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a b s t r a c t

The study reports that the combined use of in situ interlayer hot forging and post-deposition heat treatment 
(PDHT) could alter the typical coarse and oriented microstructure of the Ni-based superalloy 625 obtained 
by arc plasma directed energy deposition (DED) to a fine and non-oriented condition. In situ synchrotron X- 
ray diffraction and electron backscatter diffraction showed that the high-temperature (1100 °C/ 1 h) PDHT 
induced significant recrystallization, leading to grain refinement and low texture index, while partially 
dissolving deleterious Laves and δ phases. Low-temperature (980 °C/ 1 h) PDHT had a limited effect on the 
grain size refinement and induced the formation of secondary phases. It is shown that conventional heat 
treatments applied to Ni-based superalloy 625 obtained by arc plasma DED are not conducive to optimized 
microstructure features. In situ hot forging induced enough crystal defects to promote static re-
crystallization during PDHT. Besides, high-temperature PDHT met the AMS 5662 grain size requirements.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ni-based superalloys (e.g., Inconel® 625 and 718) fabricated via 
fusion-based additive manufacturing (AM) processes (e.g., directed 
energy deposition – DED, ISO/ASTM 52900) typically possess a 
coarse and oriented microstructure with intense interdendritic 
segregation, which results in anisotropic and inferior mechanical 
properties, low heat treatment response, and poor corrosion re-
sistance [1–9]. To overcome these process limitations, strategies to 
refine the grain size have been developed, e.g., using inoculants, 
ultrasound vibration, thermal management, magnetic field stir, and 
interlayer deformation [10–15]. The latter stands out for refining the 
grain size through in situ and ex situ recrystallization mechanisms 

without affecting the material specification (chemical composition) 
and deposition process conditions. Among interlayer deformation 
processes, it can distinguish the rolling and hammer/peening/for-
ging, which were classified by the temperature (cold – below – and 
hot – above the recrystallization temperature, respectively) and 
deformation mode (almost homogeneous and quasi-static – rolling – 
and localized and dynamic – peening/hammering/forging) [16].

The interlayer deformation was first used to enhance the fatigue 
life of weldments and improve weldability [17–20]. However, given 
the intricate 3D part geometries related to AM, these previously 
developed deposition + interlayer deformation systems were not 
used due to the path planning limitations, which demanded the 
development of dedicated tools to be applied to the AM field. In 
addition, even the dedicated (hot and cold) rolling interlayer de-
formation systems developed for AM showed path planning lim-
itations [21], which may hinder its industrial scalability, highlighting 
the hammer/peening/forging interlayer deformation systems by the 
ability to be coupled to robotic arms [14]. Additionally, alloys fab-
ricated by arc plasma DED (e.g., AISI 316 L stainless steel [22], In-
conel® 718 [23,24], and Al series 2xxx [25]) had suitable workability, 
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which supports the promising use of the DED + interlayer (cold or 
hot) deformation systems.

Zhao et al. [26] and Li et al. [27] applied hot interlayer de-
formation during laser-DED of solid-solution strengthened Ni- 
based superalloys (Ni 60 and Ni80-Cr20, respectively). These au-
thors reported a less oriented microstructure, higher hardness, and 
low wear rate in relation to conventionally processed laser-DED 
counterparts. Precipitation-strengthened Ni-based superalloys 
(Inconel® 718) fabricated via DED + interlayer deformation showed 
a remarkable grain size refinement (static recrystallization) during 
the mandatory post-deposition heat treatment (PDHT, e.g., solution 
+ double-aging) [15,28–30], which resulted in grain size and quasi- 
static mechanical properties similar to that of wrought material 
(meeting the AMS 5662 grain size requirement). In addition, 
Farias et al. [31] demonstrated the beneficial synergic action of the 
in situ interlayer hot forging and PDHT to refine the grain size of 
the Inconel® 625 fabricated via arc plasma DED; however, the mi-
crostructure evolution over the PDHT soaking time has not been 
elucidated.

