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A B S T R A C T

Recommender systems were first introduced to solve information overload problems in enterprises. Over
the last few decades, recommender systems have found applications in several major websites related to e-
commerce, music and video streaming, travel and movie sites, social media, and mobile app stores. Several
methods have been proposed over the years to build recommender systems. However, very little work has
been done in recommender system evaluation metrics. The most common approach to measuring recommender
system’s performance in offline settings is to employ micro or macro averaged versions of standard machine-
learning measures. Profit or other business-oriented metrics have been proposed for other predictive analytics
problems, such as churn prediction. However, no such metrics have emerged for the recommender system
context. In this work, we propose a novel evaluation metric that incorporates information from the online-
platform userbase’s behavior. This metric’s rationale is that the recommender system ought to improve
customers’ repeated use of an online platform beyond the baseline level (i.e. in the absence of a recommender
system). An empirical application of this novel metric is also presented in a real-world mobile app store,
which integrates the dynamics of large-scale big data environments, which are common deployment scenarios
for these types of recommender systems. The resulting profit metric is shown to correlate with the existing
metrics while also being capable of integrating cost information, thereby providing an additional business
benefit context, which allows us to differentiate between two similarly performing models.
1. Introduction

It is often claimed that the internet changed retail businesses. For
the first time, retailers were not limited to an assortment of pop-
ular items and could profit from endless product variety (Brynjolf-
sson, Hu, & Smith, 2006). This variety implies that the aggregated
demand for niche products is comparable to the top most popular
products – a phenomenon known as the ‘‘long tail’’ effect (Anderson,
2008). Two main factors are usually suggested as the cause of this
effect (Goel, Broder, Gabrilovich, & Pang, 2010): one related to the
supply side (retailers/producers) and another related to the demand
side (consumers).

On the supply side, online retailers can include a vast number of
items on their assortment when compared to traditional brick and mor-
tar retailers (Brynjolfsson et al., 2006). This fact would theoretically
be an advantage because demand is heterogeneous. Therefore a larger
number of items would allow the retailer to provide more utility to a
more significant number of customers (Quan & Williams, 2017). Some
empirical evidence of this fact has been found (Goel et al., 2010),
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suggesting that all consumers have a small portion of niche products in
their choices. Also, in the context of digital-goods distribution (which
can include products such as apps, music, video and written content),
advances in cloud computing allowed for almost linear scaling of data
storage infrastructure, which is necessary to attain vast assortments
with ‘‘long-tail’’ properties (Weinhardt et al., 2009).

On the consumer side, information search costs are hypothesized to
be lower for consumers in the online context while also intensifying
sellers’ price competition (Choi & Mela, 2019). With provided search
engine and recommender system capabilities, users can access the
relevant content from the assortment (Schnabel, Bennett, & Joachims,
2018). In the particular case of mobile app stores, search engines have
increasingly key importance, as evidenced by the rising importance of
app store optimization (ASO) for publishers in mobile app stores (Wil-
son, 2018). ASO refers to the tactics employed to improve app stores
visibility, similar to search engine optimization (SEO) (Bilgihan, Kan-
dampully, & Zhang, 2016). This appears to confirm that these systems
do play a role in lowering information search costs for consumers.
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Several studies have provided evidence that recommender systems pos-
itively impact content discovery in online environments (Brynjolfsson,
Hu, & Simester, 2011; Fleder & Hosanagar, 2007; Pathak, Garfinkel,
Gopal, Venkatesan, & Yin, 2010), which should reinforce the ‘‘long
tail’’.

Although the long tail effect’s impact of the ‘‘long tail’’ effect is
usually considered very important for businesses, empirical evidence
suggests that this effect does not occur in every digital market. In
markets such as the online music industry, demand tends to follow
a ‘‘superstar’’ effect (Rosen, 1981), also referred to as the ‘‘winner-
takes-all’’ (Frank Robert & Cook Philip, 1995) or ‘‘blockbuster’’ (Fleder
& Hosanagar, 2009) effect. In these markets, the most popular prod-
ucts’ demand largely exceeds the aggregated demand for the least
popular ones. The mobile app economy has been found to behave
similarly (Zhong & Michahelles, 2013). This ‘‘superstar’’ effect is con-
sistent with marketing science because it can be explained by two other
empirical generalizations that tend to occur across markets (Zhong &
Michahelles, 2012, 2013): the natural monopoly effect and the double
jeopardy law (Ehrenberg & Goodhardt, 2002; Ehrenberg, Goodhardt, &
Barwise, 1990; Ehrenberg, Uncles, & Goodhardt, 2004). It has been ar-
gued that management information systems such as search engines and
recommender systems are especially relevant for these markets (Yin,
Cui, Li, Yao, & Chen, 2012; Zhong & Michahelles, 2013), as long as
they are able to increase sales diversity.

Some authors argue that different recommendation methods yield
different impact levels in search cost reduction and therefore on sales
diversity (Fleder & Hosanagar, 2007, 2009; Zhong & Michahelles,
2013). This difference suggests that long tail effects might be achieved
in superstar markets by having more intelligent recommender systems
or by avoiding the usual methods based on collaborative filtering,
which tend to reinforce the most popular items (Peltier & Moreau,
2012; Zhong & Michahelles, 2013).

Given that firms have limited resources to allocate to machine learn-
ing projects, it follows that a recommender system’s efficiency should
be measured using an economic profit metric, in order to facilitate
project prioritization according to business value (Jannach & Jugovac,
2019). This metric should incorporate the estimated financial impact
of improvements in customer experience. The improvement should be
measured against a baseline, which can be estimated from natural
monopoly and double jeopardy effects. Double jeopardy effects are
regularly observed in online retail and e-commerce (Huang, 2011), and
these appear to extend to m-commerce settings, in particular, the mo-
bile app market, as we have already seen (Zhong & Michahelles, 2013).
Since these effects explain mobile app choice behavior and e-commerce
in general, we can assume it explains mobile app store choice (at least
in the Android platform), with public data confirming that a significant
portion of Android users uses third-party app stores other than Google
Play (App Annie, 2017). Finally, the metric should also incorporate a
holistic cost accounting of the model training, validation, testing and
deployment at Big Data scale, including cloud computing costs.

Our goal is to introduce a novel recommender system evaluation
framework that combines both business benefits and technology costs
and can be used to compare different models in an offline setting.
This metric integrates information about the online platform user be-
havior, which allows it to become a business-aware measure of model
performance.

This work has both technical and managerial impact. On the tech-
nical side, we provide an offline machine learning metric that can be
adapted to a wide variety of industrial applications. On the managerial
side, we hope to provide a theoretical framework to evaluate recom-
mender systems that can be easily understood by managers but can
also provide insights about user behavior in online platforms, similar to
existing work being done in recommender systems (Ansari, Li, & Zhang,
2018; Ghoshal, Kumar, & Mookerjee, 2015).

In the following sections, we will present a literature review cover-
2

ing Recommender System Evaluation, and we will introduce our Action &
Value Estimator. Finally, we will present the main empirical results,
followed by the conclusions, including a discussion of the results and
their implications, the limitations of the study and possible directions
for future research.

2. Recommender system evaluation

Model evaluation in the context of recommender systems includes
several different metrics, which range from multi-class/multilabel ver-
sions of traditional machine learning and data mining ones to spe-
cific profit-centric indicators (Gilotte, Calauzènes, Nedelec, Abraham,
& Dollé, 2018; Ju, Choi, Kim, & Moon, 2017). We can divide the
evaluation metrics into three main groups: offline, online, and user
studies (Beel & Langer, 2015).

