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ABSTRACT 

The need for coloured solar cells is particularly relevant to the adoption of photovoltaic 

devices in building-integrated photovoltaics. This thesis describes the process by which 

perovskite-based thin-film (MAPbI3) solar cells (PSCs) were optimised to tune colour without 

compromising flexibility whilst increasing short-circuit current density (JSC). Solar cells 

containing antireflective front coatings of planar, nanopillar and cross-grating geometries are 

simulated in a three-dimensional space by the Finite Differences in Time Domain (FDTD) 

numerical method using Ansys Lumerical software. The main outcomes of the numerical 

simulations are the optical photocurrent and the overall reflection, which is converted into 

colour using the CIE 1931 Colour-matching functions for standardised observers. Two Figures 

of Merit were developed, based on the optical photocurrent and the Euclidian distance 

between the simulated and desired colour. The best of the two FoMs is maximized via particle 

swarm optimization algorithm, by variation of geometrical properties of the front coverings 

and intrinsic ITO and Spiro-OMeTAD layer thicknesses. Through analytical elimination of 

redundant variables and successive restrictions in parameter ranges, the optimal geometrical 

parameters for flexible thin-film photonically-enhanced PSCs coloured red, green, or pink are 

obtained for increases in JSC upwards of 10.7%, and a versatile methodology is posited for 

future optimizations. 

Keywords: Photonics, Solar Cells, Perovskite, Structural Colour, BIPV, Thin-film
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RESUMO 

A necessidade de células solares coloridas é particularmente relevante à adoção de 

dispositivos fotovoltaicos em equipamentos incorporados em facetas arquitetónicas. Esta 

dissertação descreve o processo pelo qual células solares de filme-fino à base de Perovskite 

(MAPbI3) foram otimizadas para ajustar a cor sem prejudicar a flexibilidade e aumentando a 

densidade de corrente. Células solares contendo revestimentos frontais antirreflexo de 

geometrias planares, nano-pilares e grelhas cruzadas são simuladas num espaço 

tridimensional pelo método numérico de Diferenças Finitas no Domínio do Tempo com o 

software Ansys Lumerical. Os principais resultados das simulações numéricas são a foto-

corrente e a reflexão global, que é convertida em cor utilizando as funções de correspondência 

do CIE 1931 para observadores normalizados. Desenvolveram-se duas figuras de mérito, com 

base na foto-corrente e na distância Euclidiana entre a cor simulada e a cor desejada. A melhor 

figura foi maximizada por otimização Particle Swarm ao variar as geometrias das estruturas 

fotónicas frontais e das camadas intrínsecas de ITO e Spiro-OMeTAD. Após eliminar variáveis 

redundantes e restringir os intervalos de otimização, obtiveram-se geometrias ótimas para 

obtenção de estruturas coloridas vermelhas, verdes e rosa acrescendo aumentos de corrente 

superiores a 10.7% com o desenvolver de uma metodologia versátil aplicável a futuras 

otimizações. 

Palavas-chave: Fotónica, Células Solares, Perovskite, Cor Estrutural, BIPV, Filme-fino 
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1  
INTRODUCTION 

1.1 Market Overview 

The field of photovoltaic (PV) technology has made significant progress in recent years. 

Bloomberg Intelligence's Global Solar Energy 2023 Outlook report predicts a substantial 

increase in demand for solar energy, with a projected growth of 20-30% in 2023 [1]. In addition, 

Trendforce estimates that 350.6 GW of PV systems could be installed this year, representing a 

53.4% increase from 2022 [2]. The positive market outlook is due to recent market and 

technological advancements and solar's cost leadership, which has been steadily improving 

and out-competing fossil fuels and nuclear in any unsubsidized investment case [3].  

The solar energy sector's strong upward trajectory is evident in recent analyses predicting 

that worldwide solar capacity will exceed 2 TW by the end of 2025 [3]. Solar energy is also 

projected to surpass coal power by 2027 [1], indicating the potential to significantly alter the 

global energy landscape. 

Figure 1.1 – Global solar market forecast in 2017-2026. Source: Solar Power Europe [3] 
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1.2 Building Integrated Photovoltaics 

The market for solar cells (SCs) can be further expanded upon by exploring novel 

implementations, such as their integration in buildings, where they could also serve as a 

safeguard from weather-induced degradation [4]. In the EU, buildings are collectively 

responsible for 40% of the total energy consumption [5], [6]. Building Integrated Photovoltaics 

(BIPV) could alleviate this energetic burden while also compensating for it by turning the 

façades of modern buildings into solar farms, all the while satisfying the base requirements 

imposed on traditional building envelopes [7]–[9]. This building-generated energy would be 

fundamental to minimising strain on the power grid, which is often a limiting factor for non-

on-demand energy sources, like most renewables[10]. These systems can integrate with the 

power grid or stand alone. Moreover, BIPV can be integrated into many facets of architectural 

design in roofs, façades, blinds, shutters, decorative features,  shading or railings, [7], [11], [12] 

fenestration elements [13] or fences [14]. 

There are several intrinsic prerequisites for the application of a material as a building 

envelope, namely its fire safety, mechanical resistance, durability,  and hydro and geothermal 

performance [7]. Additionally, the inhomogeneity of solar irradiance poses yet another 

challenge by being highly dependent on the direction that the façades of the buildings face [7]. 

This is further complicated by the fact that a BIPV installation with a fully vertical orientation 

only outputs roughly 75% of the energy a system with a 20-degree tilt angle would produce 

under optimal conditions [12],[13]; this downside may be offset by tilting the systems relative 

to the façade, forsaking aesthetics[12]. Furthermore, partial shading from surrounding 

buildings is also worth considering, especially in megacities [8]. Shading from snow or dust 

can also stunt the performance of these modules and potentially lead to hotspot defects, 

though this can be mitigated with self-cleaning (hydrophobic) coatings[15]–[17]. Active and/or 

passive cooling may also be included to prevent overheating [17], [18].  

Despite these hurdles, there has been a substantial increase in both the market and the 

developers’ interest in BIPV, which brought about a reduction in the costs associated with its 

installation and a subsequent increase in its viability [13]. Nevertheless, the global BIPV 

market still has considerable room for expansion [12], [13].  Gholami et al. 2020 found that, 

given an investment discount rate of 5% in Europe, BIPV systems would be capable of fully 

reimbursing the installation and maintenance expenditures for all installations not facing 
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northwards [8]. From a generalized stakeholder’s perspective, current BIPV systems are 

already economically favourable [19]. 

1.3 Coloured Photovoltaics 

For BIPV to become a staple of modern architecture, beyond its remarkable potential to satisfy 

the energetic demands of the current ever-growing number of urban sites while being 

financially sound, certain aesthetic requirements must be met, lest these potential technologies 

be shunned by architects and the public alike [14], [19].  In this sense, colour is one of the most 

relevant factors limiting the adoption of these technologies [10]. These aesthetic requirements 

are particularly pertinent regarding the integration of these systems when considering the 

preservation of architectural cultural heritage and natural landscapes [10], [11], where the 

typical dark colours associated with photovoltaics would not fit. 

The main drawback associated with coloured PVs, aside from the logistics behind its 

conception, is the fact that the colour exhibited i.e. the light reflected is in essence, intentionally 

wasted potential photocurrent [10], [14]. M. Chivelet et. al. quantifies photocurrent losses of 

between 7-50% based on the colour being reflected [7]. An upside of these reflection losses is 

the diminished need for cooling resulting from decreased absorption [14]. In the present 

literature, there are several different methods of obtaining colour in SCs, some of the more 

relevant being: anti-reflection coatings (ARC), coloured or semi-transparent PV-active layers, 

solar filters inserted within or on top of the base cell layers, coloured polymeric encapsulants 

and customized glass fronts containing coloured dot patterns [11], [12], [17]. The work 

described herein uses structural colours obtained by light-wave interference, which can be 

customized by tuning the different geometrical structural parameters defining the front 

coating of a perovskite solar cell (PSC). One key advantage that structural colour has over 

pigments is the fact it is less likely to sun-bleach or fade over the device’s lifespan [14]. 

1.4 Perovskite Solar Cells 

In 2009 Kojima et. al. reported a 3.8% efficiency conversion rate for a very short-lived and yet 

promising perovskite nanocrystal [20] and since then more publications are published each 

year, in a trend set to last for the foreseeable future [21], [22] as the current record efficiency 

reached 25.7% in 2023 [23], [24]. Their attractiveness to researchers and investors comes from 

their excellent optoelectronic properties, notably their light absorption, charge carrier 
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mobility, and low exciton binding energy [20], [22]. Some benefits of PSCs include high carrier 

lifetime, low surface bandgap and tuneable bandgaps [22], [28]. Its fabrication is highly 

scalable [27], comparatively simple, cost-effective [26] and viable on flexible substrates [22].  

