull width at a moderate discharge and not 

get any wider as flow rises further. Contrasting with over 41.1% of the study segment being 

confined in the Bislak, Laoag and Abra Rivers, the Cagayan River only has 22.6% of 

confinements (Table 7-4). Further, there are no reaches with two-side confinement observed in 
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the Cagayan River. This provides an explanation why the wet season correlation coefficient of 

AW with water area in the Cagayan River was higher than that in the other three rivers. 

Therefore, these results suggest that river confinement needs to be assessed when analysing 

relationships between AW and water area in wet seasons. 

Table 7-3. Seasonality in the Bislak, Laoag, Abra and Cagayan Rivers. 
Seasonality Bislak Laoag Abra Cagayan 

Range of mean 

accumulated 

precipitation below 100 

mm (dry) 

Dec 2016- May 

2017; 

Nov 2017- June 

2018 

Sept 2018- Apr 

2019; 

Nov 2019- May 

2020 

Dec 2016- May 

2017; 

Nov 2017- May 

2018; 

Sept 2018- Apr 

2019; 

Nov 2019- May 

2020 

Nov 2016- May 

2017;  

Nov 2017- May 

2018; 

Sept 2018 – 

May 2019; 

Dec 2019 – May 

2020 

Jan 2018- June 

2018; 

Jan 2019- May 

2019; 

Dec 2019- May 

2020; 

Oct 2020- July 

2021 

Range of peak 

precipitation  

July 2016; 

Aug 2017; 

Aug 2018; 

Aug 2019; 

Oct 2020 

July 2016; 

May, Sept 2017; 

Aug 2018; 

Aug 2019; 

Oct 2020 

Aug 2016; 

July 2017; 

Aug 2018;  

Aug 2019; 

Oct 2020 

Sept 2018; 

Nov 2019; 

Oct 2020; 

Oct 2021 

Correlation coefficient 

between AW and water 

area (dry) 

0.46 (p=0.000) 0.64 (p=0.000) 0.63 (p=0.000) 0.51(p=0.000) 

Correlation coefficient 

between AW and water 

area (wet) 

0.60 (p=0.000) 0.69 (p=0.000) 0.67 (p=0.000) 0.74 (p=0.000) 

Correlation coefficient 

between AW and 

unvegetated bar area 

(dry) 

0.86 (p=0.000) 0.73 (p=0.000) 0.78 (p=0.000) 0.84 (p=0.000) 

Correlation coefficient 

between AW and 

unvegetated bar area 

(wet) 

0.78 (p=0.000) 0.50 (p=0.000) 0.74 (p=0.000) 0.83 (p=0.000) 

Correlation coefficient 

between AW and 

vegetated bar area 

(dry) 

0.67 (p=0.000) 0.81 (p=0.000) 0.82 (p=0.000) 0.69 (p=0.000) 

Correlation coefficient 

between AW and 

vegetated bar area 

(wet) 

0.76 (p=0.000) 0.86 (p=0.000) 0.88 (p=0.000) 0.73 (p=0.000) 

Correlation coefficient 

between AW and water 

proportion (dry) 

-0.45 (p=0.000) 0.10 (p=0.292) -0.24 (p=0.001) -0.73 (p=0.000) 

Correlation coefficient 

between AW and water 

proportion (wet) 

-0.41 (p=0.000) -0.07 (p=0.467) -0.35 (p=0.000) -0.70 (p=0.000) 

Correlation coefficient 

between water and 

-0.71 (p=0.000) -0.86 (p=0.000) -0.70 (p=0.000) -0.88 (p=0.000) 
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unvegetated bar 

proportion (dry) 

Correlation coefficient 

between water and 

unvegetated bar 

proportion (wet) 

-0.44 (p=0.000) -0.79 (p=0.000) -0.41 (p=0.000) -0.75 (p=0.000) 

Correlation coefficient 

between vegetated bar 

and unvegetated bar 

proportion (dry) 

