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Abstract: Recently, there seems to be an increasing amount of interest in the use of the tail conditional
expectation (TCE) as a useful measure of risk associated with a production process, for example,
in the measurement of risk associated with stock returns corresponding to the manufacturing
industry, such as the production of electric bulbs, investment in housing development, and financial
institutions offering loans to small-scale industries. Companies typically face three types of risk
(and associated losses from each of these sources): strategic (S); operational (O); and financial (F)
(insurance companies additionally face insurance risks) and they come from multiple sources. For
asymmetric and bounded losses (properly adjusted as necessary) that are continuous in nature, we
conjecture that risk assessment measures via univariate/bivariate Kumaraswamy distribution will
be efficient in the sense that the resulting TCE based on bivariate Kumaraswamy type copulas do not
depend on the marginals. In fact, almost all classical measures of tail dependence are such, but they
investigate the amount of tail dependence along the main diagonal of copulas, which has often little
in common with the concentration of extremes in the copula’s domain of definition. In this article,
we examined the above risk measure in the case of a univariate and bivariate Kumaraswamy (KW)
portfolio risk, and computed TCE based on bivariate KW type copulas. For illustrative purposes,
a well-known Stock indices data set was re-analyzed by computing TCE for the bivariate KW type
copulas to determine which pairs produce minimum risk in a two-component risk scenario.

Keywords: bounded risk; tail value-at-risk; asymmetric losses; tail conditional expectations; bivari-
ate Kumaraswamy distribution; bivariate Kumaraswamy type copulas; copula-based tail
conditional expectation

1. Introduction

In practice, insurance companies retain amounts of capital from which they can draw
upon, in the (unfavorable) event that premium revenues become inadequate to pay out
claims. The appropriate determination of such amounts is quite a difficult task. At the
outset, the procedure should be able to resolve with accuracy the underlying probability
distribution of the losses that it is experiencing. As a next step, a judicious choice/selection
needs to be made in terms of a risk measure (or a set of risk measures) that is expected to
perform in the most efficient way. For a detailed mathematical derivation in the context
of the TCE for a continuous random variable Y that indicates the loss incurred, see [1]
and the references cited therein. Consider a loss random variable Y having a density (and
distribution) function given by fY(y), (and FY(y), respectively). Then, the tail function of Y
is F̄Y(y) = 1− FY(y). It can be considered as the value of a total claim for an actuary firm
in the context of a portfolio of investments made by a single individual or by the entire
firm as a whole.
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The tail conditional expectation (henceforth, in short, TCE) is defined as

TCEY(yp) = E
(
Y|Y > yp

)
. (1)

This can be interpreted as the mean of very bad losses. It provides an average amount
of the tail of the distribution which is usually based on the p-th quantile yp of the loss
distribution with the property FY(yp) = p. The associated TCE is given by

TCEY(yp) =
1

F̄Y(yp)

∫ ∞

yp
ydFY(y), (2)

where F̄Y(yp) > 0.
There exists a vast literature on the evaluation of TCE of random losses corresponding

to several well-known probability distributions (mostly in the continuous case for the
obvious reason as mentioned earlier due to [1]). For example, TCEs for the univariate
and multivariate normal family have been extensively discussed in [2] However, a major
drawback to this is that all members of the elliptical family are symmetric. Arguably,
the first work which this author can cite in investigating the tail conditional expectation
risk measure in non-symmetric loss distributions domain is by [3] . However, in the context
of bounded dependent risks (and associated losses), it is desirable to have available flexible
probability models with analytic expressions for the corresponding marginal distributions
as well as its’ quantile functions. Noticeably, in the case of unbounded losses, it might be
useful on certain occasions to transform the risks to take on values in the interval (0, 1) in
order to take advantage of the flexible arrays of bivariate models that exist in the literature,
such as beta and Kumaraswamy. In this paper, we consider a more useful two-parameter
absolutely continuous probability distribution called Kumaraswamy (1980) distribution.
The Kumaraswamy distribution (henceforth, in short, the KW distribution) on the interval
(0, 1), has its probability density function (p.d.f.) and its c.d.f. with two shape parameters
a > 0 and b > 0 given by

f (y) = abya−1(1− ya)b−1 I(0 < y < 1) and F(y) = 1− (1− ya)b. (3)

If a random variable Y has (3) as its density, then we will write Y ∼ KW(a, b). The KW
distribution enjoys some interesting properties which establishes its flexibility in modeling
bounded data—for more details, see [4] .

Because of these striking advantages, it is imperative to explore and develop the
expressions for TCE when the underlying losses have univariate/bivariate and multivariate
Kumaraswamy models. Let us suppose that an actuary firm operates n lines of business
and the risk managers are interested in knowing the amount of risk hidden in line `, ` < n.
The answer to this query would be to find the associated TCE. Then, the allocation of the
`-th line of business of the actuary firm on its total risk capital will be:

TCEY` |S(sp) = E
(
Y`|S > sp

)
, (4)

where S = Y1 + Y2 + · · · + Yn. Certainly, due to the additive property of conditional
expectation, the sum of all marginal risks is equal to the total risk measure for the whole
company, meaning that:

TCES(sp) =
n

∑
i=1

E
(
Y`|S > sp

)
. (5)

One important thing to remember is that tail conditional expectations arising from each
individual components do not add up to the TCE in totality. This is because:

TCEY`
(sp) 6= E

(
Y`|S > sp

)
.

Alternatively, we may write this as
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TCEY` |S(sp) = E
(
Y`|S > sp

)
.

The rest of the paper is organized as follows. In Section 2, we provide expressions
for tail conditional expectation when the underlying loss distribution is a continuous and
univariate Kumaraswamy distribution. Section 3 provides portfolio risk evaluation with
TCE for non-negative independent losses, under the KW distributional assumption.

