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Abstract: Hydrological tracers, commonly used for characterizing water flow paths and sources, do
not often meet all the requirements of an ideal tracer. Trans-disciplinary approaches are advocated as
the way forward to enlarge the number of tracers available for investigating hydrological processes.
Since the 19th century, hydrological tracers have been increasingly used, particularly in underground
areas. The tracer toolbox at hand includes a large variety of options, including fluorescent dyes,
isotopes, salts or bacteriophages, with each tracer offering specific qualities and complementarities.
While their potential for hydrological studies has been studied in karstic environments since the 1960s,
bacteriophages remain insufficiently understood. According to the selection methodology used in this
review, more than thirty experiments have been listed, involving in total around seventeen different
bacteriophages. These have facilitated the investigation of groundwater, surface water (i.e., river, lake
and marine water), wetland and wastewater hydrological processes. The tracing experiments have
also highlighted the possible interaction between bacteriophages and the surrounding environments.
Bacteriophages have successfully helped researchers to understand the water flow within watersheds.
Certain advantages, such as the sensitivity of detection, the ease of producing high concentrations of
bacteriophages to be injected, their specificity for a host and their non-pathogenicity for human and
animal cells, make bacteriophages appreciable tracer candidates for tracing experiments. However,
the adsorption process or environmental factors such as temperature, pH and UV light considerably
impact the fate of bacteriophages, thereby leading to an attenuation of the phage signal. Considering
both the flaws and the qualities of bacteriophages, their use as hydrological tracers requires new
insight and further discussions regarding experimental tracing conditions.

Keywords: bacteriophages; hydrological tracers; aquatic ecosystems; transport; fate; alternative
methodological approaches

1. Introduction

Hydrological tracers have been used for more than a century and have allowed the
study of water in all its phases in a wide range of contrasting environments [1]. They
also contribute to addressing fundamental questions on hydrological processes, such as
the sources of water and matter, flow paths and transit times [2,3], velocities and travel
times, hydrodynamic dispersion, groundwater recharge and discharge generation [1,4].
The first known use of tracers dates from the late 1800s, when they were used to investigate
groundwater recharge and velocity in European karst aquifers [1,5].

Currently, the tracing tools at hand can be divided into two categories, namely tracers
that are naturally or accidentally present in the environment (i.e., environmental trac-
ers) and those that are artificially and intentionally introduced into the environment
(i.e., artificial tracers). For example, stable (e.g., hydrogen or oxygen) and radioactive
(e.g., tritium) isotopes are environmental tracers [6,7], while salts or dyes are artificial
tracers [1,8].
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In experimental hydrology, the most commonly used tracers, defined as conventional
tracers, are isotopes and fluorescent dyes. In parallel to the use of the previous tracers,
additional tracers can be employed, either by considering available natural resources such as
diatoms or by introducing colloidal particles such as bacteriophages and microspheres [7,9].
However, the use of these tracers is less widespread than that of conventional tracers. To
choose the right tracer among a large set of options, eight criteria are usually considered:
(i) low sorptivity and sorption, (ii) good chemical and biological stability, (iii) good solubil-
ity, (iv) low background concentration, (v) insensitive to changes (light, pH, temperature),
(vi) efficient detection limit, (vii) low toxicity and environmental impact and (viii) low cost.
Above all, the perfect tracer should be conservative, i.e., stable and non-reactive with the
surrounding environment [7]. Unfortunately, such an ideal tracer does not exist. Although
hydrogen or oxygen-stable isotopes are often considered as such, since they are the basic
constituents of the water molecule [4,10], recent studies have refuted this fundamental
statement [11]. For instance, the initial enthusiasm for the use of stable oxygen and hy-
drogen isotopes for hydrograph separation has been gradually replaced by substantial
concerns about their limitations in, for example, determining flow paths to reach streams
during storms [12]. While the analytical techniques used to measure the different types
of tracers are generally robust and reliable, the interpretation of tracer signals is far from
straightforward. The non-conservative behaviour of most tracers is a major concern in
this respect [13]. Fluorescent dyes are best suited to sufficiently transparent waters, but
they are quickly attenuated by sunlight and, like rhodamine B, are easily adsorbed on the
surrounding materials (e.g., soil constituents) [4,6,14]. In addition, the determination of
dye mixtures and dye residuals from the initial spiking can be challenging [15]. Salts, such
as bromide or chloride, have also shown their limitations when it comes to differentiating
their presence from the natural background [14]. Geochemical elements and isotopes
of hydrogen and oxygen in water are cardinal tools for investigating the time source
(i.e., event vs. pre-event water), runoff generation mechanisms (e.g., saturation overland
flow, groundwater flow, perched saturated flow) and geographic origins (i.e., location
of the water before it arrived at the stream) of storm runoff components [16]. Despite
considerable knowledge having been gained from countless studies in small experimental
catchment areas over the past four decades, theoretical research has gradually replaced field
observations and empirical understanding, mainly due to budgetary constraints on the one
hand and difficulties in identifying suitable sampling sites in larger catchment areas on the
other [17,18]. When considering larger catchment areas, runoff generation mechanisms
have also been increasing and form a highly heterogeneous mixture of water types [19].
Consequently, isotope tracers have been preferentially used in small catchment areas [12],
and their application to larger scales remains highly challenging [20]. For overcoming this
status quo, complementary tools have been proposed, such as distributed fibre-optic tem-
perature sensing [21,22], thermal infrared (IR) imagery [23,24], the use of terrestrial diatoms
as environmental biological tracers of hydrological connectivity across multiple scales [25,26],
artificial DNA tracers [27,28] or the injection of bacteriophages [14,29]. Bacteriophages are
viruses that specifically infect bacterial hosts. They are almost exclusively composed of a
nucleic acid molecule (DNA or RNA) carrying the genetic information, which is protected
by a protein capsid [30,31]. They exhibit a wide range of shapes, sizes (20 to 200 nm) and
structures. Bacteriophages were introduced as hydrological tracers in the late 1960s, and
their suitability for such applications has been investigated since then. Three main reasons
have motivated hydrologists in the use of bacteriophages as hydrological tracers: (i) the
sensitivity of the detection method, (ii) their host specificity and (iii) their so-called eco-
friendly properties [32–36]. Yet, the reasons mentioned above must be carefully considered
because, if not properly investigated before using bacteriophages as tracers, these aspects
may unknowingly hinder the efficient conduct of the tracing experiments.

The objective of this review was to provide a synthetic overview of past and current
uses of bacteriophages as hydrological tracers to identify the advantages and limitations
of such an approach from an original virological perspective. To achieve this objective, all
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facets of the use of bacteriophages in the previously reported tracing experiments were
reviewed according to the methodology set up and described in the first part of the review.
A description of the used bacteriophages and their effectiveness was then carried out
to further highlight the limitations encountered when using them. Finally, we provide
solutions, improvements, and guidance for future applications, based on our understanding
of the fate and transportation of viruses in the environment.