Thus, given the typical columnar coarse grain and highly textured 
microstructure of Inconel® 625 obtained by arc plasma DED [1–8]
and the grain size refinement induced by the interlayer deformation 
and PDHT observed for Inconel® 625 [31] and 718 [14–16,28–30,32], 
the present work evaluates the microstructure evolution during the 
standard PDHTs (980 and 1100 °C/ 1 h) of the of Inconel® 625 fab-
ricated via in situ interlayer hot forging arc plasma DED using in situ 
synchrotron X-ray diffraction (SXRD) and ex situ electron backscatter 
diffraction (EBSD).

2. Materials and methods

The in situ hot forging arc plasma DED 3D printer, which was in- 
house developed,) [14,33] consisted of a KEMPY PRO MIG 3200 
welding and 3-axis CNC machines, which was used to deposit the 
Inconel® 625 (AWS A5.14 ERNiCrMo-3; 1.2 mm) single-bead multi- 
layer walls on ASTM A36 Q235 steel plates. Fig. 1 and Table 1 detail 
the in situ interlayer hot forging system and deposition parameters, 
respectively. Fig. 2 depicts the macroscopical aspects of the in 
situ interlayer hot forging arc plasma DED of Inconel® 625, high-
lighting the flat layer surface and typical part waviness, which 
showed the process's suitability to print medium to large metal 
parts. For more details on the in situ interlayer hot forging process, 
the readers are referred to Duarte et al. [14,33] and Farias et al. [31].

PDHT usually do not alter the grain size and morphology of Ni- 
based superalloys obtained by arc plasma DED [1,2,29,30,3–8,15,28]. 
Thus, the effect of conventional heat treatments applied to Inconel® 
625 was evaluated in an in situ interlayer hot forging arc plasma DED 
counterpart. PDHTs (Fig. 3a), solution (1100 °C/1 h) and stabilization 
(980 °C/1 h), conditions were selected based on the Inconel® 625 
wrought material specification (ASTM B 446). In situ SXRD (HEMS 
beamline of PETRA III/DESY, Hamburg, Germany) was executed 
during the PDHT schedules (Fig. 3b details the experimental appa-
ratus). SXRD acquisition rate, exposure time, wavelength, and spot 
size (area covered by the X-ray beam) were 0.25 Hz, 4 s, 0.14235 Å, 
and 1 × 1 mm², respectively. The 2D Debbye-Scherrer diffraction 
rings were post-processed in Fit2D [34] and followed the Ro-
drigues et al. [35,36] procedure.

After PDHTs (ex situ), the final grain size (measured using the 
intercept method – following ASTM E112) and crystallographic or-
ientation (represented by pole figures and orientation distribution 
function – ODF using the Bunge notation) were evaluated through 
large EBSD maps (1.95 × 1.95 mm²; Fig. 3c), which were obtained 
from in the interlayer region (between the 7th and 8th layers). The 
EBSD data post-processing was performed using the MTEX 
toolbox [37].

3. Results and discussion

3.1. Post-deposition heat treatment (PDHT) – Ex situ EBSD

Fig. 4 summarizes the effect of the PDHTs on Inconel® 625 fab-
ricated via in situ interlayer hot forging arc plasma DED. Three dis-
tinct regions can be observed: (1) fine grain size region, which 
originated from the in situ dynamic recrystallization (hot forging 
effect); (2) static (ex situ) recrystallized region (PDHT effect); and (3) 
unchanged columnar grains, resulting from the primary solidifica-
tion microstructure. As described by Duarte et al. [14,33], the direct 
forging on the incandescent just deposited material 
(∼ 900 – 1100 °C) induces dynamic recrystallization, leading to a fine 
and equiaxed grain structure at the layer top surface. The rest of the 
layer, where in situ dynamic recrystallization does not occur, still 
possesses remaining deformation due to the in situ interlayer hot 
forging. The remaining deformation can drive static recrystallization 
during PDHT (as observed in region (2)), characterizing a double 
grain size refinement mechanism (in situ and ex situ), as verified in 
our previous work [31] and also proposed by Wang and Shi [39]
(Inconel® 718 fabricated via in situ interlayer ultrasonic impact pe-
ening laser-DED). However, due to the higher layer height (4 – 6 mm) 
of the arc plasma DED in relataion to laser-DED [29,39], the hot 
forging deformation does not affect the whole layer, i.e., a primary 
microstructure (region (3), refer to Fig. 4) persists.