In Section 4, we derive the representation of TCE in the context of various dependent
bivariate Kumaraswamy distributions. In Section 5, we provide a copula-based repre-
sentation of TCE based on several bivariate Kumaraswamy type copulas. For illustrative
purposes, a well-known financial (European stock indices data for a specific time period)
is considered to compute TCE measures based on bivariate KW type copulas and to de-
termine the lowest risk on a two-component risk scenario in Section 6. Some concluding
remarks are presented in Section 7.

2. TCE Formula Based on Univariate Kumaraswamy Distribution

Let us consider Kumaraswamy distributed loss random variable Y with two shape
parameters (a, b) > 0 as in (3). Let u be such that 0 < u < 1 and let yu denote the u-

th quantile of the distribution of Y, which in this case is yu =
[
1− (1− u)1/b

]1/a
. Then,

we have the following theorem which represents the expression of TCE related to univariate
Kumaraswamy loss.

Theorem 1. Let Y ∼ KW(a, b). Then, the tail conditional expectation of Y is given by

TCEY(yu) =
1

1− u

[
b

∞

∑
`=0

(−1)`
(

1/a
`

)
(1− u)1+ `

b

`+ b

]
. (6)

Proof. Clearly, F̄(yu) = 1− u. Therefore:

TCEY|S(yu) =
1

1− u

∫ 1

yu
ydFY(y)

=
1

1− u

[∫ 1

yu
y abya−1(1− ya)b−1dy

]
=

b
1− u

[∫ 1−ya
u

0
tb−1(1− t)1/adt

]
, on substitution t = 1− ya

=
b

1− u

[∫ 1−ya
u

0
tb−1

{
∞

∑
`=0

(−1)`
(

1/a
`

)
t`
}

dt

]

=
b

1− u

{
∞

∑
`=0

(−1)`
(

1/a
`

) ∫ 1−ya
u

0
t`+b−1dt

}

=
b

1− u

[
∞

∑
`=0

(−1)`
(

1/a
`

)
(1− u)1+ `

b

`+ b

]
.

Hence, the proof.

3. Portfolio Risk Evaluation with TCE for Non-Negative Independent Losses

In the case of uncertainty arising from different resources, it is quite legitimate to ask
how to break down the total level of uncertainty to these sources. Let us assume that the

total loss is given by S =
n

∑
`=1

Y`, where each Y` represents the claim arising from actuarial

firm-related business. Evidently, from [2] (and the references cited therein), and using the
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result on the additivity of expectation, the tail conditional expectation allows for a natural
decomposition of the total loss:

TCES(sp) =
n

∑
`=1

E
(
Y`|S > sp

)
. (7)

TCE-based allocation formulas for symmetric distributions, having an elliptical de-
pendence structure, were studied in [5] . It is well established that under the assumption of
non-negative, asymmetric risk portfolios, the associated computation of TCE is different
than the cases where the non-negative risks are symmetric. Then, note that the distribution
function of the convolution of two independent non-negative random variables X and Y
with support on (0, 1) may be written as

FS=X+Y(x) =
∫ 1

0
FX(x− t)dFY(t). (8)

Then, we use the following Lemma (see Lemma 2, p. 9, [6] for details) which represents
an expression for the allocation strategy covering non-negative risks in the most general
form:

E
(
Y`|S > sp

)
=

E(Y`)
{

1− 1
E(Y`)

∫ sp
0 y fY`

(y)FS−Y`
(sp − y)dy

}
F̄S(sp)

. (9)

Then, we consider the expression for TCE for non-negative independent losses when
the underlying losses are Kumaraswamy (in the bivariate case, S = Y1 + Y2) with the
following assumptions:

• Y1 ∼ KW(a, b1);
• Y2 ∼ KW(a, b2);
• Y1 and Y2 are independent.

We make a note here that one may obtain (using (8)) the denominator of (9), which
can be written as

F̄S(sp)

= P
(
Y1 + Y2 > sp

)
(10)

= P
(
Y1 > sp

)
+ P

(
Y2 > sp

)
− P(s ≤ Y1 < Y1 + Y2)− P(s ≤ Y2 < Y1 + Y2)

+ P(s ≤ Y1 + Y2 ≤ 2s).

We conjecture here that it is possible to extend this idea to the multivariate Kumaraswamy
cases, despite their computational complexity involving special functions. Then, we con-
sider the following Lemma which represents the distribution of the sum of two independent
Kumaraswamy distributions.

Lemma 1. Let us define S = Y1 + Y2, with Yi ∼ KW(a, bi), i = 1, 2, and that they are
independent. The cumulative distribution function (c.d.f.) of the sum denoted by FS(s) will be:

FS(s) = ab2

∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

(−1)j1+j2+j3
(

b1

j1

)(
j1b1

j2

)(
b2

j3

)
×

(
sab1 j1 j2 2F1

(
−ab1 j1 j2, a (j3 + 1); j3a + a + 1; 1

s

)
aj3 + a

)
.

Proof. The cumulative distribution function of S will be:

FS(s) =
∫ 1

0
FY1(s− t)dFY2(t)dt. (11)
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In our case, FYi (yi) = 1− (1− ya)bi , i = 1, 2. Therefore, from (8), we have:

FS(s) =
∫ 1

0

[
1− (1− (s− t)a)b1

]
ab2ta−1(1− ta)b2 dt

= ab2

∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

(−1)j1+j2+j3
(

b1

j1

)(
j1b1

j2

)(
b2

j3

) ∫ 1

0
(s− t)ab1 j2−j1 ta+abj3−1 dt

= ab2

∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

(−1)j1+j2+j3
(

b1

j1

)(
j1b1

j2

)(
b2

j3

)
×

(
sab1 j1 j2 2F1

(
−ab1 j1 j2, a (j3 + 1); j3a + a + 1; 1

s

)
aj3 + a

)
,

after some algebra. Then, we state the following Theorem which represents the contribution
of the marginal loss Y1 (say), given that the aggregate risk S is bigger than any shortfall sp.

