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A B S T R A C T

Fires in urban areas typically carry severe consequences. High population density together with the complexity
of urban network potentially imply significant impacts in property loss, physical damage and life losses.
However, despite the impact that fires may have in urban areas, research in urban fire prediction remains
limited. In this study, we modelled urban fire occurrences while making a comparative analysis of different
strategies to account for spatial autocorrelation. Considering space dependence in addition to a range of
social-economic explanatory variables has proven to strengthen the validity of the fitted models.

The spatial Durbin error model, including population density, degraded buildings density and buying
power, was selected as having the best fit. This model allowed to map the estimated probability of fire
occurrence across Portugal, revealing a spatial pattern with clusters centred on the two main Portuguese city
districts (Lisboa and Porto). Ultimately, the analysis of the relation between the observed urban fire incidence
and the actual number of fire stations in each municipality allowed to underline the need for planning the
spatial configuration of fire stations, both in number and location, at a regional scale.
1. Introduction

Urban fires, defined as any fires occurring within an urbanized area,
represent a considerable proportion of the fire stations (FS) service
and have significant financial and social impacts [1]. As a disaster
that occurs with high frequency it affects ecosystems and human safety
since ancient times [2]. Urban fires result in more than 300,000 deaths
annually worldwide [3]. A total of 3,704 deaths and $14,8 billion
direct property losses were registered due to urban fires in the United
States in 2019 [2]. Studies in Europe reported, in the United Kingdom,
around 212,500 fires during 2013 and 2014, involving 322 deaths
and more than 9,700 non-fatal casualties [4]. A comprehensive study
regarding urban fire events in Greece analysed fire incidents from
2000 to 2019 and concluded that residential fires represent 25,6%
of the total incidents in Greece, with an average of 3,989 incidents
per year [5]. In Australia, direct urban fire losses were estimated at
$885 million per annum with an average of 0.07 per cent of GDP per
annum [6]. In 2020, China registered 252,000 fire incidents resulting
in 1,183 deaths and $621 million direct property losses [7]. Himoto
et al. [8] studied fire events in Japan, emphasizing the great impact of
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fire events occurring at Sakata, in 1976, and at Hanshin-Awaji in 1995,
being the last a consequence of a large earthquake. In 2019, a total of
31,061 urban fires occurred in Japan [9]. In Portugal, according to data
supplied by the Portuguese National Emergency and Civil Protection
Authority (ANEPC, Autoridade Nacional de Emergência e Proteção Civil)
the average of urban fires, between 2012 and 2020, was around 8,841
events/year. Since 43% of the Portuguese population lives in urban
areas, these numbers potentially carry severe consequences. High popu-
lation density together with the complexity of the urban network imply
that urban fires may have a significant impact in firefight operational
costs, property damage and the potential loss of life. In addition, the
proximity to industry or commercial areas typically increases urban
fire probability [10]. Property impacts encompass the loss of buildings
(e.g. residential, commercial, and industrial), structures, equipment and
other types of properties caused by burning, smoking, radiation, demo-
lition, collision, water stains and pollution during the firefighting [3].
Densely populated areas are subject to more harmful consequences
in the sense that the potential loss of lives or other socio-economic
primordial consequences, such as, e.g., job losses, are more likely to
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occur [2]. Ultimately, the combination of all these forms of losses may
lead to substantial costs in firefighting operations and severely impact
economies both at regional and national scales.

Despite the impact of fires in urban areas, research in urban fire
prediction remains limited. According to Jin et al. [10], capturing the
urban fire dynamics is an indispensable tool for urban security planning
and fire emergency decision-making. Moreover, since public resources
are limited, national and regional governments need research-based
information to adequately plan how many and where firefighting facil-
ities should be established [11] and decide how to distribute human,
material, and financial resources [12].

In literature, several approaches are used to predict and model
fire occurrences. Regardless of the modelling approach, most studies
emphasize the need to consider spatial techniques. For instance, Cor-
coran et al. [13] recognize the importance of using spatial analytical
techniques to model fire incident data and to explore their spatial dy-
namics. Song et al. [14] refer to the existence of spatial autocorrelation
in the occurrence of fires in urban areas and that this correlation should
be considered to model these occurrences. Moreover, Corcoran and
Higgs [1] mention that the dynamics of urban fires is related to the
neighbouring structure and socio-demographic characteristics. Clark
et al. [15] present a review of social science literature and the impli-
cations on urban fire research. These authors point out that social and
economic factors may influence the understanding of fire risk as they
can strengthen spatial correlation. Thus, the use of statistics techniques
which consider spatial dependence, arise as a natural tool to understand
and predict the occurrence of urban fires.

