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Abstract

Mental stress is a largely prevalent condition directly or indirectly responsible for

almost half of all work-related diseases. Work-Related Stress is the second most impactful

occupational health problem in Europe, behind musculoskeletal diseases. When mental

health is adequately handled, a worker’s well-being, performance, and productivity can

be considerably improved.

This thesis presents machine learning models to classify mental stress experienced by

computer users using physiological signals including heart rate, acquired using a smart-

watch; respiration, derived from a smartphone’s acc placed on the chest; and trapezius

electromyography, using proprietary electromyography sensors. Two interactive proto-

cols were implemented to collect data from 12 individuals. Time and frequency domain

features were extracted from the heart rate and electromyography signals, and statistical

and temporal features were extracted from the derived respiration signal.

Three algorithms: Support Vector Machine, Random Forest, and K-Nearest-Neighbor

were employed for mental stress classification. Different input modalities were tested

for the machine learning models: one for each physiological signal and a multimodal

one, combining all of them. Random Forest obtained the best mean accuracy (98.5%) for

the respiration model whereas K-Nearest-Neighbor attained higher mean accuracies for

the heart rate (89.0%) left, right and total electromyography (98.9%, 99.2%, and 99.3%)

models. KNN algorithm was also able to achieve 100% mean accuracy for the multimodal

model. A possible future approach would be to validate these models in real-time.

Keywords: Stress Detection, Biosignals, Occupational Health, Machine Learning, Mul-

timodal Input.
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Resumo

O stress mental é uma condição amplamente prevalente direta ou indiretamente

responsável por quase metade de todas doenças relacionadas com trabalho. O stress expe-

rienciado no trabalho é o segundo problema de saúde ocupacional com maior impacto na

Europa, depois das doenças músculo-esqueléticas. Quando a saúde mental é adequada-

mente cuidada, o bem-estar, o desempenho e a produtividade de um trabalhador podem

ser consideravelmente melhorados.

Esta tese apresenta modelos de aprendizagem automática que classificam o stress

mental experienciado por utilizadores de computadores recorrendo a sinais fisiológi-

cos, incluindo a frequência cardíaca, adquirida pelo sensor de fotopletismografia de um

smartwatch; a respiração, derivada de um acelerómetro incorporado no smartphone po-

sicionado no peito; e electromiografia de cada um dos músculos trapézios, utilizando

sensores electromiográficos proprietários. Foram implementados dois protocolos inte-

ractivos para recolha de dados de 12 indivíduos. Características do domínio temporal

e de frequência foram extraídas dos sinais de frequência cardíaca e electromiografia, e

características estatísticas e temporais foram extraídas do sinal respiratório.

Três algoritmos entitulados K-Nearest-Neighbor, Random Forest, e Support Vector

Machine foram utilizados para a classificação do stress mental. Foram testadas diferentes

modalidades de dados para os modelos de aprendizagem automática: uma para cada sinal

fisiológico e uma multimodal, combinando os três. O Random Forest obteve a melhor

precisão média (98,5%) para o modelo de respiração enquanto que o K-Nearest-Neighbor

atingiu uma maior precisão média nos modelos de frequência cardíaca (89,0%) e electro-

miografia esquerda, direita e total (98,9%, 99,2%, e 99,3%). O algoritmo KNN conseguiu

ainda atingir uma precisão média de 100% para o modelo multimodal. Uma possível

abordagem futura seria efetuar uma validação destes modelos em tempo real.

Palavras-chave: Detecção de stress, Biossinais, Saúde Ocupacional, Aprendizagem Au-

tomática, Multimodal Input.
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Introduction

1.1 Context and Motivation

Stress can be defined as an individual’s physiological response to surrounding stimuli

such as environmental conditions or physical exertion, resembling a feeling of strain

and pressure [2–4]. It can be split into two categories: positive stress - eustress - and

negative stress - distress. Eustress can be motivational and helpful performance and

productivity wise. However, if too much is required from an individual’s physical or

mental capacity, a person’s efficiency is compromised and the negative stress kicks in [5, 6].

Constant exposure to distress can deeply impact a human’s physical and emotional health

leading to symptoms such as headaches, cardiovascular disorders, asthma, stomachaches,

diabetes, irritable bowel disease, sleep deprivation, burnout, and cancer [2, 3, 7]. Other

conditions may arise from a psychological standpoint, such as depression and anxiety.

This will eventually lead to difficulties regarding personal, professional, family, social,

and economic affairs [8, 9].

Technology is completely interwoven into our daily activities. People spend substan-

tial time using their phones, laptops, and other machines, considering they are widely

utilized in professional and recreational activities [5, 10]. Computer careers may require

significant cognitive processing and mental focusing and tend to be more desk-bound

with little physical activity demand [11].

As a result of long sedentary work routines that involve extensive interaction with

computer systems Work-Related Stress (WRS) disorders are becoming more prevalent

among these working populations. WRS is the second most severe health issue related to

work in Europe, after musculoskeletal diseases. Mental and physical stress can contribute

to the onset of WRS. In 2013, the EU spent around 25=C billion as a consequence of WRS

[6, 12]. Recent studies revealed that 51% of European workers experience stress in their

workplaces and it is estimated that 50–60% of work absences in the business sector were

caused by WRS [6, 12]. The American Institute of Stress announced that the expenses on

stress-related disorders were around 300$ billion per year and, in 2015, 77% of people

frequently experienced physical stress symptoms which negatively impacted on variety
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CHAPTER 1. INTRODUCTION

life aspects [6, 12]. Twenty seven studies that included over 600 000 individuals across

Europe, Japan, and the USA came to the conclusion that WRS is connected with a fairly

elevated risk of coronary heart disease and stroke [13]. In comparison with people who

work in a stress-free environment, the excess risk for exposed individuals is 10–40% [14].

The onset of WRS within workers can have clear repercussions on their individual

work performance and well-being. The workload and requested labor hours can be high

[12], making it increasingly difficult to accomplish a decent work-life balance [11]. Figure

1.1 illustrates that working conditions (and environmental circumstances) can lead to dis-

orders. If load exceeds the person’s capacity and there’s a misfit between all the demands

for a prolonged time period, this strain may produce serious musculoskeletal disorders

[15]. With that in mind, Human-Computer Interaction (HCI) could be improved to man-

ifest empathetic traits and adjust to its user’s needs. Therefore, enabling technology

to be as relaxing and pleasing as possible is a way to decrease the risk of developing a

work-related disease [5].

Figure 1.1: Balance Model of Work System Misfit. Retrieved from [15].

The stress level detection of a computer user can improve the computer’s capability

to respond intelligently, which in turn will allow the user to mitigate negative emotional

states [10, 14]. Thus, approaches that monitor and access human mental states in a

non-intrusive and non-invasive way can be beneficial.

1.2 Aim and Thesis Purpose

The development of this work relied on the detection of a computer user’s mental state

identified as ’stressed’ or ’not stressed’ using sensor-based measurements of physiological

signals and Machine Learning (ML) algorithms. In this thesis a data collection tool

entitled Latent [16] was used to monitor and record user interactions on a browser page

in order to track their performance during protocols they completed.
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Sensor data such as HR, respiration (tracked with an Accelerometer (ACC)), and EMG

signal were extracted using devices such as smartphones, smartwatches, and proprietary

EMG sensors. These biosignals were pre-processed in order to extract significant features

and the best ones were then selected and used for the classification of numerous models,

including a multimodal one. This workflow is represented with a block diagram in Figure

1.2.

Figure 1.2: Block diagram of the proposed stress detection method. Adapted from [17].

The presented work focused on using either smartwatches, wearable sensors, or a

combination of these. While smartwatches are widely used devices, most other wearables

are highly specialized equipment associated with higher costs. This work explored an

acquisition system that relied mostly on smart devices utilized by everyday workers:

smartwatches and smartphones. Unimodal models for each biosignal were developed as

well as a multimodal approach, to determine the classification capabilities between these.

Computer mouse-tracking has been proving itself to be an easily approachable method

of accessing underlying cognitive processes with great richness and depth [18]. A sec-

ondary goal of this thesis was to verify if there were any distinct behaviors in the com-

puter user’s interaction under stress using the HCI data provided by Latent [16]. As

previously stated, computers have reached widespread usage [6]. Therefore, passive real-

time monitoring of stress using HCI could provide instant feedback and allow for an early

intervention [9].

This thesis was developed in the Physics Department of the Nova School of Science

and Technology | FCT - NOVA, together with the Biosignals team within the PrevOccupAI

project of the LIBPhys group.

1.3 Thesis Structure

The six Chapters that make up this thesis are arranged as follows: the current Chapter

provides the context and motivation for this thesis’s subject along with an explanation of

its primary goals. The theoretical background important to comprehending this thesis,

including HR, respiration, EMG, HCI, ML, and stress’s multimodal nature is covered in

Chapter 2’. A survey of the literature on physiological, behavioral, and combined stress

classification is done in Chapter 3. In Chapter 4, information regarding equipment and

the techniques utilized during the thesis’ development in terms of data cleaning and

processing, as well as the implemented protocols, and created ML models, is presented.

The work’s results are reported and discussed in Chapter 5. Finally, in Chapter 6, the

overall conclusions and potential future studies are addressed.
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Theoretical Concepts

This chapter includes all key ideas needed to better understand the remaining chap-

ters of this thesis. Starting with the physiological signals that were employed to serve as

base for the thesis: HR, respiration, and EMG signals. Subsequently, the HCI concept

is defined and a brief introduction to ML, with a more detailed explanation of the three

algorithms that were used: Support Vector Machine (SVM), Random Forest (RF), and

K-Nearest Neighbor (KNN) is presented. Finally, a conceptual explanation of stress’s

multimodal nature is provided.

2.1 Heart Rate Signal

An Electrocardiogram (ECG) is a graphic representation of the hearts electrical activ-

ity during the cardiac cycle [19, 20]. The five waves that compose an ECG are P, Q, R, S,

and T as shown in Figure 2.1. Right and left atria contraction, or atrial depolarization, is

what causes the P wave to be formed. It typically lasts 80–100 ms and has an amplitude of

0.25 mV. The formation of the QRS complex is brought on by the contraction of the right

and left ventricles, also referred to as ventricular depolarization. Ventricular rate can be

determined by the time elapsed between QRS complexes. R wave has an amplitude of

almost 1.6 mV and the Q wave is approximately a quarter of that amplitude. The P-R

interval lasts between 120 and 200 milliseconds. Finally, the T wave is registered when

the ventricles recharge, a process known as ventricular repolarization. T waves typically

last 160 ms and have an amplitude of 0.1 to 0.5 mV. Occasionally the T wave is followed

by a tiny positive U wave. Repolarization of the interventricular septum or the final traces

of ventricular repolarization are responsible for this wave [19–21].

Since the QRS complex is the most obviously discernible waveform from the ECG,

the heartbeat is registered by detecting the QRS complexes. Thus, the R peak is used

to extract information such as RR intervals and Heart Rate Variability (HRV), which are

utilized to define cardiac activity. The RR interval is defined as the period between two

successive R peaks and the HRV measures the oscillation in time periods between consec-

utive heart cycles. These can be used to calculate time, frequency, and non-linear features.
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Figure 2.1: Wave definitions of the cardiac cycle. Retrieved from [22].

RR Intervals and Beats Per Minute (BPM)’s mean, standard deviation, and root mean

square are a few examples of temporal domain features. The frequency domain features

include very low-frequency, low-frequency, and high-frequency components. The most

prevalent non-linear features include entropy, complexity, poincare plots, recurrence,

and fluctuation slopes [6].

An adult’s HR is typically 72 BPM. The intervals of heart experienced by different age

groups are displayed in Table 2.1. Also a person’s fitness is also directly linked to their

HR. An athlete can have a HR as low as 40 BPM whereas a healthy person will have a

resting HR of 50-60 BPM [19, 23].

Table 2.1: Heart Rate in age groups.

Heart Rate
(beats per minute)

Infants > 100

Adolescents 60-100

Elderly 60-80

Electrocardiographic signals can provide crucial indicators of a person’s health status.

As a result, they are frequently acquired for a wide range of medical applications, such as

cardiovascular abnormalities diagnosis, arrhythmias detection, physiological responses,

sleep apnea diagnosis, chronic patient monitoring, sudden cardiac arrest forecasting, and

biometric, emotional, and physical activity recognition systems [21, 24].

An ECG is the gold standard method to measure HR. However it involves electrode

wiring, which is unsuitable for long-term use [25]. In comparison to the ECG, the Photo-

plethysmography (PPG) sensor incorporated in the smartwatch provides a less obtrusive

and more practical alternative method for estimating HR or other parameters such as

arterial oxygen saturation levels and Respiration Rate (RR) [26]. The sensor emits a light
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and body tissues can reflect and partially absorb it. The PPG’s sensing system also de-

tects the scattered light that emerges through the skin. PPG can thus measure changes

in blood flow. Compared to other tissues, blood has a higher absorption coefficient [27].

The amount of light absorbed is proportional to the amount of blood present, and the

blood volume in the artery varies with the cardiac cycle. The instantaneous blood volume

level can be used to determine the exact point in the cardiac cycle that the PPG sensor is

measuring [25, 28]. Thus, beat-to-beat variations, known as HRV can be derived from raw

PPG data [26]. Since this signal is derived from the pulse, the appropriate terminology for

it would be pulse rate or optical heart-rate [26, 29]. However, for simplification purposes,

the pulse rate will now be referred to as HR. Figure 2.2 shows a graphic illustration of

the HR recorded with the PPG smartwatch sensor, where each dot is an estimate of the

HR provided by the sensor. The smartwatch recorded HR for a total of five times in one

acquisition with approximately two-minute intervals between recordings.

Figure 2.2: Photoplethysmography heart rate acquisition over time.

Due to its pervasiveness and ease of wearable integration, PPG is becoming more

popular in wrist-worn devices, such as smartwatches and wrist-based fitness bands, to be

employed in monitoring systems for healthcare and biomedical purposes. Its technologi-

cal and practical advantages allow an easier pulse rate measurement [26, 29]. However,

one of the main issues with PPG-based monitoring approaches is the high susceptibility

to motion artifacts brought on by daily movements, therefore the signal needs to be pro-

cessed to effectively remove this noise. Additionally, a variety of other elements, such as

ambient optical noise, may influence the PPG signal capture [30].
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2.2 Respiratory Signal

Respiratory measurements are frequently overlooked regarding their significant im-

pact on HR [25]. One of the most crucial vital signs that reflects the health of the body

is the RR, also known as breathing rate. It is the amount of breaths (or movements) per

minute indicating the inspiration and expiration of air. Breathing patterns by age groups

are displayed in Table 2.2.

Table 2.2: Respiration rate in age groups.

Respiration Rate
(breaths per minute)

Infants 30-60

Adults 12-18

Elderly 12-28

A few disorders that can alter a person’s normal RR are asthma, lung illness, and

congestive heart failure. Mental states, such as anxiety, can also disturb a regular RR [31].

Figure 2.3 shows a normal respiration signal. The signal amplitude grows until it

reaches its peak at the end of inspiration and drops while expiring, reaching its minimum

when the expiration is finished. The respiration signal is highly affected by the current

emotional state of a person as shown in the arbitrary emotional respiration signal dis-

played in Figure 2.4. Therefore, respiration signals can be used for diagnosis: during

stress, breathing becomes inconsistent and RR rises [32].