Theorem 2. If the marginal loss Y1 ∼ KW(a, b1), and with S defined earlier, then:

E
(
Y1|S > sp

)
=

E(Y1)
[
1− 1

E(Y1)

∫ sp
0 y1 fY1(y1)FS−Y1(sp − y1)dy1

]
F̄S(sp)

=
(b1B(b1, 1/a + 1))

F̄S(sp)
(12)

×
[

1− {b1B(b1, 1/a + 1)}−1
∞

∑
`1=0

∞

∑
`2=0

∞

∑
`3=0

(−1)`1+`2+`3

(
b2

`1

)(
a`1

`2

)(
`2/a
`3

)
(sp)

a`1−`2

1−
(

1− sa
p

)b1+`3

b1 + `3


.

Proof. Since, Y1 ∼ KW(a, b1) :

E(Y1) = b1B(b1, 1/a + 1). (13)

Again, FS−Y1(sp − y1) = FY2(sp − y1) = 1−
(
1− (sp − y1)

a)b2 . Therefore, the integral
in the numerator in (9) will be:

∫ sp

0
y1 fY1(y1)FS−Y1(sp − y1)dy1

=
∞

∑
`1=0

(−1)`1

(
b2

`1

) ∫ sp

0
sa

pab1ab1ya
1(1− y1)

b1−1(1− y1)
b1−1

{
sp − y1)

a`1
}

dy1

= ab1

∞

∑
`1=0

∞

∑
`2=0

(−1)`1+`2

(
b2

`1

)(
a`1

`2

) ∫ sp

0
ya

1(1− y1)
b1−1(1− y1)

b1−1
(

y1

sp

)`2

dy1 (14)

= b1

∞

∑
`1=0

∞

∑
`2=0

∞

∑
`3=0

(−1)`1+`2+`3

(
b2

`1

)(
a`1

`2

)(
`2/a
`3

)
(sp)

a`1−`2

1−
(

1− sa
p

)b1+`3

b1 + `3

,
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after some algebraic simplification. Our result immediately follows by substituting (14)
and (13) in (9). Similarly, one can obtain an analogous expression for E

(
Y2|S > sp

)
, which

will be:

E
(
Y2|S > sp

)
=

(b2B(b2, 1/a + 1))
F̄S(sp)

(15)

×
[

1− {b2B(b2, 1/a + 1)}−1
∞

∑
`1=0

∞

∑
`2=0

∞

∑
`3=0

(−1)`1+`2+`3

(
b1

`1

)(
a`1

`2

)(
`2/a
`3

)
(sp)

a`1−`2

1−
(

1− sa
p

)b2+`3

b2 + `3


.

Hence, the expression for TCE for non-negative independent losses when the underlying
losses are Kumaraswamy (in the bivariate case) will be:

TCES(sp) = E
(
Y1|S > sp

)
+ E

(
Y2|S > sp

)
,

where the expressions for individual TCE are provided in (12) and (15) and F̄S(sp) can be
obtained by using (10) and doing some standard algebraic computation.

4. TCE for Dependent Bivariate Kumaraswamy Distributions

It is more practical to consider the dependent risk scenario. We consider two particular
bivariate dependent Kumaraswamy models, namely the Dirichlet bivariate and the Libby–
Novick–Jones–Olkin–Liu bivariate Kumaraswamy distribution (for details, see [7] ).

4.1. The Dirichlet Bivariate Kumaraswamy Model

The corresponding joint density is of the form:

fY(y) = α(α + 1)δ1δ2yδ1−1
1 yδ2−1

2 (1− yδ1
1 − yδ2

2 )α−1 I(y1, y2 > 0, yδ1
1 + yδ2

2 < 1)

The marginal densities are, by construction, of the Kumaraswamy type. Thus:

fY1(y1) = (α + 1)δ1yδ1−1
1

(
1− yδ1

1

)α
I(0 < y1 < 1).

and:
fY2(y2) = (α + 1)δ2yδ2−1

2

(
1− yδ2

2

)α
I(0 < y2 < 1).

Note that, here, Y1 and Y2 are dependent (for details, see [7] ). Then, using known results
for the Beta and the Dirichlet distributions, we may verify that:

E(Y1) =
Γ(1 + δ−1

1 )Γ(2 + α)

Γ(2 + α + δ−1
1 )

,

E(Y2) =
Γ(1 + δ−1

2 )Γ(2 + α)

Γ(2 + α + δ−1
2 )

,

Theorem 3. If the marginal loss Y1 is arising out of a Dirichlet bivariate Kumaraswamy model
then (from (9)):

E
(
Y1|S > sp

)
=

B1

F̄S(sp)
, (16)



Mathematics 2021, 9, 1478 7 of 17

where

B1 =
Γ(1 + δ−1

1 )Γ(2 + α)

Γ(2 + α + δ−1
1 )

×

1−
(

Γ(1 + δ−1
1 )Γ(2 + α)

Γ(2 + α + δ−1
1 )

)−1 ∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

∞

∑
j4=0

(−1)j1+j2+j3+j4

(
α + 1

j1

)(
α

j4

)(
j2
j1

)(
δ2 j2
j3

)
sδ1+j3+j4+1

p

δ1 + j3 + j4 + 1

}
,

and:

FS(sp) = P
(
Y1 + Y2 ≤ sp

)
= (α + 1)

∞

∑
j1=0

∞

∑
j2=0

(
α

j1

)(
j1δ2

j2

)
sj1δ2−j2

p B(j1/δ1 + 1, α− j1). (17)

One can obtain F̄S(sp) from (10) by using (17) and marginal survival functions of Y1 and Y2 which
are available in closed form in this case.