Perovskites are characterized by an ABX3 organometallic-halide chemical formula, where 

A is a monovalent organic cation like methylammonium (MA+) or formadinium (FA+), B is a 

divalent metal cation such as Pb2+ or Sn2+ and X is a 17th group halogen like I- Br- or Cl- [22], 

[25], [26], [28]. These three constituents may be proportioned in terms of their stoichiometry 

to tune the bandgap of the perovskite, which would optimally fall within the 1.2-1.62 eV range 

for most photovoltaic applications [26]. MAPbI3, the most commonly used perovskite - the one 

herein explored– has direct a bandgap of 1.55eV [22], a well-defined peak in absorption 

coefficient for incident energy levels immediately past its bandgap value [26]. 

The main drawback of PSCs is their stability when exposed to light, heat and moisture, 

especially when compared to silicon-based cells [29]. The stability of PSCs is paramount in 

BPV applications, particularly in the case of lead-based perovskites. The negative 

environmental and health impacts of lead have been well documented for centuries, thus 

proper encapsulation must not only shield the PSC from heat, UV radiation and moisture, but 

also effectively prevent the leakage of harmful by-products [12], [27]. There have been multiple 

reports of cells lasting longer than 1000 h while keeping energy generation above 80% of its 

initial value [30], [31] and recent work done by Zhao et. al. describes the process by which 

specific PSCs were designed to last over 5 years operating continuously at 35°C [32], but these 

records are still far below the standard 25-year warranty of typical silicon modules [25], [33]. 

1.5 Photonic-enhanced Thin-film Solar Cells 

There are considerable benefits associated with the reduction in the thickness. One such 

benefit is the reduction in the amount of material used in the production of these devices. This 

Figure 1.2 – MAPbI3 Perovskite real and imaginary part refractive index (a) and ABX3 crystalline structure (b). 
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reduction is particularly relevant when considering scarcer or toxic materials, such as the lead 

in the absorber layer of PSCs [34]–[36]. In theory, this would also lead to a reduction in 

manufacturing costs, but this is offset by the added cost and complexity of the resulting 

structures [37]. Additionally, reducing thicknesses would also mitigate the risks associated 

with growing material demands or the market volatility of the Ag used in the cells studied 

herein [38], [39]. Provided the cell is not limited by surface recombination, thickness reduction 

diminishes bulk recombination and increases open circuit voltages, correlating with higher 

efficiency[40], [41]. Granted the mean charge diffusion length remains unaltered, this increase 

in efficiency is compounded by a reduction in carrier transport loss, especially in amorphous 

materials [41]. Thin-film solar cells (TFSCs) are also more industrially scalable as they can be 

fabricated via roll-to-roll processing [36]. Regrettably, as of 2021, there were still no viable 

designs for bendable SCs [42]. Lowering the thickness of these designs would allow for greater 

flexibility of the SCs, at the cost of reducing their light absorption — a downside which is 

mitigated by the implementation of light-trapping (LT) photonic structures [43]. 

Photonic structures often make simultaneous use of four light management techniques, 

namely light in-coupling, scattering, internal reflectance and geometric index matching [43]. 

These structures can be designed to avoid negatively impacting the flexibility of the cells and 

may be employed in the back, front, or both sides of the absorber layer [44] which could also 

be nanostructured itself [36],[40]. Refractive index mismatch between media causes reflection 

losses [36], [45]. When considering photonic structures applied to the front of the cell, the 

complex refractive index of an ideal LT coating would possess a null imaginary part and a real 

part matching the absorber layer [34]. An increase in the real part of the reflective index of a 

photonic structure leads to a pronounced field scattering effect from angular refraction [40]. 

Depending on the shape of the structure, a geometrical refractive index gradient is achieved 

to counteract the mismatch between the cell and the air by gradually increasing the volume of 

photonic material interacting with the light [45]. One of the ways in which of photonic 

structures benefit TFSCs has to do with the mitigation of the effect that the angle of incidence 

has on the cell efficiency. Conversion efficiency is maximized when light is directly projected 

upon the surface of the cell (at a 0-degree angle) and minimized when this angle reaches 90°  

[42]. These structures can allow the cell to produce an optical response for incidence angles as 

high as 70° [46]. This effect is particularly relevant for BIPV and wearable devices, as these 

devices most likely are not directly facing the sun and solar tracking is unfeasible [47], [35]. 
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2  
MATERIALS AND METHODS 

2.1 Simulation Methods and Yields 

This work uses the Finite Differences Time Domain (FDTD) method to accurately solve 

Maxwell's equations and thus study light-matter interaction in solar cells. The FDTD method 

directly approximates Maxwell's equations via finite differences approximation  [48], [49], 

which not only allows for extreme versatility in terms of the allowed simulation geometries, 

but also the optical models for the individual materials [48]. FDTD is an indispensable tool 

which facilitates the accurate prediction of the behaviour of these theoretical solar cells. The 

software chosen to apply this method is Ansys Lumerical FDTD Solutions. This software 

incorporates a 3D CAD environment which will be used to model the cells. Additionally, 

Lumerical is also viable for Python integration via a prebuilt Application Programming 

Interface (API). It is through this API that these simulations will be tuned and executed. The 

resulting data is parsed, interpreted, and stored within the Python environment. 

The simulation yields needed for this work are the generated photocurrent density (Jsc) 

and the reflection spectrum. The former is fundamental to determining the colour of the device 

while the latter defines the amount of light absorbed by the cell that can be directly converted 

into an electrical current, given by Equation 1 for the AST G-173 global solar irradiance. 

 𝐽𝐽𝑠𝑠𝑠𝑠 = ∫𝐴𝐴(𝜔𝜔)𝐴𝐴𝐴𝐴1.5𝐺𝐺𝑑𝑑𝑑𝑑 (1)  

2.2 Colour Processing Methods 

The reflected power spectrum determines the appearance characteristics of the reflected light, 

namely its hue, lightness, and saturation [50]. Hue is the measurement by which the observer 

perceives the base colour of an object as being red, green, blue, pink, etc. [50]. Lightness 
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determines how bright the perceived colour is, and is used to distinguish between different 

shades of the same colour; regardless of its base hue [50]. Two objects are considered to be of 

equal lightness if they reflect equal amounts of light [51]. Saturation, is the degree of separation 

between a colour and its grey counterpart [51]. Perception of colour, especially regarding 

lightness, depends on the observer’s macular pigmentation [52], [53]. Additionally, the 

lightness of the reflected colour is inversely proportional to the overall absorption of incident 

light. Accounting for this, it was deemed preferable to, at least in the earlier stages of 

development, isolate the optimization of the colour of a simulated solar cell in terms of hue 

and saturation. Not only would this be the most relevant factor to determine whether a certain 

colour was being approximated, but it would also make it easier for a human observer to 

distinguish between different iterations, since all the colours would be portrayed at maximum 

lightness and not as multiple different shades of the same dark tones. 

The colour of the simulated solar cell can be extrapolated from the power spectrum 

obtained by the multiplication of its reflection spectrum and the simulated solar power 

spectrum built into Lumerical [54]. The reflected hue of the device can be determined from the 

CIE Colour Matching Functions. These functions match the reflection power spectrum to a set 

of three tristimulus values each of which is analogous to one of the three cone cells with which 

the human eye perceives the attributes of the colour [55]. These adimensional tristimulus 

values, denoted by X, Y and Z, are given by the functions plotted in Figure 2.1. 

These tristimulus values can be normalized by the division of their sum to obtain only the 

information pertaining to chromaticity, that is its hue and saturation. In doing so the colour 

can be mapped to its x and y variables at the cost of its lightness as given by the following 

equations [55], [56]. 

