
A Work Project, presented as part of the requirements for the award of a Master's degree from 

the Nova School of Business and Economics. 

 

 

 

Forecasting ETFs‘ price movements using Convolutional Neural Networks - Methodology and 

Comparison of Industries - Focus on Industrials ETF 

 

44398 – Moritz Peter Gerhard Engelsmann 

 

Field Lab Team: 

43949 – Jonathan Boße 

44220 – Elisa Kathrin Ritter 

44832 – Marc Lorenzo Serafin 

44935 – Janina Evers 

45142 – Anna-Sophia Schepp 

 

 

 

Work project carried out under the supervision of: 

Patrícia Xufre Gonçalves da Silva Casqueiro 

 

 

 

17-12-2021



Abstract: 

The aim of this paper is to achieve two goals. Firstly, build and apply a convolutional neural 

network to make predictions on historical data of the Vanguard Industrials ETF (VIS) in the 

form of Buy, Hold and Sell signals. Secondly, making comparisons among different indus-

tries in order to derive potential performance deviations. By using three image encoding tech-

niques and a randomly generated model for comparison purposes, some promising results 

have been achieved. Nevertheless, several classic strategies and the market performance 

could not be beaten, mainly because model predictions for Buy and Sell signals showed 

weaknesses. 
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1 Introduction 

For technical traders, i.e. practitioners of technical analysis, image analysis plays a vital role in 

their day-to-day decision-making, given that many decision are based on patterns and trends 

that can be observed in the stock charts (Drakopoulou 2015, 4). However, when looking at how 

algorithmic trading, i.e. trading supported by computational resources, is done in practice, one 

can see very little use of image recognition; instead, other algorithmic trading techniques are 

primarily in use. Due to various factors, such as the emergence of significantly better hardware 

and new computational approaches, the last 10 to 15 years have seen critical advances in Deep 

Learning, especially recently in the field of image recognition and analysis using convolutional 

neural networks (CNNs). CNNs have proven to be increasingly good at recognising and distin-

guishing objects. 

Thus, a critical question that needs to be asked is how these advances can be leveraged as ap-

plications to trading, simulating the trader's decision process based on image analysis with the 

help of CNNs. There has already been research on the application of CNNs to forecasting stock 

price movements, however, within a limited scope. The objective of this paper is to apply CNNs 

to different industries to determine whether there are differences in the performance and usa-

bility of CNNs used for stock price predictions across various industries 

For this purpose, image recognition with CNNs will be applied to the following six industries 

and comparisons be made: 

o Information Technology 

o Healthcare 

o Industrials 

o Energy 

o Oil & gas 

o Financial Services 
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To achieve a high degree of representativeness for each sector and reduce idiosyncratic factors 

inherent to individual companies, industry ETFs or indices consisting of a large variety of com-

panies will be used as assets to forecast on, instead of using individual company shares. More-

over, only ETFs or indices covering the U.S. market will be used to increase comparability 

across the industries, avoiding differences in geographic factors as much as possible. 

The paper is structured in the following way: 

Firstly, an introduction to trading and stock analysis approaches is given to provide context on 

how CNNs fit into the scope of stock analysis and time-series forecasting. 

Secondly, a high-level introduction to CNNs will be given, and the general methodology used 

in this paper will be explained. 

The third part focuses on applying an established methodology to the specific industries, re-

spective adjustments to the methods to account for particular characteristics of the industries 

and the results obtained for each sector. 

In the fourth, the best-performing hyperparameters as well as model performances across the 

different industries will be compared and discussed and conclusions on the added value of the 

application of CNNs to price movement forecasts will be drawn. 

The fifth focuses on the comparison of the established performance measures across the differ-

ent industries. 

In the sixth and last part, cross-sectoral limitations of the methodology are faced and an outlook 

on potential further research topics is provided. 
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2 Trading and Time-Series Forecasting 

The following section will provide a brief introduction to trading and its two essential stock 

analysis approaches and a high-level overview of time-series forecasting methods, in order to 

place CNNs in the context of trading and price forecasting. 

2.1 Trading   

There are several types of trading that can be distinguished based on factors such as the fre-

quency of executed trades, the period of an asset and the underlying method used to determine 

which assets to buy and sell (Banton 2021). However, regardless of the trading type they are 

applying, traders have the common key objective of maximising their profits. Traditionally, the 

most common groups of traders are so-called technical and fundamental traders, based on the 

stock analysis approach they use: technical and fundamental analysis, the most important gen-

eral analysis tools in the realm of investing and trading (Petrusheva and Jordanoski 2016, 30). 

They represent two approaches to determining what shares investors should buy or sell to max-

imise their profit. Technical analysis also gives indications on the optimal time to execute the 

transaction (Petrusheva and Jordanoski 2016, 31). Although their overall objective is identical, 

they differ significantly in the assumptions they are based on, the methods they employ and the 

time horizons for which they are used (Petrusheva and Jordanoski 2016, 30). While fundamen-

tal analysis focuses on the economic forces of supply and demand that cause prices to change 

(Murphy 1999, 5) and aims at determining the fair value of corporate securities by studying 

company-specific key value-drivers, so-called fundamentals, such as a company's earnings, its 

risks factors, growth rates and competitive positioning (Lev and Thiagarajan 1993, 190), tech-

nical analysis focuses solely on the share price and trading volumes as the two key determi-

nants to forecast future price developments (Petrusheva and Jordanoski 2016, 28).   
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The main premise of fundamental analysis is that each asset has a fair value that it will always 

converge to in the long run, but it may not always reflect this fair value due to temporary mis-

pricing in the markets (Lev and Thiagarajan 1993, 191). The fair value can be determined by 

an investor through the analysis of the underlying fundamentals, such as the company's finan-

cial statements, the overall economic state of the markets the company operates in as well as 

developments of the industry the company belongs to. An investor can then generate profits by 

identifying mispriced assets, capitalising on the eventual price corrections that will take place 

in the market according to the basic premise of fundamental analysis (Abad, Thore and Laffarga 

2004, 231). 

The core belief of technical analysis, on the other hand, is that all factors affecting the stock 

price (fundamentals, political factors, environmental factors, etc.) are already reflected in the 

price of that stock, which results in the reasoning that only price and volume data need to be 

analysed to forecast future price movements (Murphy 1999, 2).  

A second and third concept essential to technical analysis are the assumptions that prices move 

in trends and that history repeats itself (Murphy 1999, 2). With these two assumptions in place, 

an investor can take investment decisions based on patterns that worked well in the past (history 

repeats itself) and can generate profits by identifying trends in early stages of their development 

to trade in accordance with the direction of these trends (Murphy 1999, 3).  

Regarding the time horizons for which the two methods are used, it can be stated that funda-

mental analysis commonly uses longer periods when analysing the underlying data and is 

mostly used for longer-term investment decisions, and as such, is often used by investors fo-

cusing on value investing (Petrusheva and Jordanoski 2016, 27). Technical analysis, on the 

other hand, focuses stronger on short-term data (price and volume data for single a day, few 

days or few weeks) and is often used for the identification of assets that can be traded to generate 
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profits in the short term, i.e., stocks whose prices will experience significant changes in the near 

future (Petrusheva and Jordanoski 2016, 28).  

Fama’s Efficient Market Theory (1970) states that none of the investment analysis approaches 

will allow an investor to generate returns that exceed the market return, given that any new 

information entering the market will be immediately included in the asset price. Following this 

statement, technical analysis, i.e. forecasting future price movements based on past price de-

velopments, will not generate excess returns above the market. This paper will analyse to which 

degree the Efficient Market Theory holds true when applying CNNs to the general technical 

analysis approach, given that they are potentially able to recognise patterns that traditional tech-

nical analysis methods miss. 

2.2 Introduction Financial Time Series Forecasting   

While technical and fundamental analysis have traditionally been the two most widely used 

approaches to stock price forecasting, emerging technologies have opened up new possibilities 

to stock price analysis, a type of data that is difficult to predict as financial markets are volatile, 

representing non-linear, fluctuating, and high noise data (Thakkar & Chaudhari 2021, 1). The 

use of machine learning and deep learning approaches has gained increasing attention due to 

their ability to detect localised data features at multiple levels.  This trend also opens new pos-

sibilities for investment strategies and changes the nature of investing. Relying on deep learning 

for investment makes trading and investment decisions more rational than investment decisions 

based on human knowledge and experience, with the latter tending to result in more subjective 

and biased decisions (Yang et al. 2019, 387). Different forecasting types which might be of 

prediction interest include either the movement direction of the stock market to predict local 
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extreme values or turning points to recognise the perfect point to either sell or buy (classifica-

tion problem) or the magnitude of change of the market movement including future prices (re-

gression problem) (Peng et al. 2021, 10). 

Before the rise of deep learning applications for financial problems, conservative statistical 

methods were used. The logistic regression as one popular classification model provides an 

easy understanding and interpretation of the results. However, these traditional statistic models 

assume linearity – thus, representing a crucial limitation (Peng et al. 2021, 14).   

Deep Artificial neural networks as linear models with pieces of nonlinearity bypass these prob-

lems by permitting the learning of more abstract knowledge representations. Nonetheless, by 

working with more complex structures and hence more features, they are more prone to over-

fitting. (Peng et al. 2021, 15).   

Extensive research has been conducted about possible other approaches for making predic-

tions in trading. Among others, popular approaches include Artificial Neural Networks 

(ANNs), Support Vector Regressions (SVRs), Logistic regressions and Decision Trees (Huang 

et al. 2019, 134).  Examples of extensive research conducted in this area can be found in several 

research papers. An overview is presented in Table 1. 

Even though all these approaches seem promising, CNN’s have a big advantage: They are able 

to work well with data having a spatial relationship (Brownlee 2018). A necessary require-

ment to fulfill is the transformation of data into images before being able to make predic-

tions though, as information is retrieved via multi-scale localized spatial features (Chen et al. 

2021, 69) (Xu et al. 2015). They have proven themselves to be highly successful for stock pre-

dictions, as stock data can be illustrated as a 2D matrix (Chen and He 2018).  
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Authors Goal Approach Main Results 

Moghaddam 

and Esfandyari (2016)  

Predict daily 

NASDAQ 

stock ex-

change returns 

ANN R² values above 0.9 

Nayak et al. (2016, 

441 et sqq.)  

Predict daily 

and monthly 

movements of 

the stock 

(whether they 

go up or 

down) 

Decision Boosted 

Tree  

Outperformed a SVM and a 

Logistic Regression Model  

Henrique et al. (2018, 

183) 

Predict stock 

prices from 

different mar-

kets  

Support Vector Re-

gression  

Performed especially well 

for market periods with lower 

market volatility and for a 

strategy with updating the 

model periodically 

Patel et al. (2015, 

2171) 

Predict Indian 

Stock market 

indices 

Two-stage fusion ap-

proach between 

ANNs, Random For-

est Models 

and SVRs combined 

to hybrid models: 

SVR–ANN, SVR–

RF and SVR–SVR. 

They were after-

wards compared to 

single models 

Results of this study have 

shown ANNs and RFs to bet-

ter perform in a hybrid model 

including SVRs rather than as 

single models. The best over-

all performance was shown 

by the SVR-ANN model 

Vijh et al. (2020, 605)  Forecast next 

day stock clos-

ing prices 

Random Forests 

and an ANN  

They indicate strong results. 

Overall, in this case, the ANN 

performed better than the RF 

Table 1 Overview Financial Time Series Research 

Source: Own illustration 

Within the last years, different approaches to financial time series forecasting with CNNs have 

been addressed. Cohen, Balch, and Veloso (2020) have created various charts based on open, 

high, low, and closing prices to forecast trading signals using a CNN. The results demonstrate 

that the transformation of the time series into images is beneficial for the recognition of trading 

signals. Sezer and Ozbayoglu (2018) on the other hand create images based on 15 technical 
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indicators over a period of 15 days (15x15 image). Using these images and a CNN-TA archi-

tecture, the research team was able to forecast entry and exit points (Buy, Hold, Sell) compar-

atively better than with other models. Arratia and Sepúlveda (2020) make use of recurrence 

plots and data of 12-month periods to predict the direction of the S&P 500 the following month. 