Region (1) had an almost similar extension and grain size in both 
PDHTs, 24.19  ±  6.1 and 39.11  ±  11.4 µm for the solution and stabili-
zation conditions, respectively. This was expected since region (1) 
rose from the hot forging process. In addition, static recrystallization 
(during PDHT) can also occur in the region (1), which explains the 
finer grain size of the solution PDHT condition. Region (2) diverged 
significantly between PDHTs, especially in extension (∼ 950 vs. 
440 µm for solution and stabilization, respectively). In addition, the 
average grain size of the solution PDHT was finer than the stabili-
zation one (56.57  ±  32.1 vs. 74.03  ±  25.9 µm). Also, the solution 
PDHT (ASTM E112 grain size No. 5) accomplished the AMS 5662 and 
API 6A718 grain size requirements (ASTM E112 grain size No. ≥ 5 and 
≥ 3, respectively), showing that the in situ interlayer hot forging arc 
plasma DED industrial suitability. Due to the lower deformation 
induced during the deposition process in relation to laser-based 
additive manufacturing processes, Ni-based superalloys fabricated 
via arc plasma DED did not present evidence of static recrystalliza-
tion during the typical PDHT [5,6,15,40–45], which prevents grain 
size refinement via static recrystallization (i.e., maintaining the 
coarse and oriented columnar grains) and, consequently, limits the 
use of Ni-based superalloys fabricated via arc plasma DED in mis-
sion-critical applications (not meeting the rigid materials require-
ments, e.g., oil & gas – API 6A718 – and aviation – AMS 5662 – 
industries). The present work shows that the coarse grain size 
challenge observed for Ni-based alloys fabricated via arc plasma DED 
can be overcome using the in situ interlayer hot deformation fol-
lowed by an adequate PDHT (1100 °C/ 1 h).

The effect of PDHT peak temperature (980 and 1100 °C) can be 
related to the driving force for recrystallization since a higher tem-
perature increases the transformation kinetics and induces deeper 
recrystallization through the layer height (the deformation induced 
by hot forging is higher closer to the layer top surface). This can be 
verified by the kernel average misorientation (KAM) maps, which 
demonstrate that the stabilization PDHT had higher KAM than the 
solution PDHT condition, i.e., the stabilization PDHT did not promote 
a complete recrystallization in all regions, failing to relieve the re-
maining deformation induced by the in situ interlayer hot forging. 
Despite the Inconel® 625 obtained by arc plasma DED does not have 
a mandatory PDHT, in situ grain size refinement (via dynamic re-
crystallization, i.e., interlayer hot forging effect) is insufficient to 
change the as-built microstructure noticeably, as previously 
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Fig. 1. In situ interlayer hot forging arc plasma DED system: (a) isometric view and (b) cross-section details. (c) Schematic representation of the deposition process. 

Table 1 
In situ interlayer hot forging arc plasma DED parameters. 

Arc plasma DED

Electric current* 72.1 [A]
Arc voltage* 17.1 [V]
Wire feed speed 3.5 [m/min]
Travel speed 5.0 [mm/s]
Heat input† 209.6 [J/mm]
Idle time 90 [s]
CTWD‡ 10 [mm]
Shielding gas/flow Ar/15 l/min
Hot forging
Pneumatic pressure 500 [kPa]
Frequency 8 [Hz]

* Root-mean-square
‡ Contact tip to work distance
† Thermal efficiency (η = 0.85) [38]

Fig. 2. Macroscopic aspects of the in situ interlayer hot forging arc plasma directed 
energy deposition of Inconel® 625: (a) side view, (b) top view, and (c) cross-section of 
a single-bead multi-layer 3D printed part.
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Fig. 3. (a) Solution and stabilization post-deposition heat treatments (PDHT), (b) in situ SXRD and PDHT set-up, and (c) location in the sample where the EBSD and in situ SXRD 
analyses were performed.