Figure 2.1 – Set of functions from which the adimensional tristimulus values are calculated and the graphical 

representation of the CIE standardized values as a function of the reflected wavelength (λ) in nanometers. 
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  𝑥𝑥 = 𝑋𝑋
𝑋𝑋+𝑌𝑌+𝑍𝑍

, 𝑦𝑦 = 𝑌𝑌
𝑋𝑋+𝑌𝑌+𝑍𝑍

, 𝑧𝑧 = 𝑍𝑍
𝑋𝑋+𝑌𝑌+𝑍𝑍

= 1 − 𝑥𝑥 − 𝑦𝑦  (2, 3, 4) 

The values calculated for x and y can be converted to RGB values by multiplying the (x, 

y, z) vector by the inverse matrix of the three primary chromaticities, which have been 

tabulated for all the wavelengths between 380 and 780 nm for a 2° visual angle by the 

International Organization for Standardization. [57] 

 �
𝑥𝑥𝑟𝑟 𝑥𝑥𝑦𝑦 𝑥𝑥𝑏𝑏
𝑦𝑦𝑟𝑟 𝑦𝑦𝑔𝑔 𝑦𝑦𝑏𝑏
𝑧𝑧𝑟𝑟 𝑧𝑧𝑔𝑔 𝑧𝑧𝑏𝑏

�
−1

�
𝑥𝑥
𝑦𝑦

1 − 𝑥𝑥 − 𝑦𝑦
� = �

𝑟𝑟
𝑔𝑔
𝑏𝑏
�  (5) 

The three standardized primary colours' tristimulus values used in the colour-matching 

function were obtained through experimental investigations by WD Wright using 

monochromatic wavelengths of 700 nm, 546.1 nm and 435.8 nm for the red, green, and blue 

primaries, respectively [58]. 

To serve as the definition of the colour white, the chosen standardized illuminant was the 

CIE D65 as it closely represents average daylight with a colour temperature of 6504 K. [53], 

[54] If one of these pairs of (x, y) coordinates were to fall outside of the RGB gamut the values 

of its components are equally raised until they fit the RGB space [55]. 

2.3 Figure of Merit 

RGB is an additive colour model, meaning that each colour is described as the additive mixture 

of red, green and blue lights [53]. Colours defined in RGB values are more similar the closer 

their RGB values are. If we place a colour in a three-dimensional vectorial space where its 

cartesian coordinates are defined directly by its RGB values we can determine the distance 

between two colours by its Euclidean Distance, given by Equation 6: 

 Colour Distance =  �(𝑟𝑟 − 𝑅𝑅)2 + (𝑔𝑔 − 𝐺𝐺)2 + (𝑏𝑏 − 𝐵𝐵)2 (6) 

Where (r, g, b) and (R, G, B) are the RGB values corresponding to each of the two colours. 

Using these results two Figures of Merit (FoM) with which to compare the performance of 

different structures are theorized, as per equations 7 and 8. 

 Original FoM =  𝐽𝐽𝐽𝐽𝐽𝐽
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

    Root FoM =  𝐽𝐽𝐽𝐽𝐽𝐽
√𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

  (7, 8) 
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These FoMs differ in the emphasis put on minimizing the Colour Distance. In theory, the 

Original FoM should place equal importance in maximizing the JSC and minimizing the Colour 

Distance, whereas the Root FoM should prioritize maximizing the JSC over minimizing the 

Colour Distance given that the intent is to reach a colour as similar (and thusly as close) as 

possible to the intended colour, both FoM are inversely proportional to the colour distance 

and directly proportional to the generated current density. Meaning that the higher the FoM 

value the higher the relative performance of the solar cell in terms of its ability to generate 

photocurrent without compromising its colour. 

2.4 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a stochastic, iterative, population-based multi-

parameter optimization algorithm [59]. This “smart-search” type optimization technique 

attempts to find the best set of parameters as opposed to solving for an optimal continuous 

function [60]. PSO handles a set number of particles, each with a randomized starting position 

and velocity vectors. The coordinates of each particle represent the optimized parameter 

values in a finite space. Upon the beginning of an iteration, each particle records the response 

of the function for its corresponding parameters. This information is then shared among the 

population, so that the particles may converge in clusters where the best response is being 

recorded [59], [60]. This convergence happens by adjusting the velocity vector for each particle 

and redirecting towards the current best. The new velocity is calculated considering three 

factors, the inertia weight, the social learning factor, and the cognitive learning factor, the first 

of which dictates how much of the particle’s momentum is conserved while the remaining two 

factors regulate the pull towards the global and individual current best, respectively [61].  This 

methodology is summarized in Figure 2.2. PSO has been used in the computational design of 

photonic structures [62], [63]. Most pertinently, this method is suited to complex problems 

involving non-linearity, multiple optimization parameters and local optima [61]. This method 

is easy to implement [64]and time-efficient, especially in comparison with the parameter 

sweeping method whose complexity rises exponentially with the number of optimization 

variables. 
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2.5 Solar Cell Structures 

Typical PSCs are composed of a metal cathode serving as the back contact, a hole transport 

layer (HTL) to lead the holes into the contact, an absorber layer where photocurrent is 

generated, an electron transport layer (ETL) to direct the mobilized electrons towards the 

anode front contact, which is usually transparent conductive oxide (TCO) [22], [28]. Material-

wise,  the most commonly used materials for the transport layers are Spiro-OmeTAD (Spiro), 

NiO, and CuO for the HTL and TiO2, SnO2, and SiO2 for the ETL [28]. Coatings may be added 

to reduce reflection, increase the photon path length and prevent potential degradation [65]. 

The simulated solar cells are, as depicted in Figure 2.3, MAPbI3 perovskite TFSCs cells 

built upon a silver substrate, by default possessing a Spiro HTL and a TiO2 ETL, encapsulated 

by an ITO ARC [66]. Three different ARC geometries were subjected to optimization: a planar 

layer, an array of nanopillars and a grid of crossed gratings. Their optimization is defined by 

the fine-tuning of the geometrical properties that define these layers. For the planar PSCs, 

optimization depends solely on the thicknesses of its transport layers and ARC. For the three-

dimensional coatings, three extra variables are considered, namely the pitch, width, and 

height. The stipulated pitch, the measurement by which the repeating unit cells are separated, 

is defined as a multiple of their width; for instance, a pitch of 1 implies the units have no 

separation in between them, and a pitch of 2 would result in a gap matching the width. 

Figure 2.2 – Flowchart description of the basic operating principles behind the particle swarm optimization method. 
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Since polarization and viewing angles are not taken into consideration when accruing the 

reflection spectra, symmetry must be preserved in the plane perpendicular to the incident 

radiation. Therefore, the nanopillar grating pitch is kept consistent on both normal axes. Both 

the fixed parameter values and the optimization ranges are presented in Table 2.1. 

Table 2.1 – Table containing the structural parameters of the structures in question. The values within square 

brackets are the upper and lower bounds of the optimization ranges. Pitch is given as a multiple of the width. 

 Ag Spiro Perovskite TiO2 ITO Width Height Pitch 

Planar 

150 
nm 

[50-200] 
nm 

500 nm 25 nm 
[50-200] 

nm 

- - - 

Nano 
Pillars [50-200] 

nm 
[0-500] 

nm 
[1-3] 

Crossed  
Gratings 

The values pertaining to the simulated refractive indexes of the ITO, TiO2, perovskite, 

Spiro, and Ag layers were sourced from Konig et. al [67], Siefke et. al [68], van Eerden et. al 

[69], Filipič et. al [70] and E. Palik [71], respectively, presented in Appendix A. Both the real 

and the imaginary refractive index curves are plotted in Figure A.1 while the curve fitting 

parameters used to interpolate the aforementioned experimental data are listed in Table A.1.

Figure 2.3 – 3D Rendering of the simulated MAPbI3 perovskite solar cells with planar (a), nanopillar (b.1) and 

crossed grating structures (c.1) with illustrative zoom-in renderings of the photonic structures subject to optimiza-

tion and top-down schematics of the simulated nanopillar (b.2) and crossed gratings unit cells. 
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3  
RESULTS AND DISCUSSION 

3.1 Initial Developments and Method Validation 

Given the novelty of the concepts and structures herein described, a series of precursory 

experiments were conducted to ensure that these results could be deemed viable and 

reproducible. Firstly, the colour distance metric was tested, secondly, the applicability of the 

CIE method was evaluated, and finally, a baseline set of simulation results was compared to 

the analytically solved counterpart. 

3.1.1 Colour Distance Tests 

To appraise the validity of the Euclidean distance method as a means of quantifying the 

differences between two colours, a list of 1283 RGB codes were generated to define a colour 

space between absolute white (with coordinates 0, 0, 0) and absolute black (255, 255, 255). Each 

of these codes is evenly distanced by a factor of two degrees of separation from any other given 

point in this three-dimensional space. By this metric, the highest possible separation between 

any two colours would be approximately 441, as given by the distance between absolute white 

and absolute black. As previously mentioned, the perception of colour and subsequently the 

difference between colours is highly subjective, nevertheless, the existence of an objective 

metric, albeit unitless, is necessary to home the optimizing particle swarm on the chromaticity 

closest to the desired colour. The distances between each point in this generated array and a 

set of chosen colours were then calculated.  This set comprises the extremes of each axis of the 

RGB space, absolute black, absolute white, and an arbitrarily chosen intermediate point with 

RGB values (255, 105, 180), henceforth referred to as pink. Figure 3.1 shows the effectiveness 

of this method in distinguishing different colours. When taking into consideration the three 

primary colours, an average observer would have difficulty distinguishing between any two 
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colours within 30 points of the original value. A side effect of interpreting RGB codes as a set 

of Euclidean coordinates is the fact that every distance value is representative of a spherical 

surface centring on said RGB value and possessing a radius equal to the distance value. This 

means that for any given colour, provided that the distance value is large enough, two 

noticeably different hues may be assigned the same distance value. This explains the 

pronounced variations in chromaticity and lightness for the most distant points in the subplot 

in Figure 3.1 – e.g., the shifts from green to yellow in the blue chart. This variance is mostly 

trivial for PSO, as these shifts in hue become progressively less pronounced as the swarm 

closes in on a particular point.  

