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A B S T R A C T

Consider a graph with vertex set 𝑉 and non-negative weights on the edges. For every subset of vertices 𝑆,
define 𝜙(𝑆) to be the sum of the weights of edges with one vertex in 𝑆 and the other in 𝑉 ⧵𝑆, minus the sum
of the weights of the edges with both vertices in 𝑆. We consider the problem of finding 𝑆 ⊆ 𝑉 for which 𝜙(𝑆)
is maximized. We call this combinatorial optimization problem the max-out min-in problem (MOMIP). In this
paper we (𝑖) present a linear 0/1 formulation and a quadratic unconstrained binary optimization formulation
for MOMIP; (𝑖𝑖) prove that the problem is NP-hard; (𝑖𝑖𝑖) report results of computational experiments on
simulated data to compare the performances of the two models; (𝑖𝑣) illustrate the applicability of MOMIP
for two different topics in the context of data analysis, namely in the selection of variables in exploratory data
analysis and in the identification of clusters in the context of cluster analysis; and (𝑣) introduce a generalization
of MOMIP that includes, as particular cases, the well-known weighted maximum cut problem and a novel
problem related to independent dominant sets in graphs.
1. Introduction

Variable selection, also known as feature selection, and cluster anal-
ysis are two major topics in data analysis. Variable selection consists
in reducing the dimensionality of data sets while minimizing the loss
of information (Cadima and Jolliffe, 2001; Jolliffe, 2002; Jolliffe and
Cadima, 2016). More specifically, given a dataset consisting on the
measurements of a number of variables, the purpose is to identify a
subset of variables that adequately approximate the complete dataset.
Several criteria have been proposed to quantify how well each subset
approximates the whole dataset (Cadima et al., 2004; Cadima and
Jolliffe, 2001). The goal of variable selection is to find a subset of
variables that optimizes a particular criterion. This is a difficult opti-
mization problem and, in general, these approaches have in common
that the cardinality of the desired subset must be preset. Choosing the
cardinality in advance is not always easy or convenient, and can lead
to inadequate solutions.

Cluster analysis aims at identifying groups of observations such that
the observations within each group are as similar as possible, while
observations belonging to different groups are as different as possible.
A number of different similarity/dissimilarity measures and different
methods to find optimal clusters have been proposed (see, e.g., Pandove
et al., 2018 for a recent survey). In general, the methods can be divided
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into hierarchical and partitioning, and usually rely on prior knowledge
of the number of clusters for each data set to be clustered.

In this paper we introduce a combinatorial optimization problem
that, given a graph with non-negative weights on the edges, looks for
a set of vertices 𝑆 that maximizes the sum of the weights of the edges
connecting vertices in 𝑆 with vertices outside 𝑆, while minimizes the
sum of the edges having both vertices in 𝑆. We call this problem the
max-out min-in problem (MOMIP). Some related graph-partition prob-
lems are the well-known weighted maximum cut (see, e.g., Shylo and
Shylo, 2010), and the min–max cut (Ding et al., 2001). We discuss the
similarities and differences between MOMIP and each of these problems
in Section 2. We also show how MOMIP can be used as an approach
for variable selection, without the need of knowing the cardinality
of the subset of variables in advance, and for the identification of a
cluster of observations that are similar to each other and dissimilar from
observations outside the cluster.

The rest of this document is organized as follows. In Section 2,
MOMIP is formalized, moving from a 0/1 linear model to a quadratic
unconstraint binary optimization model. Section 3 focus on the compu-
tational complexity of MOMIP, and it is established that it is NP-hard.
Section 4 reports computational results regarding the performances of
the two models on simulated data. In Section 5, we show how MOMIP
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𝜙

Fig. 1. Optimal partitions (𝑆, �̄�) of MOMIP (left) and of the weighted maximum cut (right) w.r.t. the weighted graph using the Euclidean distances between all pairs of 75 points.
The set 𝑆 is represented by the (red) filled circles.
can be used in the context of variable selection and cluster analysis, and
illustrate its properties on some real data sets. Finally, in Section 6, we
present conclusions, remarks, and perspectives.