Fig. 4. Ex situ EBSD analysis. Stabilization (980 °C/1 h) PDHT: (a) image orientation map (IOM) and (c) kernel average misorientation (KAM). Solution (1100 °C/1 h) PDHT: (b) IOM 
and (d) KAM. GS mean grain size.
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reported by Farias et al. [31], Zhao et al. [26], and Li et al. [27] (solid- 
solution strengthened Ni-based superalloys fabricated via interlayer 
deformation DED), reinforcing the synergic effect of in situ interlayer 
hot forging (induce enough crystal defects) and selected PDHT (drive 
static recrystallizing) in promoting a significant grain size re-
finement.

As a consequence of the ex situ static recrystallization during the 
PDHT, the crystallographic texture (Fig. 5, Fig. 6, and Fig. 7) also 
depends on the PDHT peak temperature. The pole figures (Fig. 5) 
show that the stabilization PDHT did not alter the typical cube 
texture ({100} < 100  >) aspect of the Ni-based superalloys obtained 
via arc plasma DED [1–8]. The finer grains (regions (1) and (2)) had 
an almost random-oriented microstructure (Fig. 6 and Fig. 7); thus, 
as the solution PDHT promoted a significant grain refinement, its 
general texture (regions (1), (2), and (3)) had a non-oriented aspect. 
Due to the minor extension of the region (2), the stabilization PDHT 
did not significantly alter the coarse and oriented microstructure, 
maintaining the cube texture. In addition, it is worth mentioning 
that the flat layer surface induced by the hot forging (Fig. 2) can alter 
the melt pool morphology, i.e., the in situ interlayer hot forging can 
promote a melt pool with a flatter penetration aspect in relation to 
arc plasma DED (finger-like penetration with a concave aspect), 
tilting the grain growth direction in relation to melt pool center and 
promoting some rotated cube texture aspects (e.g., {100} < 130  >), as 
reported by Gustafsson et al. [46] (Inconel® 625 welded) and 
Moat et al. [47] (Waspaloy® fabricated via laser-DED).

Therefore, in situ interlayer hot forging was able to induce static 
recrystallization during the PDHT and alter the microstructure of the 

Inconel® 625 fabricated by arc plasma DED, changing the coarse and 
oriented columnar grains to fine equiaxed and non-oriented ones, 
eliminating the typical cube texture of fusion-based processed Ni- 
based superalloys (e.g., laser-DED, arc plasma-DED, PBF, welding, 
and casting).

3.2. Time-solved SXRD

3.2.1. In situ dislocation density estimation
The evolution of the full width at half maximum (FWHM) during 

the PDHT was tracked through the in situ SXRD (Fig. 8a). Peak 
broadening is affected by crystallite size (D), microstrain ( , e.g., 
nonuniform strain, subgrains, and dislocations), and system config-
uration (e.g., instrument, material, and wavelength) [49,50]. Given 
the similar deposition conditions and SXRD configuration, the main 
difference between the solution and stabilization PDHTs can be re-
lated to microstrain evolution. In addition, subgrain formation and 
high-angle grain boundary migration decrease the crystal defects 
density [51–53], i.e., the diffraction peak broadening sources density 
should reduce along the PDHT’s soaking time. Thus, the FWHM can 
qualitatively estimate the restoration phenomena during heat 
treatments [54]. In addition, the dislocation distribution and density 
of a deformed material are related to its SFE. A low/medium SFE 
material (e.g., Ni-based superalloys) possesses a low dislocation 
mobility due to the higher distance between partial dislocations, 
which hinder their constriction, i.e., the dislocation cross-slip and 
climb phenomena are harder to occur. Otherwise, high SFE materials 
have a low distance between partial dislocations, which promotes 