From Figure 3.1 it is possible to verify that the determining factor when calculating the 

distance to absolute white (or absolute black) is lightness, not hue. For instance, the white and 

black charts show a progression in different shades of blue, but any coloured dot could be 

replaced by another, equally light and therefore equally distant, shade of either red or green. 

Since the chosen method for reflection spectrum to colour conversion neglects the information 

pertaining lightness of the reflected colour, there is no chance that the optimizing algorithm 

might erroneously converge on an equally light colour to the detriment of its chromaticity.  

Figure 3.1 – Colour Distance Charts for mono-red, mono-green, mono-blue, absolute white, absolute black, and 

pink Each chart consists of 24 coloured dots with colour distances increasing left to right, top to bottom from the 

original colour. Each coloured dot is labelled with its corresponding colour distance value. 
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3.1.2 CIE Method Validation 

Spectra pertaining to another parallel experiment conducted by PhD Student Jenny Boane 

were tested to demonstrate the viability of the CIE method as a tool to convert reflectance 

spectra into RGB colour values. Said experiment sought to study the effects of varying TiO2 

thickness values on the colour of a PSC and its encapsulant layer and provided data for the 

reflectance spectra of each specimen as well as photographs of the specimen itself. After 

levelling the data to match the tristimulus array, the extrapolated colour for each specimen is 

shown in direct comparison with the provided pictures in Figure 3.2. 

In  Figure 3.2 b) one can see that the simulated colour closely follows the actual colour of 

the device. There is, however, one notable exception in the 135 nm Cell specimen, whose 

anomalous response is plausibly a side effect lack of sensitivity of the CIE XY method to the 

lightness factor. This effect, as per Chapter 2.2 , often translates into seemingly muddled, pale 

colours, whenever the analysed spectrum lacks any distinguished peaks in the visible light 

interval. This explanation, accompanied by the reflectance curves illustrated in  Figure 3.2, is 

congruent with the fact that the colour derived from the spectrum corresponding to the 

isolated 135 nm encapsulant is much clearer and consistent with the preceding thickness 

values. Nevertheless, these imperfections are negligible as the PSO algorithm is designed to 

circumvent them altogether, as previously noted. 

Figure 3.2 – Measured reflection profiles for bare PSCs with varying TiO2 thickness (40, 50, 60, 75, 100, 120 and 

135 nm). The colour of each line represents the CIE determined colour. b) Table comparing the CIE colour to the 

actual colour of the devices for bare (reflection profiles shown in a)) and encapsulated PSCs with varying TiO2 

thickness. Each photo of the device is accompanied at its right by the respectively calculated CIE colour. 
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3.1.3 Preliminary Simulations 

The base FDTD model (purely planar simulation) needs to be first compared with the 

analytical results to guarantee the validity of the results. This validity depends on the stability 

of the script of the coded model as well as the adequacy of the optical data fits of the simulated 

materials, which are adjusted by varying the Fit Tolerance and the Max Coefficients within the 

Lumerical Material Database, listed in Table A.1 of Appendix A. Figure 3.3 displays a 

graphical comparison between the simulated and analytically derived curves for a sample 

planar structure with layer thicknesses of 250 nm for both the Spiro and the ITO layer. From 

here it is determined that the simulated results closely match their analytical tie-ins for most 

of the analysed spectrum, apart from a minor discrepancy localized in the 760 to 800 nm range; 

this deviation peaks at a modulus of 6.45% at 780 nm, a value which falls within the acceptable 

error margins. Additionally, parsing these curves through the CIE colour conversion function 

enables the comparison to the extrapolated colours in the figure. Notably, there is a virtually 

indistinguishable difference between the CIE Colours extrapolated from either method. 

The selection of FDTD Lumerical simulation settings, most notably mesh accuracy, mesh 

refinement, and the number of frequency points, is contingent on a consensus between settings 

employed in previous publications and the results of a series of convergency tests; a 

comprehensive list of the most relevant simulation settings is detailed in Table B.1 of 

Appendix B. 

  

Figure 3.3 – Reflection profile used to validate the numerical FDTD-obtained results for the base cell. In blue it is 

shown the FDTD calculation and in green the analytical result. The red dashed line represents the relative absolute 

between both results. The rightmost elements represent the CIE determined colour for both the FDTD (top) and 

analytical (bottom) results. 
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3.2 Planar Sweeps 

The purpose of these sweeps is threefold. Firstly, it serves to highlight the existence of any 

anomalies in the construction of the solar cell model or in the functions of the said model. 

Secondly, sweeping the planar structure in terms of Spiro and ITO layer thicknesses provides 

a comprehensive set of results that can be visualized in the form of heatmaps in Figure 3.4, 

and that can be used as a base to evaluate the upcoming PSO results. Lastly, it serves to set 

expectations for what is possible within the given simulation ranges and conditions through 

a comprehensive rendering of each combination of simulation parameters within said linear 

space. For instance, the colour map depicted in Figure 3.4 a) shows the parameter ranges 

where certain colours are generated, and ultimately encompasses the full spectrum of possible 

RGB values. This sweep encompassed the full range of both relevant optimization parameters 

— Spiro and ITO layer thicknesses — within a linear space divided into 30 intervals. 

The colour map in Figure 3.4 a) also shows that the ITO thickness has a greater impact 

than the Spiro thickness in the reflected colour, as seen in the horizontal colour homogeneity 

Figure 3.4 – Heatmaps for the simulated CIE XY colour (a) and JSC (b) of the planar structures within the allotted 

parameter ranges and the resulting colour distance (c) and FoM (d) heatmaps obtained when aiming for pink. This 

data is obtained via parameter sweep through the ranges in Table 2.1 in 30 evenly spaced steps for either parameter. 
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for fixed ITO thickness values. This is to be expected since the Spiro layer interacts solely with 

wavelengths which are not reflected or absorbed by the upper layers. There is an argument to 

be made here in favour of setting the Spiro thickness value to an already proven optimal value, 

in accordance with previous publications [66]. The elimination of this optimization parameter 

could potentially reduce the simulation run time, but ultimately more data is needed to ensure 

the redundancy of this parameter in the case of the more complex structures. This speculated 

redundancy is further explored in Chapter 3.5. When optimizing for pink, the FoM heatmaps 

in Figure 3.4 show that a properly functioning PSO algorithm should converge in the 157-172 

nm range and 65-142 nm range for the ITO layer thickness and the Spiro layer thickness values 

respectively; the comparatively wide breadth of the latter range highlights the weak link 

between Spiro layer thickness and CIE Colour. 

3.3 Particle Swarm Algorithm Design 

Besides the velocity adjustment factors previously discussed in Chapter 2.4, the PSO is defined 

by the minimum and maximum number of iterations, the number of particles, and optionally 

by a set of search stagnation criteria. These factors vary slightly depending on the complexity 

of the problem, ergo a preliminary comparison of different factor combinations is usually 

required even if some of these values can be roughly generalized based on existing literature 

[59], [72]. Notably, it is important to guarantee that the number of iterations is high enough 

for convergence to occur, but not so high that the particles stagnate before effectively 

exploiting the area around the best determined value between all the particles in the algorithm 

(gbest). Additionally, since the total number of simulations is given by the number of particles 

times the number of iterations, needlessly increasing either of these factors will potentially 

result in a substantial loss in computing time and resources [72]. Precautionarily, a search 

stagnation criterion is pre-established to automatically conclude the optimization under the 

conditions that a minimum number of iterations have been completed and no improvement 

has come about within a set number of iterations. 

Table 3.1 – Table of PSO optimization factors. The values within brackets are the upper and lower bounds 

considered for the parameter optimization range. 