2.1. Offline evaluation metrics

Offline evaluation metrics are the most common and assume that
models can be evaluated in terms of prediction/classification accuracy
of past item consumption data or ratings. In this context, if an item
is recommended to a user who has not previously consumed it, we
count it as a model failure. It is easy to see that offline metrics are not
guaranteed to be realistic since the fact that an item was not previously
consumed or rated does not mean it is not relevant to that user.

Table 1 presents a summary of the most popular offline evaluation
metrics used for recommendation systems. Offline evaluation can be
thought of as either a classification or a regression (prediction) prob-
lem, depending on the type of target variable we have (Herlocker,
Konstan, Terveen, & Riedl, 2004). In the former, we are usually working
with binary item consumption, and in the latter, we are usually working
with explicit or implicit ratings.

Regression-type metrics for recommender system evaluation include
the mean squared error (MSE), root mean squared error (RMSE), and
normalized root mean squared error (NRMSE) (Katsov, 2018). For clas-
sification type models, we can employ multi-class/multilabel versions
of traditional classification metrics such as F1-Score and AUC, which
can usually be done by macro (across classes) or micro (across cases)
averaging (Tsoumakas & Vlahavas, 2007).

Consider a binary evaluation measure 𝑀(𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛) that is cal-
ulated based on the number of true positives (𝑡𝑝), true negatives (𝑡𝑛),
alse positives (𝑓𝑝) and false negatives (𝑓𝑛). Let 𝑡𝑝𝜌, 𝑓𝑝𝜌, 𝑡𝑛𝜌 and 𝑓𝑛𝜌 be
he number of true positives, false positives, true negatives, and false
egatives, respectively, after binary evaluation for a label 𝜌. The macro-
veraged and micro-averaged versions of 𝑀 , are calculated as follows,
here 𝐿 is the set of labels (items) (Tsoumakas & Vlahavas, 2007):

𝑚𝑎𝑐𝑟𝑜 =
1
|𝐿|

|𝐿|
∑

𝜌=1
𝑀(𝑡𝑝𝜌, 𝑓𝑝𝜌, 𝑡𝑛𝜌, 𝑓𝑛𝜌) (1)

𝑚𝑖𝑐𝑟𝑜 =𝑀

(

|𝐿|
∑

𝜌=1
𝑡𝑝𝜌,

|𝐿|
∑

𝜌=1
𝑡𝑛𝜌,

|𝐿|
∑

𝜌=1
𝑓𝑝𝜌,

|𝐿|
∑

𝜌=1
𝑓𝑛𝜌

)

(2)

.2. Online evaluation metrics

Online evaluation metrics can overcome these issues by testing the
ecommender system in a production environment. In this context, we
an apply several specific recommender system metrics, usually derived
rom evaluation metrics applied in online advertising, e-commerce, and
ther transactional settings (Beel & Langer, 2015; Gomez-Uribe & Hunt,
016a). Some of the most popular online evaluation metrics are the
lick-through rate (CTR) [7], recommendation take rate (Gomez-Uribe
Hunt, 2016a), and profit (Katsov, 2018).
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Table 1
Most popular offline evaluation metrics.
Metric Reference

Mean Squared Error (MSE)

Katsov (2018)
Root Mean Squared Error (RMSE)
Normalized Root Mean Squared Error (NRMSE)
F1 Score
AUC

Gini Coefficient Verbeke, Dejaeger, Martens, Hur, and Baesens (2012)Kolmogorov-Smirnov (KS) statistic

Hamming Loss Luaces, Díez, Barranquero, del Coz, and Bahamonde (2012)Jaccard Index

Diversity

Katsov (2018)Coverage
Serendipity
Novelty

Timeliness Zhang, Liu, and Zeng (2017)

Dynamism Lu, Dumitrache, and Graus (2020)
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2.3. User studies evaluation metrics

User studies, which employ survey-based methods, come from the
usability and user experience research tradition. Several standardized
psychometric constructs exist to evaluate recommender systems namely
the ResQues framework (Pu & Chen, 2010) and the subjective user
experience (Knijnenburg, Willemsen, Gantner, Soncu, & Newell, 2012).

3. Non-transactional settings

Most of the metrics we have seen are also valid in non-transactional
settings, with the notable exception of the profit.

In non-transactional commercial environments (including email,
news, and multimedia content recommendations, amongst others),
profit is hard to directly associate with the consumption of a non-
transactional item. For instance, in mobile app recommendations, most
apps are free to download (94.24% in the Android platform, 88.18% in
iOS) (Statista, 2018), which means that the profit can only be used in a
small proportion of paid apps. For non-paid items, we need to consider
a different approach to profit measurement based on the recommender
system’s impact on the customer lifetime value (CLV) (Iwata, Saito, &
Yamada, 2008), a key concept in customer relationship management
(CRM) (Blattberg, Kim, & Neslin, 2008).

The basic rationale for estimating a non-transactional recommen-
dation’s profit is that the recommender system ought to improve con-
sumption frequency and reduce churn, thereby, impacting the CLV
positively.

CLV can be calculated using several methods. Traditionally, CLV
would be estimated using a recency, frequency and monetary (RFM)
model to rank users (Gupta et al., 2006). Modern approaches extend
the concept of RFM to obtain a financial estimation of the CLV for
each customer. One approach to obtaining a global average of CLV
is to calculate the average of all individual-level CLV values across a
database, where the CLV for each customer is given by Blattberg et al.
(2008):

𝐶𝐿𝑉 =
∞
∑

𝑡=1

(

�̃�𝑡 − 𝐶𝑡
)

𝑆𝑡−1𝑡

(1 + 𝛿)𝑡−1
(3)

where 𝛿 is the discount rate per time unit 𝑡, �̃�𝑡 is revenue the user
generates in moment 𝑡, 𝐶𝑡 is the cost of serving user in moment 𝑡, and
𝑆𝑡 is the probability of the customer not churning before moment 𝑡.

he RFM model is incorporated into CLV through the 𝑆𝑡 (‘‘recency’’
nd ‘‘frequency’’) and �̃�𝑡 (‘‘monetary’’). Several methods to obtain �̃�𝑡
ave been proposed (Blattberg et al., 2008).

To model 𝑆𝑡 = 𝑝(𝑎𝑙𝑖𝑣𝑒) we need a consumer behavior model such
s the beta binomial/NBD (BB-NBD) (Jeuland, Bass, & Wright, 1980),
3

BD-Dirichlet (Goodhardt, Ehrenberg, & Chatfield, 1984), Pareto/NBD
P-NBD) (Schmittlein, Morrison, & Colombo, 1987), beta-geometric/
eta-binomial (BG-BB) (Fader, Hardie, & Berger, 2004), and beta-
eometric/NBD (BG-NDB) (Fader, Hardie, & Lee, 2005).

We will focus our attention on the NBD-Dirichlet model (Goodhardt
t al., 1984) given its simple data requirements.