Figure 2.3: Normal Respiration Signal. Retrieved from [32].

Figure 2.4: Emotional Respiration Signal. Retrieved from [32].

The patterns of breathing can be recorded using a variety of sensor devices [25]. The

three primary categories of breathing-monitoring equipment are airflow quantifiers, chest

and/or abdomen motion trackers and gas-level gauging devices for blood or exhaled
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air [33]. Unfortunately, the majority of these technologies are either expensive or not

accessible to most people [34].

As a result of the market spread of mobile technologies, numerous strategies are

being investigated for the recording of vital signs, such as the RR. According to certain

studies [31, 33–35], it may be possible to track respiration and calculate the RR using

smartphone built-in sensors like accelerometers. Chest motion caused by the diaphragm’s

expansion and contraction is synchronized with lung movement, and the variation in the

ACC’s may accurately record it. The elimination of motion artifacts and the detection of

spurious peaks are the main issues of this detection method [31]. This work tried to use

a smartphone ACC to capture respiration through chest movement.

2.3 Electromyography Signal

The EMG signal, which represents neuromuscular activity, is a biomedical signal that

measures electrical currents produced in muscles during their contraction. The nervous

system always regulates muscle contraction and relaxation. The electromyographic signal

is, thus, a complex signal that is regulated by the nervous system and depends on the

anatomical and physiological characteristics of the muscle [36].

Skeletal, smooth, and cardiac are the three different types of muscle tissue that may be

distinguished based on their structural characteristics, contractile ability, and regulatory

mechanisms. EMG is used to analyze skeletal muscle. This muscle is attached to the bone,

and it’s contraction enables the skeleton support and movement [36].

Figure 2.5: Electromyography signal and decomposition of MUAPs. Retrieved from [36].

Muscle action potential refers to the electrical signals that are conducted by muscle

fibers similarly to how nerves operate. To measure the motor unit action potential, which

is the sum of all the muscle action potentials from a single motor unit, a skin-surface elec-

trode (non-invasive) placed close to the desired field or a needle electrode (invasive) can
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be applied [6, 36]. The EMG signal is a combination of all muscle fiber action potentials

happening in the muscles as a response to neural activity. The intervals between these

action potentials are unpredictable. The EMG signal could be positive or negative at any

given time with an absolute amplitude ranging between 0-10 mV ± 5mV. The process to

obtain this signal and its decomposition in action potentials are depicted in 2.5 [36].

There are two key concerns that affect the quality of the signal. The first one is the

signal-to-noise ratio (quotient between the electromyographic energy and the noise signal

energy). This noise can come from electronic equipment, surrounding environment,

motion artifacts or signal instability. The other drawback is the signal distortion. Since

the EMG signal’s frequencies may contain important information, caution is required

when applying filters so that signal distortion can be as minimal as possible [36, 37].

Figure 2.6: Raw electromyographic signal and corresponding activation level. Retrieved
from [38].

The use of reliable and advanced methods for the EMG signal identification in clinical

diagnosis and biomedical applications such as rehabilitation, prosthesis control, mus-

cle fatigue analysis, and clinical diagnosis is growing [36, 37]. To further analyze the

EMG signal, time and frequency domain properties such as peak loads and gaps, root

mean square, mean absolute value, variance, energy, mean, and median frequency, zero-

crossing, and frequency ratio can be retrieved. The moments of muscle activation over a

period of time can also be observed and features can be extracted from it. Figure 2.6 on

the right illustrates a muscle activation period that corresponds to the EMG signal on the

left [6, 17, 36].
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2.4 Human-Computer Interaction

There are several definitions of HCI, the most comprehensive being the study of the

interaction between humans and computers [39, 40]. More specifically, HCI can be con-

sidered the field of assessment regarding how the design, evaluation and implementation

of interactive computing systems, such as computers, mobile phones, household appli-

ances, among others, influence work and human activities. It also uses knowledge from

other research fields such as psychology and sociology to achieve its main goal of improv-

ing the relationship between human and computer through the increase of usability and

functionality towards the user’s needs [39, 41].

A user’s emotional state can be recognized through HCI using audio, text, video,

mouse cursor motion, etc. [42, 43]. This thesis will be using Latent [16], a data collection

tool providing all the above options and more.

2.5 Machine Learning

ML is considered to be a branch of artificial intelligence that studies how computer al-

gorithms can make accurate predictions (or reactions) in specific conditions. A ML model

receives a sequence of data inputs and executes algorithms that learn in a supervised,

unsupervised, semi-supervised, or reinforced way [44, 45].

Figure 2.7: Taxonomy of the different machine learning methods presented. Adapted
from [46].

The supervised and unsupervised approaches can be distinguished by their main goal.

The first one aims to explore the received data while the latter wants too make predictions

out of it. Figure 2.7 offers a scheme where the distinction of the two approaches can be

clearly seen.

In supervised learning, illustrated on the left side of Figure 2.8, a sequence of outputs

is provided in addition to the input sequence, and the goal is to learn how to achieve one

of the desired outputs from a new input. This method is divided into two categories: re-

gression (output is a real number) and classification (output is a class label)[47]. Decision

Trees (DT), RF, SVM, KNN and Naive Bayes (NB) are examples of well-known super-

vised classification models. Some notable regression models include linear regression,
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step-wise regression, ordinary least squares regression, multivariate adaptive regression

spline, and locally estimated scatter-plot smoothing [48].

Unsupervised learning methods, visually represented on the right side of Figure 2.8,

simply receive an unlabeled training data-set and attempt to deduce existing patterns

or clusters from it. The four areas of unsupervised learning methods are clustering,

dimensionality reduction, anomaly detection, and association rule mining [45, 47].

Figure 2.8: Left: Supervised learning. Right: Unsupervised learning. Retrieved from [49].

Figure 2.9: Left: Semi-supervised learning. Right: Reinforcement learning. Retrieved
from [49].

Semi-supervised algorithms, presented on the left side of Figure 2.9 combine super-

vised and unsupervised techniques. They are used to clarify learning situations with a

limited amount of labeled data and a large amount of unlabeled data. Having a mixed

data-set is quite frequent, especially in domains where acquiring data is accessible but

labeling it is costly or time-consuming [47].

Additionally, there are reinforcement learning algorithms (shown on the right side

of figure 2.9) where the algorithm interacts with an environment by producing actions

that will influence its state. As a result, the algorithm obtains some scalar rewards (or

punishments), with the final aim of learning how to maximize those future rewards (or

reduce punishments) over the course of its existence [47].

In order to accomplish some emotion differentiation (stress from not stressed), this
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thesis used classification supervised learning models. When classifying an unknown

sample, these models can perform a correct or incorrect prediction. When classifying

a sample, the class where the sample belongs is considered positive and the remaining

ones are negative. Consequently, these concepts serve as the foundation for the following

created evaluation metrics:

• True Positive (TP): Number of correctly predicted positive sample classes.

• True Negative (TN): Number of correctly predicted negative sample classes.

• False Positive (FP): Number of incorrectly predicted positive sample classes.

• False Negative (FN): Number of incorrectly predicted negative sample classes.

Table 2.3 shows a Confusion Matrix (CM) which is commonly used to better visualize

the above concepts.

Table 2.3: Confusion Matrix.

Predicted Class

Actual Class
No Yes

No True Negative (TN) False Positive (FP)
Yes False Negative (FN) True Positive (TP)

To evaluate a trained model, there are some evaluation metrics commonly used, such

as sensitivity or recall 2.1, specificity 2.2, positive predictivity or precision 2.3, negative

predictivity 2.4 and accuracy 2.5 [24, 50, 51].

Sensitivity/Recall =
TP

TP + FN
(2.1) Specificity =

TN
TN + FP

(2.2)

Positive Predictivity/Precision =
TP

TP + FP
(2.3) Negative Predictivity =

TN
TN + FN

(2.4)

Accuracy =
TP + TN

TP + FP + TN + FN
(2.5)

As will be stated in Chapter 3, many models were commonly employed in investi-

gations using physiological signals to detect stress. According to the findings in the

literature, the most typically used classifiers are SVM, KNN, and, occasionally, RF. As a

result, to maintain consistency with past investigations, these same classifiers were eval-

uated, with the expectation of favorable findings. The following sections (Sections 2.5.1,

2.5.3. 2.5.2) provide a quick description of how these algorithms work.
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2.5.1 Support Vector Machine

The fundamental idea behind a SVM algorithm is to establish lines or hyperplanes

in an N-dimensional space that define the decision boundaries by dividing the labeled

training data into classes [52].

Depending on the application, the following processes are taken in order to choose

the best line/hyperplane:

1. Lines are drawn using kernel functions to divide data points into distinct classes;

2. Data points from both classes that are closest to a certain line or hyperplane are

identified, and these points are referred to as "support vectors";

3. The margin (distance between that line/hyperplane and the support vectors) is then

calculated;

4. The line/hyperplane that maximizes the margin is considered the best and therefore

is chosen.

Figure 2.10: Hyperplane separating the support vectors from each class. Retrieved from
[46].

Figure 2.10 helps the visualization of both the concept of "support vectors" and the

margin between them and the line/hyperplane. The region of the hyperplane where the

new unknown sample is better fitted decides how it should be classified. This classifier is

not the only one employing lines/hyperplanes for classification. However, the SVM differs

from the others due to using the maximum margin separating hyperplanes. By choosing

an optimal hyperplane using this method, the SVM’s capacity to correctly forecast the

classification of previously unobserved instances is maximized [53].
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2.5.2 Random Forest

The fundamental idea behind a RF algorithm is to forecast the outcome variable by

using a set (ensemble) of trained DT. The classification of this algorithm is based on the

most frequently occurring prediction among the wide collection of individual DT. This

algorithm works well due to its low correlation between different DT, making ensemble

predictions more accurate than each individual tree’s prediction [54].

DTs in their original form are seldom ever employed in ML because they are prone to

overfitting, which is why each individual DT used for the construction of the RF classifier

is probably overfitted. In spite of this, by combining the outputs of the multiple trees

used, one can solve the overfitting problem. Each DT is composed by two components:

branches and nodes. The fundamental idea behind creating a DT is to gradually evaluate

various features and select the one that best divides the training data at each node [46].

Figure 2.11 displays an example of how DT operate. The graph’s initial node, known as

the root node, typically assesses the feature that best divides the data; subsequent nodes,

known as intermediate nodes, test additional features; and finally, the terminal nodes of

the tree, known as the leaves, are the ones that make a prediction. Once the DT is built,

the new sample is submitted to tests in each node, from the root to the leaf, until the

prediction is made [46]. The degree of impurity determines which feature best separates

the training data set at each node. The gini impurity and entropy are two examples of

impurity metrics. The number of nodes and the depth of the tree are two factors that

determine the complexity of the tree, which in turn affect the output’s accuracy [54].

Figure 2.11: Decision Trees approach. Retrieved from [46].

15



CHAPTER 2. THEORETICAL CONCEPTS

2.5.3 K-Nearest Neighbors

Techniques that completely skip the learning phase and therefore do not result in an

explicit model that learns from the training data can be referred to as "instance-based

learning"[46]. KNN is a ML algorithm that uses the above rule and is based on a distance

approach. These approaches simply store all the labeled sets of data that already exist in

a database, and when a new unclassified example is observed, the algorithm will assume

that observations with similar properties already exist nearby and will typically have

similar outcomes [46]. In other words, the values of the data points around a particular

data point define its value as shown in Figure 2.12.

Figure 2.12: K-Nearest Neighbors approach. Retrieved from [46].

This algorithm can be described in the following six steps:

1. After loading the data, the number of neighbors to take into account (k), must be

selected;

2. Then a calculation of the distance between the unknown unclassified example and

all other examples from the training set is done. This distance can be calculated

in many ways but in this thesis only the Euclidean (Equation 2.6 [55]) and the

Manhattan (Equation 2.7 [56]) distances were used;

DEuclidian[a,b] =

√√√
d∑
i−1

(ai − bi)2 (2.6)

DManhattan[a,b] =
d∑
i−1

|ai − bi | (2.7)
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3. The distance and the index of the example from which the distance was calculated

are saved into a list.

4. That list is ultimately ordered so that the distances go from the smallest to the

largest;

5. From this list, the first k-entries are chosen;

6. The unknown example is now classified in accordance with the those k-entries

labels. In the case of regression, the label is determined by the average of the labels

from the k-entries, and in the case of classification, the label is determined by the

label that appears most frequently among the k-entries’ labels.

The biggest drawback of this algorithm is the absence of a learning phase making it

impossible to identify which features are truly important for predicting the class of a new

case [46]. For instance, if 10 features were given, only 2 might be really relevant for the

classification, but the distance will be computed taking all 10 into account. Thus, the

k-nearest data points can be significantly impacted by irrelevant features [46].

2.6 Multimodal Nature of Stress

A clearly defined and scientifically recognized method to quantify human stress does,

to this day, not exist. Stress research has focused on the study of physiological changes,

but other areas, such as behavioral alterations, can also provide important information.

Additionally, since context influences how people react to stress, measurable contextual

information can also offer valuable hints regarding people’s stress levels [57]. The multi-

modal nature of stress is depicted in Figure 2.13.

Figure 2.13: Multimodal Nature of Stress. Retrieved from [57].
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Context features include personal traits and external circumstances such as sched-

ules, calendar and ambient sound. Regarding the symptoms manifested when stress is

experienced, one can categorize them into psychological, physiological and behavioral.

Psychological evaluation of stress can be carried out by means of self-report question-

naires. The PSS was utilized in this thesis. Other examples are the Stress Self Rating Scale

(SSRS) [57], the Stress Response Inventory (SRI) [57], Stress Self-Rating Scale (SSRS) [6],

and Positive and Negative Affect Schedule (PANAS) [6].

Physiological signals can provide information regarding the intensity and quality

of an individual’s internal affect experience [57]. When the body senses a challenging

or hazardous situation, real or imagined, its protective mechanisms are prompted to

launch a process known as "fight-or-flight response". A distress signal is then sent to

the hypothalamus, which controls involuntary body tasks through the Autonomic Ner-

vous System (ANS). The latter is divided into the Sympathetic Nervous System (SNS)

and the Parasympathetic Nervous System (PNS). In the "fight or flight response", the

hypothalamus activates the SNS which will release stimuli-inducing stress hormones. In

opposition, the PNS branch is most active in calming and undemanding circumstances,

returning the body to its resting state [3, 17]. The term “relaxation response", coined by

Dr. Herbert Benson, is an opposite reaction to the "fight or flight response". Both of these

responses can be observed in the individual’s physiological symptoms. For example, in

the "fight or flight response", HR increases, and in the "relaxation response", it decreases.

In addition to HR, there is a wide range of physiological features also related to ANS

activity, including Respiration, Electroencephalogram (EEG), EMG, Blood Pressure (BP)

Blood Volume Pulse (BVP), Galvanic Skin Response (GSR), Pupil Diameter (PD), Skin

Temperature (ST) [25, 58].

Finally, behavioral symptoms refer to expectations of how a person or a group of

people will behave in a given scenario based on predetermined protocols, guidelines for

conduct, or established social practices [57]. Some of the caused changes are well-known,

such as feeling significantly more agitated or angry. However, these changes are difficult

to quantify [57]. Other potential behavioral attitudes have been examined, for example,

analyzing interactions with technology equipment can confirm its connection with stress

and develop a reliable method for assessing it. Keyboard usage, text linguistics, mouse

usage, speech, posture, computer exposure, smart home sensor events, facial expressions,

and smartphone usage are all examples of behavioral features that can be extracted [57].