 

 Social 
Learning 

Cognitive 
Learning 

Inertia 
Weight Iterations Tolerance Number of 

Particles 
Value 1.49 1.49 [0.9-0.4] [50-100] 10 25 
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The factors chosen for preliminary testing are based on existing literature [59] and are 

displayed in Table 3.1. PSO algorithms differ based on how information is disseminated across 

the swarm. The gbest topology herein is characterized by allowing all the particles to know the 

current best parameters. Contrarily, other PSO variants restrain the flow of information within 

a certain proximity, pre-established or adaptive hierarchy, or through random connections 

[73]. A downside to the straightforwardness of the gbest method is its ensuing susceptibility to 

premature convergence unto a suboptimal relative maximum [61]. This effect can be lessened, 

if not entirely prevented, through case-specific tuning of inertia and social learning factors 

[72], [73]. The PSO Python script underwent a series of iterations, and the finalized version is 

contained in Appendix C. 

3.4 Figure of Merit Selection 

To select which FoM would be best suited to optimizing for both colour and current density, 

multiple PSOs were executed for each combination of photonic structure geometry — planar, 

nanopillar and crossed gratings — and desired colour — pink, green and red. As previously 

discussed on page 17 of this work, pink is a colour which is exhibited by a wide array of Spiro 

and ITO layer thickness combinations, at least in the case of the planar PSCs. Batches of several 

optimizations (5 for pink and 3 for red and green) were used to test the algorithm's aptitude 

for convergence. This exposes the algorithm to the broadest amount of possible optimal 

results. Furthermore, since the PSO is initially a stochastic method, the effects of the 

randomization of starting parameters and respective velocities were assessed by fixing five 

sets of starting conditions that were then used in pink-seeking nanopillar-based optimizations 

of either FoM. 

3.4.1 Planar Comparisons 

Planar optimizations were done primarily to prove that the PSO algorithm was prioritizing 

the same area as the results presented in Chapter 3.2. For the sake of preserving optimization 

factor uniformity across all experiments, the planar PSOs initially used the same 25 particles 

for 50 iteration optimization scale intended for the other (more complex) problems; this meant 

that the planar optimizations required more data points than the original planar sweeps — 

which simulated 900 evenly spaced points as opposed to the 1250 simulations performed by 

this PSO — while providing no new information. The PSO algorithm is designed to optimize 
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for multiple variables at once, meaning that this inefficiency is not relevant in the upcoming, 

more complex, scenarios. The sheer volume of particles simulated incidentally masked a 

minor error in the velocity update section of the PSO code, though this flaw would be later 

identified and fixed when analysing the nanopillar PSO results. Nevertheless, it was proven 

that the algorithm could accurately identify which points to prioritize.  

3.4.2 Nanopillar Comparisons 

The bulk of the PSO algorithm development and testing was made on the nanopillar 

structures, as these were estimated to be sufficiently complex to highlight any underlying 

flaws in the optimization script while also keeping runtimes relatively brief. Since the PSO 

method possesses a degree of inherent randomness, the comparison of the two FoMs was 

firstly calculated using a set of 5 fixed seeds applied to the random number generator pre-

packaged with Python. In this manner, both the “Original” and “Root” FoM-based PSOs start 

with the exact same set of particles and velocities.  

Figure 3.5 proves that each method has the potential to reach its own conclusion, which 

in some cases wildly disagrees with the opposing method, even if both had the same starting 

points. This means that ultimately, it is the FoM and its subsequent convergency pattern which 

dictates the result, not the randomized starting conditions. Furthermore, the table presented 

Figure 3.5 – Comparison in FoM performance between two sets of fixed seed pink seeking nanopillar optimizations. 

Each seed is represented by a letter and a colour to compare between the results obtained via the Original (depicted 

by squares) or Root FoM method (triangles). The comparisons are established by 5 sets of one-dimensional plots 

containing the best values obtained for each parameter (a) and their respective normalized FoM values are 

displayed in table (b), with the best of each seed being underlined and emboldened. 



 21 

in Figure 3.5 b) highlights the differences between the final FoM value for each method. In 

most cases, the Root FoM overperformed relatively to the Original FoM. In terms of defining 

an optimal configuration for pink nanopillar structures, these results are somewhat 

inconclusive, as the PSO seems to be converging on multiple combinations of parameters 

corresponding to local maxima. Nevertheless, the PSOs managed to emulate the intended 

colour within a virtually indistinguishable margin of ≤ 1 colour distance unit, albeit with 

varying JSCs. 

Figure 3.6 – Summary of the 5 best nanopillar PSOs results (considering both Root and Original FoM) for (a.1) red 

(a.2) green and (a.3) pink. The number and size represent the ranking for each FoM among all the results. b) 

Normalized FoM for each of the 5 best PSOs and for each colour. c) Particle position for the Spiro layer for each 

iteration of both pink nanopillar optimizations. 



 22 

Figure 3.6 plots a.1 through a.3 comprise most of the relevant data extracted from the FoM 

Comparison trials in nanopillars seeking red, green, and pink, respectively. In the case of the 

red nanopillars, a clear preference for a specific range of pillar widths is shown; the ITO layer 

thickness is relegated to the thicker half of the range, indicating that while there is a bias for 

these values, the peaks in this region may not be as prominent; contrastingly, the pillar height 

and the pillar pitch parameters both tend to accumulate around two local maxima. The best 

results are found in the 90 to 110 nm range for the pillar height and 1.5 to 1.65 range for the 

pillar pitch, while the 2nd best results are present in the 300 to 400 nm range for the pillar height 

and the 2 to 2.75 range for the pillar pitch. Similar inferences may be established when looking 

at the 5 best results for the green nanopillars, except in this case the close-range biases are 

found in the ITO layer Thickness and pillar height parameters, while the pillar width and pillar 

pitch parameters are seemingly divided into two local maxima. As previously stated, the 

colour pink is seemingly produced by multiple different configurations of nanopillars (within 

these parameter ranges), and thus these results might have been deemed inconclusive were it 

not for the sheer difference in FoM value between the 1st, 2nd and 3rd best configurations, 

detailed in Figure 3.6 table b). In this analysis, the Spiro layer seems to have a weak correlation 

to the FoM as its value tends to fluctuate throughout the entire range. An argument could be 

made that, at least in the case of the pink nanopillars, there might be two local maxima situated 

at the edges of the parameter range. 

Figure 3.6 Graph c), which depicts the progression of the best parameters at any given 

iteration number for all the pink nanopillar runs combined, shows that, at least in the earliest 

stages of the optimization process, most points in this range are deemed to be “optimal”, 

furthermore strengthening the argument in favour of ruling out the relevancy of this 

parameter. The optimization setting used for Figure 3.6 will generally go beyond 80 iterations. 

However, the particle position development makes it clear that passed 60 iterations, the FoM 

improvements are mostly marginal (less than 1%). Hence, the algorithm was updated to 

include a tolerance value. Unless the change in FoM between iterations passed the tolerance 

value (default of 5%), the optimization algorithm would stop earlier to greatly reduce 

optimization time at a minimal performance cost. This is further detailed in Figure 3.7 a) which 

shows the increases in FoM in function of the iteration number for the best case for the pink 

nanopillars. The minimum iteration value is kept unchanged, as the data gathered from the 

previous PSOs indicates that the most relevant improvements can happen as late as the fiftieth 

iteration. A notable case during this study was seen in the velocity update part of the particle 
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swarm where a minor design flaw in the section of the PSO code responsible for updating the 

velocity matrix at the extremities of the range, which lead to the accumulation of particles at 

the borders of each range as seen in Figure 3.6 Graph c). While the particles in the PSOs 

affected by this issue were not allowed to escape their range, their associated velocities would 

be preserved even as they hit these walls, meaning that their inertia would ultimately trap 

them alongside the border conditions.   

Figure 3.7 b) illustrates this through contrast with the velocity for a set of particles 

converging away from the range extremities. In Figure 3.7 b), the leftmost graph demonstrates 

the ideal oscillating pattern— where particles are pulled back and forth in alternating positive 

and negative velocities around the best value, unlike what happens in the rightmost graph. 

The random nature of the PSO algorithm can obfuscate some errors in the code base.  This 

portion of the code was updated, and the results presented henceforth, save for the upcoming 

pink gratings FoM comparison, were obtained from a fixed version of the PSO algorithm. 

3.4.3 Crossed Grating Comparisons 

Besides the information regarding the supposed optimal parameters for each development, 

the plots in Figure 3.6 are also indicative of the comparative suitability of each FoM method. 