-0.68 (p=0.000) -0.64 (p=0.000) -0.47 (p=0.000) 0.17 (p=0.001) 

Correlation coefficient 

between vegetated bar 

and unvegetated bar 

proportion (wet) 

-0.63 (p=0.000) -0.47 (p=0.000) -0.47 (p=0.000) 0.25 (p=0.000) 

In Chapter 5, it was proposed that the correlation between AW and vegetated bar area increases 

with the catchment area. However, in this chapter, as the larger Cagayan catchment was 

introduced to the dataset, this correlation was not found to continue. As the available 

information on riparian vegetation (e.g., vegetation and soil types between two climatic 

regions) was limited, this evidence does not overturn the conclusions in Chapter 5. However, 

in this Chapter, it was suggested that the correlation between AW and vegetated bar area should 

be considered to apply to a common climatic environment. Additionally, Table 7-3 shows that 

there were significant negative correlations between vegetated bar and unvegetated bar 

proportions in the Bislak, Laoag and Abra Rivers, but that vegetated bar and unvegetated bar 

proportions in the Cagayan River were significantly positively correlated in both seasons. 

Table 7-2 indicates that unvegetated and vegetated bar proportions in the three rivers of 

Northwest Luzon were much higher than in the Cagayan River. For example, in the Bislak 

River, water played a less important role in determining the proportions of bar landforms 

(including vegetated and unvegetated bars) in both seasons. However, compared to the dry 

season in the Laoag River, increased precipitation in the wet season induced greater water 

impact on the bars. The negative correlation between unvegetated bar and vegetated bar was 

not observed in the Cagayan River, which indicates that bar dynamics interplay with water 

more in the Cagayan River as there were only three landforms classified in the river. The high 

proportion of water within the Cagayan River (Table 7-2, averaged mean water proportion over 

three years is 0.752) may explain this phenomenon, whilst high water proportion in the 

Cagayan River could be impacted by a variety of factors such as lower longitudinal gradient, 

finer sediment size and total catchment precipitation, etc. Therefore, this Chapter suggests that 

absolute high/low areas of individual landforms may be key to infer correlations between 

landform proportions. Therefore, it is important to evaluate the space available for landforms 
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within river channels, before undertaking statistical analysis. The active width provides a good 

indication of this available space, supplemented by information on confinement. Additionally, 

separating the dataset into dry and wet seasons dramatically helps in extracting informative 

statistical information. 

7.3. River landform dynamic change analysis 

River morphology is impacted by a variety of factors. Recently, valley confinement has been 

identified as a primary control on river morphology in some settings (Fryirs, Wheaton, and 

Brierley 2016). In addition, faults (Li, Dong, et al. 2022) and tributary rivers (Benda et al. 

2004) are also important controls over river morphology. Table 7-4 summarises confinement, 

faults, and tributaries in the four rivers of this study. 

Table 7-4. Channel settings of the Bislak, Laoag, Abra and Cagayan Rivers. 

Disturbance Bislak Laoag Abra Cagayan 

Total 

confinement 

percentage 

54.8% 41.1% 63.8% 22.6% 

(contain artificial banks) 

Partly 

confinement 

percentage 

18.3% 21.4% 43.2% 22.6% 

(contain artificial banks) 

Two-side 

confinement 

percentage 

36.5% 19.7% 20.6% 0 

Faults cutting 

through the 

river/ river 

length 

2 faults/ 

46.6 km 

2 faults/ 

38.9 km 

6 faults/ 

82.2 km 

0 faults/ 

171.9 km 

Tributaries/ 

river length  

1 tributary/ 

46.6 km 

4 tributaries/ 

38.9 km 

5 tributaries/ 

82.2 km 

8 tributaries/ 

171.9 km 

The extent to which various confinement factors occur determines the capacity that the river 

has to adjust (Phillips 2010). For example, full or partial confinement limits the capacity of the 

river planform to adjust and can often cause the assemblage of geomorphic units to be forced 

so producing forced landforms which are controlled by forcing effects such as confinement 

