
A Work Project, presented as part of the requirements for the award of a Master's degree from

the Nova School of Business and Economics.

Forecasting ETFs‘ price movements using Convolutional Neural Networks - Methodology and

Comparison of Industries - Focus on Industrials ETF

44398 – Moritz Peter Gerhard Engelsmann

Field Lab Team:

43949 – Jonathan Boße

44220 – Elisa Kathrin Ritter

44832 – Marc Lorenzo Serafin

44935 – Janina Evers

45142 – Anna-Sophia Schepp

Work project carried out under the supervision of:

Patrícia Xufre Gonçalves da Silva Casqueiro

17-12-2021

Abstract:

The aim of this paper is to achieve two goals. Firstly, build and apply a convolutional neural

network to make predictions on historical data of the Vanguard Industrials ETF (VIS) in the

form of Buy, Hold and Sell signals. Secondly, making comparisons among different indus-

tries in order to derive potential performance deviations. By using three image encoding tech-

niques and a randomly generated model for comparison purposes, some promising results

have been achieved. Nevertheless, several classic strategies and the market performance

could not be beaten, mainly because model predictions for Buy and Sell signals showed

weaknesses.

Scientific Area: Business Analytics

Sub-Area: Data Driven Decision Making

Keywords: Forecasting, Trading, Deep Learning, Decision Making, Convolutional Neural

Networks

This work used infrastructure and resources funded by Fundação para a Ciência e a Tecno-

logia (UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project

22209), POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Pro-

ject 22209) and POR Norte (Social Sciences DataLab, Project 22209).

iii

Table of Content

List of Figures .. v

List of Tables ... vi

List of Abbreviations .. vii

1 Introduction ... 1

2 Trading and Time-Series Forecasting ... 3

2.1 Trading.. 3

2.2 Introduction Financial Time Series Forecasting ... 5

2.3 Technical Analysis with CNNs .. 8

3 Fundamentals and Methodology ... 10

3.1 Introduction to CNNs ... 10

3.1.1 Definitions .. 10

3.1.2 Key Components of CNNs .. 12

3.2 Labelling Approach .. 14

3.2.1 Fixed Time-Horizon Method ... 15

3.2.2 Triple-Barrier Method .. 16

3.2.3 Simplified Triple-Barrier Method .. 17

3.3 Feature Engineering .. 18

3.3.1 Feature Creation ... 19

3.3.2 Stationarity ... 21

3.3.3 Feature Selection .. 22

3.5 Image Construction... 23

3.5.1 Gramian Angular Fields ... 24

3.5.2 Markov Transition Fields ... 25

3.6 Generic Model Architecture ... 26

iv

3.7 Performance Evaluation ... 36

3.7.1 Computational Evaluation ... 36

3.7.2 Financial Evaluation .. 39

4.1 Industry analysis of the iShares U.S. Industrials ETF | VIS ... 42

4.1.1 Definition of the Industry; Brief Analysis ... 42

4.1.2 General Information and Performance Analysis .. 43

4.2 Data Preprocessing, feature engineering and image encoding 46

4.3 Results and Model architecture .. 49

4.4 Performance evaluation .. 52

4.5 Industry Comparison .. 53

4.6 Industry Limitations and Implications .. 54

5 Performance Comparison and Discussion ... 56

6. Limitations and Outlook ... 59

6.1 Limitations .. 59

6.2 Outlook ... 60

References .. 61

Appendix .. 73

v

List of Figures

Figure 1 Illustration of the Convolution Operation. ... 13

Figure 2 Exemplary Max Pooling Operation ... 14

Figure 3 Rolling Forward Cross-Validation ... 27

Figure 4 Model Architecture .. 28

Figure 5 Activation Functions .. 31

vi

List of Tables

Table 1 Overview Financial Time Series Research ... 7

Table 2 Technical Indicators and their Parameter Settings .. 20

Table 3 Parameter Distribution for Randomized Search ... 29

Table 4 Activation Functions and Formulas .. 30

Table 5 Optimisers and Formulas .. 34

vii

List of Abbreviations

Abbreviation Meaning

ADF Augmented Dickey-Fuller test

ANN Artificial Neural Network

B&H Buy & Hold

CNN Convolutional Neural Network

ETF Exchange Traded Funds

FTH (method) Fixed time-horizon method

GAF Gramian Angular Fields

GADF Gramian Angular Differentiation Field

GASF Gramian Angular Summation Field

MTF Markov Transition Fields

NN Neural Network

PCA Principal Component Analysis

PXL (method) Sezer’s feature pixelation (method)

RF Random Forest

SVR Support Vector Regression

TB (method) Triple-barrier (method)

 1

1 Introduction

For technical traders, i.e. practitioners of technical analysis, image analysis plays a vital role in

their day-to-day decision-making, given that many decision are based on patterns and trends

that can be observed in the stock charts (Drakopoulou 2015, 4). However, when looking at how

algorithmic trading, i.e. trading supported by computational resources, is done in practice, one

can see very little use of image recognition; instead, other algorithmic trading techniques are

primarily in use. Due to various factors, such as the emergence of significantly better hardware

and new computational approaches, the last 10 to 15 years have seen critical advances in Deep

Learning, especially recently in the field of image recognition and analysis using convolutional

neural networks (CNNs). CNNs have proven to be increasingly good at recognising and distin-

guishing objects.

Thus, a critical question that needs to be asked is how these advances can be leveraged as ap-

plications to trading, simulating the trader's decision process based on image analysis with the

help of CNNs. There has already been research on the application of CNNs to forecasting stock

price movements, however, within a limited scope. The objective of this paper is to apply CNNs

to different industries to determine whether there are differences in the performance and usa-

bility of CNNs used for stock price predictions across various industries

For this purpose, image recognition with CNNs will be applied to the following six industries

and comparisons be made:

o Information Technology

o Healthcare

o Industrials

o Energy

o Oil & gas

o Financial Services

2

To achieve a high degree of representativeness for each sector and reduce idiosyncratic factors

inherent to individual companies, industry ETFs or indices consisting of a large variety of com-

panies will be used as assets to forecast on, instead of using individual company shares. More-

over, only ETFs or indices covering the U.S. market will be used to increase comparability

across the industries, avoiding differences in geographic factors as much as possible.

The paper is structured in the following way:

Firstly, an introduction to trading and stock analysis approaches is given to provide context on

how CNNs fit into the scope of stock analysis and time-series forecasting.

Secondly, a high-level introduction to CNNs will be given, and the general methodology used

in this paper will be explained.

The third part focuses on applying an established methodology to the specific industries, re-

spective adjustments to the methods to account for particular characteristics of the industries

and the results obtained for each sector.

In the fourth, the best-performing hyperparameters as well as model performances across the

different industries will be compared and discussed and conclusions on the added value of the

application of CNNs to price movement forecasts will be drawn.

The fifth focuses on the comparison of the established performance measures across the differ-

ent industries.

In the sixth and last part, cross-sectoral limitations of the methodology are faced and an outlook

on potential further research topics is provided.

3

2 Trading and Time-Series Forecasting

The following section will provide a brief introduction to trading and its two essential stock

analysis approaches and a high-level overview of time-series forecasting methods, in order to

place CNNs in the context of trading and price forecasting.

2.1 Trading

There are several types of trading that can be distinguished based on factors such as the fre-

quency of executed trades, the period of an asset and the underlying method used to determine

which assets to buy and sell (Banton 2021). However, regardless of the trading type they are

applying, traders have the common key objective of maximising their profits. Traditionally, the

most common groups of traders are so-called technical and fundamental traders, based on the

stock analysis approach they use: technical and fundamental analysis, the most important gen-

eral analysis tools in the realm of investing and trading (Petrusheva and Jordanoski 2016, 30).

They represent two approaches to determining what shares investors should buy or sell to max-

imise their profit. Technical analysis also gives indications on the optimal time to execute the

transaction (Petrusheva and Jordanoski 2016, 31). Although their overall objective is identical,

they differ significantly in the assumptions they are based on, the methods they employ and the

time horizons for which they are used (Petrusheva and Jordanoski 2016, 30). While fundamen-

tal analysis focuses on the economic forces of supply and demand that cause prices to change

(Murphy 1999, 5) and aims at determining the fair value of corporate securities by studying

company-specific key value-drivers, so-called fundamentals, such as a company's earnings, its

risks factors, growth rates and competitive positioning (Lev and Thiagarajan 1993, 190), tech-

nical analysis focuses solely on the share price and trading volumes as the two key determi-

nants to forecast future price developments (Petrusheva and Jordanoski 2016, 28).

4

The main premise of fundamental analysis is that each asset has a fair value that it will always

converge to in the long run, but it may not always reflect this fair value due to temporary mis-

pricing in the markets (Lev and Thiagarajan 1993, 191). The fair value can be determined by

an investor through the analysis of the underlying fundamentals, such as the company's finan-

cial statements, the overall economic state of the markets the company operates in as well as

developments of the industry the company belongs to. An investor can then generate profits by

identifying mispriced assets, capitalising on the eventual price corrections that will take place

in the market according to the basic premise of fundamental analysis (Abad, Thore and Laffarga

2004, 231).

The core belief of technical analysis, on the other hand, is that all factors affecting the stock

price (fundamentals, political factors, environmental factors, etc.) are already reflected in the

price of that stock, which results in the reasoning that only price and volume data need to be

analysed to forecast future price movements (Murphy 1999, 2).

A second and third concept essential to technical analysis are the assumptions that prices move

in trends and that history repeats itself (Murphy 1999, 2). With these two assumptions in place,

an investor can take investment decisions based on patterns that worked well in the past (history

repeats itself) and can generate profits by identifying trends in early stages of their development

to trade in accordance with the direction of these trends (Murphy 1999, 3).

Regarding the time horizons for which the two methods are used, it can be stated that funda-

mental analysis commonly uses longer periods when analysing the underlying data and is

mostly used for longer-term investment decisions, and as such, is often used by investors fo-

cusing on value investing (Petrusheva and Jordanoski 2016, 27). Technical analysis, on the

other hand, focuses stronger on short-term data (price and volume data for single a day, few

days or few weeks) and is often used for the identification of assets that can be traded to generate

5

profits in the short term, i.e., stocks whose prices will experience significant changes in the near

future (Petrusheva and Jordanoski 2016, 28).

Fama’s Efficient Market Theory (1970) states that none of the investment analysis approaches

will allow an investor to generate returns that exceed the market return, given that any new

information entering the market will be immediately included in the asset price. Following this

statement, technical analysis, i.e. forecasting future price movements based on past price de-

velopments, will not generate excess returns above the market. This paper will analyse to which

degree the Efficient Market Theory holds true when applying CNNs to the general technical

analysis approach, given that they are potentially able to recognise patterns that traditional tech-

nical analysis methods miss.

2.2 Introduction Financial Time Series Forecasting

While technical and fundamental analysis have traditionally been the two most widely used

approaches to stock price forecasting, emerging technologies have opened up new possibilities

to stock price analysis, a type of data that is difficult to predict as financial markets are volatile,

representing non-linear, fluctuating, and high noise data (Thakkar & Chaudhari 2021, 1). The

use of machine learning and deep learning approaches has gained increasing attention due to

their ability to detect localised data features at multiple levels. This trend also opens new pos-

sibilities for investment strategies and changes the nature of investing. Relying on deep learning

for investment makes trading and investment decisions more rational than investment decisions

based on human knowledge and experience, with the latter tending to result in more subjective

and biased decisions (Yang et al. 2019, 387). Different forecasting types which might be of

prediction interest include either the movement direction of the stock market to predict local

6

extreme values or turning points to recognise the perfect point to either sell or buy (classifica-

tion problem) or the magnitude of change of the market movement including future prices (re-

gression problem) (Peng et al. 2021, 10).

Before the rise of deep learning applications for financial problems, conservative statistical

methods were used. The logistic regression as one popular classification model provides an

easy understanding and interpretation of the results. However, these traditional statistic models

assume linearity – thus, representing a crucial limitation (Peng et al. 2021, 14).

Deep Artificial neural networks as linear models with pieces of nonlinearity bypass these prob-

lems by permitting the learning of more abstract knowledge representations. Nonetheless, by

working with more complex structures and hence more features, they are more prone to over-

fitting. (Peng et al. 2021, 15).

Extensive research has been conducted about possible other approaches for making predic-

tions in trading. Among others, popular approaches include Artificial Neural Networks

(ANNs), Support Vector Regressions (SVRs), Logistic regressions and Decision Trees (Huang

et al. 2019, 134). Examples of extensive research conducted in this area can be found in several

research papers. An overview is presented in Table 1.

Even though all these approaches seem promising, CNN’s have a big advantage: They are able

to work well with data having a spatial relationship (Brownlee 2018). A necessary require-

ment to fulfill is the transformation of data into images before being able to make predic-

tions though, as information is retrieved via multi-scale localized spatial features (Chen et al.

2021, 69) (Xu et al. 2015). They have proven themselves to be highly successful for stock pre-

dictions, as stock data can be illustrated as a 2D matrix (Chen and He 2018).

7

Authors Goal Approach Main Results

Moghaddam

and Esfandyari (2016)

Predict daily

NASDAQ

stock ex-

change returns

ANN R² values above 0.9

Nayak et al. (2016,

441 et sqq.)

Predict daily

and monthly

movements of

the stock

(whether they

go up or

down)

Decision Boosted

Tree

Outperformed a SVM and a

Logistic Regression Model

Henrique et al. (2018,

183)

Predict stock

prices from

different mar-

kets

Support Vector Re-

gression

Performed especially well

for market periods with lower

market volatility and for a

strategy with updating the

model periodically

Patel et al. (2015,

2171)

Predict Indian

Stock market

indices

Two-stage fusion ap-

proach between

ANNs, Random For-

est Models

and SVRs combined

to hybrid models:

SVR–ANN, SVR–

RF and SVR–SVR.

They were after-

wards compared to

single models

Results of this study have

shown ANNs and RFs to bet-

ter perform in a hybrid model

including SVRs rather than as

single models. The best over-

all performance was shown

by the SVR-ANN model

Vijh et al. (2020, 605) Forecast next

day stock clos-

ing prices

Random Forests

and an ANN

They indicate strong results.

