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Abstract  108 

Southeast Asia is considered to have some of the highest levels of marine plastic pollution in 109 

the world. It is therefore vitally important to increase our understanding of the impacts and 110 

risks of plastic pollution to marine ecosystems and the essential services they provide to 111 

support the development of mitigation measures in the region. An interdisciplinary, 112 

international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, 113 

Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine 114 

plastic pollution in the region, synthesizing current knowledge and highlighting areas for 115 

further research in Southeast Asia. Using an inductive method, 21 research questions 116 

emerged under five non-predefined key themes, grouping them according to which: (1) 117 

characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate 118 

across the region; (3) describe the biological and chemical modifications marine plastic 119 

pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, 120 

(5) target regional policies and possible solutions. Questions relating to these research priority 121 

areas highlight the importance of better understanding the fate of marine plastic pollution, 122 

its degradation, and the impacts and risks it can generate across communities and different 123 

ecosystem services. Knowledge of these aspects will help support actions which currently 124 

suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue 125 

from its point source in the region. Being profoundly affected by marine plastic pollution, 126 

Southeast Asian countries provide an opportunity to test the effectiveness of innovative and 127 

socially inclusive changes in marine plastic governance, as well as both high and low-tech 128 

solutions, which can offer insights and actionable models to the rest of the world. 129 

Keywords:  environmental governance, marine debris, marine ecosystems, marine litter, 130 

plastic debris, waste management  131 
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1. Introduction 132 

Southeast Asia consists of 11 countries, namely Brunei Darussalam, Cambodia, Indonesia, 133 

Laos (the only land-locked country), Malaysia, Myanmar, the Philippines, Singapore, Timor-134 

Leste, Thailand, and Vietnam. The region includes almost 150,000 km of coastline and over 135 

25,000 islands. It is a richly biodiverse region, hosting approximately 34% of the world’s coral 136 

reefs (Burke et al., 2002; Tun et al., 2005) and 25-33% of global mangrove forests (Spalding et 137 

al., 2010), and where most tropical marine biota has its greatest species richness (Briggs, 138 

1999; Tittensor et al., 2010). Over 80% of the region’s reefs, however, are currently at risk 139 

from numerous threats, including overfishing, coastal development, marine pollution, 140 

aquaculture and agriculture, and climate change (Burke et al., 2002), resulting in significant 141 

species declines (Yamakita et al., 2017). 142 

Alongside its extensive biodiversity, Southeast Asia is the third most populated geographical 143 

region in Asia, with over three quarters of its majority urban human population living in 144 

coastal communities (PEMSEA, 2015). The coastal and riparian orientation of human 145 

settlement in Southeast Asia has been accompanied by rapid economic growth, urbanisation, 146 

and globalisation. These are all factors that generate wide-ranging environmental effects, 147 

while exposing a large proportion of the population to climate change impacts, extreme 148 

weather events, and recurring urban flooding episodes (Brahmasrene and Lee, 2017; Khan, 149 

2019; Kurniawan and Managi, 2018; Miller et al., 2018). 150 

Furthermore, Southeast Asia has among the highest levels of marine plastic pollution globally, 151 

with Indonesia (10%), the Philippines (6%), Vietnam (6%), Thailand (3%), and Malaysia (3%) 152 

estimated to cumulatively contribute almost a third (30%) of marine plastic pollution to the 153 

world’s oceans (Jambeck et al., 2015). Ecosystem services, defined as the benefits people 154 
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obtain from nature (Liquete et al., 2013), are negatively impacted by the presence of plastic 155 

pollution (Figure 1), causing considerable environmental, social, and economic impacts, with 156 

cascading implications for human health, wellbeing, and livelihoods in coastal communities 157 

(Abalansa et al., 2020; Beaumont et al., 2019; Thushari and Senevirathna, 2020) 158 

The impacts of marine plastic pollution in Southeast Asia have been reviewed several times 159 

(Curren et al., 2021; Lyons et al., 2020, 2019), highlighting knowledge gaps which need to be 160 

addressed to inform more effective solutions. For example, research on microplastics, defined 161 

as particles which range from 0.1 µm to 5 mm in size (SAPEA, 2019), is especially limited from 162 

Cambodia, Laos, and Timor-Leste (Curren et al., 2021). To increase our understanding of the 163 

impacts and risks of plastics to marine ecosystems and their services, as well as to support 164 

the development of mitigation measures, an interdisciplinary, international network of 165 

experts established a research agenda for marine plastic pollution in the region, providing in-166 

depth knowledge of marine plastics associated with identified research priorities and 167 

highlighting areas for further research in Southeast Asia. Research questions were grouped 168 

using an inductive method into five non-predefined key themes, which: (1) characterise 169 

marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the 170 

region; (3) describe the biological and chemical modifications marine plastic pollution 171 

undergoes; (4) detail its environmental, social, and economic impacts; and (5) target regional 172 

policies and possible solutions. While applicable to other parts of the world, each question is 173 

discussed within the context of Southeast Asia. 174 

 175 

2. Material and methods 176 
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The process followed for the writing of this review is detailed below and summarised in Figure 177 

2. Authors engaged in active collaborative work to interpret and reframe the research design 178 

and guiding the questions, providing their in-depth knowledge of marine plastic pollution in 179 

answering the developed priority research questions, ranging from conservation to molecular 180 

biology, within a Southeast Asian context. 181 

Between February and March 2021, a horizon-scanning exercise was conducted to gather 182 

suggestions for priority research questions for marine plastic pollution with a particular focus 183 

on Southeast Asia. Authors were selected from their involvement in the four projects funded 184 

by “Understanding the Impact of Plastic Pollution on Marine Ecosystems in Southeast Asia”, 185 

Southeast Asia Plastics (SEAP) programme, an initiative co-funded by the Natural 186 

Environment Research Council (United Kingdom) and the National Research Foundation 187 

(Singapore). 188 

In a preliminary survey established by the joint-lead and senior authors, other invited authors 189 

identified what they thought were the top three to five research priorities for marine plastic 190 

pollution in the region, targeted at expanding our understanding of the scale of the problem 191 

and the potential solutions and policy drivers. We employed respondent-driven sampling to 192 

ensure quality and diversity in author representation (Newing, 2010). This purposive sampling 193 

approach requests those directly contacted to recruit additional authors among their 194 

colleagues and peers involved in the SEAP programme. Most authors of this review 195 

participated in the first survey (n = 55) from countries including Australia, Indonesia, Ireland, 196 

Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam. 197 

The answers from the horizon-scanning exercise were categorised using an inductive 198 

approach. After the initial reading of all the suggestions (n = 214), the entire set of priority 199 

research questions was coded, forming the basis of repeated patterns (themes) across all the 200 
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author survey responses (Braun and Clarke, 2006). Summary themes were identified through 201 

the process of directly examining the survey responses instead of having pre-defined 202 

categories (Elo and Kyngäs, 2008). Seven broad summary themes emerged (1. Description of 203 

plastic pollution; 2. Movement & fate; 3. Biological & chemical modifications; 4. 204 

Environmental impacts; 5. Socio-economic impacts; 6. Possible solutions; and 7. Regional 205 

policy), with an average of 32 (range: 24-39) suggestions within each theme. This process was 206 

repeated once within each theme to establish three priority research questions, consolidating 207 

similar suggestions or repeated keywords and concepts together, forming standalone 208 

questions. These resulted in a consolidated list of 21 research questions, across seven themes, 209 

which were further refined according to readability, with the support of two authors. 210 

Individuals from the first survey were grouped and assigned questions based on their 211 

expertise identified during the first survey, for which authors contributed explanatory 212 

narratives drawing from their research knowledge, particularly regarding the Southeast Asian 213 

region. Two follow-up surveys were then sent to these authors between April and May 2021 214 

to acquire feedback on the themes, question formulations, and author group assignations. 215 

This feedback loop facilitated the reduction of themes from seven to five, which, in turn, 216 

improved the clarity of the review. Specifically, sections on environmental and socio-217 

economic impacts were combined, as were sections on possible solutions and regional policy. 218 

Author groups, each comprising between three and seven members, subsequently wrote 219 

short narratives supporting the importance of each question, forming the basis of this review. 220 

An additional five authors were identified during this process due to their expertise, who 221 

participated in the writing. 222 

 223 

3. Results – identified themes and priority research questions 224 
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Five non-predefined key themes emerged from the horizon-scanning exercise, with between 225 

three and six priority research questions under each theme (Figure 3, Table S1). These were 226 

established by an interdisciplinary, international network of experts, who brought their in-227 

depth disciplinary and geographical knowledge to bear on complex marine plastic questions. 228 

While some questions are applicable to other parts of the world, each question is discussed 229 

within a Southeast Asian context, highlighting key areas for further research in the region. 230 

