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A B S T R A C T   

Processes and products are multidimensional so researchers and practitioners have to solve problems with 
multiple objectives frequently. These problems have, in general, responses in conflict so they do not have a 
unique solution. Different approaches have been proposed in the literature to solve these problems, but many of 
them, including the popular desirability function approach, are not employed with the focus on the generation of 
Pareto frontiers. In addition, it is important to stress that some Pareto solutions may not yield the expected 
outcome(s) when implemented in practice. Thus, to avoid wasting resources and time in implementing a theo
retical solution which does not produce the expected outcome(s), in this paper is proposed a novel metric to 
assess the resilience of Pareto solutions. This way, the decision-maker may identify a solution less sensitive to 
changes in the variables setting when their values are implemented in production process (equipments) or during 
its operation. Metric usefulness is illustrated using a case study, and results analysis is complemented with plots 
that facilitate the decision-making process.   

1. Introduction 

Optimization in chemistry by manipulation of one variable at a time 
is no longer a predominant practice. Instead of it, multivariate statistic 
approaches have been often applied and Response Surface Methodology 
(RSM) is among the most popular ones, if not the most often used. In 
fact, this methodology and its advantages are thoroughly exposed in 
books as well as in scientific papers so there is no reason to ignore or 
misapply the RSM. Guidelines on the planning, conducting, and analysis 
of statistical designed experiments are reported, as example, in Refs. 
[1–3]. 

A usual problem faced by researchers and practitioners in all 
branches of chemistry is the simultaneous optimization of multiple ob
jectives [4–9]. Aggregating the multiple objectives (responses) into a 
single optimization index is a current practice, and desirability function 
indexes are often used for this purpose. An extensive review on desir
ability functions is presented in Refs. [10,11], and a collection of works 
in chemistry where the most popular desirability function, the called 
Derringer & Suich desirability function is employed, is presented in Refs. 
[12,13]. Criticisms to these type of optimization functions are also re
ported in the literature, including the subjective information (weights 
and/or shape factors) required from the analyst or decision-maker and 
the non-optimality of generated solutions [14,15]. 

To validate the solution generated from the Derringer & Suich 
desirability function [16], which is predominant in the optimization of 
multiresponse problems [12,13], in chemistry and in many other science 
fields, most researchers and practitioners run one or more confirmatory 
experiments. However, this is done with no guaranty of the optimality or 
any technical evaluation of the selected solution in terms of its repro
ducibility. This may result in wasting resources and time if the selected 
solution does not yield the expected outcome (process or product 
improvement or conformance with the specifications) when it is 
implemented in production process (equipments), or during its opera
tion. To avoid it, or at least to minimize the gap between theoretical and 
practical results, in this paper a new and easy-to-implement tool to 
assess the resilience of nondominated (Pareto) solutions, i.e., the 
sensitivity of Pareto solutions to changes in the input variables setting, 
including to truncation and rounding, is proposed. 

The remaining of the paper is structured as follows: next section 
includes the framework to introduce the proposed metric to select Par
eto solutions. Section 3 includes one case study to illustrate the useful
ness of the proposed metric, and discuss the results. Conclusions are 
presented in Section 4. 
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2. Materials and methods 

When the objective is to optimize several responses, it is expected to 
have conflicting responses. For this purpose, a widely accepted and 
employed approach is the simultaneous optimization of multiple re
sponses. A set of solutions, as complete as possible in terms of cardi
nality, uniformity, and coverage [17], where any improvement in one 
response cannot occur without degrading the value of, at least, another 
response, are of particular preference for those who want to solve 
multiresponse problems. These are called nondominated (Pareto 
optimal or simply Pareto) solutions. However, many of the non
dominated solutions may lead to process operation conditions or process 
and product outputs that are less favourable in technical and/or 
economical terms [18,19]. 

The variety and quantity of optimization methods or criteria put 
forward in the RSM literature for solving multiresponse problems are 
large, however, the ability of those methods or criteria to depict Pareto 
frontiers has been rarely evaluated. Exceptions are [14,17,19–23]. 
Regarding the quality, or evaluation, of Pareto frontiers, the reader is 
referred to Refs. [24,25]. 