Proof. We have:

FS(sp) = P
(
Y1 + Y2 ≤ sp

)
=

∫ 1

0

[∫ sp−y1

0
α(α + 1)δ1δ2yδ1−1

1 yδ2−1
2 (1− yδ1

1 − yδ2
2 )α−1dy2

]
dy1

= α(α + 1)
∫ 1

0
δ1yδ1−1

1

(
1− yδ1

1

)α−1
∫ sp−y1

0
δ2yδ2−1

2

(
1−

yδ2
2

1− yδ1
1

)α−1

dy2

dy1

= (α + 1)
∫ 1

0
δ1yδ1−1

1

(
1− yδ1

1

)α−1
1−

{
1−

(
sp − y1

)δ2

1− yδ1
1

}α
dy1

= (α + 1)
∞

∑
j1=0

∞

∑
j2=0

(−1)j1+j2
(

α

j1

)(
δ2 j1
j2

)
sδ2 j1−j2

p

∫ 1

0
δ1yδ1−1+j2

1

(
1− yδ1

1

)α−j1
dy1

= (α + 1)
∞

∑
j1=0

∞

∑
j2=0

(−1)j1+j2
(

α

j1

)(
δ2 j1
j2

)
sδ2 j1−j2

p B
(

j2
δ1

+ 1, α− j1

)
,

after some algebraic simplification.
Then, we consider the numerator integral of (9) in this case, which is given by
∫ sp

0
y1 fY1 (y)FS−Y1 (sp − y1)dy1

= δ1(α + 1)
∫ sp

0
yδ1−1

1

(
1− yδ1

1

)α
{

1−
(

1−
(
sp − y2

)δ2
)α+1

}
dy1

= (α + 1)
∞

∑
j1=0

(−1)j1

(
α + 1

j1

) ∫ sp

0
yδ1−1

1

(
1− yδ1

1

)α[
1−

(
sp − y1

)δ2
]j1

dy1

= (α + 1)
∞

∑
j1=0

(−1)j1+j2
(

α + 1
j1

)(
j1
j2

) ∫ sp

0
yδ1−1

1

(
1− yδ1

1

)α(
sp − y1

)δ2 j2 dy1 (18)

= (α + 1)
∞

∑
j1=0

∞

∑
j2=0

(−1)j1+j2
(

α + 1
j1

)(
j1
j2

)[∫ sp

0
yδ1

1

(
1− yδ1

1

)α(
sp − y1

)δ2 j2 dy1

]

=
∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

(−1)j1+j2+j3 sj2δ2
p

(
α + 1

j1

)(
j2
j1

)(
α

j3

)[∫ sp

0
yδ1+j3δ1

1 dy1

(
1− y1

sp

)δ2 j2
]

dy1

=
∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

(−1)j1+j2+j3 sj2δ2
p

(
α + 1

j1

)(
j2
j1

)(
α

j3

)(
Γ(j2δ2 + 1)Γ(j3δ1 + δ1 + 1)sδ1

p + δ1 j3 + 1
Γ(j3δ1 + δ1 + j2δ2 + 2)

)
,
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after some algebraic simplification and successive expansion. Consequently, the expression
for E

(
Y1|S > sp

)
will be obtained by substituting (18) in (9). Similarly, one can obtain an

analogous expression for E
(
Y2|S > sp

)
which will be given by

E
(
Y2|S > sp

)
=

Γ(1 + δ−1
2 )Γ(2 + α)

Γ(2 + α + δ−1
2 )

1−
(

Γ(1 + δ−1
2 )Γ(2 + α)

Γ(2 + α + δ−1
2 )

)−1 ∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

(−1)j1+j2+j3
(

α + 1
j1

)(
j2
j1

)
(19)

×
(

α

j3

)(
Γ(j2δ1 + 1)Γ(j3δ2 + δ2 + 1)sδ2

p + δ1 j3 + 1
Γ(j3δ2 + δ2 + j2δ1 + 2)

)}
.

Hence, the expression of TCE in the bivariate Dirichlet Kumaraswamy distribution will be
given by

TCES(sp) = E
(
Y1|S > sp

)
+ E

(
Y2|S > sp

)
,

where the conditional expectations are given in (16) and (19).

4.2. The Libby–Novick–Jones–Olkin–Liu Bivariate Kumaraswamy Model
The corresponding joint density is of the form:

fY(y) = α(α + 1)δ1δ2yδ1−1
1 yδ2−1

2
(1− yδ1

1 )α(1− yδ2
2 )α

(1− yδ1
1 yδ2

2 )α+2
I(0 < y1, y2 < 1). (20)

From [4], p. 236:

E(Yγi
i ) =

αΓ( γi
δi
+ 1)

Γ( γi
δi
+ α + 1)

, i = 1, 2.

Furthermore, the marginal distribution of Y1 will be:

f (y1) = α(α + 1)δ1yδ1−1
1

(
(1− yδ1

1 )α

1− yδ1
1 (1 + α) + α

)
I(0 < y1 < 1).

Similarly:

f (y2) = α(α + 1)δ2yδ1−1
2

(
(1− yδ2

2 )α

1− yδ2
2 (1 + α) + α

)
I(0 < y2 < 1).