 231 

3.1 THEME 1: Description of marine plastic pollution 232 

3.1.1 Question 1: What are the origins of plastic pollution in the marine environment in 233 

Southeast Asia? 234 

Although not unique to Southeast Asia, rising standards of living, fast growing economies, and 235 

the region’s substantial tourism industry have seen an increased reliance on single-use 236 

plastics in multiple sectors (Chaerul et al., 2014; Sur et al., 2018), primarily as packaging (GAIA, 237 

2019; Geyer et al., 2017; GIZ, 2018). This reliance on single-use plastic was exacerbated by 238 

the COVID-19 pandemic, with, for example, personal protective equipment accounting for 15-239 

16% of collected debris at two river outlets into Jakarta Bay, Indonesia in 2020 (Cordova et 240 

al., 2021a). Macroplastics, defined as items or particles exceeding 5 mm in size (SAPEA, 2019), 241 

enter the marine environment in the region through direct littering (Jayasiri et al., 2013; 242 

Thushari et al., 2017a; WWF Philippines, 2020), marine dumping, which is the deliberate 243 

disposal of waste at sea (Peng et al., 2019; Richardson et al., 2017; WWF Philippines, 2020), 244 

from aquaculture/agriculture facilities (Lee et al., 2006), and from accidental loss from 245 

shipping and fishing activities (Richardson et al., 2017; Valderrama Ballesteros et al., 2018). 246 

For example, in a survey of six coral reefs in Malaysia, approx. 70% of collected plastics were 247 

single-use items derived from marine dumping and a quarter of items were related to fishing 248 
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activities, including derelict fishing gear and fishing lines (Santodomingo et al., 2021). 249 

Secondary micro- and nanoplastics, the latter being defined as particles smaller than 0.1 µm 250 

in size (SAPEA, 2019), enter Southeast Asia’s oceans through international ocean flows and 251 

domestic sources (Praveena et al., 2021) and are derived from plastic fragmentation. In 252 

addition to the marine plastic waste generated within Southeast Asia, developing countries 253 

in the region that are major recipients of waste exporting countries, such as the European 254 

Union, the United States of America, and China, often experience leakages from overflowing 255 

landfills and overburdened waste processing facilities into the surrounding coastal and 256 

marine environment (Marks et al., 2020). For example, Thailand receives several hundreds of 257 

thousands of tons of plastic waste imports annually, while an estimated 70% of the country’s 258 

domestic waste is being mismanaged (Marks et al., 2020). Of the country’s waste produced 259 

in 2018, over a quarter was disposed of improperly, with mismanagement leading to waste 260 

entering canals or leaking onto beaches during heavy flooding events (Marks et al., 2020). As 261 

the amount of plastic waste entering the marine environment remains unclear in Southeast 262 

Asia (Cordova et al., 2021b), data-driven research is required to better understand the origins 263 

of plastic pollution. 264 

3.1.2 Question 2: What are the main plastic entry points into the marine environment in 265 

Southeast Asia?  266 

Rivers are a major transport pathway for plastic pollution to enter the marine environment in 267 

Southeast Asia (Figure 1b; Jambeck et al., 2015; Lahens et al., 2018; Lebreton et al., 2017; 268 

Lechthaler et al., 2021; Meijer et al., 2021). Of the predicted global top 50 plastic emitting 269 

rivers, over half (58%, n = 29) are in Southeast Asian countries (Meijer et al., 2021; Figure 4), 270 

although the linkages between freshwater and marine plastic pollution across the region 271 

remain critically under-examined. Plastic debris also leaks into the marine environment from 272 
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densely populated coastal regions, port facilities, and industrial estates – e.g. Greater Jakarta, 273 

Indonesia (Cordova and Nurhati, 2019) and East Java, Indonesia (Lestari and Trihadiningrum, 274 

2019) – including landfill sites (Nurhasanah et al., 2021; Sulistyowati et al., 2022) and beaches 275 

(Figure 1d; Jeyasanta et al., 2020; Kunz et al., 2016; Nguyen et al., 2020). Knowledge of debris 276 

entry points is key to developing waste management strategies aimed at reducing leakages, 277 

the methods for which depend on factors such as source, plastic debris polymer type, and 278 

size (Schmaltz et al., 2020). Quantitative data can be obtained through in-situ sampling of the 279 

region’s waters. Surface macroplastics within a river plume have also been identified in optical 280 

satellite data covering a region close to Da Nang, Vietnam (Biermann et al., 2020). Biases, 281 

however, can arise in certain environments, such as rural catchments, which are less 282 

frequently investigated, as highlighted in Indonesia (Phelan et al., 2020). Novel observing 283 

platforms, such as drones (e.g. Martin et al., 2021), will make it possible to better evaluate 284 

entry points into the marine environment in the region. Furthermore, particle backtracking 285 

simulations (e.g. Cyprus: Duncan et al., 2018; Indonesia: Iskandar et al., 2021; Australia: 286 

Reisser et al., 2013; Arctic: Strand et al., 2021), which model the movement and spatial 287 

positioning of plastic particles backwards in time, could be used to help determine potential 288 

sources of observed marine plastic pollution in the region. 289 

3.1.3 Question 3: What are the most appropriate methodological approaches to 290 

characterise marine plastic pollution? 291 

There has been a recent increase in research into the identification and quantification of 292 

marine plastic pollution in Southeast Asia (Lyons et al., 2020; Vriend et al., 2021). Numerous 293 

methods exist to identify polymers which comprise plastics, however, most studies use 294 

Fourier Transform InfraRed (FTIR) or Raman spectroscopy (Hidalgo-Ruz et al., 2012; Kundu et 295 

al., 2021; Renner et al., 2018). Although it is often difficult to distinguish pure polymers from 296 
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polymer blends, these two techniques provide sufficient information on the functional groups 297 

present on the polymer backbone. For example, FTIR and Raman spectroscopy were used to 298 

show that polypropylene and polyethylene were the most common polymers in Indonesia 299 

(Vriend et al., 2021), while polystyrene, polyethylene terephthalates, polyethylene-300 

polypropylene copolymer, and polyacrylates were also detected in sediments in the Gulf of 301 

Thailand and Straits of Johor (Malaysia) (Matsuguma et al., 2017). Variations on these 302 

techniques, such as µ-Raman and attenuated total reflectance FTIR, have also been used to 303 

identify microplastic polymers in the remote mid-west Pacific Ocean (Wang et al., 2020) and 304 

coastal sites around Bintan Island, Indonesia (Syakti et al., 2018), respectively. While these 305 

techniques are all suitable to characterise plastics in the region, the scarcity of research 306 

equipment in Southeast Asia is currently hampering progress, which could be alleviated 307 

through international collaboration among research organisations. Ensuring that 308 

standardised protocols are used for the collection, identification, and monitoring of 309 

microplastics will enable better data comparison among studies, both within Southeast Asia 310 

and globally (Isobe et al., 2019; Koelmans et al., 2020; Kooi and Koelmans, 2019; Michida et 311 

al., 2019). 312 

3.2 THEME 2: Movement and fate 313 

3.2.1 Question 4: What drives dominant movement patterns and dispersal pathways of 314 

plastic in Southeast Asia? 315 

The movement of plastic waste through the marine environment is mainly driven by ocean 316 

currents, but is mediated by coastal, sea-surface, and seabed interactions, as well as the 317 

specific characteristics of plastic pollution (Kaiser et al., 2017; Kooi et al., 2017; Long et al., 318 

2015; ter Halle et al., 2016). Additionally, plastic particles can be redistributed organically 319 

within faecal pellets of marine organisms (Cole et al., 2016, 2013; see section 3.4.1). The 320 
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Indonesia Through Flow (Figure 4) is the major current between the Pacific and Indian Oceans 321 

(Sprintall et al., 2009), and its stratified profile interacts with the region’s complex bathymetry 322 

(Gordon and Fine, 1996; Sprintall et al., 2009), strong internal tides (Nugroho et al., 2018), 323 

seasonal surface-currents (Lee et al., 2019), and currents from the South China Sea (Wang et 324 

al., 2019). As such, the complex bathymetry and topography of Southeast Asia, combined with 325 

the abundance of ‘plastic-trapping’ mangrove (Figure 1a, c), coral (Figure 1e), and seagrass 326 

habitats, present a major modelling challenge (Huang et al., 2020; Smith, 2012). Three-327 

dimensional, high-resolution ocean models that explicitly include (i) tides and their 328 

topographic interactions, (ii) freshwater inputs, (iii) wave and wind dynamics, (iv) baroclinic 329 

flows, and (v) extreme weather events are necessary to sufficiently describe the mechanisms 330 

driving plastic movement in the region. As highlighted in previous reviews (e.g. van Sebille et 331 

al., 2020), addressing the heterogeneity of plastics and parameterising aggregation (see 332 

section 3.2.2), fragmentation (see section 3.3.3), and/or biofouling processes (see section 333 