NBD-Dirichlet results from the combination of two distributions:
he negative binomial distribution (NBD) and the Dirichlet multinomial
istribution (DMD) (Dawes, Meyer-Waarden, & Driesener, 2015). The
BD part describes individuals’ category-buying behavior in a market,
nd the DMD part models the probability of each individual in the mar-
et purchasing a specific brand Goodhardt et al. (1984). The resulting
odel is therefore given by Goodhardt et al. (1984):

(

𝑟𝑗 |𝑛
)

=

( 𝑛
𝑟𝑗

)

𝐵
(

𝛼𝑗 + 𝑟𝑗 , 𝑆 − 𝛼𝑗 + 𝑛 − 𝑟𝑗
)

𝐵
(

𝛼𝑗 , 𝑆 − 𝛼𝑗
) (4)

here 𝑝
(

𝑟𝑗 |𝑛
)

can be interpreted in the context of online retail as the
robability of using 𝑟𝑗 times the retailer 𝑗 among 𝑛 uses of the retailer

category, 𝛼𝑗 is the use propensity of the retailer 𝑗, and 𝑆 is the diversity
of usage behavior in the category (𝑆 =

∑

𝑗 𝛼𝑗 ) (Bound, 2009). We can
assume that 𝑀𝑆𝑗 = 𝛼𝑗∕𝑆 where 𝑀𝑆𝑗 is the market share of the retailer
𝑗 (Wright, Sharp, & Sharp, 2002). B is the Beta function such that:

𝐵(𝑝, 𝑞) =
𝛤 (𝑝)𝛤 (𝑞)
𝛤 (𝑝 + 𝑞)

(5)

𝛤 is the gamma function such that:

𝛤 (𝑥) = ∫

∞

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡, 𝑥 > 0 (6)

Accurate estimates for all 𝛼𝑗 can be obtained by fitting the DMD for
all retailers 𝐽 in the market using panel data such that Wrigley and
Dunn (1985):

𝑝
(

𝑟1, 𝑟2,… , 𝑟𝑗 |𝑛
)

=
(

𝑛
𝑟1, 𝑟2,… , 𝑟𝑗

)

𝛤 (𝑆)
𝛤 (𝑆 + 𝑛)

𝐽
∏

𝑗=1

[

𝛤
(

𝛼𝑗 + 𝑟𝑗
)

𝛤
(

𝛼𝑗
)

]

(7)

Model estimation can be done using the original ‘‘mean and zero’’
method (Goodhardt et al., 1984) proposed or maximum likelihood
(Wrigley & Dunn, 1985). Intelligence providers such as App Annie and
42Matters provide app usage intelligence data for the mobile industry,
which can be used to estimate these parameters for all platforms.
An Excel workbook is available to facilitate the model estimation
using maximum likelihood (Rungie, 2003). An R package is also avail-
able (Cheng et al., 2016), which can be used to obtain estimates of 𝑆 by
having as input the platform category penetration (category users in the
population), platform penetration (users of the specific platform in the
population), category use frequency and the various platforms’ market
shares. We can then obtain the platform use propensity through its mar-
ket share (𝑀𝑆𝑗 = 𝛼𝑗∕𝑆). The required input information can be found
in several industry publications and market intelligence providers such
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as Statista and GSMA Mobile Economy. Under this set of assumptions,
𝑝(𝑎𝑙𝑖𝑣𝑒) is 𝑝

(

𝑟𝑗 > 0|𝑛
)

where 𝑛 is the average usage frequency of the
retailer category. NBD-Dirichlet is a realistic assumption because online
consumer behavior in the context of mobile app stores has been shown
to follow the double jeopardy law and natural monopoly effects the
NBD-Dirichlet model describes (Zhong & Michahelles, 2013).

3.1. Action value estimator

We propose a novel offline profit-based metric based on the con-
cept of the estimated average action value (𝑉𝑎𝑐𝑡𝑖𝑜𝑛), derived from CLV

etrics and the NBD-Dirichlet.
Let us begin by considering the main assumptions behind the NBD-

irichlet model (Goodhardt et al., 1984), which are grounded in the
mpirical generalizations that have been observed over several decades
cross markets and geographies (Graham, Bennett, Franke, Henfrey,

Nagy-Hamada, 2017). In particular, these patterns have also been
bserved in several types of online platforms, such as the mobile
pp economy (Zhong & Michahelles, 2013) and amongst online retail-
rs (Huang, 2011). Therefore, we believe these to be a set of realistic
ssumptions for the online context.

1. The probability of a user performing 𝑘 independent actions in a
period follows a Poisson distribution.

𝑝(𝑠𝑖𝑗𝑡 = 𝑘) ≈
𝑒−𝜇𝑖𝜇𝑘𝑖
𝑘!

(8)

where 𝑠𝑖𝑗 ∈ 𝑁 is the number of actions a user 𝑖 has done in
period 𝑡 in an online platform 𝑗 and 𝜇𝑖 is the average action
frequency per period of user 𝑖.

2. The action frequencies of individual user 𝑖 action varies accord-
ing to a gamma distribution.

�̃�𝑖 ≈
𝑒−𝜇𝑖

𝐾
𝑀 𝜇𝐾−1

𝑖

𝛤 (𝐾)(𝑀𝐾 )𝐾
(9)

where 𝑀 is the platform category average use rate and 𝐾 is its
variance.

3. User’s 𝑖 probability of choice 𝑐𝑖𝑗 of online platform 𝑗 over 𝑘
successive choices follows a multinomial distribution.

𝑐𝑖𝑗 ≈
𝑘!

∏𝑇
𝑡=1 𝑆𝑖𝑗𝑡

∏

𝑔∈𝑃 𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑠
𝛼𝑔 (10)

where 𝛼𝑔 is the average usage frequency of platform 𝑔.
4. Individual user 𝑖 usage frequency of online platform 𝑔 varies

according to a Dirichlet distribution.

𝜃𝑖𝑔 ≈

∏

𝑔∈𝑃 𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑠

(

∑𝑇
𝑡=1 𝑠𝑖𝑔𝑡

)𝛼𝑔−1
𝛤
(

∑

𝑔∈𝑃 𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑠 𝛼𝑔
)

∏

𝑔∈𝑃 𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑠 𝛤
(

𝛼𝑔
) (11)

5. The online platform choice probabilities and the average action
frequencies of the various users are distributed independently.

Therefore, the probability 𝑝(𝑟𝑗 |𝑛) of a user 𝑖 doing 𝑟𝑗 actions in pe-
riod 𝑡 on online platform 𝑗 amongst 𝑛𝑖 actions done across all competing
platforms is given as:

𝑝(𝑟𝑗 |𝑘) ≈

(𝑘
𝑟𝑗

)

𝐵(𝛼𝑗 + 𝑟𝑗 , 𝑆 − 𝛼𝑗 + 𝑘 − 𝑟𝑗 )

𝐵(𝛼𝑗 , 𝑆 − 𝛼𝑗 )
(12)

where 𝑆 is the diversity of usage behavior in the category (𝑆 =
∑

𝑗 𝛼𝑗 ) (Bound, 2009). We can assume that𝑀𝑎𝑟𝑘𝑒𝑡𝑆ℎ𝑎𝑟𝑒𝑗 = 𝛼𝑗∕𝑆 (Wrigh
t al., 2002).

