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Abstract: In highly modified coastal environments, such as commercial harbours, the installation of
artificial habitats has garnered support as a means of enhancing local biological recruitment and con-
nectivity. The success of these measures depends largely on the patterns of species colonisation. Using
post-installation monitoring data, we compared the composition of assemblages of invertebrates
colonising artificial habitats that were immersed for different periods (~6 vs. ~18 months) in three
commercial harbours along the French Mediterranean coast. The artificial habitats were colonised by
taxonomically diverse invertebrate assemblages of ecological and economic importance, including
molluscs, crustaceans, and echinoids. Composition differed significantly with the immersion time of
the artificial habitats, with total abundance, species richness, and evenness being significantly higher
after ~18 than after ~6 months of immersion, indicating that long periods are necessary to enrich
these new habitats with economically and ecologically important species. These results can inform
restoration protocols and emphasise the value of post-installation monitoring programs.

Keywords: ecological community development; coastal biodiversity; species composition; artificial
structures; coastal restoration

1. Introduction

Habitat degradation and loss threaten population persistence, biodiversity, and the
functioning of ecosystems [1–3]. Ecosystem managers face the challenge of implementing
conservation and restoration initiatives in altered environments [4] where the effects of
climate change exacerbate the impacts of coastal development [5–8]. In systems where it is
determined that ecosystem thresholds have been crossed as a result of human impacts and
where changes are irreversible, such as on heavily modified coastlines within large grey
infrastructures (e.g., ports, harbours, commercial marinas), options for their management
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as ‘novel ecosystems’ may be considered to manipulate them and fulfil desired ecological
conditions or functions [4,9,10].

The installation of artificial habitats with ecologically-engineered elements has been
widely advocated and implemented for replacement of lost or degraded natural habitat,
ecological conservation, biodiversity enhancement, and improvement of ecosystem ser-
vices [11–14]. Specific goals of artificial habitats may include supporting local biodiversity
and communities of fish or invertebrates of commercial or ecological interest [12,15–19],
building ecosystem resilience, and enhancing ecological connectivity [4,20–22].

Evidence shows the efficacy of these artificial habitats in attracting marine organisms
at different development stages, from larvae to adults, although the patterns of colonisation
are context-dependent [17,20,22–24]. These patterns can depend on processes of community
assembly and succession that are determined, among others, by the timing of species coloni-
sation and interactions among species [25–27]. It is therefore anticipated that implementing
artificial habitats in degraded ecosystems can facilitate or accelerate successional processes
that foster the establishment and maintenance of diverse communities [24,26,28].

Evaluating the colonisation process of artificial habitats is key for assessing their use
in ecologically degraded coastal ecosystems. In this study, we examine the composition
(structure and diversity) of invertebrate assemblages colonising artificial habitats after two
distinct immersion periods: 5.5–7 months (Year 1), and 17.5–19.5 months (Year 2).

The artificial habitats (Dock Biohut®; Ecocean SAS, Montpellier, Paris) were designed
to provide ecological nursery habitat within commercial harbours and marinas [17,22]. We
used a subset of existing monitoring data from these artificial habitats in three spatially
distinct commercial harbours along the French Mediterranean coast where post-installation
sampling replication allowed for comparison of colonisation across years. We compared
invertebrate assemblages found in artificial habitats in Years 1 and 2 and hypothesised
that the species composition of invertebrates would differ across time periods and that
abundance and taxonomic diversity would increase with immersion time.

2. Materials and Methods
2.1. Study Sites

This study uses ecological monitoring data from three large commercial harbours in the
Gulf of Lion along the French Mediterranean coast, separated by distances of 29 to 204 km,
namely Le Barcarès (42.7980◦ N, 3.0375◦ E), Port-Vendres (42.5190◦ N, 3.1089◦ E), and
Grand Port Maritime de Marseille (43.3448◦ N, 5.3377◦ E). Each of these three harbours
has >200 vessel moorings and has been operating commercially for >40 years, although
the physical and environmental characteristics of each harbour vary across a range of
parameters (Table 1).