3.3.1) will be essential to accurately characterise plastic waste in these transport models. 334 

3.2.2 Question 5: Which habitats act as major accumulation zones in Southeast Asia? 335 

High densities of sessile biota in mangrove, seagrass, and coral habitats, which are widespread 336 

in coastal and shallow waters in Southeast Asia, directly lead to plastic accumulation by 337 

snagging (Figure 1; Valderrama Ballesteros et al., 2018; van Bijsterveldt et al., 2021), filtering 338 

(Chavanich et al., 2020; Martin et al., 2019a; Thushari et al., 2017b), and adhesion (Goss et 339 

al., 2018; Martin et al., 2019b). They also indirectly influence accumulation by affecting local 340 

hydro- (de Smit et al., 2021; Fonseca et al., 2019) and sediment- (Martin et al., 2020) 341 

dynamics. The fate of plastics in these habitats depends on: (1) the morphology and the 342 

hydrodynamics of the coastal environment (Cordova et al., 2019; Utami et al., 2021; see 343 

section 3.2.1), (2) the trapping efficiency of these habitats (Cozzolino et al., 2020; de los 344 
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Santos et al., 2021; de Smit et al., 2021; Harris et al., 2021; Huang et al., 2020; Sanchez-Vidal 345 

et al., 2021; Valderrama Ballesteros et al., 2018), and (3) the characteristics of plastic particles, 346 

in particular their size (Cozzolino et al., 2020; de los Santos et al., 2021; de Smit et al., 2021; 347 

Mohamed Nor and Obbard, 2014). Connectivity between coastal habitats and marine 348 

environments, however, can lead to the export of accumulated plastics, particularly in tidal-349 

dominated systems (Harris et al., 2021) or those exposed to extreme events (see section 350 

3.2.3), resulting in an underestimated abundance of plastic pollution among these habitats. 351 

Considering the abundance of these habitats in Southeast Asia, further research is required 352 

to better quantify the volume of plastics currently stored in mangrove, seagrass, and coral 353 

habitats, and to understand their environmental impacts and consequences for the coastal 354 

and riverine communities that depend on them in the region (see section 3.4.2-3.2.4). 355 

3.2.3 Question 6: How will extreme weather events influence source-sink dynamics in 356 

Southeast Asia? 357 

Temporal variability is a key factor in determining the transport between sources and sinks of 358 

plastics across Southeast Asia (Kurniawan and Imron, 2019; Xia et al., 2021), although extreme 359 

weather events may alter the volume of plastic at sources, as well as temporally change sinks 360 

to become sources. Seabed sediments are generally considered a sink for micro- and 361 

nanoplastics. However, monsoon seasonal typhoons, which are common in Southeast Asia 362 

and cause extreme wind and wave conditions (Nakajima et al., 2022) and other extreme 363 

weather events such as storm surges, have the potential for large-scale resuspension and 364 

subsequent dispersal of micro- and nanoplastics from accumulation zones (Ivar do Sul et al., 365 

2014; R. Li et al., 2020; Lo et al., 2020; Xia et al., 2021). Seasonal changes in rainfall rates 366 

(Singh and Qin, 2020) are reflected in fluctuations in monthly river plastic emissions in 367 

Southeast Asia (Figure 1b; Cordova and Nurhati, 2019; Lebreton et al., 2017). Extreme 368 
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precipitation events linked to climate change (Singh and Qin, 2020) will exacerbate this issue 369 

and compound the impacts (Ford et al., 2022; Roebroek et al., 2021). The continuous rise in 370 

global mean sea levels (Dangendorf et al., 2019) at a current estimated average rate of 3.1 371 

mm per year (Cazenave et al., 2018), coupled with likely changes in the magnitude and 372 

frequency of extreme events (Easterling et al., 2000), could lead to present day plastic 373 

repositories becoming future sources of marine plastic pollution (Ford et al., 2022). 374 

Knowledge of the impact of mean sea level rise and the probability distributions of extreme 375 

weather events (likely changes in the magnitude and frequency) is crucial for understanding 376 

how extreme weather events influence source-sink dynamics when simulating the future 377 

within regional transport models (see section 3.2.1). 378 

3.3 THEME 3: Biological and chemical modifications  379 

3.3.1 Question 7: What are the assemblage and ecological driving forces of plastisphere 380 

biofilms? 381 

The composition and functional capacity of the plastisphere (the microbial community found 382 

on plastic pollution; Zettler et al., 2013) is influenced by the size and chemical composition of 383 

plastics and the surrounding environment (Tu et al., 2020). Micro- and nano-plastics are not 384 

necessarily found as independently-floating particles in the environment, but rather can 385 

agglomerate and form larger particulate material, somewhat akin marine snow (Summers et 386 

al., 2018), becoming readily available for consumption by small organisms and filter feeders 387 

(see section 3.4.1). Microbial colonisation is enabled by the initial adsorption of various 388 

organic molecules to the plastic surface, forming an ecocorona (Galloway et al., 2017; Lynch 389 

et al., 2014), which provides an additional source of carbon and energy and drives the initial 390 

attachment of microorganisms (Figure 1f; Galloway et al., 2017; Rahman et al., 2021; Wright 391 

et al., 2020). While there have been numerous studies exploring the composition and 392 
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diversity of biofilms on various types of plastics (Delacuvellerie et al., 2019; Dussud et al., 393 

2018; McCormick et al., 2016; Miao et al., 2019; Oberbeckmann et al., 2018; Zettler et al., 394 

2013), few studies have focused on the ecological functions of these microorganisms (Amaral-395 

Zettler et al., 2020), and even fewer studies have been conducted in Southeast Asia. A recent 396 

study conducted in the Maludam River, Malaysia identified different gene expression profiles 397 

among communities present on microplastics from those expressed in the surrounding 398 

waters, including key genes involved in carbon, nitrogen, and sulphur cycling (Rahman et al., 399 

2021). In addition, an increase in genes associated with metal homeostasis and the 400 

metabolism of aromatic and chlorinated compounds was observed on microplastics, 401 

suggesting potential mechanisms of detoxification or remediation within the plastisphere 402 

(Rahman et al., 2021). Similar studies within Southeast Asian marine waters are required to 403 

fully understand the functional diversity and metabolic capacity of plastisphere communities 404 

in the region, considering the spatio-temporal variation in community-assembly on 405 

plastisphere biofilms at both regional and global scales (Amaral-Zettler et al., 2020). However, 406 

whether there exists a core plastisphere that is significantly different from non-plastic 407 

biofilms remains a contentious issue (Oberbeckmann and Labrenz, 2020; Wright et al., 2020), 408 

although a recent meta-analysis suggests that this is the case (Wright et al., 2021). 409 

3.3.2 Question 8: What is the potential for marine plastic pollution to transport pollutants 410 

and create hotspots of antimicrobial resistance? 411 

Persistent organic pollutants (POPs), heavy metals, and microorganisms all bind to marine 412 

plastic debris (Hossain et al., 2019; W. Li et al., 2020; Wang et al., 2020; see section 3.3.1), 413 

which may accumulate and transport these pollutants (Jianlong Wang et al., 2021; T. Wang et 414 

al., 2020). As over 80 POPs have been detected in the coastal waters of Singapore (Zhang et 415 

al., 2015) and several known harmful algal bloom-forming species have been recorded in the 416 
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Philippines (Onda et al., 2020), the potential sorption of co-pollutants, microorganisms, and 417 

invasive species to marine plastic pollution represents a significant threat to ecosystem health 418 

in Southeast Asia (Borja et al., 2020; Karbalaei et al., 2018; Pariatamby and Kee, 2016). The 419 

implementation of international regulations, such as the Stockholm Convention, will likely 420 

reduce the impact of POPs in signatory countries in the region, but legacy effects will continue 421 

due to their persistence in the marine environment (UNEP, 2014). In addition, this 422 

combination of microorganisms and pollutants can also cultivate the development of 423 

antibiotic resistance genes (ARGs) on marine plastic pollution (Liu et al., 2021). The co-424 

presence of heavy metals also increases ARG expression due to the joint loci of ARGs and 425 

metal resistance genes in bacteria (Li et al., 2017; Poole, 2017; Yang et al., 2019), which allows 426 

for the enrichment of ARGs on plastic specifically (Guo et al., 2020). However, there is no 427 

evidence to support the pathogenic activity of antibiotic resistant microorganisms on marine 428 

plastic pollution (Delacuvellerie et al., 2022; Oberbeckmann et al., 2021). It has also been 429 

argued that micro- and nanoplastics pose no more risk of harbouring potential pathogens 430 

than natural particles (Oberbeckmann and Labrenz, 2020) and that there is little to no proof 431 

of pathogenicity to humans or animals from organisms transported on plastics thus far 432 