From this, we can obtain a conditional probability distribution for
(𝑎𝑙𝑖𝑣𝑒|𝑘):

(𝑎𝑙𝑖𝑣𝑒|𝑘) = 1 − 𝑝(𝑟 = 0|𝑘) (13)
4

𝑗

Additionally, let 𝐶𝐿𝑉𝑖𝑇 be the customer lifetime value of user 𝑖
according to the expression Blattberg et al. (2008) proposed:

𝐶𝐿𝑉𝑖𝑇 =
𝑇
∑

𝑡=1

(�̃�𝑖𝑡 − 𝐶𝑖𝑡)𝑆𝑡−1𝑡

(1 + 𝛿)𝑡−1
(14)

where �̃�𝑖𝑡 is the revenue user 𝑖 generates in period 𝑡, 𝐶𝑖𝑡 is the cost
of serving the user 𝑖 in moment 𝑡, and 𝛿 is the discount rate, and 𝑇 is
a finite time horizon. By replacing 𝑆𝑡 = 𝑝(𝑎𝑙𝑖𝑣𝑒) with our probability
density function for 𝑝(𝑎𝑙𝑖𝑣𝑒), we get our 𝑉𝑎𝑐𝑡𝑖𝑜𝑛 estimator:

𝑉𝐴𝑐𝑡𝑖𝑜𝑛 =
𝑇
∑

𝑡=1

(�̃�𝑖𝑡 − 𝐶𝑖𝑡)
(1 + 𝛿)𝑡−1

×
(

1 −
𝐵(𝛼𝑗 , 𝑆 − 𝛼𝑗 + 𝑘)
𝐵(𝛼𝑗 , 𝑆 − 𝛼𝑗 )

)𝑡−1

(15)

We should note that the NBD-Dirichlet model was designed for
the fast moving consumer goods (FMCG) sector in which the buying
behavior tends to occur with a weekly periodicity, which makes as-
sumption 1. appear more plausible (Lees, 2009). However, that is not
the case in many other sectors, especially in non-transactional digital
environments, where the behavior might be more clumpy (Zhang,
Bradlow, & Small, 2015). Clumpiness is observed in several types of
online platforms for instance, most notably in streaming platforms
such as Netflix, where users ‘‘binge’’ several pieces of content in a
short period of time and then go several weeks without using the
platform (Lu, Karmarkar, & Venkatraman, 2019). It is also plausible
that a similar behavior might occur for some users in mobile app
platforms such as the one we are presenting in this application, we be-
lieve it is less common. For instance, we know from publicly available
information that the average user in the US downloads only three apps
per month (App Annie, 2018). Another relevant aspect is the period
length considered. We know that increasing or decreasing its length
might impact the observed clumpiness effect (Zhang et al., 2015). That
said, the existing empirical applications of the NBD-Dirichlet model in
the mobile app industry seem to confirm that the Poisson assumption
still holds for those contexts (Stocchi, Guerini, & Michaelidou, 2017;
Zhong & Michahelles, 2013).

4. Recommender system profit

We can employ the action value estimator defined in the previous
section to obtain a profit metric for recommender systems. In this
application context (mobile app stores), we can use the app 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 as
the reference action, which will means we can define a download value,
𝑉𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 , from the general action value estimator expression proposed.

We will assume that any true positive results in an increment of
+𝑉𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 (revenue) and any false positive is counted as a decrement
of −𝑉𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 (opportunity cost). However, we must consider additional
cost variables that were added to compare each models’ efficiency
considering the model training, validation, testing and deployment.

The final profit value for a recommender system model can then be
estimated using the following expression:

𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑚𝑜𝑑𝑒𝑙 = 𝑉𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 (𝑈𝜏𝑚𝑜𝑑𝑒𝑙 − 𝑈𝜓𝑚𝑜𝑑𝑒𝑙) (16)

𝑃𝑟𝑜𝑓𝑖𝑡𝑚𝑜𝑑𝑒𝑙 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑚𝑜𝑑𝑒𝑙 − 𝑡𝑈𝐶𝑜𝑠𝑡𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 − 𝐶𝑜𝑠𝑡𝑡𝑟𝑛;𝑣𝑎𝑙;𝑡𝑠𝑡 (17)

where 𝑈 is the size of the test set, 𝜏𝑚𝑜𝑑𝑒𝑙 is the true positive rate,
𝜓𝑚𝑜𝑑𝑒𝑙 is the false positive rate, 𝑡 is the deployed model execution time,
𝐶𝑜𝑠𝑡𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 is the cost of the model deployment (per unit of time),
and 𝐶𝑜𝑠𝑡𝑡𝑟𝑛;𝑣𝑎𝑙;𝑡𝑠𝑡 is the absolute cost of model training, validation and
testing.

The values for 𝐶𝑜𝑠𝑡𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 and 𝐶𝑜𝑠𝑡𝑡𝑟𝑛;𝑣𝑎𝑙;𝑡𝑠𝑡 come from the cloud
platforms hourly costs, which we will be discussed in the following
sections. We will estimate the deployed model execution time (𝑡) using
a separate experiment conducted in a Spark environment. In this case,
we are interested in the expected execution time for the entire Spark
job associated with the model deployment. Remember that Spark jobs

are made of multiple stages, and that each stage contains several tasks
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running in parallel in a distributed manner (Wang & Khan, 2015). The
TensorFlow model to be deployed is encapsulated in an object that will
require only a single stage, with several tasks. The total job execution
time is therefore given by the following expressions (Wang & Khan,
2015):

𝑃 =
𝐻
∑

𝑖=1
𝐶𝑜𝑟𝑒𝑁𝑢𝑚𝑖 (18)

𝐽𝑜𝑏𝑇 𝑖𝑚𝑒 = 𝐽𝑜𝑏𝑆𝑡𝑎𝑟𝑡𝑢𝑝 + 𝑆𝑡𝑎𝑔𝑒𝑇 𝑖𝑚𝑒 + 𝐽𝑜𝑏𝐶𝑙𝑒𝑎𝑛𝑢𝑝 (19)

𝑆𝑡𝑎𝑔𝑒𝑇 𝑖𝑚𝑒 = 𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑟𝑡𝑢𝑝+𝑚𝑎𝑥𝑃𝑣=1

𝑅𝑣
∑

𝑖=1
𝑇 𝑎𝑠𝑘𝑇 𝑖𝑚𝑒𝑣,𝑖+𝑆𝑡𝑎𝑔𝑒𝐶𝑙𝑒𝑎𝑛𝑢𝑝 (20)

where 𝐶𝑜𝑟𝑒𝑁𝑢𝑚 is the number of CPU cores of working node 𝑖, and
𝐻 is the number of working nodes in the cluster, 𝑅𝑣 is the number of
sequential tasks executed on CPU core 𝑣 and 𝑃 is the total number of
CPU cores in the Spark cluster. The number of sequential tasks 𝑅𝑣 under
these conditions will be the number of user batches (RDD partitions)
included in the testing experiment divided by the number of CPU cores.
We can separate the total job time into two components as such:

𝑍 = 𝐽𝑜𝑏𝑆𝑡𝑎𝑟𝑡𝑢𝑝 + 𝑆𝑡𝑎𝑔𝑒𝑆𝑡𝑎𝑟𝑡𝑢𝑝 + 𝑆𝑡𝑎𝑔𝑒𝐶𝑙𝑒𝑎𝑛𝑢𝑝 + 𝐽𝑜𝑏𝐶𝑙𝑒𝑎𝑛𝑢𝑝 (21)

𝑉 = 𝑚𝑎𝑥𝑃𝑣=1

𝑅𝑣
∑

𝑖=1
𝑇 𝑎𝑠𝑘𝑇 𝑖𝑚𝑒𝑣,𝑖 (22)

𝐽𝑜𝑏𝑇 𝑖𝑚𝑒 = 𝑍 + 𝑉 (23)