Overall, in this case, the ANN

performed better than the RF

Table 1 Overview Financial Time Series Research

Source: Own illustration

Within the last years, different approaches to financial time series forecasting with CNNs have

been addressed. Cohen, Balch, and Veloso (2020) have created various charts based on open,

high, low, and closing prices to forecast trading signals using a CNN. The results demonstrate

that the transformation of the time series into images is beneficial for the recognition of trading

signals. Sezer and Ozbayoglu (2018) on the other hand create images based on 15 technical

8

indicators over a period of 15 days (15x15 image). Using these images and a CNN-TA archi-

tecture, the research team was able to forecast entry and exit points (Buy, Hold, Sell) compar-

atively better than with other models. Arratia and Sepúlveda (2020) make use of recurrence

plots and data of 12-month periods to predict the direction of the S&P 500 the following month.

Their CNN model attains an accuracy of 63 percent. The most promising and cited methods

were proposed by Wang and Oates (2015). They used Gramian Angular Fields and Markov

Transition Fields to transform time series into images and ran a tiled CNN for classification.

Due to the promising results, the method was adapted and further developed in other research

papers.

2.3 Technical Analysis with CNNs

While there has already been research on the applications of CNNs to stock price prediction, a

status review shows that there is still hardly any practical use of this approach. This paper will

focus on expanding the state of current research, evaluating if there are differences across in-

dustries in terms of computational and financial performance of investment strategies based on

CNNs. Before going into details on CNNs and the applied methodology, it is important to un-

derstand why CNNs are highly applicable to technical analysis. There are two key factors mak-

ing the combination of technical analysis with the usage of convolutional neural networks an

attractive investment research topic: Firstly, the assumption that no knowledge about factors

and trends affecting the markets is necessary as they are already included in the price (Murphy

1999, 4). Technicians know that there are many reasons why markets move, but do not assume

it necessary to know these reasons in the forecasting process (Murphy 1999, 4). Based on these

assumptions, it is sufficient to use visual representations (such as charts) of past price move-

ments as a base to predict future price developments. Consequently, it appears reasonable to

use CNNs to analyse the information contained in these visual representations without having

9

to include further external information that might be difficult to represent in an appropriate

visual input for a CNN.

Secondly, experienced technicians increasingly take intuitive decisions based on the patterns

they see in the charts (Murphy 1999, 6). They learn to intuitively recognise the meaning of a

variety of patterns, i.e., what price movements tend to be preceded by what type of patterns in

the charts. Seen from a high level, CNN's have a very similar approach to learning. Through

different layers within the neural network, a CNN learns to recognise patterns in the images it

is trained on, giving it the tools to make inferences from these patterns to the classification of

that image, in order to be able to classify unknown images. Thus, it seems reasonable to assume

that a CNN can be trained to predict future price movements based on patterns in past data in

the same way that a human technician would.

10

3 Fundamentals and Methodology

This chapter provides the theoretical and methodological basis for the thesis. First, an under-

standing of the concepts of neural networks and convolutional neural networks is given. Then,

several preprocessing methods are considered, and an overview of the generic model architec-

ture and its evaluation methods are presented. The approach in this chapter is to outline widely

established perspectives regarding the concepts presented in the current research. It is continu-

ously reasoned which methodology is used for this work. Definitions that are appropriate for

this thesis are also provided.

3.1 Introduction to CNNs

The following section provides an introduction to the deep learning algorithms used in this

work. The terminology related to neural and convolutional neural networks and their essential

structure are described. The associated components are presented to provide a deeper under-

standing of how the systems operate.

3.1.1 Definitions

Definition Neural Network

Neural networks (NNs) are ‘computerised intelligent systems’ (Thakkar and Chaudhari

2021, 2) that aim to recognise patterns and learn relationships in data by simulating the sig-

nal exchange between biological neurons in the human brain. A neural network consists of dif-

ferent layers of artificial neurons, also called units, which are interconnected and can be divided

into input units, hidden units, and output units (Kröse and Van der Smagt 1993, 15). A set of in-

put units receives information and applies certain weights, which are translated into an output

by the network through an activation function (Kröse and Van der Smagt 1993, 15). Output

units signal how the network reacts to the learned and processed information. Between input

11

and output units there are one or more layers of hidden units, which perform nonlinear trans-

formations of the inputs (Kröse and Van der Smagt 1993, 15). A neural network is consid-

ered fully connected if each hidden unit is connected to each unit in the layers on both sides of

the network. Supervised neural networks learn continuously through a feedback process

called backpropagation (Chollet 2017, 11). In this iterative process, the actual output is com-

pared to the expected output of the network. The difference is used to adjust the weights be-

tween the units in the network, that is, the strength of the connections, so that inputs match

the correct output (Chollet 2017, 52). Neural networks continuously learn and improve with

examples enabling it to respond accordingly to an entirely new set of inputs. They are particu-

larly popular when modeling highly nonlinear systems or when unexpected changes in input

data may occur. Many applications have employed neural networks to simulate unknown rela-

tionships between various parameters based on a vast set of examples. Classifications of hand-

written digits, speech recognition, and stock price prediction are examples of effective neural

network applications (Keijsers 2010).

Neural networks are usually divided into artificial neural network (ANN) and deep neural net-

work (DNN). A deep neural network is a type of artificial neural network, with multiple hidden

layers between the input and output layers (Thakkar and Chaudhari 2021, 2). The increasing

volumes of structured and unstructured data cause deep learning systems, i.e., neural networks

with many layers, to become increasingly popular.

Definition Convolutional Neural Network

According to Dertat (2017), convolutional neural networks (CNN) are the most popular type of

deep neural networks. They are mainly applied in pattern and image recognition prob-

lems since they are specifically designed to process pixel data (Sezer and Ozbayoglu

2018). However, they are also useful for natural language processing and prediction pur-

12

poses. A convolutional neural network comprises five types of layers: input, convolu-

tion, pooling, fully connected, and output layers. Each layer serves a specific pur-

pose and is explained in more detail in Section 3.1.2.

CNNs are generally considered superior to regular NNs due to their automatic feature selection

strategy. Using CNNs, it is now possible to build larger models to solve more complex prob-

lems, which was infeasible with conventional NNs (Albawi, Mohammed, and Al-

Zawi 2017, 1). Their deep learning structure with multiple hidden layers allows them to abstract

a larger number of features (Dertat 2017). By analysing the data in greater detail, a higher ac-

curacy of the output can be achieved. The automatic feature extraction of CNNs, achieved by

mapping input data to output, is especially useful for extracting complex patterns from non-

linear data (Thakkar and Chaudhari 2021, 2). This property is particularly relevant for stock

market predictions, since stock-based data is highly complex and non-linear (Thakkar and

Chaudhari, 2021, 2,7). A CNN uses convolution to learn the local features of the image, and

thus manages to preserve the local connectivity or spatial relationships between pixels, making

them particularly suitable for extracting relevant information at low computational cost (Arratia

and Sepúlveda, 2020).

3.1.2 Key Components of CNNs

Convolutional layer

The convolutional layers are the most important building block in a CNN. Mathematically,

convolution refers to an integration function that indicates the amount of overlap of a function

shifting over another function. In other words, the convolution describes filters that slide hori-

zontally and vertically over the input array (our picture) and calculate the dot product at each

taken step. In this context, the filter, also called kernel, refers to a set of weights, usually a 3*3

matrix, that extracts features (Chollet 2018, 127-128). The so-called stride describes the step

13

size, with which the filter slides over the picture, meaning that increasing the stride will result

in a lower-dimensional output (Ghosh et al. 2020, 8). The output of the convolution is a feature

map which stores information about the occurrence of features in a matrix along with how well

it complements the kernel. In Figure 1 the convolution operation is demonstrated. In this exam-

ple a 3*3 filter is applied on a 6*6 input array with stride equaling one which results in a 4*4

feature map. Applying zero-padding, i.e., padding the input array with zeros, can be used to

further control the size of the output array (O'Shea and Nash 2015, 7).

Figure 1 Illustration of the Convolution Operation.

Source: Own illustration

The CNN can contain one or more convolutional layers, each of them allowing through filters

to identify local patterns, which can later be recognised all over unseen pictures. The filters

behave similarly to the human eye and learn patterns hierarchically. The deeper the convolu-

tion layer, i.e., the more convolutional layers applied, the more detailed and higher-level fea-

tures can be extracted from the image (Tsai, Chen, and Wang 2018, 942).

Pooling Layer

The pooling layer has the purpose to reduce the dimensionality of the convolved feature map.

This reduces the number of features and the complexity of the model while persevering the

most dominant features. For the pooling operation a kernel, usually of dimensionality 2*2,

slides over the feature maps and applies a pooling technique. The most used pooling technique

14

is max pooling, meaning to extract the maximum value for each window. Similar to the con-

volutional layer, the stride size can be adapted. In the pooling layer the usual stride size is two

(Chollet 2018, 127). An example of the max pooling operation with a 2*2 window and stride

two is shown in Figure 2.

Figure 2 Exemplary Max Pooling Operation

Source: Own illustration

Fully connected layer

Before the created feature can be fed to a fully connected layer, the outputs of the final convo-

lution or pooling operation are flattened. The following fully-connected layer is analogue to a

simple feed-forward ANN, meaning that each neuron in this layer is connected with each neu-

ron in the adjacent layers (Ghosh et al. 2020, 9). This step is essential to allow the model to

generalise local patterns. The output of the fully connected layer is a representation of the like-

lihood of an input belonging to a certain class.

Descriptions of hyperparameters used for the CNN in this paper can be found in section 3.6.

3.2 Labelling Approach

To train the CNN, labelled training images are required. The approach used in this project opts

to frame the predictions as a multi-class classification instead of a regression (i.e., predicting

continuous return values). The three classes used to label observations in this project are Buy

(label = 1), Sell (label = -1) and Hold (label = 0), based on the price movement during the period

after the observation. There are two general labelling approaches in the context of stock price

15

forecasts suggested by different papers: the fixed time-horizon method and the triple-barrier

method (Lopez de Prado 2018, 43-48)

3.2.1 Fixed Time-Horizon Method

The fixed time-horizon method (hereafter called FTH method) is the more commonly used

one due to its simplicity (Lopez de Prado 2018, 43). Its basic premise is to compare the price

of an asset at the end of an observation period to an upper and lower threshold h that had been

previously set. The thresholds are set as relative values to the price at the beginning of the

consideration period, e.g., 10% above and below the closing price of the previous period (Lopez

de Prado 2018, 43).

Y 𝑖,𝑡 = {

𝑆𝑒𝑙𝑙 if 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡+1 ≤ (1 − ℎ) ∗ 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡

 𝐻𝑜𝑙𝑑 if (1 − ℎ) ∗ 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡 < 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡+1 < (1 + ℎ) ∗ 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡

 𝐵𝑢𝑦 if 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡+1 ≥ (1 + ℎ) ∗ 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡

The FTH method is straightforward and easy to implement. As it requires relatively little

amounts of data, especially compared to the triple-barrier method, it is very suitable for label-

ling observations from long-term datasets, for which historic high-frequency data, e.g., price

on a per-hour base, are not or only very limitedly available. However, the FTH method shows

an essential shortcoming: the fixed threshold used in this method does not consider the volatility

of the underlying asset and only considers the value of the asset at the end of the observation

period, but not during the period; as such, it is unrealistic in practice, since it implicitly assumes

that investors would only implement a transaction at the end of the consideration period. In

reality, an investor can implement a transaction at any time during trading hours. Moreover, an

investor will set limits beforehand based on the volatility (i.e., inherent risk) of an asset. Fur-

thermore, in practice, investment strategies usually have stop-loss limits (i.e., bottom limits)

and profit taking targets (e.g., sell when 10% return target is hit) at which they would exit a

(1)

16

position as soon as the limit is met. As such, a more realistic labelling approach needs to con-

sider price movements during the consideration period as well as the asset's underlying volatil-

ity.

3.2.2 Triple-Barrier Method

The triple-barrier method (hereafter called TB method) takes into account intra-period price

movements and the asset's volatility and solves the main shortcoming of the FTH method

(Lopez de Prado 2018, 45). The TB method sets three barriers:

• Two horizontal barriers, representing the profit-taking and stop-loss boundaries. The

horizontal barriers are dynamic functions of the estimated volatility experienced by the

analysed asset and the limit approach set for the investment.

• One vertical barrier, representing the end of the observation period.

To construct the barriers, upper and lower multipliers need to be set. These multipliers depend

on return targets an investor is setting (upper multiplier) and their degree of risk aversion, i.e.

the maximum loss they are willing to incur before exiting the position (lower multiplier) and

can thus be different across different types of investors. For simplicity, symmetric multipliers

of (1 , 1) will be used in this paper.

In the TB method, using a multi-class classification approach with three labels (Buy, Hold,

Sell), an observation is labelled based on the first of the three barriers it touches (Lopez de

Prado 2018, 45):

• Y = Buy: The observation is labelled as Buy if the upper horizontal barrier is touched

first. This means that the asset's price hits the profit-taking target during the considera-

tion period t, and thus, the asset should be bought in period t-1 to realise a positive

return.

17

• Y = Hold: The observation is labelled as Hold if neither the upper nor the lower hori-

zontal barriers are hit. This implies that the asset's price hits neither the profit-taking

target nor is stopped out by the stop-loss limit. Thus, it means no transaction is made.

Depending on the context of the investment, this either implies not investing (neither

long nor short) or holding the asset (in case the asset had already been previously

bought).

• Y = Sell: The observation is labelled as Sell if the lower horizontal barrier is touched

first. In this case, the asset's price hits the stop-loss limit first and is stopped out. Thus,

the asset should be sold in t-1. Depending on the context this implies to either sell the

asset to avoid losses or to short-sell to generate a positive return through a shorting

strategy.

The TB method is more realistic due to its consideration of intra-period price movements and

volatility, but requires significantly more data (Lopez de Prado 2018, 46). This can pose a chal-

lenge when analysing long-term data for which higher-frequency data is not sufficiently avail-

able. The project described in this paper faces the challenge that it aims at predicting the re-

spective next day's price movements. As such, using the TB method would require intra-day

price data to determine which barrier is hit first. However, this intra-day price data could not

be obtained for the entire period that is being analysed in this project. To achieve consistency

in the labelling approach across the entire data set, a simplified version of the TB method will

be applied.