(Jacquin et al., 2019; Lamb et al., 2018). The limited number of published studies on plastics 433 

as surfaces for developing and disseminating antimicrobial resistance, however, underpins 434 

the importance of more research into this area, particularly in Southeast Asia (reviewed by 435 

Liu et al., 2021), where high mean sea surface temperatures (28.9°C in the coral triangle; 436 

McClanahan et al., 2020), which have been increasing at an average rate of 0.2°C per decade 437 

(Peñaflor et al., 2009), might be altering the microbial community structure and favouring the 438 

proliferation of pathogens (le Roux et al., 2015; Tout et al., 2015). 439 
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3.3.3 Question 9: What is the pattern of fragmentation and degradation of plastic 440 

pollution? 441 

Most of the known polymer degradation in the environment follows free radical mechanisms, 442 

where polymer structure, traces of catalysts, and defects along the polymer backbone 443 

contribute significantly to accelerate degradation (Gewert et al., 2015; Muthukumar and 444 

Veerappapillai, 2015; Singh and Sharma, 2008). Biodegradation is enacted by microorganisms 445 

(Shah et al., 2008), however, abiotic environmental factors, such as ultraviolet radiation, 446 

temperature, oxygen, salinity, molecular weight distribution of polymers, and the presence 447 

of additives are known to enhance degradation (Pariatamby, 2018). Biofilm formation on the 448 

surface of plastics, often facilitated by the polar groups and surface morphology, is the first 449 

step of biodegradation, followed by enzymatic degradation of the polymers (see section 450 

3.3.1). Bioplastics with low molecular weight tend to be more susceptible to microbial 451 

enzymatic hydrolysis and degradation accelerates in tandem with decreasing crystallinity of 452 

the bioplastics (Adhikari et al., 2016; Tabasi and Ajji, 2015). Members of the bacteria phyla 453 

Proteobacteria, Actinobacteria, Chloroflexi, and Firmicutes have regularly been linked to 454 

plastic degradation (Curren and Leong, 2019; Gong et al., 2019; Liao and Chen, 2021; Roager 455 

and Sonnenschein, 2019; Rüthi et al., 2020). Although results to date are in line with global 456 

trends, studies on biodegradation of plastics by microbes remain in nascent stages and 457 

confined to particular localities across the region (e.g. Auta et al., 2017), as do studies on 458 

marine fungi or bacteria (Nurdhy, 2020; Onda et al., 2020). Despite the importance of 459 

enhancing our understanding of plastic debris fragmentation and degradation, thorough 460 

standardised testing methods have yet to be developed that allow for full elaboration of the 461 

plastic polymer environmental degradation pathways. 462 

3.4 THEME 4: Environmental, social, and economic impacts 463 
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3.4.1 Question 10: What are the impacts of plastic pollution on marine organisms? 464 

Plastic ingestion can cause injury and obstruction to the digestive tract of marine organisms 465 

(Roman et al., 2019). In most cases, it leads to sublethal effects, such as reduced feeding 466 

efficiency (Savinelli et al., 2020; Watts et al., 2015), plastic-induced satiety (Santos et al., 467 

2020), and suboptimal health conditions (Pedà et al., 2016; Senko et al., 2020), the effects of 468 

which may be amplified by the ecotoxicology of ingested plastics (Anbumani and Kakkar, 469 

2018). In Southeast Asia, plastic ingestion (ranging from macro- to microplastic) has been 470 

documented in sea turtles, whales, and sharks (Abreo et al., 2019a, 2019b, 2016a, 2016b; 471 

Coram et al., 2021; Garay et al., 2019; Haetrakul et al., 2009), as well as fish (Azad et al., 2018; 472 

Karbalaei et al., 2019; Paler et al., 2021; Rochman et al., 2015), bivalves (Argamino and 473 

Janairo, 2016; Nam et al., 2019; Rochman et al., 2015; Shauib Ibrahim et al., 2016; Thushari 474 

et al., 2017b), and zooplankton (Amin et al., 2020). Publications for seabirds are lacking 475 

altogether from Southeast Asian countries, although plastic ingestion has been recorded in 476 

red-footed boobies (Sula sula) collected from Yongxing Island, South China Sea (Zhu et al., 477 

2019). Plastic ingestion in zooplankton (Botterell et al., 2019), which form the base of the food 478 

chain, is concerning because of the potential trophic transfer up the food chain (e.g. Chagnon 479 

et al., 2018; Farrell and Nelson, 2013; Furtado et al., 2016; Hammer et al., 2016), having 480 

particular implications for the degradation of species for human consumption (see section 481 

3.4.6). Additionally, entanglement in plastic debris is recognised as a global threat to marine 482 

species (Stelfox et al., 2016) by causing severe wounds and restricting movement and 483 

breathing (Colmenero et al., 2017; Franco-Trecu et al., 2017), with examples reported from 484 

Southeast Asia (Chim, 2014; Chim et al., 2015; Valderrama Ballesteros et al., 2018; Yeo, 2014). 485 

Life-histories, behaviours, and morphologies of species likely affect the extent and type of 486 

plastic interactions (e.g. Baak et al., 2020; Reichert et al., 2018; Suckling, 2021). As the impacts 487 
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of marine plastic pollution are multi-faceted, species-specific, and spatially variable, there is 488 

a need for a greater understanding of these impacts on marine organisms in Southeast Asia, 489 

particularly those endemic to the region (Lyons et al., 2019). 490 

3.4.2 Question 11: What are the impacts of plastic pollution on key marine habitats in 491 

Southeast Asia? 492 

Macroplastics can become trapped by biological structures, such as mangrove forests, 493 

seagrass beds, and coral reefs (Figure 1; see section 3.2.2), while micro- and nanoplastics can 494 

eventually precipitate to the seafloor and become incorporated into sediments (Chavanich et 495 

al., 2020; Cordova et al., 2021; Cordova and Wahyudi, 2016; Y. Huang et al., 2021; Ivar do Sul 496 

et al., 2014; Riani and Cordova, 2021). Plastic pollution negatively impacts these marine 497 

habitats by mechanical and chemical means, and by altering microbial and macrofaunal 498 

communities and their associated traits. High macroplastic concentrations can smother and 499 

damage mangrove roots and cause leaf loss, decreasing tree survival and primary production, 500 

which in turn affect dependent aquatic ecologies, such as fish and shrimp nurseries (Luo et 501 

al., 2021; van Bijsterveldt et al., 2021). Additionally, entanglement by marine plastic waste, 502 

particularly fishing gear, can damage important habitat-forming organisms, such as coral reefs 503 

(Abu-Hilal and Al-Najjar, 2009; Chiappone et al., 2005; Gilardi et al., 2010; Valderrama 504 

Ballesteros et al., 2018). Despite mangrove forests and seagrass beds being globally essential 505 

carbon stores (Duarte et al., 2013), studies on how micro- and nanoplastics affect the 506 

biogeochemistry of their associated substrata remain small-scale and confined to specific 507 

areas of Southeast Asia (Cordova et al., 2021b; Manalu et al., 2017; Mohamed Nor and 508 

Obbard, 2014; Tahir et al., 2019). In addition, micro- and nanoplastics have been shown to 509 

alter microbial and planktonic community compositions, which may in turn influence the 510 
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regulation of oceanic carbon cycles (Galgani and Loiselle, 2021; Ladewig et al., 2021; Jiao 511 