Their CNN model attains an accuracy of 63 percent. The most promising and cited methods 

were proposed by Wang and Oates (2015). They used Gramian Angular Fields and Markov 

Transition Fields to transform time series into images and ran a tiled CNN for classification. 

Due to the promising results, the method was adapted and further developed in other research 

papers.  

2.3 Technical Analysis with CNNs  

While there has already been research on the applications of CNNs to stock price prediction, a 

status review shows that there is still hardly any practical use of this approach. This paper will 

focus on expanding the state of current research, evaluating if there are differences across in-

dustries in terms of computational and financial performance of investment strategies based on 

CNNs. Before going into details on CNNs and the applied methodology, it is important to un-

derstand why CNNs are highly applicable to technical analysis. There are two key factors mak-

ing the combination of technical analysis with the usage of convolutional neural networks an 

attractive investment research topic: Firstly, the assumption that no knowledge about factors 

and trends affecting the markets is necessary as they are already included in the price (Murphy 

1999, 4). Technicians know that there are many reasons why markets move, but do not assume 

it necessary to know these reasons in the forecasting process (Murphy 1999, 4). Based on these 

assumptions, it is sufficient to use visual representations (such as charts) of past price move-

ments as a base to predict future price developments. Consequently, it appears reasonable to 

use CNNs to analyse the information contained in these visual representations without having 
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to include further external information that might be difficult to represent in an appropriate 

visual input for a CNN.  

Secondly, experienced technicians increasingly take intuitive decisions based on the patterns 

they see in the charts (Murphy 1999, 6). They learn to intuitively recognise the meaning of a 

variety of patterns, i.e., what price movements tend to be preceded by what type of patterns in 

the charts. Seen from a high level, CNN's have a very similar approach to learning. Through 

different layers within the neural network, a CNN learns to recognise patterns in the images it 

is trained on, giving it the tools to make inferences from these patterns to the classification of 

that image, in order to be able to classify unknown images. Thus, it seems reasonable to assume 

that a CNN can be trained to predict future price movements based on patterns in past data in 

the same way that a human technician would.  
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3 Fundamentals and Methodology 

This chapter provides the theoretical and methodological basis for the thesis. First, an under-

standing of the concepts of neural networks and convolutional neural networks is given. Then, 

several preprocessing methods are considered, and an overview of the generic model architec-

ture and its evaluation methods are presented. The approach in this chapter is to outline widely 

established perspectives regarding the concepts presented in the current research. It is continu-

ously reasoned which methodology is used for this work. Definitions that are appropriate for 

this thesis are also provided. 

3.1 Introduction to CNNs   

The following section provides an introduction to the deep learning algorithms used in this 

work. The terminology related to neural and convolutional neural networks and their essential 

structure are described. The associated components are presented to provide a deeper under-

standing of how the systems operate. 

3.1.1 Definitions 

Definition Neural Network  

Neural networks (NNs) are ‘computerised intelligent systems’ (Thakkar and Chaudhari 

2021, 2) that aim to recognise patterns and learn relationships in data by simulating the sig-

nal exchange between biological neurons in the human brain. A neural network consists of dif-

ferent layers of artificial neurons, also called units, which are interconnected and can be divided 

into input units, hidden units, and output units (Kröse and Van der Smagt 1993, 15). A set of in-

put units receives information and applies certain weights, which are translated into an output 

by the network through an activation function (Kröse and Van der Smagt 1993, 15). Output 

units signal how the network reacts to the learned and processed information. Between input 
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and output units there are one or more layers of hidden units, which perform nonlinear trans-

formations of the inputs (Kröse and Van der Smagt 1993, 15). A neural network is consid-

ered fully connected if each hidden unit is connected to each unit in the layers on both sides of 

the network. Supervised neural networks learn continuously through a feedback process 

called backpropagation (Chollet 2017, 11). In this iterative process, the actual output is com-

pared to the expected output of the network. The difference is used to adjust the weights be-

tween the units in the network, that is, the strength of the connections, so that inputs match 

the correct output (Chollet 2017, 52). Neural networks continuously learn and improve with 

examples enabling it to respond accordingly to an entirely new set of inputs. They are particu-

larly popular when modeling highly nonlinear systems or when unexpected changes in input 

data may occur. Many applications have employed neural networks to simulate unknown rela-

tionships between various parameters based on a vast set of examples. Classifications of hand-

written digits, speech recognition, and stock price prediction are examples of effective neural 

network applications (Keijsers 2010).  

Neural networks are usually divided into artificial neural network (ANN) and deep neural net-

work (DNN). A deep neural network is a type of artificial neural network, with multiple hidden 

layers between the input and output layers (Thakkar and Chaudhari 2021, 2). The increasing 

volumes of structured and unstructured data cause deep learning systems, i.e., neural networks 

with many layers, to become increasingly popular.  

Definition Convolutional Neural Network 

According to Dertat (2017), convolutional neural networks (CNN) are the most popular type of 

deep neural networks. They are mainly applied in pattern and image recognition prob-

lems since they are specifically designed to process pixel data (Sezer and Ozbayoglu 

2018). However, they are also useful for natural language processing and prediction pur-
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poses. A convolutional neural network comprises five types of layers: input, convolu-

tion, pooling, fully connected, and output layers. Each layer serves a specific pur-

pose and is explained in more detail in Section 3.1.2. 

CNNs are generally considered superior to regular NNs due to their automatic feature selection 

strategy. Using CNNs, it is now possible to build larger models to solve more complex prob-

lems, which was infeasible with conventional NNs (Albawi, Mohammed, and Al-

Zawi 2017, 1). Their deep learning structure with multiple hidden layers allows them to abstract 

a larger number of features (Dertat 2017). By analysing the data in greater detail, a higher ac-

curacy of the output can be achieved. The automatic feature extraction of CNNs, achieved by 

mapping input data to output, is especially useful for extracting complex patterns from non-

linear data (Thakkar and Chaudhari 2021, 2). This property is particularly relevant for stock 

market predictions, since stock-based data is highly complex and non-linear (Thakkar and 

Chaudhari, 2021, 2,7). A CNN uses convolution to learn the local features of the image, and 

thus manages to preserve the local connectivity or spatial relationships between pixels, making 

them particularly suitable for extracting relevant information at low computational cost (Arratia 

and Sepúlveda, 2020).   

3.1.2 Key Components of CNNs 

Convolutional layer 

The convolutional layers are the most important building block in a CNN. Mathematically, 

convolution refers to an integration function that indicates the amount of overlap of a function 

shifting over another function. In other words, the convolution describes filters that slide hori-

zontally and vertically over the input array (our picture) and calculate the dot product at each 

taken step. In this context, the filter, also called kernel, refers to a set of weights, usually a 3*3 

matrix, that extracts features (Chollet 2018, 127-128). The so-called stride describes the step 
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size, with which the filter slides over the picture, meaning that increasing the stride will result 

in a lower-dimensional output (Ghosh et al. 2020, 8). The output of the convolution is a feature 

map which stores information about the occurrence of features in a matrix along with how well 

it complements the kernel. In Figure 1 the convolution operation is demonstrated. In this exam-

ple a 3*3 filter is applied on a 6*6 input array with stride equaling one which results in a 4*4 

feature map. Applying zero-padding, i.e., padding the input array with zeros, can be used to 

further control the size of the output array (O'Shea and Nash 2015, 7).  

  

Figure 1 Illustration of the Convolution Operation. 

Source: Own illustration 

The CNN can contain one or more convolutional layers, each of them allowing through filters 

to identify local patterns, which can later be recognised all over unseen pictures.  The filters 

behave similarly to the human eye and learn patterns hierarchically. The deeper the convolu-

tion layer, i.e., the more convolutional layers applied, the more detailed and higher-level fea-

tures can be extracted from the image (Tsai, Chen, and Wang 2018, 942).  

Pooling Layer 

The pooling layer has the purpose to reduce the dimensionality of the convolved feature map. 

This reduces the number of features and the complexity of the model while persevering the 

most dominant features. For the pooling operation a kernel, usually of dimensionality 2*2, 

slides over the feature maps and applies a pooling technique. The most used pooling technique 
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is max pooling, meaning to extract the maximum value for each window.  Similar to the con-

volutional layer, the stride size can be adapted. In the pooling layer the usual stride size is two 

(Chollet 2018, 127). An example of the max pooling operation with a 2*2 window and stride 

two is shown in Figure 2. 

  

Figure 2 Exemplary Max Pooling Operation 

Source: Own illustration 

Fully connected layer 

Before the created feature can be fed to a fully connected layer, the outputs of the final convo-

lution or pooling operation are flattened. The following fully-connected layer is analogue to a 

simple feed-forward ANN, meaning that each neuron in this layer is connected with each neu-

ron in the adjacent layers (Ghosh et al. 2020, 9). This step is essential to allow the model to 

generalise local patterns. The output of the fully connected layer is a representation of the like-

lihood of an input belonging to a certain class.   

Descriptions of hyperparameters used for the CNN in this paper can be found in section 3.6. 

3.2 Labelling Approach  

To train the CNN, labelled training images are required. The approach used in this project opts 

to frame the predictions as a multi-class classification instead of a regression (i.e., predicting 

continuous return values). The three classes used to label observations in this project are Buy 

(label = 1), Sell (label = -1) and Hold (label = 0), based on the price movement during the period 

after the observation. There are two general labelling approaches in the context of stock price 
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forecasts suggested by different papers: the fixed time-horizon method and the triple-barrier 

method (Lopez de Prado 2018, 43-48) 

3.2.1 Fixed Time-Horizon Method 

The fixed time-horizon method (hereafter called FTH method) is the more commonly used 

one due to its simplicity (Lopez de Prado 2018, 43). Its basic premise is to compare the price 

of an asset at the end of an observation period to an upper and lower threshold h that had been 

previously set. The thresholds are set as relative values to the price at the beginning of the 

consideration period, e.g., 10% above and below the closing price of the previous period (Lopez 

de Prado 2018, 43).  

Y 𝑖,𝑡 = {

𝑆𝑒𝑙𝑙 if  𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡+1 ≤ (1 − ℎ) ∗ 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡                                      

    𝐻𝑜𝑙𝑑 if (1 − ℎ) ∗ 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡  <  𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡+1 < (1 + ℎ) ∗ 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡

  𝐵𝑢𝑦 if 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡+1  ≥ (1 + ℎ) ∗ 𝑝𝑖,𝑐𝑙𝑜𝑠𝑒 𝑡                                        

 

The FTH method is straightforward and easy to implement. As it requires relatively little 

amounts of data, especially compared to the triple-barrier method, it is very suitable for label-

ling observations from long-term datasets, for which historic high-frequency data, e.g., price 

on a per-hour base, are not or only very limitedly available. However, the FTH method shows 

an essential shortcoming: the fixed threshold used in this method does not consider the volatility 

of the underlying asset and only considers the value of the asset at the end of the observation 

period, but not during the period; as such, it is unrealistic in practice, since it implicitly assumes 

that investors would only implement a transaction at the end of the consideration period. In 

reality, an investor can implement a transaction at any time during trading hours. Moreover, an 

investor will set limits beforehand based on the volatility (i.e., inherent risk) of an asset. Fur-

thermore, in practice, investment strategies usually have stop-loss limits (i.e., bottom limits) 

and profit taking targets (e.g., sell when 10% return target is hit) at which they would exit a 

(1) 
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position as soon as the limit is met. As such, a more realistic labelling approach needs to con-

sider price movements during the consideration period as well as the asset's underlying volatil-

ity.  