Stress responses are manifested in the three aforementioned modalities; thus, an

effective stress detection system should use as much of these evidence as possible [57].
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3

Related Work

The following chapter presents the related work that is relevant for this thesis. Mainly,

scientific contributions on the topic of stress prediction and detection will be discussed.

3.1 Physiological Stress Classification

Early detection of physiological stress symptoms to prevent stress-related health prob-

lems has been explored. Several studies show promising outcomes on stress detection

using sensor-based methods.

3.1.1 Heart Rate Stress Classification

Because the HR is so closely linked to SNS activation, it is recognized as one of the

best stress markers.

Salai and colleagues [3] tested the feasibility of a low-cost chest belt HR sensor. The

protocol for their study included a 10-minute relax phase followed by a provoked-mental-

stress phase with the same duration. They created a simple method for detecting stress

utilizing only three time-domain features of the HR signal: HR Mean (mHR), Root Mean

square of successive RR differences (RMSSD), and Percentage of number of pairs of adja-

cent RR intervals differing by more than 50 ms to all RR intervals (pRR50). The algorithm

developed by them is depicted in Figure 3.1. When the selected features progressively

reached specific values, it was assumed that the subject was under stress. Their method

achieved an accuracy of 74.6%, sensitivity of 75.0%, and specificity of 74.2% without

the usage of machine learning. Instead, a TP outcome was considered if the technique

marked the stress-inducing part as stress, a TN result if the relax part was marked as

rest, an FP result if the relax part was marked as stress, and an FN result if the stress-

inducing part was marked as rest. They were able to demonstrate that even a low-cost

HR monitor device could allow for the extraction of features that diverge significantly

under the effects of mental stress, and because they only used time-domain features, it

can be implemented more efficiently (frequency-domain features require significantly

more computing power to calculate).
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Figure 3.1: Flow chart of stress detection algorithm. A sliding window that shifted across
the heart rate signal was separated into four equal portions. The algorithm detects stress
if the mHR in the fourth part increases by more than 5% when compared to the first part,
and RMSSD and pRR50 values decrease by more than 9% when compared to the third
part. Retrieved from [3].

Karthikeyan and colleagues [59] used ECG and HR data to assess stress. The Stroop

color word test was utilized as a stressor, and the signals were recorded during the exper-

iment to discover the differences caused by it. The stress-related features were extracted

from the signals using a time and frequency domain analysis. The non-linear KNN clas-

sifier yielded maximum average accuracies of approximately 94%.

Some studies opt to discreetly track a person’s HR and few other features throughout

the day, even during sleep, in the least intrusive possible way. Lawanont and colleagues

[60] proposed utilizing an activity tracker bracelet and a smartphone to detect stress

levels. The bracelet acquired several features related to HR during the day and during

sleep, in addition to a few extra features about sleep cycles, calorie usage, and number

of steps. They trained the model utilizing three algorithms: KNN with k = 5, SVM, and

DT. Each subject’s data-set was randomly divided into a training set and a test set with

an 80% to 20% ratio. The highest accuracy obtained while using a DT to predict stress on

the test set was 78.95%. Muaremi et al. [61], instead of using a bracelet, chose to employ a

wearable chest belt in addition to a smartphone for the same purposes. They also used HR

information collected during day and night and some features from audio and physical

activity. They did this over the course of four months, applying a leave-one-day-out

cross-validation approach for every individual separately to predict the specific accuracy

of each one. With multimodal Logistic Regression (LR) techniques, they obtained an

accuracy of 55% using only the extra features and 59% using just the HR features. The

combination of all features resulted in a 61% classification rate for a three-stress level

(low, moderate, and high perceived stress) classification scenario.
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The subjects’ acceptance and comfort with biomedical measuring devices are signifi-

cantly influenced by how unobtrusive and non-invasive these types of equipment are [57].

Smart wearable technology is becoming more prevalent. Smartphones and smartwatches

enable the collection of large volumes of data without the user’s being aware of it [57].

In the healthcare context, the ECG signal has been used to measure HR. However, PPG

assessment is preferable for HCI studies because it is a far less intrusive and obtrusive

monitoring technique. This sensor can be easily embedded in smartwatches [10]. To

identify mental stress using only the PPG signal, Kalra and Sharma [58] carried out a

stress-inducing experiment interspersed with periods of relaxation. Using Deep Neural

Networks they attained an overall accuracy of 91 ± 1.1%. Similarly, Zubair and associates

[62] designed an experimental protocol in which PPG data was acquired. The protocol

used Mental Arithmetic Tasks (MAT) to appropriately stimulate various levels of stress.

Different features were extracted using HR estimated from PPG signal 60-second seg-

ments. The outcomes of the proposed approach achieved 94.33% accuracy using SVM for

five-level mental stress discrimination.

3.1.2 Multimodal Stress Classification

The multimodal physiological nature of stress, in addition to the extensive research

in this field, suggest that more accurate models should incorporate many modalities to

assist in distinguishing between stress and non-stress scenarios [57].

The HR is not the only signal that smartwatches can provide. This unobtrusive device

is used in numerous studies to gather multimodal physiological information for stress

classification. Zhai et al. [10] tried using BVP, GSR and PD retrieved from a smartwatch’s

PPG sensor to monitor the stress felt by computer users. Using a SVM to differentiate the

stress state from the normal working state based on recorded physiological signals, they

achieved a maximum classification accuracy of 80%. They suggested that additional clas-

sification techniques should be investigated in order to identify the mental state of stress

with even greater accuracy. Moreover, Ciabattoni et al. [2] used GSR, HR and ST acquired

by a commercial smartwatch and implemented a KNN classifier with 1 neighbor. To

smooth data from noise and movement artifacts, the smartwatch’s obtained features were

filtered and interpolated. They used 10-fold cross-validation and the KNN algorithm

yielded, on average, an accuracy of 84.5% when predicting if the participant was stressed

or not. Additionally, a 26% misclassification error was reported when attempting to iden-

tify stress in a relaxed person. Siirtola and associates [11] also used a smartwatch for the

same purpose. They provided ACC, BVP, Electrodermal Activity (EDA), HR, HRV and ST

signals. The fundamental goal of this study was to determine if it was possible to properly

identify stress using sensors incorporated in commercial smartwatches, not including the

EDA sensor. Three classifiers — Linear Discriminant Analysis (LDA), Quadratic Discrim-

inant Analysis (QDA), and RF — were used to test various window sizes and feature

combinations. The leading outcome was obtained with a Linear Discriminant Analysis
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(LDA) classifier using a combination of ST, BVP, and HR. They determined that models

were more accurate when trained without the EDA signal and were able to achieve an

accuracy of 87.4% using the leave-one-out technique.

According to research, PPG also allows multilevel stress classification. As mentioned

in the section above, Zubair et al. [62] were successful in differentiating 5 levels of stress

utilizing features extracted from the HR signal provided by the PPG sensor. Majid and

associates [63] combined three distinct classifiers in their work to classify human stress

levels using selected features from EEG, GSR, and PPG. They attained an accuracy of 95%

for two classes—non-stressed and stressed—and a 77.5% for three classes — non-stressed,

mildly stressed, and highly stressed — using a Multilayer Perceptron (MPL) classifier and

a combination of features from all three modalities.

Some research aimed to study the relevance EMG could have in stress detection.

Karthikeyan et al. [64] used trapezius EMG in a stimulated stress-inducing environ-

ment to study the association between changes in human stress levels and muscular

tension. For stress classification, a basic non-linear classifier KNN was employed and a

maximum average classification accuracy of 90.70% was obtained. In 2011, Wijsman and

colleagues [65] used trapezius muscles’ EMG, respiration, Skin Conductance (SC), and

ECG to identify mental stress. They distinguished between stress and non-stress condi-

tions using multiple classifiers, including Linear Bayes Normal (LBN), Quadratic Bayes

Normal (QBN), KNN, and Fisher’s Least Square Linear (FLSL), and achieved an almost

80% consistent accuracy for all of them. In 2013, some of the same authors from the

previous study [66] investigated if the trapezoids were suitable muscles for stress detec-

tion and concluded that they were (i.e., the EMG exhibited greater amplitudes and fewer

gaps - periods of relaxation - during stress compared to a resting state). Later on that

year, the same authors [67] used HR, respiration, GSR, and EMG of the upper trapezius

muscles to distinguish between states of stress and rest in working contexts. The protocol

that was implemented included stress tests that were aimed to simulate office-like cir-

cumstances. Nineteen features were extracted including HR Standard Deviation (SDHR),

Low Frequency (LF), High Frequency (HF), Symphatovagal Balance Index (SVI), RR, Root

Mean Square of Successive (RMSE), Mean and Median Frequencies (MF and MDF). The

classification accuracy obtained utilizing Generalized Estimating Equations (GEE) was

74.5%. All studies from this author and associates implemented the arithmetic "Norinder

Test" on their stress-inducing protocols. Pourmohammadi and Maleki [17] conducted

research to compare the efficiency of the EMG signal with the ECG signal in detecting

mental stress. According to their findings, EMG and ECG signals can accurately diagnose

stress levels with 100%, 97.6%, and 96.2% accuracy for two, three, and four degrees of

stress, respectively using the SVM classifier. They also demonstrated that the EMG signal

outperformed the renowned ECG signal in the stress detection field.

There are still some other worth mentioning studies that sought to classify stress using

a multimodal approach. In 2006, Zhai and others [68] developed an emotion recognition

method. They set up an experiment for physiological sensing, then performed signal
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pre-processing to extract features, and then used a ML algorithm for emotion recognition.

Four signals: GSR, BVP, PD and ST were monitored and analyzed. The supervised

classification of the emotional states "stressed" and "relaxed" was carried out using a SVM

algorithm, which produced satisfactory levels (up to 90.10%) of differentiation. Shi et

al. [69], in 2010, presented models for detecting stress from physiological measurements.

They made use of a chest band that had ECG, GSR, Inductive Respiration (RIP) and ST

sensors. Experimental results showed that their models could detect stress with 56%

precision for the specific models, and for the general ones, a precision of 62%; using the

SVM algorithm. Choi et al. [25] conceived and created a minimally invasive wearable

sensor platform allowing long-term ambulatory monitoring of mental stress, in 2011.

Using a LR model, their feature set from EDA, HR, EMG and respiration sensors was able

to accurately predict mental stress with an accuracy of 81.0%. Palanisamy and associates

[70], in 2013, also attempted to identify human stress employing multiple physiological

signals including ECG, EMG, HR, GSR, and ST and using mental arithmetic task-based

stress-inducing stimuli. The subjects’ normal and stressed states were distinguished using

the nonlinear classifiers KNN and Probabilistic Neural Network (PNN). According to the

findings, the proposed HR model performed well achieving an accuracy of up to 93.75%.

The results for the ECG, EMG, GSR, and ST were, respectively, 76.25%, 71.25%, 70.32%,

and 75.32%. In 2015, Smets et al. [71] compared different ML techniques for stress

level prediction based on physiological responses in a controlled environment. During

the stress test in the lab, the EMG, GSR, ST, and respiration were recorded. Six ML

algorithms were analyzed using a general and personal approach: LR, SVM, DT, RF, NB.

The results demonstrate that personalized NB and generalized SVM rendered the best

average classification results with 84.6% and 82.7% respectively.

This work was build upon the research mentioned above. As multimodal models were

able to classify with higher accuracies than models based on single sensor input, this mul-

timodal approach was followed. The equipment chosen to extract these signals is widely

available and simple to use. One of the extracted signals - the RR - was not extracted with

a specialized equipment. This signal was instead obtained from a smartphone placed

on the chest. A smartwatch was used to collect the HR signal and the EMG signal was

extracted from the upper left and right trapezius muscles with proprietary EMG sensors.

Furthermore, instead of striving to use Deep Learning (DL), only ML algorithms were

employed because they are more light-weight and need less computational capacity.
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3.2 Behavioral Stress Classification

Focusing on how HCI can help analyze human behavior instead of sensor-based tools

allows the measurements to be equipment-free and even more imperceptible.

Salmeron et al. [72] aimed to evaluate the effectiveness of non-intrusive, low-cost

indicators obtained from user interactions with the mouse and keyboard in identifying

affective states and behavior changes. They attained an accuracy of 59% using an RF

classifier after extracting 96 features from mouse interaction and 42 features from key-

board usage. Sun, Paredes and Canny [73] explored stress measurement from common

computer mouse operations. Increased muscular activity happens when the human body

experiences stress. Therefore, they decided to use common mouse operations to directly

detect muscle stiffness of hand and arm movement. They found that click force was

significantly higher during a stressful moment and stated that motion control features

were remarkably different in stressful situations and non-stressful ones. An approach

developed by Gonçalves and others [8] tried to access the stress of computer users during

demanding tasks, in an unobtrusive way, through mouse and decision-making behav-

iors. When the user manifested greater stress levels, probably nearly reaching the state

of burnout, his/her performance diminished. This is recognized by the evidence of less

efficient interaction patterns - extended mouse clicks, greater distances traveled by the

mouse cursor, larger keystroke downtimes, accelerated and diminished decisions and

counting.

Other studies aim to reduce stress after its detection through HCI. A review by Daher

and others [5] investigated the influence of blue-colored light in negative stress reduction.

Figure 3.2 shows the architecture behind their work. They stated that, in comparison

to the normal state, the experiment with no blue light induced more stress than the

experiment with blue light, which implied blue-colored light tends to reduce mental

stress.

Saxena et al. [4] used the pressing rate on the keys of a keyboard; mouse trajectory,

mouse speed rate and the time a user spends in front of a system to establish six stress

levels based on how much and what HCI is occuring - "No Work", "Slow Work", "Speed

Up", "Optimal Speed", "“Undergoing slow work progress", and "Abort Work". A working

user usually experiences all these levels. They concluded that if a system captures which

level is being experienced by the individual, it could adjust itself to the user’s needs, not

only increasing its usability but also reducing the user’s stress level.

In this thesis, assessing the user’s mental state of stress was attempted with features

extracted from behavioral response, in particular those from HCI; in addition to the stress

detection model created using physiological signals.
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Figure 3.2: Experiment Architecture. Retrieved from [5].

3.3 Combined Stress Classification

To replicate different real-life scenarios and get more accurate findings, multiple

responses to stress are preferable [74]. To successfully and instantly meet the user’s

needs, high detection accuracies (>90%) are required [74].

Aigrain et al. [75] obtained average F1-scores of up to 85% with the SVM classifier

using multimodal features. They used physiological signals such as BVP, ECG, EMG,

GSR,nHR and behavioral signals: speech, body movement and head position among

others. The best results were obtained when combining both stress responses with a

mean F1 score of 85.5% (± 2.0%). A more in-depth study conducted by Akmandor and

colleagues [74] presented an automatic stress detection and alleviation system, called

SoDA. In order to continuously monitor human stress levels and reduce stress as it

develops, SoDA uses evolved wearable medical sensors, specifically the ECG, GSR, RR,

BP, and Blood Oximeter. It detects stress and reduces it in a user-transparent manner.

When SoDA detects stress, it applies an adaptive stress-relief approach based on the user’s

stress response. Figure 3.3 displays a schematic of the stress detection and alleviation

process.
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Figure 3.3: Block Diagram of SoDA system. Retrieved from [74].