Wang et al., 2021). Future research should build on, and expand the geographical scope of, 512 

emerging studies into the incorporation of micro- and nanoplastics into sediments and their 513 

effects on microbial communities (e.g. Putri and Patria, 2021; Sawalman et al., 2021), and 514 

thus, the permanency of carbon stores in the region (Y. Huang et al., 2021). 515 

3.4.3 Question 12: What are the impacts of plastic pollution on marine ecosystem services 516 

in Southeast Asia? 517 

The marine environment provides a wealth of ecosystem services, many of which are 518 

particularly vulnerable to the deleterious effects of plastic pollution. In Southeast Asia, such 519 

negative effects are well documented for marine ecosystems (Curren et al., 2021) and are 520 

predicted to increase (Chen et al., 2021). There is evidence that these impacts will, in turn, 521 

affect the extent of ecosystem service provision (Beaumont et al., 2019), with the potential 522 

to decrease the wellbeing of humans across the globe, owing to the loss of food security, 523 

livelihoods, income, and good health (see section 3.4.4). For example, Southeast Asia’s tuna 524 

industry, worth an estimated US$7 billion annually (Hasnan, 2019), is severely threatened by 525 

marine plastic pollution (Warren and Steenbergen, 2021; and see section 3.4.6). Ecotourism, 526 

which creates employment and generates products sustainably from locally important 527 

resources, is another major industry for most countries in Southeast Asia. Yet, unsustainable 528 

practices related to tourism in Southeast Asia generate significant levels of marine plastic 529 

pollution, with the ten most common types of litter collected during coastal clean-up 530 

campaigns being linked to leisure activities (SEA Circular, 2019). The consequences of plastic 531 

polluting behaviours upon such high-value ecosystem services, as well as those provided by 532 

mangrove forests, seagrass meadows, and coral reefs in Southeast Asia (see section 3.4.2), 533 

however, remain poorly understood and should be a priority for future research. 534 
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3.4.4 Question 13: What are the relationships between marine plastics, livelihoods, and 535 

poverty alleviation in Southeast Asia? 536 

The costs of marine plastic pollution in Southeast Asia are unequally distributed across 537 

countries and populations, with the livelihoods of physically proximate coastal communities 538 

particularly impacted (Beaumont et al., 2019), especially if they are reliant on marine food 539 

sources (Teh and Sumaila, 2013; see section 3.4.3). In both urban and rural contexts, 540 

numerous single-use plastic products (e.g. food and toiletry sachets) have been designed to 541 

aid poverty alleviation, as they can help increase hygiene and access to sanitary products, as 542 

well as reduce disease. Although this generates a waste problem, it is insignificant when 543 

compared with ecological footprints of Southeast Asia’s burgeoning middle classes, who 544 

possess far greater purchasing power (Marks et al., 2020). Moreover, Southeast Asia’s 545 

sizeable informal waste sector fills an important gap in effective state waste management 546 

systems as waste pickers sort, clean, and recycle large volumes of plastic debris (Visvanathan 547 

and Anbumozhi, 2018). Future research is urgently needed in collective efforts to nurture 548 

more ecologically sustainable behaviours which bridge existing gaps between sectors and 549 

across socioeconomic groups. 550 

3.4.5 Question 14: How is the economic cost of pollution shared between polluter and 551 

polluted countries in Southeast Asia? 552 

Some Southeast Asian countries are simultaneously primary producers of plastic waste and 553 

heavily impacted by marine plastic pollution. In a global context, however, developed 554 

countries are the highest producers of plastic waste (Liu et al., 2018) and can afford to 555 

offshore waste while pursuing domestic policies to meet global climate commitments by 556 

greening domestic economies. Plastic waste exports from the European Union, the United 557 
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States of America, and China to countries like Malaysia and Thailand for disposal (Gong and 558 

Trajano, 2019) mean that developing countries tend to bear the cumulative environmental, 559 

health, and socioeconomic burdens of ill-disposed waste. This is a complex problem for 560 

governments in developing countries because they are often the least prepared in terms of 561 

technologies and financial resources to deal with the negative externalities associated with 562 

landfill leakage into the marine environment (Bishop et al., 2020). A lack of international 563 

legislation to hold major polluters accountable perpetuates the transboundary nature of 564 

marine plastic pollution by reducing the incentive for any single country to take responsibility 565 

for these transgressive cross-border flows (Dauvergne, 2018; Raubenheimer and McIlgorm, 566 

2017; see section 3.5.5). For example, abandoned, lost or otherwise discarded fishing gear is 567 

particularly challenging to monitor due to the difficulties of observing fishing fleets in both 568 

time and place and assigning recovered gear to fishing vessels (Gilman, 2015) especially 569 

considering the prevalence of small-scale artisanal fisheries in the region (Teh and Pauly, 570 

2018). Similarly, litter from merchant shipping is increasing, including operational garbage, 571 

microplastics in grey water or ballasts, and wrecks (Ryan et al., 2019; Suaria et al., 2018), 572 

which is particularly relevant given the region’s high level of shipping traffic and major ports. 573 

Preventing such littering and marine dumping will be difficult as it likely occurs in the high 574 

seas, where enforcing legislation is challenging. Pursuing marine polluters, such as the fishing 575 

and transport industries, will be costly and uncertain, whilst the persistence of marine plastic 576 

in the environment means that the benefits of abatement efforts in the present extend into 577 

the future. This problem has worsened since the onset of the COVID-19 pandemic, which, in 578 

Southeast Asia, has rolled back decades of recycling gains amidst the global spike in single-579 

use plastics, while exacerbating illicit flows of leakage from landfills into the marine 580 

environment (Miller et al., 2022). Enforceable international legislation is needed to ensure 581 



 24 

that wealthy countries contribute more meaningfully towards the costs of mitigating the 582 

socioecological impacts created by the offshoring of domestic waste under the guise of 583 

environment sustainability (see sections 3.1.1, 3.1.3, and 3.5.1-6). 584 

3.4.6 Question 15: What is the role of plastic debris in degrading seafood safety?  585 

Plastic contamination of seafood, which tends to be established by investigating the plastic 586 

burden in digestive tracts of food species, has recently been identified as a major concern for 587 

global food security and human health (Danopoulos et al., 2020; Guillen et al., 2019; 588 

Mohamed Nor et al., 2021; Ragusa et al., 2021; Schwabl et al., 2019). In Southeast Asia, a high 589 

reliance on, and consumption of, seafood among dependent coastal communities could result 590 

in significant negative health consequences, such as endocrine disruption, through secondary 591 

plastic consumption (Barboza et al., 2018; Kirstein et al., 2016; Trujillo-Rodríguez et al., 2021; 592 

Wardrop et al., 2016). Micro- and nanoplastic concentrations in the digestive tract of 593 

contaminated seafood provide only limited knowledge about the possible risks to human 594 

health, especially for organisms in which the digestive tract is not consumed. However, the 595 

diverse range of human pathogens and antibiotic resistant bacteria present on marine micro- 596 

and nanoplastics, which may have the ability to enter the human food chain, are of concern 597 

(Bowley et al., 2021; Keswani et al., 2016; Moresco et al., 2021; Rodrigues et al., 2019; Yang 598 

et al., 2019; see section 3.3.2). For example, experiments in laboratory-reared catfish Clarias 599 

gariepinus, which are a major food source in Southeast Asia, showed that microplastics act as 600 

efficient shuttles to concentrate and transfer trace metals to individuals that ingest them, 601 

with accumulation levels significantly differing with tissue type (Jang et al., 2022). 602 

Additionally, biodegradable polylactic acid was found to transfer higher amounts of trace 603 

metals in this species, which suggests that biodegradable polymers could pose a greater 604 
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environmental threat than more common polymers, such as polyamide 12 used in this study 605 

(Jang et al., 2022). As such, investigations into the impacts of marine plastic pollution on 606 

species for human consumption and how these may be translated into associated risks to 607 

human health are critically needed. 608 

3.5 THEME 5: Regional policies and possible solutions 609 

3.5.1 Question 16: How can we identify effective interventions in Southeast Asia? 610 

Any integrated waste management approach to reduce marine plastic pollution must include 611 

effective collection, processing, and treatment systems (Winterstetter et al., 2021). Many 612 

parts of Southeast Asia currently lack technological solutions which are readily available to 613 

developed countries, such as Ocean Accounting, which consolidates data on stocks, flows, 614 

and output for accountability of economic activities and waste generation (Global Ocean 615 

Accounts Partnership, 2019), and the Plastic Pollution Prevention and Collection Technology 616 

Inventory (Schmaltz et al., 2020), which tracks and accesses innovations like digital 617 

technologies (e.g. citizen science mobile applications and virtual plastic waste currencies; 618 

Winterstetter et al., 2021) and enzymatic recycling (Knott et al., 2020; Winterstetter et al., 619 

2021). As around 55% of Southeast Asia’s population lacks regular internet access, many 620 

societies remain reliant on traditional decision-making methods (UNESCAP, 2020). Although 621 

the waste ‘Interceptors’ and ‘River Trash Booms’ deployed in Jakarta and Bali (Indonesia) and 622 

the Klang River (Malaysia) have been described as success stories by preventing several 623 

tonnes of plastic waste from entering the marine environment daily (Brooijmans et al., 2019; 624 

Cordova et al., 2021a; Cordova and Nurhati, 2019; Fauziah et al., 2021), these water bodies 625 

remain amongst the most heavily polluted in the region (Koagouw et al., 2021; Zaki et al., 626 

2021). In the Mekong River, which intersects five countries in Southeast Asia, plans to install 627 
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a unit of interceptors (River Cleanup, 2020) will be similarly challenged by much larger 628 

pollution problems which have drastically reduced fish stocks, displacing riverine livelihoods 629 

and communities across the region. Furthermore, the large population size, lack of waste 630 

disposal infrastructures, and low official recycling rates are all factors which have resulted in 631 

a significant amount of plastic waste entering the marine environment (Glaeser and Glaser, 632 