Table 1. Characteristics of the three study sites (harbours) and Dock Biohut sampling.

Harbour
Coast
Type

Distance to
Rhone River
Mouth (km)

Connections
Harbour

Construction
Date

Harbour
Surface Area

(ha)

Harbour
Maximum
Depth (m)

Mean ± SE
Distance from

Biohuts to Sea (m)

Mean ± SE
Depth under
Biohuts (m)

Biohuts
Installation

Date

Date of Sampling (Sample Size)

Year 1 Year 2

Le
Barcarès Sandy 158 (west) Sea and

lagoon 1963 81 2.5 610 ± 112 1.50 ± 0.50 1 March 2013
30 Sept–1

October 2013
(n = 9)

15 October
2014 (n = 4)

Port-
Vendres Rocky 167 (west) Sea 1953 33 10.0 816 ± 133 5.67 ± 1.33 1 March 2013 1–2 October

2013 (n = 9)

7 October
2014

(n = 5)

Grand Port
maritime de

Marseille
Rocky 42

(east) Sea 1840 400 14.5 2126 ± 152 8.25 ± 1.84 1 June 2013 14 November
2013 (n = 12)

26–27
November
2014 (n = 7)

We extracted this subset of data from a large monitoring database comprising data
from Biohuts installed in 21 harbours and marinas across 19 French cities and in Monaco
between 2013 and 2017 (Table S1). The subset was selected to allow for sufficient replication
of artificial habitats within harbours across the years.
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2.2. Sampling Unit and Protocol

Biohuts were composed of two adjoined carbon-steel alloy cages (50 × 80 × 12.5 cm;
combined cages depth 25 cm) and attached to the dockside (Figure 1). One cage was filled
with empty oyster shells to provide complex substrate and was positioned against the dock
(2.5 cm mesh-size); the outward-facing adjoining cage was left empty (5 cm mesh size) to
keep out large mobile predatory fish.
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Figure 1. Dimensions (a) and image (b) of Dock Biohut structures, composed of two carbon-steel
alloy cages: inner-cage filled with oyster shells (2.5 cm mesh) and empty outer-cage (5 cm mesh).

In March and June 2013, all the sampled Biohuts were installed in each harbour, sub-
merged just below the surface of the water. Assemblages were sampled on randomly
selected Biohuts at least 20 m apart, either 5.5–7 (Year 1) or 17.5–19.5 months after installa-
tion (Year 2; Table 1). Because of the number of remaining Biohuts available in Year 2, the
number of sampled Biohuts were different among years. During Year 1, 30 Biohuts were
sampled (9 in Le Bacarès, 12 in Marseille and 9 in Port-Vendres), whereas 16 were sampled
in Year 2 (4 in Le Bacarès, 7 in Marseille, and 5 in Port-Vendres). During monitoring, the
Biohuts were encased with a PVC net (2 mm mesh) by divers to prevent loss of organisms
during removal and lifted from the water onto the adjoining dock. Biohuts were then
disassembled, the organisms identified to the lowest taxonomic level possible, and they
were counted. The sampling protocol did not allow us to sample for macroalgal cover or
biomass and we focused the study on consumers.