Fig. 5. Pole figure of the Inconel® 625 fabricated via in situ interlayer hot forging arc plasma directed energy deposition after stabilization (980 °C/ 1 h) and solution (1100 °C/ 1 h) PDHT. 
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Fig. 6. Orientation distribution function (ODF) of the in situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625 obtained by arc plasma DED after 
stabilization PDHT (980 °C/ 1 h). Constant-φ2 sections (0, 45, and 65°) through the Eulerian space (Bunge [48]). The general ODFs, refined grains ODFs, and coarse grains ODFs refer 
to regions (1, 2, and 3), regions (1 and 2), and region (3) in Fig. 4a.
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the recovery phenomenon (dislocation migration and annihilation) 
since the dislocation mobility is facilitated (dislocation cross-slip 
and climb) [55,56]. Argon and Moffatt [57] proposed that the re-
covery rate is proportional to SFE2. Consequently, for low/medium 
SFE materials, slight dislocation recovery tends to occur before re-
crystallization. Thus, considering the low/medium SFE 
(20 – 30 mJ·m−2) of Inconel® 625, recrystallization can be appointed 
as the dominant restoration phenomenon, i.e., the reduction of 
FWHM and dislocation density during PDHT can be associated with 
static recrystallization.

From Williamson and Hall [58] (Eq. 1) and Smallman and West-
macott [59] (Eq. 2), the dislocation density ( S , statistically stored 
dislocations – Fig. 8b) can be related to the FWHM [60,61]. In ad-
dition, given the lattice parameter (a) and diffraction angle ( ; 
Fig. 9a) evolution during the PDHT (e.g., dissolution, see 
Section 3.2.2), the burgers vector (b; Fig. 9b) also changes over time. 
Thus, according to Bragg’s law (Eq. 3) and the correlation between 
planar distance (dhkl) and lattice paraments for cubic materials (Eq. 
4), it is possible to correlate the diffraction data with the burgers 
vector (Eqs. 5 and 6). and are the SXRD wavelength (0.14235 Å) 

Fig. 7. Orientation distribution function (ODF) of the in situ interlayer hot forging arc plasma directed energy deposition of Inconel® 625 obtained by arc plasma DED after 
solution PDHT (1100 °C/ 1 h). Constant-φ2 sections (0, 45, and 65°) through the Eulerian space (Bunge [48]). The general ODFs, refined grains ODFs, and coarse grains ODFs refer to 
regions (1, 2, and 3), regions (1 and 2), and region (3) in Fig. 4b.
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Fig. 8. Full width at half maximum (FWHM) and dislocation density evolution during solution (1100 °C) and stabilization (980 °C) PDHT. 

Fig. 9. Bragg’s angle and Burgers’ vector evolution during the stabilization (980 °C/1 h) and solution (1100 °C/1 h) post-deposition heat treatments. 

Fig. 10. Williamson-Hall plot for the (a) stabilization and (b) solution post-deposition heat treatments. The colorbar represents time evolution in seconds. 
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and the Scherrer factor of a cube-shaped crystallite (0.9), respec-
tively. Therefore, S evolution can be estimated (Fig. 8b) from the 
Williamson-Hall plots (Fig. 10a and Fig. 10b), which were obtained in 
each 4 s during PDHTs.

= +FWHM
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·cos
·

4·sin · (1) 
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b
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+ +
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h k l
hkl
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, unit cell
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2 ·sin
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Both PDHTs had a fast FWHM and dislocation density reduction 
in the first ∼ 1200 s (20 min), which indicates that static re-
crystallization quickly occurs in the in situ interlayer hot forged 
material, as reported by Li et al. [62] (Inconel® 718 fabricated by in 
situ hot rolling laser-DED). After 1200 s, the stabilization PDHT 
reached a plateau in the FWHM evolution, meaning that the dif-
fraction peak broadening sources stopped reducing, which evi-
denced a static recrystallization interruption. The solution PDHT 
showed a continuous drop in the FWHM after 1200 s, which is re-
lated to some recrystallization in the lower deformed grains (region 
(2)) and grain growth [63] during the remaining soaking time 
(∼ 2400 s). Besides, abnormal secondary grain growth [45] was not 
observed (Fig. 4).