They establish the effectiveness of the proposed system through a detailed analysis of

data collected from 32 participants. Four stressors and three stress reduction techniques

were used. With a unique fusion of supervised feature selection and unsupervised dimen-

sionality reduction, SoDA’s stress detection achieves 95.8% accuracy (KNN) and 86.7%

accuracy (SVM) for individual and 89.2% accuracy (KNN) and 89.3% accuracy (SVM) for

generalized models. The accuracy difference between the two models (‘individualized’

and ‘generalized’) exists because stress impacts differently on every individual. Thus, a

model derived from a population of individuals cannot be expected to be better than a

model adjusted to the individual.

Since the typical human response to events is multimodal in nature, choosing multi-

modality in emotion research is well thought out [76]. All sorts of studies require collect-

ing data, and physiological data must be as noise-ridden as possible to allow algorithms to

operate more accurately [76]. In this work, information from both the physiological and

behavioral responses of computer users was extracted. In order to develop a multimodal

model as reliable and feasible for stress classification, modalities within the physiologi-

cal response were combined, including HR, respiration, and EMG. The Latent [16] tool

was used to record a person’s behavior on the computer in order to access the behavioral

component.
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Materials and Methods

The current chapter provides an overview of the materials and procedures utilized to

fulfill the work’s aims. It contains an explanation of the computational methods applied,

the extraction of the RR from accelerometer data, physiological signals and Latent [16]

pre-processing techniques, and the features and parameters chosen for the models that

were used. Furthermore, the data collection procedure and the protocols’ development

and implementation are also presented.

4.1 Computational Methods

The Python programming language was utilized in the code editor PyCharm to pro-

cess and analyze the physiological signals as well as develop ML models. To extract the

physiological features, several libraries were employed, including Pandas [77], NumPy

[78], SciPy [79], TSFEL [80], and Biosignalsnotebooks [81]. Scikit-learn [82] was chosen

as the package to create the ML models. The interactive protocols used in the pilot stud-

ies were implemented using the coding editor Brackets with the languages HTML and

JavaScript, and the CSS framework Bootstrap. During these studies, the data collection

tool Latent [16] recorded the user’s activity on a browser page.

4.2 Extraction of Respiration Rates from Accelerometer Data

Previous research studies were able to extract respiration data from a smartphone

placed on a person’s chest, as indicated in Section 2.2. An algorithm was designed in

order to use the RR derived from ACC data on the development of the stress detection

classifier.

4.2.1 Preliminary Study

The PrevOccupAI project developed an android based smartphone application that

allows evaluation of a person’s biomechanics and assesses his/her posture using several

different equipment, as illustrated in Figure 4.1. This application was used to collect the
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data required for the development of the algorithm. The application begins by requesting

the intended duration of the acquisition, followed by the selection of which equipment

will be used. Once the equipment is selected, the acquisition procedure is ready to start.

After initiating, the equipment will attempt to connect to the application. As soon as the

pairing is established (when all left dots from the right-most image change from red to

green), the recording process begins. The following images that illustrate how the devices

are placed were provided by courtesy of the PrevOccupAI project.

Figure 4.1: Example of the steps to do a biomechanical assessment. Retrieved from [83].

Figure 4.2: Smartphone placement.

For the preliminary study, a smartphone and a PLUX RIP band were chosen. The

used smartphone was a Redmi Note 9 equipped with an ACC, gyroscope, magnetometer,

noise-recorder and rotation vector. The ACC has a sample acquisition frequency of 100Hz.

With the aid of a harness, the smartphone was mounted vertically on the subject’s chest
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as shown in Figure 4.2. The variation in the ACC induced by chest movements was used

to obtain the individual’s respiration signal. While breathing, this device would measure

the acceleration components accx, accy and accz (with gravity acceleration) along the

orthogonal x, y, and z directions, correspondingly. Figure 4.3 displays a visualization of

the smartphone’s axes

Figure 4.3: Smartphone Accelerometer’s axes.

The RIP band from PLUX is a sensor that detects overall thoracic or abdominal dis-

placement, making it more resistant to motion-induced artifacts. It contains an elastic

strap adjustable in length (as shown in Figure 4.4), allowing the sensor to be used regard-

less of body structure. One of the many applications of this sensor is the monitoring of RR.

In addition to the displacement signal, this equipment, like the smartphone, has an ACC

for each one of the three axes. All signals are acquired at sample frequency of 1000Hz.

In the PLUX RIP’s datasheet [84], the raw data provided by this sensor is converted to

displacement using equation 4.1. The Analog-to-digital converter (ADC) is the digital

value sampled from the channel and n is the number of bits of the channel. The RIP’s

default resolution is 16-bit.

RIP(%) =
ADC

2n − 1
2
× 100% (4.1)

To validate the algorithm’s reliability, a minor study was carried out utilizing these

two sensors simultaneously. The study was performed on a 22 year-old female student,

lasted for 40 minutes and began with a jumping period for further synchronization of the

equipment. To cover different respiration patterns, three periods were distinguished in

the study: a period when the subject was only concentrating on breathing, a period of

forced fast breathing, and a period of breathing while mildly stressed. When the subject

was focused on breathing, eyes were closed and the breathing pattern was as comfortable
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as possible. For the fast breathing periods, the respiration rhythm was increased drasti-

cally, which is why these periods were only done three times over the 40-minute study

and lasted no more than a minute. To simulate a bit of stress, an online high-difficulty

level arithmetic exercise was carried out. Calculations would appear and had to be com-

pleted in 10 seconds. This activity was chosen to be as similar as possible to the one

employed later in the stress-inducing protocol.

Figure 4.4: Inductive Respiration sensor placement. Retrieved from [84].

4.2.2 Algorithm Development

To develop this algorithm, the signals obtained from the two sensors were first syn-

chronized, followed by the application of a forth-order low-pass butter-worth filter. Then,

to reduce spurious peaks induced by motion, a noise threshold was applied to the peak

and valley detection.

The degree of resemblance between a time series and a lagged version of another

time series can be measured using cross correlation. Figure 4.5 shows the three types

of possible lag. If the lag is negative, the red signal is delayed in reference to the black

signal, and if the lag is positive, the process is reversed. If the lag is zero, the signals

are perfectly synchronized. In this image, the highest correlation value corresponds to a

positive lag value.

Synchronization of the sensors was done based on the jumping motion that was exe-

cuted at the beginning of the study using a cross-correlation function from the Biosignal-

notebooks library [81]. The jumping motion leaves a clearly distinguishable pattern on

the ACC’s y axis of each device (smartphone and RIP). Thus, the cross-correlation func-

tion was applied to the ACC’s y-component of the devices. Because all of the RIP signals

have a sampling frequency ten times superior to that of the smartphone ACC’s signals,
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Figure 4.5: Cross Correlation. Retrieved from [85].

the synchronization was performed by implementation of a down-sample function. For

every 10 values in the RIP ACC’s y-component, the first one was chosen.

The most significant problems in ACC-based RR measurements are motion artifact

removal and false peak detection [31]. To remove high frequency noise from the sum

vector of the three axes’ acceleration data (calculation showed on Equation 4.2), a third

order low-pass butter-worth filter with a cutoff frequency of 0.5 Hz was used. The y axis,

the z axis, a combination of these two, and the sum of the three axes were evaluated

to decide which ones would be applied to detect the variation of the ACC that most

accurately matched diaphragm movement. The sum vector was preferred over single axis

data and y and z combination data, through experimental results.

ACCT otal = ACC2
x + ACC2

y + ACC2
z (4.2)

The expansion and contraction of the diaphragm captured by the smartphone ACC

appears as peaks and valleys in the ACC waveform. To overcome the possibility of

false peak detection, an algorithm inspired on a research [31] was developed. After

filtering the signal, peak and valley detection displayed in Figure 4.6 is performed in a

60-second window. Some of these peaks and valleys are caused by activities other than

breathing. In order to remove this motion data, a noise threshold was implemented.

Instead of being a stipulated value, this noise threshold was calculated for each specific
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value. An empirically-determined 5-second sliding window was used to calculate the

noise threshold value.

Figure 4.6: Schematic representation of respiration algorithm.

This window would compare previous and subsequent values to the current value.

The highest and lowest values in this section are then subtracted from each other to give

the maximum peak to valley amplitude of that period. All values less than half of that

amplitude were considered noise. After all spurious peaks are removed, equation 4.3

is used to calculate the RR. The number of samples that exists between two peaks is

averaged and divided by the sample frequency (fs) in one minute periods. This returns

an estimate of the rate at which an individual breathed during that minute.

RR =
fs

Peak to Peak sample count
× 60 (4.3)
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4.3 Experimental Protocols for Stress Detection

Two studies were carried out in order to collect the data required for the development

of a stress detection classification model. For both protocols, the acquisition setup was

kept the same. Both studies were carried out with the same subjects, in the same facil-

ities and had a similar duration. The protocols were conducted in a quiet space with

minimal outside noise. Participants, while sitting in a chair behind a desk, were able to

observe the protocol interface on a laptop screen. The only allowed tool of interaction

was the laptop’s own trackpad. The computer sound was adjusted to a desired volume

and was not changed during the studies. The layout of the two protocols was also as

similar as possible despite their specificities. The purpose of the stress-inducing protocol

was to create moments of cognitive and emotional stress in computer users whereas the

relaxation-inducing protocol aimed to help participants to relax, lowering the chance of

them experiencing a strong sudden emotion. Similar to other studies [28, 74, 86], the

data extracted from the Stress-Inducing Protocol was labelled as "Stressed" whereas the

one retrieved from the Relaxation-Inducing Protocol was labelled as "Not Stressed".

Physiological signals, such as HR, respiration (derived from ACC) and EMG were

acquired from the 12 healthy volunteers (6 male and 6 female) that participated in the

studies. The participant’s ages were on average 25.75 ± 7.19 years and all of them were

right-handed. In regards to professional occupation, half of the participants were students

while the remaining half were workers. The participants were warned not to take any

drugs or medication that might have an impact on their psychological state/awareness

at least 24 hours before the experiment. They were also asked for their written informed

consent, to fill out their demographic data and the PSS questionnaire [87], that quantifies

a person’s perceived stress experienced during the past month. This document is used in

many studies as an objective stress marker [6, 17, 63, 65, 88]. Questions in the PSS are

significant to see how life events are perceived. Depending on perception, two people who

experience the same traumatic event can get different scores [87]. Since two studies were

conducted, the PSS questionnaire was completed both times. It would not be accurate to

infer that experienced stress in the previous month had remained the same [6].
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4.3.1 Acquisition Setup

4.3.1.1 Sensor Placement and Configuration

High-quality data is required to be accurate, complete, timely, relevant, adequately

detailed and appropriately depicted. Instruments for measuring stress should be non-

intrusive and discrete, since subjects may become more stressed as a result of invasive

equipment [6]. Most of these requirements are met by the wearable physiological monitor-

ing equipment outlined below. For the purpose of this thesis, a smartphone, a smartwatch

and two muscleBANs were chosen. The muscleBANs are sensors that acquire muscle ac-

tivity.

The Oppo smartwatch has the same sensors as the smartphone except for the noise-

recorder. Instead, the watch can obtain the HR signal as explained in Section 2.1, with a

1Hz frequency. However, the watch has a limitation: it only collects data for about one

minute out of every three, and if its battery is weak, it might not even comply with this

rule. During the protocols, the smartwatch will be positioned on the wrist corresponding

to the participant’s least-dominant side (illustration on the left side of Figure 4.7) because

any wrist movement can significantly distort the PPG signal [26]. The participant group

did not contain any left-handed individuals.

The EMG signals are acquired at a 1000Hz frequency using two muscleBANs from

PLUX. These devices contain, in addition to an EMG sensor, an ACC and a magnetometer.

The muscleBANs are positioned on the upper trapezoids in accordance with SENIAM

recommended placement [89] as displayed on the right side of Figure 4.7. To lower the

electrode-skin impedance and achieve a better fixation of the electrodes, proper skin

preparation is required [89]. Therefore, skin cleansing with alcohol was done before the

electrodes were applied.

(a) Smartwatch. (b) MuscleBANs.

Figure 4.7: Smartwatch and MuscleBANs placement.
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4.3.1.2 Latent Setup

As stated in Section 1.2, Latent [16] is a data collection tool that is integrated as an

extension into the Google Chrome web browser to track users’ activities while using it.

Thus, the protocols had to run on Chrome in order to extract data from the HCI during

the studies. After concluding several steps, including the installation of Docker and Mon-

goDB, Latent was ready to be used. When pressing the Latent extension icon, a window as

illustrated in Figure 4.8 appears on the screen. The left-most icon, when selected, shows

what parameters can be recorded. These parameters are mouse interaction, keyboard

interaction, geolocation, browser tab screenshots, audio from microphone, video camera

snapshots and Document Object Model (DOM) as shown in the Figure 4.9.

Figure 4.8: Latent web browser extension acquisition control. On top, icons from left
to right: Open options page; turn on/off the acquisition preview; open the acquisition
results page; checks if connection is being established with serve and “about” information.
The bottom button is to start/stop the acquisitions. Retrieved from [16].

Figure 4.9: Latent open options page. Retrieved from [16].

35



CHAPTER 4. MATERIALS AND METHODS

During the acquisition protocols, screenshots of active browser tabs and mouse inter-

action were activated. The protocol was designed in a way that only a mouse is necessary

for interaction, thus "Mouse" option was chosen in the Latent options menu. It provides

the most pertinent data from user browsing behavior such as mouse position within the

browser window, left and right button activity, and mouse wheel scrolling. The HTML

element’s XPath is also captured when the mouse is hovering over it. XPath is an abbrevi-

ation for XML Path Language and is mostly used in XSLT, although it can also be used to

navigate through the DOM of any XML-like language, such as HTML [90]. The keyboard

file, although it might have been interesting for HCI analysis, was not extracted because

there was no need for keyboard interaction during the protocols. The screenshots option

was activated to facilitate access of the competitive component in the mental calculations

task.

4.3.2 Protocol Description

As mentioned in Section 4.1, protocols were developed in the Brackets code editor

with the languages HTML and JavaScript, and the CSS framework Bootstrap.

As soon as the protocols started, the first requirement was to jump repeatedly for 10

seconds with arms extended along the body and eyes looking forward in order to enable

future synchronization of all the collected files. The volunteers also had to perform

a Reference Voluntary Contraction (RVC) for 20 seconds, which was extracted to later

normalize the EMG amplitude. They were told to look straight ahead and raise their arms

perpendicularly to the chest. Their elbows should be fully extended and wrists should be

straight with palms facing down.

4.3.2.1 Stress-Inducing Protocol

Stress may be cognitive, emotional, or physically based [25]. Since computer work

isn’t a significant source of physical stress (there is no lifting of weights or the need for

a lot of skeletal movement) this type of stress was not induced. Only one cognitive and

one emotional task - respectively, the "Norinder Test" [91] and the "Sing a Song Test" [92]

- were selected in order to keep the procedure brief and avoid bothering the participants

with an overextensive protocol.