In this context, several spatial techniques have been used. Spatial
kernel density analysis, co-maps and other exploratory spatial data
methods are commonly used to examine the spatial, temporal and
spatial–temporal variations of fire events [16]. Song et al. [14] con-
sidered geographically weighted regression, geographically and tem-
porally weighted regression, and global linear regression to model
occurrences of urban fires in a city scale. Oliveira et al. [17] also con-
sidered geographically weighted regression to explore spatial patterns
of fire density in Southern Europe. Spatial econometric models, as the
ones used in this study, appear in literature potentially offering new
insights into the modelling of fire occurrences as these allow to consider
spatial autocorrelation in a flexible way, either in the response variable,
the explanatory variables and/or the random error term [18,19].

The explanatory variables of fire occurrence included in models may
differ substantially depending on considering forest or urban events.
Unlike wildfires, urban fires are mainly linked to a (complex) set of
technical, social, and economic factors. In fact, [20] defined urban
fires as a social product which thus is, inherently, affected by various
socio-economic factors.

Urban fire predictors usually encompass population density, res-
idential density and industrial agglomeration, being these positively
associated with the events occurrence, i.e, higher/lower densities are,
on average, associated with higher/lower incidence fire rates [2,4]. The
socio-economic predictors are typically organized into six broad cate-
gories: (1) Housing quality and condition; (2) Household structure and
demographics; (3) Economic conditions; (4) Education; (5) Ethnicity,
and (6) Crime.

Housing quality and condition encompass variables linked to the
house usage and building characteristics. Jennings [21] did an ex-
tensive literature review on the relationship between social-economic
characteristics and urban (residential) fire risk. This author reports that
the incidence of fires in residential buildings is greatly linked to housing
quality, social structure, household income, household overcrowding
and general social conditions. Variables such as renter-occupied hous-
ing [13,22–24], vacant housing [25,26], social landlords presence [27]
and housing age [13,23,25–27] are mentioned in literature as being, in
general, positively associated with fire occurrence. However, Duncan-
son et al. [28] concluded that owner-occupied homes are less prone to
2

fires occurrence. Quality construction materials are also included in this a
category of predictors. Low quality is reported as generically increasing
the chance of fire occurrence [29].

Household structure and demographics cover factors as overcrowd-
ing [27,28], parental presence [13,28] and single parent household
[30]. Overcrowding and the household structures including parents
with children above 15 years old were found to be associated to higher
levels of fire occurrence in studies conducted by Hastie and Searle
[27], Duncanson et al. [28] and Chhetri et al. [30]. In contrast, parental
presence and single parent households type seem to be associated with
lower chance of fire occurrence [28,30].

Economic conditions encompass variables that reflect
socio-economic disadvantages [26,31] as the income level [3,25,28],
employment status [24,25,27,30], and poverty level [28]. Higher in-
come levels are reported as being associated with lower fire incidence
rates [28]. Accordingly, Shai [25] and Hu et al. [3] describe that low
income levels are linked to a higher fire incidence. The same type of
effect is described for poverty level [28]. Anderson-Bell et al. [24] state
that employment status does not have a significant influence in fire
occurrence. However, Chhetri et al. [30], Shai [25] and Hastie and
Searle [27] claim that unemployment or long term-sick leaves increase
the chance of fire occurrence.

The education category covers the schooling level effect. Accord-
ing to Duncanson et al. [28], Corcoran et al. [13], Hu et al. [3]
and Anderson-Bell et al. [24] higher school or educational levels are,
on average, associated with lower fire incidence levels.

Chhetri et al. [30] studied the ethnicity effect using the propor-
tion of indigenous population as a predictor. These authors concluded
that the presence of high proportions of indigenous people are as-
sociated to higher levels of fire incidents. Morgner and Patel [32]
report that the co-existence of different ethnic groups in the same
household is associated with a comparatively lower fire incidence.
However, Anderson-Bell et al. [24] discarded any influence of ethnicity
on fire occurrence.