The recrystallization kinetics is associated with the deformation 
level (more deformed leading to faster kinetics) and temperature 
(higher temperature drives the recrystallization of less deformed 
regions) [64,65]. Thus, the solution PDHT can induce recrystalliza-
tion in a larger area than the stabilization PDHT [63,66] since the 
localized and dynamic deformation aspects of hot forging cause a 
deformation gradient from the layer top surface [14,32,33]. In ad-
dition, the initial dislocation density (∼ 4·1014 m−2 and 9·1014 m−2, 
refer to Fig. 8b) was similar in magnitude to Ni-based superalloys 
fabricated via powder bed fusion (PBF) (∼ 4.9 – 9·1014 m−2) [63,67], 
which usually underwent static recrystallization during PDHT. 
Terris et al. [63] also verified a faster dislocation density reduction 
during the solution PDHT, which was also related to static re-
crystallization. Thus, the limited effect of PDHT on the grain size and 
crystallographic texture of the Inconel® 625 obtained by arc plasma 
DED [1,2,29,30,3–8,15,28] can be related to the low deformation 
level developed during the deposition (multiple thermal cycles), 
differing considerably from laser-based processes, which has higher 
deformation (driving force to recrystallization) levels due to the 
focused heat source and steeper cooling rates [12,66]. The in 
situ interlayer hot forging induced enough crystal defects and drove 
the static recrystallization of Inconel® 625 obtained by arc plasma 
DED during solution PDHT, which is typically not observed.

3.2.2. Secondary phase dissolution
Fig. 11 depicts the SXRD patterns and the evolution of the nor-

malized peak intensity of the secondary phases (Laves and δ) iden-
tified in the present work. The diffraction patterns (Fig. 11a) of the 
solution and stabilization PDHTs did not have a notorious difference 
between them, indicating that their final microstructure had similar 
secondary phases. It is possible to observe less difference in the 
matrix (γ) peak intensities for solution PDHT due to the lower tex-
ture index and finer grain size (Fig. 4). In addition, the SXRD results 
are per DuPont et al. [68] (experimentally-based solidification model 

for welding conditions) and Scheil–Gulliver model (Thermo-Calc®, 
Fig. 12a), which predicted the existence of Laves and MC-type car-
bides. σ and η phases (predicted by the Scheil-Gulliver model) are 
suppressed due to the higher (∼ 102 °C/s) [12,69] cooling rate (arc 
plasma DED vs. local equilibrium). These phases (σ and η) were also 
not observed by Schmeiser et al. [66] and Oh et al. [70], which also 
used in situ SXRD to characterize the Inconel® 625 fabricated via PBF. 
δ and γ′′ phases originated from the multiple thermal cycles and 
PDHTs [6,66,71,72]. They were not associated with the solidification 
sequence experienced by the material despite the Scheil–Gulliver 
model (Fig. 12a) predicting δ phase formation during the 

Fig. 11. SXRD analysis. (a) SXRD pattern, (b – c) Laves and δ phases isolated peaks 
evolution during the stabilization (980 °C) and solution (1100 °C) PDHTs, and (d – e) 
normalized peak intensity evolution. The fit function used in (d – e) is the 
moving mean.

F.W.C. Farias, V.R. Duarte, I.O. Felice et al. Journal of Alloys and Compounds 952 (2023) 170059

9



solidification sequence, which was also not experimentally observed 
by Oh et al. [70] (melting pool solidification characterized by in situ 
SXRD) and Cieslak [73,74] (differential thermal analysis).

Stabilization PDHT increased the Laves and δ phases peak in-
tensity (Fig. 11b and Fig. 11c). In opposition, the solution PDHT first 
causes a slight increase and then a drop in peak intensity. These 
results are corroborated by the time-transformation-temperature 
(TTT) diagram (obtained with JMatPro®, Fig. 12c), which was calcu-
lated from the Scheil-Gulliver model chemical composition dis-
tribution (Thermo-calc®; Fig. 12b). During the stabilization PDHT, 
Laves and δ are stable in the interdendritic region, supporting the 
present in situ SXRD and literature results [6,69,72,75–80]. For the 
solution PDHT, Laves and δ are unstable, both in the interdendritic 
region and dendritic core, and should dissolve. However, their peak 
intensity increases initially, which can be related to local fast pre-
cipitation kinetics at the interdendritic region due to the higher Nb 
segregation (up to 25% wt.), as experimentally verified by Antonsson 
and Fredriksson [81].