2. Methodology
2.1. Search Strategy

To identify all relevant scientific studies concerning the use of bacteriophages as a
hydrological tracer over the years, the literature review was conducted using six different
online bibliographic databases, namely Web of Science (https://mjl.clarivate.com/search-
results, accessed on 7 November 2022), Science Direct (https://www.sciencedirect.com/,
accessed on 7 November 2022), PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed on
7 November 2022), Wiley Online Library (https://onlinelibrary.wiley.com/, accessed on 7
November 2022), Google Scholar (https://scholar.google.com/, accessed on 7 November
2022) and SpringerLink (https://link.springer.com/, accessed on 7 November 2022). The
literature review was conducted until June 2022. For each bibliographic database, the first
phase of the search consisted of identifying and counting the number of articles matching
the keywords (1) “Phage*” or “Bacteriophage*” and (2) “Hydrological tracer*” or “tracer*”,
with the linguistic annotation required by each database. All articles meeting the above-
mentioned keyword combination were retained for the second selection phase. It should
be noted that book chapters and conference abstracts were also included.

After the initial screening of the bibliographic database using the above-mentioned
keywords, all duplicates were removed, and an additional manual screening based on
titles and abstracts was performed in order to select only publications using bacteriophages
as hydrological tracers and to eliminate studies which conducted tracing experiments for
any purpose other than hydrology (e.g., microbial source tracking). No restrictions were
placed on the type of experiments conducted, whether in the laboratory, in the field or
using modelling, if the bacteriophages were used in the context of understanding water
transportation in ecosystems. All experiments using bacteriophages for other purposes,
such as microbial source tracking, studies on the behaviour of bacteriophages in the
environment or environmental pollution, were eliminated.

2.2. Data Extraction and Analysis

All selected manuscripts were downloaded and sorted using Mendeley v1.19.8 as
the bibliographic reference manager software (http://www.mendeley.com, accessed on
7 November 2022). For each scientific paper selected, various data were extracted: the year
of experiments, the country where the experiments were conducted, the bacteriophage
species used, the environmental compartments investigated (e.g., groundwater, surface
water), the environmental characteristics of the compartment investigated and the types
of experiments performed (i.e., laboratory or field). In addition, for the most used bacte-
riophages, technical details of the experiments were also recorded where available: the
initial concentrations of the bacteriophage solutions, the location of the injection point(s),
the distance travelled by the injected bacteriophages between the injection site and down-
stream sampling site, the time and speed of bacteriophage transport, the parallel uses of
other tracers and the percentage recovery of bacteriophages. All figures produced from
bibliographic data were generated using the ‘ggplot2′ package with RStudio v1.4.1106 and
R v4.0.4 [37].

3. Bacteriophages as Hydrological Tracers: An Overview

According to our eligibility criteria, thirty-two hydrological tracing experiments using
bacteriophages were chosen. They were all conducted between 1968 and the present
day (Figure 1A). Kinnunen and his team were the pioneers, with seven experiments

https://mjl.clarivate.com/search-results
https://mjl.clarivate.com/search-results
https://www.sciencedirect.com/
https://pubmed.ncbi.nlm.nih.gov/
https://onlinelibrary.wiley.com/
https://scholar.google.com/
https://link.springer.com/
http://www.mendeley.com
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performed between 1968 and 1976 [38]. Usually working with conventional tracers, they
started working with bacteriophages to study the transportation of groundwater, surface
water and wastewater (Figure 1B). At the same time, other researchers turned to the use of
bacteriophages for their tracing experiments, albeit scarcely [39–41]. All types of water have
been subject to experiments using bacteriophages, with groundwater and surface waters
being the most investigated compartments. While only a small number of works were
carried out in the 1980s [14,15,32,35], a significant increase in this type of experimentation
was noticed in the late 1990s [42–45]. In the 2000s, tracing experiments using bacteriophage
became less frequent to the point that they were no longer reported in 2015 [46]. In the
2000s until today, more and more scientific papers using bacteriophages for hydrological
tracing purposes have turned to laboratory analyses with the aim of better understanding
the fate of bacteriophages in the different compartments of the ecosystem. Indeed, as their
properties were not well known at the time, their use as hydrological tracers could have
been a limitation.
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investigated (B).

3.1. First Hydrological Tracing Experiments Using Bacteriophages

In October 1968, the first hydrological tracing experiments using the Escherichia coli
bacteriophage F52 (or F52 for short) were performed by Kinnunen and Niemelä [38]. The
experiment was the first of a series of tracing experiments conducted until 1975, where the
objective was to study the water travel speed of a Kymikoki river (Finland), which extends
from a power plant. During these experiments, four to five litres of F52 phage suspensions
(1010 to 1011 plaque-forming unit [pfu]/mL) were injected directly into the river, where the
main sewer is discharged, and then water was sampled at 17 km further down the stream.
The bacteriophages travelled 8700 m in 7.7 h on average with a velocity ranging from 839
to 1872 m per hour, and an average discharge of 345 m3/s was determined. The objectives
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of this first experiment were not fully achieved, but the results were considered promising
enough to warrant further experiments with bacteriophages.

3.2. Objectives of Hydrological Tracing Experiments Using Bacteriophages

Bacteriophages have been used primarily to study water flow velocity in various
aquatic environments, such as surface waters (i.e., marine and fresh) [15,35,44] and ground-
water [38,41,47,48], and secondly to investigate the connectivity between different aquatic
compartments [44,49]. Paul et al. were able to determine the movement of domestic
wastewater in the surface waters of the Florida reef using Enterobacteria phage PRD1
(Tectiviridae) and Listonella phage phiHSIC (Siphoviridae) bacteriophages. Overall, the use
of bacteriophages has proven to be effective in hydrological tracing experiments, with a
better detection sensitivity than conventional tracers, particularly in karst aquifers and
saturated porous environments [42,45,48]. The use of bacteriophages was also efficient
in studying water flow in fractured strata when used in conjunction with fluorescent
dyes [47,49,50]. Despite the strong attenuation of the bacteriophage signal due to the rapid
movement of groundwater, the potential of such an artificial tracer in tracing and identi-
fying the water source has been demonstrated for short-term experiments [41,47,48]. In
the application of wastewater tracing, bacteriophages have been used to explore potential
deficiencies within sewage treatment plants [15,38,51,52]. Bacteriophage Escherichia virus
T7 (Autographiviridae), used for leak detection in wastewater treatment systems, was found
to be sensitive to changing conditions in sewage treatment plants and was therefore not a
suitable tracer for this application. In contrast, the use of the bacteriophage F52 successfully
detected the shortcut in a sewage lagoon and allowed for its repair [38]. In 1988, another
sewer leak was successfully investigated using Emesvirus zideri (Fiersviridae), formerly
known as the bacteriophage MS2 (Leviviridae), where the fluorescent dyes initially used to
detect the leak had not given conclusive results [15]. All the compartments studied in such
tracing experiments were aquatic environments, and no experiments have been conducted
in the soil to potentially investigate the infiltration processes or the preferential water paths
in soil pores.

4. Bacteriophages Commonly Used as Hydrological Tracers
4.1. Description of the Bacteriophages Used in the Tracing Experiments

In total, seventeen different bacteriophage strains have been used as hydrological trac-
ers in our set of selected publications. The most commonly used bacteriophages belong to
the families Fiersviridae, Siphoviridae and Autographiviridae (Figure 2A). At the species level,
the two most widely used are Escherichia virus T7 (Autographiviridae) and the marine bacte-
riophage Pseudoalteromonas phage vB_PspS-H40/1 (H40/1 for short, Siphoviridae). In equal
third place are Serratia marescens phages (unknown families), Emesvirus zideri (Fiersviridae)
(former MS2, Leviviridae) and the bacteriophage F52 (unknown family) (Figure 2B). How-
ever, the bacteriophage F52 was specifically used in a single study conducted in surface
water and wastewater in the very first series of tracing experiments [38].