The last category of socio-economic predictors includes crime re-
lated variables. Anderson-Bell et al. [24] categorized crimes in violent
and burglary crimes. These authors report that the presence of violent
crimes is positively associated with fire occurrence, while burglary
crimes seem to be negatively associated with fire occurrence.

Given the above description, the objectives of this research are
twofold. First, it aims at modelling urban fire occurrences while making
a comparative analysis of different strategies to account for spatial
autocorrelation. Aligned with the first goal, the second objective is to
identify factors that contribute to explain the relationship between fire
events and the urban pattern. Ultimately, this study aims at mapping
the probability of urban fires occurrence in mainland Portugal.

In the subsequent sections we describe the data collected (Sec-
tion 2), detail the methods (Section 3) and present the findings of our
research (Section 4). In the last section (Section 5), we highlight the
main conclusions of the work developed.

2. Data description

Urban fires occurrences in mainland Portugal, between 2012 and
2020, were supplied by ANEPC. Each record contained the date, time,
and incident location (latitude and longitude). These data are regularly
recorded for each municipality and stored automatically in a central
national platform. The available records were averaged across the
years, aggregated at a municipality level, and normalized to the area
of the administrative unit. The obtained annual average of urban fires
per municipality (target variable) ranged from 2.1 × 10−3 fires/km2 to

fires/km2, with 94% of the municipalities having an annual average
nder 1 urban fire/km2.

The selection of explanatory variables to include in the models was
ased on factors that were simultaneously described in the literature

s influencing urban fires occurrence (see Section 1) and publicly
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Table 1
Description of the explanatory variables.

Variable name Description

Population density Number of inhabitants per km2

Buildings density Number of buildings per km2

Degraded buildings density Number of degraded buildings or in need of repair
per km2

Age of buildings Average age of buildings (years)
Income Average income per person (€)
Buying power Consumer buying power (%)
Education Secondary school completion rate (%)
Crime Criminality rate (‰)

available at Statistics Portugal website (www.ine.pt) for extraction at a
municipality level.

Variables characterizing the number of inhabitants, building struc-
ture and the socio-economic traits by municipality, were identified
from the last available 2021 Portuguese Census and downloaded from
Statistics Portugal website (www.ine.pt). The number of buildings, the
number of degraded buildings or in need of repair and the age of
buildings were selected to represent housing quality. Average income
per person (€) and buying power (%) were chosen to express economic
conditions. Finally, the secondary school completion rate (%) and
criminality rate (‰) were elected to proxy education and crime levels,
respectively.

Count variables (i.e., number of inhabitants, number of buildings
and number of degraded buildings or that needs to be repaired) were
normalized to the area of the administrative unit, yielding densities.

The final set of explanatory variables is summarized in Table 1.
It is worthwhile noting that as the target variable is the annual

average urban fires per municipality, census variables are being used
to proxy the annual average of the explanatory variables. The use
of census-based proxies to augment the dataset by appending socio-
economic variables is a common procedure to overcome data limita-
tions [33]. In addition, there is evidence that census proxies can give
reasonable approximations for models parameters, particularly in terms
of sign and significance [34], which legitimates the procedure.

3. Methods

In this section we briefly introduce the main concepts and methods
used to analyse and model the fire data described in Section 2.

3.1. Spatial autocorrelation

A key insight when analysing spatial data is that observations that
are close to each other are likely to be related and, thus, cannot be
assumed to be mutually independent, as commonly done in classic
statistical analysis [35]. In this context, spatial autocorrelation arises
when units that are close to one another present values more associated
than units that are far apart. The connectivity between two spatial units
𝑖 and 𝑗 (𝑖, 𝑗 = 1,… , 𝑛) can be formally defined by a matrix 𝐖 with
lements 𝑤𝑖𝑗 = 1 if 𝑗 ∈ 𝑁(𝑖) and 𝑤𝑖𝑗 = 0, otherwise, with 𝑁(𝑖) being

the set of neighbours of location 𝑖 and, by definition, 𝑤𝑖𝑖 = 0. In this
study we assumed the most straightforward definition of 𝐖 provided by
the binary matrix where 𝑤𝑖𝑗 = 1 if regions 𝑖 and 𝑗 share some common
boundary, perhaps a vertex, and 𝑤𝑖𝑗 = 0, otherwise.