The "Norinder Test" is an arithmetic test that has to be performed under time con-

straints. This test is used to induce mental stress in studies [65–67]. The implementation

of the "Norinder Test" for this protocol, similar to another study [66], is based on finishing

27 calculations within a 2:30 minutes time frame. The test had 2 timers with a colored

circle changing from green to red gradually. The first timer displayed the total amount

of time available to complete the task. The second timer had the time the participant

could take to complete each calculation. When this timer reached 5 seconds, a stopwatch

sound started to play, alerting the players that they didn’t have much time left to select

an answer. There were four possible options to be selected. When the correct one was

36



4.3. EXPERIMENTAL PROTOCOLS FOR STRESS DETECTION

picked, a "success sound" would beep, and for two seconds, the correct answer would

be displayed in green and the incorrect answers would be displayed in red as illustrated

in Figure 4.10. A "wrong calculation" buzzer sounded when a mistake was made, and a

totally red screen with the word "Wrong" appeared, blocking the page for three seconds.

The subjects then received an additional 10 seconds to find out the answer once more.

However, if they didn’t pick an answer before the end of the 10-second countdown, the

calculation would change, and they would no longer be able to respond to that particular

one.

In the end of all acquisitions, an e-mail was sent with the final scores in a global

ranking with all the participants, who had previously been informed that a small prize

would be awarded to the best ranked person.

Figure 4.10: Right answer selected in the cognitive task.

To induce emotional stress, the "Sing a Song Test" was chosen. Used by several studies

[6, 92, 93], this test aims to induce emotional stress in an ethical way that does not result

in long-term detrimental effects on subjects, unlike the Montreal Imaging Stress Task or

the International Affective Picture System, where some images can be so disturbing that

the effects of stress can linger [6]. Participants were instructed to remain seated in front

of the computer monitor and silently read 10 messages that would appear on the screen.

This test also included a 10-second timer, with a colored circle gradually changing from

green to red to indicate the duration each message would be displayed on the screen. It

was indicated that one of the messages could contain a hidden task to be carried out after

the subsequent timer reached 0. A stopwatch sound was also playing after 5 seconds had

passed for each message. Because the messages could not arouse any stressful emotions,

nine neutral sentences were selected with the tenth saying: “HIDDEN TASK: Think of
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a song from your childhood. When the clock stops, sing the song out loud.” (shown on

Figure 4.11).

Figure 4.11: Hidden Task page in the emotional task.

4.3.2.2 Relaxation-Inducing Protocol

When designing the relaxation-inducing protocol, the tasks within the protocol needed

to be developed in such a way that the computer user feels relaxed, but not to a point

where he/she stops paying attention to the computer, as this usually does not happen

in a normal work scenario. The best approach to ensure this is to establish a protocol in

which some gentle relaxation is forced on the individual, as it is impossible to guarantee

that the person is not stressed with other matters prior to the study. This was done in

the first half of the protocol. The second part of the protocol tried to create an environ-

ment in which participants were attentive to the computer but did not experience any

big emotion. To avoid evoking strong emotions, the entire protocol was created with a

neutral design and was implemented in monochromatic gray-scale because it is the only

color that has no direct psychological impact [94, 95]. Low-volume relaxing music was

also played throughout the protocol to help set the mood [17].

Several relaxation methods incorporate the use of calm, deep breathing [96]. The 4-7-

8 breathing technique was chosen because it has shown an effect on self-regulating stress

in other studies [97, 98] and reduces both oxygen consumption and HR [99]. Participants

were asked to sit with their back straight and softly press the tip of their tongue against the

top of their mouth throughout the entire exercise. The exercise started by fully exhaling

through the mouth. Then, the subjects inhaled slowly and quietly through their nose

while mentally counting to four. Afterwards, they had to hold their breath for a count of
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seven and perform an eight second-long exhale [100]. This cycle was repeated four times

before they could move on to the next task. Figure 4.12 shows the a screenshot of the

protocol when people were performing this task.

Figure 4.12: 4-7-8 breathing task.

After inducing relaxation, the subject can proceed to the second part of the protocol.

The intent of this part was to maintain the person’s state of relaxation after the breathing

exercise while still keeping them focused on the computer, creating a close simulation of

a calm computer user. To achieve that, a picture and a sentence tasks with 12 images and

12 sentences, respectively, were presented to the subject.

First, participants were instructed to remain as relaxed as possible while enjoying the

images that would pass on the screen. There was no need for computer interaction in

this task. Nature and fractal images in shades of green and blue were presented. Natural

landscapes are well known for their calming effects [95]. Green is an emotionally tranquil

color, while blue encourages reflection and introspection [95]. Soft blues soothe the mind

and improve concentration [95]. Fractal installations that are evocative of nature can

decrease occupant stress levels in addition to easing physical discomfort by alleviating

the pressure that the environment’s abnormal spatial frequencies place on the eyes and

mind [101]. These patterns successfully reduce physiological arousal, stress levels, and

help to capture attention [101, 102]. Figures 4.13 and 4.13 illustrate these two type of

images present in the protocol.

After observing the pictures, the sentence task would begin. Similarly to the picture

task, participants were told to stay as as relaxed as possible while reading the sentences

on the computer monitor. Some neutral sentences inspired on a research [94] with small

cognitive thought would appear on the screen as Figure 4.15 shows. Despite being entirely

neutral because they only provide facts, these types of sentences compel the reader to
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Figure 4.13: Natures Landscape image in Picture Task.

Figure 4.14: Fractal image in Picture Task.
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verify whether or nor they were true, which resulted in unconscious cognitive thinking

without arousing any strong emotion.

Figure 4.15: Sentences in "Sentence Task".
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4.4 Pre-Processing and Feature Extraction

4.4.1 Data Synchronization

Since data is retrieved from four different devices there are some challenges regarding

information merging. For all acquisition starting times to be in sync, the data must be

synchronized using timestamps. Also, only data retrieved while subjects were performing

tasks was considered. The parts of the protocol in which people jump, raise their arms or

read what they had to do were eliminated because it could not be assured whether or not

the participants were stressed in those activities.

4.4.1.1 Sensors

Both the smartphone and the smartwatch provided a file containing the timestamps

associated with an x, y, and z acceleration as shown in Table 4.1. The muscleBANs file

did not have a timestamp, but that information was added using the the eletromyography

sensor’s sample frequency.

Table 4.1: Section of smartphone obtained file.

Timestamp xAcc yAcc zAcc

5223861213415 -0.62 9.452 1.129
5223871237400 -0.38 9.813 1.164
5223881261467 -0.368 9.679 1.136
5223891285481 -0.584 9.416 1.081
5223901309457 -0.483 9.624 1.052
5223911333490 -0.327 9.76 1.09
5223921357721 -0.526 9.528 1.124
5223931381746 -0.653 9.49 1.097
5223941405808 -0.445 9.756 1.126
5223951429823 -0.397 9.698 1.124
5223961454029 -0.596 9.456 1.081
5223971477972 -0.586 9.574 1.083
5223981502068 -0.38 9.789 1.081
5223991526063 -0.471 9.602 1.107
5224001550044 -0.672 9.411 1.126
5224011574288 -0.564 9.622 1.085
5224021598255 -0.368 9.794 1.047
5224031622317 -0.502 9.6 1.054
5224041646317 -0.655 9.459 1.109

... ... ... ...

Similarly to the study described in 4.2.1, the sensor synchronization was done based

on the initial jumping period using the cross-correlation function from the Biosignalnote-

books library [81]. Thus, the cross-correlation function was also applied to the y-axis of

the ACC’s devices. The smartphone and smartwatch were synchronized first followed by
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the smartphone and muscleBANs. Since the smartphone has the application where the

acquisition process starts, it was always the first device to begin data acquisition. As a

result, all lags resulting from the cross-correlation were positive. Figure 4.16 shows four

graphs showing the syncronization process before and after. On the top-left side, a graph

with all axis from the smartphone and muscleBAN before syncronization is displayed,

and on the bottom-left side, only the ACC’s y axis is presented. The smartphone and

muscleBAN time series after synchronization are shown at the bottom. One can see that

the muscleBAN time-series shifted to the right to be synchronized with the smartphone,

resulting on a positive lag.

Figure 4.16: On top, from left to right: all smartphone and muscleBAN accelerome-
ter’s axis before synchronization; only the smartphone and muscleBAN accelerometer’s
y axis before synchronisation. On bottom, from left to right: all smartphone and mus-
cleBAN accelerometer’s axis after synchronization; only the smartphone and muscleBAN
accelerometer’s y axis after synchronization.

4.4.1.2 Latent

The Latent [16] data had to be synchronized with the remaining physiological signals

as well. Every time a participant executed a "left click", it would appear written in the

file on a column labeled "mouse interactions". Left clicks occurred anytime participants

pressed a button that transported them to another HTML page (except for the calculations

task). When people were ready to begin the protocol, they could press the start button
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on the first page of the procedure. The second page detailed how the jumping period

should be carried out. After pressing the "Jump" button, a third page appeared with a

picture displayed for 10 seconds, equivalent to the time they had to jump. Following

that, a page describing how the RVC should be performed was shown. Therefore, after

three left mouse clicks, all accelerometers displayed a "plateau" on the z-component

corresponding to people curving their bodies to read how the RVC should be performed.

People remained standing after jumping since RVC would also be completed that way,

and they would bend over to press the button that started the 20-second countdown in

which they would be performing the RVC.

Figure 4.17: On top, from left to right: detection of jumping period; original acceleration
on z-axis. On bottom, from left to right: detection of the "plateau" on the accelerometer’s
z-component; detection of the raise arms period on the accelerometer’s z-component.

Figure 4.17 displays the detection of the jumping period on the top left. This detec-

tion was achieved using a function that calculated if the difference between the current

acceleration value and the previous one was greater than 30m/s2 (experimentally deter-

mined value), and if it was, then the current value was part of the jumping period. On

the top-right, the original complete z-axis acceleration is displayed and the pink circle

corresponds to the leaning over and arm raising periods. On the bottom-left, the light

blue dots represent the acceleration values when the participants were leaning over. For

the development of this algorithm, an 80-second time window was chosen. This time

period corresponded to the maximum time found among all participants between the
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end of the jumping and the end of the arms raising task. Then, the average acceleration

of that time period was calculated. When the current acceleration value was higher than

the value obtained before, all values under the average were deemed to be part of the

"plateau". If seven seconds (empirically determined value) elapsed between the current

value and the previous one, the leaning period could be considered to be over. Finally, at

the bottom right, the "plateau" corresponding to the arm raising period is shown with its

respective acceleration values also colored in light blue. To identify these values, the same

algorithm used to detect the leaning over values was employed. For an acceleration value

to be considered part of the raising arms period, it had to be above the average this time,

and the search would only begin when the current acceleration value was lower than the

previous value. If two seconds (experimentally determined value) passed between the

current and preceding values, the arms raising period was over.

After understanding how the differentiation between the jumping, leaning over, and

arm raising periods was achieved, it is simpler to comprehend how the synchronization

between the Latent and the smartphone was done. The file synchronization was accom-

plished by replacing the Latent timestamp in which the participants pressed the mouse

for the third time with the smartphone timestamp where the minimum value within the

"plateau" was encountered. Since the data from the jumping and raising arms periods

won’t be used for the classification model, there will be no problem synchronizing the

Latent file only after those events. Following this logic of using clicks, the timestamps

where the cognitive and emotional tasks happened can now be identified in order to

remove other irrelevant moments of the protocol, such as reading the tasks.

4.4.2 Data Processing and Feature Extraction

After all biosignals have been collected and synchronized, they must be processed

in order to extract the most information out of them. To achieve this, an overlapping

window function was created. The window size and overlap duration were dependent on

each signal.

4.4.2.1 Heart Rate

For the purpose of this thesis, a continuous HR signal would be ideal so that more

features could be extracted from it. However, such endeavour was not possible. As stated

above, the smartwatch performs a one minute data collection every three minutes. To

overcome this issue, a function that eliminated the missing time intervals was imple-

mented. If at least 25 seconds passed between two subsequent time values (the minimum

amount of time that passed between two acquisitions), all previous values were saved,

and new time values were searched complying to the requirements above. Additionally,

not all of the data acquired by the watch was used to extract features; just the one regard-

ing the performance of the cognitive and emotional tasks was used. Hence, in order to

gain some more information for future feature extraction, the HR signal was re-sampled
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from 1Hz to 5Hz for each acquisition period. Then, the sliding window function was

also applied. The signal was segmented into 8-second windows. This value was chosen

because it was the shortest smartwatch acquisition time found among participants. Thus,

it was possible to guarantee that in every acquisition some sort of feature extraction could

be done. Half of this value was chosen as the window overlap value, in order to achieve

some significant information gain.

Figure 4.18: Top: Photoplethysmography heart rate acquisition over time. Bottom: Pho-
toplethysmography heart rate acquisition re-sampled over time.

The smartwatch extracts data in BPM; this data can be transformed into a RR interval

estimate. By using Equation 4.4 — which divides the 6000 milliseconds that make up a

minute by the number of beats it contains — it can be estimated what the interval between

two R-peaks is in milliseconds.

RR Interval =
6000
BPM

(4.4)

The RR interval can be used to extract three different types of features: time, fre-

quency, and non-linear features. As was done in other studies, this thesis sought to

extract temporal and frequency features since these were the most promising domains

for the identification of stressful moments, particularly time-related ones [3, 28, 29, 58,

103, 104]. Tables 4.2 and 4.3 list the extracted features along with the formula and brief

descriptions of each.
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Table 4.2: Time-Domain extracted HR features.

Feature Unit Formula Description

mRR ms
∑N

i=1(RRi )
N RR Interval Mean

maxHR bpm max(BPM) HR interval max

mHR bpm
∑N

i=1(BPM)
N HR Interval Mean

minHR bpm min(BPM) HR Interval Min

SDRR ms
√∑N

i=1(RRi−mRR)2

N−1 RR Standard Deviation

SDHR bpm
√∑N

i=1(BPM−mHR)2

N−1 HR Standard Deviation

CVRR SDRR×100
mRR RR Coefficient of Variance

RMSSD ms
√

(mean((RRi+1 −RRi)2)
Root Mean Square of Successive
RR differences

RR20 Count(|RRi+1 −RRi |) >20ms

Number of Pairs of adjacent
RR Intervals differing by
more than 20 ms to all
RR intervals

PRR20 % Count(|RRi+1−RRi |) >20msx100
N-1

Percentage of Number of Pairs
of adjacent RR intervals differing
by more than 20 ms to all
RR intervals

RR50 Count(|RRi+1 −RRi |) >50ms

Number of Pairs of adjacent
RR intervals differing by
more than 50 ms to all
RR intervals

PRR50 Count(|RRi+1−RRi |) >50msx100
N−1

Percentage of Number of Pairs
of adjacent RR intervals differing
by more than 50 ms to all
RR intervals
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Table 4.3: Frequency-Domain extracted HR features.