The viral taxonomy built by the International Committee on Taxonomy of Viruses
(ICTV) has recently been updated based on genetic similarities between bacteriophages,
thus involving a reclassification of the entire order Caudovirales. For the bacteriophages
of this review whose strain and family names have been changed, both the old and new
names are mentioned. However, it should be noted that only the names employed in the
articles have been retained for convenience.

The detailed characteristics of all bacteriophages used as hydrological tracers are
summarised in Table 1. Briefly, most of them have a DNA genome with a head-tail structure,
except PRD1, phiX174 and MS2, which all have a single capsid. In addition, MS2 is the
only one with an RNA genome. Of all the bacteriophages used in the tracing experiments,
MS2, T7, PRD1 and phiX174 are the best known and the most widely described in the
literature (i.e., genome, structure, pI, host). In particular, the MS2 phage is used as a study
model in many experiments in virology, and a large amount of information is therefore
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available on it [53–55]. F-specific RNA bacteriophages, including MS2, have also been
proposed as a microbial source tracking tool or as indicators of faecal and viral pollution
of waters [56–58], which has led to numerous studies on its behaviour and fate in aquatic
environments [59,60]. In contrast, very little is known about the bacteriophages F52, F46
and F137 apart from their bacterial host Escherichia coli. This was isolated from a Finnish
river and was used exclusively in the very first tracing experiments [38]. Similarly, for
Serratia phages (Figure 2B), the strain was not specified in three of the five experiments
reported, while the remaining bacteriophage, S24VA (NCIMB 10645), infecting the bacterial
strain Serratia marcescens subsp. marcescens (NCIMB 10644), was used as a tracer. Up until
2020, 25 different genomes of Serratia phages had been described. All described Serratia
phages are virulent bacteriophages, except for two of them, bacteriophages Eta and Parlo,
which are temperate bacteriophages [61,62]. Little is known about the bacteriophages
infecting Serratia marcescens, almost all of which were isolated from human and/or animal
specimens (e.g., faeces) [63,64].
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Figure 2. Distribution of bacteriophages commonly used in hydrological tracing experiments, classi-
fied according to (A) the bacteriophage families and (B) the bacteriophage species. Bacteriophage
families are distinguishable by the background colours of the bar chart, and the type of water studied
is represented by the coloured pattern textures. Unknown = bacteriophage strains (Cloacae phage,
Serratia phage, Aerog243 phage, F137, F52, and F46) for which the families are not known.
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Table 1. Characteristics of all bacteriophages used as hydrological tracers.

Bacteriophages Family Structure Genome Isoelectric Point Bacterial Host References

THE FIVE MOST USED BACTERIOPHAGES AS HYDROLOGICAL TRACERS
Enterobacteria phage T7

(Teseptimavirus T7) Autographiviridae 55-nm capsid with 19-nm tail dsDNA of 40 kb 4.85 Most strains of Escherichia coli [65–67]

Pseudoalteromonas phage
vB_PspS-H40/1 Siphoviridae

Non-contractile 68-nm tail and an
icosahedral capsid of

45-nm diameter
dsDNA of 45 kb Unknown Pseudoalteromonas sp. [68]

Coliphage F52 Unknown Unknown Unknown Unknown Escherichia coli [38]

Lessievirus MS2
(Emesvirus zinderi) Fiersviridae Small icosahedral virus (28 nm) (+) ssRNA of 3 kb 3.9 Escherichia coli [59,69]

Serratia phage strains * Myoviridae, Siphoviridae,
Podoviridae, Ackermannviridae Head-tailed structure dsDNA of 44–350 kb Unknown Strains of Serratia marcescens [63,70]

ALL THE OTHER BACTERIOPHAGES USED AS HYDROLOGICAL TRACERS

Listonella phage phiHSIC Siphoviridae 47-nm capsid diameter with a
non-contractile tail of 146 nm dsDNA genome of 37,966 bp Unknown Vibrio pelagius [71]

Pseudoalteromonasvirus
vB_PspP-H6/1 Podoviridae 56-nm diameter icosahedral capsid

and a short (15 nm) tail linear dsDNA genome of a size of 36,753 bp <4 Pseudoalteromonas sp. [72,73]

Alteromonasvirus vB_AspP-H4/4 Podoviridae Icosahedral capsid of 41 nm with a
short tail of 6.6 nm dsDNA genome of 47,631 bp Unknown Alteromonas sp. [68]

Enterobacteria phage PRD1
(Alphatectivirus PRD1) Tectiviridae 62-nm capsid dsDNA genome of 15 kb 3.8–4.2

Gram-negative bacterial species (i.e.,
Escherichia coli, Salmonella enterica,

Pseudomonas aeruginosa)
[74,75]

Enterobacter cloacae phage strains * Unknown Isometric head of about 55–93 nm
with a 103 nm long DNA genomes Unknown Enterobacter cloacae [76,77]

Coliphages F137 and F46 Unknown Unknown Unknown Unknown Escherichia coli [38]

Salmonella phage P22H5 Podoviridae T7-like structure dsDNA Unknown Salmonella typhimurium [49]

Enterobacteria phage f1 Inoviridae Filamentous 850 nm long ssDNA Unknown Escherichia coli [36]

Pseudomonas phage Psf2
(Tunavirus Psf2)

Drexlerviridae
(former Siphoviridae)

T1-like structure (60-nm head and
151-nm tail) Circular genome of about 50 kb Unknown Pseudomonas fluorescens [42]

Enterobacteria phage phiX174
(Sinsheimervirus phiX174) Microviridae Icosahedral capsid Circular ssDNA 6.6–7 Escherichia sp. [78]

Aerobacter aerogenose 243 phages Unknown Unknown Unknown Unknown Aerobacter aerogenes NCTC 243 [41]

Note: * None of the articles clarified which bacteriophage strain was used. The names in brackets are the latest scientific names updated by the ICTV, and those in bold are the names
used in the various papers in which bacteriophages were used as hydrological tracers.
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4.2. Effectiveness of Bacteriophages as Hydrological Tracers

All the characteristics regarding the transportation of bacteriophages observed dur-
ing the various tracing experiments selected in this review are reported in Table 2. It
should be noted that all ranges in this table have been purely reported from the literature
taking into account the lowest and highest values recorded for each characteristic. The
bacteriophage T7 was successfully used to study groundwater flow conditions within
more or less permeable aquifers, over distances of hundreds of meters [36,42,45]. Marine
bacteriophages are particularly appreciated when investigating freshwater flow since they
do not display any background concentrations in this type of water. The bacteriophage
H40/1 was used to study groundwater and surface water (i.e., lake and river) flow. It was
noticed during surface water tracing experiments that both bacteriophages T7 and H40/1
were found to reach the sampling well faster or in a much lower concentration than the
conventional tracer (i.e., uranine) [45,79]. It has been suggested that these processes may be
due to the use of preferential pathways through the aquifers by the bacteriophages before
reaching the sampling wells. While T7 and H40/1 were transported faster through porous
materials, they were on the contrary found as being attenuated in lower permeable media,
such as in clay and silt aquifers [42,45]. In karst aquifers, all marine bacteriophages were
shown to follow shallow flow systems, while at the same time, the bacteriophage H6/1
displayed lower recovery rates than H40/1 due to a higher adsorption on clay [42,45]. In
addition, a multi-tracer experiment using the three marine bacteriophages was recognised
in an investigation of water circulation in lakes, especially to overcome the detection issue
caused by the dilution [80]. Listonella phage ΦHSIC was successfully used from 1995 to
2000 to investigate the wastewater movement from a septic system to surface waters and
groundwater. The bacteriophage ΦHSIC, isolated from marine waters, showed particularly
high stability in marine subsurface water, where it travelled over long distances (hundreds
of meters), and exhibited a notably higher stability than the bacteriophages MS2 and PRD1
that were used as complements [44,51].