Because this experiment is to be executed in a single machine
cluster, we will simulate the typical industrial cluster configurations by
estimating the 𝑉 and 𝑍 components using 𝛹 sequential trials (the num-
ber of trials meant to simulate the number of nodes in the cluster). To
simplify the calculations, we will employ a single processing CPU core.
We can define two finite sets, 𝑉 = {𝑣1,… , 𝑣𝛹 } and 𝑍 = {𝑧1,… , 𝑧𝛹 },
which represent the 𝜓 observations of Z and V. Each element of V
represents the sum of all task durations in the trial. From these sets, we
can define two estimators for the actual values. For 𝑍 we are looking
for the expected value 𝜇(𝑍). For 𝑉 we are looking for the maximum
expected value, 𝜇∗(𝑉 ), which can be estimated using the maximum
estimator (ME) (van Hasselt, 2013). Therefore, we have:

𝑉 ≈ 𝑉 ≡ �̂�∗(𝑉 ) ≡ 𝑚𝑎𝑥(𝑉 ) (24)

𝑍 ≈ �̂� ≡ �̂�(𝑍) ≡
∑


||

(25)

The final 𝑡 will then be given as:

𝑡 = 𝑚𝑎𝑥(𝑉 )
∑


||

(26)

To simulate the typical big data setups, we will assume 𝛹 = 12.
Wang & Khan 2015 used this cluster size in their experiment, and
it was consistent with the reported industry best practices (Fujitsu,
2017). Even though much larger cluster sizes may occur for specific
tasks (Apache Foundation, 2018), they do not appear to be common.
We extracted the runtimes from the Spark Web UI, which displays
runtimes for tasks, stages, and jobs. We will assume 𝜉 = 2.958 USD/h
since it is the current pricing of a general purpose m5 12 node cluster on
the most popular infrastructure provider, Amazon Web Services (AWS),
which includes the EC2 and EMR costs (Amazon Web Services, 2018).

5. Research design

An empirical study was conducted to illustrate how our proposed
metric can be used to evaluate recommender systems in big data envi-
ronments. This section describes the data pre-processing, experimental
settings, and the obtained results.
5

Fig. 1. Deep-Learning Architecture Overview.

5.1. Experimental design

An empirical study was conducted on a Portuguese Android app
store, Aptoide. This platform is presented as a ‘‘social app store’’,
where some common online social network features exist. Users can
create their profiles and follow each other, and they have access to
a microblogging feature (through the ‘‘apps timeline’’ feature, which
was still active at the time of the dataset extraction), user-generated
comments and app reviews. Additionally, users can download and share
apps with their followers. It also has a search engine to find Android
apps. Several models are compared using the proposed metric. We
will be testing a generic architecture for mobile app recommendations
with three basic layers: feature embedding, feature extraction, and
scoring. We defined the different deep learning models to facilitate
comparisons across these three levels (Fig. 1). These different fully
connected deep architectures are designed to score mobile apps for
users using aggregated features at the user level, similar to other
previously architectures (Kiran, Kumar, & Bhasker, 2020) proposed.

The specific goals of this experiment are threefold:
1. To show that the proposed performance metric (profit) behaves

in a manner generally consistent with existing metrics.
2. To show that the proposed metric is useful to distinguish between

similarly performing models using an objective economic criteria.
3. To show that the proposed metric is stable and robust to changes

in its parameters.
Table 2 presents a description of the four models. The task in our

experiment consists of scoring a batch of 10 apps for each user as a
multilabel classification problem. We recommend an app if the score is
over a threshold (commonly 0.5). If the user has previously acquired
the app, we consider it a true positive. If not, we consider it a false
positive. We apply the same logic to negatives. The results of each
model on this task will answer our research questions. Figs. 2, 3, and
4 present the overall schema used for models 1,2,3, and 4. To answer
research question 1, we will compare the performance of models 1 and
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Table 2
Brief description of the models used.

Model 1 Three-layer network with a fully connected (FC)
feature-embedding layer (numeric features),
feature-extraction layer, SoftMax output, and no pre-training.

Model 2 Four-layer network with one layer of FC-feature embedding
(numeric and categorical features) and two feature-extraction
layers, SoftMax output, and no pre-training.

Model 3 Four-layer network with one FC-feature-embedding (numeric
and categorical features) and two feature-extraction layers,
SoftMax output, and embedding pre-training.

Model 4 Four-layer network with one FC-feature-embedding (numeric
and categorical features) and two feature-extraction layers,
kernel SoftMax output, and embedding pre-training.

Fig. 2. Architecture of model 1.

2. To answer research question 2, we will compare the performance
of models 2 and 3. To answer research question 3, we will compare
the performance of models 3 and 4. We will present the profit values
normalized across models to protect internal financial information. A
profit of zero (0%) implies the worst model, while a profit of 1 (or
100%) implies the best model.

The first three layers are fully connected components with ReLU
activation functions. The embedding layer is pre-trained using a com-
bined Word2Vec and Autoencoder procedure from numerical raw fea-
tures and one-hot encoded categorical variables. The resulting embed-
dings are fed into the following layer. The feature extraction layers take
the embedded features for each user in each moment and performs
a dimensionality reduction. These features will be used as input for
the final scoring layer. Two variants of the architecture can be con-
structed using different scoring methods. The standard approach is to
employ SoftMax. As a novel approach to recommender system design,
we propose an alternative multi-class classification method based on
Kernel methods. For this purpose, we will use TensorFlow’s implemen-
tation of Kernel methods, which is based on random Fourier features
(RFF) (Rahimi & Recht, 2007). By combining RFF with a SoftMax
output node, we can implement a deep version of a multi-class kernel
6

Fig. 3. Architecture of model 2 and 3.

Table 3
Brief description of the models used.

Geographic Demographic Technographic Behavioral Social

Language

# Downloads
# Searches

Latitude Android Vers. # Clicks Social
Longitude Device Modl. App Downloads Network

Search Queries Topology
Clicked Items

logistic regression (M-KLR) model (Karsmakers, Pelckmans, & Suykens,
2007). TensorFlow does not currently offer a differentiable SVM or
multi-class SVM implementation. However, kernel logistic regression
(KLR) has been empirically and analytically demonstrated as having
similar performance and behavior similar to SVM’s (Karsmakers et al.,
2007), the main difference being the fact that it requires the entire
dataset as opposed to only using support vectors to build a decision
margin (Zhu & Hastie, 2005). As such, it is expected that M-KLR should
behave similarly to multi-class SVM approaches.

6. Data

We extracted the dataset we employed to train and test the various
models from Aptoide’s big data lake running on Amazon Web Services
(AWS). Table 3 lists the raw features available in the dataset, which
were subjected to a pre-processing stage.
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Fig. 4. Architecture of model 4.

7. Empirical analysis

We divided the processed dataset into three parts making up the
training, validation, and test sets, roughly corresponding to 86%, 2%
and 12% of the overall data (74,209 users). We conducted the model
training, validation, and testing on an Nvidia Tesla K80 GPU instance
executing a TensorFlow environment using the Floyd Hub service
(https://www.floydhub.com/).