2. Problem formulation

Let 𝐺 = (𝑉 ,𝐸,𝑤) be a weighted graph, where 𝑉 is the vertex set, 𝐸
the edge set and 𝑤𝑢𝑣 is a non-negative weight associated to every edge
𝑢𝑣 ∈ 𝐸. If 𝑢, 𝑣 ∈ 𝑉 are not linked by an edge, we set 𝑤𝑢𝑣 ∶= 0. For every
subset of vertices 𝑆 ⊆ 𝑉 , let 𝜙(𝑆) be the sum of the weights of edges
with one vertex in 𝑆 and the other in �̄� = 𝑉 ⧵ 𝑆 minus the sum of the
weights of the edges with both vertices in the set 𝑆, i.e.,

𝜙(𝑆) =
∑

𝑢∈𝑆,𝑣∈�̄�

𝑤𝑢𝑣 −
∑

𝑢,𝑣∈𝑆
𝑤𝑢𝑣.

We consider the problem of finding 𝑆 that maximizes 𝜙(𝑆). We call
this combinatorial optimization problem the max-out min-in problem
(MOMIP). Thus, MOMIP searches for a subset of vertices 𝑆 such that
the summation of the weights of edges with one vertex in 𝑆 and the
other in �̄� is maximized, while the summation of the weights of the
edges with both vertices in the set 𝑆 is minimized. If 𝑆 is an optimal
solution we say that (𝑆, �̄�) is an optimal partition of MOMIP.

As mentioned above, MOMIP is related to the weighted maximum
cut and to the min–max cut. In the weighted maximum cut the objective
function to be maximized is

𝜙maxcut (𝑆) =
∑

𝑢∈𝑆,𝑣∈�̄�

𝑤𝑢𝑣.

In the (weighted) min–max cut the objective function to be minimized
is

𝜙minmaxcut (𝑆) =
∑

𝑢∈𝑆,𝑣∈�̄� 𝑤𝑢𝑣
∑

𝑢,𝑣∈𝑆 𝑤𝑢𝑣
+

∑

𝑢∈𝑆,𝑣∈�̄� 𝑤𝑢𝑣
∑

𝑢,𝑣∈�̄� 𝑤𝑢𝑣
.

Regarding the weighted maximum cut, note that maximizing
maxcut (𝑆) is equivalent to minimize ∑

𝑢,𝑣∈𝑆 𝑤𝑢𝑣 +
∑

𝑢,𝑣∈�̄� 𝑤𝑢𝑣. I.e., the
objective function of the weighted maximum cut identically weighs the
weights of the edges between pairs of vertices in set 𝑆 and the weights
of the edges between pairs of vertices in �̄�. It thus differs from MOMIP
objective function that accounts differently these two quantities. Fig. 1
illustrates the different behavior of the two models on the complete
graph with weights on the edges given by the Euclidean distances
between all pairs of 75 points.

In Section 6 we propose a generalization of MOMIP that includes
the weighted maximum cut as a particular case.

Concerning the min–max cut, notice that in the expression of
𝜙minmaxcut (𝑆), the first term on the right hand side mimics the objective
function of MOMIP, in the sense that it maximizes (or minimizes)
the numerator while minimizing (or maximizing) the denominator,
2

whereas MOMIP uses plus and minus sign to add those two expressions
instead of using a quotient. The main difference with MOMIP is
that min–max cut has an additional quotient to the right hand side
of the objective function. The summation of both quotients has the
tendency to create a balanced partition, while MOMIP tends to produce
unbalanced partitions. This difference is illustrated in Fig. 2 for a set
of 20 points (the largest dimension for which we could solve min–max
cut to optimality in a reasonable amount of computational time).