3.2.2 Triple-Barrier Method 

The triple-barrier method (hereafter called TB method) takes into account intra-period price 

movements and the asset's volatility and solves the main shortcoming of the FTH method 

(Lopez de Prado 2018, 45). The TB method sets three barriers:  

• Two horizontal barriers, representing the profit-taking and stop-loss boundaries. The 

horizontal barriers are dynamic functions of the estimated volatility experienced by the 

analysed asset and the limit approach set for the investment. 

• One vertical barrier, representing the end of the observation period. 

To construct the barriers, upper and lower multipliers need to be set. These multipliers depend 

on return targets an investor is setting (upper multiplier) and their degree of risk aversion, i.e. 

the maximum loss they are willing to incur before exiting the position (lower multiplier) and 

can thus be different across different types of investors. For simplicity, symmetric multipliers 

of (1 , 1) will be used in this paper. 

In the TB method, using a multi-class classification approach with three labels (Buy, Hold, 

Sell), an observation is labelled based on the first of the three barriers it touches (Lopez de 

Prado 2018, 45): 

• Y = Buy: The observation is labelled as Buy if the upper horizontal barrier is touched 

first. This means that the asset's price hits the profit-taking target during the considera-

tion period t, and thus, the asset should be bought in period t-1 to realise a positive 

return. 
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• Y = Hold: The observation is labelled as Hold if neither the upper nor the lower hori-

zontal barriers are hit. This implies that the asset's price hits neither the profit-taking 

target nor is stopped out by the stop-loss limit. Thus, it means no transaction is made. 

Depending on the context of the investment, this either implies not investing (neither 

long nor short) or holding the asset (in case the asset had already been previously 

bought). 

• Y = Sell: The observation is labelled as Sell if the lower horizontal barrier is touched 

first. In this case, the asset's price hits the stop-loss limit first and is stopped out. Thus, 

the asset should be sold in t-1. Depending on the context this implies to either sell the 

asset to avoid losses or to short-sell to generate a positive return through a shorting 

strategy. 

The TB method is more realistic due to its consideration of intra-period price movements and 

volatility, but requires significantly more data (Lopez de Prado 2018, 46). This can pose a chal-

lenge when analysing long-term data for which higher-frequency data is not sufficiently avail-

able. The project described in this paper faces the challenge that it aims at predicting the re-

spective next day's price movements. As such, using the TB method would require intra-day 

price data to determine which barrier is hit first. However, this intra-day price data could not 

be obtained for the entire period that is being analysed in this project. To achieve consistency 

in the labelling approach across the entire data set, a simplified version of the TB method will 

be applied. 

3.2.3 Simplified Triple-Barrier Method 

The upper and lower horizontal limits will be constructed in the same way as in the normal TB 

method, with factors h calculated based on asset’s volatility and the chosen multiplier. How-

ever, instead of comparing intra-day price data to the two horizontal limits to create labels on a 
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per-day base, high and low prices will be compared to the limits. The labelling approach is as 

follows: 

Y 𝑖,𝑡 = {

Sell  if  pi, low t+1 ≤(1-h)*pi, close t                                           

                Hold if pi, low t+1> (1-h)*pi, close t  and pi, high t+1 <(1+h)*pi, close t

   Buy if pi,  high t+1 ≥(1+h)*pi, close t                                            

 

• Y = Buy: An observation on day t will be labelled as Buy if the high price on the fol-

lowing day t+1 is higher than or equal to the upper limit at t+1. 

• Y = Sell: An observation on day t will be labelled as 2 if the low price on the following 

day t+1 is lower than or equal to the lower limit at t+1. 

• Y = Hold: Should none of the limits be exceeded on day t+1, the observation on day t 

will be labelled as 0. 

This labelling approach assumes that the investor is willing to hold the asset as long as neces-

sary to hit one of the barriers, such that time will have no impact on the position, as long as 

none of the barriers are hit. 

A limitation of this labelling approach is that it is unable to consider a time dimension and thus, 

the issue of double labelling might arise in case that both conditions are met, i.e. the high price 

lies above the upper limit and the low price lies below the lower limit. Therefore, when imple-

menting the methodology across the individual industries, the percentage of double labels will 

be controlled and alternative measures taken should this percentage be above a threshold of 2%. 

3.3 Feature Engineering 

Feature Engineering is essential to improve Machine Learning or AI models. In the following 

all pre-processing steps are explained and the reasoning for the applied methodologies pro-

vided. 

(2) 
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3.3.1 Feature Creation 

Technical Analysis is confined to the analysis of trends and movements in the market (Yang 

et al. 2019). These indicators are used to predict future stock movements.   

In principle, a distinction is made between two categories of technical indicators: leading and 

lagging indicators. Leading indicators lead the price movement as they attempt to predict the 

trend in a time series (Fernández-Blanco et al. 2008, 1851). Lagging indicators are trend-fol-

lowing indicators that provide delayed feedback as they lag the market (Bogullu, Dagli, and 

Enke 2002, 722).  

Indicators from both categories belong to one of four following types of technical indicators 

(Salkar et al. 2021, 2).  

1. Trend indicators show the direction in which the market is moving along with the 

strength of the trend by comparing historical prices to a baseline (Salkar et al. 2021, 2). 

They typically move between low and high values. The trend can be either downward 

(bearish), upward (bullish), or sideways (no clear direction) (Peachavanish 2016, 2). 

2. Momentum indicators assess the speed of price fluctuations in a time series by com-

paring current and previous closing prices (Salkar et al. 2021, 2).  

3. Volatility indicators measure the speed of price movement and provide information on 

how much the price changes in a given period (Salkar et al. 2021, 2).  

4. Volume indicators measures the number of shares traded in a stock and thus provide 

an indication of the strength of the market (Salkar et al. 2021, 2). 

The use of technical analysis indicators as input features for neural network systems is estab-

lished in research (Arratia and Sepúlveda 2020; Sezer, Ozbayoglu, and Dogdu 2017; Sezer and 

Ozbayoglu 2018; Sim, Kim, and Ahn 2019; Thakkar and Chaudhari 2021). The selection of 

technical indicators was primarily based on their frequency in related studies as analyzed in 

literature (Chen et al. 2021, 69; Peng et al. 2021, 5–6; Sezer and Ozbayoglu 2018, 529). In this 
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paper, two trend and seven momentum indicators are combined with different parameter set-

tings. Most technical indicators possess a user defined window width as input, affecting the 

indicators output (Shynkevich et al. 2017, 72). The window size typically refers to the number 

of raw observations or periods processed by the indicator (Shynkevich et al. 2017, 72). The 

higher the window width, the more data will be processed. For the two trend indicators, i.e., the 

moving averages, three different window sizes were chosen respectively. For the seven mo-

mentum indicators, one set of parameters was chosen for each. A total of 13 technical indicators 

are calculated based on the closing price of the used ETF. Table 1 provides an overview of the 

selected technical indicators. Definitions and calculations for each indicator can be found in 

Appendix A.  

Technical Indicator Type Number 

of 

features 

Parameters:  

n = number of periods processed by 

the indicator.  

 

T
re

n
d

 

M
o
m

en
tu

m
   

Simple moving average (SMA) x  3 n = {5, 10, 20} 

Exponential moving average (EMA)  x  3 n = {5, 10, 20} 

Rate of change (ROC)   x 1 n = 12 

Percentage Price Oscillator (PPO)  x 1 nlong = 26 

nshort = 12 

Relative Strength Index (RSI)   x 1 n = 14 

Know Sure Thing Oscillator (KST)  x 1 As defined in Appendix A. 

Williams % Range  x 1 n  = 14 

Moving Average Convergence Diver-

gence (MACD)  

 x 1 nlong = 26  

nshort = 12 

Commodity Channel Index (CCI)  x 1 n = 20 

Table 2 Technical Indicators and their Parameter Settings 

Source: Own illustration 
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Along with the technical indicators, a set of additional variables is included in the set of predic-

tors for the convolutional neural network. Those include the high, low, opening and closing 

prices along with the volume traded of the respective ETF, the closing prices of S&P 500, gold, 

and oil futures as well as the exchange rate of Euro and U.S. Dollar. 

3.3.2 Stationarity 

When using financial time series, it is common to ensure stationarity as non-stationary time 

series usually hamper modelling its behaviour (Hyndman und Athanasopoulos 2018). When 

data are non-stationary, their characteristics, i.e. mean and variance, can change over time, im-

pede the prediction of future values. 

To evaluate which variables lack stationarity, the Augmented Dickey-Fuller test (ADF) will be 

used, one of the most common methods to statistically test for non-stationarity. ADF tests the 

existence or absence of a unit root. A unit root test can be mathematically represented as 

 𝑦𝑡 =  𝐷𝑡 + 𝑧𝑡 +  𝜀𝑡 

 

with 𝐷𝑡 representing the deterministic, 𝑧𝑡 the stochastic component and 𝜀𝑡 the stationary error 

(Verma 2021). The ADF test removes autocorrelation from the time series before testing for 

stationarity in contrast to the Dickey-Fuller test. The ADF can be represented as 

∆ 𝑦𝑡 =  𝛼 +  𝛽𝑡 +  𝛾 𝑦𝑡−1 +  𝛿1 ∆𝑦𝑡−1 + ⋯ +  𝛿𝑝−1 ∆𝑦𝑡−𝑝 +  𝜀𝑡 

where 𝛼 denotes a constant, 𝛽 the coefficient over time and 𝑝 the order of the lag. The null 

hypothesis, 𝛾 = 0, is tested against the alternative hypothesis of 𝛾 > 0. The test statistic value  

𝐷𝐹𝜏 =  
𝛾

𝑆𝐸(𝛾)
 

is then compared to the critical value of the ADF test. A 95 percent level is chosen, correspond-

ing to a 𝐷𝐹𝜏 statistic of -2.86 (Cheung and Lai 1995, 277-279). 

(3) 

(4) 

(5) 
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In case of non-stationarity fractional differenciation will be applied. Unlike integer differenc-

ing, a method that simply subtracts a previous value from the current day (Hyndman und Ath-

anasopoulos 2018), fractional differencing finds the optimal balance between zero and maxi-

mum differentiation to guarantee stationarity while preserving the maximum amount of 

memory in the data (Lopez de Prado 2018, 84). More precisely, it ensures that the mean and 

variance of the time series do not change with time while a high correlation with the original 

series is maintained. A feature on a current day can be expressed as the sum of all previous days 

with an assigned weight for each value. The weight is calculated by the fractional derivative. 

For this purpose, a transformation method is applied that automatically finds the minimum or-

der of fractional differentiation and turns the time-series stationary. Walasek and Gajda (2021) 

applied fractional differencing to stock prices before training an ANN model. They confirmed 

improved performance of the model on stationary data as opposed to non-stationary data. 

3.3.3 Feature Selection  

Feature Selection plays a crucial role in the creation of successful prediction models, identify-

ing a final selection of relevant variables (Speiser et al. 2019, 94). If the right features are cho-

sen, it improves the overall prediction performance while reducing computational costs and 

diminishing the complexity of the model. 

Especially the progressive application of Machine Learning and Artificial Intelligence in the 

field of trading is a driving force for the collection of enormous amounts of data. Special atten-

tion should be paid to strongly correlated features (Peng et al. 2021, 5). The creation of technical 

analysis indicators may lead to highly correlated variables, representing redundant information 

(Haq et al. 2021, 2). After creating a variety of financial indicators with different parameters in 

our approach, a special emphasis should be placed on an efficient feature selection approach to 

avoid this problem of multicollinearity and overfitting (Peng et al. 2021, 10).  
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Therefore, Principal Component Analysis (PCA) is applied to reduce the features' multicollin-

earity and thus the dimensionality of the dataset while preserving most of its information. This 

is achieved by identifying the principal components which are representing new variables as 

linear combinations of the original features (Rahoma, Imtiaz, and Ahmed 2021, 2). 