2.3. Data Analysis

We fitted generalised linear mixed models (GLMM) with time period as fixed factor
(two levels: Year 1, Year 2) and harboured a random factor [29] on univariate data. We
used this structure to model the biodiversity of invertebrate assemblages (species richness,
Shannon diversity, Pielou’s evenness), the abundance of specific taxa (Bivalvia, Gastropoda,
Malacostraca, Ophiuroidea), and the abundance of commercially exploited taxa that con-
tributed >5% to the total invertebrate abundance (e.g., the palaemonid shrimp Palaemon
spp.; the variegated scallop Mimachlamys varia [30]). Mixed-effects models that estimate
parameters based on residual maximum likelihood were used due to their capacity to more
appropriately handle unbalanced designs (particularly with random effects) than alterna-
tive approaches using observed and expected mean squares or error strata [31]. The count
data of classes and total abundance were fitted using a negative binomial distribution to
accommodate alternative exponential distributions of residuals due to evidence of overdis-
persion (with glmer.nb in lme4). Temporal variation in species richness was modelled with
a Poisson distribution due to exponential variance, but within the assumed bounds of
dispersion (glmer in lme4). Temporal variation in Shannon diversity and Pielou’s evenness
was assessed with Gaussian models and a constant variance structure due to heteroscedas-
ticity between time periods. Model assumptions were assessed visually using diagnostic
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plots of Pearson residuals. Variation in the multivariate taxonomic composition of in-
vertebrate assemblages through time was tested using a two-way nested PERMANOVA
(maximum permutations = 9999) and then visualised with non-metric multidimensional
scaling (nMDS) based on a Bray-Curtis dissimilarity matrix of log (x + 1) transformed data.
We used Monte Carlo sampling to estimate differences due to limited available unique
permutations (360) and unconverged permutation versus Monte Carlo P-values [32].

Before running PERMANOVA, the homogeneity of residuals was tested using PER-
MDISP with time period (fixed) and harbour (random) as factors. Similarity percentage
analysis (SIMPER) was also performed using Primer v6 with PERMANOVA+ [32,33]. The
data were log (x + 1) transformed to quantify, (1) overall similarity across harbours across
the time periods, and (2) mean similarity within or dissimilarity between harbours across
time periods. SIMPER was also used to identify those species contributing consistently to
similarity or dissimilarity (similarity or dissimilarity/standard deviation ≥ 2).

3. Results

A total of 48 invertebrate taxa from 39 families, 8 classes, and 5 phyla were recorded in
Biohut structures across both survey periods (Tables S1 and S2). All animals were classified
as native to the Mediterranean [34]. There were significant differences between Year 1 and
Year 2 in total abundance (z (1,42) = 2.36, p = 0.02), species richness (s (1,42) = 2.28, p = 0.02),
and Pielou’s evenness (s (1,42) = 2.07, p = 0.04), but not Shannon diversity (Tables S3 and S4).
Abundance and species richness were higher in Year 2 than Year 1 (Figure 2).
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Figure 2. Temporal variation (fitted values ±95% confidence intervals) in: (a) the total abundance
(number of individuals/0.1 m3 of artificial structure); (b) species richness (number of taxa/0.1m3 of
artificial structure); (c) Shannon diversity; and (d) Pielou’s evenness of invertebrate assemblages in
artificial Dock Biohut structures within Year 1 and Year 2 since installation. Significant differences
between time periods of each metric are indicated with asterisks (red * indicates p ≤ 0.05).

The taxonomic composition of invertebrate assemblages varied between Year 1 and
Year 2. Non-metric MDS ordination showed distinct clusters between Year 1 and Year 2
(Figure 3). For both Le Bacarès and Port-Vendres, the Year 2 data were closer to each other
than for the Year 1. The stress value (0.07, 0.1, and 0.08, respectively) provides a good
representation of our data in reduced dimensions. PERMANOVA (F (1,40) = 3.569; p < 0.05)
analysis revealed variation in taxonomic composition of invertebrate assemblages from
Year 1 to Year 2 (Figure 3). However, PERMDISP analysis showed significant differences in
the mean distance from centroids among the groups (F (5,40) = 11.099; p < 0.001), indicating
that results from PERMANOVA should be interpreted with caution.
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Figure 3. Non-metric multidimensional scaling analysis showing: Variation in taxonomic composition
of invertebrate assemblages among surveyed Dock Biohut structures in each harbour between years
(Y1 and Y2) since installation ((a–c); log x + 1 transformed data); and the relative contribution of
species to variation at each harbour ((d–f); >0.5 Pearson correlation).