While investigating groundwater flow, MS2 concentrations were found to be strongly
attenuated, which could be explained by the adsorption of the bacteriophage onto the
fracture walls or other material of the subsurface environments [44,46,48]. In experiments
using PRD1 as a complement to MS2 to investigate water migration through fractured
saprolite aquifer, PRD1 was detected over longer distances than MS2 (18 m vs. 13.5 m) [81].
Both bacteriophages remained viable for hundreds of days after injection, and PRD1 even
reappeared in the sampling wells several months after injection, suggesting the remobi-
lization of PRD1 after its adsorption to the clay particles (i.e., saprolite) in the aquifer.
This adsorption–desorption process with geological media has indeed been demonstrated
for PRD1, with a potential impact on its persistence during its transportation in aquifers,
either by slowing it down or accelerating it [29]. Enterobacter cloacae phage showed sim-
ilar behaviour to other bacteriophages in wetlands and aquifers, with a strong attenua-
tion of its concentration in the aquifer, but better recovery rates than the chemical tracer
(i.e., rhodamine WT) in the constructed wetlands. P22H5 also underwent adsorption and
dilution events during its transportation through groundwater, despite its efficiency in
determining channels within aquifers [50], while Aerobacter aerogenose 243 phages were
successfully used without displaying adsorption on clay particles [41].
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Table 2. Characteristics of the transportation of bacteriophages during the various tracing experiments.

Bacteriophages Reservoirs Distance Travelled Time Travelled Velocity Loss at the End of the
Experiment

Number of
Experiments

Other Tracers Used in
Complement References

THE FIVE MOST USED BACTERIOPHAGES AS HYDROLOGICAL TRACERS
Enterobacteria phage T7

(Teseptimavirus T7) Groundwater and lake 1–160 m (24 km in one
experiment) 20–70 h 1–350 m/h 99.9% 7 H40/1, f1, F52, F137,

F46, naphthionate [36,38,45]

Pseudoalteromonas phage
vB_PspS-H40/1 Freshwater (especially lakes) 64 m–6 km 8–48 h 8–2000 m/h 40–99% 6 T7, H6/1, uranine [45]

Coliphage F52 River and lake 8–62 km 4–119 h 900–2000 m/h - 5 T7, F137, F46 [38]

Lessievirus MS2
(Emesvirus zinderi)

Water surface treatment
wetlands, aquifers 4–15 m 4 h–5 d 0.2–19 m/h 10–77% 5 PhiHSIC, PRD1,

bromide [44,46,48]

Serratia phage strains * Surface water 3–10 km 1–6 h - 30–62% 5
MS2, fluorescein,

Enterobacteria phage,
Bacillus spores, Lithium

[15,35]

ALL THE OTHER BACTERIOPHAGES USED AS HYDROLOGICAL TRACERS

Listonella phage phiHSIC From wastewater to surface
water and groundwater 10 m–4 km 3–10 h 0.1–2 m/d

1–140 m/h - 3 PRD1, MS2 [44,51]

Pseudoalteromonasvirus
vB_PspP-H6/1 Freshwater (especially lakes) 6 km 5–26 h to 4 d 23–210 m/h 75–99.9% 3 H40/1, T7, Psf2, H4/4 [42,45,79]

Alteromonasvirus vB_AspP-H4/4 Freshwater (especially lakes) - 1–48 h - 99.9% 2 H40/1, T7, Psf2, H6/1 [42,79]

Enterobacteria phage PRD1
(Alphatectivirus PRD1) Low clay-content media 4 m–4 km 6 h–5 d 0.2–5 m/d

1–57 m/h 50% 2 MS2, bromide,
PhiHSIC [48,51]

Enterobacter cloacae phage strains
*

Constructed wetlands and
groundwater - 3–14 d 0.8–4 L/s 9–64% in wetlands

100% in groundwater 2 Photine, fluorescein,
Serratia phage [47]

Coliphages F137 and F46 River and groundwater 31–46 km 78–111 h 300–400 m/h - 2 and 1 T7, F52 [38]

Salmonella phage P22H5 Karstic aquifer, groundwater - 4–28 d 4–36 m/d 99.2–99.9% 2

Deuterium, bromide,
chloride, sulfate,

pyranine, naphthionate,
uranine,

sulforhoramine,
microspheres

[49,50]

Enterobacteria phage f1 Permeable aquifers 11–110 m 20–70 h - 100% 1 T7, naphthionate [36]

Pseudomonas phage Psf2
(Tunavirus Psf2) Groundwater - 11 d - - 1 T7, H6/1, H40/1, H4/4 [42]

Enterobacteria phage phiX174
(Sinsheimervirus phiX174) Karstic aquifer - 10–14 d - 99% 1

Photine, fluorescein,
Serratia phage,

Enterobacteria phage
[47]

Aerobacter aerogenose 243 phages Groundwater 200–700 m 2–8 d 1–8 m/h 99.9% 1 - [41]

Note: * None of the articles clarified which bacteriophage strain was used. The names in brackets are the latest scientific names updated by the ICTV, and those in bold are the names
used in the various papers in which bacteriophages were used as hydrological tracers. h = hours; d = days; s = seconds; m = meters; km = kilometers; L = liters.
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For the investigation of groundwater flow, the bacteriophage F137, like bromide, was
shown to have successfully travelled within the whole groundwater system to determine
the velocity of the water travel, while the other used tracers used (i.e., the bacteriophage
T7, rhodamine and salts) were lost during transport. In addition, in contrast to the bacterio-
phage T7, the bacteriophage f1 was shown to be suitable for use in permeable aquifers [36].
Despite a higher attenuation of the bacteriophage phiX174 compared to dyes in a karstic
aquifer, it showed less adsorption and more stability than the two other bacteriophages
used in the same tracing experiment, Serratia phage and Enterobacter cloacae [47]. The
bacteriophage Psf2 also showed its effectiveness when used to complement marine bac-
teriophages and the bacteriophage T7 and helped explore groundwater conduits [42].
However, the article did not specify the detailed results obtained after the tracing experi-
ments, such as the velocity, the recovery rate or even the distance travelled. Finally, while
determining the pathways into a porous limestone aquifer, Serratia phage managed to
highlight the potential presence of fractures, notably because its concentration was found
to be attenuated during transportation [47].

4.3. Combination of Hydrological Tracers in Multi-Injection Experiments

The specificity of bacteriophages for their bacterial hosts is characteristic that is well-
known and appreciated by hydrologists since several bacteriophages can be used simul-
taneously without interfering with the detection of the others. For instance, MS2 phage,
various strains of Serratia phage or even T7 phage are commonly deemed complementary
to other tracers and can be used simultaneously with other bacteriophages [15,42,75] or
conventional tracers (e.g., salts, fluorescein, rhodamine WT, microspheres) [33,38,46,80].
Experiments relying on the marine bacteriophage H40/1 always additionally included ei-
ther other marine bacteriophages (i.e., H6/1, H4/4) [42,45,79], non-marine bacteriophages
(i.e., T7, MS2) [42,45] or fluorescent dyes (i.e., uranine, fluorescein) [45,78].