To represent the Pareto frontier in a plot may provide useful infor
mation to aid the decision-maker in interpreting the results and justi
fying his/her choice for a particular Pareto solution. Examples of 
graphical approaches includes the parallel coordinates plot [26], cluster 
mapping plot [27], Level Diagrams [28], synthesized efficiency plot 
[29], Desirability-Weight-Input-Volume (DWIV) plot [30] and mixture 
(ternary) plot [15]. To improve the n-dimensional Pareto fronts graph
ical analysis, the called asymmetric distance was proposed in Ref. [31]. 
Other solution selection strategy (procedure) based on one or more 
metrics has been an alternative. Examples of those metrics include:  

i) the desirability synthesized efficiency [32];  
ii) the Bias (the sum of the differences of normalized responses value 

to their target), the Quality of Predictions (response’s variance 
due to models coefficients uncertainty), and Robustness (re
sponse’s variance due to noise factors) [33,34];  

iii) the prediction standard error metric, as alternative to Quality of 
Prediction metric [35];  

iv) implementation error and its interaction with responses model 
coefficients uncertainty in addition to bias, quality of predictions, 
and robustness [36];  

v) the Pareto Uncertainty Index [37];  
vi) the sum of ranking differences [38];  

vii) the Technique for Order Preference by Similarity to the Ideal 
Solution- TOPSIS [39];  

viii) the Analytical Hierarchy Process- AHP [40]. 

Other proposed solution selection strategy are the following:  

i) to consider in the objective function the correlation among noise 
factors and intermediate response variables [41];  

ii) take into account the experimental or estimation errors (related 
to unknown variables or noise) and errors of implementation 
(related to the oscillation of responses model coefficients when 
they are set on the machine or process) in the objective function 
[42];  

iii) to use capability ratios where the variances of the models are 
taken as the components of natural variability, while the differ
ences between the expected values and the nadir (worst) points 
are taken as the components of allowed variability [43];  

iv) to consider the expectation and variance of the called squared 
error loss simultaneously [44];  

v) to use a parameter-free solution ranking based on two concepts: 
an extended angle-based dominance technique from the algo
rithm called Adaptive angle-based pruning Algorithm (ADA) for 

discovering the knee solutions and the inverse-square law of light 
for enhancing the diversity of solutions [45];  

vi) to use multiobjective evolutionary algorithms that iteratively 
updates a set of weight vectors to identify the Pareto optimal 
solutions that are close to reference points [46];  

vii) to use multiobjective evolutionary algorithms that incorporate 
the DM’s predefined target points within the region of interest on 
the Pareto front [47];  

viii) to use multiobjective evolutionary algorithms that rank the 
optimal solutions based on their distance from ideal and anti- 
ideal solutions [48]. 

The list of previous cited papers is not exhaustive. The main concern 
in their selection was to present recent papers, published in relevant 
journals, that cite a collection of other papers that must be not ignored 
by those who use RSM and need to solve multiresponse problems. 

2.1. Pareto solutions resilience 

Multiresponse problems often involve the simultaneous minimiza
tion and/or maximization of k objectives, and can be formulated for the 
case of maximization as (1): 

maximize {f1(x), f2(x), …, fk(x)}  

subject to: x ∈ X                                                                             (1) 

where f1(x), f2(x), …, fk(x) are k objectives (functions or responses) to be 
maximized, x is the decision vector, and X is the set of feasible solutions. 
The most favourable solutions to these problems are, from a theoretical 
point of view, called nondominated or Pareto solutions. A decision 
vector x1 (x1 ∈ X) is said to Pareto dominate a decision vector x2 (x2 ∈ X), 
or by other words is nondominated, usually denoted as x1≻x2, if and 
only if 
{

fi(x1) ≥ fi(x2), for all i ∈ {1, 2,…, k}
fi(x1) > fi(x2) for at least one i ∈ {1, 2,…, k} (2)  

In multiresponse problems, where responses are usually in conflict, the 
number of Pareto solutions is typically large, which makes it difficult to 
select the best one to implement in the production process (equipments). 
Moreover, there is no guarantee that the values of future observed re
sponses in the production process will be equal to the theoretical esti
mated responses due to the natural variability in the process, 
uncertainty associated with the estimated response values, truncation or 
rounding of the input variables value, reliability of the data collected, 
and other planning and technical errors [2,3]. Thus, assuming that the 
experiments were well planned and conducted, and their results 
appropriately analysed, a novel metric, the gradient norm, is used in this 
paper to assess and rank the nondominated solutions in terms of their 
resilience (sensitivity to truncation, rounding, and perturbations in the 
variables setting when implemented in the production process (equip
ments) or during its operation). 