2010; Shuker and Cadman, 2018). Identifying and targeting these land-based leakage points 633 

(see section 3.1.3) represents one of several possible interventions (see section 3.5.4) to 634 

reduce marine plastic pollution from freshwater source points in the region. 635 

3.5.2 Question 17: How can a circular economy of plastics be developed to benefit 636 

livelihoods in coastal communities in Southeast Asia? 637 

To be cost-effective and socially viable, interventions need to engage the full range of 638 

business, government, and societal stakeholders into coordinated activities to reduce the 639 

amount of plastic entering the marine environment and to increase public awareness and 640 

participation (see section 3.5.3). Beyond the promise held by urban waste recycling 641 

movements across the region which have been led by eco-concerned consumers and informal 642 

waste pickers, there is still considerable room for improvement. Additionally, despite 643 

preliminary work done by Liu et al. (2009), the benefits of a circular economy of plastics, 644 

whereby plastic items are reused/repaired/recycled rather than thrown away and which can 645 

be used as an important tool for engaging with businesses and local communities to benefit 646 

livelihoods, has only entered policy circles relatively recently in Southeast Asia (Laurieri et al., 647 

2020; Luqmani et al., 2017; Visvanathan and Anbumozhi, 2018). To implement viable 648 

solutions, the connection between local communities’      behaviours, perceptions, and 649 

awareness, in addition to local government’s environmental concepts, policies, and 650 

infrastructure should be improved to ensure public participation and support for plastic waste 651 
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reduction (Du et al., 2018; Morren and Grinstein, 2016; Stuchtey et al., 2019). 652 

Notwithstanding, the justifiable critiques of the circular economy for failing to address the 653 

underlying problems inherent in capital-driven growth (Valenzuela and Böhm, 2017), this 654 

framework is worthy of further exploration for its incentive-based potential 655 

(Andriamahefazafy and Failler, 2021). 656 

3.5.3 Question 18: How to design effective, comprehensive awareness, education, and 657 

monitoring programmes? 658 

Grassroots environmental groups and mass media campaigns are crucial in increasing public 659 

awareness around environmental issues (Garcia et al., 2019; One Planet, 2021), while large 660 

scale scientific reports (e.g., Jambeck et al., 2015) aid understanding around the significance 661 

and severity of marine plastic pollution in Southeast Asia. To be effective, however, national 662 

governments would first need to reduce their heavy reliance on profitable but polluting 663 

industries. Environmental accountability and transparency in policy choices could be 664 

enhanced through the generation of environmentally relevant data (Chen, 2015), which 665 

should ideally be made available on open-access databases to ensure transboundary data 666 

sharing. Establishing long-term monitoring protocols which are compatible with international 667 

regulations will be essential to best design suitable strategies to tackle the issue of marine 668 

plastic pollution (Cheshire et al., 2009; OSPAR, 2010). Coastal clean-ups provide a valuable 669 

contribution to the monitoring of marine plastic pollution (e.g., Nelms et al., 2021; van Calcar 670 

and van Emmerik, 2019), while deepening stakeholder collaboration and promoting 671 

custodianship and responsibility of care to coastal communities (Hidalgo-Rus and Thiel, 2015; 672 

Hong et al., 2014). Initiatives that target an ‘all hands-on deck’ approach, involving multiple 673 

stakeholders (e.g., citizen, corporations, manufacturers), at local, (sub-)national, and regional 674 
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scales are arguably the most suitable mechanisms to target marine plastic pollution, but these 675 

remain largely confined to fixed-term projects in Southeast Asia (Garcia et al., 2019). 676 

3.5.4 Question 19: How effective are the major regional policy interventions to reduce 677 

plastic waste? 678 

Recently, there has been considerable regional-scale plastic pollution policy action in 679 

Southeast Asia. For example, the Association of Southeast Asian Nations (ASEAN) Regional 680 

Action Plan for Combating Marine Debris in the ASEAN Member States (2021–2025) provides 681 

support for collaboration on 1) policy support and planning; 2) research, innovation, and 682 

capacity building; 3) public awareness, education, and outreach; and 4) private sector 683 

engagement (Lyons et al., 2020). Similarly, the Coordinating Body on the Seas of East Asia 684 

(COBSEA) strategic directions 2018-2022 (UNEP, 2020) has established a regional action plan 685 

to tackle land-based sources of marine plastic pollution (COBSEA, 2019, 2018). Nationally, 686 

interventions in the region have focused on isolated actions, such as bans of specific plastic 687 

items (Knoblauch et al., 2018), deposit-return schemes (Wardoyo, 2018), and biodegradable 688 

packaging (e.g., Avani, 2014; Evoware, 2017), rather than on systemic changes to reduce 689 

single-use plastics (Hermawan and Astuti, 2021; Marks et al., 2020; Maruf, 2019; Xuan Son, 690 

2021). In a very limited way, some ASEAN countries are beginning to follow European 691 

counterparts in shifting responsibility and innovation to producers (e.g., extended producer 692 

responsibility; WWF Philippines, 2020), corporations (e.g., corporate social responsibility), 693 

and business operations (e.g., circular economy, see section 3.5.2), with the aim of 694 

implementing regional policy interventions which reduce plastic pollution entering the 695 

marine environment (see section 3.5.1), as shown by the recent EU-ASEAN GreenTech 696 

Dialogue and Innovation Mapping initiative (2021), currently piloted in the Philippines. 697 

National reforms to state waste management systems are also needed across the region to 698 
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better deal with burgeoning domestic waste and the influx of plastic waste exports into 699 

Southeast Asia (see section 3.5.6). Above all, however, national cultures of consumption need 700 

to be reset along more sustainable development pathways, which can only be attained 701 

through multi-sectoral and multi-scalar efforts to change existing ecological behaviours in the 702 

longer term. 703 

3.5.5 Question 20: What are the geopolitical roles of countries in exporting/transporting 704 

plastic waste in Southeast Asia? 705 

Societal resentment among ASEAN member countries, particularly after China introduced its 706 

National Sword Policy banning plastic waste imports, completing its transition from a waste 707 

importing to a waste exporting country (Marks et al., 2020), has led some governments to 708 

refuse to import plastic waste (Global Alliance for Incinerator Alternatives, 2019a). However, 709 

a significant amount of plastic waste continues to both legally and illegally enter Southeast 710 

Asian countries. For example, investigations into recycling facilities in Thailand revealed that 711 

the lack of enforceability of regulations led to large amounts of plastic being smuggled and 712 

illegally processed in the country despite national restrictions on imports of recyclable goods 713 

(Sasaki, 2021). Similarly, almost one-third of waste imported into East Java, Indonesia was 714 

labelled as scrap paper despite being illegal scrap plastic (Marks et al., 2020), suggesting that 715 

such piecemeal bans on plastic waste imports could have counterproductive effects. Several 716 

countries, including Malaysia and the Philippines, have returned mislabelled waste, restricted 717 

or re-exported imports, and announced upcoming bans and regulations (Marks, 2019). 718 

Interstate initiatives and reforms to international legal frameworks are urgently needed to 719 

help address inequalities in the distribution of plastic waste between wealthy waste exporting 720 

countries and poorer waste importing countries. As part of this, enforceable (inter)national 721 

legislation is needed to make transnational corporations compliant with the safe and 722 
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sustainable export and import of recyclable plastic waste. Analysis of the transnational plastic 723 

waste chain should thus take into account postcolonial histories as well as the challenges of 724 

global capitalism (Ronda, 2018), which are crucial to understanding the high degree of 725 

inequality in geopolitical relations between plastic exporting and importing countries. Multi-726 

national companies with operations in ASEAN countries could contribute meaningfully to the 727 

reform of country-level industry practices by undertaking waste assessments, brand audits, 728 

and transitioning to ecologically safer and affordable packaging products (Global Alliance for 729 

Incinerator Alternatives, 2019b). This, in turn, promotes their participation in extended 730 

producer responsibility, which is gaining more traction in ASEAN countries, such as in the 731 

Philippines, which proposed to include this in their new policy on single-use plastics. 732 

3.5.6 Question 21: What is the political framework of marine plastic governance and how 733 

can it be improved in Southeast Asia? 734 

Transboundary governance of marine plastic pollution in Southeast Asia is failing for several 735 

reasons. Unlike climate change, there is as yet no global plastic agreement with binding 736 

targets and timelines to guide strong regional action (Borrelle et al., 2017). The development 737 

of international agreements has been more advanced for ocean-based than land-based 738 

sources of marine litter, which operate with relative impunity (Ferraro and Failler, 2020). 739 

Uncoordinated and fragmented national policies further undermine regional efforts 740 