3.2.3 Simplified Triple-Barrier Method

The upper and lower horizontal limits will be constructed in the same way as in the normal TB

method, with factors h calculated based on asset’s volatility and the chosen multiplier. How-

ever, instead of comparing intra-day price data to the two horizontal limits to create labels on a

18

per-day base, high and low prices will be compared to the limits. The labelling approach is as

follows:

Y 𝑖,𝑡 = {

Sell if pi, low t+1 ≤(1-h)*pi, close t

 Hold if pi, low t+1> (1-h)*pi, close t and pi, high t+1 <(1+h)*pi, close t

 Buy if pi, high t+1 ≥(1+h)*pi, close t

• Y = Buy: An observation on day t will be labelled as Buy if the high price on the fol-

lowing day t+1 is higher than or equal to the upper limit at t+1.

• Y = Sell: An observation on day t will be labelled as 2 if the low price on the following

day t+1 is lower than or equal to the lower limit at t+1.

• Y = Hold: Should none of the limits be exceeded on day t+1, the observation on day t

will be labelled as 0.

This labelling approach assumes that the investor is willing to hold the asset as long as neces-

sary to hit one of the barriers, such that time will have no impact on the position, as long as

none of the barriers are hit.

A limitation of this labelling approach is that it is unable to consider a time dimension and thus,

the issue of double labelling might arise in case that both conditions are met, i.e. the high price

lies above the upper limit and the low price lies below the lower limit. Therefore, when imple-

menting the methodology across the individual industries, the percentage of double labels will

be controlled and alternative measures taken should this percentage be above a threshold of 2%.

3.3 Feature Engineering

Feature Engineering is essential to improve Machine Learning or AI models. In the following

all pre-processing steps are explained and the reasoning for the applied methodologies pro-

vided.

(2)

19

3.3.1 Feature Creation

Technical Analysis is confined to the analysis of trends and movements in the market (Yang

et al. 2019). These indicators are used to predict future stock movements.

In principle, a distinction is made between two categories of technical indicators: leading and

lagging indicators. Leading indicators lead the price movement as they attempt to predict the

trend in a time series (Fernández-Blanco et al. 2008, 1851). Lagging indicators are trend-fol-

lowing indicators that provide delayed feedback as they lag the market (Bogullu, Dagli, and

Enke 2002, 722).

Indicators from both categories belong to one of four following types of technical indicators

(Salkar et al. 2021, 2).

1. Trend indicators show the direction in which the market is moving along with the

strength of the trend by comparing historical prices to a baseline (Salkar et al. 2021, 2).

They typically move between low and high values. The trend can be either downward

(bearish), upward (bullish), or sideways (no clear direction) (Peachavanish 2016, 2).

2. Momentum indicators assess the speed of price fluctuations in a time series by com-

paring current and previous closing prices (Salkar et al. 2021, 2).

3. Volatility indicators measure the speed of price movement and provide information on

how much the price changes in a given period (Salkar et al. 2021, 2).

4. Volume indicators measures the number of shares traded in a stock and thus provide

an indication of the strength of the market (Salkar et al. 2021, 2).

The use of technical analysis indicators as input features for neural network systems is estab-

lished in research (Arratia and Sepúlveda 2020; Sezer, Ozbayoglu, and Dogdu 2017; Sezer and

Ozbayoglu 2018; Sim, Kim, and Ahn 2019; Thakkar and Chaudhari 2021). The selection of

technical indicators was primarily based on their frequency in related studies as analyzed in

literature (Chen et al. 2021, 69; Peng et al. 2021, 5–6; Sezer and Ozbayoglu 2018, 529). In this

20

paper, two trend and seven momentum indicators are combined with different parameter set-

tings. Most technical indicators possess a user defined window width as input, affecting the

indicators output (Shynkevich et al. 2017, 72). The window size typically refers to the number

of raw observations or periods processed by the indicator (Shynkevich et al. 2017, 72). The

higher the window width, the more data will be processed. For the two trend indicators, i.e., the

moving averages, three different window sizes were chosen respectively. For the seven mo-

mentum indicators, one set of parameters was chosen for each. A total of 13 technical indicators

are calculated based on the closing price of the used ETF. Table 1 provides an overview of the

selected technical indicators. Definitions and calculations for each indicator can be found in

Appendix A.

Technical Indicator Type Number

of

features

Parameters:

n = number of periods processed by

the indicator.

T
re

n
d

M
o
m

en
tu

m

Simple moving average (SMA) x 3 n = {5, 10, 20}

Exponential moving average (EMA) x 3 n = {5, 10, 20}

Rate of change (ROC) x 1 n = 12

Percentage Price Oscillator (PPO) x 1 nlong = 26

nshort = 12

Relative Strength Index (RSI) x 1 n = 14

Know Sure Thing Oscillator (KST) x 1 As defined in Appendix A.

Williams % Range x 1 n = 14

Moving Average Convergence Diver-

gence (MACD)

 x 1 nlong = 26

nshort = 12

Commodity Channel Index (CCI) x 1 n = 20

Table 2 Technical Indicators and their Parameter Settings

Source: Own illustration

21

Along with the technical indicators, a set of additional variables is included in the set of predic-

tors for the convolutional neural network. Those include the high, low, opening and closing

prices along with the volume traded of the respective ETF, the closing prices of S&P 500, gold,

and oil futures as well as the exchange rate of Euro and U.S. Dollar.

3.3.2 Stationarity

When using financial time series, it is common to ensure stationarity as non-stationary time

series usually hamper modelling its behaviour (Hyndman und Athanasopoulos 2018). When

data are non-stationary, their characteristics, i.e. mean and variance, can change over time, im-

pede the prediction of future values.

To evaluate which variables lack stationarity, the Augmented Dickey-Fuller test (ADF) will be

used, one of the most common methods to statistically test for non-stationarity. ADF tests the

existence or absence of a unit root. A unit root test can be mathematically represented as

 𝑦𝑡 = 𝐷𝑡 + 𝑧𝑡 + 𝜀𝑡

with 𝐷𝑡 representing the deterministic, 𝑧𝑡 the stochastic component and 𝜀𝑡 the stationary error

(Verma 2021). The ADF test removes autocorrelation from the time series before testing for

stationarity in contrast to the Dickey-Fuller test. The ADF can be represented as

∆ 𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾 𝑦𝑡−1 + 𝛿1 ∆𝑦𝑡−1 + ⋯ + 𝛿𝑝−1 ∆𝑦𝑡−𝑝 + 𝜀𝑡

where 𝛼 denotes a constant, 𝛽 the coefficient over time and 𝑝 the order of the lag. The null

hypothesis, 𝛾 = 0, is tested against the alternative hypothesis of 𝛾 > 0. The test statistic value

𝐷𝐹𝜏 =
𝛾

𝑆𝐸(𝛾)

is then compared to the critical value of the ADF test. A 95 percent level is chosen, correspond-

ing to a 𝐷𝐹𝜏 statistic of -2.86 (Cheung and Lai 1995, 277-279).

(3)

(4)

(5)

22

In case of non-stationarity fractional differenciation will be applied. Unlike integer differenc-

ing, a method that simply subtracts a previous value from the current day (Hyndman und Ath-

anasopoulos 2018), fractional differencing finds the optimal balance between zero and maxi-

mum differentiation to guarantee stationarity while preserving the maximum amount of

memory in the data (Lopez de Prado 2018, 84). More precisely, it ensures that the mean and

variance of the time series do not change with time while a high correlation with the original

series is maintained. A feature on a current day can be expressed as the sum of all previous days

with an assigned weight for each value. The weight is calculated by the fractional derivative.

For this purpose, a transformation method is applied that automatically finds the minimum or-

der of fractional differentiation and turns the time-series stationary. Walasek and Gajda (2021)

applied fractional differencing to stock prices before training an ANN model. They confirmed

improved performance of the model on stationary data as opposed to non-stationary data.

3.3.3 Feature Selection

Feature Selection plays a crucial role in the creation of successful prediction models, identify-

ing a final selection of relevant variables (Speiser et al. 2019, 94). If the right features are cho-

sen, it improves the overall prediction performance while reducing computational costs and

diminishing the complexity of the model.

Especially the progressive application of Machine Learning and Artificial Intelligence in the

field of trading is a driving force for the collection of enormous amounts of data. Special atten-

tion should be paid to strongly correlated features (Peng et al. 2021, 5). The creation of technical

analysis indicators may lead to highly correlated variables, representing redundant information

(Haq et al. 2021, 2). After creating a variety of financial indicators with different parameters in

our approach, a special emphasis should be placed on an efficient feature selection approach to

avoid this problem of multicollinearity and overfitting (Peng et al. 2021, 10).

23

Therefore, Principal Component Analysis (PCA) is applied to reduce the features' multicollin-

earity and thus the dimensionality of the dataset while preserving most of its information. This

is achieved by identifying the principal components which are representing new variables as

linear combinations of the original features (Rahoma, Imtiaz, and Ahmed 2021, 2).

Mathematically spoken, the eigenvectors and eigenvalues are computed based on the covari-

ance matrix of the feature set, such that 𝐴𝑣 = 𝜆𝑣. In this formula A denotes the covariance

matrix, v the eigenvector, and 𝜆 the eigenvalue. The computed eigenvectors describe the direc-

tion of the explained variance whereas the eigenvalues express how much variance is captured

in the respective component. The components are created such that the first principal compo-

nent explains the highest percentage of the variance and each additional component captures

less information. (Tharwat 2016)

In this work the amount of variance that needs to be explained by the model will be set to 95

percent. This threshold represents a trade-off between capturing as much information of the

dataset as possible, and reducing the number of components in order to minimise the computing

costs to train the convolutional neural network. Since the algorithm penalises lower variance

features, it is necessary to standardise the features before applying PCA (Abdi and Williams

2010, 2).

3.5 Image Construction

One of the most common image construction methods used for times series forecasting with

CNN's is the transformation of data into Gramian Angular Fields, as proposed by Wang and

Oates (2015). The research team proposed another image encoding methodology, called Mar-

kov Transition Fields, which will be used in this paper as well.

24

3.5.1 Gramian Angular Fields

To leverage the advantages of CNNs in the context of trading, the timeseries data must be en-

coded to images. One approach to this are Gramian Angular Fields (GAFs). GAFs are capturing

spectral correlation structures, thus being able to capture temporal dependencies, representing

time series in a two-dimensional way. To create a GAF, the first step required is the rescaling

of the data points of a time series 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} to a normalisation range of [-1, 1] (Yang

et al. 2019, 189).

𝑥̃𝑖 =
(𝑥𝑖 − max(𝑋)) + (𝑥𝑖 − min (𝑋))

max(𝑋) − min (𝑋)

GAFs are not using the cartesian coordinate system. Instead, the normalised time series is con-

verted to polar coordinates by computing the angular cosine of the scaled time series. This

representation shows the value at a certain timestamp, holding N timestamps t with a value of

x. The conducted pairing is of bijective nature, mapping a value represented by the angle

uniquely to a point in time, shown by the radius r (Barra et al. 2020, 685).

[
 𝜙𝑖 = arccos(𝑥̃𝑖) , 𝑥̃𝑖𝜖 𝑋̃

𝑟𝑖 =
𝑖

𝑁
 , 𝑤𝑖𝑡ℎ 𝑡𝑖 𝜖 ℕ

]

After this transformation, the trigonometric sum between the values of the time series in the set

is conducted to obtain the correlation (Romero et al. 2020, 16692). Two approaches can be used

for turning the vectors into a symmetric Gramian matrix: either the Gramian Angular Summa-

tion Field (GASF) or Gramian Angular Differentiation Field (GADF) (Yang et al. 2019,

190). The main diagonal of this final matrix holds the original spectral values. As time moves,

the image position moves from the top left to the bottom right corner, representing the time

dependencies (Liu et al. 2022, 4).

(6)

(7)

25

𝐺𝐴𝑆𝐹 = [cos(𝜙𝑖 + 𝜙𝑗)] = 𝑋̃′ ⋅ 𝑋̃ − √𝐼 − 𝑋̃2
′

⋅ √𝐼 − 𝑋̃2

𝐺𝐴𝐷𝐹 = [sin (𝜙𝑖 − 𝜙𝑗)] = √𝐼 − 𝑋̃2
′

⋅ 𝑋̃ − 𝑋̃′ ⋅ √𝐼 − 𝑋̃2

 (Formula: Yang et al. 2019, 190)

The aggregation of separate GAFs into one image has already been researched. Yang et al.

cover this novel approach in their study by stacking images together to feed into the CNN

as one (Yang et al. 2019, 190). This aggregation approach raises the question whether the order

of images influences the performance of the model. Yang et al. reject this hypothesis by con-

ducting experiments, discovering that the sequence of arrangement has no impact on the results

(Yang et al. 2019, 191).

3.5.2 Markov Transition Fields

As a third method to transform the dataset into images, Markov Transition Fields (MTFs) will

be used – also presented by Wang and Oats in 2015. With this method, information can be

preserved in the time sphere of the different features used. As for the Gramian Angular Fields,

data from the previous 10 days are used as a reference point for classification.

Given a variable as a time series X, first, the Q quantile bins of the variable will be identified

and each value xi is assigned to one of the bins (𝑞𝑖 ∈ [1, 𝑄]). In a next step, a weighted adja-

cency matrix W of size a Q * Q is created by counting the conversions of the bins among the

time axis conforming to a first order Markov chain. Each value in the Matrix W describes the

frequency of a point in a certain quantile which occurs one period after a point in another quan-

tile. The matrix W is normalised such that the sum of each value in the matrix equals one. The

values do now present the probability by which one value of a quantile is followed by another

value of a specific quantile. (Wang and Oats 2015, 42)

(8)

26

When construting the images for our classification task at hand, a n*n (n refers to the time

periods used for each feature image) matrix is created as following based on the weights defined

previously (Wang and Oats 2015, 42).

𝑀𝑖,𝑗 = [

𝑤𝑖𝑗|𝑥1𝜖𝑞𝑖,𝑥1𝜖𝑞𝑗
… 𝑤𝑖𝑗|𝑥1𝜖𝑞𝑖,𝑥𝑛𝜖𝑞𝑗

𝑤𝑖𝑗|𝑥2𝜖𝑞𝑖,𝑥1𝜖𝑞𝑗
… 𝑤𝑖𝑗|𝑥2𝜖𝑞𝑖,𝑥𝑛𝜖𝑞𝑗

… … …
𝑤𝑖𝑗|𝑥𝑛𝜖𝑞𝑖,𝑥1𝜖𝑞𝑗

… 𝑤𝑖𝑗|𝑥𝑛𝜖𝑞𝑖,𝑥𝑛𝜖𝑞𝑗

]

For each point in time and each feature a Markov Transition Matrix is calculated. All features

matrices of one time stamp are then stacked, similar to the approach used for the GAFs, before

fed into the CNN.