To better understand the impact of small changes (adjustment, 
variation, …) in variable settings over the solutions resilience, let’s as
sume that Fig. 1 is a graphical representation of a univariate polynomial 
function f(x). Solution x*

2 corresponds to a point in the response surface 
whose slope is lower than that of x*

1 so it will be more likely to achieve 
the f(x*

2) value when solution x*
2 is implemented in the production 

process than the f(x*
1) value by implementing solution x*

1. In fact, if the 
same change (Δ) in x*

1 and x*
2 values occurs, one can see in Fig. 1 that 

f(x*
1 ±Δ) - f(x*

1) ≫ f(x*
2 ±Δ) − f(x*

2), which means that solution x*
2 is 

more resilient or, by other words, its reproducibility is much higher than 
that of x*

1. 
In supplement to works that, in addition to bias, focus on the 

assessment of solutions’ quality of prediction and solutions’ robustness 
[34–36,44,49], this paper introduces a new metric for ranking the 
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resilience of Pareto solutions, the Gradient Norm [50,51]. This metric 
will aid the decision-maker in taking a more informed decision when 
he/she selects an optimal solution for solving a multiresponse problem. 
In practice, he/she can argue that a Pareto solution is more resilient than 
another one if the coordinates of the Pareto solution correspond to a 
point in the n-dimensional surface defined by f(x) whose magnitude of 
the gradient at x (slope) is much lower than that of other solutions. 

2.2. Gradient method 

In optimization problems developed under the RSM framework, the 
function f(x) or response is defined, in general, by a second order 
polynomial function whose graphical representation is a curved surface. 
The gradient of a scalar function f(x) is a multidimensional derivative of 
that function, and it is represented by ∇f(x), called a vector field, where 
∇ is called Nabla-Operator. For a n-dimensional scalar function 
f(x1,x2,x3,⋯,xn), 

∇f (x)= [∂f (x) / ∂x1, ∂f (x) / ∂x2, ∂f (x) / ∂x3,… , ∂f (x) / ∂xn] (3) 

The derivative of f(x1,x2,…, xn) at each one of the directions 
(x1,x2,…, xn) represents the slope in the response surface according to 
that direction (or spatial coordinate). Thus, as higher the slope of the 
surface is, as greater the gradient value will be. The maximum slope at x 
of a surface defined by f(x1, x2,…, xn) is achieved by the gradient norm 
(4), and as higher the slope is, as greater the change in f(x) value will be 
for a small increment or decrement in the settings of spatial coordinates 
(x1, x2,…, xn). 

‖∇f (x)‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂f (x)
∂x1

)2

+

(
∂f (x)
∂x2

)2

+ … +

(
∂f (x)
∂xn

)2
√

(4)  

In a multiresponse problem, the change in each response (f(x)) value 
due to small increment or decrement in the settings of (x1, x2,…, xn)

must be as small as possible in order to get the desired response’s 
resilience. Note that response’s resilience must be as high as possible to 
guarantee the expected reproducibility of the selected solution in the 
production process (equipments). 

Pareto solutions are of special interest to the decision-maker for 
solving a multiresponse problem because, theoretically, they allow to 
achieve the best compromise among the responses. However, some 
Pareto solutions may not yield the expected value for one or more 
functions when implemented in production processes (equipments). 
This means that it will be useful to rank Pareto solutions in terms of their 

resilience. For this purpose, the metric suggested here is (4). 
The most favourable Pareto solution is the one that, for all the k 

functions simultaneously, yields the smallest gradient norm value, i.e., 
has the highest resilience. However, this may not occur. In this case, 
solution selection process can be more problematic, requiring a 
compromise among responses whose priority may be not unequivocal. 
In practice, the decision process may include, among other decision- 
maker’s options, the following one:  

- Select the optimal solution achieved from (5), 

rGN =min

(
∑

i
wi

(
⃦
⃦∇fi

(
x*

m

)⃦
⃦
/

max‖∇fi(x)‖

))

(5)  

where rGN stands for relative gradient norm, wi is the weight or priority 
assigned by the decision-maker to the i-th response (i = 1, 2, …, k), with 
∑

iwi = 1, x*
m represents the variables setting of the m-th Pareto solution 

(m = 1, 2,…, p), and max
⃦
⃦∇fi(x)

⃦
⃦ is employed to normalize the re

sponses values. 
Note that solutions with high gradient norm value (low resilience) 

are not recommendable because this means that those solutions are 
highly sensitive to small changes in variables settings, namely due to 
truncation and rounding of the variable values required to implement 
them in the production process (equipments) or due to changes in their 
value during production process (equipments) operation. In practice, 
this implies that production process (equipments) behaviour or the 
characteristics of their output will be not the expected ones or, by other 
words, the theoretical value achieve for each response from data anal
ysis will be not reproduced during production process (equipments) 
operation. To avoid it, and when weights or priorities are assigned to 
responses, the decision-maker must select the Pareto solution whose rGN 
value is the smallest one. 