Feature Unit Formula Description

VLF Power ms2 Power spectrum from
0.003 to 0.04 Hz

Power Spectrum of Very Low Frequency

LF Power ms2 Power spectrum from
0.04 to 0.15 Hz

Power Spectrum of Low Frequency

HF Power ms2 Power spectrum from
0.15 to 0.4 Hz

Power Spectrum of High Frequency

Total Power ms2 VLF+LF+HF Total Power Spectrum of Frequency

nVLF % VLF
(VLF+LF+HF) × 100

Normalized Very Low
Frequency Spectrum

nLF % LF
(VLF+LF+HF) × 100

Normalized Low
Frequency Spectrum

nHF % HF
(VLF+LF+HF) × 100

Normalized High
Frequency Spectrum

dLHF % |NLF-NHF|

Difference of Normalized
Low Frequency Spectrum
and Normalized High
Frequency Spectrum

nuLF LF
(LF+HF) × 100

Low Frequency in
Normalized Unites

nuHF HF
(LF+HF) × 100

High Frequency in
Normalized Unites

SMI LF
(LF+HF) Symphathetic Modulation Index

VMI HF
(LF+HF) Vagal Modulation Index

SVI LF
HF Symphatovagal Balance Index
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4.4.2.2 Respiration

The respiration signal was obtained using the smartphone’s ACC. First, the total ac-

celeration was calculated, then a fourth-order low-pass butter-worth filter with a cutoff
frequency of 0.5Hz (experimentally determined value) was applied. The sliding over-

lapping function was then used. The chosen window size was 60-second, in agreement

to how the RR is calculated, and the overlapping time was 10 seconds (experimentally

determined value). Finally, the RR was calculated recurring to the algorithm explained

in Section 4.2.2. Because the RR was not the only metric available for extraction from the

ACC signal, some other features mentioned on Table 4.4. Also, since these features were

computed using TSFEL’s library [80], unlike the tables presented for the HR, this table

will not contain information about the formulas used to obtain them.

Table 4.4: Respiration extracted features.

TSFEL Features Description

Nr. Peaks Number of Peaks

RR
Respiration
Rate

MAD
Median Absolute
Deviation

STD
Standard
Deviation

Var Variance

AE
Absolute
Energy

Area
Area under
the curve

PP
Distance

Peak-to-Peak
Distance

4.4.2.3 EMG

The EMG signal was the one which provided the most information, for the reason that

the muscleBANs acquired at a higher frequency than the other sensors. According to the

PLUX muscleBANs’ datasheet [105], the raw EMG data is converted to mV using equation

4.5. Like the RIP’s sensor, the muscleBANs’ default resolution is also 16-bit. The VCC

and the GEMG are also used for this conversion. The first is the operation voltage and the

second is the sensor gain (2500V and 1100, respectively for the muscleBANs device).

EMGmV =
ADC

2n − 1
2 ×VCC

GEMG
(4.5)
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For the EMG signal, features were extracted in different pre-processing steps. This was

done because some features needed signal properties that were eliminated by certain pre-

processing algorithms. Figure 4.19 shows the entire pre-processing and feature extraction

workflow and Figure 4.20 aids in graphically illustrating the impact that each process

step has on the signal.

Figure 4.19: Diagram with the pre-processing steps and the stages of feature extraction.

Figure 4.20: Pre-processing of electromyography signal.

To keep consistency with the other biosignals, after converting it to mV, the EMG

signal was segmented into windows of size 60 seconds with an overlap of 10 seconds

(empirically determined value). Then, the signals were filtered using a a fourth-order

band-pass butter-worth filter. The window size and the order of the filter were chosen in
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accordance to a research [17] that also used left and right trapezius EMG for stress detec-

tion. To choose the cutoff frequencies, a power spectral density of the signal was plotted,

as shown in Figure 4.21, and it was determined that the most common frequencies in the

signal were mainly between 30Hz and 310Hz. After filtering, the first set of 4 frequency

features and 1 statistical were extracted. These were the maximum, mean and median

frequency; the total power and the number of zero crossings.

Figure 4.21: Power spectrum density of the left trapezius electromyography signal.

Subsequently, the signal was rectified (replacing all values with their absolute value)

followed by a normalization using a maximum norm scheme. The original intention was

to normalize the EMG signal using the RVC value obtained during the protocol. Since

obtaining a Maximal Voluntary Contraction (MVC) was impractical, a RVC was done.

In a normalization process, the amplitude of the EMG signal is converted into a scaled

number, typically the percentage of a MVC or RVC from a certain task. In this case,

the RVC was supposed to reflect the maximum EMG result. Because there were many

amplitudes that were greater than the RVC value, the normalization process was changed.

Instead, the maximum signal amplitude was used as a scaling factor for the entire signal.

After these steps, the next set of 9 statistical features were extracted from the windowed

signal, consisting of maximum, minimum, average, standard deviation, mean absolute

and root mean square values as well as variance, absolute energy and area.

In a final step, a fourth-order low-pass butter-worth filter with a cutoff frequency

of 2Hz (empirically determined value) was utilized to make an envelope allowing for

clear detection of muscular activity periods from the signal. From this, a final set of 6

features were extracted. These features focused on the muscular activation periods and

consisted of the maximum, minimum, average and standard deviation duration; the root

mean square and the number of muscular activations. Overall, this means that a total of

20 features were extracted from the EMG signals. Table 4.5 presents an overview of all

features and at which stage they were extracted.
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Table 4.5: EMG extracted features.

Feature Unit Formula Description

MNF Hz mean(f requency) Mean Frequency

MDF Hz median(f requency) Median Frequency

MAXF Hz max(f requency) Maximum Frequency

Area ms2
∫ Tmax

0 E dt Area

Total Power ms2
∫ Fmax

0 Px df Total Power Spectrum of Frequency

ZC
{xi > 0and xi+1 < 0}
or {xi < 0 andxi+1 > 0}
and |xi − xi+1| ≥ ϵ

Zero Crossing

MAXV mV max(E) Maximum Value

MINV mV min(E) Minimum Value

ANV mV avg(E) Average Value

STDV mV std(E) Standard Deviation Value

RMSE mV
√

1
N

∑N
i=1E

2 Root Mean Square Value

Var mV
√

1
N

∑N
i=1(E −E)2 Variance

Energy W
∑N

i=1(|E|)2 Energy

RMSA mV
√

1
N

∑N
i=1A

2 Root Mean Square
of Activation

NA count(A)
Number of Muscular
Activations

MAV mV
√

1
N |E| Mean Absolute Value

MAXD ms max(ADuration) Maximum Duration

MIND ms min(ADuration) Minimum Duration

AND ms mean(ADuration) Average Duration

STDD ms std(ADuration) Standard Deviation Duration
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4.4.2.4 Multimodal Windowing Scheme

The multimodal model receives features extracted from all acquired signals: the HR

from the smartwatch, the respiration derived from the smartphone’s ACC, and the EMG

signals from the two muscleBANs. As the acquisition periods for these sensors differ

significantly, only periods in which all sensors acquire at the same time were considered

for feature extraction. Figure 4.22 illustrates the windowing scheme applied for feature

extraction. For simplicity, only one EMG sensor is shown. The periods at which all sensors

acquire at the same time are highlighted in gray. The window sizes for each signal were

kept the same as those for the individual models, that being 8 seconds for the HR and

60 seconds for the respiration and EMG respectively. It was ensured that the end of each

window was aligned in time. All windows were shifted by 4 seconds until the end of the

HR data was reached (end of a gray section).

Figure 4.22: Multimodal Windowing Scheme.
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4.4.2.5 Latent

Although it was part of the thesis plan, feature extraction form the data collected

through Latent [16] was not further pursued. Several circumstances led to this decision.

Firstly, the installation of Latent took more time than initially expected. Throughout the

installation process, several errors that had to be resolved, such as incompatibilities with

the operating system, were encountered. Resolving these issues took several days for

a single computer. Thus, the setup explained in Section 4.3.1.2 was used, in which all

participants used the same computer during data acquisition. Secondly, after exploring

the Latent data, it became clear that the participants’ computer usage, during the proto-

cols, was too minimal (e.g., not enough interaction with the mouse and none with the

keyboard). Thus, it was concluded that the data would not be representative enough to

extract any behavioral features for classification.

4.5 Machine Learning Algorithms

Several models were analyzed with the three ML algorithms described in Section 2.5:

HR, respiration, left EMG, right EMG, sum of left and right EMG and a combination of

all three biosignals.

To assess a model’s performance, it must first be trained before being tested. To

accomplish this, the labeled data-set was randomly separated into a training and a testing

group of samples. Two data splits were done, one using 75% of training samples and 25%

of testing (default split used by the Scikit-learn [82] employed function), and another

one with 60% of training and 40% of testing (to determine if the classification remained

the same or if it deteriorated as a result of having less training data). Both data split

were done in a stratified way so that each class was as equally represented as possible

inside the training and testing set. Because models were always tested with unknown

samples it ensured that they could be implemented in real-world situations to unknown

data, avoiding overfitting. Since linear models (like the employed linear SVM) produce

distinct outcomes depending on whether the data is normalized or not, both the training

and testing set were normalized. To obtain the metrics for each classifier and for each

model, the algorithm was tested 5 times with different test sets. Accuracy is the metric

that predicts how many total instances were well classified. However, evaluating accuracy

alone can be misleading. For example, a classifier that correctly classifies half the time

may just be classifying all samples in the same class if there is an equal distribution of

classes. In this way, the other metrics presented in Section 2.5 must also be evaluated

together with the models.
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4.5.1 Feature Selection

The contribution of each feature to the classifier’s training is displayed in Tables 4.7

and 4.6. For feature selection, first, correlated features were removed using the TSFEL

library [80]. Then the Recursive Feature Elimination (RFE) function supplied by the

Scikit-learn library [82] was applied to remove the weakest feature(s) until a specified

number was reached. This function was run several times and the rank displayed on

both tables corresponds to the order of the best-found features during the RF and SVM

classifiers’ training. The blue colored features are the ones that are commonly better

between the RF and SVM and the red ones have a non-significant contribution to the

classification. As explained in Section 2.5.3 the KNN classifier does not provide feature

weights or coefficient attributes; instead, each prediction is exclusively dependent on the

distance between two data points. As a result, and because feature selection also has an

impact on this classifier’s performance, the features that obtained the best results in the

SVM and RF classifiers were used in KNN as well. The HR model was trained using the

4 out of the 7 extracted features colored in blue in Table 4.7. The respiration one used 7

features: the top 3 marked on the table plus the PSS, the RR, area under the curve and

variance. The left and right EMG models used the first 12 features that appear in the table

as well as the EMG total model which also used the first 20 features that appear in Table

4.6. Finally, the multimodal model used the blue-flagged features of the HR, respiration

and left EMG making a total of 20 features.

Table 4.6: Electromyography selected features. Blue cells represent the best and red cells
represent the under performing features for the Random Forest and the Support Vector
Machine classifiers.

EMG EMG EMG
Rank

RF SVM
Rank

RF SVM
Rank

RF SVM

1 R: RMSE R: Energy 15 L: Energy
L: Min
Value

29
L: Median
Frequency

L: Std
Duration

2
L: Nr. Zero

Crossing
L: Max
Value

16
R: Max
Value

L: Median
Frequency

30
R: Std
Value

L: Nr. Muscular
Activations

3 R: Energy
R: Avg
Value

17
L: Avg
Value

R: Avg
Duration

31
L: Avg

Duration
R: Std

Duration

4 R: RMSA R: RMSE 18 L: RMSE
L: Std
Value

32
R: Max

Duration
L: RMSE

5
R: Nr. Zero

Crossing
R: Area 19

L: Total
Power

L: RMSA 33
R: Nr. Muscular

Activations
L: Avg
Value

6 R: Area
L: Mean

Frequency
20 L: MAV

R: Min
Duration

34
R: Std

Duration
R: Std
Value

7
R: Avg
Value

R: Nr. Zero
Crossing

21 L: RMSA
R: Max

Duration
35

L: Std
Duration

R: Total
Power

8
R: Mean

Frequency
R: MAV 22

R: Min
Value

R: Nr. Muscular
Activations

36
R: Avg

Duration
R: Variance

9 R: MAV
R: Mean

Frequency
23

L: Min
Value

L: Energy 37
L: Max

Duration
PSS

10
L: Max
Value

R: Max
Value

24
R: Median
Frequency

R: Max
Frequency

38
R: Min

Duration
L: Max

Frequency

11
R: Nr. Muscular

Activations
R: Median
Frequency

25
L: Nr. Muscular

Activations
L: Max

Duration
39

L: Min
Duration

L: Area

12 PSS L: Variance 26
L: Std
Value

R: RMSA 40
R: Max

Frequency
L: MAV

13
R: Mean

Frequency
R: Min
Value

27 L: Variance
L: Nr. Zero

Crossing
41

L: Max
Frequency

L: Min
Duration

14 L: Area L: Total Power 28 R: Variance
L: Avg

Duration
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Table 4.7: Heart rate, respiration and left and right electromyography selected features.
Blue cells represent the best and red cells represent the under performing features for the
Random Forest and the Support Vector Machine classifiers.

Heart-Rate Respiration Left EMG Right EMG
Rank

RF SVM RF SVM RF SVM RF SVM

1 mRR mRR Nr. Peaks Nr. Peaks
Nr. Zero
Crossing

Nr. Zero
Crossing

RMSE Energy

2 SDRR SDRR RR RR
Max

Value
Max

Value
Nr. Zero
Crossing

RMSE

3 CVRR CVRR
Median absolute

Deiation
Median absolute

Deiation
Total
Power

Mean
Frequency

RMSA
Avg

Value

4 PSS PSS
Std

Deviation
Std

Deviation
PSS Energy Energy Area

5 mHR mHR Variance Variance RMSE
Median

Frequency
Avg

Value
Nr. Zero
Crossing

6 SDHR SDHR
Absolute
Energy

DAE8FCAbsolute
Energy

Avg
Value

RMSA Area MAV

7 CVRR RMSSD PSS PSS MAV
Avg

Value
MAV

Max
Value

8
Std

Deviation
Std

Deviation
Energy Area

Total
Power

Min
Value

9
PP

distance
PP

distance
Mean

Frequency
RMSE

Mean
Frequency

Variance

10 Autocorrelation Autocorrelation Area MAV
Max

Value
Avg

Duration

11 RMSA
Max

Frequency
PSS PSS

12
Min

Value
Avg

Duration
Nr. Muscular
Activations

Std
Value

13
Median

Frequency
Nr. Muscular
Activations

Median
Frequency

Min
Duration

14
Std

Value
Max

Duration
Min

Value
Mean

Frequency

15 Variance PSS
Min

Duration
RMSA

16
Std

Duration
Std

Duration
Avg

Duration
Max

Duration

17
Max

Duration
Total
Power

Std
Duration

Max
Frequency

18
Avg

Duration
Std

Value
Variance

Median
Frequency

19
Nr. Muscular
Activations

Variance
Max

Duration
Std

Duration

20
Min

Duration
Min Value

Std
Value

Total
Power

21
Max

Frequency
Min

Duration
Max

Frequency
Nr. Muscular
Activations
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4.5.2 Parameter Selection

All ML algorithms have specific hyperparameters that must be adjusted in order to

improve model performance [106]. GridSearch was chosen to optimize the hyperparam-

eters of the three different chosen algorithms. To choose the cross-validation splitting

strategy for GridSearch, the Scikit-learn library RepeatedStratifiedKFold function [82]

was used with 5 folds. The search for the best hyperparameters was done with a total

of 15 iterations and with a validation size of 20%. Other iteration values (10, 15, and

20) were tried, but 15 was selected since it found the ideal balance between running a

sufficient number of times for the findings to be useful while not consuming much time

from the computer.