3.6 Generic Model Architecture

Data set splitting and cross validation for time-series data

An important focus when developing any machine learning model is the generalisation of the

model, i.e. how well it deals with data it has not been trained on (Bergmeir and Benítez 2012,

197). To evaluate the performance of a model on unknown data, parts of the available data set

will be held back as validation and test sets, such that the model will not be trained on all

available data. This produces two problems: firstly, the model would most likely show a better

performance if trained on the full data set, and secondly, by just evaluating the performance on

sample, this performance measurement might not be representative of the true model perfor-

mance. To solve these problems, in most cases k-fold cross-validation will be used for training

and performance evaluation. All available data is randomly split into k sets. The model training

and performance evaluation is carried k times, where every set is used once as the test set, and

the other sets being used for model training. This way, the method produces k independent

performance measurements, while all available data is used for both training and testing. By

(9)

27

averaging the performance measurement across the k iterations, a relatively robust measure-

ment can be obtained, which is much more representative of the true model performance than

a single measurement (Bergmeir and Benítez 2012, 197).

However, the standard k-fold cross-validation cannot be applied to time-series data. The data

set cannot be split at random into training and validation sets as there is no sense to using data

from the future to forecast data from the past (Herman-Safar 2021). In other words, the temporal

dependency betweens data points needs to be preserved during training and testing. A solution

to this is Rolling Forward Cross-Validation, also referred to as Time Series Split Cross-Valida-

tion.

The data set is split into k consecutive subsets, while preserving the continuity of the data, i.e.

the data set is not split at random, but based on its temporal order. Then, rolling forward cross-

validation method will iterate consecutively over the k subsets. In the first iteration, the first

subset will be used for training and the second one for validation. In the second iteration, the

first subsets will be used for training and the third one for validation. These iterations continue

until the first k-1 subsets are used for training and the k-th subset for validation (Herman-Safar

2021).

Figure 3 Rolling Forward Cross-Validation

Source: Own illustration

28

The described cross validation approach is applied to find the best model architecture with the

respective optimal hyper-parameters as specified below. After estimating the best model, the

chosen model is evaluated with the test set. To retain the temporal dependencies, the test set

constitutes consecutive data points like the validation sets used for the cross validation. This

test set includes 20% of all data, accounting for approximately the last two years of data.

Model Architecture

As a Convolutional Neural Network this paper proposes a rather simple CNN architecture as

displayed in Figure 4. This basic architecture includes the input layer, two convolutional layers

with 64 and 128 filters, one pooling layer, one fully connected layer as well as one output layer.

Figure 4 Model Architecture

Source: Own illustration

In order to make the network more flexible to adapt to different ETFs and industries, a hyperpa-

rameter search is added. Since a gridsearch would be computationally too expensive, a random-

ized hyperparameter search is utilized. The search includes an optional dropout layer and batch

normalization layer. Regarding the convolutional operation different hyperparameter settings

for the kernel size, the activation function (output layer exluded due to multiclass classification

problem softmax is used in each model) and padding are included. For the pooling operation a

parameter to control the type of pooling, either max or average pooling, is used. Lastly, the

optimizer, learning rate, batchsize, the number of epochs and whether class weights should be

29

introduced are included in the randomized search (Table 3). The following section explains the

parameters in more detail.

Category Hyperparameter Parameter distribution

Additional

Layer

Batch Normalization include; exclude

Drop Out (incl. Rate) exclude; include with rate 0.25; include with rate 0.5

Convolution Kernel Size 3*3; 5*5

Activation Function relu; sigmoid; softmax

Padding same; valid

Pooling Pooling Type max pooling, average pooling

Compilation Optimizer Adam; RMSprop; SGD

Learning Rate 0.0001; 0.001; 0.01

Training Epochs 5; 10; 25; 50; 75; 100, 150

Batch Size 16; 32; 64

Class Weights None; Balanced

Activation functions

Activation functions in neural networks essentially take a single value and perform a mathe-

matical operation on it. When the function converges to a specific value, the neuron 'triggers'

the next one, hence the name activation function. This concept derives from neurons in the

human brain and is also the reason for the framework's name: neural network.

ReLu is the most commonly used activation function, introduced by LeCun et al. (1998). Its

purpose is to increase the non-linearity of the neural network. Despite being simple, ReLu is a

non-linear function. Because there is no parameter inside ReLu (the formula can be seen in

Table 4), it also does not require parameter-backpropagation. By setting all negative values to

0, a neuron only actives for images that actually possess the pattern (Wu 2017, 10).

Table 3 Parameter Distribution for Randomized Search

30

As a result, this particular activation function is well suited for recognising objects and complex

patterns. The introduction of ReLu in CNNs significantly reduced the difficulty of learning and

improved the accuracy of the networks (Wu 2017, 9).

Before ReLu, Sigmoid was one of the most used non-linear transformations. Sigmoid trans-

forms to values between 0 and 1 and is best suited for input data that itself is between 0 and 1

(Ittiyavirah 2013, 312). However in many cases, it performs poorer than ReLu (Wu 2017, 11).

A commonly used activation function for the output layer is Softmax, which is a combination

of many Sigmoid functions. Even in networks with ReLu in the inner layer, this is often the

preferred output layer for probabilities or multi-class-classifications. In the latter, probability

for each class will be the output (Ittiyavirah 2013, 314).

Tanh looks quite similar to sigmoid; however, it is centred around the origin of the coordinate

system. That is why it can depict values between -1 and 1 instead of 0 and 1. Its gradient is also

steeper in comparison since it has to reach twice as many y values for the same x value. Gen-

erally, Tanh is preferred to sigmoid because here, the gradient is not as restricted in one direc-

tion and also because it is origin-centred (Sharma 2020, 313). Even though ReLu is the standard

in most CNNs nowadays, it can only outperform Tanh in deeper neural networks. That means

when there are many layers, and problems such as the vanishing gradients occur (Godin 2018,

8).

Activation Function Formula

ReLu f(x) = max (0, 𝑥)

Sigmoid
𝑓(𝑥) =

1

1 + exp (−𝑥)

Tanh
𝑓(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Table 4 Activation Functions and Formulas

Source: Sharma 2020, 313

31

As depicted in Figure 5, sigmoid and tanh both converge towards specific values, either -1, 0

or 1. This convergence leads to 'vanishing gradients' if the absolute values are too large. ReLu,

on the other hand, erases all negative values and keeps the positive ones as they are, leading to

'exploding gradients' (Lee and Song 2019, 593).

Figure 5 Activation Functions

Source: Own illustration based on Lee and Song 2019, 594

Padding

(Zero) padding allows to control the spatial size of the output of a CNN by adding an appropri-

ate number of pixels (with zero values) to the outer edges of the input feature map before it is

processed by the kernel (Chollet 2017, 126). Padding is used when it is desirable to obtain an

output feature map with the same spatial dimensions as the input. Therefore, the padding pa-

rameter is set to same (Chollet 2017, 126; Lee and Song 2019, 608). Otherwise, valid means

that no padding is performed and that the size of the feature maps gradually decreases along the

convolutional layers (Lee and Song 2019, 599). In case the input feature map has a size of (n,n)

and the filters have a size of (m,m), then a single output feature map is of size (n-m+1, n-m+1)

(Lee and Song 2019, 599).

Pooling

Pooling layers are used to reduce model complexity, limit computation in the network and con-

trol issues of overfitting by reducing the spatial size of a feature map. The pooling layer parti-

tions the input into a set of non-overlapping two-dimensional spaces. The pixel values of each

subregion are then mapped according to the type of downsampling operator chosen: In max

32

pooling, the values are summarized into one maximum value, whereas in case of average pool-

ing the mean of the activations in the previous layer is computed for each subregion. (Lee and

Song 2019, 598).

Batch Normalization

Normalization methods are used to increase the similarity of samples and hence, to improve

generalization, i.e., the models’ ability to perform well to unseen data. However, it is insuffi-

cient to normalize the data in the preprocessing stage, before feeding it into the model, only.

Normalization is not guaranteed for each output after each transformation operated by the CNN

since the mean and variance can change over time. (Chollet 2017, 260). The batch normaliza-

tion layer, typically used after a convolutional layer (Chollet 2017, 261), ensures to continu-

ously normalize the data during the training process by standardizing the values in each layer

to mean 0 and variance 1 before the activation layers (Ioffe and Szegedy 2015). By making data

standardization an integral part of the model architecture, faster and more stable training is

possible, allowing the model to improve prediction accuracy (Lee and Song 2019, 609; Santur-

kar et al. 2018). Due to the implementation of batch normalization layers, higher learning rates

can be used (Ioffe and Szegedy 2015; V. Thakkar, Tewary, and Chakraborty 2018, 2) and

deeper networks can be built (Chollet 2017, 260).

Dropout

Regularisation is a method that is particularly relevant for preventing overfitting and improving

generalization of deep learning models. Dropout is one of the most frequently applied regular-

isation techniques for CNNs (Srivastava et al. 2014). It randomly drops out input features dur-

ing the training process, meaning it sets some of the weights connected to a given percentage

of nodes in a CNN to zero (Chollet 2017, 109; 216). The dropout rate refers to the fraction of

features that are replaced with zero during training and lies usually between 0.2 and 0.5. For

each update in each training epoch, the removed units are not included in the calculations of the

33

current step (Krizhevsky, Sutskever, and Hinton 2017). Dropout is not applied to the test or

validation set. In this case, the output of a layer is scaled down by a factor equal to the dropout

rate to account for the fact that there are more units than during training. (Chollet 2017, 109).

Epochs

An epoch refers to the one-time training of the CNN with the entire dataset (Sharma 2017).

However, since the size of an epoch is usually too large to be fed to the network in a single

batch, it is divided into several smaller batches (Chollet 2017, 34). To improve the training

process of the model, the number of epochs is increased, i.e., the data is passed to the same

CNN multiple times (Sharma 2017). This way, the average loss on the training set is decreased

until the optimal curve is met, more precisely, until the network begins to overfit the training

data (Wu 2017, 7).

Optimisers

Optimisers are used to tweak the model’s parameters during training. In Table 5, the used opti-

misers and their respective formulas can be inspected.

Adam, short for Adaptive Momentum Estimation, is one of the most widely used optimisation

algorithms in CNNs. Adam is an iterative algorithm that adapts the model variables. Research

has shown that Adam is effective for optimizing large groups of problems (Zhang and Gouza

2018, 1). However, for non-convex objective functions, it has shortcomings as Adam cannot

promise to find a global optimum, as its iterative optimization might get stuck in a local opti-

mum. Therefore it cannot be described as a particular robust optimizer for noisy data (Zhang

and Gouza 2018, 2).

Stochastic gradient descent (SGD) is probably the most widely used optimizer for CNNs (Wu

2017, 7). Generally, it is a fast algorithm that only performs small computations at each descent.

As many image recognition problems are based on noisy data, it is a fitting choice. Choosing

the correct learning rate offers a solution to the problem of getting stuck in local optima. When

34

the dataset is heterogenous it can get unstable, and the loss decreases on average. SGD chooses

samples at random throughout an epoch, so some samples might get chosen twice and some not

at all (Lee and Song 2019, 597).

Optimiser Formula

RMSProp 𝐸(𝑔2) = 𝛽𝐸(𝑔2)𝑡−1 + (1 − 𝛽) (
𝛿𝐶

𝛿𝑤
)

2

𝑤𝑡 = 𝑤𝑡−1 −
𝜂

√𝐸(𝑔2)

𝛿𝐶

𝛿𝑤

𝑤ℎ𝑒𝑟𝑒 𝐸(𝑔2) = 𝑀𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

𝛿𝐶

𝛿𝑤
=gradient of cost function with respect to the weight

 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝛽 = 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Adam 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2
𝑡

𝑀𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡

𝑉𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑉𝑡 + 𝜖
𝑀𝑡

𝑊𝑖𝑡ℎ 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒, 𝑚 = 𝑝𝑎𝑠𝑡 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

 𝑣 = 𝑝𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝛽 = 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒

 𝜖 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Stochastic Gradient

Descent (SGD)

𝑤 = 𝑤 − 𝜂Δ𝑄(𝑤)

 𝑄(𝑤) =
1

𝑛
∑ Δ𝑄𝑖(𝑤)

𝑛

𝑖=1

𝑤ℎ𝑒𝑟𝑒 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝑄(𝑤) = 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑤 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

Table 5 Optimisers and Formulas

Source: Zhang and Gouza 2018, 2; Kingma and Ba 2014, 2; Hinton, Srivastava, and Swersky 2012, 20

RMSProp or Root Mean Squared Propagation has become one of the more popular gradient

algorithms beyond SGD. It has been used for very deep CNNs for computer vision and in some

notable cases, outperformed SGD and Adam (Mukkamala and Hein 2017, 3). Even though it

was designed for deep neural networks, it performs quite well with noisy data in deep learning

35

and hence for CNNs. It also offers opportunities like SGD to escape the local optima and con-

tains the Adagrad optimiser when tuned with the correct parameters (Mukkamala and Hein

2017, 2).

Batch size

Batch size denotes the number of input samples in a single batch used for a training iteration

(Lee and Song 2019, 595). The choice of batch size affects the batch normalization process as

the technique depends on the number of samples in a batch. In general, smaller batch sizes have

been found to provide a faster training process and a better generalization compared to larger

batch sizes (Shen 2018).

Learning rate

The learning rate describes the extent to how much the model weights are changed during the

training process (Brownlee 2019). It takes on a small positive value. The smaller the learning

rate, the smaller the changes made at each iteration and thus the higher the number of training

epochs necessary. Vice versa, a higher learning rate implies a more rapid adaptation and there-

fore requires less training epochs. Tuning this hyperparameter is essential as a too high learning

rate can cause the model to converge quickly on a suboptimal solution, whereas a too low learn-

ing rate can cause the training process to become unstable and time-consuming (Brownlee

2019; Lee and Song 2019, 596).

Kernel size

The kernel_size is a key hyperparameter of the convolutional layer referring to the size of the

kernel, a matrix moving over the input data, as explained in section 3.1.2. The input image is

separated into sub-regions by the convolutional layer to have a fixed size set by the kernel size.