With the neighbours defined, spatial autocorrelation may be calcu-
lated globally or locally. Global measures create a single value that
represents the entire data whilst local indicators give a measure for
every single unit in the study area. Popular global measures for area
level data include Moran’s I [36] and Geary’s C [37]. Local Indicators
of Spatial Association (LISA) [38] include local Moran’s I and Getis–
Ord’s G and G* [39]. These local indicators allow to define high and
low spatial associations between neighbours. Regions with high/low
association are commonly named as hot/cold spots, respectively.
3

3.2. Statistical modelling

Classic (non-spatial) linear regression can be generally represented
by equation 𝐲 = 𝐗𝜷 + 𝝐 where 𝐲 is the vector (𝑦1,… , 𝑦𝑛) (with 𝑦𝑖 (𝑖 =
1,… , 𝑛) being the realizations of the response variable and 𝑛 the num-
er of observations), 𝐗 denotes an 𝑛×𝑘 matrix of explanatory variables,

represents the 𝑘 × 1 vector of (unknown scalar) parameters that
uantify the contribution of the explanatory variables to the response
ariable, and 𝝐𝑛×1 is the error vector (composed by independent and
dentically normal distributed random variables) with zero mean and
onstant variance 𝜎2. As, in this approach, the parameters are com-
only estimated by ordinary least squares (OLS), this model is often

eferred to as the OLS model. By assuming that observations are real-
zations of independent random variables, OLS models do not account
or potential spatial dependence between the observations. However,
hen dealing with spatial data, ignoring spatial autocorrelation may
roduce biased and inconsistent estimates [40].

Spatial dependence can be incorporated in OLS models using several
trategies, namely, by including an additional regressor in the form of
i) spatially lagged dependent variable, (ii) spatially lagged explanatory
ariables, and/or (iii) a spatially lagged error term.

The spatial autoregressive model (SAR) is easily obtained by combin-
ng the conventional regression OLS model with the spatially lagged de-
endent term, producing a spatial extension of the standard regression
efined by

= 𝜌𝐖𝐲 + 𝐗𝜷 + 𝝐 |𝜌| < 1 (1)

where 𝝐 is the vector of random errors with independent elements
𝜖𝑖 ∼ 𝑁(0, 𝜎2) (𝑖 = 1,… , 𝑛) and 𝜎2 is the error variance. In this
model, 𝜌 represents a spatial autoregressive coefficient that takes the
value zero if there is no spatial dependence in the vector of cross-
sectional observations 𝐲. The matrix 𝐖, as previously defined, formally
describes the geographical relationship between spatial units. Hence,
𝐖𝐲 transforms the vector 𝐲 through the spatial relationships defined in
𝐖 and defines a spatial lag of 𝐲.

Spatially lagged explanatory variables are important tools to use for
spatial regression modelling in sharp contrast to the more widely used
form of spatial regression modelling, where only the dependent variable
is lagged. The model that only includes a spatial lag of 𝐗 (SLX) may be
described by

𝐲 = 𝐗𝜷 +𝐖𝐗𝜸 + 𝝐 (2)

which includes two core components: the direct effects of the covariates
represented by 𝜷 and the indirect effects of the covariates in neighbours
represented by the 𝑘×1 vector 𝜸. The model including both the spatially
lagged dependent and independent variables is labelled the spatial
Durbin model (SDM) [41] and defined by

𝐲 = 𝜌𝐖𝐲 + 𝐗𝜷 +𝐖𝐗𝜸 + 𝝐. (3)

The spatial error model (SEM) defined by

𝐲 = 𝐗𝜷 + 𝐮 (4a)

𝐮 = 𝜆𝐖𝐮 + 𝝐 |𝜆| < 1 (4b)

only includes the spatial dependence in the disturbance term, with
𝜆 being a spatial autocorrelation parameter and, from ((4)b), 𝐮 =
(𝐈 − 𝜌𝐖)−1𝝐. Other spatial models may be defined by combining the
different spatial repressors. In particular, the expressions

𝐲 = 𝜌𝐖𝐲 + 𝐗𝜷 + 𝐮 (5a)