Mathematically spoken, the eigenvectors and eigenvalues are computed based on the covari-

ance matrix of the feature set, such that 𝐴𝑣 =  𝜆𝑣. In this formula A denotes the covariance 

matrix, v the eigenvector, and 𝜆 the eigenvalue. The computed eigenvectors describe the direc-

tion of the explained variance whereas the eigenvalues express how much variance is captured 

in the respective component. The components are created such that the first principal compo-

nent explains the highest percentage of the variance and each additional component captures 

less information. (Tharwat 2016) 

In this work the amount of variance that needs to be explained by the model will be set to 95 

percent. This threshold represents a trade-off between capturing as much information of the 

dataset as possible, and reducing the number of components in order to minimise the computing 

costs to train the convolutional neural network. Since the algorithm penalises lower variance 

features, it is necessary to standardise the features before applying PCA (Abdi and Williams 

2010, 2).  

3.5 Image Construction 

One of the most common image construction methods used for times series forecasting with 

CNN's is the transformation of data into Gramian Angular Fields, as proposed by Wang and 

Oates (2015). The research team proposed another image encoding methodology, called Mar-

kov Transition Fields, which will be used in this paper as well.  
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3.5.1 Gramian Angular Fields   

To leverage the advantages of CNNs in the context of trading, the timeseries data must be en-

coded to images. One approach to this are Gramian Angular Fields (GAFs). GAFs are capturing 

spectral correlation structures, thus being able to capture temporal dependencies, representing 

time series in a two-dimensional way. To create a GAF, the first step required is the rescaling 

of the data points of a time series 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛} to a normalisation range of [-1, 1] (Yang 

et al. 2019, 189).  

𝑥̃𝑖 =
(𝑥𝑖 − max(𝑋)) + (𝑥𝑖 − min (𝑋))

max(𝑋) −  min (𝑋)
 

GAFs are not using the cartesian coordinate system. Instead, the normalised time series is con-

verted to polar coordinates by computing the angular cosine of the scaled time series. This 

representation shows the value at a certain timestamp, holding N timestamps t with a value of 

x. The conducted pairing is of bijective nature, mapping a value represented by the angle 

uniquely to a point in time, shown by the radius r (Barra et al. 2020, 685).   

[
 𝜙𝑖 = arccos(𝑥̃𝑖) , 𝑥̃𝑖𝜖 𝑋̃ 

𝑟𝑖 =
𝑖

𝑁
 , 𝑤𝑖𝑡ℎ 𝑡𝑖 𝜖 ℕ

] 

 

After this transformation, the trigonometric sum between the values of the time series in the set 

is conducted to obtain the correlation (Romero et al. 2020, 16692). Two approaches can be used 

for turning the vectors into a symmetric Gramian matrix: either the Gramian Angular Summa-

tion Field (GASF) or Gramian Angular Differentiation Field (GADF) (Yang et al. 2019, 

190).  The main diagonal of this final matrix holds the original spectral values. As time moves, 

the image position moves from the top left to the bottom right corner, representing the time 

dependencies (Liu et al. 2022, 4).  

 

(6) 

(7) 
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𝐺𝐴𝑆𝐹 =  [cos(𝜙𝑖 +  𝜙𝑗)] =  𝑋̃′ ⋅  𝑋̃ −  √𝐼 −  𝑋̃2
′

⋅  √𝐼 −  𝑋̃2 

𝐺𝐴𝐷𝐹 =  [sin (𝜙𝑖 −  𝜙𝑗)] =  √𝐼 −  𝑋̃2
′

⋅ 𝑋̃ − 𝑋̃′ ⋅  √𝐼 −  𝑋̃2 

 

 (Formula: Yang et al. 2019, 190) 

The aggregation of separate GAFs into one image has already been researched. Yang et al. 

cover this novel approach in their study by stacking images together to feed into the CNN 

as one (Yang et al. 2019, 190). This aggregation approach raises the question whether the order 

of images influences the performance of the model. Yang et al. reject this hypothesis by con-

ducting experiments, discovering that the sequence of arrangement has no impact on the results 

(Yang et al. 2019, 191).   

3.5.2 Markov Transition Fields 

As a third method to transform the dataset into images, Markov Transition Fields (MTFs) will 

be used – also presented by Wang and Oats in 2015. With this method, information can be 

preserved in the time sphere of the different features used. As for the Gramian Angular Fields, 

data from the previous 10 days are used as a reference point for classification. 

Given a variable as a time series X, first, the Q quantile bins of the variable will be identified 

and each value xi is assigned to one of the bins  (𝑞𝑖 ∈  [1, 𝑄]). In a next step, a weighted adja-

cency matrix W of size a Q * Q is created by counting the conversions of the bins among the 

time axis conforming to a first order Markov chain. Each value in the Matrix W describes the 

frequency of a point in a certain quantile which occurs one period after a point in another quan-

tile. The matrix W is normalised such that the sum of each value in the matrix equals one. The 

values do now present the probability by which one value of a quantile is followed by another 

value of a specific quantile. (Wang and Oats 2015, 42)   

(8) 
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When construting the images for our classification task at hand, a n*n (n refers to the time 

periods used for each feature image) matrix is created as following based on the weights defined 

previously (Wang and Oats 2015, 42). 

𝑀𝑖,𝑗 =  [

𝑤𝑖𝑗|𝑥1𝜖𝑞𝑖,𝑥1𝜖𝑞𝑗
… 𝑤𝑖𝑗|𝑥1𝜖𝑞𝑖,𝑥𝑛𝜖𝑞𝑗

𝑤𝑖𝑗|𝑥2𝜖𝑞𝑖,𝑥1𝜖𝑞𝑗
… 𝑤𝑖𝑗|𝑥2𝜖𝑞𝑖,𝑥𝑛𝜖𝑞𝑗

…                 …             …
𝑤𝑖𝑗|𝑥𝑛𝜖𝑞𝑖,𝑥1𝜖𝑞𝑗

… 𝑤𝑖𝑗|𝑥𝑛𝜖𝑞𝑖,𝑥𝑛𝜖𝑞𝑗

] 

For each point in time and each feature a Markov Transition Matrix is calculated. All features 

matrices of one time stamp are then stacked, similar to the approach used for the GAFs, before 

fed into the CNN. 

3.6 Generic Model Architecture 

Data set splitting and cross validation for time-series data 

An important focus when developing any machine learning model is the generalisation of the 

model, i.e. how well it deals with data it has not been trained on (Bergmeir and Benítez 2012, 

197). To evaluate the performance of a model on unknown data, parts of the available data set 

will be held back as validation and test sets, such that the model will not be trained on all 

available data. This produces two problems: firstly, the model would most likely show a better 

performance if trained on the full data set, and secondly, by just evaluating the performance on 

sample, this performance measurement might not be representative of the true model perfor-

mance. To solve these problems, in most cases k-fold cross-validation will be used for training 

and performance evaluation. All available data is randomly split into k sets. The model training 

and performance evaluation is carried k times, where every set is used once as the test set, and 

the other sets being used for model training. This way, the method produces k independent 

performance measurements, while all available data is used for both training and testing. By 

(9) 
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averaging the performance measurement across the k iterations, a relatively robust measure-

ment can be obtained, which is much more representative of the true model performance than 

a single measurement (Bergmeir and Benítez 2012, 197).  

However, the standard k-fold cross-validation cannot be applied to time-series data. The data 

set cannot be split at random into training and validation sets as there is no sense to using data 

from the future to forecast data from the past (Herman-Safar 2021). In other words, the temporal 

dependency betweens data points needs to be preserved during training and testing. A solution 

to this is Rolling Forward Cross-Validation, also referred to as Time Series Split Cross-Valida-

tion.  

The data set is split into k consecutive subsets, while preserving the continuity of the data, i.e. 

the data set is not split at random, but based on its temporal order. Then, rolling forward cross-

validation method will iterate consecutively over the k subsets. In the first iteration, the first 

subset will be used for training and the second one for validation. In the second iteration, the 

first subsets will be used for training and the third one for validation. These iterations continue 

until the first k-1 subsets are used for training and the k-th subset for validation (Herman-Safar 

2021). 

 

Figure 3 Rolling Forward Cross-Validation 

Source: Own illustration 
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The described cross validation approach is applied to find the best model architecture with the 

respective optimal hyper-parameters as specified below. After estimating the best model, the 

chosen model is evaluated with the test set. To retain the temporal dependencies, the test set 

constitutes consecutive data points like the validation sets used for the cross validation. This 

test set includes 20% of all data, accounting for approximately the last two years of data. 

Model Architecture 

As a Convolutional Neural Network this paper proposes a rather simple CNN architecture as 

displayed in Figure 4. This basic architecture includes the input layer, two convolutional layers 

with 64 and 128 filters, one pooling layer, one fully connected layer as well as one output layer.  

 

Figure 4 Model Architecture 

Source: Own illustration 

 

In order to make the network more flexible to adapt to different ETFs and industries, a hyperpa-

rameter search is added. Since a gridsearch would be computationally too expensive, a random-

ized hyperparameter search is utilized. The search includes an optional dropout layer and batch 

normalization layer. Regarding the convolutional operation different hyperparameter settings 

for the kernel size, the activation function (output layer exluded due to multiclass classification 

problem softmax is used in each model) and padding are included. For the pooling operation a 

parameter to control the type of pooling, either max or average pooling, is used. Lastly, the 

optimizer, learning rate, batchsize, the number of epochs and whether class weights should be 
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introduced are included in the randomized search (Table 3). The following section explains the 

parameters in more detail. 

Category Hyperparameter Parameter distribution 

Additional 

Layer 

Batch Normalization include; exclude 

Drop Out (incl. Rate) exclude; include with rate 0.25; include with rate 0.5 

Convolution Kernel Size 3*3;  5*5 

Activation Function relu; sigmoid; softmax 

Padding same; valid  

Pooling Pooling Type max pooling, average pooling 

Compilation Optimizer Adam; RMSprop; SGD 

Learning Rate 0.0001; 0.001; 0.01 

Training Epochs 5; 10; 25; 50; 75; 100, 150 

Batch Size 16; 32; 64 

Class Weights None; Balanced 

 

 

Activation functions  

Activation functions in neural networks essentially take a single value and perform a mathe-

matical operation on it. When the function converges to a specific value, the neuron 'triggers' 

the next one, hence the name activation function. This concept derives from neurons in the 

human brain and is also the reason for the framework's name: neural network.  

ReLu is the most commonly used activation function, introduced by LeCun et al. (1998). Its 

purpose is to increase the non-linearity of the neural network. Despite being simple, ReLu is a 

non-linear function. Because there is no parameter inside ReLu (the formula can be seen in 

Table 4), it also does not require parameter-backpropagation. By setting all negative values to 

0, a neuron only actives for images that actually possess the pattern (Wu 2017, 10). 

Table 3 Parameter Distribution for Randomized Search 
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As a result, this particular activation function is well suited for recognising objects and complex 

patterns. The introduction of ReLu in CNNs significantly reduced the difficulty of learning and 

improved the accuracy of the networks (Wu 2017, 9).  

Before ReLu, Sigmoid was one of the most used non-linear transformations. Sigmoid trans-

forms to values between 0 and 1 and is best suited for input data that itself is between 0 and 1 

(Ittiyavirah 2013, 312). However in many cases, it performs poorer than ReLu (Wu 2017, 11).  

A commonly used activation function for the output layer is Softmax, which is a combination 

of many Sigmoid functions. Even in networks with ReLu in the inner layer, this is often the 

preferred output layer for probabilities or multi-class-classifications. In the latter, probability 

for each class will be the output (Ittiyavirah 2013, 314). 