Multi-injection experiments helped researchers compare the fate of multiple tracers
and then put forward their best properties, depending on the objectives and the studied
ecosystems. In the studies selected for this review, MS2, PRD1 and T7 were preferably
used for short-scale experiments where the travelled distances ranged from 1 to 15 m, 3 to
100 m and up to 160 m [33,36,48,75]. Studies using MS2 demonstrated that its travel times
varied from 1 h to several days in surface treatment wetlands and it was found to be no
longer detectable after spending 17 h in the aquifers [44,75]. Other works compared MS2
to conventional tracers such as bromide, fluorescein and rhodamine WT. In most studies,
MS2 phage reached the sampling stations with a delay compared to conventional tracers.
The authors assumed that this behaviour was due to adsorption–desorption processes and
concluded that this may hamper MS2-based estimations of water travel velocities [15,48].
Moreover, the recovered concentration of MS2 phage in bedrock fractures was ten times
lower than that of PRD1, suggesting that narrower pathways were preferentially used
by MS2 due to its smaller size (MS2—26 nm < PRD1—62 nm), and thus MS2 was not
recovered in the sampling site. On the contrary, small bacteriophages (i.e., 20–30 nm
diameter) have a velocity similar to that of water, better fitting the flow of water in fractured
aquifers [48]. Moreover, when the permeability of the aquifer increases, the bacteriophage
moves faster [36]. F137 and bromide had a similar velocity (0.125 m/h) and were the only
tracers detectable during the entire experiment, while the signal of rhodamine, chloride
and T7 were lost [38].

The contrasting performances of tracers were also noticeable in non-hydrological
tracing experiments that were not reported in this review but might offer transferable
explanations regarding the potential factors impacting these differences. In studies which
aim at tracing microbial contamination or the fate of bacteriophages in water, marine
bacteriophages (e.g., H40/1) have shown a higher transportation rate [81,82], a lower
degree of dispersion [45,83] and a more sensitive detection limit than conventional tracers
such as bromide.
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5. Towards a More Adequate Use of Bacteriophages in Hydrological
Tracing Experiments

In the selected studies, bacteriophages were valued by hydrologists in particular for
their specificity toward their bacterial host, their eco-friendly property and the sensitiv-
ity of their detection methods. However, in regard to the ecological equilibrium of the
ecosystem of interest, the eco-friendly property remains controversial, and the sensitivity
of their detection methods requires further discussion from a virological point of view. In
addition, the interaction between bacteriophages and the environment studied is not yet
sufficiently understood. This important aspect needs to be further explored, even before the
implementation of tracing experiments. The transportation of bacteriophages in the aquatic
environment can be strongly influenced by the physicochemical characteristics of the
ecosystem as well as their intrinsic properties (e.g., morphology, isoelectric point, size) [30].
Therefore, bacteriophages to be used as tracers must be properly selected according to the
studied watershed to ensure their efficiency as hydrological tracers (Table 3).

Table 3. The three main issues in the use of bacteriophages as hydrological tracers with their
limitations and the proposed solutions.

Status Quo Encountered Problems Proposed Solutions

Detection
methods

Use of culture-based methods
only

This only detects the infectious
bacteriophages, which mean they
need to be intact to be detected.

The complementary use of
cultured-based methods with
molecular techniques, which would
allow for the detection of the
nucleic acid. Thus, all
bacteriophages, intact and
damaged, can be detected.

Eco-friendly
property

Bacteriophages are biological
entities and thus are safe for the
environment.
In addition, they can be rapidly
eliminated from the environment.

The injection of large volumes of
highly concentrated bacteriophage
solutions into the environment.
Their genetic material can be released
and persist for a long period in the
environment.

The natural populations of
bacteriophages could be considered
since they are numerously
abundant.

Surrounding
environment

Few of the reported tracing
experiments using bacteriophages
considered the characteristics of
the ecosystems of interest and the
environmental conditions before
tracer injection.

Bacteriophage inactivation is highly
dependent on environmental factors,
which can lead to their detection
using cultured-based methods
being missed.

Characterise the catchment of
interest before launching the tracing
experiment and select the
bacteriophage species according to
the relationship between the virus
and the catchment properties.

5.1. Methodological Optimisation for Bacteriophage Detection
5.1.1. Limitations of the Current Detection Methods

In most studies, the detection and quantification of bacteriophages are carried out
using the plaque assay. Briefly, the plaque assay is based on the incorporation of host
bacterial cells in log-phase growth into agar medium. This creates a dense and turbid layer
of bacteria able to sustain viral growth. A bacteriophage suspension can subsequently
infect, replicate within and lyse cells. With each lysed cell, multiple adjacent ones become
immediately infected by newly produced bacteriophages. After several cycles, a clear
zone (a plaque) can be observed in the turbid plaque, indicating the presence of what
was initially a single bacteriophage particle. The number of plaque-forming units per
volume (i.e., PFU/mL) of a sample can thus be determined from the number of plaques
generated on the agar layer [84–86]. The plaque assay is one of the easiest, fastest, most
cost-effective and most reliable methods for the direct quantification of infectious bac-
teriophages and therefore the only detection method used in tracing experiments [87].
The sensitivity is appreciable, as one plaque can be detected in a sample volume of 1 to
5 mL [14,36,48,88]. However, only infectious bacteriophages can be detected. As previously
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mentioned, bacteriophages can be altered and/or inactivated during transportation in
the environment, leaving the particles defective or even resulting in them becoming free
nucleic acid. Defective particles are no longer infectious, which makes it impossible to
detect them by plaque assay. Therefore, the disappearance of bacteriophages described in
certain tracing experiments may be due to the use of an inappropriate detection method,
rather than the actual loss of the tracer. Furthermore, by using such a methodological
approach (plaque assay), only culturable bacteriophages for which the bacterial host is
known and cultivable can be used as hydrological tracers for injection, which greatly limits
the number of bacteriophages available.