The kernel size refers to the height x width of the filter mask. (Lee and Song 2019, 597 – 598).

36

Class weights

The weights are used for computation between layers and are updated repeatedly in a model by

the algorithm. The aim is to find an optimal set of weights ensuring a minimum loss during the

network’s learning. Class weights are commonly used for imbalanced datasets and can be set

to ‘balanced’ to replicate the smaller classes to fit the number of samples in the bigger classes.

(Lee and Song 2019, 593).

3.7 Performance Evaluation

To evaluate our model, computational and financial performance measures need to be distin-

guished.

3.7.1 Computational Evaluation

As the stock price movement prediction represents a classification problem, evaluation for com-

putational performance is feasible with the means of common evaluation metrics derived from

the confusion matrix (Chen et al. 2021, 77). For assessing and comparing the computational

performance of the constructed models, six performance metrics will be considered.

Accuracy

Accuracy as the first metric being used represents one of the simplest and most intuitive meth-

ods, showing how many classes have been predicted correctly.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

The accuracy metric can convey false impression of the performance of a model if classes are

unbalanced. However, high accuracy is very important in the context of trading since every

misclassification should be seen as a wrong trading decision and thus implying loss.

(10)

37

Precision

Precision is the second metric being used. Class-specific precision measures for each class sep-

arately the percentage of correct predictions, i.e. the percentage of instances predicted as the

respective class that actually belong to the class. Precision values are bound between 0 and 1.

Moreover, the macro-averaged and weighted-averaged precision show the average model pre-

cision across all classes.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

The type I error is penalized by the precision metric, resulting in lower values with a high type

I error. Applied to trading, precision puts more emphasis on risk aversion, showing how many

bad investment choices were impeded or how many trading decisions were predicted correctly.

For buying transactions to prevent the trader to falsely buy although the asset might not further

rise in value, resulting in a loss of value if the price goes down. Falsely predicting to sell will

lead to missing out on possible returns if the asset is further rising in value.

Recall

Recall is a measure of how well the model identifies instances of a specific class in the data set.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

A high recall means that the model is strong at identifying actual instances of its respective

class, whereas a low recall means that the model is only able to identify a small percentage of

instances of the class. Recall values are bound between 0 and 1. Recall is related to the presence

of type II error (Peng et al. 2021, 23). In the context of trading, a higher recall implies not

missing out on potentially profitable trading opportunities, indicating how many truly positive

instances were marked as such and to decrease the number of false positives (Peng et al. 2021,

(11)

(12)

38

23). Related to a real-world trading scenario, a high recall leads to less falsely not-buying deci-

sions although it would have been profitable. In terms of selling triggers, it denotes to not over-

looking selling opportunities, preventing to hold the asset when the price will decrease.

F1-score

The F1-score balances precision and recall and provides a harmonic mid-point between recall

and precision as it is granting a high value only if both values are performing well (Peng et al.

2021, 23–24).

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

It harmonises indications on how precise the model is as a classifier, i.e. how many instances

are correctly predicted, and how robust the model is, i.e. how good it is at identifying instances

of the class.This metric can be very useful for strongly unbalanced predictions as the accuracy

measure can indicate misleading results (Peng et al. 2021, 24). However, it is less intuitive as

it is combining two metrics and is representing a poor resource allocation in this trading context.

To gain detailed insights into the quality of the model, precision and recall should be checked

separately and relative importance should be placed on recall and precision based on the spe-

cific underlying problem (Peng et al. 2021, 24).

Application of the performance measures

In the context of computational efficiency, the focus will lie on accuracy, since each prediction

represents a trading decision that results in financial loss if misclassified. Since the datasets are

unbalanced (Hold class is dominating each ETF) it is important to make sure that all classes

will be predicted while minimizing the false positive rate. Therefore, the precision, recall and

F1-score will help to get more insights into the models' prediction behaviour.

(13)

39

To ensure cross-industry comparability, a similar methodology including a similar labelling and

model approach is used, except for the Oil and Gas sector. The acquired results will be com-

pared and analysed based on the previously mentioned computational common performance

measures, as well as on the basis of financial evaluation approaches which will be discussed in

the next part.

3.7.2 Financial Evaluation

General approach

As the general approach to the financial evaluation of the model performance, a method sug-

gested by Sezer, Ozbayoglu and Dogdu (2017) will be used. In this approach, the asset is

bought, sold or held in accordance with its predicted label:

• If the prediction is Buy, the asset will be bought at current market price.

• If the prediction is Sell, the asset will be sold at current market price. Any existing long

position will be closed, i.e. held shares sold, and a short position will be entered, i.e.

shares will be short-sold.

• If the prediction is Hold, no operation is performed at that point in time.

Equal to Sezer, Ozbayoglu and Dogdu's approach, a starting capital of 10,000 USD will be used

and each transaction (Buy and Sell) will be made using the full capital available at that moment.

If the same label is repeated directly after one another in a sequence, only the first label will be

considered as a trigger and the respective transaction executed. Repeat labels will be ignored

until a new label comes up. At every executed transaction, trading fees will be considered to

achieve a near-real scenario.

For the evaluation, the total return over the test period will be used. Given that each individual

industry analysis will be applied to the same time period, and as such the test period will be

equal, the comparability of industries with this metric is given.

40

Basic premises and assumptions

For the approach to be consistent, a number of clear assumptions need to be stated:

1. Trading fees: Trading fees stay constant during the whole test period.

2. Execution price: As the prediction will be based made on the data available at the end

of day t for day t +1, the closing price of day t will be used as execution price.

3. Fractional shares: The approach assumes that fractional shares can be purchased. As

such, the number of shares purchased or sold in transaction is equal to the total available

capital divided by the execution price.

4. Short-sell limit: A short-sell limit of 20% of available capital is set, such that in a short-

sell transaction, the short position cannot exceed 20% of the total capital available after

closing the long position at the moment of a sell signal.

Benchmarks strategies

As benchmarks to compare the financial performance of the model to, the following strategies

will be used:

1. Simple, passive Buy & Hold strategy: the asset is bought at the beginning of the test

period and held until its end. The total return is determined by comparing the value of

the investment at the end of the observation period to the start capital.

2. Simple Moving Average Cross-over Strategy: One shorter-term simple moving aver-

age and one longer-term simple moving average will be applied. In line with technical

trading rules, it is considered a buy signal when the shorter-term moving average ex-

ceeds, i.e. crosses over, the longer-term moving average (Mitchell 2021). On the other

hand, it is considered a sell signal when the shorter-term moving average crosses below

the longer-term moving average (Mitchell 2021). For the application in this methodol-

ogy, in case of a buy signal, the asset will be bought at market price. In case of a sell

41

signal, any existing long position will be closed at market price and a short position in

line with the short-selling limit will be entered.

The best performing moving average combination will be found through a‘simplified

randomised search based on the training data set.

3. Mean-Reversion Strategy: The mean-reversion trading strategy is built on the premise

that prices eventually will revert back towards their mean (Chen 2021). Upper and lower

Bollinger bands are built around the asset price in a distance that is a function of the

assets volatility measured as its standard deviation and a simple moving average is con-

structed (Chen 2021). On the one hand, if the asset price is below the Lower Bollinger

Band, the asset is considered oversold and as such undervalued and expected to increase,

reverting back towards its mean. This results in a buy signal, meaning that a long posi-

tion should be built. On the other hand, the if the asset price is above the Upper Bollinger

Band, the asset is considered overbought and overvalued and expected to decrease

(Chen 2021). This results in a sell signal, meaning that any long position should be

exited and a short position opened. In addition, for the strategy approach used in this

paper moments where the price crosses the SMA are considered as unclear signals, sig-

nalling the investor to go neutral, i.e. to close any long or short position.

42

4.1 Industry analysis of the iShares U.S. Industrials ETF | VIS

4.1.1 Definition of the Industry; Brief Analysis

The Industrials sector is composed of some of the largest companies in the world. Exemplifying

the importance of it, the Dow Jones Industrial Index, historically and today an important indi-

cator for the economy is weighted heavily to industrials stocks (Lin 2018). Subsequently, the

Industrials sector is largely driven by the willingness to invest in e.g. new machines, which is

much more likely to happen during phases of economic growth. Additionally, expansion plans

are often postponed during times of economic uncertainty, leading the sector to produce less

and therefore performing worse. In short, Industrials are a category that is made up of compa-

nies producing or selling machinery, equipment or supplies used in manufacturing and con-

struction (Wohlner 2020). This includes a variety of capital goods and companies, as well as

industrial conglomerates, aerospace, electrical equipment, transportation and electrical equip-

ment companies. By covering this huge range of subsectors, there normally is at least some area

of growth in the sector, even in times of a recession (Wohlner 2020).

Taking an example in the machinery and building materials sector, the current outlook is very

positive, as prospects for increasing investments into infrastructure and clean energy steadily

improve (Milman 2021). Because of rising freight rates, transportation companies have bene-

fited disproportionally, even though high fuel costs troubled the industry at the same time

(Saldanha 2021). A third example of the variety of sectors influencing the Industrials is the

aerospace and defense industry. The rise of the covid variant Omicron has especially hit the

aerospace industry by setting back previous recovery hopes (Freed, Lampert, and Singh 2021).

At the same time, rising tensions around the globe (Marcus 2021) or the US raising their mili-

tary budget higher than originally proposed (Edmondson 2021) may lead to higher revenues in

the defense industry.

43

Looking onto the positive aspects of an investment into the sector, it appears that an overall

positive and continuous growth of the world economy will directly impact the Industrials sector.

During expansion phases, this might lead to an outperformance of business cycles. Moreover,

most of the companies in the sector are showing very solid fundamentals and low multiples

(Kastner 2021). However, even though freight companies profit from high freight rates, other

companies from the industrials sector are suffering from many disadvantages, as not only prices

rise but especially supply chains are more and more negatively impacted by current develop-

ments. Additionally, the solid fundamentals and low valuations can also be seen negatively, as

an outperformance of the market thanks to rising valuations in the general market are unlikely

(Kastner 2021).

4.1.2 General Information and Performance Analysis

Exchange traded funds (ETF’s) work in a similar way to traditional funds. They are a type of

security and can be traded on the stock exchange like shares while tracking an index, sector,

commodity or other assets. It is possible to structure and adjust an ETF to follow specific in-

vestment strategies (Chen 2021).

Advantages include the broad diversification with which one can cost-effectively invest into a

whole market. Furthermore, the transparency of each investment strategy, the liquidity through

which it is possible to trade an ETF anytime and the security of the investment as single com-

panies can be influenced by specific situations only applying to them (e.g. financial fraud, sup-

ply chain issues) are considerable positive aspects (Chen 2021).

The Vanguard Industrials ETF (VIS) being analyzed in this part of the thesis uses a full-repli-

cation and a sampling strategy in cases of regulatory constraints in order to track the perfor-

mance of a benchmark index measuring investment returns in the industrial sector. It is pas-

44

sively managed, including a number of 352 stocks being worth $5.6 billion. 99.2% of all hold-

ings are from the US, counting the following companies among the month-end 10 largest hold-

ings (VanguardGroup 2021):

Rank Company Weight in %

1 Union Pacific Corp. 3.70

2 United Parcel Service Inc. 3.50

3 Honeywell International Inc. 3.40

4 Raytheon Technologies Corp. 3.00

5 General Electric Co. 2.70

6 Boeing Co. 2.60

7 Caterpillar Inc. 2.50

8 3M Co. 2.50

9 Deere & Co. 2.40

10 Lockheed Martin Corp. 2.00

Total weight top 10 companies 29.00%

Table 6: Top 10 Holdings VIS ETF

They are accumulating to 29.00% of total net assets of the ETF.

45

Looking at the development of the ETF from 2010 until 2020, which is also representing the

data set which is used in the model, an overall positive trend can be observed. From the begin-

ning of the observation period, an approximated growth of 150% has been achieved.

Figure 6: Price Developments VIS ETF (Own Source)

Even so, around the beginning of 2019, the VIS was affected by a huge volatility. This is espe-

cially important to consider, as the model uses data from this time period as testing data. Ac-

cording to Lewis (2019), markets have been under a lot of uncertainty at this time. Facing prob-

lems such as an inverted yield curve, which is often seen as a sign that a recession is imminent,

the Brexit with uncertainty whether a trade agreement can be achieved, the renegotiation of the

NAFTA and last but not least the trade war in between China and the US which was dominated

by punitive mutual tariffs and a strong rhetoric, were some of the negative factors to be consid-

ered. Nevertheless, all of these problems were mitigated, leading the stock markets to one of

the most successful years in terms of a year based performance.

46

4.2 Data Preprocessing, feature engineering and image encoding

The data used in this analysis has been retrieved from https://www.investing.com/, including

the period of the 1st January of 2010 until the 31st December of 2019. in order to exclude

distorting extreme events as the financial crisis and the beginning of the Covid pandemic.

Next, relevant features have been created. As previously described in the group part of the

thesis, additional features in the form of technical indicators have been constructed with the aim

to enrich the analysis and model performance. Additionally, labels have been added for the

purpose of correctly classifying what would have been the optimal trading decision, meaning

whether to “Buy”, “Hold” or Sell an asset. In the model these were classified as 0 = “Hold”, 1

= “Buy” and 2 = “Sell” as the model couldn’t handle the original input labels of -1, 0 and 1.

The dates of the original dataset were converted to a “pd.datetime” format and set as the index

of the data frame. Going forward, a train-test split with 80% Training data and 20% of the data

for testing reasons has been chosen. Due to the fact, that time series data is being handled, no

additional random shuffling has been applied. To put the train/test split into perspective, stock

prices until 2018 are used for training, while occurrences after 2018 function as testing data.

In an attempt to assess whether the data is not stationary, the augmented dicker fully test has

been implemented. This is especially important as it is common to ensure stationarity as non-

stationary time series usually hamper modelling its behavior (Hyndman and Athanasopoulos

2018). The augmented Dickey-Fuller test (ADF) showed that especially the p – value of

0.527115 indicates the data being not stationary.

To better illustrate the changes which have been implemented, seeing the figure below is very

helpful:

https://www.investing.com/

47

Figure 7: OHLC Developments VIS ETF (Own Source)

This is why fractional differentiation has been applied on the train and test data separately in

order to avoid an unwanted bias in the data. This led to a much lower p – value close to 0. The

plotted data illustrates the changes also visually:

48

Figure 8: Stationarized Data Display (Own Source)

Taking a closer look at the stationarized data, a limitation can be derived and needs to be men-

tioned. During the last 2 years of time period, which is representing the testing data, volatile

shifts of the stock price in both directions exemplify a roller coaster ride in the Industrials sector.