Tanh looks quite similar to sigmoid; however, it is centred around the origin of the coordinate 

system. That is why it can depict values between -1 and 1 instead of 0 and 1. Its gradient is also 

steeper in comparison since it has to reach twice as many y values for the same x value. Gen-

erally, Tanh is preferred to sigmoid because here, the gradient is not as restricted in one direc-

tion and also because it is origin-centred (Sharma 2020, 313). Even though ReLu is the standard 

in most CNNs nowadays, it can only outperform Tanh in deeper neural networks. That means 

when there are many layers, and problems such as the vanishing gradients occur (Godin 2018, 

8). 

Activation Function Formula 

ReLu f(x) = max (0, 𝑥) 

Sigmoid 
𝑓(𝑥) =

1

1 + exp (−𝑥)
 

Tanh 
𝑓(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

Table 4 Activation Functions and Formulas 

Source: Sharma 2020, 313 
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As depicted in Figure 5, sigmoid and tanh both converge towards specific values, either -1, 0 

or 1. This convergence leads to 'vanishing gradients' if the absolute values are too large. ReLu, 

on the other hand, erases all negative values and keeps the positive ones as they are, leading to 

'exploding gradients' (Lee and Song 2019, 593). 

 
Figure 5 Activation Functions 

Source: Own illustration based on Lee and Song 2019, 594 

Padding 

(Zero) padding allows to control the spatial size of the output of a CNN by adding an appropri-

ate number of pixels (with zero values) to the outer edges of the input feature map before it is 

processed by the kernel (Chollet 2017, 126). Padding is used when it is desirable to obtain an 

output feature map with the same spatial dimensions as the input. Therefore, the padding pa-

rameter is set to same (Chollet 2017, 126; Lee and Song 2019, 608). Otherwise, valid means 

that no padding is performed and that the size of the feature maps gradually decreases along the 

convolutional layers (Lee and Song 2019, 599). In case the input feature map has a size of (n,n) 

and the filters have a size of (m,m), then a single output feature map is of size (n-m+1, n-m+1) 

(Lee and Song 2019, 599). 

Pooling  

Pooling layers are used to reduce model complexity, limit computation in the network and con-

trol issues of overfitting by reducing the spatial size of a feature map. The pooling layer parti-

tions the input into a set of non-overlapping two-dimensional spaces. The pixel values of each 

subregion are then mapped according to the type of downsampling operator chosen: In max 
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pooling, the values are summarized into one maximum value, whereas in case of average pool-

ing the mean of the activations in the previous layer is computed for each subregion. (Lee and 

Song 2019, 598). 

Batch Normalization 

Normalization methods are used to increase the similarity of samples and hence, to improve 

generalization, i.e., the models’ ability to perform well to unseen data. However, it is insuffi-

cient to normalize the data in the preprocessing stage, before feeding it into the model, only. 

Normalization is not guaranteed for each output after each transformation operated by the CNN 

since the mean and variance can change over time. (Chollet 2017, 260). The batch normaliza-

tion layer, typically used after a convolutional layer (Chollet 2017, 261), ensures to continu-

ously normalize the data during the training process by standardizing the values in each layer 

to mean 0 and variance 1 before the activation layers (Ioffe and Szegedy 2015). By making data 

standardization an integral part of the model architecture, faster and more stable training is 

possible, allowing the model to improve prediction accuracy (Lee and Song 2019, 609; Santur-

kar et al. 2018). Due to the implementation of batch normalization layers, higher learning rates 

can be used (Ioffe and Szegedy 2015; V. Thakkar, Tewary, and Chakraborty 2018, 2) and 

deeper networks can be built (Chollet 2017, 260).  

Dropout  

Regularisation is a method that is particularly relevant for preventing overfitting and improving 

generalization of deep learning models. Dropout is one of the most frequently applied regular-

isation techniques for CNNs (Srivastava et al. 2014). It randomly drops out input features dur-

ing the training process, meaning it sets some of the weights connected to a given percentage 

of nodes in a CNN to zero (Chollet 2017, 109; 216). The dropout rate refers to the fraction of 

features that are replaced with zero during training and lies usually between 0.2 and 0.5. For 

each update in each training epoch, the removed units are not included in the calculations of the 
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current step (Krizhevsky, Sutskever, and Hinton 2017). Dropout is not applied to the test or 

validation set. In this case, the output of a layer is scaled down by a factor equal to the dropout 

rate to account for the fact that there are more units than during training. (Chollet 2017, 109). 

Epochs  

An epoch refers to the one-time training of the CNN with the entire dataset (Sharma 2017). 

However, since the size of an epoch is usually too large to be fed to the network in a single 

batch, it is divided into several smaller batches (Chollet 2017, 34). To improve the training 

process of the model, the number of epochs is increased, i.e., the data is passed to the same 

CNN multiple times (Sharma 2017). This way, the average loss on the training set is decreased 

until the optimal curve is met, more precisely, until the network begins to overfit the training 

data (Wu 2017, 7). 

Optimisers 

Optimisers are used to tweak the model’s parameters during training. In Table 5, the used opti-

misers and their respective formulas can be inspected. 

Adam, short for Adaptive Momentum Estimation, is one of the most widely used optimisation 

algorithms in CNNs. Adam is an iterative algorithm that adapts the model variables. Research 

has shown that Adam is effective for optimizing large groups of problems  (Zhang and Gouza 

2018, 1). However, for non-convex objective functions, it has shortcomings as Adam cannot 

promise to find a global optimum, as its iterative optimization might get stuck in a local opti-

mum. Therefore it cannot be described as a particular robust optimizer for noisy data (Zhang 

and Gouza 2018, 2). 

Stochastic gradient descent (SGD) is probably the most widely used optimizer for CNNs (Wu 

2017, 7). Generally, it is a fast algorithm that only performs small computations at each descent. 

As many image recognition problems are based on noisy data, it is a fitting choice. Choosing 

the correct learning rate offers a solution to the problem of getting stuck in local optima. When 
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the dataset is heterogenous it can get unstable, and the loss decreases on average. SGD chooses 

samples at random throughout an epoch, so some samples might get chosen twice and some not 

at all (Lee and Song 2019, 597). 

Optimiser Formula 

RMSProp 𝐸(𝑔2) =  𝛽𝐸(𝑔2)𝑡−1 + (1 − 𝛽) (
𝛿𝐶

𝛿𝑤
)

2

 

𝑤𝑡 =  𝑤𝑡−1 −
𝜂

√𝐸(𝑔2)

𝛿𝐶

𝛿𝑤
 

𝑤ℎ𝑒𝑟𝑒 𝐸(𝑔2) = 𝑀𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 

 
𝛿𝐶

𝛿𝑤
=gradient of cost function with respect to the weight 

 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  

𝛽 = 𝑚𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Adam 𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2
𝑡
 

𝑀𝑡 =  
𝑚𝑡

1 − 𝛽1
𝑡 

𝑉𝑡 =  
𝑣𝑡

1 − 𝛽2
𝑡 

𝜃𝑡+1 =  𝜃𝑡 −
𝜂

√𝑉𝑡 + 𝜖
𝑀𝑡 

𝑊𝑖𝑡ℎ 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒, 𝑚 = 𝑝𝑎𝑠𝑡 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

 𝑣 = 𝑝𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝛽 = 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 

 𝜖 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑡𝑒𝑟𝑚  𝑎𝑛𝑑 𝜃 = 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Stochastic Gradient 

Descent (SGD) 

𝑤 = 𝑤 − 𝜂Δ𝑄(𝑤) 

 𝑄(𝑤) =  
1

𝑛
∑ Δ𝑄𝑖(𝑤)

𝑛

𝑖=1

 

𝑤ℎ𝑒𝑟𝑒 𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

𝑄(𝑤) = 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

𝑤 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

Table 5 Optimisers and Formulas 

Source:  Zhang and Gouza 2018, 2; Kingma and Ba 2014, 2; Hinton, Srivastava, and Swersky 2012, 20 

RMSProp or Root Mean Squared Propagation has become one of the more popular gradient 

algorithms beyond SGD. It has been used for very deep CNNs for computer vision and in some 

notable cases, outperformed SGD and Adam (Mukkamala and Hein 2017, 3). Even though it 

was designed for deep neural networks, it performs quite well with noisy data in deep learning 
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and hence for CNNs. It also offers opportunities like SGD to escape the local optima and con-

tains the Adagrad optimiser when tuned with the correct parameters (Mukkamala and Hein 

2017, 2). 

Batch size  

Batch size denotes the number of input samples in a single batch used for a training iteration 

(Lee and Song 2019, 595). The choice of batch size affects the batch normalization process as 

the technique depends on the number of samples in a batch. In general, smaller batch sizes have 

been found to provide a faster training process and a better generalization compared to larger 

batch sizes (Shen 2018). 

Learning rate  

The learning rate describes the extent to how much the model weights are changed during the 

training process (Brownlee 2019). It takes on a small positive value. The smaller the learning 

rate, the smaller the changes made at each iteration and thus the higher the number of training 

epochs necessary. Vice versa, a higher learning rate implies a more rapid adaptation and there-

fore requires less training epochs. Tuning this hyperparameter is essential as a too high learning 

rate can cause the model to converge quickly on a suboptimal solution, whereas a too low learn-

ing rate can cause the training process to become unstable and time-consuming (Brownlee 

2019; Lee and Song 2019, 596). 

Kernel size 

The kernel_size is a key hyperparameter of the convolutional layer referring to the size of the 

kernel,  a matrix moving over the input data, as explained in section 3.1.2. The input image is 

separated into sub-regions by the convolutional layer to have a fixed size set by the kernel size. 

The kernel size refers to the height x width of the filter mask. (Lee and Song 2019, 597 – 598). 
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Class weights 

The weights are used for computation between layers and are updated repeatedly in a model by 

the algorithm. The aim is to find an optimal set of weights ensuring a minimum loss during the 

network’s learning. Class weights are commonly used for imbalanced datasets and can be set 

to ‘balanced’ to replicate the smaller classes to fit the number of samples in the bigger classes. 

(Lee and Song 2019, 593). 

3.7 Performance Evaluation 

To evaluate our model, computational and financial performance measures need to be distin-

guished.   

3.7.1 Computational Evaluation 

As the stock price movement prediction represents a classification problem, evaluation for com-

putational performance is feasible with the means of common evaluation metrics derived from 

the confusion matrix (Chen et al. 2021, 77). For assessing and comparing the computational 

performance of the constructed models, six performance metrics will be considered. 

Accuracy 

Accuracy as the first metric being used represents one of the simplest and most intuitive meth-

ods, showing how many classes have been predicted correctly.   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

The accuracy metric can convey false impression of the performance of a model if classes are 

unbalanced. However, high accuracy is very important in the context of trading since every 

misclassification should be seen as a wrong trading decision and thus implying loss.  

 

 

(10) 
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Precision 

Precision is the second metric being used. Class-specific precision measures for each class sep-

arately the percentage of correct predictions, i.e. the percentage of instances predicted as the 

respective class that actually belong to the class. Precision values are bound between 0 and 1. 

Moreover, the macro-averaged and weighted-averaged precision show the average model pre-

cision across all classes.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

The type I error is penalized by the precision metric, resulting in lower values with a high type 

I error. Applied to trading, precision puts more emphasis on risk aversion, showing how many 

bad investment choices were impeded or how many trading decisions were predicted correctly. 

For buying transactions to prevent the trader to falsely buy although the asset might not further 

rise in value, resulting in a loss of value if the price goes down. Falsely predicting to sell will 

lead to missing out on possible returns if the asset is further rising in value. 

Recall 

Recall is a measure of how well the model identifies instances of a specific class in the data set.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

A high recall means that the model is strong at identifying actual instances of its respective 

class, whereas a low recall means that the model is only able to identify a small percentage of 

instances of the class. Recall values are bound between 0 and 1. Recall is related to the presence 

of type II error (Peng et al. 2021, 23). In the context of trading, a higher recall implies not 

missing out on potentially profitable trading opportunities, indicating how many truly positive 

instances were marked as such and to decrease the number of false positives (Peng et al. 2021, 

(11) 

(12) 
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23). Related to a real-world trading scenario, a high recall leads to less falsely not-buying deci-

sions although it would have been profitable. In terms of selling triggers, it denotes to not over-

looking selling opportunities, preventing to hold the asset when the price will decrease. 