3. Results and discussion 

To show the usefulness of the proposed metric, i.e., to assess the 
resilience of Pareto solutions, a classical case study was selected from 
the literature [1,25,52]. The study objective is to simultaneously opti
mize three responses in a chemical process: maximize the yield (f1(x)), 
set viscosity (f2(x)) on target, and minimize the molecular weight 
(f3(x)). The controllable variables are the reaction time (x1) and the 
reaction temperature (x2). Experiments were run using a Central Com
posite Design, and the observed responses are shown in Table 1. 

The models fitted to responses in coded variables, such as presented 
in [1, 25, 52] are 

f̂1 (x)= 79.94 + 0.995x1 + 0.515x2 + 0.250x1x2 – 1.376x2
1 – 1.001x2

2 (6)  

f̂2 (x)= 70.00 – 0.155x1 – 0.948x2 – 1.250x1x2 – 0.688x2
1 – 6.688x2

2 (7)  

f̂3 (x)= 3386.15 + 205.10x1 + 177.35x2 (8)  

and responses constraints are the following: f1(x) ≥ 78.5; 62 ≤ f2(x) ≤ 68 
with target value equal to 65; f3(x) ≤ 3300. 

Figs. 2–4 show the response surface for each response separately, the 
range of response values, and the location of the Pareto solutions set. 
These figures also enables to visualize the range of operating conditions 
(xi values) that produce the desired output for each response. The pre
sented responses surfaces are not similar neither in shape nor in slope, 
which highlights the need of the gradient norm for assessing and 
selecting a solution for multiresponse problems. The overlaid of contour 
plots shown in Fig. 5 provides a visualization of the Pareto solution set 
location for the three responses and the range of xi values. In this case, 
the Pareto set location is in a region delimited by 78.5 ≤ f̂1 (x) ≤ 79.26, 
64.98 ≤ f̂2(x) ≤ 68, and 3175.8 ≤ f̂3(x) ≤ 3284.30. 

Fig. 1. Resilience of f(x) solutions.  
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The Pareto set represents the collection of solutions from where the 
solution for solving a multiresponse problem must be selected. However, 
Pareto solutions with a high gradient norm value should not be a priority 
choice because they will generate unexpected outputs due to truncation, 

rounding or changes in the input variables setting when implemented in 
production process (equipments) or during its operation, respectively. 
Figs. 6–8 show the gradient norm for each response and the respective 
range of xi values, taking into account the constrains in the responses 

Table 1 
Experiments and Response values.  

Natural Variables Coded Variables Responses 

Time (min) Temperature (◦F) x1 x2 f1(x) (Yield) f2(x) (Viscosity) f3(x) (Molecular weight) 

80 170 − 1 − 1 76.5 62 2940 
90 170 1 − 1 78.0 66 3680 
80 180 − 1 1 77.0 60 3470 
90 180 1 1 79.5 59 3890 
77.93 175 − 1.414 0 75.6 71 3020 
92.07 175 1.414 0 78.4 68 3360 
85 167.93 0 − 1.414 77.0 57 3150 
85 182.07 0 1.414 78.5 58 3630 
85 175 0 0 79.9 72 3480 
85 175 0 0 80.3 69 3200 
85 175 0 0 80.0 68 3410 
85 175 0 0 79.7 70 3290 
85 175 0 0 79.8 71 3500  

Fig. 2. Pareto solutions set and f̂1 (x) response surface.  

Fig. 3. Pareto solutions set and f̂2 (x) response surface.  

Fig. 4. Pareto solutions set and f̂3 (x) response surface.  

Fig. 5. Pareto solutions set and Overlaid Contour plot of responses.  
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value, and include the maximum value (upper limit) of gradient norm 
value. In these figures it is apparent the different shape and magnitude of 
the gradient norm, which means that the gradient norm value of the 
Pareto solutions cannot be ignored in the solution selection process. The 
gradient norm value must be as low as possible to ensure that the 
selected solution has a resilence as high as possible to guarantee its 
reproducibility when implemented in production process (equipments) 
ou during its operation. It is important to highlight that to calculate the 
gradient norm value does not require from the data analyst a significant 
background in mathematics. This is an easy task because, for problems 
developed in the RSM framework, it consists in calculating derivatives of 
polynomial functions. 