This could indicate a future problem in terms of a good model performance, as the model might

not be able to react well on changes it couldn’t train on before. In the chart below, these move-

ments can be observed in greater detail on the original data:

Figure 9: Price Development during Test Period (Own Source)

Next, as a measure to reduce multicollinearity, a PCA has been applied using a threshold of

0.95. It reduces the dimensionality of the dataset while preserving most of its information. This

has been done after the train-split in order to avoid data leakage. From previously 19 Features,

8 Features have been identified as principal components representing new variables as a linear

combination of the original features (Rahoma, Imtiaz, und Ahmed 2021, 2).

49

4.3 Results and Model architecture

 GADF GASF MTF

Batch normaliza-

tion

TRUE FALSE FALSE

Dropout None 0.25 0.25

Activation func-

tion

Softmax Softmax Softmax

Kernel size 3,3 3,3 5,5

Padding SAME VALID SAME

Pooling Max Max Average

Optimizer RMSProp Adam RMSProp

Learning rate 0.001 0.0001 0.0001

50

 To transform the data into images, 3 approaches have been used: the Gramian Angular Sum-

mation Field (GASF), Gramian Angular Differentiation Field (GADF) and the Markov Transi-

tion Field (MTF). Each image encoding technique uses a window of 10 days, hence every

image contains information from 10 ensuing days. Using a randomized GridSearch, the best

parameters for each model have been searched. The goal of this GridSearch has been an opti-

mization on the F1 score while assuring that there are predictions for each of the BUY, HOLD

and SELL classes. They are summarized in the table below:

Table 7: Model Hyperparameters Overview

Additionally, a model making random predictions and iterating 10,000 times has been con-

structed, using the training data set with its class probabilities and the length of the test data set.

Next, the accuracy, weighted average F1-score and the Macro Average F1-score have been

averaged over all iterations, showing that all 3 image encoded models display better results than

the random model.

Epochs 25 75 100

Batch size 16 16 16

51

 Comparing the accuracy, weighted average precision, weighted average F1-score and Macro

Average F1-score on a high level with each other, the MTF showed the best results in 2 out of

3 categories. However, as the F1 score is the lowest for the MTF with 0.31 and as all Macro

Average scores are lower than the weighted ones, it makes sense to dive deeper into the results.

The reason for this is the observation that a lower Macro Average F1-score in comparison to a

Weighted Average one indicates worse F1-scores for individual minor classes. This could in

turn affect other performance metrics in the process.

Table 8: High-Level comparison of main metrics

Looking at the precision results of each model, the MTF shows decent results once more in all

3 categories, nevertheless the GADF outperforms the other two models in the Sell class preci-

sion with 0.36.

 Sell Class Preci-

sion

Hold Class

Precision

Buy Class

Precision

Weighted

Average Precision

GADF 0.36 0.47 0.31 0.40

 Accuracy Macro-averaged F1-

score

Weighted-average

F1-score

GADF 0.41 0.38 0.40

GASF 0.42 0.32 0.37

MTF 0.47 0.31 0.37

Random Model 0.3712 0.309 0.322

52

GASF 0.33 0.47 0.23 0.37

MTF 0.31 0.49 0.47 0.44

Table 9: Precision comparison

Lastly, when checking the Recall of each prediction, it can be derived that one of the reasons

for the MTF’s overall high scores result from a high recall in predicting the Hold class with a

score of 0.88. The Sell and Buy class perform much poorer with a score of 0.14 and 0.06 re-

spectively. The GADF seems to be better balanced over all 3 classes in terms of a balanced

recall score.

 Sell Class Re-

call

Hold Class Re-

call

Buy Class

Recall

Weighted

Average Recall

GADF 0.3 0.55 0.27 0.41

GASF 0.18 0.72 0.12 0.42

MTF 0.14 0.88 0.06 0.47

Table 10: Recall comparison

4.4 Performance evaluation

In the last chapter of the code, the financial performance of each model has been compared to

3 benchmarks: The “Buy & Hold”, “Simple Moving Average Cross-over Strategy” and “Mean-

Reversion Strategy”. All 3 models have been performing worse than a Buy&Hold approach as

well as the Mean Reversion strategy. Only the GASF and MTF were able to outperform the

SMA strategy.

 CNN Model Buy & Hold SMA MR

53

GADF 2.98%

GASF 4.64% 7.00% 3.76% 19.61%

MTF 5.53%

Table 11: Strategy evaluations

4.5 Industry Comparison

 Going forward by comparing the computational and financial performances of the models

across the 5 other sectors using the same approach, the following summary tables have been

generated. They are showing that there are no major deviations when comparing the computa-

tional performance of the Industrials to the average of all industries. Only the GADF model

showed significant weaker results.

Table 7: Computational performance evaluation across industries

 Accuracy Macro-averaged F1-score Weighted-average F1-

score

GADF average 0.49 0.35 0.47

GADF VIS 0.41 0.38 0.40

GASF average 0.45 0.31 0.37

GASF VIS 0.42 0.32 0.37

MTF average 0.44 0.31 0.37

MTF VIS 0.47 0.31 0.37

54

 Reviewing the results of the financial performances, excess results have been calculated by

taking the absolute difference between the benchmark strategy’s return and the models financial

results. The Industrials’ model showed negative excess returns for all 3 models. Even so, the

GASF and MTF models showed significantly better results than the 5 averaged industries.

Whatsoever, form a perspective of financial returns, it is currently not recommended to use any

of the CNN models. On the contrary, an investor would rather achieve higher returns by just

buying and holding the asset.

Table 8: Financial performance evaluation across industries

4.6 Industry Limitations and Implications

As already seen during the pre-processing of the data, the models probably were not able to

handle the extremely high volatility of the Industrials’ ETF around the year 2019. As we are

comparing the same time period across all different sectors, it wasn’t possible to change the

overall timeframe to allow for a proper comparison. Putting our project back into the context

of a real world implementation, it might make sense to use more data in the sense of e.g. hourly

course data. It is also worth mentioning that the current market situation with a very influencing

fiscal interference in a highly globalised world in connection with great political shifts is a

difficult foundation to rely on in order to properly train a machine learning model.

 Average excess return compared

to Buy & Hold

Industrials excess return com-

pared to Buy & Hold

GADF 1.30% -4.02%

GASF -6.90% -2.36%

MTF -12.98% -1.47%

55

56

5 Performance Comparison and Discussion

In the following section, key findings from the individual analyses conducted in chapter 4 will

be summarised, focusing on common findings regarding the model hyperparameters, as well as

the computational and the financial performance of the models.

Common findings hyperparameters

Comparing the best-performing model parameters across the three model types (GADF, GASF

and MTF) and across the six analysed industries, several findings can be made.

Firstly, for the MTF-based models, a 5*5 kernel achieves the best performance across all in-

dustries. For the majority of GAF-based models, i.e. GADF and GASF, a 3*3 kernel leads to

the best performance, with the exception of the Energy sector, for which a 5*5 leads to the best

performance for all three models. This tendency can be supported by the PXL-based model,

which also uses a 3*3 kernel.

Secondly, in the majority of models (17 out of 19), the Softmax and Sigmoid activation function

achieve the best performance. The ReLu activation function only leads to the best performance

for 2 of the 19 models.

Thirdly, for 5 out of the 6 ETFs applying the proposed image encoding types, average pooling

achieves the best performance for the GADF model.

Fourthly, for the majority of analysed ETFs (5 out of 6), including the class weights does not

have a positive impact on the model accuracy, i.e. models without class weights achieve a better

accuracy for these ETFs. However, this tendency is not supported by the PXL-based model.

Common findings computational performance

For the majority of industries, i.e. Information Technology, Healthcare, Energy and Financial

Services, the GADF-based model achieves a better accuracy compared to the GASF- and MTF-

based models. Moreover, for 5 out of 7 analysed ETFs, GADF achieves better weight-averaged

and macro-averaged F1-scores than both GASF and MTF.

57

For the Energy industry, it can be noted that GADF performs above the average of the other

industries, whereas the GASF and MTF perform poorly compared to the other ETF’s in terms

of computational performance. The worst model across all industries can be found within the

Healthcare models, where the MTF showed the poorest performance from a computational per-

spective with a weighted average F1-score of 0.34 and an accuracy of 0.3706. Among all mod-

els and industries, predictions of the Hold class showed the most promising results, with the

only outlier found for the GASF model of the energy sector. It is also worth mentioning that

within all industries and ETF’s, with the VGT (IT sector) as an exception, class predictions

show huge discrepancies in predicting the correct class. Hence it is not possible to conclude

that a certain image encoding technique works better to predict a specific signal.

The performance evaluation of the random choice models didn’t produce any important in-

sights. For all industries, similar scores can be observed. Moreover, they are less performant

than all other models when comparing weighted averages with each other.

Common findings financial performance

For comparing and assessing the financial performances of the models across industries, excess

returns calculated as the absolute difference between the model return and the benchmark strat-

egy are being used to ensure comparability of the obtained results. Considering the average of

these excess returns, only the GADF models are able to achieve returns that exceed the Buy &

Hold strategy, i.e. to beat the return generated by the general price development of the consid-

ered ETF. Both the GASF and MTF models have negative excess returns compared to Buy &

Hold, leaving the investor with better returns by just buying and holding the asset compared to

using a trading strategy based on the models’ predictions.

For 4 out of the 6 ETFs to which the common methodology was applied, the GADF models

outperform the Buy & Hold return, with the exception of Healthcare and Industrials. The GASF

58

models only outperforms the Buy & Hold return for 2 out the 6 ETFs, i.e. Healthcare and En-

ergy. Only for the Energy sector, the MTF model outperforms the Buy & Hold return. Despite

being a subset of the energy industry, the model used on the Oil & Gas sector cannot outperform

the Buy & Hold return. It is also the Energy sector where the model generates the most impact;

despite the negative price development of -8% over the test data period, all three models are

able to generate positive returns between 3% and 10%. Lastly, the CNN approach shows the

poorest performance in the Industrials sector where all three models underperform compared to

the Buy & Hold strategy.

59

6. Limitations and Outlook

6.1 Limitations

Predictions for the stock market are challenging, as the stock market represents a dynamic,

volatile and very complex market based on historical data and influenced by unpredictable

events. In this research we face the problem of imbalanced classes, where the largest class is

Hold across all sectors. As a result, the predictions are dominated by the largest class - predic-

tions of the minor classes turn out worse, which negatively affects the overall model perfor-

mance. In addition, a comparatively small train set in combination with complex features fur-

ther complicates model development. This makes the models prone to overfitting - whereas the

inclusion of multiple train data would be advantageous. In the present approach of this research

accuracy was chosen as the most important performance measure and model selection criterion.

However, there are other evaluation methods that could be considered as primarily evaluation

metric, e.g. financial performance, precision or F1-scores. Especially with respect to the finan-

cial performance it is important to mention that only the decisions of the next day are consid-

ered. Hence, the prediction is related to a very short future period and makes no specific state-

ments about longer term behavior. A further limitation lies in the assessment of the severity in

the case of mislabelling. A wrong Buy/Sell decision has more serious negative effects than a

wrong Buy/Hold or Sell/Hold decision. In the present research a suitable performance measure

is missing - here a suitable loss function would be necessary. A further remark is to be men-

tioned in the simplification of the labelling approach. If the upper and lower limits are exceeded

on the same day, the first labelling trigger decides on the label allocated to the trading day.

Another limitation can be found in the Efficient Market Theory (Fama 1970, 383). As men-

tioned in section 2.1, the theory states that stock prices already reflect and have priced in all

relevant information. This would make a deeper analysis with additional features, like technical

60

indicators, redundant, as no investment analysis technique allows investors to generate signifi-

cant excess returns above the market. However, this is refuted by the thesis that financial mar-

kets in many cases do not react immediately to new information (Cervelló-Royo and Guijarro

2020, 41), which would make returns above the market average still possible through sufficient

analysis and the right timing. This would imply that a better performing model could potentially

outperform market returns.

6.2 Outlook

Forecasting Financial Time Series Movements using CNNs is a recent research field. For this

reason many different topics can be addressed in future research.

Firstly, it would be interesting to test if the proposed methodology can achieve better results

with regard to different prediction horizons. These could include the prediction of price move-

ments within the next week or month, alternatively intraday data can be used for short-term

forecasting.

This work focuses on using technical indicators along with foreign exchange, commodity and

indices as features to feed into the CNN. However, future work could incorporate other types

of features. These could, among others, include data from the news, social media and market

segments. Moreover, machine-learning-based fundamental analysis approaches as suggested

by Cao and You (2020), e.g. for forecasting company earnings, could be included to provide a

more holistic impression on the underlying companies’ situation.

Furthermore, within the current research not all papers propose transforming the data into sta-

tionary time series. Therefore, research regarding the necessity of stationary time series in the

context of forecasting financial time series with CNNs can be conducted. This is particularly

interesting as methods to transform non-stationary data imply information loss within the used

variables.

61

References

Abad, Cristina, Sten A. Thore, and Joaquina Laffarga. 2004. ‘Fundamental Analysis Of Stocks

By Two-Stage DEA’. Managerial And Decision Economics 25 (5): 231-241.

doi:10.1002/mde.1145.

Abdi, Hervé, and Lynne J. Williams. 2010. ‘Principal Component Analysis’. Wiley interdisci-

plinary reviews: computational statistics 2(4): 433-459.

Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. ‘Understanding of a Convo-

lutional Neural Network’. In 2017 International Conference on Engineering and Technol-

ogy (ICET), 1–6.

Arratia, Argimiro, and Eduardo Sepúlveda. 2020. ‘Convolutional Neural Networks, Image

Recognition and Financial Time Series Forecasting’. In Mining Data for Financial Appli-

cations, 60–69. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-

030-37720-5_5.

Banton, Caroline. 2021. ‘An Introduction To Trading Types: Fundamental Traders’. In-

vestopedia. Accessed December 10, 2021. https://www.investopedia.com/articles/trad-

ing/02/100102.asp.