F1-score 

The F1-score balances precision and recall and provides a harmonic mid-point between recall 

and precision as it is granting a high value only if both values are performing well (Peng et al. 

2021, 23–24).  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 

It harmonises indications on how precise the model is as a classifier, i.e. how many instances 

are correctly predicted, and how robust the model is, i.e. how good it is at identifying instances 

of the class.This metric can be very useful for strongly unbalanced predictions as the accuracy 

measure can indicate misleading results (Peng et al. 2021, 24). However, it is less intuitive as 

it is combining two metrics and is representing a poor resource allocation in this trading context. 

To gain detailed insights into the quality of the model, precision and recall should be checked 

separately and relative importance should be placed on recall and precision based on the spe-

cific underlying problem (Peng et al. 2021, 24).  

Application of the performance measures 

In the context of computational efficiency, the focus will lie on accuracy, since each prediction 

represents a trading decision that results in financial loss if misclassified. Since the datasets are 

unbalanced (Hold class is dominating each ETF) it is important to make sure that all classes 

will be predicted while minimizing the false positive rate. Therefore, the precision, recall and 

F1-score will help to get more insights into the models' prediction behaviour.  

(13) 



 

 

39  

To ensure cross-industry comparability, a similar methodology including a similar labelling and 

model approach is used, except for the Oil and Gas sector. The acquired results will be com-

pared and analysed based on the previously mentioned computational common performance 

measures, as well as on the basis of financial evaluation approaches which will be discussed in 

the next part.  

3.7.2 Financial Evaluation 

General approach 

As the general approach to the financial evaluation of the model performance, a method sug-

gested by Sezer, Ozbayoglu and Dogdu (2017) will be used. In this approach, the asset is 

bought, sold or held in accordance with its predicted label: 

• If the prediction is Buy, the asset will be bought at current market price. 

• If the prediction is Sell, the asset will be sold at current market price. Any existing long 

position will be closed, i.e. held shares sold, and a short position will be entered, i.e. 

shares will be short-sold. 

• If the prediction is Hold, no operation is performed at that point in time. 

Equal to Sezer, Ozbayoglu and Dogdu's approach, a starting capital of 10,000 USD will be used 

and each transaction (Buy and Sell) will be made using the full capital available at that moment. 

If the same label is repeated directly after one another in a sequence, only the first label will be 

considered as a trigger and the respective transaction executed. Repeat labels will be ignored 

until a new label comes up. At every executed transaction, trading fees will be considered to 

achieve a near-real scenario.  

For the evaluation, the total return over the test period will be used. Given that each individual 

industry analysis will be applied to the same time period, and as such the test period will be 

equal, the comparability of industries with this metric is given. 
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Basic premises and assumptions 

For the approach to be consistent, a number of clear assumptions need to be stated: 

1. Trading fees: Trading fees stay constant during the whole test period. 

2. Execution price: As the prediction will be based made on the data available at the end 

of day t for day t +1, the closing price of day t will be used as execution price. 

3. Fractional shares: The approach assumes that fractional shares can be purchased. As 

such, the number of shares purchased or sold in transaction is equal to the total available 

capital divided by the execution price. 

4. Short-sell limit: A short-sell limit of 20% of available capital is set, such that in a short-

sell transaction, the short position cannot exceed 20% of the total capital available after 

closing the long position at the moment of a sell signal. 

Benchmarks strategies 

As benchmarks to compare the financial performance of the model to, the following strategies 

will be used: 

1. Simple, passive Buy & Hold strategy: the asset is bought at the beginning of the test 

period and held until its end. The total return is determined by comparing the value of 

the investment at the end of the observation period to the start capital. 

2. Simple Moving Average Cross-over Strategy: One shorter-term simple moving aver-

age and one longer-term simple moving average will be applied. In line with technical 

trading rules, it is considered a buy signal when the shorter-term moving average ex-

ceeds, i.e. crosses over, the longer-term moving average (Mitchell 2021). On the other 

hand, it is considered a sell signal when the shorter-term moving average crosses below 

the longer-term moving average (Mitchell 2021). For the application in this methodol-

ogy, in case of a buy signal, the asset will be bought at market price. In case of a sell 
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signal, any existing long position will be closed at market price and a short position in 

line with the short-selling limit will be entered. 

The best performing moving average combination will be found through a‘simplified 

randomised search based on the training data set. 

3. Mean-Reversion Strategy: The mean-reversion trading strategy is built on the premise 

that prices eventually will revert back towards their mean (Chen 2021). Upper and lower 

Bollinger bands are built around the asset price in a distance that is a function of the 

assets volatility measured as its standard deviation and a simple moving average is con-

structed (Chen 2021). On the one hand, if the asset price is below the Lower Bollinger 

Band, the asset is considered oversold and as such undervalued and expected to increase, 

reverting back towards its mean. This results in a buy signal, meaning that a long posi-

tion should be built. On the other hand, the if the asset price is above the Upper Bollinger 

Band, the asset is considered overbought and overvalued and expected to decrease 

(Chen 2021). This results in a sell signal, meaning that any long position should be 

exited and a short position opened. In addition, for the strategy approach used in this 

paper moments where the price crosses the SMA are considered as unclear signals, sig-

nalling the investor to go neutral, i.e. to close any long or short position. 
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4.1 Industry analysis of the iShares U.S. Industrials ETF | VIS 

4.1.1 Definition of the Industry; Brief Analysis 

The Industrials sector is composed of some of the largest companies in the world. Exemplifying 

the importance of it, the Dow Jones Industrial Index, historically and today an important indi-

cator for the economy is weighted heavily to industrials stocks (Lin 2018). Subsequently, the 

Industrials sector is largely driven by the willingness to invest in e.g. new machines, which is 

much more likely to happen during phases of economic growth. Additionally, expansion plans 

are often postponed during times of economic uncertainty, leading the sector to produce less 

and therefore performing worse. In short, Industrials are a category that is made up of compa-

nies producing or selling machinery, equipment or supplies used in manufacturing and con-

struction (Wohlner 2020). This includes a variety of capital goods and companies, as well as 

industrial conglomerates, aerospace, electrical equipment, transportation and electrical equip-

ment companies. By covering this huge range of subsectors, there normally is at least some area 

of growth in the sector, even in times of a recession (Wohlner 2020).  

Taking an example in the machinery and building materials sector, the current outlook is very 

positive, as prospects for increasing investments into infrastructure and clean energy steadily 

improve (Milman 2021). Because of rising freight rates, transportation companies have bene-

fited disproportionally, even though high fuel costs troubled the industry at the same time 

(Saldanha 2021). A third example of the variety of sectors influencing the Industrials is the 

aerospace and defense industry. The rise of the covid variant Omicron has especially hit the 

aerospace industry by setting back previous recovery hopes (Freed, Lampert, and Singh 2021). 

At the same time, rising tensions around the globe (Marcus 2021) or the US raising their mili-

tary budget higher than originally proposed (Edmondson 2021) may lead to higher revenues in 

the defense industry. 
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Looking onto the positive aspects of an investment into the sector, it appears that an overall 

positive and continuous growth of the world economy will directly impact the Industrials sector. 

During expansion phases, this might lead to an outperformance of business cycles. Moreover, 

most of the companies in the sector are showing very solid fundamentals and low multiples 

(Kastner 2021). However, even though freight companies profit from high freight rates, other 

companies from the industrials sector are suffering from many disadvantages, as not only prices 

rise but especially supply chains are more and more negatively impacted by current develop-

ments. Additionally, the solid fundamentals and low valuations can also be seen negatively, as 

an outperformance of the market thanks to rising valuations in the general market are unlikely 

(Kastner 2021).  

4.1.2 General Information and Performance Analysis 

Exchange traded funds (ETF’s) work in a similar way to traditional funds. They are a type of 

security and can be traded on the stock exchange like shares while tracking an index, sector, 

commodity or other assets. It is possible to structure and adjust an ETF to follow specific in-

vestment strategies (Chen 2021).  

Advantages include the broad diversification with which one can cost-effectively invest into a 

whole market. Furthermore, the transparency of each investment strategy, the liquidity through 

which it is possible to trade an ETF anytime and the security of the investment as single com-

panies can be influenced by specific situations only applying to them (e.g. financial fraud, sup-

ply chain issues) are considerable positive aspects (Chen 2021). 

The Vanguard Industrials ETF (VIS) being analyzed in this part of the thesis uses a full-repli-

cation and a sampling strategy in cases of regulatory constraints in order to track the perfor-

mance of a benchmark index measuring investment returns in the industrial sector. It is pas-
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sively managed, including a number of 352 stocks being worth $5.6 billion. 99.2% of all hold-

ings are from the US, counting the following companies among the month-end 10 largest hold-

ings (VanguardGroup 2021): 

 

Rank Company  Weight in % 

1 Union Pacific Corp. 3.70 

2 United Parcel Service Inc. 3.50 

3 Honeywell International Inc. 3.40 

4 Raytheon Technologies Corp. 3.00 

5 General Electric Co. 2.70 

6 Boeing Co. 2.60 

7 Caterpillar Inc. 2.50 

8 3M Co. 2.50 

9 Deere & Co. 2.40 

10 Lockheed Martin Corp. 2.00 

Total weight top 10 companies 29.00% 

Table 6: Top 10 Holdings VIS ETF 

They are accumulating to 29.00% of total net assets of the ETF. 
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Looking at the development of the ETF from 2010 until 2020, which is also representing the 

data set which is used in the model, an overall positive trend can be observed. From the begin-

ning of the observation period, an approximated growth of 150% has been achieved. 

 

Figure 6: Price Developments VIS ETF (Own Source) 

Even so, around the beginning of 2019, the VIS was affected by a huge volatility. This is espe-

cially important to consider, as the model uses data from this time period as testing data. Ac-

cording to Lewis (2019), markets have been under a lot of uncertainty at this time. Facing prob-

lems such as an inverted yield curve, which is often seen as a sign that a recession is imminent, 

the Brexit with uncertainty whether a trade agreement can be achieved, the renegotiation of the 

NAFTA and last but not least the trade war in between China and the US which was dominated 

by punitive mutual tariffs and a strong rhetoric, were some of the negative factors to be consid-

ered. Nevertheless, all of these problems were mitigated, leading the stock markets to one of 

the most successful years in terms of a year based performance. 
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4.2 Data Preprocessing, feature engineering and image encoding  

The data used in this analysis has been retrieved from https://www.investing.com/, including 

the period of the 1st January of 2010 until the 31st December of 2019.  in order to exclude 

distorting extreme events as the financial crisis and the beginning of the Covid pandemic.  

Next, relevant features have been created. As previously described in the group part of the 

thesis, additional features in the form of technical indicators have been constructed with the aim 

to enrich the analysis and model performance. Additionally, labels have been added for the 

purpose of correctly classifying what would have been the optimal trading decision, meaning 

whether to “Buy”, “Hold” or Sell an asset. In the model these were classified as 0 = “Hold”, 1 

= “Buy” and 2 = “Sell” as the model couldn’t handle the original input labels of -1, 0 and 1.  

The dates of the original dataset were converted to a “pd.datetime” format and set as the index 

of the data frame. Going forward, a train-test split with 80% Training data and 20% of the data 

for testing reasons has been chosen. Due to the fact, that time series data is being handled, no 

additional random shuffling has been applied. To put the train/test split into perspective, stock 

prices until 2018 are used for training, while occurrences after 2018 function as testing data. 