A 0/1 linear formulation

Consider 0/1 variables 𝑥𝑢 associated to every 𝑢 ∈ 𝑉 , where 𝑥𝑢 = 1
if 𝑢 ∈ 𝑆, and 𝑥𝑢 = 0 if 𝑢 ∈ �̄�, and non-negative variables 𝑦𝑢𝑣 and 𝑧𝑢𝑣
associated to every edge 𝑢𝑣 ∈ 𝐸. Using these variables MOMIP can be
formulated as

maximize 𝜙(𝑆) = 1
2

∑

𝑢𝑣∈𝐸
𝑤𝑢𝑣(𝑦𝑢𝑣 − 𝑧𝑢𝑣) (1)

subject to 𝑦𝑢𝑣 ≤ 𝑥𝑢 + 𝑥𝑣, 𝑢𝑣 ∈ 𝐸 (2)
𝑦𝑢𝑣 ≤ 2 − (𝑥𝑢 + 𝑥𝑣), 𝑢𝑣 ∈ 𝐸 (3)
𝑧𝑢𝑣 ≥ 𝑥𝑢 + 𝑥𝑣 − 1, 𝑢𝑣 ∈ 𝐸 (4)
𝑥𝑢 ∈ {0, 1}, 𝑢 ∈ 𝑉 (5)
𝑦𝑢𝑣, 𝑧𝑢𝑣 ≥ 0, 𝑢𝑣 ∈ 𝐸 (6)

Constraints (5) and (6) define the ranges of variables 𝑥𝑢 and 𝑦𝑢𝑣, 𝑧𝑢𝑣,
respectively. Let 𝑆 = {𝑢 ∈ 𝑉 ∶ 𝑥𝑢 = 1} and �̄� = {𝑢 ∈ 𝑉 ∶ 𝑥𝑢 = 0}.
Inequalities (2) and (3), together with (6), force 𝑦𝑢𝑣 to be zero when
either 𝑢, 𝑣 ∈ 𝑆 or 𝑢, 𝑣 ∈ �̄�. Otherwise, 𝑦𝑢𝑣 ≤ 1. Inequalities (4) ensure
that 𝑧𝑢𝑣 ≥ 1 whenever 𝑢, 𝑣 ∈ 𝑆. Otherwise, the only constraint on the
value of 𝑧𝑢𝑣 is (6), i.e., 𝑧𝑢𝑣 ≥ 0. Given that 𝑤𝑢𝑣 ≥ 0, to maximize the
objective function (1) the values of 𝑦𝑢𝑣 will be as large as possible,
i.e., 𝑦𝑢𝑣 = 1, if 𝑢 ∈ 𝑆 and 𝑣 ∈ �̄�, or 𝑢 ∈ �̄� and 𝑣 ∈ 𝑆, and the values of
𝑧𝑢𝑣 will be as low as possible, i.e., only when 𝑢, 𝑣 ∈ 𝑆, 𝑧𝑢𝑣 = 1, otherwise
𝑧𝑢𝑣 = 0. Therefore, as expected, if 𝑆 maximizes 𝜙, the value of 𝜙(𝑆) is
the sum of the weights of edges with one vertex in 𝑆 and the other in
�̄�, minus the sum of the weights of the edges with both vertices in the
set 𝑆. Note that in (1) the summation accounts the weight of each edge
twice.

In the next section we give an alternative formulation for MOMIP
that only uses the variables 𝑥𝑢 on the vertices.

A quadratic unconstrained binary optimization formulation

Using the variables 𝑥𝑢 defined above, MOMIP can be reformulated
as a 0/1 nonlinear optimization problem:

maximize 𝜙(𝑆) = 1
2

(

∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣 +

∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣(𝑥𝑢 + 𝑥𝑣 − 1) − 3

∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣𝑥𝑢𝑥𝑣

)

(7)
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Fig. 2. Optimal partitions (𝑆, �̄�) of MOMIP (left) and of the min–max cut (right) w.r.t. the weighted graph using the Euclidean distances between all pairs of 20 points. The set
𝑆 is represented by the (red) filled circles.
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subject to 𝑥𝑢 ∈ {0, 1}, 𝑢 ∈ 𝑉 .

Let us recall that 𝑆 = {𝑢 ∈ 𝑉 ∶ 𝑥𝑢 = 1} and �̄� = {𝑢 ∈ 𝑉 ∶ 𝑥𝑢 = 0},
nd let us interpret the objective function (7):

• 𝜙1(𝑆) =
∑

𝑢,𝑣∈𝑉 𝑤𝑢𝑣 is twice the sum the weights of all edges.
• 𝜙2(𝑆) =

∑

𝑢,𝑣∈𝑉 𝑤𝑢𝑣(𝑥𝑢 + 𝑥𝑣 − 1) is twice the sum of the weights
of the edges with both vertices in 𝑆 minus twice the sum of the
weights of the edges with both vertices in �̄�.