(Fryirs, Wheaton, and Brierley 2016). Table 7-4 indicates that the Cagayan River is the least 

confined of the four studied rivers, which may be interpreted as meaning that the Cagayan 

River has the highest capacity to adjust. However, through analysing landform diversity maps 

(Figure 7-5), the landforms within the Cagayan channel were found to be the most stable, which 
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was statistically confirmed in Table 7-2. Combining the confinement data and the landform 

diversity index, although the Bislak River was not obtaining the highest percentage of total 

confinement among the four rivers, the Bislak River had the highest percentage of two-side 

confinements along with the highest averaged landform diversity (Table 7-2), which is 

consistent with the theory of Phillips (2010) that the degree of the confinement determines the 

capacity of rivers to adjust. Table 7-4 also indicates that the Laoag River had lower percentage 

of confinement than the Abra River, however, its averaged landform diversity is slightly higher 

than the Abra River. This can be explained by Figure 7-5, which shows that the upland Laoag 

River is mostly unconfined with lower diversity and the lowland reaches of the Laoag River 

are mostly confined and highly diversified. Figure 7-5 indicates that the confinement may 

induce high diversity in river landforms in the Bislak, Laoag River and Cagayan Rivers. 

However, in the Abra River, the confinement does not appear to have caused significantly 

increased landform diversity. This may be due to the active channel width of the Abra River 

being much higher than the other three rivers (see Table 7-2) and therefore, forcing effects 

from confinement on the in-channel landforms were reduced. Less forcing effects from the 

confinement provide more free space for river landforms to develop stably and thereby, reduce 

the landform diversity. Aside from confinement, faults and tributaries were also considered as 

factors increasing the river landform diversity. This is because abrupt stream power changes 

caused by faults and tributaries tends to change local sediment transport patterns which may 

induce aggradation that then leads to the frequent landform change (see Chapter 5 and Chapter 

6). Additionally, the relatively high stability of the lowland Cagayan River may be also 

explained by the low longitudinal gradient (Table 3-1), which leads to lower stream power than 

the Bislak, Laoag and Abra Rivers.  

The preceding discussion implies that river landform diversity is impacted by multiple factors. 

River setting factors, such as active channel width, river longitudinal gradients, and the location 

and abundance of faults, tributaries and confinements, together provide a synthesised constraint 

on river landform change within the channel. The relative abundance of free and forced bars, 

and associated changes in landform diversity, reflect these combined constraints. Locally 

abrupt disturbances from the geological setting (e.g., faults, lithological boundaries) and the 

catchment network (e.g., tributary rivers) also play important roles in river landform diversity 

and stability. 
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Figure 7-5. Simpson’s diversity indices of the Bislak, Laoag, Abra and Cagayan Rivers. 

7.4. Perspectives of research 

This project has used remote sensing data to derive a variety of indices and information for 

analysing river morphological change (response) in North Luzon, the Philippines which has 

distinct wet and dry seasons. The new technology (e.g., image downscaling, segmentation, 

machine learning classification) and workflow (e.g., Geographic Object-Based Image 

Analysis) extends the boundaries of river morphology research and is particularly relevant to 

situations where sufficient field data are sparse (e.g., sediment size, water discharge, vegetation 

species). Using remotely sensed data, a set of parameters were considered to describe the river 

dynamics within the river channel over a multi-year period. For example, in Chapter 6 a stream 

power ratio parameter was introduced without quantitative consideration of sediment size. 

Although there is a possibility to infer the sediment size through empirical models from 

previous studies in other rivers, the quality of the research can be improved by obtaining real 

sediment size information from the studied rivers. Improving the database in this way may lead 

to more accurate results that could enable more specific comparison with previous studies. 