Barra, Silvio, Salvatore Mario Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego

Reforgiato Recupero. 2020. ‘Deep learning and time series-to-image encoding for finan-

cial forecasting’. IEEE/CAA Journal of Automatica Sinica 7 (3): 683–692.

https://doi.org/10.1109/JAS.2020.1003132.

Bergmeir, Christoph, and José M. Benítez. 2012. ‘On The Use Of Cross-Validation For Time

Series Predictor Evaluation’. Information Sciences 191: 192-213.

doi:10.1016/j.ins.2011.12.028.

https://doi.org/10.1109/JAS.2020.1003132

62

Bogullu, Vamsi Krishna, Cihan H. Dagli, and David Lee Enke. 2002. ‘Using Neural Networks

and Technical Indicators for Generating Stock Trading Signals’. Intelligent Engineering

Systems Through Artificial Neural Networks 12: 721–726.

Brownlee, Jason. 2018. ‘When to Use MLP, CNN, and RNN Neural Networks’. Machine

Learning Mastery. Accessed December 10, 2021. https://machinelearningmas-

tery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/.

Brownlee, Jason. 2019. ‘Understand the Impact of Learning Rate on Neural Network Perfor-

mance’. Machine Learning Mastery. Accessed December 10, 2021. https://machinelearn-

ingmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-net-

works/.

Cao, Kai, and Haifeng You. 2020. ‘Fundamental Analysis Via Machine Learning’. SSRN Elec-

tronic Journal 2020 (009). doi:10.2139/ssrn.3706532.

Cervelló-Royo, R., and F. Guijarro. 2020. "Forecasting Stock Market Trend: A Comparison Of

Machine Learning Algorithms". Finance, Markets And Valuation 6 (1): 37-49.

Chen, James. 2021. “Exchange Traded Fund (ETF),” 1–28.

https://www.investopedia.com/terms/e/etf.asp.

Chen, Sheng, and Hongxiang He. 2018. ‘Stock Prediction Using Convolutional Neural Net-

work’. IOP Conference Series: Materials Science and Engineering 435 (1).

https://doi.org/10.1088/1757-899X/435/1/012026.

Chen, Wei, Manrui Jiang, Wei-Guo Zhang, und Zhensong Chen. 2021. ‘A Novel Graph Con-

volutional Feature Based Convolutional Neural Network for Stock Trend Prediction’. In-

formation Sciences 556 (May): 67–94. https://doi.org/10.1016/j.ins.2020.12.068.

https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/
https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/

63

Cheung, Yin-Wong, and Kon S. Lai. 1995. ‘Lag Order and Critical Values of the Augmented

Dickey–Fuller Test’. Journal of Business & Economic Statistics 13 (3): 277–280.

https://doi.org/10.1080/07350015.1995.10524601.

Chollet, Francois. 2017. Deep Learning with Python. New York, NY: Manning Publications.

Chollet, François. 2018. Deep Learning with Python. Shelter Island, New York: Manning Pub-

lications Co.

Cohen, Naftali, Tucker Balch, and Manuela Veloso. 2020. ‘Trading via Image Classification’.

In Proceedings of the First ACM International Conference on AI in Finance, 1–6.

https://doi.org/10.1145/3383455.3422544.

Drakopoulou, Veliota. 2016. ‘A Review Of Fundamental And Technical Stock Analysis Tech-

niques’. Journal Of Stock & Forex Trading 05 (01): 1-8.

Dertat, Arden. 2017. ‘Applied Deep Learning - Part 4: Convolutional Neural Networks’. To-

wards Data Science. Accessed November 8, 2021. https://towardsdatascience.com/ap-

plied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2.

Desconfio, Josh. 2018. ‘A Beginner's Guide to Technical Indicators’. Scanz.com. Accessed

December 3, 2021. https://scanz.com/technical-indicators-guide/.

Edmondson, Catie. 2021. “House Passes $768 Billion Defense Policy Bill.” New York Times,

7–9. https://www.nytimes.com/2021/12/07/us/politics/defense-budget-democrats-

biden.html.

Fama, Eugene F. 1970. ‘Efficient Capital Markets: A Review of Theory and Empirical Work’.

The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486

64

Fernández-Blanco, Pablo, Diego J. Bodas-Sagi, Francisco J. Soltero, and J. Ignacio Hidalgo.

2008. ‘Technical Market Indicators Optimization Using Evolutionary Algorithms’. In

Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary

Computation.

Freed, Jamie, Allison Lampert, and Rajesh Kumar Singh. 2021. “Omicron Sets Back Airline

Industry ’ s Recovery Hopes.” Reuters, 1–15.

Ghosh, Anirudha, Abu Sufian, Farhana Sultana, Amlan Chakrabarti, and Debashis De. 2020.

‘Fundamental Concepts of Convolutional Neural Network’. In Recent Trends and Ad-

vances in Artificial Intelligence and Internet of Things, 172:519–67.

https://doi.org/10.1007/978-3-030-32644-9_36.

Godin, Fréderic, Jonas Degrave, Joni Dambre, and Wesley De Neve. 2018. ‘Dual Rectified

Linear Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recur-

rent Neural Networks’. Pattern Recognition Letters. 10.1016/j.patrec.2018.09.006

Haq, Anwar Ul, Adnan Zeb, Zhenfeng Lei, and Defu Zhang. 2021. ‘Forecasting Daily Stock

Trend Using Multi-Filter Feature Selection and Deep Learning‘. Expert Systems with

Applications 168 (April): 114444. https://doi.org/10.1016/j.eswa.2020.114444.

Hayes, Adam. 2021. ‘Know Sure Thing (KST)’. StockCharts. Accessed December 10, 2021.

https://stockcharts.com/school/doku.php?id=chart_school:technical_indica-

tors:know_sure_thing_kst.

Henrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. 2018. ‘Stock Price

Prediction Using Support Vector Regression on Daily and up to the Minute Prices’. Jour-

nal of Finance and Data Science 4 (3): 183–201.

https://doi.org/10.1016/j.jfds.2018.04.003.

https://doi.org/10.1016/j.eswa.2020.114444
https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:know_sure_thing_kst
https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:know_sure_thing_kst

65

Herman-Safar, Or. 2021. ‘Time Based Cross Validation’. Blog. Towards Data Science.

https://towardsdatascience.com/time-based-cross-validation-d259b13d42b8.

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky. 2012. "Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent." Neural Networks for Ma-

chine Learning 14.

Huang, Boming, Yuxiang Huan, Li Da Xu, Lirong Zheng, and Zhuo Zou. 2019. ‘Automated

trading systems statistical and machine learning methods and hardware implementation:

a survey’. Enterprise Information Systems 13 (1): 132–144.

https://doi.org/10.1080/17517575.2018.1493145.

Hyndman, Rob J., and George Athanasopoulos. 2018. Forecasting: Principles and Practice.

OTexts.

Ioffe, Sergey, and Christian Szegedy. 2015. ‘Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift’. In: International conference on machine

learning. PMLR, 2015. S. 448-456.

Ittiyavirah, Sibi, S. Jones and P. Siddarth. 2013. ‘Analysis of different activation functions us-

ing Backpropagation Neural Networks’. Journal of Theoretical and Applied Information

Technology 47: 1344-1348.

Kastner, David. 2021. “Industrials Sector Rating : Neutral,” 1–5.

Keijsers, N. L. W. 2010. ‘Neural Networks’. In Encyclopedia of Movement Disorders, 257–

259. Elsevier.

Kingma, Diederik P, and Jimmy Ba. 2014. ‘Adam: A method for stochastic optimization’. arXiv

preprint arXiv:1412.6980.

https://doi.org/10.1080/17517575.2018.1493145

66

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ‘ImageNet Classification with

Deep Convolutional Neural Networks’. Communications of the ACM 60 (6): 84–90.

Kröse, Ben, and Patrick Van der Smagt. 1993. ‘An Introduction to Neural Networks’. Journal

of Computer Science 48 (January).

Lee, Hagyeong, and Jongwoo Song. 2019. ‘Introduction to Convolutional Neural Network Us-

ing Keras; an Understanding from a Statistician’. Communications for Statistical Appli-

cations and Methods 26 (6): 591–610.

Lev, Baruch, and S. Ramu Thiagarajan. 1993. ‘Fundamental Information Analysis’. Journal Of

Accounting Research 31 (2): 190. doi:10.2307/2491270.

Lewis, Al. 2019. “The Stock Market Boomed in 2019. Here’s How It Happened.” Cnbc, 1–20.

Lin, Eric. 2018. “The Effect Of Dow Jones Industrial Average Index Component Changes On

Stock Returns And Trading Volumes.” The International Journal of Business and Finance

Research 12 (1): 81–92.

Liu, Shiyu, Shutao Wang, Chunhai Hu, and Weihong Bi. 2022. ‘Determination of Alcohols-

Diesel Oil by near Infrared Spectroscopy Based on Gramian Angular Field Image Coding

and Deep Learning’. Fuel 309 (February): 122121.

https://doi.org/10.1016/j.fuel.2021.122121.

Lopez de Prado, Marcos. 2018. Advances In Financial Machine Learning. 2nd ed. New Jersey:

John Wiley & Sons.

Marcus, Jonathan. 2021. “Putin-Biden Talks : What next for Ukraine ?” BBC, 1–10.

https://www.bbc.com/news/world-europe-59565590.

Milman, Oliver. 2021. “Biden Signs Order for Government to Achieve Net-Zero Emissions by

2050,” 49–51.

https://doi.org/10.1016/j.fuel.2021.122121

67

Mitchell, Cory. 2021. ‘How To Use A Moving Average To Buy Stocks’. Investopedia.

https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-

buy-stocks.asp.

Moghaddam, Amin Hedayati, Moein Hedayati Moghaddam, and Morteza Esfandyari. 2016.

‘Stock Market Index Prediction Using Artificial Neural Network’. Journal of Economics,

Finance and Administrative Science 21 (41): 89–93.

https://doi.org/10.1016/j.jefas.2016.07.002.

Murphy, John J. 1999. Technical Analysis of the Financial Markets: A Comprehensive Guide

to Trading Methods and Applications. New York: New York Institute of Finance.

Nayak, Aparna, M. M.Manohara Pai, and Radhika M. Pai. 2016. ‘Prediction Models for Indian

Stock Market’. Procedia Computer Science 89: 441–449.

https://doi.org/10.1016/j.procs.2016.06.096.

O'Shea, Keiron, and Ryan Nash. 2015. 'An Introduction to Convolutional Neural Networks'.

arXiv preprint arXiv:1511.08458.

Patel, Jigar, Sahil Shah, Priyank Thakkar, and K. Kotecha. 2015. ‘Predicting Stock and Stock

Price Index Movement Using Trend Deterministic Data Preparation and Machine Learn-

ing Techniques’. Expert Systems with Applications 42 (1): 259–268.

https://doi.org/10.1016/j.eswa.2014.07.040.

Peachavanish, Ratchata. 2016. ‘Stock Selection and Trading Based on Cluster Analysis of

Trend and Momentum Indicators’. In Proceedings of the International MultiConference

of Engineers and Computer Scientists 2016. Vol. 1. IMECS 2016.

http://www.iaeng.org/publication/IMECS2016/IMECS2016_pp317-321.pdf.

http://www.iaeng.org/publication/IMECS2016/IMECS2016_pp317-321.pdf

68

Peng, Yaohao, Pedro Henrique Melo Albuquerque, Herbert Kimura, and Cayan Atreio Portela

Bárcena Saavedra. 2021. ‘Feature Selection and Deep Neural Networks for Stock Price

Direction Forecasting Using Technical Analysis Indicators ‘. Machine Learning with Ap-

plications 5 (September): 100060. https://doi.org/10.1016/j.mlwa.2021.100060.

Petrusheva, Nada, and Igor Jordanoski. 2016. ‘Comparative Analysis between the Fundamental

and Technical Analysis of Stocks’. Journal of Process Management. New Technologies

4: 26–31. https://doi.org/10.5937/JPMNT1602026P.

Rahoma, Abdalhamid, Syed Imtiaz, and Salim Ahmed. 2021. ‘Sparse Principal Component

Analysis Using Bootstrap Method’. Chemical Engineering Science 246: 116890.

https://doi.org/10.1016/j.ces.2021.116890.

Romero, Luis, Joaquim Blesa, Vicenç Puig, Gabriela Cembrano, and Carlos Trapiello. 2020.

‘First Results in Leak Localization in Water Distribution Networks Using Graph-Based

Clustering and Deep Learning‘. IFAC-PapersOnLine, 21st IFAC World Congress, 53 (2):

16691–96. https://doi.org/10.1016/j.ifacol.2020.12.1104

Saldanha, Aaron. 2021. “LIVE MARKETS High Freight Rates : Here to Stay but Keep an Eye

on China.” Reuters, 1–27.

Salkar, Tanishq, Aditya Shinde, Neelaya Tamhankar, and Narendra Bhagat. 2021. ‘Algorithmic

Trading Using Technical Indicators’. In 2021 International Conference on Communica-

tion Information and Computing Technology (ICCICT), 1–6. https://doi.org/10.1109/IC-

CICT50803.2021.9510135.

Santurkar, Shibani, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. 2018. ‘How Does

Batch Normalization Help Optimization?’. Proceedings of the 32nd international confer-

ence on neural information processing systems: 2488-2498.

https://doi.org/10.1016/j.mlwa.2021.100060
https://doi.org/10.1016/j.ifacol.2020.12.1104

69

Sezer, Omer Berat, and Ahmet Murat Ozbayoglu. 2018. ‘Algorithmic Financial Trading with

Deep Convolutional Neural Networks: Time Series to Image Conversion Approach’. Ap-

plied Soft Computing 70: 525–538. https://doi.org/10.1016/j.asoc.2018.04.024.

Sezer, Omer Berat, Murat Ozbayoglu, and Erdogan Dogdu. 2017. ‘A Deep Neural-Network

Based Stock Trading System Based on Evolutionary Optimized Technical Analysis

Parameters’. Procedia Computer Science, 114: 473–80.

https://doi.org/10.1016/j.procs.2017.09.031.

Sharma, Sagar. 2017. ‘Epoch vs Batch Size vs Iterations - towards Data Science’. Towards

Data Science. Accessed December 10, 2021. https://towardsdatascience.com/epoch-vs-

iterations-vs-batch-size-4dfb9c7ce9c9.