7.1. Model training and validation

The training of models 3 and 4 involved a pre-training of the
feature-embedding architectural component using a Word2Vec (for the
unstructured data) and Autoencoder implementation in TensorFlow.
We trained both models over ten epochs with gradient descent. We
concatenated the resulting embedding parameters (we randomly initial-
ized the cross-loadings with lower values close to zero) and used them
as the initialization tensor for the first layer of the final architecture.
We followed this pre-training with a global training stage. We divided
the training set into 32 batches of 2.000 users (64.000 overall). We
conducted the training procedure under the classic early stopping
method (Prechelt, 2012), which is dependent on the loss on the entire
validation set computed at each epoch (if the validation loss increases
in this epoch, the training stops, and the previous weights are retained).
We used the Adam optimizer with the standard parameters (Kingma
& Ba, 2014) to perform the network training backpropagation. Fig. 5
presents the loss evolution for each model for the training and valida-
tion data. We are reporting the absolute loss for every model and stage,
which explains the fact that the training loss is consistently higher.
It merely reflects the fact that the training set size is larger than the
validation set. We have also noted that the loss for model 2 is non-
smooth. We believe it is related with the fact that this model was not
subjected to a pre-training stage, while at the same time being fed
several hundreds of categorical (one-hot-encoded) features. As evidence
7

Table 4
Computational statistics of model training, validation and testing.

Model 1 Model 2 Model 3 Model 4

Max CPU utilization 56% 72% 74% 55%
Execution time
(min:sec)

03:34 03:22 05:35 04:38

Total cost of
training, validation
and testing (USD)

$0.071 $0.067 $0.111 $0.093

Table 5
Computational statistics of model deployment.

Model 1 Model 2 Model 3 Model 4

Estimated serving
latency (ms)

7.56 8.45 15.11 15.34

Cost per user (USD) 3.10E−04 3.47E−04 6.21E−04 6.30E−04
Total cost of
deployment (USD)

$0.70 $0.78 $1.40 $1.42

of this we can see that model 1 (not subjected to a pre-training stage)
also exhibits some non-smoothness, albeit less, which can be explained
by the fact that it was fed only numerical features.

7.2. Model testing

We conducted the model testing in two parts. The first part was
meant to test the model accuracy using standard metrics on the testing
set on the Nvidia Tesla K80 GPU instance where the training and
validation were done. We used the average pricing per hour of the in-
frastructure provider (Floyd hub) to compute the total costs of training,
validation, and testing (1.22 USD/h) (Table 4).

We then allocated a portion of the testing set (2250 users) to a
secondary test to obtain the Spark execution time component (Table 5).

We measured the Spark estimated serving latency separately on an
AMD quad-core Processor A4-5000 (1.5 GHz) CPU machine executing a
Spark server on an Ubuntu VM through a Windows 10 host. We used a
single CPU core of this machine to execute the experiment, and we used
the obtained execution time for each model to estimate the information
technology (IT) infrastructure cost component. A Spark script was
executed directly on the PySpark command-line tool, which imports the
TensorFlow graph from the local disk before applying it to each row of
an RDD, according to the method Databricks proposed (Hunter, 2016).

The remaining 𝑉𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 estimator parameters (�̃�𝑖𝑡, 𝐶𝑖𝑡, 𝛿, ℎ) were
obtained from internal company data, and the parameters 𝛼𝑗 = 0.01,
𝑘 = 1, and 𝑆 = 0.08 were obtained from public sources (App Annie,
2018).

Fig. 6 presents the values from both tests we combined to compute
the final profit value for each model. We also compared the Hamming
loss, Jaccard index, AUC (Macro), F1 score (Macro and Micro), and
precision and recall across models.

Table 6 presents the results of the testing for each model (bold
indicates top performer).

The results show that model 1 is the lowest performer in all metrics
except recall (in which it significantly outperforms model 2). Except for
recall and Hamming loss, models 1 and 2 behave similarly, but model 2
beats model 1 overall. Models 3 and 4 outperform the other two models
significantly across all metrics. The difference between models 3’s and
model 4’s performance is less clear. These two models seem to have a
small difference magnitude overall. Still, model 3 outperforms model 4
in most metrics except F1 score (Macro), recall, true positive rate and
false negative rate.

Here we can see the value of the proposed profit metric, since
it helps us to have an objective business perspective that solves the
apparent tie between model 3 and 4. While the generic machine learn-
ing/data science metrics give several different (technical) perspectives,

https://www.floydhub.com/
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Fig. 5. Training and validation loss for all models.
Fig. 6. Experimental results of model testing.

Table 6
Experimental results of model testing (in detail).

Model 1 Model 2 Model 3 Model 4

Hamming loss 0.713 0.462 0.065 0.076
Jaccard index 0.031 0.033 0.314 0.284
AUC (Macro) 0.523 0.540 0.973 0.964
F1 score (Macro) 0.050 0.123 0.585 0.626
F1 score (Micro) 0.061 0.065 0.478 0.442
Precision 0.032 0.035 0.320 0.288
Recall 0.731 0.507 0.944 0.951
True positive rate 2.30% 1.60% 2.98% 3.00%
True negative rate 26.36% 52.24% 90.54% 89.45%
False positive rate 70.49% 44.61% 6.31% 7.40%
False negative rate 0.85% 1.56% 0.18% 0.16%
Profit (normalized) 0% 39% 100% 98%
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the most relevant for a given firm will always be the business criteria.
Observe for instance the F1 Score, which results in a different conclu-
sion when Macro averaged vs when Micro averaged. From a purely
technical point of view it will be hard to justify why one perspective
is better than the other. Another example would be the AUC metric,
which is extremely close between these two models. Given the absence
of other more subjective criteria such as the ones presented in Table 1
(such as Diversity, Coverage, Serendipity, Novelty, Timeliness and
Dynamism) we could have some doubts on what a slightly higher AUC
metric might entail for the end user and for the business. The profit
criteria provides a financial justification that is easy to understand.

By looking at Table 7, we can see that our proposed profit met-
ric is highly correlated with 1-Hamming and the true negative rate
(TNR), which are also highly correlated between them. This finding
reflects the fact that the 1-Hamming loss is the proportion of correct
recommendations to the total number of recommendations, which, for
a highly unbalanced and sparse dataset such as this one, will mostly
match the TNR. That said the correlation between profit and TNR/1-
Hamming might be spurious, given that TNR is not used to compute
the profit. This might explain why we have a lower (but still strong)
correlation with AUC, which is widely considered to be the best metric
to evaluate classifiers (Vanderlooy & Hüllermeier, 2008). The proposed
metric might be useful as a way of interpreting the AUC financially.

7.3. Sensitivity analysis

The profit estimate of each model relies on the 𝑉𝐴𝑐𝑡𝑖𝑜𝑛 estimator
which depends on the hyperparameters 𝜃 ∈ (�̃�𝑖𝑡, 𝐶𝑖𝑡, 𝛿, 𝛼𝑗 , 𝑆, 𝑘). In this
section we will analyze the impact of small changes of these parameters
on the model profitability estimates. We will obtain a set of confidence
intervals for the model profitability using a Monte Carlo simulation
approach with 10,000 simulations. For each simulation we have a
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Table 7
Correlation between performance metrics.

Profit 1 - Hamming Jaccard AUC F1 (Macro) F1 (Micro) Precision Recall TPR TNR FPR FNR

Profit 1.0000 0.9994 0.9343 0.9434 0.9621 0.9356 0.9348 0.6855 0.6855 0.9998 −0.9998 −0.6855
1 - Hamming 1.0000 0.9454 0.9541 0.9707 0.9468 0.9458 0.7098 0.7098 0.9999 −0.9999 −0.7098
Jaccard 1.0000 0.9975 0.9864 0.9999 1.0000 0.8941 0.8941 0.9405 −0.9405 −0.8941
AUC 1.0000 0.9950 0.9985 0.9974 0.8881 0.8881 0.9495 −0.9495 −0.8881
F1 (Macro) 1.0000 0.9886 0.9861 0.8525 0.8525 0.9671 −0.9671 −0.8525
F1 (Micro) 1.0000 0.9998 0.8947 0.8947 0.9419 −0.9419 −0.8947
Precision 1.0000 0.8930 0.8930 0.9409 −0.9409 −0.8930
Recall 1.0000 1.0000 0.6992 −0.6992 −1.0000
TPR 1.0000 0.6992 −0.6992 −1.0000
TNR 1.0000 −1.0000 −0.6992
FPR 1.0000 0.6992
FNR 1.0000
Table 8
Confidence Intervals for the Profitability of each model.