Table 7-5 illustrates some examples using indices beyond this project that have been 

considered in previous river morphology studies. There are many factors impacting river 

morphology, however, it remains difficult to consider all these factors in any one study.  
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In many cases, access to all of the data that could be useful represents the biggest challenge for 

a comprehensive synthesised study. River morphological change is a vast topic, which has seen 

complicated research over many decades. A combination of high spatial-temporal resolution 

Earth observation data with targeted field data collection has the potential to significantly 

improve our understanding of system dynamics at multiple temporal and spatial scales. The 

high accuracy of river morphology detection also benefits from high resolution or very high-

resolution remote sensing imagery. However, using high-resolution imagery to analyse 

catchment-scale river dynamics demands for very high capability of computing power of 

computer devices, which could be too expensive to be widely used among researchers. The 

potential solution is to combine the medium-resolution imagery and high-resolution imagery 

together to do analysis. For instance, the faster and low-cost method (e.g. workflow in this 

study) can be used to generate river patterns at catchment scale. Through initial investigation 

using medium-resolution imagery, the sub-reaches with special characteristics and interests 

could be further explored using high-resolution imagery. This kind of hierarchical river pattern 

recognition is also expected to be applied to global/regional-scale rivers by using adaptable 

image classification methods and appropriate remote sensing imagery. On the other hand, 

cloud-computing using the Internet (‘the cloud’) to offer faster innovation and flexible 

resources without requesting very high computing capability of user’s device, arises and 

becomes popular in recent years. For example, Google Earth Engine (GEE), which is integrated 

with Google Cloud Platform, enables spatial-temporal analysis using accessible free remote 

sensing data at a bigger scale. However, when establishing a workflow with algorithms coming 

from different sources, especially for those complicated but welcomed algorithms achieved by 

existing easy-operating software or coding packages, ensemble algorithms in GEE would be a 

technique challenge for researchers of river science. However, the technique challenge can be 

overcome by interdisciplinary studies between river science, computing science and 

mathematics. Hence, as Earth observation data become more readily accessible and processing 

tools continue to be developed and made readily available, a further revolution in river 

morphology studies may be seen in the near future. 
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Table 7-5. Examples using indices in river morphology studies which are excluded from this project. 
Literature Sediment 

transport/ 

size 

Water 

discharge 

Flow 

velocity 

Vegetation 

types 

Organisms 

in water 

Water 

temperature  

Bedrock 

types 

Bed 

level 

Bathymetric 

survey  

(Johnson, Snyder, and Hitt 2017)      √ √   

          

(Raven et al. 2009) √       √  

(Rice et al. 2009) √        √ 

(Dingle et al. 2019) √ √        

(van Oorschot et al. 2016)  √ √ √    √ √ 

(Im et al. 2011)  √ √  √  √  √ 
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Chapter 8 - Synthesis and Conclusions 

8.1. Assessment of Research Objectives  

This Chapter provides a synthesis to answer the research objectives listed in Chapter 1, and 

then provides a summary conclusion of the work in this thesis. The objectives from Chapter 1 

(in italics below) are as follows: 

(1) to design and apply an automated river landform classification workflow using free 

Sentinel-2 multi-spectral data and validate with manually digitised ground truth data:  

A hierarchical workflow was designed (illustrated in Chapter 4) that considers (spatial and 

temporal data resolution, data quality (obscured or not), data downscaling performance, 

training dataset selection, testing dataset selection, and model transferability to neighbouring 

years and rivers (Chapter 4). The classification model performed very well for the rivers in 

northwest Luzon but did not perform well at classifying the landforms in the Cagayan River in 

northeast Luzon (Chapter 7). By using new training data derived from ground truth in the 

Cagayan River, the classification was significantly improved, which is due to the Cagayan 

having different physical characteristics to the other rivers. Chapters 4 and 7 results indicate 

that the designed hierarchical workflow can be efficient and robust for river landform 

classification. However, development of the training model (one step of the hierarchical 

workflow) needs to be fully assessed for the particular sites under investigation before the full 

workflow is applied. 