Changes in assemblage composition between Year 1 and Year 2 caused an overall
increase in taxonomic similarity of assemblages across all harbours (average assemblage
similarity: Year 1, 28%; Year 2, 37%), with an average 78% dissimilarity in species composi-
tion between years. This overall increase was likely driven largely by increased similarity
in taxonomic composition of assemblages at La Bacarès (Year 1, 28%; Year 2, 72%) and
Port-Vendres (Year 1, 47%; Year 2, 70%), and not Marseille where similarity decreased (Year
1, 39%; Year 2, 31%; Table 2). In Year 1, only the variegated scallop Mimachlamys varia
contributed consistently to assemblage similarity among Biohuts in Port-Vendres. However,
in Year 2, six species consistently characterised species assemblages in Le Barcarès and eight
species in Port-Vendres. In Marseille, no species consistently contributed to assemblage
similarity in either year.

Table 2. Similarity Percentage analysis of invertebrate assemblages in surveyed Dock Biohuts through
time. Species consistently contributing to the average similarity within (sim/SD > 2), and dissimilarity
between (diss/SD > 2) harbours from Year 1 (Y1) to Year 2 (Y2) identified in one-way SIMPER analysis
are shown.

Le Barcarès Port-Vendres Marseille

Le Barcarès

Av. Sim:
Y1: 28%; no consistent spp.

Y2: 72%; Ophiothrix fragilis, Palaemon
spp., Pisidia spp., Mimachlamys varia,

Athanas nitescens, Paracentrotus lividus,
Lysmata seticaudata, Eriphia verrucosa

Av. dissim. (Y1 to Y2): 75%; Pisidia spp.,
Athanas nitescens, Lysmata seticaudata,

Eriphia verrucosa

Av. dissim:
Y1: 77%; no consistent spp.

Y2: 50%; Ophiothrix fragilis, Ocinebrina
edwardsii, Pisidia spp., Pachygrapsus

marmoratus, Lysmata seticaudata, Eriphia
verrucosa

Av. dissim:
Y1: 82%; no consistent spp.
Y2: 69%; Ophiothrix fragilis,

Paracentrotus lividus, Lysmata
seticaudata, Eriphia verrucosa
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Table 2. Cont.

Le Barcarès Port-Vendres Marseille

Port-Vendres

Av. Sim:
Y1: 47%; Mimachlamys varia

Y2: 70%; Ocinebrina edwardsi, Lysmata
seticaudata, Mimachlamys varia, Eriphia

verrucosa, Athanas nitescens, Pachygrapsus
marmoratus

Av. Dissim. (Y1 to Y2): 69%;
Ocinebrina edwardsii, Lysmata seticaudata,

Eriphia verrucosa

Av. Dissim.:
Y1: 71%; no consistent spp.

Y2: 76%; Ocinebrina edwardsii,
Lysmata seticaudata

Marseille

Av. sim:
Y1: 39%; no consistent spp.
Y2: 31%; no consistent spp.

Av. dissim. (Y1 to Y2):
75%; no consistent spp.

There was an overall increase in the abundance of Malacostraca (z (1,42) = 4.50,
p < 0.0001), but not in Bivalvia, Gastropoda, or Ophiuroidea (Figure 4; Tables S3 and S4). Of
11 surveyed taxa identified as potentially commercially exploited [30], only two contributed
to >5% of the total invertebrate abundance—Palaemon spp.(palaemonid shrimp) and M.
varia—but neither varied in abundance significantly across years (Table S5). The remaining
nine species (Carcinus spp.; common cockle Cerastoderma edule; black squat lobster Galathea
squamifera; small periwinkle Melarhaphe neritoides; European flat oyster Ostrea edulis; purple
sea urchin Paracentrotus lividus; Periclimenes spp. shrimp; bristle worm Polychaeta spp.;
common cuttlefish Sepia officinalis) each accounted for <2% of the total surveyed invertebrate
abundance (Table S6).
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4. Discussion

The examination of post-installation monitoring data found that artificial habitats
(Dock Biohut) hosted taxonomically diverse assemblages of invertebrate species, including
molluscs, crustaceans, and echinoids of ecological, commercial, and social interest. Our
analysis aims to complement the already-existing studies focused on the fish species associ-
ated with artificial habitats [17–19,22]. Communities develop and are structured over time,
whereby pioneering species initially colonise areas, with the abundance and composition
of colonising assemblages depending on interacting factors including habitat size and con-
nectivity, the proximity of source populations, local hydrodynamics, inter-annual temporal
variation in larval supply, and competitive interactions with other species [20,27,35–37].