5.1.2. The Interest in Using Several Complementary Methods for Bacteriophage Detection

To overcome the limitations of the plaque assay, the detection of the nucleic acid of
a bacteriophage using molecular biology tools should also be considered (Figure 3). In
this way, both infectious and non-infectious (damaged, inactivated and free DNA/RNA)
bacteriophages can be detected simultaneously. Nowadays, molecular methods are well-
developed, not excessively expensive (i.e., qPCR is about 5–10 €/sample) and widely
implemented in all microbiology laboratories. A quantitative (real-time) polymerase chain
reaction (qPCR) is a genomic amplification coupled with a fluorescent detection system.
During the course of the DNA amplification, the fluorescence is detected and recorded in
real-time [58,88–90]. In the case of RNA-viruses detection, a quantitative reverse transcrip-
tion PCR (RT-qPCR) is used which transcribes RNA into complementary DNA (cDNA)
by reverse transcriptase before carrying out the qPCR [91–93]. Beyond detection, such
methods also allow for the quantification of the viral nucleic acids originally present in the
analysed sample [94]. Moreover, using this molecular technique can promote multi-tracer
experiments since the simultaneous detection of different bacteriophage species from an
environmental sample is possible thanks to the high specificity of the primers and probes
used in such an approach [95,96]. Among the articles selected in this review, only one trac-
ing experiment involved the detection of bacteriophages (F-specific RNA bacteriophages)
in stream water samples by applying RT-qPCR [46]. The detection method was successfully
used to reveal several patterns such as the better performance of one bacteriophage strain
(i.e., GA-phage), a dilution effect caused by precipitations and the loss of all bacteriophages,
most likely due to a preferential pathway or bacteriophage behaviour (e.g., adsorption).
Given the new information provided by molecular techniques, certain conclusions drawn
from hydrological tracing experiments exclusively using the plaque assay would certainly
be questionable. Indeed, the loss of bacteriophages described in these studies would most
likely be the result of the specific detection of infectious bacteriophages, thus omitting
the detection of the non-infectious ones. The two methods should therefore be consid-
ered complementary to each other to provide a complete picture of the concentration of
bacteriophages recovered during a tracing experiment.
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The detection of bacteriophages from water samples can be improved by including
a viral concentration step before the analytical step. The purpose of this step is to arti-
ficially increase the concentration of the bacteriophage of interest in a water sample by
reducing the volume of the sample. Thus, it allows for the detection of small amounts
of bacteriophage which would not be quantifiable without the concentration step. The
viral concentration of water samples can be achieved by using either adsorption/elution
methods (e.g., electronegative or electropositive filters), ultrafiltration with polyethylene
glycol (PEG) precipitation, centrifugation or centrifugal ultrafiltration, methods that are
well-described in the vast number of reviews available [46,97–99].

5.2. “Eco-Friendly” Property of Bacteriophages
5.2.1. The Controversy of This Safe Biological Entity

The main advantage of using bacteriophages as hydrological tracers reported in the
literature is their harmless effect on humans and environments since they specifically infect
bacteria. Bacteriophages are considered safe for the environment, which has been proven
by standard ecological toxicity tests [33–35,49]. Bacteriophages were therefore considered
suitable for applications where non-polluting tracers were needed [41]. However, con-
sidering the ecosystem equilibrium, the claim that bacteriophages are environmentally
friendly is partly flawed. Each tracing experiment requires the injection of large volumes
(10–20 L) of highly concentrated bacteriophage solutions (104 to 1017 particles per litre) into
the environment [33,45,48]. Although bacteriophages are natural biological entities, the
introduction of a compound into an environment that is not their natural habitat can cause
biological contamination by disturbing the equilibrium of ecosystems. Little is known
about the impact of injected bacteriophages on existing bacterial communities, so it is
reasonable to assume that these exogenous entities can disrupt the ecological diversity
of bacteria [100,101]. Bacterial populations are naturally able to adapt to bacteriophage
infection by developing resistance mechanisms mainly through genetic mutations but also
through adaptative immunity or surface receptor modification [102,103]. The addition
of exogenous bacteriophages in large volumes and concentrations can therefore increase
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either the mortality or the mutation rate of natural bacteria. The ecological functions of
bacteria may also be impacted. Indeed, bacteriophages play a role in the biogeochemical
cycles of bacteria, including the global carbon and nitrogen cycles [104,105]. Altering the
natural bacterial community could cause disruptions or interruptions in biogeochemical
cycles, which could impact nutrient availability (i.e., carbon, nitrogen) and generate faulty
processes on a larger scale (i.e., the water cycle) [106,107].

One of the arguments often put forward to support the eco-friendly property of
bacteriophages is their rapid elimination from the environment into which they have been
introduced. However, although many environmental factors (e.g., temperature, radiation,
pH) may be responsible for the inactivation (the loss of their ability to infect bacteria)
of bacteriophages in the environment [30], their genetic material (DNA or RNA) can be
released and persist for a long period in the environment, particularly their DNA, which
is more stable than RNA (up to several years for the DNA and several days for the RNA).
Some species of bacteria can perform a genetic transformation, meaning that they can
directly take up and integrate free exogenous genetic material from their environment
into the host genome through the cell membrane(s) [108–110]. Specifically, DNA may be
involved in horizontal transfers of antibiotic resistance genes (ARGs), thus promoting
the spread of antimicrobial resistance [111]. These transfers of ARGs were found to be
significantly mediated by virulent or/and temperate bacteriophages through transduction
mechanisms [112]. The transfer occurs either by the introduction of the bacteriophage
DNA into the host genomes (temperate bacteriophages) or by pseudo-lysogeny, where the
bacteriophage genome is integrated as a plasmid into the cytoplasm of the host bacteria
(virulent bacteriophages) [113]. Mainly isolated from wastewater, the dissemination of
these ARGs was also encountered in diverse environments, such as freshwater or urban
rivers [114–116].

5.2.2. The Interest in the Natural Populations of Bacteriophages

The natural population of bacteriophages is large and extremely diverse in all environ-
ments. In soil, their concentration reputedly varies from 103 particles per gram of dry soil
in cold deserts to 109 particles per gram of dry soil in grasslands and forests [117–119]. In
aquatic environments, their concentration varies between 103 and 107 particles per millilitre
of water depending on the type of water (i.e., groundwater, wastewater, marine and fresh-
water) [120,121]. Given this high diversity, natural populations of bacteriophages could be
interesting potential candidates for hydrological tracing to overcome the limitations of the
injection of exogenous bacteriophages, as has already been the case for diatoms [9,26,122].
Nowadays, advances in sequencing technologies and bioinformatics tools allow for the
easier characterization of the viral diversity for a given habitat [123–125]. This characteri-
zation will allow for the determination of the most abundant species and/or genera that
can subsequently be selected as potential hydrological tracers [9,126]. Similarly, by detect-
ing and tracing specific sequences extracted from the genetic material of bacteriophages,
the speed of the water as well as the preferential water pathways could be determined,
especially in terrestrial compartments where bacteriophages are abundant [127].

Finally, bacteriophages introduced at the beginning of tracing experiments may be
inactivated as soon as they enter the environment, whereas natural populations of bacte-
riophages have the advantage of already being adapted to the environment under study.
However, for both natural and injected bacteriophages, their fate becomes uncertain once
they have left the compartment of origin, and therefore the consideration of the environ-
ment of interest is also ideally required.