(2) to further develop and evaluate the classification workflow in (1) by applying it to four 

rivers in North Luzon inter- and intra-annually, producing data for spatial-temporal analysis:  

There were 32 dates (Feb 2016- July 2021) when river landforms (water, unvegetated bars and 

vegetated bars) were classified in the Bislak and Laoag Rivers, 34 dates (Jan 2016- July 2021) 

for the Abra River, and 20 dates (Mar 2018- Sept 2021) in the Cagayan River. Prior to 2018, 

many images were partly or fully obscured by heavy clouds along the Cagayan River channels. 

The availability of data at two-monthly intervals provides time series of sufficient temporal 

resolution to allow identification of seasonal patterns, and multi-year data availability extended 
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this time series sufficiently for statistical analysis to be used to interpret the results across 

several years. 

(3) to generate river landform (water, unvegetated bars and vegetated bars) spatial-temporal 

classification maps for the Bislak, Laoag, Abra and Cagayan Rivers: 

The automated river landform classification workflow in (1) was successfully developed and 

evaluated in Chapter 4 and was applied to the Bislak, Laoag, Abra and Cagayan Rivers in 

Chapters 5 and 6. The spatial-temporal patterns in the classified river landforms were 

investigated inter- and intra-annually (Figure 5-5 and Figure 6-4). These plots visualise the 

impacts of regional geomorphology (valley slope, confinement, drainage network structure), 

seasonal and inter-annual climatic variations, and anthropogenic disturbance (confinement, 

aggregate mining) on river landform patterns and dynamics. 

(4) to evaluate whether there is strong seasonality in the morphological dynamics of the North 

Luzon rivers and, if so, explore how the river landforms interplay with each other and with the 

active channel width:  

Figures 5-5 and 6-4 show that the proportion of water in the active channels of the four rivers, 

except for some very low gradient reaches, all show strong seasonality induced by seasonal 

precipitation fluctuations in tropical North Luzon. Unvegetated bar proportions also show 

seasonality in every river, however, seasonality of this landform type in the Bislak River 

(Figure 5-5) was weaker than in the Laoag, Abra and Cagayan Rivers (Figure 5-5 and Figure 

6-4). Seasonality for vegetated bars is extensively observed in many reaches of the 

wandering/braided gravel-bed Bislak, Laoag, Abra Rivers, but is less common in most reaches 

of the meandering, sand-bed Cagayan River. 

(5) to assess how the river landforms respond to external river channel settings (valley 

confinement, faults, tributaries, etc.); and how does river morphology respond to tributary 

inflows:  

From quantitative analyses of the active channel width, landform area and landform proportion 

in the four rivers, it is suggested that active channel widths tend to have significant correlations 

with the areas of all three landforms (Table 7-3). Notably, there are significant negative 
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correlations between vegetated bar and unvegetated bar proportions in the Bislak, Laoag and 

Abra Rivers. However, in the Cagayan River vegetated and unvegetated bar proportions were 

significantly positively correlated in both wet and dry seasons (Table 7-3).  The details in the 

results suggest that the ways in which river landforms respond to the different river channel 

settings are related to multiple factors, including active channel widths, river longitudinal 

gradients, and the locations of faults, lithological boundaries, tributaries and confinement. 

Chapter 7 also discussed how landform diversity is impacted by confinement. In Chapter 6, it 

was shown that unstable reaches, many associated with tributary inputs, show seasonal 

dynamics in water and unvegetated bar areas in all years, whilst the stream power ratios of 

tributaries to the mainstream upstream of confluences could impact the landform diversity and 

stability downstream of the confluence differently according to the relative magnitude of the 

tributary input. Aside from river landform response to tributary inflows, tributary inputs can 

also contribute to the widening of bankfull river width downstream of the confluences.  