The hyperparameters that were tweaked per algorithm were the regularization param-

eter ("C") and the kernel coefficient for specific kernels ("Gamma") for the SVM classifier;

the maximum depth of the tree ("Max Depth"), the number of features to consider when

looking for the best split ("Max Features") and the number of trees in the forest ("Nr. Esti-

mators") for the RF algorithm and the number of neighbors to use ("Neighbors Nr."), the

weight function used in prediction ("Weights") and the distance metric to use for the tree

("Metric") for the KNN classifier. The best hyperparameters found with the Scikit-learn

function [82] in each algorithm and for each model are presented in Tables 4.8, 4.9 and

4.10. With the exception of the RF’s "Nr. Estimators" and the "Metric" and "Neighbors Nr."

for the KNN algorithm, all model parameters remain constant. The HR and respiration

models stand out using 6 and 2 neighbors, respectively, as opposed to the other models’

1 neighbor.

Table 4.8: Best Hyperparameters of all models for Support Vector Machine.

Classifier Signal Best Parameters

C Gamma Kernel

SVM

Heart Rate 10 10 Linear
Respiration 10 10 Linear
Left EMG 10 10 Linear

Right EMG 10 10 Linear
Total EMG 10 10 Linear
Multimodal 10 10 Linear
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Table 4.9: Best Hyperparameters of all models for Random Forest.

Classifier Signal Best Parameters

Max Depth Max Features Nr. Estimators

RF

Heart Rate 4 4 80
Respiration 7 7 80
Left EMG 12 12 80

Right EMG 12 12 70
Total EMG 20 20 90
Multimodal 20 20 40

Table 4.10: Best Hyperparameters of all models for K-Nearest Neighbor.

Classifier Signal Best Parameters

Metric Nr. Neighbors Weights

KNN

Heart Rate manhattan 6 Linear
Respiration manhattan 2 Linear
Left EMG manhattan 1 Linear

Right EMG manhattan 1 Linear
Total EMG manhattan 1 Linear
Multimodal manhattan 1 Linear
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5

Results and Discussion

This Chapter presents and discusses all of the findings made throughout the devel-

opment of this thesis. First, the developed respiration algorithm’s reliability is evaluated.

Then, the effects of the signals’ pre-processing choices and feature selection are presented.

The results and discussion regarding the ML models are also provided. Finally, several

comparisons are done between the various developed models and those discovered in

Chapter 3 to better assess their performance.

5.1 Respiration Rate Algorithm

For the development of the RR detection algorithm explained in Section 4.2 different

ACC axes combinations were tested to see which one performed better. Research that

utilized an ACC to extract respiration used the z-axis [35], or a combination of the three

axes [31].

Figures 5.1, 5.2, and 5.3 show which peaks were detected by the algorithm based on

comfortable slow breathing, fast breathing, and breathing while mildly stressed, respec-

tively. The algorithm was run using y and z axes and two combinations of axes (yz and

xyz). Combining more than one axis to detect diaphragm movements is an adequate

method to add the various components of the respiration signal constructively and add

the noise destructively. The respiration patterns extracted from the RIP sensor are shown

as well for comparison.

Table 5.1 presents the number of peaks the algorithm has detected for each axis,

combination of axes, and the RIP sensor. It is evident that for all the tested axes and

combinations the number of detected peaks is close to the real number of peaks extracted

from the RIP sensor. The z-axis was able to reach precisely the same number of peaks.

A closer look at the slow breathing pattern in Figure 5.1 confirms that the peaks and

valleys detected by the axes and the combinations correspond to those detected by the

RIP sensor.

59



CHAPTER 5. RESULTS AND DISCUSSION

Table 5.1: Comparison of peaks and respiration rate detected by the different axes combi-
nations and the respiration signal on a comfortable slow breathing period.

Axis Nr. Peaks Respiration Rate [BPM]

Y 45 8.1
Z 46 8.2

YZ 45 8.1
XYZ 45 8.1

Respiration 46 8.1

Figure 5.1: Graphical representation of the y-axis, z-axis, yz-combined-axes, xyz-
combined-axes and respiration signal provided by the Inductive Respiration sensor on a
comfortable slow breathing period.
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5.1. RESPIRATION RATE ALGORITHM

For the fast breathing pattern (Figure 5.2) the expansion and contraction of the tho-

racic cavity are more evident, leading to more pronounced peaks and valleys, making the

detection clearer. This observation can be verified by looking at Table 5.2 which reveals

that all axes and combinations detect the same number of peaks, and the calculated RR

rates are almost identical, with the z-axis attaining exactly the same RR value.

Table 5.2: Comparison of peaks and respiration rate detected by the different axes combi-
nations and the respiration signal on a fast breathing period.

Axis Nr. Peaks Respiration Rate

Y 18 18.9
Z 18 18.4

YZ 18 18.7
XYZ 18 18.5

Respiration 18 18.4

Figure 5.2: Graphical representation of the y-axis, z-axis, yz-combined-axes, xyz-
combined-axes and respiration signal provided by the Inductive Respiration sensor on a
fast breathing period.
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When analyzing the algorithm results for the mild stress breathing pattern (Figure

5.3) the y-axis ACC component poorly captured the breathing pattern. The z-axis per-

formed much better than the y-axis in peak detection and, consecutively, in estimating

the respiration rate as shown in Table 5.3. The combination of the y and z axes proved to

be the best choice for estimating the number of peaks and the RR in the period that most

closely resembles the stress experienced by a worker when comparing to the RIP sensor

followed by the combination of the three axes.

Table 5.3: Comparison of peaks and respiration rate detected by the different axes combi-
nations and the respiration signal on a mild stressful period.

Axis Nr. Peaks Respiration Rate

Y 2 2.2
Z 43 22.8

YZ 45 23.4
XYZ 46 23.8

Respiration 44 23.3

Figure 5.3: Graphical representation of the y-axis, z-axis, yz-combined-axes, xyz-
combined-axes and respiration signal provided by the Inductive Respiration sensor on a
mild stressful period.
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The x-axis was not considered when building the algorithm, since it is unfit for move-

ment detection in desirable directions (it only registers the acceleration horizontally)

meaning that this component would never be better than the remaining ones. The y-axis

proved not to be ideal as well, but it is more sensitive to respiration movements than

the x-axis, as the chest-attached smartphone moves slightly upward and downward. In

comparison to the comfortable slow breathing and fast breathing, in the mildly-stressed

breathing period, the y-axis poorly captured the breathing pattern. Since the subject is not

as still and as focused on breathing when distracted by other activities, the y-component

of the ACC is susceptible to more artifacts due to natural motion, providing very different

results from those obtained by the RIP sensor. All these factors together infer that the

y-axis does not provide a reliable standalone respiration detection. As the z-axis captures

the person’s forward and backward acceleration, it is the most promising axis for RR de-

tection. Both in comfortable slow and in fast breathing this axis proved to be the best out

of the four options estimating the number of peaks and the RR. In the mild stress period,

this axis performed much better than the y-axis in peak detection and, consecutively, in

estimating the RR. The combination of the y and z axes proved to be the best choice for

estimating the number of peaks and the RR in the period that most closely resembles

the stress experienced by a worker. This combination also proved to be quite satisfactory

in the other two periods. However, since the x-axis also plays a part on enhancing the

respiration signal by reducing its overall noise, the combination chosen to estimate the

RR was the one that uses all the axes. This combination allowed a close estimation of

the number of peaks and RR throughout the three different periods distinguished in the

study, even though it was not the top combination in any of them.

Overall it can be concluded that, although the z-axis and the combination of the y and

z axes yielded better results, the fusion of all axes was a safer close second choice, since

the existence of the x-axis can assist in the eradication of artifacts produced by the other

two axes.

5.2 Machine Learning Classification Models

ML models were initially developed using a sample distribution of 75% for training

and 25% for testing. In order to verify if the algorithms were performing at a decent level

(>80%), the test set was expanded to 40% of the original data set. All metrics discussed in

the following sections are related to the results attained for the 40% test data set. The CM

for each one of the subsequent best tested models will also be shown, with TP, TN (both

colored in light yellow), FP, and FN arranged in the same order as in Section 2.5. Tables

with the evaluation metrics, also explained in Section 2.5, are presented (the orange

colored cells highlight which classifier obtained the best result within each evaluation

metric) as well as the maximum, minimum, mean (colored in light blue) and standard

deviation obtained when testing each model with each classifier.
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5.2.1 Perceived Stress Scale

Regarding the PSS, an individual’s score can range between 0 and 40, with higher

values indicating more felt stress [87]. In the first study, 50% of individuals had a score

below 13, indicating low stress, and the remaining ones had a score between 14-26,

indicating moderate stress as shown in Tables 5.4 and 5.5. In the second study, however,

only four people out of twelve reported low stress, while the remaining participants

reported moderate stress.

The RF classifier showed that there was some correlation between this score and the

person’s stress level. The SVM, on the other hand, did not reveal a substantial association,

as shown in Tables 4.7 and 4.6 of Section 4.5.1. Because the KNN cannot offer information

on features as mentioned in Section 2.5.3, it was unable to determine if the PSS has any

influence on the stress detection. As a result, no significant correlation was found between

PSS score and the detection of stress levels in participants.

Table 5.4: PSS Score in Stress Study.

Stress Level Score Nr. of Participants

Low 0-13 6
Moderate 14-26 6

High 27-40 0

Table 5.5: PSS Score in Calm Study.

Stress Level Score Nr. of Participants

Low 0-13 4
Moderate 14-26 8

High 27-40 0

5.2.2 Heart-Rate Model

Due to the smartwatch constraint indicated in Section 4.3.1.1, two techniques were

used to increase the quantity of acquired data: re-sampling and overlapping sliding

windows for feature extraction. Although this pre-processing enabled information gain, it

also had a downside. All features calculated in the frequency domain had to be discarded

because this information was lost so that data gain could exist. Fortunately, some studies

[3, 103] have concluded that time domain features provide more than enough information

to distinguish stressful moments. That was also confirmed with the obtained accuracy.

Looking at Table 5.6, one can observe that the KNN algorithm obtained the best mean

accuracy result of 87.4% and the lowest standard deviation value of 0.6% in comparison

to the SVM and RF, which obtained a mean accuracy of 56.1% and 85.7% with a standard

deviation of 2.4% and 2.3%, respectively.

In Table 5.7 one can observe that the SVM classifier got a lot of FP, i.e. uncorrectly

instances of "Not Stressed" classified into "Stressed". The most important thing for all

developed models is to have as much stress detection as possible, as there is not a serious

risk associated with a bad detection of stress (as for example in a false detection of a

cancer). It is of greater interest that developed models manage to identify as many cases

of stress as possible without a large associated cost when there is a false detection of stress.

As a result, it is appropriate to look at the obtained recall value (Table 5.8), which gives
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Table 5.6: Accuracy values obtained for the heart rate model.

Accuracy

Signal Classifiers Max (%) Min (%) Mean (%) STD (%)

SVM 59.1% 52.5% 56.1% 2.4%
RF 88.7% 82.6% 85.7% 2.3%Heart Rate

KNN 87.8% 86.4% 87.4% 0.6%

the ratio between true positives and predicted negatives, and verifies that SVM algorithm

obtained a value of 67.0%. Still looking at recall, the RF had a 88.9% value and the KNN

had 92.8%, both for the average of all tests. The RF classifier stood out among the rest

regarding the precision evaluation as well as the specificity. The KNN algorithm attained

the higher values for the recall, negative predictivity, and accuracy.

Table 5.7: Best confusion matrix for the heart rate model.

Classification

Signal Classifiers Actual Not Stressed Stressed

Not Stressed 69 96
SVM

Stressed 45 135

Not Stressed 130 35
RF

Stressed 4 176

Not Stressed 148 17

Heart
Rate

KNN
Stressed 25 155

Table 5.8: Evaluation metrics for the heart rate model.

Evaluation Metrics (%)

Signal Classifiers Recall Precision Specificity
Negative

Predictivity
Accuracy

SVM 67.0% 56.7% 44.2% 55.4% 56.1%
RF 88.9% 87.3% 85.7% 87.4% 87.9%

Heart
Rate

KNN 92.8% 87.0% 84.8% 91.5% 89.0%

Both RF and KNN were considered strong algorithms for stress classification in the HR

model, as opposed to SVM which had the lowest rates in all metrics. The KNN was rated

as the best in terms of stress classification since it had the highest evaluation metrics.
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5.2.3 Respiration Model

In this model, the mean accuracy of each classifier (shown in Table 5.9) was 81.2% for

the SVM, 98.5% for the RF, 98.3% for the KNN and the standard deviations were 2.5%,

0.9% and 0.1%, respectively. The KNN, like in the HR model, has the lowest standard

deviation which means it is a very stable algorithm when making predictions.

Table 5.9: Accuracy values obtained for the respiration model.

Accuracy

Signal Classifiers Max (%) Min (%) Mean (%) STD (%)

SVM 83.0% 76.6% 81.2% 2.5%
RF 100% 97.7% 98.5% 0.9%Respiration

KNN 99.5% 96.3% 98.3% 0.1%

Table 5.10 shows that SVM attained some FP and FN cases, whereas RF and KNN

have zero instances of FN and only one detection of a FN instance in the KNN CM. Fur-

thermore, as can be observed by looking at Table 5.11, SVM is once more distinguishable

from the other two algorithms by obtaining the lowest rates in all metrics, even though

the attained rate was deemed minimally satisfactory (>75%). It was then considered that,

for the respiration signal model, both the RF and the KNN algorithms exhibited promis-

ing outcomes. RF performed superiorly regarding the mean accuracy measured across

several tests, making it the best classifier for the respiration model’s stress classification.

Table 5.10: Best confusion matrix for the respiration model.

Classification

Signal Classifiers Actual Not Stressed Stressed

Not Stressed 88 26
SVM

Stressed 11 93

Not Stressed 114 0
RF

Stressed 0 104

Not Stressed 113 1

Respiration

KNN
Stressed 0 104

Table 5.11: Evaluation metrics for the respiration model.

Evaluation Metrics (%)

Signal Classifiers Recall Precision Specificity
Negative

Predictivity
Accuracy

SVM 84.2% 78.5% 78.5% 84.5% 81.2%
RF 98.1% 98.9% 98.9% 98.3% 98.5%Respiration

KNN 98.3% 98.3% 98.4% 98.4% 98.3%
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5.2.4 EMG Model

For both the right and left sides, the accuracy was quite high, as can be seen in Tables

5.12 and 5.13. The left EMG attained a mean accuracy of 85.3%, 98.0% and 98.9%, with

standard deviations of 0.0%, 0.0% and 0.8%, respectively and the right EMG got 92.3%,

97.6% and 99.2% for SVM, RF and KNN and the respective standard deviations for each

one were 0.0%, 0.0% and 0.0%. Overall, all models proved to be very consistent having

a zero standard deviation value for almost all of them. KNN showed best outcomes

detecting stress for both the left and the right EMG.

Table 5.12: Accuracy values obtained for the left electromyography model.

Accuracy

Signal Classifiers Max (%) Min (%) Mean (%) STD (%)

SVM 88.1% 81.2% 85.3% 0.0%
RF 100% 96.3% 98.0% 0.0%Left EMG

KNN 100% 97.8% 98.9% 0.8%

Table 5.13: Accuracy values obtained for the right electromyography model.

Accuracy

Signal Classifiers Max (%) Min (%) Mean (%) STD (%)

SVM 94.5% 90.8% 92.3% 0.0%
RF 99.1% 95.0% 97.6% 0.0%Right EMG

KNN 100% 97.2% 99.2% 0.0%

Additionally, as verified for the HR and respiration models, for both the left and the

right EMG, SVM was the algorithm that exhibited the maximum identification of FP and

FN (shown in Tables 5.14 and 5.15). Regarding the evaluation metrics revealed in Tables

5.16 and 5.17, the KNN classifier achieved the highest rates for all metrics for both the

left EMG, and the right EMG.