5.3. The Properties of the Catchment of Interest
5.3.1. Flaws in Considering the Surrounding Environments

Prior to any tracer injection, the characteristics of the ecosystems of interest and the
environmental conditions have to be taken into account, as these aspects may be respon-
sible for the loss of the bacteriophage signal during the experiment and its failure. Viral
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inactivation is the main phenomenon that can occur when bacteriophages are released into
the environment, especially when the latter is not in its natural environment. Inactivation
is defined as the loss of the ability of bacteriophages to infect host bacteria. It is then no
longer possible to detect them in water samples using the plaque assay. Viral inactivation
is highly dependent on environmental factors, such as temperatures, UV radiations and
pH [128,129]. Temperature is the main factor in viral inactivation in the environment. In
particular, high temperatures are responsible for the loss of the ability of bacteriophages to
bind to their host cell through heat-induced changes in protein structure, as demonstrated
for the MS2 bacteriophage [130]. These transformations can cause inactivation by disrupt-
ing the specific structures required for recognition and binding to host cells. Damage to the
viral genome was described as negligible following heat treatment [131]. However, DNA
bacteriophages, particularly ϕX174 and PRD1, were revealed as being highly resistant to a
wide range of temperatures (>50 ◦C) and in various environmental matrices (e.g., surface
water, seawater and wastewater) [132]. The optimal temperature for the survival of bacte-
riophages in the aquatic environment ranges between 4 and 10 ◦C [30,54,132,133]. A study
led by Hodgson et al. (2002) highlighted differences in the bacteriophage travel time and
recovery rate according to the season (i.e., winter season vs. summer season). During the
cold season, the low light and the high river discharge allowed for a higher recovery rate
of the bacteriophage MS2 (98%) than during the summer season (23%) [75]. The negative
impact of temperature on MS2 bacteriophage detection was also reported by Gitis et al.
(2011) and Cheng et al. (2006) for temperatures between 25 ◦C and 40 ◦C [134,135]. In
the same vein, UV radiation also increases the inactivation rate of bacteriophages during
warm seasons, especially in surface waters and wastewater [32,38]. UV radiation can cause
substantial damage to viral nucleic acids, while modest protein damage occurred following
a UV treatment on the MS2 bacteriophage [131,136–139]. Among solar radiations, UVB
(i.e., 320 < λ < 400 nm) is the most inactivating radiation for bacteriophages [140]. In
water loaded with particles such as river or seawater, water turbidity plays an indirect
role, since, in turbid waters, radiation penetrates the water to a lesser extent, which limits
the inactivation of the bacteriophage [35]. In both aquatic and terrestrial compartments,
pH has a key role in the stability of bacteriophages [30,54,141,142]. In alkaline and acidic
pH, bacteriophage inactivation was shown to be caused by the deformation, removal or
denaturation of the protein capsid [54]. Regarding the bacteriophage T7, a continuous
reduction in its concentration was noticed in porous aquifers when a simultaneous increase
in the ionic strength and decrease in pH occurred, while the bacteriophage MS2 was found
to be intact at a pH = 6.9 in quartz sandy soil columns [45].

In addition to inactivation, the signal of bacteriophages can also be lost during the
tracing experiment due to adsorption phenomena. This is defined as the attachment of
bacteriophages to other molecules, driven either by van der Waals electrostatic forces
or hydrophobic interactions [143,144]. Their adsorption through electrostatic forces is
influenced by the pH of the surrounding environment and by charges present on the surface
of the molecule [145]. These interaction forces are reversible and mainly occur on mineral
surfaces, such as saprolite [80,146] or ferric oxides [147,148]. Hydrophobic interactions are
the aggregation of hydrophobic molecules in a hydrophilic media [143,149]. Bacteriophages
display different degrees of hydrophobicity, where, for example, the bacteriophage Qb was
found to be more hydrophobic than MS2, and, thus, bacteriophages will interact differently
depending on their hydrophobicity [150]. This process was studied by Pieper et al. (1997)
through the investigation of the effect of organic matter (OM) content on the adsorption of
PRD1 during its transportation through sand and gravel aquifers contaminated by sewage.
In contaminated aquifers, i.e., those with a high proportion of OM, the adsorption rate in
terms of PRD1 on the aquifer particles was reduced, as organic matter was preferentially
attached instead of PRD1. This hydrophobic adsorption is reversible and was described as
a rapid attachment and slow detachment process [43,80,151]. The possible remobilization
of PRD1 bacteriophages after adsorption on aquifer particles has been described. A high
pH pulse caused a release of PRD1 into the water body during an experiment through the
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detachment of PRD1 from the aquifer surface [43,152]. Bacteriophages adsorb on surfaces
when their respective electrical charges oppose each other. However, a change in the pH
can cause charge repulsion, resulting in the detachment of bacteriophages. in 2013, Sadeghi
et al. studied the effect of calcium ions (Ca2+) on PRD1 transport.

Finally, the loss of the bacteriophage signal can also be related to the intrinsic prop-
erties of bacteriophages (e.g., their size, structure and shape), especially in porous media
aquifers (i.e., gravel and sand). Bacteriophages were shown to be more dispersed into the
fracture or fissure zones through infiltration or percolation processes [45,153,154]. Smaller
bacteriophages (<77 nm) are better transported due to their low collision efficiency [82,155].
For instance, H40/1, a small bacteriophage (45 nm diameter), was well distributed through
an aquifer [45,148]. However, it was not only its size but also its shape that impacted on
its transportation during tracing experiments. Indeed, short-tailed and spherical bacte-
riophages are adsorbed onto particles to a lesser extent than non-contractile-tailed and
rod-shaped bacteriophages, due to their lower contact surface [82]. Not only does the
morphology of bacteriophages have an impact on their transportation by causing their
loss by adsorption onto particles but it can also be responsible for their inactivation. For
instance, physical stresses and interactions with surfaces or particles can break certain
structural parts of the viral particle, such as the tail of tailed bacteriophages, leading to their
inactivation. In addition, bacteriophages with non-contractile tails are more susceptible to
inactivation than those with flexible tails since the rigidity of the non-contractile tail makes
it more susceptible to breaking [82,153,155].

5.3.2. Awareness of the Interactions between Bacteriophages and the
Surrounding Environment

Whether the bacteriophage tracers used are injected or naturally present in an envi-
ronment, a consideration of the properties of the environment in which they are used is
essential to ensure relevant results from hydrological tracing experiments. As discussed
above, the results of a hydrological tracing experiment can be strongly affected by the
inactivation of the bacteriophages and their disappearance from the studied environment.
As a reminder, the main factors to be controlled to limit the rate of inactivation of bac-
teriophages are temperature and solar radiation, while pH, size and shape will play an
important role in the adsorption of bacteriophages onto soil or water particles, causing
their avoidance of detection. Temperatures and solar radiation fluctuate with seasonality
and are correlated with each other [156,157]. Surface water temperatures range from 0 ◦C
in the coldest regions of the globe to 35 ◦C in the warmest, with a range of 9 ◦C to 24 ◦C
in central Europe (data available daily at https://www.seatemperature.org/, accessed
on 27 July 2022). The ground temperature was reported to be about 2◦C higher than the
air temperature, ranging from −19 ◦C to 37 ◦C [158,159]. In addition to seasonal varia-
tions, soil and water temperatures depend on depth, with temperatures decreasing with
increasing depth [160,161]. The combination of cold weather and low solar radiation will
therefore provide better environmental conditions for conducting a tracing experiment
using bacteriophages. However, water and soil temperatures are not the main obstacles to
tracing experiments, as most of the time tracing experiments are short, which limits the
impact of these inactivation and disappearance phenomena to a certain extent.