(6) to discuss how the generated data can be used to identify the impact of disturbance analysis 

on landforms change: 

Spatial-temporal heatmaps were used to visualise the generated landform data so revealing 

spatial-temporal data distributions (Figure 5-5 and Figure 6-4). Mapping frequency (Figure 5-

7 and Figure 6-5) and diversity (Figure 6-8 and Figure 7-5) helped to estimate the probability 

of landform change. Locations with abrupt changes on these plots and maps can be examined 

to identify local controls over the landform processes. Using the coefficient of variation to 

calculate landform stability (Figure 5-11 and Figure 6-7) reveals hotspots of dynamism and 

also reaches that show consistency between seasons and years. Representing the dynamism in 

2-Dimensions with Simpson’s Diversity Index (Chapter 6 and 7) reveals reach-scale processes 

that can be related to geomorphic and/or anthropogenic causes. Moreover, the EEMD signal 

decomposition method, was introduced to differentiate local abrupt changes from periodic 

consistency (see 6.4.4).  

8.2 Conclusions 

This thesis firstly developed a workflow to automatically classify river landforms in the Bislak, 

Laoag, Abra and Cagayan Rivers, North Luzon, the Philippines. Image processing technology, 

including image downscaling and object-based segmentation, was explored for enhancing 
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classification performance. Subsequently, the support vector machine classifier was employed 

to classify the river landforms into water, unvegetated bars and vegetated bars within the river 

active channel. The results not only suggest that the image quality (e.g., obscured extent, image 

resolution) and image processing approaches are important, but also that the selection of 

training data and testing data should be carefully considered before finalising the machine 

learning classification model. The generated river landform datasets for the four rivers in north 

Luzon provided the quantitative data base for analysis of river morphological change and 

morphological responses to channel settings.  

In this thesis, seasonal and annual landform changes were detected in the four rivers. The data 

show longitudinal and temporal variation in landform areas and proportions. Meanwhile, 

longitudinal variation is strongly influenced by channel setting (e.g., active width, catchment 

size, confinement, tributaries, slope and elevation). There are distinct dry and wet seasons in 

the studied catchments, although their timing and duration vary between years. Separating the 

river morphology dataset into dry and wet seasons significantly improves the statistical 

information that can be used to understand river processes. For example, landform areas are 

significantly correlated with active width, with very strong correlation found between active 

width and vegetated bar area in both wet and dry seasons in all four rivers. Landform data 

processed by EEMD indicated that water and vegetated bars are commonly synchronised with 

precipitation (close to in-phase, with a 1 to 3 months lag from the peak of precipitation in each 

year,), while unvegetated bars have an oscillation close to anti-phase with precipitation.  

Several approaches were applied to statistically analyse landform temporal change. Assessing 

longitudinal landform stability through the coefficient of variation, differences in river gradient 

and the influence of faults demonstrated how rivers in similar hydrological/climate regimes 

can have different sensitivities. Mappings of landform frequency and diversity show local 

patterns of stability and instability within the active channel. Using this variety of visualizations 

of landform changes, channel setting impacts on river morphological dynamics were 

addressed. For example, tributary inflows lead to widening of bankfull width downstream, 

whilst stream power ratios of tributaries to mainstem upstream confluences result in various 

impacts on downstream morphology and landform diversity, and consequently will affect 

instream habitats and ecology. This thesis shows how advanced technology (i.e., image 

processing, machine learning) and interdisciplinary statistical tools (i.e., EEMD, COV and 

Simpson’s diversity index) can be employed to enhance river landform classification and 



 

159 

visualization. Nevertheless, external controls (e.g., seasonal precipitation, geological setting, 

sediment transport and anthropogenic factors) can induce changes in river morphology and 

landform change at different magnitudes. Spatial-temporal analysis of river landforms not only 

trace the river patterns change, but also contribute to dig into hotspot event location of the river. 

For example, identifying the high frequency water trajectory and seasonal water patterns can 

help detect potential hotspot of floods. Whilst combining river morphology with bar 

development and vegetation growth, river process and high risk of floods could be predicted. 