In this case, the associated c.d.f. will be:

FS(sp) = P
(
Y1 + Y2 ≤ sp

)
=

∫ 1

0

[∫ sp−y1

0
α(α + 1)δ1δ2yδ1−1

1 yδ2−1
2

(1− yδ1
1 )α(1− yδ2

2 )α

(1− yδ1
1 yδ2

2 )α+2
dy2

]
dy1

= α(α + 1)
∫ 1

0
δ1yδ1−1

1

(
1− yδ1

1

)α
[∫ sp−y1

0
δ2yδ2−1

2
(1− yδ2

2 )α

(1− yδ1
1 yδ2

2 )α+2
dy2

]
dy1

= α(α + 1)
∫ 1

0
δ1yδ1−1

1

(
1− yδ1

1

)α
A1, say

where:
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A1 =
∫ sp−y1

0
δ2yδ2−1

2
(1− yδ2

2 )α

(1− yδ1
1 yδ2

2 )α+2
dy2

=
∫ (sp−y1)

δ2

0

(1− t)α

(1− yδ1
1 t)α+2

dt, on substitution t = yδ2
2

= ykδ1
1

∞

∑
k=0

(
α + k + 1

α + 1

) ∫ (sp−y1)
δ2

0
(1− t)αtkdt

on using the identity(1− x)−s =
∞

∑
k=0

(
s + k− 1

s− 1

)
xk

= ykδ1
1

∞

∑
k=0

(
α + k + 1

α + 1

)
B(sp−y1)

(k + 1, α + 1),

where Bx(a, b) =
∫ x

0 ua−1(1− u)b−1du, the incomplete beta function.
Therefore:

FS(sp)

= α(α + 1)P
(
Y1 + Y2 ≤ sp

)
= α(α + 1)

[
∞

∑
k=0

∞

∑
n=0

(
α + k + 1

α + 1

)
(−α)(n)

n!(1 + k + n)

∫ 1

0

(
sp − y1

)1+k+n
δ1ykδ1+δ1−1

1

(
1− yδ1

1

)α
]

,

on using the series expansion of the incomplete beta function

= α(α + 1)

[
∞

∑
k=0

∞

∑
n=0

1+k+n

∑
m=0

(
α + k + 1

α + 1

)
(−1)m (−α)(n)

n!(1 + k + n)

(
1 + k + m

m

)
s1+k+n

p B(k + m + 1, α + 1)

]
. (21)

As before, one can obtain F̄S(sp) from (10) on using (21) and marginal survival functions of
Y1 and Y2, which are available in closed form in this case.
Then, we consider the numerator integral of (9) in this case, which is given by

D1 =
∫ sp

0
y1 fY1 (y)FS−Y1 (sp − y1)dy1

= α(α + 1)
∫ sp

0
y1δ1yδ1−1

1

(
(1− yδ1

1 )α

1− yδ1
1 (1 + α) + α

)(
1−

(
1− (sp − y1)

δ1
)α)

dy1 (22)

= α(α + 1)
∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

(−1)j1+j2+j3
(

α

j1

)(
j1
j2

)(
δ1 j2
j3

)
sδ1 j2−j3

p

δ1s
δ1+j+1

δ1
p 2F1

(
1− α, j+δ1+1

δ1
; j+1

δ1
+ 2; sp

)
(α + 1)(δ1 + j3 + 1)

,

after some algebraic simplification and successive expansion. Consequently, the expression
for E

(
Y1|S > sp

)
will be obtained by substituting (22) in (9) and will be given by

E
(
Y1|S > sp

)
=

1
F̄S(sp)

(
αΓ( 1

δ1
+ 1)

Γ( 1
δ1
+ α + 1)

)1−
(

αΓ( 1
δ1
+ 1)

Γ( 1
δ1
+ α + 1)

)−1

D1

.

Similarly, one can obtain an analogous expression for E
(
Y2|S > sp

)
which will be

given by

E
(
Y2|S > sp

)
=

1
F̄S(sp)

(
αΓ( 1

δ2
+ 1)

Γ( 1
δ2
+ α + 1)

)1−
(

αΓ( 1
δ2
+ 1)

Γ( 1
δ2
+ α + 1)

)−1

D2

,
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where:

D2 = α(α + 1)
∞

∑
j1=0

∞

∑
j2=0

∞

∑
j3=0

(−1)j1+j2+j3
(

α

j1

)(
j1
j2

)(
δ2 j2
j3

)
sδ2 j2−j3

p

δ1s
δ2+j+1

δ2
p 2F1

(
1− α, j+δ2+1

δ2
; j+1

δ2
+ 2; sp

)
(α + 1)(δ2 + j3 + 1)

.

Hence, the expression of TCE in the bivariate dependent LNJOL Kumaraswamy distribu-
tion will be given by

TCES(sp) = E
(
Y1|S > sp

)
+ E

(
Y2|S > sp

)
,

where the individual conditional expectations are given previously.

5. Copula-Based Conditional Tail Expectation for Kumaraswamy Dispersion Models

In a risk assessment paradigm, several useful risk evaluation measures have been sug-
gested, such as the value at risk (VaR), the tail conditional expectation (TCE), the distorted
risk measures (DRM), and distortion risk measures based on copula (DRMC, in short)—
for pertinent reference in this context, see [8] and the references cited therein. For a real
number θ in (0, 1), the TCE of a risk Y will be:

TCE(θ) = E[Y|Y > VaRY(θ)], (23)

where VaRY(θ) = inf{y : F(y) ≥ θ} is the θ th order quantile corresponding to the
cumulative distribution function (c.d.f.) F(y). In practice, the expectation of Y is computed
when the conditional event θ is fixed (for example, to be equal to 90% or 95%). Then, let us
assume that we encounter with a bivariate random risk (or losses) represented by (Y1, Y2).
It is quite obvious that the TCE of Y1 is unrelated to Y2. Consequently, if we want to control
the overflow of the two risks Y1 and Y2 at the same time, the above formula of TCE does
not provide a satisfactory remedy to this problem; therefore, one might require a separate
formula of TCE which takes into account the excess of the two risks Y1 and Y2. Then, we
deal with the amount:

E
[
Y1|Y1 > VaRY1(θ), Y2 > VaRY2(t)

]
. (24)

If the bivariate random risks (Y1, Y2) are independent in nature, then the expression in (
23) only defined the TCE of a univariate risk, Y1 for a fixed conditional event θ. Therefore,
the case of independence is of much importance. Recently, dependence is beginning to
play a vital role in portfolio risk modeling. For relative merits and demerits between the
assumption(s) of independent and dependent risks, see, [9] and the references cited therein.
However, in reality, the dependence assumption appears to be more reasonable. The above
risk measure in (24) is known as the copula conditional tail expectation (CCTE); for details,
see [10]. Let {Wt}m

t=1 be the market-determined values of a portfolio of assets over m

periods, and Yt = − log
(

Wt
Wt−1

)
be the negative log return (loss) over the t-th period. Then,

given a positive number δ, a very small quantity (almost close to 0), the VaR of Y at the
confidence level (1− δ) will be:

VaR = in f {y ∈ R|P(Y ≤ y) ≥ 1− δ}. (25)

For a detailed study on the computation of VaR used in the pure copula method, we
refer the interested reader to [11]. Then, we state the following proposition (according to
Proposition 2.1 (p. 85, [9]) which represents a useful formula to compute the copula-based
CCTE (equivalently, TCE in our terminology) given as follows. However, we slightly
modified the original proposition (which was not clearly mentioned in [9]) to make it a
correct one.
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Proposition 1. Let (Y1, Y2) be a bivariate absolutely continuous random variable with joint
distribution function represented by the copula C. Assuming that Y1 has a finite mean and c.d.f.
FY1(). Then, for a fixed θ and for all t ∈ (0, 1), the copula conditional tail expected of Y1 is given by

TCEY1(t) =

∫ 1
θ Bt(u)F−1

Y1
(u)du∫ 1

θ Bt(u)du
, (26)

where Bt(u) =
∫ 1

t c(u, v)dv, F−1
Y1

(u) is the quantile function of Y1. Then, we consider two
particular dependent bivariate Kumaraswamy type copulas (for details on these bivariate KW type
copulas, see [12] ).

1. Bivariate Kumaraswamy (type-I) Copula
From [12] (p. 695, Equation (5)), the bivariate copula:

C(u, v) = uv
(

1 + α
(
(1− u1/b)1/a

)(
(1− v1/b)1/a

))
, (27)

The associated copula density will be:

c(u, v) =
∂2C(u, v)

∂u∂v

=
αu

1
b v

1
b

(
1− u

1
b

) 1
a−1(

1− v
1
b

) 1
a−1

a2b2

+
α
(

1− u
1
b

) 1
a−1(

1− v
1
b

) 1
a−1(

u
1
b

(
2v

1
b − 1

)
− v

1
b

)
ab

+ α
(

1− u
1
b

) 1
a
(

1− v
1
b

) 1
a
+ 1.

Therefore, the denominator of (26):

∫ 1

θ
Bt(u)du

=
∫ 1

θ

∫ 1

t
c(u, v)dv

=

(
ab(b + 1)Γ

(
b +

1
a
+ 1
)2
)−1

×
[
(−ab(b + 1))αΓ

(
1 +

1
a

)
Γ(b + 1)Γ

(
b +

1
a
+ 1
)(

θ 2F1

(
− 1

a
, b; b + 1; θ

1
b

)
+ t 2F1

(
− 1

a
, b; b + 1; t

1
b

)
(28)

+ Γ
(

b +
1
a
+ 1
)2(

ab(b + 1)αθt 2F1

(
− 1

a
, b; b + 1; θ

1
b

)
2F1

(
− 1

a
, b; b + 1; t

1
b

)
−bαtθ

1
b +1

2F1

(
a− 1

a
, b + 1; b + 2; θ

1
b

)
2F1

(
a− 1

a
, b; b + 1; t

1
b

))
+ab(b + 1)(θ − 1)(t− 1)) + ab(b + 1)αΓ

(
1 +

1
a

)2
Γ(b + 1)2

+ bαΓ
(

1 +
1
a

)
Γ(b + 1)Γ

(
b +

1
a
+ 1
)(

(ab + 1)θ
1
b +1

2F1

(
a− 1

a
, b + 1; b + 2; θ

1
b

)
+a(b + 1)t 2F1

(
a− 1

a
, b; b + 1; t

1
b

))
− ab(b + 1)α(ab + 1)Γ

(
1 +

1
a

)2
Γ(b + 1)2

]
,
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obtained by using Mathematica. Furthermore, the numerator of (26):∫ 1

θ
Bt(u)F−1

Y1
(u)du

=
∫ 1

θ

∫ 1

t
c(u, v)

(
1− (1− u)1/b

)1/a
dudv (29)

= α
∞

∑
j=0

(−1)j
(

1/a
j

) ∫ 1

θ
(1− u)

j
b

α
(

1− u
1
b

) 1
a

Γ
(

1 + 1
a

)
Γ(b + 1)

Γ
(

b + 1
a + 1

)
−t 2F1

(
−1

a
, b; b + 1; t

1
b

))
− t + 1

)
.

Hence, the copula-based TCE for bivariate Kumaraswamy (type-I) will be obtained by substi-
tuting (28) and (29) in (26). The numerator integral needs to be evaluated numerically.