𝐮 = 𝜆𝐖𝐮 + 𝝐 (5b)

combine the spatially lagged dependent variable with a spatially lagged
error term and define the so called Kelejian–Prucha model or SAC
model [42,43]. This model is also mentioned in the literature as the
SARAR model or the Cliff-Ord model [44]. It is also possible to combine

http://www.ine.pt
http://www.ine.pt
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Fig. 1. (A) Observed urban fire incidence (annual average of urban fires per km2), (B) Population density (number of inhabitants per km2), and (C) Getis–Ord’s Gi* indicator of
local spatial association.
the spatially lagged independent variables with a spatially lagged error
term which leads to the spatial Durbin error model (SDEM)

𝐲 = 𝐗𝜷 +𝐖𝐗𝜸 + 𝐮 (6a)

𝐮 = 𝜆𝐖𝐮 + 𝝐. (6b)

The most general form of a spatial linear regression model is called
General Nesting Spatial model (GNS) (also mentioned in literature as
the Manski model), includes all types of spatial effects and can be
represented by [42,44]

𝐲 = 𝜌𝐖𝐲 + 𝐗𝜷 +𝐖𝐗𝜸 + 𝐮 (7a)

𝐮 = 𝜆𝐖𝐮 + 𝝐. (7b)

In the above spatial models it is important to distinguish direct
from indirect impacts (frequently mentioned as spillover effects). Direct
impacts correspond to the effects that changes in one location may have
in the response variable within that same region. The indirect effects
are linked to the potential effect that changes in a certain location
may have on the response variable of neighbouring regions. Note that
indirect impact measures are only valid for models that include a
spatially lagged variable. Thus, OLS model and SEM do not provide
information regarding indirect effects.

To evaluate the importance of considering spatial dependence, sev-
eral statistics may be used to formally test for spatial autocorrelation
and decided on which model to fit. Moran’s I and Geary’s C statistics
may be used to test for spatial autocorrelation. In addition, Moran’s
I test applied to the residuals of OLS model may be used to test for
spatial dependence. However, none of these provide information on
the type of spatial dependence in linear models. For this purpose,
likelihood ratio (LR) tests may be used to guide model selection [40].
In this study, we adopt a bottom-up approach (specific-to-general) for
model specification starting with the basic non-spatial OLS model,
followed by tests for possible misspecification due to omitted spatial
effects [45]. For this purpose, the likelihood ratio tests were used to
guide model selection [40]. The values for Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC) and both the standard
adjusted 𝑅2 and the Nagelkerke pseudo 𝑅2 [46] were used to compare
the models relative fit. Models diagnosis was also based on the spatial
predicted and residuals plots for all the models. To evaluate collinearity
we examined the bivariate linear correlations matrix of explanatory
variables and calculated the Variance Inflation Factor (VIF), which is
a common tool used to measure multicollinearity. The values of VIF
indicate the magnitude of the inflation in the standard errors (decrease
in precision) due to multicollinearity. High values VIF (as a rule of
4

Table 2
Summary of global spatial autocorrelation measures.

Test Statistic value Std. Error p-value

Moran’s I 0.5535 0.0355 <0.001
Geary’s C 0.3753 0.0750 <0.001

thumb, above 5) indicate the existence of collinearity. Ultimately, the
estimated probability of urban fires occurrence was determined and
mapped across the country.

All statistical analyses were carried out in R, an open-source soft-
ware environment for statistical computing [47]. Package sf [48] was
used to read shapefiles and deal with geometry indexed objects. Spatial
autocorrelation measures were calculated using package spdep [49].
Package spatialreg [50] was used to model data accounting for spa-
tial dependence. All conclusions considered a 0.05 level of significance.

4. Results and discussion

This section presents the results of fitting the spatial models de-
scribed in Section 3 and the main findings of our research.

4.1. Exploratory data analysis

Fig. 1(A) shows the observed annual average of urban fires per km2

in mainland Portugal. The fire occurrence across the country is clearly
asymmetrical, having a generic greater incidence along the coast and
around main central cities (as Lisboa, Porto and Faro).

Fig. 1(B) depicts population density variation across the territory.
There is a clear resemblance in both spatial patterns clearly identifying
the most populated districts generally matching the ones with higher
urban fire incidence.

To quantify the level of spatial dependence and identify clusters
across space we have computed the global measures of spatial auto-
correlation Moran’s I and Geary’s C ( Table 2).