The synthetic analysis applied to the studied tropical rivers in this thesis has the potential to 

benefit future flood risk assessment, river management and river channel restoration. The 

methods used throughout the thesis can be applied to rivers worldwide, although training data 

will need to be selected as appropriate for different local conditions. The results from north 

Luzon have relevance across the tropics, and in other regions where seasonal variation in river 

flows is accompanied by significant in-channel vegetation growths. 
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Appendix 

A.1.  

 

Figure A1. Ensemble Empirical Mode Decomposition (EEMD) on GPM IMERG catchment-

averaged (every 10 days) precipitation data from the Bislak catchment. Upper plot (blue) is the 

precipitation data for the Bislak River catchment. The subsequent five plots (green) are 

decomposed Instinct Mode Functions (IMFs), and the lowest plot (purple) is the residual of the 

decomposition. 
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A.2.  

 

Figure A2. Ensemble Empirical Mode Decomposition (EEMD) on GPM IMERG catchment-

averaged (every 10 days) precipitation data from the Laoag catchment. Upper plot (blue) is the 

precipitation data for the Laoag River catchment. The subsequent five plots (green) are 

decomposed Instinct Mode Functions (IMFs), and the lowest plot (purple) is the residual of the 

decomposition. 
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A.3.  

 

Figure A3. (a) Longitudinal trend in active width (AW) and mean area of three landforms 

(water, unvegetated bars, vegetated bars) for the Laoag River, for wet and dry seasons. (b) 

Matrix plots to represent correlations between mean values of landform areas and AW. 

Histograms illustrate mean value distributions at equal spaced spatial distance along the river. 

Kernel distribution estimation is shown using contour plots. Tables above each matrix plot 

summarise correlation coefficients (r) and associated statistical significance (p) between 

landforms area and AW in wet season and dry season. 
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A.4.  

 

 

Figure A4. (a) Longitudinal trend in active width (AW) and mean area of three landforms 

(water, unvegetated bars, vegetated bars) for the Laoag River, for wet and dry seasons. (b) 

Matrix plots to represent correlations between mean values of landform areas and AW. 

Histograms illustrate mean value distributions at equal spaced spatial distance along the river. 

Kernel distribution estimation is shown using contour plots. Tables above each matrix plot 

summarise correlation coefficients (r) and associated statistical significance (p) between 

landforms area and AW in wet season and dry season. 
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A.5.  

 

 

Figure A5. (a) Longitudinal trend in active width (AW) and mean proportion of three landforms 

(water, unvegetated bars, vegetated bars) for the Bislak River, for wet and dry seasons. (b) 

Matrix plots to represent correlations between mean values of landform proportions and AW. 

Histograms illustrate mean value distributions at ~410 m spatial distance along the river. 

Kernel distribution estimation is shown using contour plots. Tables above each matrix plot 

summarise correlation coefficients (r) and associated statistical significance (p) between 

landforms proportion and AW in wet season and dry season. 
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A.6.  

 

Figure A6. (a) Longitudinal trend in active width (AW) and mean proportion of three landforms 

(water, unvegetated bars, vegetated bars) for the Abra River, for wet and dry seasons. (b) 

Matrix plots to represent correlations between mean values of landform proportions and AW. 

Histograms illustrate mean value distributions at ~410 m spatial distance along the river. 

Kernel distribution estimation is shown using contour plots. Tables above each matrix plot 

summarise correlation coefficients (r) and associated statistical significance (p) between 

landforms proportion and AW in wet season and dry season. 
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A.7.  

 

Figure A7. Bislak landforms Area- AW correlation coefficients time series. 
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A.8.  

 

Figure A8. Laoag landforms Area- AW correlation coefficients time series. 

 

 

A.9.  

 

Figure A9. Abra landforms Area- AW correlation coefficients time series. 
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A.10.  

 

Figure A10. Bislak landforms Proportion- AW correlation coefficients time series. 

A.11.  

 

Figure A11. Laoag landforms Proportion- AW correlation coefficients time series. 
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A.12.  

 

Figure A12. Abra landforms Proportion- AW correlation coefficients time series. 
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