2. Bivariate Kumaraswamy (type-II) Copula
From [13] p. 6, the bivariate copula:

C(u, v) = uv[1 + δuv{log(1 + (1− u)) log(1 + (1− v))}]. (30)

for any |δ| ≤ 1. Then, the associated density will be:

c(u, v)

=
∂2C(u, v)

∂u∂v

= δuvs. log(2− u) log(2− v) + uvs.
(

δuv
(2− u)(2− v)

− δvs. log(2− u)
2− v

(31)

− δu log(2− v)
2− u

+ δ log(2− u) log(2− v)
)

+ v
(

δu log(2− u) log(2− v)− δuvs. log(2− u)
2− v

)
+ u

(
δvs. log(2− u) log(2− v)− δuvs. log(2− v)

2− u

)
+ 1.

Therefore, the denominator of (26):∫ 1

θ
Bt(u)du =

∫ 1

θ

∫ 1

t
c(u, v)dv = δθ2t2 log(2− θ) log(2− t) + (θ − 1)(t− 1). (32)

Furthermore, the numerator of (26):
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∫ 1

θ
Bt(u)F−1

Y1
(u)du

=
∫ 1

θ

∫ 1

t
c(u, v)

[
1−

(
(1− u)1/b

)]1/a
dudv

=
∞

∑
j=0

(−1)j
(

1/a
j

) ∫ 1

θ
(1− u)j/b×

(
1− u

1
b

) 1
a
(−t(δtu log(2− t)(u + 2(u− 2) log(2− u)) + u− 2) + u− 2)

u− 2
du

=
∞

∑
j=0

(−1)j
(

1/a
j

)[
−δt2 log(2− t)

∫ 1

θ

{
u2
(

1− u
1
b

) 1
a
(1− u)j/b(u− 2)−1du

+2t
∫ 1

θ
u log(2− u)(1− u)j/b

(
1− u

1
b

) 1
a du +

∫ 1

θ
u
(

1− u
1
b

) 1
a
(1− u)j/bdu

}

+
∫ 1

θ

(
1− u

1
b

) 1
a
(1− u)j/bdu

]
(33)

=
[
−δt2 log(2− t)

] ∞

∑
j=0

∞

∑
l=0

(−1)j+l
(

1/a
j

)(
1/a

l

) Γ
(

b+j
b

)
Γ
(

l
b + 3

)
Γ
(

4(b+j+l)
b

) − Bθ

(
l
b
+ 3,

b + j
b

)
+

∞

∑
j=0

∞

∑
m=0

(−1)j+m
(

1/a
j

)(
j/b
m

)

×

 b
(
− log(2− θ)θ

l
b +m+1 − 2

l
b +m+1B θ

2

(
l
b + m + 2, 0

)
+ 2

l
b +m+1B 1

2

(
l
b + m + 2, 0

))
b(m + b + l)


+

∞

∑
j=0

∞

∑
l=0

(−1)j+l
(

1/a
j

)(
1/a

l

) Γ
(

b+j
b

)
Γ
(

l
b + 2

)
Γ
(

3b+j+l
b

) − Bθ

(
l
b
+ 2,

b + j
b

)
+

∞

∑
j=0

∞

∑
l=0

(−1)j+l
(

1/a
j

)(
1/a

l

)Γ
(

b + l
b

) Γ
(

b+j
b

)
Γ
(

2(b+j+l)
b

) − θ
b+l

b 2 F̃1

(
− j

b
,

b + l
b

;
l
b
+ 2; θ

),

on using Mathematica.
Hence, the copula-based TCE for bivariate Kumaraswamy (type-II) by substituting (32) and (
33) in (26).

6. Application

In this section, we re-analyze a data set involving 500 observations from four European
stock indices return series calculated by log

(
Xt+1

Xt

)
during the period from July 1991 to

June 1993, a data set which is available in “QRM and datasets packages” in R software.
This data set was independently analyzed by [10] assuming a two-parameter Gamma
distribution. This data set involves a record on everyday closing prices of prime European
stock indices, for example: Germany DAX (Ibis), Switzerland SMI, France CAC and
UK FTSE. Note that the information collected from these data are on weekdays, during
which usual business activities can be observed. We conjecture at this point that copula-
based bivariate KW type models would be reasonable for computing TCE measures and
determine the minimum risk for two-component risks. In Table 1, the estimated value
of Kendall’s tau between the four Market Index returns as a measure of dependence are
given in tabular form. With the assumption that bivariate KW (Type I) copula and bivariate
KW (Type II) copula represent our four dependence structures, we obtain the estimated
values of the dependence parameters for the 6 pairwise distribution functions, as reported
in Tables 2 and 3, respectively.
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Table 1. Kendall’s tau matrix estimates from four European stock indices returns.

Variable DAX SMI CAC FTSE

DAX 1 0.4052 0.4374 0.3706
SMI 0.4052 1 0.3791 0.3924
CAC 0.4374 0.3791 1 0.4076
FTSE 0.3706 0.3924 0.4076 1

Table 2. Fitted copula parameter α for the bivariate KW (Type I) copula.

Variable DAX SMI CAC FTSE

DAX ∞ 0.3422 0.4251 0.0789
SMI 0.3422 ∞ 0.7425 0.4786
CAC 0.4251 0.7425 ∞ 0.5491
FTSE 1.0789 0.4786 0.5491 ∞

Table 3. Fitted copula parameter δ for the bivariate KW (Type II) copula.