Community development in restoration or conservation ecology would likely be time-
dependent in achieving desired endpoints of biodiversity, productivity, and species-specific
configurations [26,38]. The immersion time of artificial habitats is a known, influential
predictor of community composition due to processes of faunal succession [25,27,39,40].
In our study, the results indicated that community changes through time, likely due
to spatially and temporally variable colonisation by different species [27,39]. The results
showed differences in the colonisation and recruitment of organisms in the Biohuts between
Year 1 and Year 2 of immersion, indicating the capacity of artificial habitats to support local
biodiversity enhancement via the recruitment of organisms in highly modified harbours.

We found significantly greater total abundance, species richness, species evenness,
and abundance of crustaceans in artificial habitats across the three spatially distinct har-
bours after a longer period of immersion. Multivariate analysis of our data also showed
differences in artificial habitats assemblages between Year 1 and Year 2. Indeed, significant
variation in composition between the invertebrate assemblages sampled in Year 1 and Year
2 after deployment of the Dock Biohuts indicates the processes of community development
and highlights the role of habitat soak-time in determining the outcome of artificial habitat
installation initiatives [24,26,27].

Our analyses revealed an increase in the similarity in composition both within and
among assemblages in two of the three spatially distinct harbours between Year 1 and
Year 2, and an overall increase in abundance of crustaceans—a group of ecologically
important organisms due to their role in food-web dynamics [41]—and their influence on
the behaviour of settlement-stage larval organisms [42–46]. Species composition was highly
variable in the first year across all harbours, but in Year 2, assemblage structure became
similar within and between Port-Vendres and Le Barcarès, with the dominance of molluscs,
crustaceans, and echinoderms. These similarities and the differences with Marseille harbour
could be explained by the environmental characteristics of Marseille harbour, which is
the largest and the deepest harbour of this study, and it is not directly influenced by
outflow from the Rhone River, which delivers organic matter and sediment into the other
two study harbours. Furthermore, the Biohuts of the Marseille harbour were positioned
at a greater distance from the harbour entrance than those of the other two harbours.
Finally, the differences in species assemblages could also be due to the local availability
of species, e.g., the ecological concept of species pool [47,48]. We observed an overall
increase in abundance of Malacostraca, while the abundance of other predominant classes
(gastropods, bivalves and brittlestars) remained consistent, carrying implications for efforts
targeting ecological restoration [26,41,46]. Crustaceans are key components of the diets of a
range of macroinvertebrates and finfish [41], and an increase in their abundance may have
implications for local food-web dynamics [49]. Similarly, crustaceans can create a loud and
acoustically complex biophony, producing acoustic cues used by settlement-stage larvae
of fish and invertebrates that likely further enhances community development [42–46,50].
For example, the estimated detection distance of snaps of the shrimp, Athanas nitescens,
characteristic of Biohut invertebrate assemblages in Le Barcarès and Port-Vendres by Year 2,
can be up to 40 m [51]. As such, shifts towards greater abundance of crustaceans may
have a disproportionate role in the maintenance, development, and function of locally
diverse ecological communities [26,41], and may point towards opportunities for passive
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acoustic monitoring of community development where intrusive survey techniques are
less desirable [51–53].