Given the theoretical peak intensity (Eq. 7) and its correlation 
with phase volume in a multi-phase material diffractogram (Eq. 8; 
phases observed in the manuscript – Fig. 11a), the normalized data 
(Fig. 11d and Fig. 11e) of a single-phase diffraction peak (Eqs. 9, 10, 
and 11) can indicate the variation of phase content (c t( )) in relation 
the initial one (as-built condition, c (0)) [49]. Ihkl, I0, µ0, µ, M , e, A, and 

r are the integrated intensity, intensity of the incident beam, 4π·10−7 

m·kg·C−2, linear absorption coefficient, temperature factor (Debye- 
Waller), charge on electron, cross-sectional area of incident beam, 
and radius of diffractometer circle, respectively. Given that the 
sample-detector (2D Perkin Elmer) was kept constant (1561.85 mm), 
µ not affected the relative values of Ihkl (Eq. 11) [82].
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Fig. 12. (a) Inconel® 625 Scheil-Gulliver solidification model (Thermo-Calc®; TCNI11 database), (b) elemental distribution, and (c) transformation-time-temperature (TTT) diagram 
(JMatPro®) considering the dendritic core (solid line) and interdendritic region (dotted line) chemical compositions.

F.W.C. Farias, V.R. Duarte, I.O. Felice et al. Journal of Alloys and Compounds 952 (2023) 170059

10



At a specific temperature, all factors that affect the peak intensity 
(Lorentz–polarization, structure, multiplicity, absorption, and tem-
perature factors) tend to be similar, independently of the exposure 
time at those temperatures. However, considering the phase trans-
formation and precipitates dissolution during the PDHTs, slight 
changes in 2 (affecting the Lorentz–polarization) can occur due to 
the phase evolution, change in composition, and morphology, as 
reported by Idell et al. [76] and Stoudt et al. [72] for Inconel® 625 
fabricated via PBF. In addition, the multiplicity factor (p) is a function 
of the unit cell and does not change for a single-phase peak during 
the heat treatment. The structure factor (F hkl|( )|2) is independent of 
the phase unit cell shape and size, implying that despite possible 
unit cell alteration (e.g., change in lattice paraments due to diffu-
sion), atoms’ positions (atomic scattering factor) will be similar, i.e., 
F hkl|( )|2 can also be considered constant during the PDHT [49]. In 
relation to v(unit cell volume), Lindwall et al. [69] and Zhang et al. 
[75] (both Inconel® 625 fabricated via PBF) considered this variable 
constant during the heat treatment. They [69,75] obtained a good 
match between the secondary phase content estimated via image 
analysis and SXRD, which indicated that v does not significantly 
change during the PDHT and can also be considered a constant 
parameter. The analysis described above indicated that R

R
( )
( )

0 (Eq. 8) 

depends only on the Lorentz–polarization factor (i.e., 2 ). In addi-
tion, as exemplified for the δ phase (Fig. 13a), the Lorentz–polar-
ization factor was not significantly (almost constant, ≅ 1) affected 
during the heat treatment. A similar analysis was also performed for 
the temperature factor (e M2 ), which also showed be independent of 
the time during the PDHT (Fig. 13b). Thus, the relative phase content, 
c t
c

( )
(0)

, can be expressed by Equation 12. For a better description of the 

SXRD data analysis and temperature factor, see Supplementary 
material.