Model 1 Model 2 Model 3 Model 4

Upper (95% CI) 0.6% 42.5% 100.0% 98.5%
Profit (Point Est.
w/ observed 𝜃)

0.0% 42.1% 100.0% 97.9%

Lower (95% CI) 0.0% 41.8% 99.4% 97.2%

Fig. 7. Boxplot of profit simulation results.

perturbation term 𝜍𝑚 ∼ 𝐵𝑒𝑡𝑎(𝛼 = 2.8, 𝛽 = 3.2).1 These values will
be used as the relative standard deviation of a normally distributed
random variable 𝑊𝑚 ∼ 𝑁(0, 𝜃×𝜍𝑚). This allows us to obtain a simulated
parameter 𝜃 ∗𝑚= 𝜃+𝑊𝑚, and an associated 𝑉𝐴𝑐𝑡𝑖𝑜𝑛𝑚 for each Monte Carlo
simulation.

From these values we computed the model profitability using
Eq. (20) as before, and we constructed the confidence intervals by
approximation to the Normal distribution.

Table 8 along with Fig. 7 appears to confirm the stability of the
model profitability estimates. Additionally we can say that, under the
assumptions of the Monte Carlo simulation, the profitability differences
between models are statistically significant for a confidence level of
95%.

7.4. Benchmarking

In addition to the private dataset, we have also conducted an appli-
cation of this novel metric to three existing public datasets in the movie
and games domains, along with their current state of the art (SOTA)
models: Movielens (SOTA: Glocal K Han, Lim, Long, Burgstaller, &
Poon, 2021), Netflix Prize (SOTA: H+Vamped Gate Kim & Suh, 2019),
and Steam (SOTA: SASRec Kang & McAuley, 2018). Since the metric

1 The 𝛼 and 𝛽 parameters of the Beta distribution were obtained using
the well known PERT reparameterization formulas (Farnum & Stanton, 1987).
We have subjectively assumed 𝑎 = 10% (small deviation), 𝑏 = 50% (expected
deviation) and 𝑐 = 100% (large deviation).
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requires business context inputs, we have also considered two dif-
ferent markets: Streaming video on demand (SVoD) and transaction
gaming on demand (TGoD). This allows us to test the metric in both
transactional and non-transactional settings, across two different rec-
ommendation domains (movies and games). Within the SVoD category
we considered following platforms: Netflix, HBO Max, Disney+, and
Hulu, while in the TGoD category we considered Steam and Epic
Games. By repeating the experiments of the SOTA models, and by
applying the different business context inputs, we have obtained the
following benchmark table (Table 9).

To obtain these values we used the open source code for the
aforementioned SOTA experiments (Han et al., 2021; Kang & McAuley,
2018; Kim & Suh, 2019) and the publicly available datasets used in
those works (Movielens, Netflix Prize and Steam), we reproduced the
experiments in a local Intel Core i7 machine running Windows 10 to
obtain the values for true positives and false positives, required to
compute the revenue component of our metric.

The platform business context information was obtained by com-
bining several different public sources with data from late 2021 and
early 2022 (Carson & Brady, 2021; Obedkov, 2022; Park Associates
and Symphony Media A.I., 2021; Rayburn, 2022; Statista, 2022b; Wise,
2022a, 2022b). The platform usage frequency (𝛼𝑗) was estimated using
the observed (Carson & Brady, 2021) and theoretical churn rates from
the Dirichlet expected churn Eq. (13) by minimizing the sum of the
squared errors. The value of �̃�𝑖𝑡 − 𝐶𝑖𝑡 was approximated using the
publicly available ARPU estimates for each platform (Rayburn, 2022).
The final action values were then obtained by applying Eq. (15).

The previously introduced sensitivity analysis methodology was
applied to these experiments to obtain simulated variance estimates
for the different SOTA model/business/dataset combination. A meta-
analysis (Table 9) was applied to the resulting data to obtain pooled
estimates of the revenue (16) at 10 recommendations (Rev@10) for the
different platforms (Netflix, HBO Max, Disney+, Hulu, Steam and Epic
Games) (Table 10 and Fig. 8).

We have compared the resulting estimates with public earning
report information for the year 2021 for Netflix (Netflix, 2022), as
well as public usage and revenue statistics for Netflix, Hulu, and
HBO Max in the US (Curry, 2023a, 2023b; Georgiev, 2023; Statista,
2023a, 2023b; Susic, 2023), as well as general US TV viewing statis-
tics (Statista, 2022a), which point to an average 3 h of TV usage,
of which 35% are on streaming platforms (Fuhrer, 2022). We have
also considered the results by Gomez-Uribe and Hunt (2016b) which
point to approximately 80% of hours streamed on Netflix coming from
recommendations, with only 20% coming from search. We assumed
that each unit of content (either movie or series episode) has an average
duration of 42 min, taken from public information about the Netflix
catalog (Moore, 2020; Pressman, 2015). With these figures, we were
able to obtain an estimated ‘‘average revenue per recommendation’’,
assuming that the 80% statistic holds not just for Netflix but also for
Hulu and HBO Max. The results, along with the comparison with the
estimates using our methodology are presented in Fig. 9. Disney+ was
not included in this analysis due to insufficient availability of public
information.
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Table 9
Benchmark results.

Model Platform Market Action Value Domain Dataset SotA Model TP@10 FP@10 Rev@10 Rev-Opp.Cost@10 Sim. Variance Weight
1 Netflix SVoD $114.17 Movies Movielens Glocal K 501 7728 $6.95 −$6.10 6.34E−02 16
2 HBO Max SVoD $86.06 Movies Movielens Glocal K 501 7728 $5.24 −$4.60 1.43E−03 697
3 Disney + SVoD $32.92 Movies Movielens Glocal K 501 7728 $2.00 −$1.76 1.41E−03 708
4 Hulu SVoD $97.78 Movies Movielens Glocal K 501 7728 $5.95 −$5.23 1.49E−03 673
5 Netflix SVoD $114.17 Movies Netflix Prize H + Vamped Gate 6897 392913 $1.97 −$1.90 5.48E−08 18,238,557
6 HBO Max SVoD $86.06 Movies Netflix Prize H + Vamped Gate 6897 392913 $1.48 −$1.43 8.19E−08 12,207,121
7 Disney + SVoD $32.92 Movies Netflix Prize H + Vamped Gate 6897 392913 $0.57 −$0.55 3.28E−09 305,315,544
8 Hulu SVoD $97.78 Movies Netflix Prize H + Vamped Gate 6897 392913 $1.69 −$1.63 4.82E−08 20,746,328
9 Steam TGoD $25.75 Games Steam SASRec 8705 90725 $2.25 −$1.86 7.35E−07 1,359,739
10 Epic Games TGoD $12.25 Games Steam SASRec 8705 90725 $1.07 −$0.88 9.72E−07 1,028,920
Fig. 8. Comparison of pooled Rev@10 estimates by platform.
Fig. 9. Comparison of average revenue per taken recommendation and pooled Rev@10 estimates by platform.
Table 10
Platform pooled Rev@10 estimates.