Our results indicate that provided that the artificial habitats do not simply concen-
trate organisms, they may enhance local productivity and biodiversity in highly modified
areas within relatively short periods of time [54]. Similarly, the observed differences in
assemblage composition through time suggests that where specific species configurations
are desired endpoints for habitat restoration, understanding how local communities are
structured over time will likely enable pragmatic management goal setting [26,27]. Many
species of crustaceans are also highly valued commercial and recreational fisheries re-
sources [30]. Where artificial habitats can enhance rather than relocate local productivity,
they may provide opportunities for harvesting species in support of fisheries enhancement
initiatives [12,55,56], for the live-trade of ornamental organisms [18], or for aquaculture [57].

Artificial habitats can enhance the ecological capacity of highly modified areas of coast-
line such as large commercial ports and marinas by providing habitats for marine life at
different stages of life-history and migration [4,10,19,22]. The nursery capacity of artificial
habitats in large commercial ports has been shown previously for diverse assemblages of
juvenile finfishes, with typically higher abundance and species richness on artificial habitat
structures than on adjacent bare surfaces [17,19,22]. The availability of fine-scale structural
complexity, such as is created by caged oyster shells in the focal Biohut structures, can
provide refugia and enhance the survival of small-bodied and/or juvenile stage organisms
when their risk of mortality is highest [22,58]. Furthermore, the colonisation, abundance
and species diversity of macroinvertebrate fauna can be directly associated with availabil-
ity and structural characteristics of habitats [28,59–64]. Investigating existing ecological
monitoring data, our results provide insights into the relatively short-term capacity of
artificial habitats to attract and maintain diverse assemblages of invertebrates. Moreover,
our results highlight the role of habitat duration in community development and changes,
and the establishment of biodiversity in highly modified commercial harbours. Our results
also suggest that the environmental and physical characteristics of the harbours equipped
with artificial habitat structures can also facilitate the colonisation by specific invertebrate
assemblages. Furthermore, longer temporal studies comparing the colonisation of artificial
habitats against background levels of diversity and productivity would enable greater un-
derstanding of their capacity to augment the ecological function of modified systems [54].
This includes improving our understanding of their role as ecological steppingstones for
enhanced connectivity, and the ecological processes determining positive feedbacks and
alternative states across degraded systems [15,38].

Biodiversity conservation and restoration are widely supported management
goals [26,65,66], with species diversity being considered important for promoting ecosys-
tem resilience via the maintenance of critical ecosystem functioning during disturbance
(due to functional redundancy and response diversity [67,68]). Increasingly, efforts to
restore or replace nursery habitats are viewed as a key component of the conservation
of biodiversity and management of productive systems [5,69]. Our results indicate that
periods longer than 7 months are necessary to enrich these artificial habitats of economically
and ecologically important species. Finally, given the ecological importance of inverte-
brates in trophic dynamics and community development [41,45], experimental research
considering the influence of variation in invertebrate assemblage composition through
time on the recruitment of teleost fishes may aid in the understanding of the capacity for
complementary acoustic ecological enhancement programs [46,70,71].
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d15040505/s1, Table S1: Surveyed species recorded in Biohut
structures in Le Barcarès (BA), Port-Vendres (PV), and Grand Port maritime de Marseille (MA) in 2013
and 2014; Table S2: Invertebrate species surveyed between 2013 and 2017 in artificial structures (Dock
Biohut: D; Pontoon Biohut, P) installed within 21 harbours, in 19 cities in France and Monaco during
monitoring (total = 115 spp.); Table S3: Temporal comparisons (with 95% confidence intervals: CI) of
invertebrate assemblages in Dock Biohut across harbours (random factor) in Year 1 to Year 2 (linear
mixed effects models). Significant metrics shown in bold; Table S4: Mean ± SE total abundance,
biodiversity, and abundance of classes of invertebrates surveyed within Biohut structures in year 1
and year 2 since installation; Table S5: Temporal comparisons (with 95% confidence intervals: CI)
of potentially exploited species surveyed contributing > 5% of the total abundance of invertebrate
assemblages in surveyed Biohuts in Year 1 and Year 2 (linear mixed effects models) [30]; Table S6:
Mean ± SE total abundance of commercially exploitable species in surveyed Dock Biohut structures
in Year 1 and Year 2 [30].
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