Both measures indicate that spatial clustering is significantly higher
than what would be expected to find if the underlying spatial process
would be at random (𝑝 < 0.001, Table 2). Getis–Ord’s Gi* was further
used as a local measure of spatial association to identify hot and
cold spots (Fig. 1(C)). Locations associated with positive values of Gi*
(Fig. 1(C), red clusters) point out administrative units that are highly
associated with the neighbour municipalities, being designated as hot
spots. These hot spots, mainly localized in Lisboa, Setúbal and Porto
districts, reveal a citycentric spatial pattern. In contrast, locations with
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Table 3
Summary of goodness-of-fit measures for all the fitted models.

OLS SDM SLX SAR SAC SEM SDEM GNS

Deviance 5.487 4.202 4.347 5.110 4.978 4.962 4.083 4.074
AIC −292.293 −343.271 −339.005 −302.850 −305.199 −302.494 −348.164 −346.182
BIC −274.155 −288.857 −288.219 −270.202 −268.923 −269.845 −293.749 −288.140
Log-likelihood 151.146 186.636 183.503 160.425 162.600 160.247 189.082 189.091
aR2 0.959 0.969 0.967 0.962 0.963 0.962 0.969 0.969

aAdjusted R2 for models OLS and SLX and Nagelkerke Pseudo R2 for models SDM, SAR, SAC, SEM, SDEM and GNS.
Table 4
Summary of SDEM model.

Estimate Std. Error 𝑧 𝑝

Direct effects Population density 0.00078 0.00003 25.63895 <0.00001
Degraded buildings density 0.01193 0.00280 4.26222 0.00002
Buying power −0.15525 0.02124 −7.30998 <0.00001

Indirect effects Population density −0.00028 0.00007 −4.16253 0.00003
Degraded buildings density 0.01669 0.00503 3.31827 0.00091
Buying power 0.28089 0.04530 6.20031 <0.00001

Intercept 0.04010 0.06889
negative Gi* values (Fig. 1(C), blue clusters), point out administrative
units that are weakly associated (or have no association) with the
neighbours, being designated as cold spots.

4.2. Spatial models

The non-spatial OLS and the spatial SAR, SLX, SDM, SEM, SAC,
SDEM and GNS models (Eqs. (1) to (7), Section 3), were fitted to
data, considering the explanatory variables described in Table 1. Be-
fore including spatial dependency in the models, we have examined
collinearity between these variables. The bivariate linear correlations
between the buildings density and both the population and the de-
graded buildings densities were above 0.85. In addition, VIF values
for these three variables were, respectively, equal to 10.2, 6.7 and 6.1.
Removing the buildings density from the linear predictor kept all the
VIF values under 5. Thus, this variable was dropped and the models
with the remaining variables were fitted to the data. A summary of the
obtained goodness-of-fit measures is shown in Table 3.

As mentioned, to select the best model we followed a bottom-up
approach (see Section 3), starting by fitting the OLS model. This model
presents the highest AIC and deviance values and the lowest log-
likelihood and 𝑅2 values ( Table 3), clearly indicating this model as
the worst possible option among the eight fitted models.

Fig. 2 represents schematically the model selection approach. Like-
lihood ratio (LR) test statistics supported the selection of SAR, SLX and
SEM models over OLS model (𝑝 < 0.0001). SAR model was further
compared with SAC model (𝑝 = 0.0370) and SDM (𝑝 < 0.0001) leading
to SAR model rejection. SLX was rejected while compared with SDM
(𝑝 = 0.0123) and SDEM (𝑝 = 0.0008) models. SEM was also rejected
when compared with these same models (𝑝 < 0.0001) and with SAC
model (𝑝 = 0.0301). SAC and SDM models were contrasted with GNS
model, favouring the selection of the former (𝑝 < 0.0001 and 𝑝 = 0.0267,
respectively). Finally, SDEM was compared to GNS model. SDEM has
the lowest deviance, AIC and BIC values ( Table 3). On the other
hand, considering the remaining goodness-of-fit measures, there is a
mild preference for GNS over SDEM. However, we found no significant
differences comparing GNS vs. SDEM (𝑝 = 0.8935). Thus, following the
principle of parsimony, SDEM was preferred over GNS and ultimately
selected as the most adequate model.