Suspended sediments, colloidal particles and clay were all identified as being respon-
sible for the disappearance of bacteriophages during hydrological tracing experiments
as a result of the adsorption of the colloids on the surface of such environmental com-
ponents [67,144,146]. To make the best use of bacteriophages, their hydrophobicity and
electric charge should be determined before the experiment to predict the hydrophobic and
electric interactions, respectively. In the case of H40/1, the bacteriophage was defined as
being a moderately hydrophobic (contact angle ≈ 53–61◦) and negatively charged (zeta
potential = −22 to −24 mM) bacteriophage [82]. The bacteriophage H40/1 would appear
to adsorb through hydrophobic interactions rather than using electrostatic forces. A study
triggering changes in ionic forces, responsible for electrostatic interaction, did not reveal

https://www.seatemperature.org/
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a reduction in the bacteriophage concentration during its transportation, suggesting that
the bacteriophage did not adsorb [83]. PRD1 has a high hydrophobic surface due to its
lipid-protein membrane located within the protein capsid [162], favouring hydrophobic
interactions with the OM [163,164]. On the contrary, the adsorption of the MS2 bacte-
riophage on minerals is mostly driven by electrostatic forces. As explained previously,
these forces are mainly driven by the environmental pH and the bacteriophage pI, partic-
ularly in soil. Each bacteriophage has its isoelectric point (pI). This is defined as the pH
at which a virus carries no net electrical charge and is a characteristic parameter of the
viral particle in equilibrium with the surrounding water chemistry. Knowing the pI of a
virus enables the prediction of the virus surface charge in the environment. Virus pIs are
found in a pH range from 1.9 to 8.4, where they are most frequently measured between
3.5 and 7 [165]. However, only a small number of pIs of viruses are known, and among
the bacteriophages used as hydrological tracers, only those of MS2, PRD1, T7, PhiX174
and H6/1 have been measured (pI = 3.9, 4.0, 4.85, 6.6 and <4 respectively). Schematically,
when the pH of the surrounding environment is inferior to the virus pI, the overall viral
particle charge will be positive. At pH values above 7, the net surface charge of most
viruses, including bacteriophages, is negative, resulting in attractive forces between the
bacteriophages and certain positively charged particles of the environment [165,166]. The
bacteriophage PhiX174, with a pI between 6.6 and 7, will therefore have weak positive
charges on its surface, or no charges at all, at a pH of around 7 (roughly the pH of water),
whereas the other bacteriophages, with pIs around 4, will be strongly positively charged,
leading to a stronger attraction for negative charges. This process allows for the prevention
of potential attachments to environmental matrices or molecules [129]. At a pH of above
4, Kvitsand et al. (2015) and Mayotte et al. (2017) demonstrated the adsorption of MS2
(negatively charged; pI = 3.9) on ferric-type surfaces with a net positive charge [60,147].
MS2 cannot only bind to free mineral and metal ions (i.e., Ca2+, Fe2+, Fe3+, Mn2+) in the
medium but also those present on the clay surface [167–170]. According to Rossi and
Aragno (1999), attapulgite caused 20% of T7 adsorption within 10 min, reaching 79% at the
end of the experiment (total duration of experiments: 180 min). In another experiment, with
a pI being almost equal to the pH of the environment, the bacteriophage T7 was reported
to recognise both minerals (positive charges) and clay surface (negative charges), as it
had both positive and negative charges on its surface [38,67]. Therefore, clay, particularly
montmorillonite and attapulgite, induced the inactivation and concentration attenuation of
the bacteriophage T7 sediment columns or colloidal particle batch [67,153]. However, in
seawater and lake solutions seeded with Φ11M15, T2 and T7 in laboratory experiments,
the inactivation of these three bacteriophages was lower for bacteriophages adsorbed on
clay surfaces (specifically kaolinite) than for free bacteriophages [171–173]. Moreover, the
bacteriophage T7 was still infectious after its adsorption on clay particles, which convinced
the authors to assume a protective property of the clay against viral inactivation [67].

In the case of a study involving the injection of bacteriophages, it is important to con-
sider the pI in the selection process of the candidate. If bacteriophages are inappropriately
selected, the results of the tracing study may be inconclusive and unusable due to the
possible loss of the viral tracer by adsorption to the environmental matrices. It is interesting
to mention that during their transportation in the environment, bacteriophages can pass
through various ecosystems with different pH values. These changes in environmental
conditions during the journeys of bacteriophages should be investigated in advance of
the tracing experiment to prevent the possible inactivation of both natural and artificial
bacteriophages. It was reported that natural viral communities were less sensitive to UV
radiations than lab strains [136]. However, as mentioned previously, it should be noted that
the pI is not the only selection criterion regarding adsorption and that the shape or even the
size of the virus also matters. As already explained, the tail makes bacteriophages sensitive
to inactivation, especially when the tail is not contractile. Therefore, it would be interesting
to consider using non-tailed bacteriophages, such as the bacteriophages MS2 or PhiX174,
or a tail-head bacteriophage with a contractile tail, such as bacteriophage species belonging



Water 2022, 14, 3991 18 of 25

to the families Siphoviridae or Autographiviridae (e.g., H40/1 and T7, respectively) over
non-contractile-tailed bacteriophages, such as species belonging to the family Myoviridae.

6. Conclusions and Perspectives

Although bacteriophages have been studied and used as hydrological tracers for
almost sixty years, their real potential for this application remains poorly understood. They
have been widely used in groundwater studies, but their relevance remains underexplored
for hydrological investigations. Due to their small size, they successfully contributed to
improving our understanding of subsurface water movements in karstic aquifers and
in fractured saprolite [45,80,174], and they have finally emerged as good candidates for
exploring hydrological processes. While their potential as hydrological tracers remains to
be fully characterised, the combined use of bacteriophage and conventional tracers, such as
isotopes, may lead to a better understanding of eco-hydro systems [38,42].

As each bacteriophage has its own behaviour, the transportation of each bacteriophage
will be different depending on its intrinsic characteristics and the influence of external
factors, which makes it impossible to find a tracer model to use in a specific type of ecosys-
tem [45]. A bacteriophage’s size and shape serve as primary criteria. For fractured and
fissured media, small bacteriophages will tend to move further in pores, which will reduce
the collision efficiency. Adsorption is a common process and is most often encountered
during bacteriophage transportation. Taking the hydrophobicity and the electric charge of
bacteriophages into account will prevent a high rate of removal. To conclude, the choice of
the right bacteriophage for a tracing experiment must be driven by an accurate pre-analysis
of both the characteristics of the media and the intrinsic characteristics of bacteriophages.

The different advantages highlighted in the various articles in this review included
the sensitivity of the detection method, the possibility to produce a high concentration of
bacteriophages for a low volume and their specificity for their hosts. Indeed, bacteriophages
were detected before conventional tracers, and they remained detected despite the dilution
effect of the experiments [48,82]. Furthermore, several of them were used at the same time
without interfering with the detection [35,81,153]. However, the initial high concentration of
bacteriophages can be seen as a new type of pollution, as the introduction of an exogenous
entity can generate a modification in the natural processes of a habitat. Moreover, the
detection method is sensitive but limited to infectious bacteriophages. Complementary
molecular techniques need to be considered to detect the damaged bacteriophages still
occurring in tracing experiments. Finally, their transportation is influenced by different
factors and, more specifically, their adsorption on the surrounding matrices, which has
caused the attenuation of bacteriophages during tracing experiments. In addition, other
environmental characteristics, such as pH, temperature or radiation, can affect their fate
through the inactivation of bacteriophages [29,43,51]. Therefore, the local environment is
important to consider when choosing the most appropriate bacteriophage [89].

It is important to note that the design of a tracing experiment using either one or
multiple tracers does not differ from a traditional tracing experiment using conventional
tracers nor from previous tracing experiments using bacteriophages. The recommendations
therefore concern the selection of an appropriate candidate prior to the launch of any
experiments in the case of using an artificial tracer. When using natural populations of
bacteriophages as a more eco-friendly alternative, no injections are required and only the
development of detection methods are needed. In addition, it is recommended to better
evaluate the surrounding environment to prevent the loss of the signal of the tracer and to
use complementary methods to optimize the obtained results.
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