To ensure that the FoM selected method suits the crossed gratings scenarios, 8 more PSOs 

were executed, 4 for each method optimizing for pink as presented in Figure 3.8. When looking 

at the five best results, the conclusions drawn here are similar to those of the pink nanopillars: 

most parameters either converge within a specific range, as is the case with the ITO layer 

thickness and the pillar pitch or are divided between two or three peaks. Additionally, these 

results once more proved that the Root method outclasses the Original counterpart. This is 

thought to be a consequence of how the Root method places less emphasis on minimizing the 

Figure 3.7 – a) Percentual FoM Increment relative to the finalized maximum FoM fitness for the Nanopillar Pink 

Root Seed E PSO, the best out of the initial 20 PSOs done for pink nanopillars; b) Progression in the Velocity of the 

Swarm Particles alongside the “pillar pitch” axis for the pink Nanopillar Root Seed E and Root Seed A. 
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colour distance, meaning that the Particles are more likely to make decisions based on 

maximizing the JSC, thus preventing premature convergence on subpar FoM peaks. It also is 

worth noting that the crossed gratings marginally underperformed in this stage marginally 

underperformed in this stage in comparison with the nanopillar structures. 

3.5 Parameter Filtering Sweeps 

Two parameter sweeps, depicted in Figure 3.9 and Figure 3.10 were performed to ascertain 

whether the Spiro layer Thickness should be excluded from the next set of PSOs. Each of these 

Figure 3.8 – Crossed Gratings FoM comparison for four trials of each FoM method on randomized seeds. Original 

FoM optimizations are represented by squares while Root FoM optimizations are represented by triangles. 

Normalized FoM values are listed in table b). 

Figure 3.9 – CIE Colour maps for pink nanopillar structures centering on the geometries of the Root Seed E results 

(a) or the Root Seed C results (b), varying Spiro Layer thickness and Pillar Pitch Values. 
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sweeps varies the Spiro layer Thickness value in conjunction with the pillar pitch values, with 

each of the other parameters set to match the best and the second-best set of parameters for 

pink nanopillars. The first pair of heatmaps in Figure 3.9 shows the chromaticity spectrum 

contained within these optimization ranges, while the first pair in Figure 3.10 shows the 

current density generated by each combination of pillar pitch and Spiro values under each set 

of fixed ITO, pillar width and pillar heights. Finally, the second pair of heatmaps in Figure 

3.10 shows the variation in Root FoM for either scenario within the pitch-Spiro sweep. 

In either case, the optimal FoM can be approximated to a thin line running parallel to the 

Spiro axis, meaning that the performance of the cell is mostly dependent on pillar pitch values. 

This is attributed to the fact that the Spiro layer exhibits minimal interaction with the incident 

light, due to it being placed underneath the perovskite absorber layer. Therefore, given the 

weak link between Spiro layer Thickness and the best FoM values, for the sake of simplicity, 

all further simulation results henceforth presented are based on a fixed value of 150 nm for the 

Spiro layer thickness. 

Figure 3.10 – Current Density Heatmaps (a.1, b.1) and FoM Heatmaps for pink nanopillar (a.2, b.2) structures based 

on the geometries of either the Root Seed E results (a) or the Root Seed C (b) results, varying Spiro Layer thickness 

and Pillar Pitch Values. Heatmap colour gradient darkens with the increase in performance. 
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3.6 Zoom Particle Swarm Optimizations 

The next step in obtaining the optimal set of parameters is to restrict the optimization ranges 

to exclude the suboptimal local maxima, thus making it so that the “zoomed-in” particles are 

more likely to home in on the true optimal values. This is an intermediate process, and the 

number of PSOs per batch is subject to the data analyst’s judgement. Ideally, this step should 

be repeated until some level of certainty can be had regarding either the next best set of ranges 

or until a second split in local optima is found. The first set of zoomed-in parameter ranges 

was based on the five best results obtained in the FoM comparison stage for each combination 

of structures and colours, favouring the data gathered from the Root PSOs and fixing spiro 

layer Thickness values to 150 nm as previously mentioned. Figure 3.11 depicts a successfully 

zoomed-in PSO based on the 5 best results for the pink nanopillars. The data gathered from 

this intermediate stage should suffice to determine a new set of even more restrictive 

parameter ranges that define the final PSO. Notable restriction measures include: 

• In the case of the pink nanopillars, rather than exclude the 3rd and 4th best results from the 
final PSO, these parameters were kept, partly due to their proximity to the 1st and 2nd best 
results, but also because the 4th coincided with the 2nd in pillar width. 

• Regarding the pink nanopillars, the final pillar pitch ranges were designed to extend 
slightly past the uppermost border of the intermediate zoom step to allow the swarm to 
further explore the area surrounding the 1st best result. This exception was deemed 
unnecessary in the case of the pink nanopillars pillar width, as there was less ambiguity 

Figure 3.11 – Next generation of optimal PSO Parameters for pink nanopillars resulting from a set of restrictions on 

the width of each parameter range depicted in bold. The previous top 5 are left in grayscale for comparison. 
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stemming from the dispersion in the best results in this stage. 
• In some scenarios, as was the case with the pink gratings pillar width ranges, the first 

stage of zooming was prematurely defined too narrowly to allow for further 
amplification — based on the physical principles of light interference, structural changes 
of magnitudes on the scale of single nanometres should not cause relevant variations in 
FoM; thusly, this range was kept between the intermediate and the final zoom steps. 

 

3.7 Final Optimized Parameters 

Table 3.2 showcases the efficacy of this method of obtaining the ideal parameters for the 

obtention of colour in the solar cells for the structures depicted in Figure 2.3. 

Compared to a baseline structure utilizing standard layer thicknesses, the optimized solar 

cells were capable of exhibiting simulated colour and, in most cases, there was also a 

considerable increase in current density, produced by the same LT structures that selectively 

reflect part of the solar spectra. Remarkably, the more complex nanopillar and crossed grating 

structures were capable of exhibiting colours that were otherwise impossible within these 

given parameter ranges for the planar configuration, as per Figure 3.4. Comparing the 

reflection curves of the baseline structure with the reflection curves of the optimal green and 

red nanopillars serves as further proof that the structures herein described are effectively 

reflecting selective portions of the solar spectrum to produce structural colour. In Figure 3.12, 

the reflection curve for the baseline structure possesses amorphous peaks scattered through 

the spectrum, while the other curves are more focused, with the optimal green nanopillar 

Table 3.2 – Table containing the final optimized set of parameters for each combination of structures and colours. 

The generated CIE colours are illustrated next to their respective hexcode identification. Pillar Pitch is given in 

multiples of the Pillar Width. 
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curve evidently reflecting wavelengths of higher energy than its red counterpart, though both 

curves increase significantly as the photon energy approaches the perovskite bandgap. 

Figure 3.13 highlights the impact that the optimized nanopillars have on the simulated 

reflection curves. These data sets were achieved by re-simulating the optimized structures 

without their photonic structures so that only the optimal spiro and ITO values were 

preserved. Here it is shown that the anti-reflection effects these structures have are even more 

relevant when considering wavelengths outside the range of the desired colour. For instance, 

considering the green curves, the reflection curves differ particularly in the 400 to 500 nm 

range, where the monochromatic light would manifest purple or blue hues. This effect is 

especially noticeable when comparing the structured and unstructured red curves, where the 

red nanopillars reflect virtually no light in the green portion of the visible spectrum (the 500 

to 600 nm range), opposed to reflection values of over 20% for the unstructured counterpart. 

Figure 3.12 – Graphical comparison between of the percentual reflection curves for the optimal red and green 

nanopillar structures (in their respective colours) and the baseline structure (dashed) as defined in Table 3. 

Figure 3.13 – ITO Thickness Comparison bar plot (a) and table (b) and Structural Impact on Reflection plots (c) for 

the red optimized nanopillars and green optimized nanopillars. The striped bars in the bar plot (a) represent the 

nanopillar structures, and their width is proportional to the optimal results. 
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4  
CONCLUSION 

This work aimed to establish an effective computational method for integration of colour 

into flexible photonic-enhanced solar cells. Though there is a proven demand for these 

technologies in the photovoltaic market, the concept remains novel and confined to theory, 

hence the need for simulation methods capable of maximizing this niche potential. 

Summarily, the work hitherto described can be separated into four parts. To start, the 

author defined a method of quantifying colour proximity, the Colour Distance metric, 

hypothesized a set of FoMs with which to evaluate the performance of the PSCs, the Original 

and Root FoMs, and designed a practical albeit functional optimization process, the PSO 

method. Afterwards, a careful trial procedure was performed to tune the optimization 

algorithm, considering the data previously obtained from the planar sweeps to back up the 

initial optimization results. Sequentially, the Root FoM was selected as the standard 

measurement of performance, and the spiro layer thickness was excluded as a possible 

optimization variable, given the apparent weak correlation between it and the reflected colour. 

Finally, the variable optimization ranges were sieved twice over, once in an intermediate 

“Zoom PSO” and then once again to obtain the theoretical optimal parameters. 