The estimated average number of annual urban fire events given
by each fitted model was mapped for each municipality (Fig. 3). The
estimates from SLX and SDM (Figs. 3(B) and (E)), generally underes-
timate the fire occurrences in the interior of the country and seem
to overestimate it along the Portuguese coast. Contrarily, SAR, SEM
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and SAC overestimate urban fire occurrences in the interior of the
country. The estimates from SDEM and GNS models (Fig. 3(G) and (H))
show the best approximations to the raw observations (Fig. 3(A)), when
compared to the other models (Figs. 3(B) to 3(F)). As mentioned, the
fit of these two models is quite similar and SDEM was chosen as the
best model based on the parsimony principle.

Table 4 summarizes the results for the fitted SDEM model.
Direct effects show, as expected, a positive relationship between fire

occurrences and the population density. This same effect in mentioned
in literature by, e.g, Liu et al. [2] and Zhang et al. [4]. The degraded
buildings density also has a direct positive impact on fire occurrences.
This effect is in accordance with the effects described in the literature.
In fact, as mentioned, poor housing conditions are typically associ-
ated with higher fire incidence (e.g, [23], Shai [25], Corcoran et al.
[13], Hastie and Searle [27], Anderson and Ezekoye [26]). On other
hand, consumer buying power is negatively related to the occurrence
of fire events which is also in accordance with previous results [28,
e.g].

These explanatory variables reveal significant indirect impacts,
meaning that their variation in a given unit will impact the fire oc-
currence in the neighbouring units (spillover effect). Lower population
densities in a particular municipality emerge associated to higher fire
occurrences in the neighbouring regions. In fact, a lower level in the
population density in a particular region is typically associated with
more densely populated neighbouring regions, therefore increasing, on
average, the number of fire events in those areas.

Overall, population density is the most relevant predictor. It is also
worth noting that consumer buying power stands out for its consid-
erable contribution both direct- and indirectly. The positive indirect
effect might be a reflect of the social pattern predominantly found in
central metropolitan areas where different municipalities within the
same region typically present asymmetric economic and/or education
levels [43]. Indeed, the central metropolitan areas, Lisboa and Porto,
showed to have the highest association with neighbours (Fig. 1(B)).

Fig. 4(A) depicts the spatial distribution of SDEM residuals. These
are generically low with the vast majority within the close vicinity of
0, confirming a global good model fit. Expectedly, relatively higher
residuals appear within the hotspot regions where more extreme values,
harder to accommodate by the model, were observed.

Finally, based on SDEM, we present the estimated probability of
urban fires occurrence mapped across mainland Portugal (Fig. 4(B)).

In general, municipalities with higher estimated probabilities of
urban fire occurrence are centred in the main districts, Lisboa and
Porto. Within these districts, the municipalities with higher predicted
incidence of urban fires per km2 (over 4 events/year) are Amadora,

Porto and Odivelas. These municipalities are the ones characterized by
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Fig. 2. Model specification: Specific-to-general approach. Arrows link the models being compared and point towards the selected model according to likelihood ratio tests (respective
𝑝-values given in the white background rectangles). Final selected model (SDEM) in red. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
the highest population density in Portugal (> 5000 inhabitant/km2).
Porto municipality has also the highest building obsolescence (> 70
buildings/km2, in sharp contrast with the Portuguese mean around 3
buildings/km2). As mentioned, socio-economic variables have shown to
be relevant while modelling urban fire events, namely consumer buying
power. In this regard, the higher predicted fire risk in Amadora and
Odivelas is likely associated with characteristic asymmetric economic
context within Lisboa district. In fact, Lisboa municipality, which is a
neighbour of both Amadora and Odivelas, presents the highest propor-
tion of consumer buying power within the district and this variable has
a strong positive effect in the neighbouring regions (Table 4). As such,
this indirect impact explains the increased predicted fire risk in these
two neighbour municipalities.

As underlined previously, one of the most important questions
regarding regional and national firefighting planning is related to find
the optimal FS spatial configuration both in terms of number and
location [11]. Having this issue in mind, we related the observed urban
fire incidence based with the actual number of FD in each municipality.
Fig. 5 depicts graphically this relationship showing a linear relation
between the two quantities (𝑟2 = 0.65, 𝑝 < 0.001).