(Dauvergne, 2018). In part, this political fragmentation is due to the close working relationship 741 

between state agencies and polluting fossil fuel and plastic industries which have successfully 742 

pushed back against policies to curb plastic consumption (Tabuchi et al., 2020) by emphasising 743 

the responsibility of consumers to deal with their own waste (Fuhr and Patton, 2019). Overall, 744 

governance of plastic is fragmented between sectors and spatial scales which undermines 745 

implementation at the national and subnational levels (Dauvergne, 2018; see section 3.5.4). 746 
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In March 2019, ASEAN adopted greater transboundary cooperation on marine plastic 747 

pollution, which is a critical starting point for collective action, although the Declaration now 748 

must be translated into actionable policies (ASEAN Secretariat, 2021). Such ASEAN-level 749 

commitments could open the political space and funding opportunities for innovative 750 

contributions at all scales of governance (Marks et al., 2020), as could the new United Nations 751 

Environmental Assembly resolution, adopted in March 2022 to end global plastic pollution, 752 

which is due to take legal effect by the end of 2024. 753 

4. Conclusion 754 

Although not unique to the region, the 21 priority research questions which guide and 755 

underpin this research agenda highlight the importance of better understanding the fate of 756 

marine plastic pollution, its degradation, and the impacts and risks it can generate across 757 

communities and different ecosystem services in Southeast Asia. Future research into these 758 

areas is needed to form a firm foundation for future policy development which currently 759 

suffers from transboundary problems relating to poor coordination, lack of responsibility and 760 

punitive measures for major polluters, and inaction to tackle the issue from its point source 761 

in the region. Being profoundly affected by marine plastic pollution, countries in Southeast 762 

Asia provide an opportunity to test the effectiveness of innovative and socially inclusive 763 

changes in environmental governance, as well as both high and low-tech solutions, which can 764 

offer insights and actionable models to the rest of the world. 765 

 766 

Acknowledgements 767 

We thank the editor and the three anonymous reviewers, whose comments greatly improved 768 

this article. This study was supported by the National Research Foundation, Prime Minister’s 769 



 32 

Office (Singapore) and the Natural Environment Research Council (United Kingdom) under 770 

the NRF-NERC-SEAP-2020 grant call ‘Understanding the Impact of Plastic Pollution on Marine 771 

Ecosystems in Southeast Asia (South East Asia Plastics [SEAP])’. The four funded projects are 772 

Risks and Solutions: Marine Plastics in Southeast Asia – RaSP-SEA (NRF Award No. NRF-NERC-773 

SEAP-2020-0004, NERC Award No. NE/V009354/1 and NE/V009362/1); Southeast Asia Marine 774 

Plastics (SEAmap; NERC Award No. NE/V009427/1): Reduction, Control, and Mitigation of 775 

Marine Plastic Pollution in the Philippines; Microbial transformation of plastics in Southeast 776 

Asian seas: a hazard and a solution (MicroSEAP; NRF Award No. NRF-NERC-SEAP-2020-0002, 777 

NERC Award No. NE/V009516/1); and Sources, impacts and solutions for plastics in Southeast 778 

Asia coastal environment (NRF Award No. NRF-NERC-SEAP-2020-0003, NERC Award No. 779 

NE/V009621/1).  780 



 33 

 781 

Figure 1. Examples of plastic pollution in Southeast Asia: a) after rainfall under the bridge of 782 
Sungai Ciluar, Bogor, Indonesia (photo credit: Muhammad Reza Cordova); b) in a mangrove 783 
forest in Carmen, Cebu, Indonesia (photo credit: University of San Carlos, SEAMaP team); c) 784 
in Rambut Island Wildlife Reserve, Jakarta Bay, Indonesia (photo credit: Muhammad Reza 785 
Cordova); d) on a beach in Tanah Merah, Singapore (photo credit: Tai Chong Toh); e) on a 786 
coral reef in Paiton, East Java, Indonesia during a coastal cleanup (photo credit: Ruly Istaful 787 
Khasana); and f) plastic bottles on the seafloor at Lazarus Island, Singapore (photo credit: Our 788 
Singapore Reef). – Please see online version of article for colour. Double column fitting image.  789 
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790 

Figure 2. Summary of horizon-scanning writing process. – Please see online version of article 791 

for colour. Double column fitting image.  792 
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793 

Figure 3. Summary of the five key themes covered in this review for the purpose of identifying 794 

research priorities for marine plastics in Southeast Asia. – Please see online version of article 795 

for colour. Double column fitting image.  796 
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 797 
Figure 4. Map of Southeast Asia showing the principal ocean currents of the region and plastic emissions per country and river. The chloropleth 798 
map represents total plastic emitted into the ocean (millions of tonnes per year), while the scatter plot (orange) shows the geospatial distribution 799 
of the relative individual river emissions (tonnes per year).  Global surface warm ocean currents are represented by the thick red arrows. Regional 800 
surface currents of the Indonesia Through Flow affecting the dispersal of marine plastic litter are represented with thin grey arrows. Data on 801 
plastic emissions from Meijer et al. (2021). – Please see online version of article for colour. Double column fitting image.802 
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Highlights 803 

• Established key research questions for marine plastic pollution in Southeast Asia 804 
• Need to better understand fate, degradation and impacts of plastics regionally 805 
• Suffers from transboundary problems, lack of responsibility and inaction 806 
• Further research needed to support development of mitigation measures in the region  807 
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 1845 

Table S1. Key research priority question to inform marine plastic pollution in Southeast Asia, their associated current knowledge and areas for 1846 

further research. 1847 

Priority questions Current knowledge  Areas for further research  
Theme 1. Description of plastic pollution   

Q1. What are the 

origins of plastic 

pollution in the marine 

environment in 

Southeast Asia? 

- Land-based sources from reliance on single-use 

plastics, exacerbated by COVID-19 pandemic 

- Sources of macroplastics: direct littering, marine 

dumping, aquaculture, and accidental loss from 

shipping and fishing activities  

- Sources of microplastics: plastic fragmentation, ocean 

circulation, and domestic sources 

- Leakage from overflowing landfills and over-burdened 

waste processing facilities as major 

producers/recipients of waste  

- Quantify the amount of plastic waste entering the 

marine environment from each source 

Q2. What are the main 

plastic entry points into 

the marine environment 

in Southeast Asia?   

- Rivers are major transport pathways into the marine 

environment, with half of top 50 plastic emitting rivers 

predicted to be in Southeast Asia 

- Entry points include densely populated coastal 

regions, industrial estates, port facilities, landfill sites 

and beaches 

- Understand the linkage between freshwater and 

marine plastic pollution  

- Identify important entry points for the development 

of waste management strategies 

- Combining in-situ sampling with novel technology and 

particle backtracking simulations could aid in 

determining potential sources  

Q3. What are the most 

appropriate 

methodological 

approaches to 

characterise marine 

plastic pollution? 

- Fourier Transform InfraRed (FTIR) or Raman 

spectroscopy mostly commonly used methods globally 

- Spatial variability in identified polymers from in-situ 

sampling 

- International collaboration among research 

organisations to alleviate the scarcity of research 

equipment in Southeast Asia  

- Ensure use of standardised protocols for collection, 

identification, and monitoring to allow for regional and 

global comparisons 

Theme 2. Movement and fate   
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Q4. What drives 

dominant movement 

patterns and dispersal 

pathways of plastic in 

Southeast Asia?  

- The Indonesia Through Flow (ITF) is the major current 

in the region, which interacts with the region’s complex 

bathymetry and topography 

- Abundance of plastic-trapping habitats, such as 

mangroves, seagrasses, and coral reefs 

- Develop three-dimensional, high-resolution models 

that explicitly include tides and their interactions, 

freshwater inputs, wave and wind dynamics, and 

extreme weather events 

- Address heterogeneity of plastics when 

parameterising aggregation, fragmentation and/or 

biofouling process in transport models  

Q5. Which habitats act 

as major accumulation 

zones in Southeast 

Asia? 

- Sessile biota in mangrove, seagrass and coral habitats 

directly accumulate plastic via snagging, filtering and 

adhesion, and indirectly influence local hydro- and 

sediment-dynamics 

- Connectivity between coastal and marine habitats can 

lead to the export of accumulated plastics  

- Better quantify the volume of plastic pollution 

currently stored in mangrove, seagrass, and coral 

habitats 

- Understand the impacts and consequences for the 

coastal and riverine communities that depend on key 

habitats 

Q6. How will extreme 

weather events 

influence source-sink 

dynamics in Southeast 

Asia? 

- Temporal variability is a key factor in determining the 

transport of plastics and can be influenced by extreme 

weather events 

- Regionally, monsoon seasonal typhoons and storm 

surges, for example, have the potential to cause 

resuspension & dispersal of microplastics from 

accumulation zones   

- Investigate impacts of sea level rise and probability 

distributions of extreme weather events on source-sink 

dynamics 

Theme 3. Biological and chemical modifications 

Q7. What are the 

assemblage and 

ecological driving forces 

of plastisphere 

biofilms?  