=c t
c

I t

I
( )
(0)

( )
(0)

single phase

single phase (12) 

After about 1200 s of the solution PDHT soaking time, where 
chemical composition homogenization by diffusion is expected to be 
more notorious [72], secondary phases become unstable and start to 
dissolve, resulting in peak intensity reduction (Fig. 11d and Fig. 11e). 
However, the remaining time is insufficient to completely dissolve 
them, suggesting that longer soaking times or higher peak tem-
peratures than that indicated in the material specification (ASTM B 
446) are required for Inconel® 625 fabricated via arc plasma DED. 
Floreen et al. [80], wrought Inconel® 625, highlighted that the 
complete secondary phase dissolution could be achieved using long 
soaking times (24 h) at 1100 °C, reinforcing the present results. 
Idell et al. [76] and Stoudt et al. [72], Inconel® 718Plus and 625 
fabricated via PBF, respectively, reported that δ phase could form 
during the entire isothermal annealing (1066 °C/1 h), attributing this 
to the high interdendritic microsegregation (especially Nb and Mo as 
also showed in Fig. 12b), which increase both the stable temperature 
range and precipitation kinetics (∼ 101–2 times) in relation to the 
wrought material. Zhang et al. [77] and Shankar et al. [83], Inconel® 
625 fabricated via PBF and hot rolling Inconel® 625, respectively, 
showed that a higher peak temperature (1150 °C/1 h) can homo-
genize the composition and dissolve the majority of secondary 
phases. In addition, it is worth mentioning the difference in dis-
solution/precipitation kinetics between the dendritic core and in-
terdendritic regions expressed by the TTT diagram (Fig. 12c). For 
interdendritic regions, the precipitation and partial dissolution of 
deleterious phases during the stabilization and solution PDHTs, re-
spectively, were correctly predicted and supported by the SXRD re-
sults and literature [72,76,77,80,83].

The δ phase is pointed out as a grain growth suppressor via the 
Zener pinning effect [78,84,85], which can be related to the FHWM 
plateau (stabilization PDHT – δ sub-solvus temperature; Fig. 8), i.e., δ 
hidden the peak broadening source density reduction by pinning the 
high-angle mobile grain boundaries [86]. Additionally, despite the 
present work be focused on Inconel® 625 fabricated via in situ in-
terlayer hot forging arc plasma DED, the presented Laves and δ 
phases evolution (Fig. 11) can be extended to arc plasma DED, which 
is corroborated by previous literature results 
[5,6,45,69,71,72,75–78]. Thus, low peak temperature PDHT drives 
the secondary phase precipitation, while high peak temperature 
enables more homogenous chemical composition and lower content 
of secondary phases. The present SXRD results and those of Lass 
et al. [79] (Inconel® 625 fabricated via PBF) indicate that longer so-
lution PDHT soaking times (> 1 h) could drive the complete dis-
solution of preexisting secondary phases. In addition, as highlighted 
by Xi et al. [40] and Luna et al. [87], the use of higher peak tem-
peratures (1185 and 1177 °C/ 1 h, respectively) can almost com-
pletely dissolve Laves and δ phases. However, considering that the in 
situ interlayer hot forging grain size refinement primarily occurs by 
static recrystallization, longer soaking times or higher peak tem-
peratures must be carefully analyzed to avoid abnormal grain 
growth, which can neutralize the in situ interlayer hot forging grain 
size refinement effect.

4. Conclusions

The present work demonstrated that the combined use of in situ 
interlayer hot forging with PDHT drove a finer and less oriented 
microstructure on the Ni-based superalloy 625 obtained by arc 
plasma DED. Solution (1100 °C/1 h) PDHT had a better response, 
enabling a finer grain size and less oriented microstructure than 
stabilization (980 °C/1 h) PDHT. In situ SRXD, supported by the 
thermodynamic simulations, evidenced that the solution PDHT 
partially dissolved the secondary phases (Laves and δ). In contrast, 

Fig. 13. Normalized Lorentz–polarization ( R
R 0

( )
( )

) and temperature (e 0sin2 sin2( ) ) 

factors variation during the post-deposition heat treatment.
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stabilization PDHT induced their precipitation in the interdendritic 
regions. Also, the dislocation density evolution indicated that in situ 
interlayer hot forging generated enough crystal defects to promote 
grain size refinement via static recrystallization during PDHT, 
meeting the AMS 5662 grain size requirement.
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