The final results are a culmination of over 150 individual optimization processes 

accumulated over thousands of computing hours. Ultimately, the results previously presented 

showed a remarkable increase in JSC upwards of 10.78% while also approximating the desired 

colour to a degree that would be indistinguishable to most human observers. These simulated 

optimal structures are capable of trapping incident light while simultaneously selectively 

interfering with any wavelength that would shift the hue of what little irradiance is reflected. 

This destructive interference is shown to be particularly prominent in the protruding 

geometrical features, which is verified when these structures exhibited colours that were 

initially absent from the preliminary planar sweeps, as was the case for the red nanopillars. 
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Regarding the optimization process, the predefined social and cognition indexes were deemed 

adequate, though oftentimes multiple optimizations had to be performed to ensure that the 

data was consistent and replicable despite the randomized PSO starting conditions. 

Withal, these promising results hitherto presented may yet serve as the foundations upon 

which further optimizations can be developed. 

Future Perspectives 

In retrospect, the relevance of the colour distance values seems to drop off under a certain 

threshold number, dependent on the targetted colour and subjective perception. This could 

mean that a polynomial expression, defined by a diminishing weight for colour distance 

values of smaller than 30, might be better suited for the FoM. As is, the method seems to place 

too much emphasis on optimizing for minimal colour distance relative to JSC, a phenomenon 

that grows more disproportionate the closer the colour is to the intended value, which explains 

why the Root FoM outperformed the direct one-to-one Original FoM ratio.  

Though the CIE 1931 XY method excelled in determining chromaticity, neglecting the 

lightness component of the reflected colour was but a simplification deemed necessary in these 

preliminary trials. For the sake of thoroughness, one might consider other, more elaborate 

methods of converting spectra into colour more comprehensively [74]. In any case, any 

alternative colour conversion methodology may be, in future pursuits, retrofitted into the 

already established PSO code base, contained in Appendix C. The Root FoM itself, while 

suitable for this purpose, should be subject to further testing and development.  

In terms of the optimization process itself, there is still plenty of room for experimentation 

when considering other particle swarm topologies, specifically ring or star neighbourhood 

methods, that by restricting the flow of information across the swarm could optimize the 

earlier stages of exploitation by highlighting local maxima [59]. As the simulated volume size 

expanded, the optimization time also increased drastically before reaching a point where a 

single optimization, could take upwards of a week’s worth of uninterrupted computing given 

the equipment provided. Ultimately, this meant that time constraints would ultimately render 

some of the more complex optimization processes unfeasible. To this end, alternative 

optimization functions, such as the Bayesian Method, could be a good fit for these resource-

intensive optimizations, provided the parameter complexity is kept similarly limited [75], [76].
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Appendix A: 
MATERIAL DATA 

The material data regarding real and imaginary part refractive indexes employed in the 

simulations hitherto described is plotted in Figure A.1. 

 

Figure A.1 – Real (a) and Imaginary (b) Part Refractive index plots for ITO, TiO2, Perovskite and Spiro, sourced 

from Konig et. al [67], Siefke et. al [68], van Eerden et. al [69], and Filipič et. al [70] respectively. 
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The material data shown in Figure A.1 was obtained through polynomial regression of 

experimental datasets, the tolerances, coefficients, and root-mean-squared errors of which are 

summarized in Table A.1. 

Table A.1 – Table summarizing the data fitting parameters for Ag, Spiro, Perovskite, TiO2, and ITO and the ensuing 

standard and weighted root-mean-squared errors. 
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Appendix B: 
SIMULATION SETTINGS 

This appendix summarizes the simulation settings used in Table B.1. 

(*)  The reflection monitors  used to calculate colour consider an array of wavelengths from 380 nm to 
780 nm divided in 81 equally spaced intervals of 5 nm. 
(**) Mesh refinements with index equivalent to 5 were applied in all dimensions from the top of the 
structures down to 200 nm underneath the top of the perovskite absorber layer. 

Source Settings*    

 Minimum Wavelength 300 nm  
 Maximum Wavelength 1000 nm  
 Frequency Points 100  

Solar Gen Settings    

 Down Sample X 3  
 Down Sample Y 3  
 Down Sample Z 2  

FDTD Settings    

 Simulation Time 750 fs  
 Simulation Temperature  300 K  
 Background Material Index  1  
 Mesh Accuracy** 3  
 Auto Shutoff Minimum 1.00E-05  

Boundary Conditions    

 X min Anti-Symmetric  
 X max  Anti-Symmetric  
 Y min  Symmetric  
 Y max  Symmetric  
 Z max Metal  
 Z max PML  
 PML Layers  32  

 

 

Table B.1 – Summary of the most relevant Ansys Lumerical FDTD simulation settings used. 
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Appendix C: 
PARTICLE SWARM CODE 

The final version of the PSO python script, used for the obtention of the results presented in 

Chapter 3.7 is as follows: 
""" 1 
Implementation of the particle swarm optimization algorithm 2 
""" 3 
import logging 4 
from logging.config import fileConfig 5 
import os 6 
from random import random 7 
from typing import Dict, List, Tuple 8 
import matplotlib.pyplot as plt 9 
import numpy as np 10 
import numpy.typing as npt 11 
import pandas as pd 12 
 13 
def _update_parameters( 14 
    param, vel, max_param, min_param, inertia_w, ind_cog, soc_learning, 15 
pbest, gbest 16 
): 17 
    """ 18 
    Update equation for the particle swarm algorithm 19 
    V_ij^(t+1) = 20 
        learning rate : w*V_ij^t 21 
        cognitive part : c1*r1*(pbest_ij - p_ij^t) 22 
        social part : c2*r2*(gbest_ij - p_ij^t) 23 
    Args: 24 
        param - input variables (ij array - i particles, i parameters) 25 
        vel - input velocities (ij array) 26 
        max_param - maximum parameter values 27 
        min_param - minimum parameter values 28 
        inertia_w - inertia weight constant 29 
        ind_cog - individual cognition parameter 30 
        soc_learning - social learning parameter 31 
        pbest - best set of parameters for a certain particle (ij array) 32 
        gbest - best global set of parameters (i array) 33 
    Return: 34 
        Updated parameters and velocities 35 
    """ 36 
    logging.debug("Update Properties --------------") 37 
    logging.debug("Initialization -----------") 38 
    logging.debug(f"Init values: {inertia_w}, {ind_cog}, {soc_learning}") 39 
    logging.debug(f"vel=\n{vel}") 40 
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    logging.debug(f"pbest=\n{pbest}") 41 
    logging.debug(f"gbest=\n{gbest}") 42 
    r1 = random() 43 
    r2 = random() 44 
    max_param = np.broadcast_to(max_param[:, np.newaxis], param.shape) 45 
    min_param = np.broadcast_to(min_param[:, np.newaxis], param.shape) 46 
    logging.debug(f"min_param:\n{min_param}") 47 
    logging.debug(f"max_param:\n{max_param}") 48 
    logging.debug("Calculations -----------") 49 
    # Update velocity 50 
    part_1 = inertia_w * vel 51 
    part_2 = ind_cog * r1 * (pbest - param) 52 
    part_3 = soc_learning * r2 * (gbest - param) 53 
    v_new = part_1 + part_2 + part_3 54 
    logging.debug(f"v_new:\n{v_new}") 55 
    # Check if no parameters are outside the allowed ranges for the 56 
parameters 57 
    logging.debug(f"param=\n{param}") 58 
    param_new = param + v_new 59 
    logging.debug(f"param_new:\n{param_new}") 60 
    mask_min = param_new < min_param 61 
    mask_max = param_new > max_param 62 
    logging.debug(f"mask_min:\n{mask_min}") 63 
    logging.debug(f"mask_max:\n{mask_max}") 64 
    param_new[mask_min] = min_param[mask_min] 65 
    param_new[mask_max] = max_param[mask_max] 66 
    logging.debug(f"Parameter Space:\n{param_new}") 67 
    v_new[mask_min & mask_max] = 0 68 
    logging.debug(f"Velocity space:\n{v_new}") 69 
    return param_new, v_new 70 
 71 
def particle_swarm( 72 
    func, 73 
    param_dict: Dict[str, List[float]], 74 
    *, 75 
    maximize: bool = True, 76 
    inert_prop: Tuple[float, float, bool] = (0.9, 0.4, True), 77 
    ind_cog: float = 1.45, 78 
    soc_learning: float = 1.45, 79 
    particles: int = 25, 80 
    iterations: Tuple[int, int, bool] = (50, 100, True), 81 
    tolerance: Tuple[float, int] = (0.05, 10), 82 
    progress: bool = True, 83 
    export: bool = False, 84 
    basepath: str = "PSO_Results", 85 
    **func_kwargs, 86 
): 87 
    """Implementation of the particle swarm algorithm 88 
    Args: 89 
        - func: optimization function 90 
        - param_dict: dictionary with parameters and variation range 91 
        - maximize: maximize or minimize the problem (default: maximize) 92 
        - inert_prop: Inertial weight factor (start value, finish value, 93 