The municipalities with the highest fire incidence – Amadora and
Porto – are clearly under the regression line, having less FS than
what would be expected given their fire incidence. In contrast, Oeiras,
Odivelas and São João da Madeira are distinctly above the line, thus,
having more FS than what would be expected based on the regression.
This simple linear model allowed us to find the expected number of FS
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for each municipality as a function of the annual average of urban fires
per km2. For Amadora one would expect to find 3 FS and yet it has only
1. In turn, the expected number of FS in Porto is 5, but it has only 3. In
contrast, for instance, Oeiras has 7 FS but it should be expected to have
only 4 given the observed fire incidence. However, having noticed that,
it is important at this point to stress that the above comment, although
seems note worth, elapses from a rather simplistic analysis lacking in
considering fundamental factors such as, e.g., both the occurrence of
rural fires and the FS dimensions and resources.

5. Conclusions

In this work we studied comparatively seven different spatial mod-
elling strategies to model urban fire occurrence across mainland Por-
tugal. Considering space dependence in addition to a range of social-
economic explanatory variables has proven to strengthen the validity
of the fitted model in opposition to adopting the standard classical
regression approach.

The spatial Durbin error model (SDEM) was selected among the
several modelling approaches as having the best fit, explaining around
97% of the variability in data. Based on this model we found evidence
that variables such as population density, degrade buildings density
and buying power have both direct and indirect significant impacts. On
average, as expected, the increase of the population density (associated
with the increase of building density) and the number of degraded
buildings or in need of repair have shown to increase the average
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Fig. 3. (A) Observed urban fire incidence (annual average of urban fires per km2) and predicted urban fire incidence by models (B) SLX, (C) SAR, (D) SEM, (E) SDM, (F) SAC,
(G) SDEM and (H) GNS.
number of urban fires both in own- and neighbouring municipalities. In
contrast, on average, the increase of the buying power in a particular
municipality decreases directly the number of urban fires and, by a
spillover effect, increases indirectly the number of urban fires in the
neighbour municipalities. These effects are in line with the relations
described in literature. In fact, high population density is one of the
most frequent predictors associated with the increase of urban fire
probability [10, e.g]. Factors associated with socio-economic disadvan-
tages, such as building degradation and low buying power, are often
mentioned in literature as increasing the fire risk [31, e.g.]. Negative
spatial effects as the ones found in relation to the buying power are
typically associated with the urban social patterns that commonly
characterize central metropolitan areas where different municipalities,
within the same area, frequently present sharp asymmetries in both
economic and education domains [43, e.g.].

The fitted spatial model allowed to map the estimated probability
of fire occurrence across Portugal. By allowing to easily visualize the
region’s most prone to fire incidence this map may be a valuable tool
namely for planning and implementing education programs to promote
7

a more informed population about fire risks and safety measures. In
addition, by exposing a clear spatial pattern with clusters centred on the
two main Portuguese city districts (Lisboa and Porto) it also highlights
the impact that an adequate territorial planning, focused on areas with
high population/building densities, could have on preventing urban
fires.

The relation between the observed urban fire incidence and the ac-
tual number of FS in each municipality highlights the need for planning
the spatial configuration of fire stations, both in number and location,
at a regional scale. Since this configuration may considerably influence
the effectiveness of the provided services, national and regional govern-
ments need research-based advice on how many and where firefighting
facilities should be established. Hence, we suggest further research
aiming at optimizing the number and locations of FS to ensure the
best possible system performance. Moreover, current Portuguese legis-
lation [51] defines the items that must be deployed when considering
the degree of readiness for urban firefighting. However, these legal
requirements address risk assessment and risk treatment considering
only the notion of ‘‘special buildings’’ (e.g., schools, hospitals, shopping
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Fig. 4. (A) Spatial distribution of SDEM residuals and (B) Estimated probability of fire occurrence based on SDEM model predictions.
Fig. 5. Relation between the number of fire departments and the annual average of urban fires per km2.
malls). Our results suggest that considering the probability of occur-
rence of urban fires, while defining risk assessment and risk treatment,
could potentially contribute towards a more accurate definition of these
concepts.

To the best of our knowledge, this is the first study that models the
urban fire incidence using spatial modelling techniques in relation to
socio-economic characteristics on a global scale in mainland Portugal.
We conclude suggesting that spatial analytical techniques should be
further applied in main districts to explore local dynamics and model
the relationship with social-economic and -demographic features on a
micro-level urban fire incident data.
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