In an attempt to assess whether the data is not stationary, the augmented dicker fully test has 

been implemented. This is especially important as it is common to ensure stationarity as non-

stationary time series usually hamper modelling its behavior (Hyndman and Athanasopoulos 

2018). The augmented Dickey-Fuller test (ADF) showed that especially the p – value of 

0.527115 indicates the data being not stationary. 

To better illustrate the changes which have been implemented, seeing the figure below is very 

helpful: 

https://www.investing.com/
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Figure 7: OHLC Developments VIS ETF (Own Source) 

This is why fractional differentiation has been applied on the train and test data separately in 

order to avoid an unwanted bias in the data. This led to a much lower p – value close to 0. The 

plotted data illustrates the changes also visually:
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Figure 8: Stationarized Data Display (Own Source) 

Taking a closer look at the stationarized data, a limitation can be derived and needs to be men-

tioned. During the last 2 years of time period, which is representing the testing data, volatile 

shifts of the stock price in both directions exemplify a roller coaster ride in the Industrials sector. 

This could indicate a future problem in terms of a good model performance, as the model might 

not be able to react well on changes it couldn’t train on before. In the chart below, these move-

ments can be observed in greater detail on the original data:  

 

Figure 9: Price Development during Test Period (Own Source) 

Next, as a measure to reduce multicollinearity, a PCA has been applied using a threshold of 

0.95. It reduces the dimensionality of the dataset while preserving most of its information. This 

has been done after the train-split in order to avoid data leakage. From previously 19 Features, 

8 Features have been identified as principal components representing new variables as a linear 

combination of the original features (Rahoma, Imtiaz, und Ahmed 2021, 2). 
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4.3 Results and Model architecture  

 GADF GASF MTF 

Batch normaliza-

tion 

TRUE FALSE FALSE 

Dropout None 0.25 0.25 

Activation func-

tion 

Softmax Softmax Softmax 

Kernel size 3,3 3,3 5,5 

Padding SAME VALID SAME 

Pooling Max Max Average 

Optimizer RMSProp Adam RMSProp 

Learning rate 0.001 0.0001 0.0001 
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 To transform the data into images, 3 approaches have been used: the Gramian Angular Sum-

mation Field (GASF), Gramian Angular Differentiation Field (GADF) and the Markov Transi-

tion Field (MTF).  Each image encoding technique uses a window of 10 days, hence every 

image contains information from 10 ensuing days. Using a randomized GridSearch, the best 

parameters for each model have been searched. The goal of this GridSearch has been an opti-

mization on the F1 score while assuring that there are predictions for each of the BUY, HOLD 

and SELL classes. They are summarized in the table below:  

Table 7: Model Hyperparameters Overview 

Additionally, a model making random predictions and iterating 10,000 times has been con-

structed, using the training data set with its class probabilities and the length of the test data set. 

Next, the accuracy, weighted average F1-score and the Macro Average F1-score have been 

averaged over all iterations, showing that all 3 image encoded models display better results than 

the random model. 

Epochs 25 75 100 

Batch size 16 16 16 
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 Comparing the accuracy, weighted average precision, weighted average F1-score and Macro 

Average F1-score on a high level with each other, the MTF showed the best results in 2 out of 

3 categories. However, as the F1 score is the lowest for the MTF with 0.31 and as all Macro 

Average scores are lower than the weighted ones, it makes sense to dive deeper into the results. 

The reason for this is the observation that a lower Macro Average F1-score in comparison to a 

Weighted Average one indicates worse F1-scores for individual minor classes. This could in 

turn affect other performance metrics in the process. 

Table 8: High-Level comparison of main metrics 

Looking at the precision results of each model, the MTF shows decent results once more in all 

3 categories, nevertheless the GADF outperforms the other two models in the Sell class preci-

sion with 0.36. 

 Sell Class Preci-

sion 

Hold Class 

Precision 

Buy Class 

Precision 

Weighted 

Average Precision 

GADF 0.36 0.47 0.31 0.40 

 Accuracy Macro-averaged F1-

score 

Weighted-average 

F1-score 

GADF 0.41 0.38 0.40 

GASF 0.42 0.32 0.37 

MTF 0.47 0.31 0.37 

Random Model 0.3712 0.309 0.322 
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GASF 0.33 0.47 0.23 0.37 

MTF 0.31 0.49 0.47 0.44 

Table 9: Precision comparison 

Lastly, when checking the Recall of each prediction, it can be derived that one of the reasons 

for the MTF’s overall high scores result from a high recall in predicting the Hold class with a 

score of 0.88. The Sell and Buy class perform much poorer with a score of 0.14 and 0.06 re-

spectively. The GADF seems to be better balanced over all 3 classes in terms of a balanced 

recall score. 

 Sell Class Re-

call 

Hold Class Re-

call 

Buy Class 

Recall 

Weighted 

Average Recall 

GADF 0.3 0.55 0.27 0.41 

GASF 0.18 0.72 0.12 0.42 

MTF 0.14 0.88 0.06 0.47 

Table 10: Recall comparison 

4.4 Performance evaluation 

In the last chapter of the code, the financial performance of each model has been compared to 

3 benchmarks: The “Buy & Hold”, “Simple Moving Average Cross-over Strategy” and “Mean-

Reversion Strategy”. All 3 models have been performing worse than a Buy&Hold approach as 

well as the Mean Reversion strategy. Only the GASF and MTF were able to outperform the 

SMA strategy. 

 CNN Model Buy & Hold SMA MR 
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GADF 2.98%    

GASF 4.64% 7.00% 3.76% 19.61% 

MTF 5.53%    

Table 11: Strategy evaluations 

4.5 Industry Comparison 

 Going forward by comparing the computational and financial performances of the models 

across the 5 other sectors using the same approach, the following summary tables have been 

generated. They are showing that there are no major deviations when comparing the computa-

tional performance of the Industrials to the average of all industries. Only the GADF model 

showed significant weaker results. 

Table 7: Computational performance evaluation across industries 

 Accuracy Macro-averaged F1-score Weighted-average F1-

score 

GADF average 0.49 0.35 0.47 

GADF VIS 0.41 0.38 0.40 

GASF average 0.45 0.31 0.37 

GASF VIS 0.42 0.32 0.37 

MTF average 0.44 0.31 0.37 

MTF VIS 0.47 0.31 0.37 
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 Reviewing the results of the financial performances, excess results have been calculated by 

taking the absolute difference between the benchmark strategy’s return and the models financial 

results. The Industrials’ model showed negative excess returns for all 3 models. Even so, the 

GASF and MTF models showed significantly better results than the 5 averaged industries. 

Whatsoever, form a perspective of financial returns, it is currently not recommended to use any 

of the CNN models. On the contrary, an investor would rather achieve higher returns by just 

buying and holding the asset. 

Table 8: Financial performance evaluation across industries 

4.6 Industry Limitations and Implications  

As already seen during the pre-processing of the data, the models probably were not able to 

handle the extremely high volatility of the Industrials’ ETF around the year 2019. As we are 

comparing the same time period across all different sectors, it wasn’t possible to change the 

overall timeframe to allow for a proper comparison. Putting our project back into the context 

of a real world implementation, it might make sense to use more data in the sense of e.g. hourly 

course data. It is also worth mentioning that the current market situation with a very influencing 

fiscal interference in a highly globalised world in connection with great political shifts is a 

difficult foundation to rely on in order to properly train a machine learning model. 

  

 Average excess return compared 

to Buy & Hold 

Industrials excess return com-

pared to Buy & Hold 

GADF 1.30% -4.02% 

GASF -6.90% -2.36% 

MTF -12.98% -1.47% 
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5 Performance Comparison and Discussion 

In the following section, key findings from the individual analyses conducted in chapter 4 will 

be summarised, focusing on common findings regarding the model hyperparameters, as well as 

the computational and the financial performance of the models. 

Common findings hyperparameters 

Comparing the best-performing model parameters across the three model types (GADF, GASF 

and MTF) and across the six analysed industries, several findings can be made.  

Firstly, for the MTF-based models, a 5*5 kernel achieves the best performance across all in-

dustries. For the majority of GAF-based models, i.e. GADF and GASF, a 3*3 kernel leads to 

the best performance, with the exception of the Energy sector, for which a 5*5 leads to the best 

performance for all three models. This tendency can be supported by the PXL-based model, 

which also uses a 3*3 kernel. 

Secondly, in the majority of models (17 out of 19), the Softmax and Sigmoid activation function 

achieve the best performance. The ReLu activation function only leads to the best performance 

for 2 of the 19 models. 

Thirdly, for 5 out of the 6 ETFs applying the proposed image encoding types, average pooling 

achieves the best performance for the GADF model. 

Fourthly, for the majority of analysed ETFs (5 out of 6), including the class weights does not 

have a positive impact on the model accuracy, i.e. models without class weights achieve a better 

accuracy for these ETFs. However, this tendency is not supported by the PXL-based model.  

Common findings computational performance 

For the majority of industries, i.e. Information Technology, Healthcare, Energy and Financial 

Services, the GADF-based model achieves a better accuracy compared to the GASF- and MTF-

based models. Moreover, for 5 out of 7 analysed ETFs, GADF achieves better weight-averaged 

and macro-averaged F1-scores than both GASF and MTF. 
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For the Energy industry, it can be noted that GADF performs above the average of the other 

industries, whereas the GASF and MTF perform poorly compared to the other ETF’s in terms 

of computational performance. The worst model across all industries can be found within the 

Healthcare models, where the MTF showed the poorest performance from a computational per-

spective with a weighted average F1-score of 0.34 and an accuracy of 0.3706. Among all mod-

els and industries, predictions of the Hold class showed the most promising results, with the 

only outlier found for the GASF model of the energy sector. It is also worth mentioning that 

within all industries and ETF’s, with the VGT (IT sector) as an exception, class predictions 

show huge discrepancies in predicting the correct class. Hence it is not possible to conclude 

that a certain image encoding technique works better to predict a specific signal.  

The performance evaluation of the random choice models didn’t produce any important in-

sights. For all industries, similar scores can be observed. Moreover, they are less performant 

than all other models when comparing weighted averages with each other. 

Common findings financial performance 

For comparing and assessing the financial performances of the models across industries, excess 

returns calculated as the absolute difference between the model return and the benchmark strat-

egy are being used to ensure comparability of the obtained results. Considering the average of 

these excess returns, only the GADF models are able to achieve returns that exceed the Buy & 

Hold strategy, i.e. to beat the return generated by the general price development of the consid-

ered ETF. Both the GASF and MTF models have negative excess returns compared to Buy & 

Hold, leaving the investor with better returns by just buying and holding the asset compared to 

using a trading strategy based on the models’ predictions. 

For 4 out of the 6 ETFs to which the common methodology was applied, the GADF models 

outperform the Buy & Hold return, with the exception of Healthcare and Industrials. The GASF 
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models only outperforms the Buy & Hold return for 2 out the 6 ETFs, i.e. Healthcare and En-

ergy. Only for the Energy sector, the MTF model outperforms the Buy & Hold return. Despite 

being a subset of the energy industry, the model used on the Oil & Gas sector cannot outperform 

the Buy & Hold return. It is also the Energy sector where the model generates the most impact; 

despite the negative price development of -8% over the test data period, all three models are 

able to generate positive returns between 3% and 10%. Lastly, the CNN approach shows the 

poorest performance in the Industrials sector where all three models underperform compared to 

the Buy & Hold strategy. 
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6. Limitations and Outlook 

6.1 Limitations 

Predictions for the stock market are challenging, as the stock market represents a dynamic, 

volatile and very complex market based on historical data and influenced by unpredictable 

events. In this research we face the problem of imbalanced classes, where the largest class is 

Hold across all sectors. As a result, the predictions are dominated by the largest class - predic-

tions of the minor classes turn out worse, which negatively affects the overall model perfor-

mance. In addition, a comparatively small train set in combination with complex features fur-

ther complicates model development. This makes the models prone to overfitting - whereas the 

inclusion of multiple train data would be advantageous. In the present approach of this research 

accuracy was chosen as the most important performance measure and model selection criterion. 