Variable DAX SMI CAC FTSE

DAX ∞ 0.5672 0.3827 0.1874
SMI 0.5672 ∞ 1.5275 0.6847
CAC 0.3827 0.5275 ∞ 0.1945
FTSE 0.1874 0.6847 0.1945 ∞

The smallest value in Table 4 produces the lowest risk. Consequently, the less risky
paired components (X, Y) are: (DAX, CAC), (SMI, DAX), (CAC, DAX) and (FTSE, DAX),
(FTSE, SMI), where X is the target risk and Y is the associated risk. We also utilized bivariate
Gaussian copula (Ref: https://arxiv.org/pdf/0912.2816.pdf, Equation (2.1), (accessed on 15
December 2009)) to compute TCE to determine the minimum risk for a two-component risk
scenario. The results are given in Appendix A. From the results, it is evident that by using
the Gaussian copula (for several of the estimated choices of the dependence parameter ρ
from the above data), the results are less efficient in the sense that the computed TCE risk
measures, in several cases (see Table A2, values, for example, (i) row 5, columns 1–3; (ii) row
4, column 4), which have quite large values. Therefore, one cannot make a decision on the
minimum risk(s) for this particular data set based on a Gaussian copula. The reason being
for this particular data set that it must be the case that the measures of tail dependence
(as quantified by the TCE) are heavily dependent on the marginal distributions, which is
contrary to the general perception that “When it comes to quantifying the extent of tail
dependence, it is generally agreed that measures of tail dependence must be independent
of the marginal distributions of the risks but rather solely copula-dependent” (for details,
see [6] and the references cited there in). Consequently, the efficiency of KW-based bivariate
copula in terms of TCE measures is established in this context. The results corresponding
to the Gaussian copula are given in the Appendix A.

By using the Equations (26), (28) and (29) for the bivariate Kumaraswamy (Type I)
copula fitting, and Equations (32), (33) and (26) for the bivariate Kumaraswamy (Type II)
copula, we calculate for a fixed levels θ = t = 0.95 the TCE risk measures for the all cases,
and the results are summarized in Table 4.

Table 4. TCE Risk measures for θ = 0.95 and t = 0.95 with bivariate Gaussian copula with ρ = 0.9
(left panel) and bivariate Gaussian copula with ρ = 0.95 (right panel).

Variable DAX SMI CAC FTSE

DAX —– 19.4533 17.6087 21.9731
SMI 14.2812 —– 23.4038 17.7486
CAC 18.6328 18.6045 —– 20.2132
FTSE 14.5709 13.7593 22.4079 —–

https://arxiv.org/pdf/0912.2816.pdf
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7. Conclusions

In this paper, we focused our attention on the computation of TCE when the under-
lying portfolio losses are from a bounded risk (individually and/or component wise for
two and higher dimensions), preferably following a univariate KW distribution. We also
considered independent and dependent bivariate KW distribution for a two-dimensional
portfolio risk and computed the associated TCE. This class of distributions may serve as
error distribution for generalized linear models in the sense developed by [14]. In this study,
we explored the possibility of having bivariate KW-based copulas that may be utilized for
assessing risk (in the form of TCE measures), especially in situations where bounded losses
are available and easy to deal with. In addition, for illustrative purposes, based on a real-life
data set (stock market data), we computed CCTE measures based on two types of bivariate
KW copulas and identified which pairs would provide less risk based on the computed
values of the associated TCE. Anyone believing that their data (absolutely continuous in
nature) are a distributed bivariate Kumaraswamy model as considered herein may find
this work self-contained.
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Appendix A

For the European stock indices data, as indicated previously, for illustrative purposes,
we considered the bivariate normal copula as a probable candidate to identify the less risky
paired components. It is defined as follows:

CNormal(u1, u2) = Φ(2)(Φ−1(u1), Φ−1(u2); ρ),

where Φ(2)(x1, x2; ρ) is the joint distribution function of a bivariate normal vector with zero
means, unit variances and correlation ρ. Table A1 summarizes the estimate of the copula
parameter ρ for the six pairs of data when fitted with the bivariate normal copula.

Table A1. Fitted copula parameter ρ for the Gaussian copula.

Variable DAX SMI CAC FTSE

DAX 1 0.8649 0.5893 0.3231
SMI 0.8649 1 0.4529 0.8524
CAC 0.5893 0.4529 1 0.6372
FTSE 0.3231 0.8524 0.6372 1

In Table A2, we calculated for a fixed level θ = t = 0.95 the TCE risk measures for all
the cases for the bivariate Gaussian copula, the results of which are summarized in Table 4.
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Table A2. TCE risk measures for θ = 0.95 and t = 0.95 with bivariate Gaussian copula left panel
(with ρ = 0.9) and right panel (with ρ = 0.95).

Variable DAX SMI CAC FTSE

DAX —– 19.4533 25.6072 26.1129
SMI 29.4561 —– 23.4038 22.6875
CAC 34.6823 18.6045 —– 28.5331
FTSE 32.5709 27.4533 26.7138 —–

For illustrative purposes, we provided Figure A1 on TCE measures computed from
bivariate KW (type-I) copula, bivariate KW (type-II) copula, and the bivariate Gaussian
copula for two selected values of ρ = 0.9, 0.95. From these two graphs, it can be observed
that for the stock return data, Gaussian copula-based TCE has more dependence on the
marginals, and as a consequence, it fails to capture the tail conditional risk for several paired
stock indices to obtain which pairs have the minimum risk. In these graphs, the X axis
represents the values of the parameters of the KW distribution (i.e., both a and b, which are
rotated from the starting value from 0.990 to 0.998. The reason being, for all the paired data
sets, the estimated values of the two parameters for the two parameter KW distribution,
and estimated values of a and b appear to be the following: â ∈ [0.990, 1.002]; b̂ ∈
[0.899, 1.0231].
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Bivariate KW (Type−I) copula

Comparison of TCE
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Comparison of TCE

Figure A1. Comparison of TCE measures based on the bivariate KW (type-I) copula, a bivariate
KW (type-II) copula with a bivariate Gaussian copula for the selected parameter choices of KW
distribution obtained from the stock return data.
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