static/dynamic) 94 
        - ind_cog: cognition index for particles (default = 1.45) 95 
        - soc_learning: social learning index (default = 1.45) 96 
        - particles: Number of particles (default: 25) 97 
        - iteration: Define number of iterations (min, max, static/dynamic) 98 
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        - max_iterations: Max number of iterations (default = 100) 99 
        - tolerance_percent 100 
        - export: Export files with PSO data 101 
        - basepath: Base path to save export and progress information 102 
        - func_kwargs: Extra arguments to pass to the optimization function 103 
    Return: 104 
        - gfitness: Best value obtained 105 
        - gbest: Best parameters 106 
        - pbest: Best parameters for each particle 107 
        - gbest_array: Array with the gfitness value for each iteration 108 
    """ 109 
    # Create export path 110 
    if export and not os.path.isdir(basepath): 111 
        logging.info(f"Creating {basepath=}...") 112 
        os.mkdir(basepath) 113 
    min_iteration, max_iteration, iteration_check = iterations 114 
    if max_iteration < min_iteration: 115 
        raise Exception("max_iteration must be bigger than min_iteration") 116 
    if not iteration_check: 117 
        max_iteration = min_iteration 118 
    # Create an array for the inertial factor variation (its max_iteration 119 
size) 120 
    inert_factor_low, inert_factor_up, inert_sweep = inert_prop 121 
    if inert_sweep: 122 
        inert_factor = np.linspace(inert_factor_low, inert_factor_up, 123 
min_iteration) 124 
        inert_factor_remaining = np.array( 125 
            [inert_factor_up] * (max_iteration - min_iteration) 126 
        ) 127 
        inert_factor = np.r_[inert_factor, inert_factor_remaining] 128 
    else: 129 
        inert_factor = np.ones(max_iteration) * inert_factor_up 130 
    logging.info(f"Inert_factor array:\n{inert_factor}") 131 
    # Variable initialization 132 
    param_names = list(param_dict.keys()) 133 
    vparam_names = [f"v{param_name_i}" for param_name_i in param_names] 134 
    export_names = param_names.copy() 135 
    export_names.append("FoM") 136 
    export_names.extend(vparam_names) 137 
    logging.debug(f"Parameters in study:\n{export_names}") 138 
    param_max = np.array([p_max[1] for p_max in param_dict.values()]) 139 
    param_min = np.array([p_min[0] for p_min in param_dict.values()]) 140 
    # Random array with the start value for the parameters 141 
    param_space = [ 142 
        np.random.uniform(param_dict[param][0], param_dict[param][1], 143 
size=(particles)) 144 
        for param in param_names 145 
    ] 146 
    param_space = np.stack(param_space) 147 
    # Random array with the start value for the velocities 148 
    vel_space = [ 149 
        np.random.uniform( 150 
            -np.abs(max(param_dict[param]) - min(param_dict[param])), 151 
            np.abs(max(param_dict[param]) - min(param_dict[param])), 152 
            size=(particles), 153 
        ) 154 
        for param in param_names 155 
    ] 156 
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    vel_space = np.stack(vel_space) 157 
    # First run of the PSO outside loop 158 
    iteration = 1 159 
    func_input = { 160 
        param_name: param_space[i] for i, param_name in 161 
enumerate(param_names) 162 
    } 163 
    func_results = func(**func_input, **func_kwargs) 164 
    if maximize: 165 
        fitness_arg = np.argmax(func_results) 166 
    else: 167 
        fitness_arg = np.argmin(func_results) 168 
    # PSO optimization arrays (gfitness, pfitness, gbest, pbest, tol_array) 169 
    tolerance_percent, tolerance_num = tolerance 170 
    gfitness = func_results[fitness_arg] 171 
    pfitness = func_results 172 
    gbest = param_space[:, fitness_arg].flatten() 173 
    tol_array = [0] 174 
    gbest_array = [gfitness] 175 
    pbest = param_space 176 
    # Create figure handler to show the results 177 
    if progress: 178 
        _, ax = plt.subplots( 179 
            1, 180 
            2, 181 
            figsize=(5, 4), 182 
            gridspec_kw={"wspace": 0.1, "width_ratios": [0.7, 0.3]}, 183 
        ) 184 
        logging.debug(f"{np.arange(iteration)}::{gbest_array}") 185 
        _preview_results( 186 
            ax, np.arange(iteration), gbest_array, pbest[:, -1], 187 
param_names 188 
        ) 189 
    # Export data 190 
    if export: 191 
        export_data = np.c_[param_space.T, func_results, vel_space.T] 192 
        export_df = pd.DataFrame(export_data, columns=export_names) 193 
        export_df.to_csv( 194 
            os.path.join(basepath, f"pso_it{iteration:03d}.csv"), sep=" ", 195 
index=False 196 
        ) 197 
    while iteration < max_iteration: 198 
        # Check for the tolerance condition on the last tol_num values of 199 
the tolerance array 200 
        if iteration > min_iteration + tolerance_num: 201 
            last_tolerances = np.array(tol_array)[-tolerance_num:] 202 
            logging.debug(f"tol_array: {tol_array}\n{len(tol_array)}") 203 
            logging.debug(f"last_tolerances: 204 
{last_tolerances}\n{len(last_tolerances)}") 205 
            avg_tol = np.average(last_tolerances) 206 
            logging.debug(f"avg_tol: {avg_tol}") 207 
            if avg_tol < tolerance_percent: 208 
                logging.warn(f"Tolerance reached at {iteration}... 209 
Exiting") 210 
                break 211 
        logging.info(f"PSO Running Iteration: {iteration}") 212 
        param_space, vel_space = _update_parameters( 213 
            param_space, 214 
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            vel_space, 215 
            param_max, 216 
            param_min, 217 
            inert_factor[iteration - 1], 218 
            ind_cog, 219 
            soc_learning, 220 
            pbest, 221 
            gbest[:, np.newaxis], 222 
        ) 223 
        # Update gbest and pbest 224 
        func_input = { 225 
            param_name: param_space[i] for i, param_name in 226 
enumerate(param_names) 227 
        } 228 
        func_results = func(**func_input, **func_kwargs) 229 
        gfitness_old = gfitness 230 
        if maximize: 231 
            fitness_candidate_ind = np.argmax(func_results) 232 
            if func_results[fitness_candidate_ind] > gfitness: 233 
                gfitness = func_results[fitness_candidate_ind] 234 
                gbest = param_space[:, fitness_candidate_ind].flatten() 235 
            pfitness_mask = func_results > pfitness 236 
        else: 237 
            fitness_candidate_ind = np.argmin(func_results) 238 
            if func_results[fitness_candidate_ind] < gfitness: 239 
                gfitness = func_results[fitness_candidate_ind] 240 
                gbest = param_space[:, fitness_candidate_ind].flatten() 241 
            pfitness_mask = func_results < pfitness 242 
        # Add error values to array 243 
        tol_array.append((gfitness - gfitness_old) / gfitness_old) 244 
        # Update gbest, pfitness and pbest 245 
        logging.debug(f"Global best list:\n{gbest}") 246 
        gbest_array.append(gfitness) 247 
        # Update the FoM plot 248 
        pfitness[pfitness_mask] = func_results[pfitness_mask] 249 
        pbest[:, pfitness_mask] = param_space[:, pfitness_mask] 250 
        logging.debug(f"Particle Best Values:\n{pfitness}") 251 
        logging.debug(f"Particle Global best list:\n{pbest}") 252 
        iteration += 1 253 
        if progress: 254 
            _preview_results( 255 
                ax, np.arange(iteration), gbest_array, pbest[:, -1], 256 
param_names 257 
            ) 258 
        if export: 259 
            export_data = np.c_[param_space.T, func_results, vel_space.T] 260 
            export_df = pd.DataFrame(export_data, columns=export_names) 261 
            export_df.to_csv( 262 
                os.path.join(basepath, f"pso_it{iteration:03d}.csv"), 263 
                sep=" ", 264 
                index=False, 265 
            ) 266 
    logging.debug( 267 
        268 
f"Results:\ngfitness:{gfitness}\ngbest:\n{gbest}\npbest:\n{pbest}\ngbest_ar269 
ray:\n{gbest_array}" 270 
    ) 271 
    return gfitness, gbest, pbest, gbest_array 272 
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