However, there are other evaluation methods that could be considered as primarily evaluation 

metric, e.g. financial performance, precision or F1-scores. Especially with respect to the finan-

cial performance it is important to mention that only the decisions of the next day are consid-

ered. Hence, the prediction is related to a very short future period and makes no specific state-

ments about longer term behavior. A further limitation lies in the assessment of the severity in 

the case of mislabelling. A wrong Buy/Sell decision has more serious negative effects than a 

wrong Buy/Hold or Sell/Hold decision. In the present research a suitable performance measure 

is missing - here a suitable loss function would be necessary. A further remark is to be men-

tioned in the simplification of the labelling approach. If the upper and lower limits are exceeded 

on the same day, the first labelling trigger decides on the label allocated to the trading day. 

Another limitation can be found in the Efficient Market Theory (Fama 1970,  383). As men-

tioned in section 2.1, the theory states that stock prices already reflect and have priced in all 

relevant information. This would make a deeper analysis with additional features, like technical 
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indicators, redundant, as no investment analysis technique allows investors to generate signifi-

cant excess returns above the market. However, this is refuted by the thesis that financial mar-

kets in many cases do not react immediately to new information (Cervelló-Royo and Guijarro 

2020, 41),  which would make returns above the market average still possible through sufficient 

analysis and the right timing. This would imply that a better performing model could potentially 

outperform market returns. 

6.2 Outlook 

Forecasting Financial Time Series Movements using CNNs is a recent research field. For this 

reason many different topics can be addressed in future research.  

Firstly, it would be interesting to test if the proposed methodology can achieve better results 

with regard to different prediction horizons. These could include the prediction of price move-

ments within the next week or month, alternatively intraday data can be used for short-term 

forecasting.  

This work focuses on using technical indicators along with foreign exchange, commodity and 

indices as features to feed into the CNN. However, future work could incorporate other types 

of features. These could, among others, include data from the news, social media and market 

segments. Moreover, machine-learning-based fundamental analysis approaches as suggested 

by Cao and You (2020), e.g. for forecasting company earnings, could be included to provide a 

more holistic impression on the underlying companies’ situation.  

Furthermore, within the current research not all papers propose transforming the data into sta-

tionary time series. Therefore, research regarding the necessity of stationary time series in the 

context of forecasting financial time series with CNNs can be conducted. This is particularly 

interesting as methods to transform non-stationary data imply information loss within the used 

variables. 
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Appendix 

Apendix A 

The table below displays the technical indicators used cross-sectoral. Along with a description, 

the formulas for calculationg the indicator is provided. 

 

 

Type Technical Indicator Formula (Sezer and Ozbayoglu 2018, 535; 

Sim, Kim, and Ahn 2019, 7) 

Trend Simple moving average (SMA) calcu-

lates the average price over a given pe-

riod. The indicator is widely used to 

detmine price trends (Sezer and 

Ozbayoglu 2018, 535). 

𝑆𝑀𝐴 =  
𝐶1 + 𝐶2 + ⋯ + 𝐶𝑛

𝑛
 

where: 

𝐶𝑖 = price of an asset at period i  

n = the number of periods used for moving 

average 

Trend Exponential moving average (EMA) 

calculates a moving average such that 

greater weights are assigned to more re-

cent values (Sezer and Ozbayoglu 2018, 

535). 

𝐸𝑀𝐴 =  𝐶𝑡 ∗ 𝑘 + 𝐸𝑀𝐴(𝑦) ∗ (1 − 𝑘) 

where: 

k = 2÷(n+1) 

n = number of days in EMA 

Ct = closing price of an asset today 

y = yesterday 

Momen-

tum 

Rate of change (ROC) is a momentum 

oscillator measuring the speed of changes 

in price over a given period (Sezer and 

Ozbayoglu 2018, 536). The indicator is 

calculated by comparing the current clos-

ing price with the closing price n periods 

ago. 

𝑅𝑂𝐶 =  
(𝐶𝑡 − 𝐶𝑡−𝑛)

(𝐶𝑡−𝑛)
∗ 100 

where: 

Ct = closing price of an asset today 

n = number of periods 

 

Momen-

tum 

Percentage Price Oscillator (PPO) is a 

technical momentum indicator similar to 

MACD (Sezer and Ozbayoglu 2018, 

536). It exhibits the relation of two mov-

ing averages in percentage, usually a 26-

period and 12-period EMA.  

𝑃𝑃𝑂 =
(𝐸𝑀𝐴𝑛𝑠ℎ𝑜𝑟𝑡

− 𝐸𝑀𝐴𝑛𝑙𝑜𝑛𝑔
)

𝐸𝑀𝐴𝑛𝑙𝑜𝑛𝑔

∗ 100 

where: 

EMA = Exponential moving average as de-

fined before 

n = number of periods 

Momen-

tum 

The Relative Strength Index (RSI) is an 

oscillating indicator measuring the 

strength and weaknesses of stock prices 

or the magnitude of historical price 

changes, indicating whether stock prices 

are in the ‘overbought’ or ‘oversold’ re-

gion (Sezer, Ozbayoglu, and Dogdu 

2017a,2; Corporate Finance Institute 

2020, 4) 

𝑅𝑆𝐼 = 100 −
100

1 + (
𝑔𝑛
𝑙𝑛

)
 

where:  

n = number of periods 

gn = average percentage gain during a period 

of length n  

ln = average percentage loss during a period 

of length n  
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Type Technical Indicator 
Formula (Sezer and Ozbayoglu 2018, 535; 

Sim, Kim, and Ahn 2019, 7) 

Momen-

tum 

Know Sure Thing Oscillator (KST) is a 

momentum oscillator to make rate-of-

change readings easier for traders to in-

terpret (Hayes 2021). 

 

KST = (RCMA #1×1) + (RCMA #2×2) + 

(RCMA #3×3) + (RCMA #4×4) 

where: 

RCMA #1 = 10-period SMA of 10-period 

ROC 

RCMA #2 = 10-period SMA of 15-period 

ROC 

RCMA #3 = 10-period SMA of 20-period 

ROC 

RCMA #4 = 15-period SMA of 30-period 

ROC 

Momen-

tum 

Williams % Range is a momentum-

based indicator determining overbought 

and oversold conditions for stock prices 

(Sezer and Ozbayoglu 2018, 535). 

𝑅 =  
max(𝐻) − 𝐶

max(𝐻) − min (𝐿)
∗ −100 

where: 

C = Closing price today. 

max(H) = Highest price in the lookback pe-

riod n. 

min(L) = Lowest price in the lookback 

period n.  

n = number of periods 

Momen-

tum 

Moving Average Convergence Diver-

gence (MACD) is a momentum indicator 

showing the trend of stock prices by rep-

resenting the relationship between two 

moving averages of prices. Usually a 26-

period and 12-period EMA is applied 

(Sezer and Ozbayoglu 2018, 535). 

𝑀𝐴𝐶𝐷 = 𝐸𝑀𝐴𝑛𝑙𝑜𝑛𝑔
− 𝐸𝑀𝐴𝑛𝑠ℎ𝑜𝑟𝑡

 

where: 

EMA = Exponnetial moving average 

n = number of periods 

Momen-

tum 

Commodity Channel Index (CCI) com-

pare the current price with the average 

price over a given period of time (Sezer 

and Ozbayoglu 2018, 536). 

𝐶𝐶𝐼 =
𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒 − 𝑀𝐴

0.015 ∗ 𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

where: 

Typical Price = ∑ (
(𝐻+𝐿+𝐶)

3
)𝑛

𝑖=1  

n= number of periods 

H = High price today 

L = Low price today 

C = Closing price today 

MA = 
(∑ 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒)𝑛

𝑖=1

𝑛
 

Mean Deviation = 
(∑ | 𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒−𝑀𝐴 |)𝑛

𝑖=1

𝑛
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Appendix B  

The table below shows the selected model parameters chosen through the randomized search for each ETF and image encoding type.  

 

Sector ETF Image 

type 

Batch 

Norm. 

Drop- 

out 

Activation Kernel Padding  Pooling Optimizer Learning 

rate 

Epochs Batch 

size 

Class 

weight 

Information 

Technology 

VGT GADF True  0.25 softmax 3,3 valid average RMSprop 0.0001 150 16 None 

GASF True  None sigmoid 3,3 valid max SGD 0.001 10 16 None 

MTF True  0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None 

XSD GADF True  0.5 softmax 3,3 valid average Adam 0.001 50 32 None 

GASF False None sigmoid 3,3 same average RMSprop 0.0001 75 64 None 

MTF True  0.25 sigmoid 5,5 valid max SGD 0.001 50 16 None 

Healthcare IYH GADF False None softmax 3,3 same average RMSprop 0.001 75 64 balanced 

GASF False None relu 3,3 valid max Adam 0.0001 100 16 balanced 

MTF True None sigmoid 5,5 same average SGD 0.01 10 32 balanced 

Energy S&P 500 

Energy 

GADF False None sigmoid 5,5 same average RMSprop 0.0001 100 64 None 

GASF True  None sigmoid 5,5 same max SGD 0.001 50 16 None 

MTF True  None softmax 5,5 valid max Adam 0.001 10 32 balanced 

Financial 

Services 

IYG GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 100 16 None 

GASF True None sigmoid 3,3 valid max RMSprop 0.0001 50 16 None 

MTF True None sigmoid 5,5 valid average SGD 0.001 100 16 None 

Industrials VIS GADF True  None softmax 3,3 same max RMSprop 0.001 25 16 None 

GASF False 0.25 softmax 3,3 valid max Adam 0.0001 75 16 None 

MTF False 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None 

Oil & Gas XLE PXL False 0.25 relu 3,3 same max Adam 0.001 200 64 balanced 
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Appendix C 

The table below summarizes the computational and financial performance on the test set for each ETF and image encoding type. 

              Benchmark Labelling (on test set)  

Sector ETF Image type Accuracy Macro F1 
Weighted 

F1 

Financial Per-

formance 

Buy & Hold 

Return 

SMA Re-

turn 
MR Return  % Buy % Hold % Sell 

Information 

Technology 

VGT 

GADF 0.51 0.34 0.42 55.48% 

50.0% 27.57% -8.17% 26.29% 50.19% 23.53% GASF 0.49 0.31 0.40 36.03% 

MTF 0.49 0.34 0.42 16.11% 

XSD 

GADF 0.50 0.28 0.38 53.43% 

51.0% 6.66% 6.1% 26.10% 49.45% 24.45% GASF 0.44 0.34 0.40 40.23% 

MTF 0.48 0.28 0.37 19.72% 

Healthcare IYH 

GADF 0.50 0.28 0.37 07.45% 

25.00% 20.51% 11.08% 25.31% 47.77% 26.92% GASF 0.47 0.26 0.35 28.59% 

MTF 0.37 0.29 0.34 24,64% 

Energy 

S&P 

500 

Energy 

GADF 0.51 0.46 0.49 10.66% 

-8,00% -3,90% 0.06% 29,00% 44,00% 27,00% GASF 0.41 0.34 0.37 2.84% 

MTF 0.37 0.31 0.34 3.35% 

Financial Ser-

vices 
IYG 

GADF 0.49 0.36 0.43 18.78% 

16.0% 16.88% 21.76% 26.52% 48.99% 24.49% GASF 0.48 0.26 0.35 -12.75% 

MTF 0.47 0.31 0.39 -6.25% 

Industrials VIS 

GADF 0.41 0.38 0.40 2.98% 

7,00% 3.76% 19.61% 27.54% 47.16% 25.30% GASF 0.42 0.32 0.37 4.64% 

MTF 0.47 0.31 0.37 5.53% 

Oil & Gas XLE PXL 0.72 0.46 0.76 5.2% 10.0% 4.8% 0,00% 5,38% 88,88% 6,74% 

 

 