Sharma, Siddharth & Sharma, Simone & Athaiya, Anidhya. . 2020. ‘Activation Functions In

Neural Networks’. International Journal of Engineering Applied Sciences and Technol-

ogy: 310-316. 10.33564/IJEAST.2020.v04i12.054.

Shen, Kevin. 2018. ‘Effect of Batch Size on Training Dynamics.’ Mini Distill. Accessed

Dezember 3, 2021. https://medium.com/mini-distill/effect-of-batch-size-on-training-dy-

namics-21c14f7a716e.

Shynkevich, Yauheniya, T. M. McGinnity, Sonya A. Coleman, Ammar Belatreche, and

Yuhua Li. 2017. ‘Forecasting Price Movements Using Technical Indicators: Investi-

gating the Impact of Varying Input Window Length’. Neurocomputing, Machine

learning in finance, 264: 71–88. https://doi.org/10.1016/j.neucom.2016.11.095.

Sim, Hyun, Hae Kim, and Jae Ahn. 2019. ‘Is Deep Learning for Image Recognition Applicable

to Stock Market Prediction?’ Complexity 2019: 1–10.

https://doi.org/10.1155/2019/4324878.

https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9

70

Speiser, Jaime Lynn, Michael E. Miller, Janet Tooze, and Edward Ip. 2019. ‘A Comparison of

Random Forest Variable Selection Methods for Classification Prediction Modeling‘. Ex-

pert Systems with Applications 134: 93–101. https://doi.org/10.1016/j.eswa.2019.05.028.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-

nov. 2014. ‘Dropout: A Simple Way to Prevent Neural Networks from Overfitting’. Jour-

nal of Machine Learning Research: JMLR 15 (56): 1929–1258.

Thakkar, Ankit, and Kinjal Chaudhari. 2021. ‘A Comprehensive Survey on Deep Neural Net-

works for Stock Market: The Need, Challenges, and Future Directions’. Expert Systems

with Applications 177: 114800. https://doi.org/10.1016/j.eswa.2021.114800.

Thakkar, Vignesh, Suman Tewary, and Chandan Chakraborty. 2018. ‘Batch Normalization in

Convolutional Neural Networks — A Comparative Study with CIFAR-10 Data’. In 2018

Fifth International Conference on Emerging Applications of Information Technology

(EAIT), 1–5. https://doi.org/10.1109/EAIT.2018.8470438.

Tharwat, Alaa. 2016. ‘Principal Component Analysis - a Tutorial’. International Journal of Ap-

plied Pattern Recognition 3: 197. https://doi.org/10.1504/IJAPR.2016.079733

Tsai, Yun-Cheng, Jun-Hao Chen, and Jun-Jie Wang. 2018. ‘Predict Forex Trend via Convolu-

tional Neural Networks’. Journal of Intelligent Systems 29 (1): 941–958.

https://doi.org/10.1515/jisys-2018-0074.

VanguardGroup. 2021. “Vanguard Industrials ETF (VIS),” 8–13.

https://investor.vanguard.com/etf/profile/overview/vis.

Verma, Yugesh. 2021. ‘Complete Guide To Dickey-Fuller Test In Time-Series Analysis’. Ana-

lytics India Magazine. Accessed December 1, 2021. https://analyticsindiamag.com/com-

plete-guide-to-dickey-fuller-test-in-time-series-analysis/.

71

Vijh, Mehar, Deeksha Chandola, Vinay Anand Tikkiwal, and Arun Kumar. 2020. ‘Stock Clos-

ing Price Prediction Using Machine Learning Techniques’. Procedia Computer Science

167 (2019): 599–606. https://doi.org/10.1016/j.procs.2020.03.326.

Walasek, Rafał, and Janusz Gajda. 2021. ‘Fractional Differentiation and Its Use in Machine

Learning’. International Journal of Advances in Engineering Sciences and Applied Math-

ematics 13 (2–3): 270–277.

Wang, Zhiguang, and Tim Oates. 2015. ‘Encoding Time Series as Images for Visual Inspection

and Classification Using Tiled Convolutional Neural Networks’. Workshops at the

Twenty-Ninth AAAI Conference on Artificial Intelligence, 40–46.

Wohlner, Roger. 2020. “Industrial Goods Sector.” Investopedia, 1–5.

https://www.investopedia.com/terms/i/industrial-goods-sector.asp.

Wu, Jianxin. 2017. ‘Introduction to convolutional neural networks’. National Key Lab for

Novel Software Technology. Nanjing University. China 5 (23): 495.

Xu, Kelvin, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdi-

nov, Richard S. Zemel, and Yoshua Bengio. 2015. ‘Show, Attend and Tell: Neural Image

Caption Generation with Visual Attention’. 32nd International Conference on Machine

Learning, ICML 2015 3: 2048–2057.

Yang, Chao-Lung, Chen-Yi Yang, Zhi-Xuan Chen, and Nai-Wei Lo. 2019. ‘Multivariate Time

Series Data Transformation for Convolutional Neural Network‘. In 2019 IEEE/SICE In-

ternational Symposium on System Integration (SII), 188–192. Paris, France: IEEE.

https://doi.org/10.1109/SII.2019.8700425.

https://doi.org/10.1016/j.procs.2020.03.326

72

Yang, Zhenhua, Kuangrong Hao, Xin Cai, Lei Chen, and Lihong Ren. 2019. ‘Prediction of

Stock Trading Signal Based on Multi-Indicator Channel Convolutional Neural Net-

works’. In 2019 IEEE 8th Data Driven Control and Learning Systems Conference

(DDCLS), 912–917. IEEE.

Zhang, Jiawei, and Fisher B Gouza. 2018. ‘GADAM: genetic-evolutionary ADAM for deep

neural network optimization’. arXiv preprint arXiv:1805.07500.

73

Appendix

Apendix A

The table below displays the technical indicators used cross-sectoral. Along with a description,

the formulas for calculationg the indicator is provided.

Type Technical Indicator Formula (Sezer and Ozbayoglu 2018, 535;

Sim, Kim, and Ahn 2019, 7)

Trend Simple moving average (SMA) calcu-

lates the average price over a given pe-

riod. The indicator is widely used to

detmine price trends (Sezer and

Ozbayoglu 2018, 535).

𝑆𝑀𝐴 =
𝐶1 + 𝐶2 + ⋯ + 𝐶𝑛

𝑛

where:

𝐶𝑖 = price of an asset at period i

n = the number of periods used for moving

average

Trend Exponential moving average (EMA)

calculates a moving average such that

greater weights are assigned to more re-

cent values (Sezer and Ozbayoglu 2018,

535).

𝐸𝑀𝐴 = 𝐶𝑡 ∗ 𝑘 + 𝐸𝑀𝐴(𝑦) ∗ (1 − 𝑘)

where:

k = 2÷(n+1)

n = number of days in EMA

Ct = closing price of an asset today

y = yesterday

Momen-

tum

Rate of change (ROC) is a momentum

oscillator measuring the speed of changes

in price over a given period (Sezer and

Ozbayoglu 2018, 536). The indicator is

calculated by comparing the current clos-

ing price with the closing price n periods

ago.

𝑅𝑂𝐶 =
(𝐶𝑡 − 𝐶𝑡−𝑛)

(𝐶𝑡−𝑛)
∗ 100

where:

Ct = closing price of an asset today

n = number of periods

Momen-

tum

Percentage Price Oscillator (PPO) is a

technical momentum indicator similar to

MACD (Sezer and Ozbayoglu 2018,

536). It exhibits the relation of two mov-

ing averages in percentage, usually a 26-

period and 12-period EMA.

𝑃𝑃𝑂 =
(𝐸𝑀𝐴𝑛𝑠ℎ𝑜𝑟𝑡

− 𝐸𝑀𝐴𝑛𝑙𝑜𝑛𝑔
)

𝐸𝑀𝐴𝑛𝑙𝑜𝑛𝑔

∗ 100

where:

EMA = Exponential moving average as de-

fined before

n = number of periods

Momen-

tum

The Relative Strength Index (RSI) is an

oscillating indicator measuring the

strength and weaknesses of stock prices

or the magnitude of historical price

changes, indicating whether stock prices

are in the ‘overbought’ or ‘oversold’ re-

gion (Sezer, Ozbayoglu, and Dogdu

2017a,2; Corporate Finance Institute

2020, 4)

𝑅𝑆𝐼 = 100 −
100

1 + (
𝑔𝑛
𝑙𝑛

)

where:

n = number of periods

gn = average percentage gain during a period

of length n

ln = average percentage loss during a period

of length n

74

Type Technical Indicator
Formula (Sezer and Ozbayoglu 2018, 535;

Sim, Kim, and Ahn 2019, 7)

Momen-

tum

Know Sure Thing Oscillator (KST) is a

momentum oscillator to make rate-of-

change readings easier for traders to in-

terpret (Hayes 2021).

KST = (RCMA #1×1) + (RCMA #2×2) +

(RCMA #3×3) + (RCMA #4×4)

where:

RCMA #1 = 10-period SMA of 10-period

ROC

RCMA #2 = 10-period SMA of 15-period

ROC

RCMA #3 = 10-period SMA of 20-period

ROC

RCMA #4 = 15-period SMA of 30-period

ROC

Momen-

tum

Williams % Range is a momentum-

based indicator determining overbought

and oversold conditions for stock prices

(Sezer and Ozbayoglu 2018, 535).

𝑅 =
max(𝐻) − 𝐶

max(𝐻) − min (𝐿)
∗ −100

where:

C = Closing price today.

max(H) = Highest price in the lookback pe-

riod n.

min(L) = Lowest price in the lookback

period n.

n = number of periods

Momen-

tum

Moving Average Convergence Diver-

gence (MACD) is a momentum indicator

showing the trend of stock prices by rep-

resenting the relationship between two

moving averages of prices. Usually a 26-

period and 12-period EMA is applied

(Sezer and Ozbayoglu 2018, 535).

𝑀𝐴𝐶𝐷 = 𝐸𝑀𝐴𝑛𝑙𝑜𝑛𝑔
− 𝐸𝑀𝐴𝑛𝑠ℎ𝑜𝑟𝑡

where:

EMA = Exponnetial moving average

n = number of periods

Momen-

tum

Commodity Channel Index (CCI) com-

pare the current price with the average

price over a given period of time (Sezer

and Ozbayoglu 2018, 536).

𝐶𝐶𝐼 =
𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒 − 𝑀𝐴

0.015 ∗ 𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

where:

Typical Price = ∑ (
(𝐻+𝐿+𝐶)

3
)𝑛

𝑖=1

n= number of periods

H = High price today

L = Low price today

C = Closing price today

MA =
(∑ 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒)𝑛

𝑖=1

𝑛

Mean Deviation =
(∑ | 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒−𝑀𝐴 |)𝑛

𝑖=1

𝑛

 75

Appendix B

The table below shows the selected model parameters chosen through the randomized search for each ETF and image encoding type.

Sector ETF Image

type

Batch

Norm.

Drop-

out

Activation Kernel Padding Pooling Optimizer Learning

rate

Epochs Batch

size

Class

weight

Information

Technology

VGT GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 150 16 None

GASF True None sigmoid 3,3 valid max SGD 0.001 10 16 None

MTF True 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None

XSD GADF True 0.5 softmax 3,3 valid average Adam 0.001 50 32 None

GASF False None sigmoid 3,3 same average RMSprop 0.0001 75 64 None

MTF True 0.25 sigmoid 5,5 valid max SGD 0.001 50 16 None

Healthcare IYH GADF False None softmax 3,3 same average RMSprop 0.001 75 64 balanced

GASF False None relu 3,3 valid max Adam 0.0001 100 16 balanced

MTF True None sigmoid 5,5 same average SGD 0.01 10 32 balanced

Energy S&P 500

Energy

GADF False None sigmoid 5,5 same average RMSprop 0.0001 100 64 None

GASF True None sigmoid 5,5 same max SGD 0.001 50 16 None

MTF True None softmax 5,5 valid max Adam 0.001 10 32 balanced

Financial

Services

IYG GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 100 16 None

GASF True None sigmoid 3,3 valid max RMSprop 0.0001 50 16 None

MTF True None sigmoid 5,5 valid average SGD 0.001 100 16 None

Industrials VIS GADF True None softmax 3,3 same max RMSprop 0.001 25 16 None

GASF False 0.25 softmax 3,3 valid max Adam 0.0001 75 16 None

MTF False 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None

Oil & Gas XLE PXL False 0.25 relu 3,3 same max Adam 0.001 200 64 balanced

76

Appendix C

The table below summarizes the computational and financial performance on the test set for each ETF and image encoding type.

 Benchmark Labelling (on test set)

Sector ETF Image type Accuracy Macro F1
Weighted

F1

Financial Per-

formance

Buy & Hold

Return

SMA Re-

turn
MR Return % Buy % Hold % Sell

Information

Technology

VGT

GADF 0.51 0.34 0.42 55.48%

50.0% 27.57% -8.17% 26.29% 50.19% 23.53% GASF 0.49 0.31 0.40 36.03%

MTF 0.49 0.34 0.42 16.11%

XSD

GADF 0.50 0.28 0.38 53.43%

51.0% 6.66% 6.1% 26.10% 49.45% 24.45% GASF 0.44 0.34 0.40 40.23%

MTF 0.48 0.28 0.37 19.72%

Healthcare IYH

GADF 0.50 0.28 0.37 07.45%

25.00% 20.51% 11.08% 25.31% 47.77% 26.92% GASF 0.47 0.26 0.35 28.59%

MTF 0.37 0.29 0.34 24,64%

Energy

S&P

500

Energy

GADF 0.51 0.46 0.49 10.66%

-8,00% -3,90% 0.06% 29,00% 44,00% 27,00% GASF 0.41 0.34 0.37 2.84%

MTF 0.37 0.31 0.34 3.35%

Financial Ser-

vices
IYG

GADF 0.49 0.36 0.43 18.78%

16.0% 16.88% 21.76% 26.52% 48.99% 24.49% GASF 0.48 0.26 0.35 -12.75%

MTF 0.47 0.31 0.39 -6.25%

Industrials VIS

GADF 0.41 0.38 0.40 2.98%

7,00% 3.76% 19.61% 27.54% 47.16% 25.30% GASF 0.42 0.32 0.37 4.64%

MTF 0.47 0.31 0.37 5.53%

Oil & Gas XLE PXL 0.72 0.46 0.76 5.2% 10.0% 4.8% 0,00% 5,38% 88,88% 6,74%