- Composition and functional capacity of plastisphere 

biofilms influenced by the size and chemical 

composition of plastics and the surrounding 

environment 

- Differences in gene expression profiles among 

communities present in microplastic biofilms 

- Study the composition and ecological functions of 

microorganisms within biofilms in Southeast Asia 

- Understand the metabolic capacity of plastisphere 

communities 

- Contribute towards determining whether a core 

plastisphere exists that is significantly different to non-

plastic biofilms 
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Q8. What is the 

potential for marine 

plastic pollution to 

transport pollutants and 

create hotspots of 

antimicrobial 

resistance? 

- Potential sorption of co-pollutants, microorganisms 

and invasive species to marine plastic pollution 

represents a significant threat to ecosystem health 

- Combination of microorganisms and pollutants can 

cultivate the development of antibiotic resistance 

genes on marine plastic pollution 

- Investigate the role of plastics as surfaces for 

developing and disseminating antimicrobial resistance 

in Southeast Asia 

- Explore the pathogenic activity of antibiotic resistant 

microorganisms on marine plastic pollution and the risk 

posed to humans and animals 

Q9. What is the pattern 

of fragmentation and 

degradation of plastic 

pollution?  

- Polymer degradation in the environment is influenced 

by abiotic factors and the presence of microorganisms 

- Members of several bacteria phyla have regularly 

been linked to plastic degradation 

- Continue research on biodegradation of plastics by 

microbes in the region and in novel locations 

- Develop thorough standardised testing methods to 

enhance understanding of plastic fragmentation and 

degradation 

Theme 4. Environmental, social, and economic impacts  

Q10. What are the 

impacts of plastic 

pollution on marine 

organisms? 

- Plastic ingestion (ranging from macro- to microplastic) 

has been documented in numerous taxa in Southeast 

Asia  

- Reports of entanglement present for species and 

impacts of abandoned, lost, or otherwise discarded 

fishing gear on habitats such as coral reefs 

- Investigate ingestion in seabirds in the region as 

publications are currently lacking entirely for this taxon 

- Explore trophic transfer, having implications for sea 

food safety 

- As the impacts of marine plastic pollution are multi-

faceted, there is a need for a greater understanding of 

these impacts in Southeast Asia, particularly for 

endemic species 

Q11. What are the 

impacts of plastic 

pollution on key marine 

habitats in Southeast 

Asia? 

- Macroplastics become trapped by biological 

structures, while microplastics become incorporated 

into sediments 

- Plastic pollution negatively impacts marine habitats by 

mechanical and chemical means, altering microbial and 

macrofaunal communities 

- Micro- and nano-plastics alter microbial and 

planktonic community composition, influencing the 

regulation of oceanic carbon cycles 

- Study how micro- and nanoplastics affect the 

biogeochemistry of their associated substrata more 

widely in Southeast Asia 

- Build on and expand the geographical scope of 

emerging studies into the incorporation of plastics into 

sediments and their effects on microbial communities 
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Q12. What are the 

impacts of plastic 

pollution on marine 

ecosystem services in 

Southeast Asia? 

- Many ecosystem services are known to be particularly 

vulnerable to the deleterious effects of plastic 

pollution, in turn impacting the extent of ecosystem 

service provision 

- Unsustainable practices related to ecotourism in 

Southeast Asia generate significant levels of marine 

plastic pollution 

- The impact of plastic pollution on key fisheries species 

will have wide-ranging impacts due to the importance 

of this industry in Southeast Asia 

- Better understand the consequences of plastic 

polluting behaviours upon high-value ecosystem 

services as well as those provided by important 

habitats in the region 

Q13. What are the 

relationships between 

marine plastics, 

livelihoods, and poverty 

alleviation in Southeast 

Asia? 

- Costs of marine plastic pollution unequally distributed 

across countries and populations 

- Single-use plastic products can help increase hygiene 

and access to sanitary products, as well as reduce 

disease 

- Sizeable informal waste sector fill an important gap in 

ineffective state waste management systems 

- Explore how we can collectively nurture more 

ecologically sustainable behaviours which bridge 

existing gaps between sectors and across 

socioeconomic groups 

Q14. How is the 

economic cost of 

pollution shared 

between polluter and 

polluted countries in 

Southeast Asia? 

- Some Southeast Asian countries are both primary 

producers and heavily impacted by marine plastic 

pollution 

- Primary producers often not the countries impacted 

by marine plastic pollution due to exportation, meaning 

that developing countries tend to bear the cumulative 

environmental, health and socioeconomic burdens of 

ill-disposed waste 

- Develop and enforce international legislation to hold 

major polluters accountable and reduce the incentive 

for any single country to take responsibility for 

transgressive cross-border flows 

- Ensure that wealthy countries contribute more 

meaningfully towards the costs of mitigating the 

socioeconomic impacts of domestic waste offshoring 

Q15. What is the role of 

plastic debris in 

degrading seafood 

safety? 

- High reliance on and consumption of seafood among 

dependent coastal communities in Southeast Asia could 

have significant negative health impacts 

- Investigate the impacts of marine plastic pollution on 

species for human consumption and how these may be 

translated into associated risks to human health 
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- Ability of diverse human pathogens and antibiotic 

resistant bacteria present on marine plastic to enter 

the human food chain through secondary consumption 

Theme 5. Regional policies and possible solutions 

Q16. How can we 

identify effective 

interventions in 

Southeast Asia? 

- Many areas of Southeast Asia lack technological 

solutions readily available to developed countries 

- Waste interceptors in rivers in the region have 

successfully been trialled and prevented several tonnes 

of plastics from entering the marine environment 

- Identifying and targeting land-based leakage points 

represents one of several possible intervention to 

reduce marine plastic pollution 

Q17. How can a circular 

economy of plastics be 

developed to benefit 

livelihoods in coastal 

communities? 

- The benefits of a circular economy of plastics have 

only entered policy circles relatively recently in 

Southeast Asia 

- Develop viable solutions involving all stakeholders to 

ensure public participation and support for plastic 

waste reduction 

- Further explore the potential of a circular economy of 

plastics in the region 

Q18. How to design 

effective, 

comprehensive 

awareness, education, 

and monitoring 

programmes? 

- Grassroots environmental groups and mass media 

campaigns increase public awareness campaigns, while 

scientific reports aid understanding of the significance 

and severity of the problem 

- Coastal clean-ups provide a valuable contribution to 

the monitoring of marine plastic pollution, deepening 

stakeholder collaboration and promoting individual 

responsibility of care 

- Strive to implement approaches targeting marine 

plastic pollution which involves multiple stakeholders 

at local, national, and regional scales 

- Establish long-term monitoring protocols, compatible 

with international regulations to develop regional 

policies on environmentally relevant data  
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Q19. How effective are 

the major regional 

policy interventions to 

reduce plastic waste? 

- Considerable recent regional-scale plastic pollution 

policy action in Southeast Asia, which have focused on 

isolated actions, such as bans on specific items and 

biodegradable packaging, rather than on systemic 

change 

- Develop and implement national reforms to state 

waste management systems to better deal with 

burgeoning domestic waste and the influx of plastic 

waste exports in Southeast Asia 

- Align national cultures of consumption along more 

sustainable development pathways, through multi-

sectoral and multi-scalar efforts to change existing 

ecological behaviours in the longer term 

Q20. What are the 

geopolitical roles of 

countries in 

exporting/transporting 

plastic waste in 

Southeast Asia? 

- Following China’s National Sword Policy, there has 

been some societal resentment among Southeast Asian 

countries with some governments refusing to import 

plastic waste 

- Illegally entry of significant amounts of plastic waste 

- Multi-national companies can contribute meaningfully 

to geopolitical relations through waste assessment and 

brand audits 

- Extended producer responsibility is gaining more 

traction in the region 

- Implement interstate initiatives and reforms to 

international legal frameworks to help address 

inequalities in the distribution of plastic waste between 

exporting and importing countries 

- Enforce legislation (inter)nationally to make 

transnational corporations compliant with the safe and 

sustainable export of import of plastic waste 

Q21. What is the 

political framework of 

marine plastic 

governance and how 

can it be improved in 

Southeast Asia? 

- Transboundary governance failing for several reasons 

in the region 

- Uncoordinated and fragmented national policies 

undermine regional efforts, with plastic governance 

fragmented between sectors and spatial scales 

- Continue the development of greater transboundary 

cooperation on marine plastic pollution which could 

open the political space and funding opportunities for 

innovative contributions at all scales of governance 

- Participate in discussions to develop a global 

agreement to tackle marine plastic pollution 
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