Platform Lower
(95%CI)

Pooled
mean

Upper
(95%CI)

Pooled
Stdev

Netflix $1.97 $1.97 $1.97 $0.04
HBO Max $1.48 $1.48 $1.48 $0.01
Disney + $0.57 $0.57 $0.57 $0.01
Hulu $1.69 $1.69 $1.69 $0.01
Steam $2.25 $2.25 $2.25 $0.00
Epic games $1.07 $1.07 $1.07 $0.00

The results appear to be close for Netflix, but some discrepancies are
10

observed in the figures for Hulu and HBO Max. While the overall trend
for Netflix and HBO Max is observed, Hulu appears as the platform with
most profitability per recommendation. These discrepancies might be
related with a number of factors:

1. The number of taken recommendations were estimated using
the reported number of subscribers. The actual number of individual
viewers is usually much higher. For instance, we are able to obtain a
closer figure for Hulu (1.41$) by using the estimated number of viewers
in 2021 (9.6 millions). However, the figures for Netflix and HBO Max
do not improve by using the same approach.

2. It is entirely possible that the take rate for the recommender
systems of Hulu and HBO Max are significantly below the 80% figure
reported for Netflix. For instance, if we consider a scenario of having a
take rate of 26% for HBO Max, the figures match the pooled Rev@10
estimates.
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3. All estimates for the average revenue for taken recommendation
as well as Rev@10 rely on public information, most of which is reported
by third parties, and not by the platforms themselves. This means that
we have now way of verifying the quality of the source information.
It is plausible that some of these estimates have a large error, which
would influence the reported estimates under both methods.

4. The different platforms have different revenue models. While we
tried to isolate the effects of the subscription revenue (by removing
the advertising revenue from the Hulu earnings) to have comparable
revenue estimates, in the particular case of HBO Max, we still have
transactional revenue, which we were not able to separate using the
existing information.

8. Conclusion and future directions

With this study, we intended to demonstrate the need to use prof-
itability metrics in recommender system evaluation.

We have introduced a novel recommender system evaluation frame-
work, and we have tested it in a private dataset with four different
deep-learning models in the Android apps domain, as well as in two
different public datasets in the movies and games domains using SOTA
models. The former experiment also included a model deployment
experiment in a simulated Big Data environment, which, combined
with internal business information from Aptoide allowed us to test
the novel evaluation metric, while comparing it with other existing
and widely used metrics. The latter experiment used public business
information of large SVoD and TGoD platform, which allowed us to
compare the evaluation metric with public earnings data.

In the first experiment, the profitability metric allowed us to iden-
tify the model that had the most significant business benefit for this
specific firm. The standard offline recommender system evaluation
metrics did not make entirely clear which model was the best. The
profitability metric we have proposed might be of use not only for
recommender system evaluation but might also be extended to many
different contexts of multi-class prediction. The metric also provides a
universal language that non-technical product of marketing managers
can understand. Therefore, we believe this work also has implications
for IT/IS project managers tasked with implementing recommender
systems in the context of mobile app stores. The concept of average app
download value might be helpful in the evaluation of the earned value
of the modeling tasks within the project, according to a traditional
earned value management (EVM) framework (Batselier & Vanhoucke,
2017) widely used in project management (Project Management Insti-
tute, 2017). From a broader information management perspective, this
concept might also be useful in evaluating the recommender system’s
impact across the information technology, information system, business
process, business benefit and business strategy domains (Bytheway,
2014), because it incorporates high-level market effects (consumer
behavior and competitive environment) which can then be compared to
the overall technological infrastructure costs, as in our profit measure.

This first experiment has several limitations. The main limitation
has to do with the fact that we have only employed offline evaluation of
the models due to the costs associated with deploying a recommender
system, which made online testing infeasible. Such methods, however,
would have allowed us to measure other properties of the recommender
system other than its accuracy and economic efficiencies, such as
novelty and serendipity (the ‘‘usefulness’’ metrics (Lu et al., 2020)),
and to compare them with our estimated profit metric. The authors
intend to address this limitation in a future study, that will compare
the Profit obtained in an offline setting with the actual Profit generated
in an online context. The second limitation is the task used to test the
models. We considered a batch of 10 apps that were being scored for
all users. In other similar experiments conducted in online settings,
researchers employed much larger batches, with numbers ranging from
50 to 200 per user at a time. Some studies employ extreme multi-
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class experiments at a large scale (Cheng et al., 2016; Covington,
Adams, & Sargin, 2016), using industrial hardware and software. Three
factors limited the size of the set of classes. First, we did not have
access to industrial-grade systems to train, validate, test, and deploy
models at such an extreme scale. Second, during the pre-processing
stage, we ran into memory issues when performing feature-engineering
procedures. Initially, we had close to 2000 features for each user,
with nearly half a million users. Manipulating such a large matrix
became impossible given hardware’s computational constraints. In that
context, we could have used a larger set of apps to test the models
because we had initially selected the top 500 most popular apps. In
the end, we were limited to 100 app acquisition columns per user.
Third, we still ran into issues when trying to score more than the ten
most popular apps due to the extreme sparsity of the dataset we were
working with. Another limitation is the fact we conducted our model
deployment test in Spark was done on a VM rather than an actual
Spark cluster. Although the software environment closely matches the
real-world settings, we only employed a single CPU on a cluster with
a single node. Therefore, we had to simulate distributed training by
running several trials sequentially within the Spark environment. In
future studies, the model deployment experiment should be extended
to a real-world industrial cluster or at least a multi-node cluster in a
laboratory setting. This will give us greater confidence in the quality
of the results we have obtained while also contributing to the nascent
academic research in the field of distributed GP-GPU and the efficient
deployment of deep-learning models at a big data scale.

In the second experiment, we were able to obtain revenue bench-
marks for the different recommender system environments using the
novel evaluation framework. These obtained estimates were only par-
tially validated using public earnings report information in the SVoD
market. In the particular case of Netflix, the obtained revenue estimate
using our method was close (with a difference of 0.47$), but the results
for Hulu and HBO Max have larger gaps. These gaps might be explained
by at least four factors: significant differences between the number of
subscribers and viewers, unknown take rate for recommender systems
in Hulu and HBO Max, unknown public information quality, and widely
differing revenue models which might make it difficult to make valid
comparisons across platforms.

In addition to the limitations related with each individual experi-
ment, we can also add that in this work, we only considered the effects
of the model’s accuracy and efficiency, but it is known that the user in-
terface plays a dominant role in the recommendations’ success (Zheng,
Wang, Zhang, Li, & Yang, 2010). No study to date has addressed
the mobile app store interface’s impact on the perceived quality of
recommendations and what its relationship is with the model’s financial
impact. Our proposed metric can be used to implement a balanced
scorecard approach to recommender system evaluation, integrating the
UX and estimated profitability perspectives.

Additionally, as we discussed in the end of Section 3.1, we have
some concerns that the assumption of the individual actions following a
Poisson distribution might not hold in the current application. While we
are confident that it should not greatly impact the results, we believe
that a more realistic model could be obtained by modifying the NBD-
Dirichlet to include non-independent actions in adjacent periods. We
believe this could be addressed in future work.
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