Table 5.14: Best confusion matrix for the left electromyography model.

Classification

Signal Classifiers Actual Not Stressed Stressed

Not Stressed 99 15
SVM

Stressed 11 93

Not Stressed 114 0
RF

Stressed 0 104

Not Stressed 114 0

Left EMG

KNN
Stressed 0 104
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Table 5.15: Best confusion matrix for the right electromyography model.

Classification

Signal Classifiers Actual Not Stressed Stressed

Not Stressed 108 6
SVM

Stressed 6 98

Not Stressed 102 2
RF

Stressed 0 104

Not Stressed 114 0

Right EMG

KNN
Stressed 0 104

Table 5.16: Evaluation metrics for the left electromyography model.

Evaluation Metrics (%)

Signal Classifiers Recall Precision Specificity
Negative

Predictivity
Accuracy

SVM 86.5% 83.5% 84.2% 87.4% 85.3%
RF 99.4% 96.5% 96.7% 99.5% 98.0%Left EMG

KNN 99.6% 98.1% 98.2% 99.6% 98.9%

Table 5.17: Evaluation metrics for the right electromyography model.

Evaluation Metrics (%)

Signal Classifiers Recall Precision Specificity
Negative

Predictivity
Accuracy

SVM 92.5% 91.5% 92.1% 93.1% 92.3%
RF 98.1% 97.1% 97.1% 98.3% 97.6%Right EMG

KNN 98.3% 100% 100% 98.5% 99.2%

Regarding the combined EMG, Table 5.18 shows that the SVM algorithm obtained a

95.8% mean accuracy with a 1.2% standard deviation, RF attained a 98.6% with a 0.9%

standard deviation and KNN achieved again the higher mean accuracy value of 9934%

with a 0.6% standard deviation.

Table 5.18: Accuracy values obtained for the total electromyography model.

Accuracy

Signal Classifiers Max (%) Min (%) Mean (%) STD (%)

SVM 96.8% 94.5% 95.8% 1.2%
RF 100% 97.7% 98.6% 0.9%Total EMG

KNN 99.5% 98.2% 99.3% 0.6%

In its CM, the RF classifier obtained 0 FP and FN during one of the tests, the KNN

detected 1 incidences of FN and the SVM identified 4 cases of FN and 4 of FP (presented

in Table 5.19). Table 5.20 demonstrates that RF and KNN perform quite well in this

model, but KNN stands out. Regarding the mean accuracies obtained for each algorithm,
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KNN was also the one with a higher rate.

Table 5.19: Best confusion matrix for the total electromyography model.

Classification

Signal Classifiers Actual Not Stressed Stressed

Not Stressed 110 4
SVM

Stressed 4 100

Not Stressed 114 0
RF

Stressed 0 104

Not Stressed 114 0

Total EMG

KNN
Stressed 1 103

Table 5.20: Evaluation metrics for the total electromyography model.

Evaluation Metrics (%)

Signal Classifiers Recall Precision Specificity
Negative

Predictivity
Accuracy

SVM 94.4% 96.7% 97.0% 95.0% 95.8%
RF 99.4% 97.7% 99.9% 99.5% 98.6%Total EMG

KNN 98.5% 100% 100% 98.6% 99.3%

For the total EMG and looking at the features in bold in Table 4.6 of Section 4.5.1, it’s

observable that features from the right EMG were better for all classifiers. Out of the 10

best ranked features, the ones that come from the right EMG are in bold and in both the

RF and the SVM classifiers 8 out of 10 features were selected from the right EMG. One

might conclude that the accuracy of the right EMG is substantially higher than that of the

left one by comparing the accuracy values yielded by the SVM, RF, and KNN for the right

EMG signal to those found on the same classifiers for the left EMG signal. All participants

were right-handed and they used the computer’s trackpad far more frequently during the

stress protocol than during the relaxation protocol which can be a very likely explanation

for this accuracy discrepancy. In other words, the stress protocol contains significantly

more muscle events than the relaxing protocol, and the stress assessment may be based

on this.

Overall, it was found that KNN was the best algorithm to classify stress for the left

EMG, the right EMG and the total EMG.

5.2.5 Multimodal Model

To make the multimodal model more reliable, only features from the left EMG were

used, because information coming from that signal was less prone to be adjusted to the

protocols than information coming from the right EMG.
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The results for this model were really promising for all algorithms. Regarding the

mean accuracies obtained after testing the classifiers 5 times (Table 5.21), the SVM per-

formed with a mean accuracy of 96,4% and a standard deviation of 1.0%; the RF obtained

a mean accuracy of 99,4% and a standard deviation of 0.5% and finally, the KNN revealed

a mean accuracy of 100% and a standard deviation of 0.0%, being once again the best

algorithm and obtaining a perfect score in stress classification.

Table 5.21: Accuracy values obtained for the multimodal model.

Accuracy

Signal Classifiers Max (%) Min (%) Mean (%) STD (%)

SVM 97.1% 95.1% 96.4% 1.0%
RF 100% 98.8% 99.4% 0.5%Multimodal

KNN 100% 100% 100% 0%

Table 5.22 reveals that both KNN and RF algorithms correctly detected all instances

of "Stressed" and "Not Stressed" and the SVM incorrectly identified 4 FN and 4 FP. In

Table 5.23 one can see that both the KNN and the RF reached the highest achievable rates

for all analyzed metrics.

Table 5.22: Best confusion matrix for the multimodal model.

Classification

Signal Classifiers Actual Not Stressed Stressed

Not Stressed 161 4
SVM

Stressed 4 176

Not Stressed 165 0
RF

Stressed 0 180

Not Stressed 165 0

Multimodal

KNN
Stressed 0 180

Table 5.23: Evaluation metrics for the multimodal model.

Evaluation Metrics (%)

Signal Classifiers Recall Precision Specificity
Negative

Predictivity
Accuracy

SVM 96.30% 97.1% 96.8% 95.7% 96.4%
RF 99.6% 99.3% 99.3% 99.5% 99.4%Multimodal

KNN 100% 100% 100% 100% 100%

Even though this model’s result were extraordinarily high, it stands to reason that a

multimodal model that incorporates the best features of three separate physiological sig-

nals may recognize stressful moments with such certainty. KNN was the most successful

classifier for stress detection, displaying 100% accuracy throughout all tests.
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5.3 Comparison Between Models

5.3.1 Best Models

As stated in the aforementioned sections, the SVM algorithm, despite most of the

time giving a satisfactory stress rating (>80%), proved to consistently have the lowest

performances. Since the other two techniques are non-linear and the SVM algorithm uses

a linear kernel, it can be deduced that adopting linearity for stress classification is not the

best option for the created models. The performance of KNN and RF was fairly identical,

with KNN slightly standing out as can be seen in the graphic of Figure 5.4. The KNN

approach, which classifies an instance based on neighbors with similar properties, or the

RF strategy, which combines the classifications generated by various decision trees and

reaches a majority decision, are techniques that were well suited in classifying stress for

the selected biosignals with the chosen protocols. Unfortunately, since participants were

given clear instructions on how to wear all the equipment and were aware of its existence

during the protocols, the obtained accuracies would indubitably decrease in real-time

detection. There are no limitations on movement in daily life and people usually perform

many tasks at once, which makes detection more complex. Additionally, recording these

physiological signals in an uncontrolled environment can be challenging due to a variety

of factors, that affect physiology, other than stress. A real-time stress detection perfor-

mance could deteriorate as a result of these two challenges. In order to circumvent them,

one possible solution would be to add more pre-processing steps to the acquired signals

and attempt to retrieve them in conditions as similar as possible to those experienced by

the worker in order to analyze more precisely the effects of stress on computer users.

Figure 5.4: Best algorithm for each model.
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Regarding each specific model, the accuracies of the three different types of classifiers

were lower for the HR signal in comparison to the respiration and EMG. This model was

the one with the poorest results for every classifier and several reasons can be behind

this. The most obvious one is that this model, even with the data-increasing techniques,

had access to a much smaller data set compared to the others. In addition to being

the model that was developed with less data, it was also the one that used the fewest

features. This model was only trained with the 4 features shown in blue in Table 4.7

from Section 4.5.1 as they were the best. Respiration was the second model with less

information after the HR model, but the difference between the two is still significant

(respiration has twice the HR data) justifying why metrics were comparatively better. As

the EMG was the signal with the most data and the most features, it was expected that the

algorithms would obtain satisfactory accuracies, and this effectively happened. Moreover,

the multimodal model only used data from the periods in which all sensors acquired at

the same time (Section 4.4.2.4). Thus, the amount of information used to develop the

multimodal model was significantly less than the amount used, for the left, right, and

total EMG, the three of which did not obtain results as high as the multimodal model.

It can be speculated that, even with less data, a model that uses multiple modalities

to recognize a stressful situation may perform better than unimodal models because it

accesses different physiological responses produced by the stressed individual.

5.3.2 Related Work

Referring to prior studies and comparing the accuracy of various stress detection

approaches, the selected biosignals, and processing techniques were found to be very

efficient attaining higher accuracies (96.4%, 99.4%, and 100% for the SVM, RF and KNN,

respectively) compared to those obtained in almost all of the studies mentioned in the

Table 5.24.

In this work, the models that were created are generic, meaning that they can be used

to analyze data from any individual. Some research [60, 61, 69, 74] built customized

models for each person, consistently outperforming generalized models in assessments.

Considering this, the accuracy rates obtained with the created generalized models are

highly promising. The personalized approach, however, has the advantage of discovering

precisely how each individual’s physiological signals function, making it always more

tailored than the generalized approach. Furthermore, both cognitive and emotional stress

were examined, which was something that related studies lacked, and which is significant

because these two types of stress are the most common in computer users [25].
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Table 5.24: Comparison of obtained accuracy with ones obtained by other studies

Study Biosignals Classifier Accuracy

Wijsman et al. [67] HR, Respiration, EMG, GSR GEE 74.5%

Wijsman et al. [65] ECG, Respiration, EMG, SC
LBN, QBN,
KNN, FLSL

≈80.0%

Zhai et al. [10] BVP, GSR, PD SVM 80.0%

Choi et al. [25] HR, EMG, EDA LR 81.0%

Smets et al. [71] EMG, GSR, ST SVM 82.7%

Ciabattoni et al. [2] HR, GSR, ST KNN 84.5%

Siirtola et al. [11] HR, BVP, ST SVM 87.4%

Zhai et al. [68] BVP, GSR, PD, ST SVM 90.1%

Majid et al. [63] PPG, EEG, GSR, MPL 95.0%

Pourmohammadi et al. [17] ECG, EMG SVM 100%

This thesis HR, Respiration, EMG
SVM
RF
KNN

96.4%
99.4%
100%
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6

Conclusion

6.1 General Results

The Laboratory for Instrumentation, Biomedical Engineering, and Radiation Physics

(LIBPhys) at FCT-UNL was where this master’s thesis was developed. The primary goal

of this project was to create stress detection classifiers using ML algorithms to analyze

WRS in computer users. Therefore, several steps were done in order to develop this work.

The first was to create an algorithm as robust as possible that could accurately estimate

the RR of each individual while working, using an ACC sensor from a smartphone placed

on an individual’s chest. This was successfully achieved, as shown in Section 5.1. Then,

two studies were conducted to collect the data that would later be employed by the

classification systems. The protocols were successfully carried out allowing for a vast

supply of biosignals: HR, provided by the PPG smartwatch sensor; respiration, derived

from a smartphone ACC placed on the chest; and trapezius EMG, using two muscleBANs.

It was important to look at both cognitive and emotional stress because computer users

tend to experience these two types of stress most frequently while working. Unfortunately,

the information obtained from the HCI with the Latent [16] tool was insufficient to draw

any conclusions, and it was not possible to extract further data using the Latent tool, due

to installation complications. With the acquired data, features were firstly extracted and

secondly selected in order to train three individual models, one for each physiological

signal and a fused multimodal model, combining the best features of the others. Using

SVM, RF, and KNN as classification algorithms, the models were assessed with different

evaluation metrics. The HR model reached accuracy rates of 56.1%, 85.7% and 87.4%

for the SVM, RF and KNN, respectively; and was the model that was less successful in

the classification process. The respiration model got accuracy rates of 81.2% for the SVM,

98.5% for the RF, 98.3% for the KNN. Regarding the EMG model accuracy rates for

each classifier also in the aforementioned order were 95.8%, 98.6% and 99.3% combining

features from both left and right trapezius. Finally, the multimodal model had accuracies

of 96.4% with the SVM algorithm, 99.4% with RF and 100% KNN. This model used the

best features extracted from the HR, the respiration and the left EMG biosignals.
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When compared to other studies that employed multimodal approaches for mental

stress classification, the findings in this work were considerably better. However, the ob-

tained accuracies would certainly be reduced in a real-time detection because throughout

the protocols, participants were clearly instructed on how to properly wear the equip-

ment and they were aware of its existence. In daily life, there are no restrictions on

movement. People frequently engage in many activities at once, which complicates the

detection process. Motion artifacts could rise and stress detection systems’ performance

might suffer as a result.

6.2 Future Work

As previously mentioned, due to Latent’s [16] installation limitations, an evaluation

of the stress effect during HCI was not pursued, but it would be an interesting future

approach to explore.

Regarding the created respiration algorithm, although it can successfully identify

peaks and valleys caused by the expansion and contraction of the diaphragm, its sensitiv-

ity to movement can still be improved.

Also, in this work, an early fusion of signals was made in order to create the multi-

modal model. Alternatively, another possible approach could be to train a classifier for

each biosignal and conduct a majority vote utilizing the output from all classifiers.

Moreover, this stress detection algorithm only functioned in offline mode, which

means it collected data in real-time but processed the data offline. However, online

detection of stressful periods can enable the delivery of appropriate interventions at the

right time when the individual is experiencing physiological stress. An online model,

like the one in Figure 6.1, would be an approach that would be interesting to explore in

the future. Thus, techniques for detecting stress in real-time are required. Whenever

stressful moments are observed, real-time detection will allow researchers to implement

just-in-time adaptive interventions (JITAIs).

Monitoring stress in real-time conditions can provide direct biofeedback to the user

and allow for early self-intervention [9]. This can enhance an individual’s self-awareness.

There is a user tendency to adopt coping strategies, not only by using the interventions

suggested but also by understanding that simple activities can actually help them manage

their stress [107].
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Figure 6.1: Schematic of proposed future model. Retrieved from [76].

6.3 Ethical Issues

Measuring computer workers stress levels can be beneficial to both users and com-

panies. As discussed in the above Section, a future prospect of this thesis would be to

implement the developed models in real-time working scenarios.

However, data management must be done with great caution. The models created

for this thesis help identify sensitive information about the person. If they are to be

used in a real context, the user must be aware of the advantages of collecting specific

data about their physiological signals for a given purpose and asked for permission to

process his/her biosignals. Additionally, for security reasons, the computer user should

always have the ability to erase the data. Keeping personal data without specific consent

is illegal, according to the General Data Protection Regulation (GDPR) [108]. Knowing

which specific individual the data belongs to can potentially lead to improper use of this

information. To overcome this ethical issue, one must also ensure that personal data

cannot be traced back. To maintain personal data anonymous, data can be pooled in

statistical metrics such as mean, median, percentiles and others.
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