Fig. 9 shows Pareto solutions set delimited by the gradient norm 
values of each response, namely 1.922 ≤ ‖∇ f̂1(x)‖ ≤ 2.715, 7.383 ≤ ‖∇

f̂2 (x)‖ ≤ 11.668, and 
⃦
⃦∇ f̂3(x)

⃦
⃦ = 271.15. These values show a variation 

in the functions gradient norm values approximately equal to 41% for 
f̂1 (x) and 58% for f̂2(x), which means that the difference between 
theoretical and practical results for these responses can be significant. In 
this case study, the gradient norm value of f̂3 (x) is constant, which 
simplified the solution selection. Nevertheless, to identify a Pareto so
lution whose gradient norm value is the smallest for all responses 
simultaneously, in order to guarantee the reproducibility of the theo
retical responses values in the production process (equipments), it is not 
easy, if at all possible. 

To select a solution from the Pareto set, the decision-maker may 
assign priorities to responses based on his/her preferences, namely 
technical and economical considerations, and taking into account the 
solutions reproducibility (the risk of responses value are very different 
from the theoretical ones) when implemented in production process 
(equipments) or during its operation. An approach to implement this 
procedure may consists in using the criterion (5). In this case, the 
decision-maker can test various combinations of wi values and to iden
tify a solution of higher resilience. The wi values may depend on tech
nical, economic, and other subjective decision-maker’s preferences. 
Thus, when he/she is uncertain about the choice of wi values, to decide 
without understanding the impact of these subjective choices is not 
recommendable, because it may lead to the selection of a solution with 
lower resilience. 

Fig. 10 displays the Pareto solutions gradient norm values achieved 
from rGN (5), for all combinations of (w1,w2) values. As an example, for 
(w1,w2) = (0.7,0.3) the rGN = 0.669 whereas for (w1,w2) = (0.2,0.8)
the rGN = 0.623. A similar solution selection procedure is applied if 

⃦
⃦∇

Fig. 6. Gradient norm surface for f̂1 (x) and Pareto solutions set.  

Fig. 7. Gradient norm surface for f̂2 (x) and Pareto solutions set.  

Fig. 8. Gradient norm surface for f̂3 (x) and Pareto solutions set.  Fig. 9. Overlaid contour plot of gradient norm values and Pareto solutions set.  
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f̂3(x)
⃦
⃦ value was not constant, what occurs when a second or higher 

order model is fitted to this response. In this case a mixture (ternary) plot 
may be utilized for aiding in the decision-making process [25]. Other 
graphical representation may accommodate a high number of responses, 
such as shown in Ref. [22]. Nevertheless, it is important to note that 
when the number of responses increase, the computational burden to 
identify a representative set of Pareto solutions and the number of 
candidate solutions will increase substantially as well. In these cases, 
making effective comparisons between alternatives becomes more 
difficult. Consequently, it is important to carefully bound the number of 
responses to consider, without losing the ability to solve the problem. In 
these cases, though there are sophisticated approaches for Pareto solu
tion visualization and evaluation, to facilitate the solutions ranking and 
the selection of a nondominated solution of decision-maker preference, a 
summary table will be appropriate. In fact, for more than three input 
variables, a summary table may provide the simplest summary of the 
results (variables settings, Pareto solutions, gradient norm values and 
other metrics of interest), and facilitate the solutions ranking and, 
consequently, the solution selection process. Regarding the calculus of 
the gradient norm values, this is a much more laborious task if responses 
modelling tools like Support Vector Machine and Gaussian Process 
regression are used instead of other like ordinary, partial, and general
ized least squares. 

4. Conclusions 

This paper presents a new and easy-to-implement tool to select a 
solution from the Pareto solutions set. It can be applied by those who use 
responses aggregation indexes, as the popular desirability index, or any 
other method to generate solutions for multiresponse problems. More
over, its application is not limited to problems developed in the RSM 
framework. 

Solutions resilience has not been considered by researchers and 
practitioners so a metric to assess Pareto solutions resilience is proposed 
and its usefulness illustrated. This metric and the associated criterion for 
selecting a solution must be used by those who are engaged with mul
tiresponse problems and want to avoid wasting resources and time in 
implementing theoretical solutions in production process (equipments) 
that do not produce the expected product or equipment behaviour. 
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