Thus, 𝜙1(𝑆) +𝜙2(𝑆) equals four times the sum of the weights of the
dges with both vertices in 𝑆, plus twice the sum of the weights of the
dges with one vertex in 𝑆 and the other in �̄�.

• 𝜙3(𝑆) = −3
∑

𝑢,𝑣∈𝑉 𝑤𝑢𝑣𝑥𝑢𝑥𝑣 is equal to minus six times the sum of
the weights of the edges with both vertices in 𝑆.

Hence, 𝜙(𝑆) = 1
2

(

𝜙1(𝑆) + 𝜙2(𝑆) + 𝜙3(𝑆)
)

is the sum of the weights
of the edges with one vertex in 𝑆 and the other in �̄�, minus the sum of
the weights of the edges with both vertices in the set 𝑆.

Using now that 𝑥𝑢 = 𝑥2𝑢 for every 𝑢 ∈ 𝑉 , and that ∑

𝑢,𝑣∈𝑉 𝑤𝑢𝑣(𝑥𝑢 +
𝑥𝑣) = 2

∑

𝑢,𝑣∈𝑉 𝑤𝑢𝑣𝑥𝑢, we may work on the expression of 𝜙(𝑆),

𝜙(𝑆) = 1
2

(

∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣 + 2

∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣𝑥𝑢 −

∑

𝑢,𝑣∈𝑉
𝑤𝑢,𝑣 − 3

∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣𝑥𝑢𝑥𝑣

)

= 1
2

(

2
∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣𝑥𝑢 − 3

∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣𝑥𝑢𝑥𝑣

)

,

o obtain

(𝑆) =
∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣 𝑥

2
𝑢 −

3
2

∑

𝑢,𝑣∈𝑉
𝑤𝑢𝑣 𝑥𝑢𝑥𝑣,

which allows us to formulate MOMIP as the following quadratic uncon-
strained binary optimization (QUBO) problem:

maximize 𝜙(𝑆) = 𝑥⊤ 𝑊 𝑥 (8)

subject to 𝑥 ∈ {0, 1}|𝑉 |, (9)

where the matrix 𝑊 ≡ [�̂�𝑢𝑣], for 𝑢, 𝑣 ∈ 𝑉 has the following entries:

�̂�𝑢𝑣 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑠∈𝑉
𝑤𝑢𝑠 if 𝑢 = 𝑣

−3
2
𝑤𝑢𝑣 if 𝑢 ≠ 𝑣.

(10)

The matrix 𝑊 is symmetric and indefinite with positive diagonal.
(We assume that, for every vertex 𝑢 ∈ 𝑉 , ∑𝑠∈𝑉 𝑤𝑢𝑠 > 0, since otherwise,
i.e., if ∑

𝑤 = 0, vertex 𝑢 could be removed.) To show that 𝑊 is
3

𝑠∈𝑉 𝑢𝑠
indefinite, note that if 𝑥𝑢 = 1, for some vertex 𝑢 ∈ 𝑉 , and 𝑥𝑣 = 0 for
every other vertex 𝑣 ∈ 𝑉 ⧵ {𝑢}, i.e., 𝑆 = {𝑢}, then

𝜙(𝑆) = 𝑥⊤𝑊 𝑥 =
∑

𝑠∈𝑉
𝑤𝑢𝑠 > 0.

n the other hand, if 𝑥𝑢 = 1, for every 𝑢 ∈ 𝑉 , i.e., 𝑆 = 𝑉 , then

(𝑆) = 𝑥⊤𝑊 𝑥 =
∑

𝑢,𝑣∈𝑉
�̂�𝑢,𝑣 = −1

2
∑

𝑢,𝑣∈𝑉
𝑤𝑢,𝑣 < 0.

. Computational complexity

We use the NP-hardness of Maximum 2-Satisfiability (Max 2-SAT)
o prove that MOMIP is NP-hard. Given a collection of clauses, where
ach clause consists of two literals, Max 2-SAT asks for the maximum
umber of clauses satisfied by a true assignment to the variables. (The
ecision version of) Max 2-SAT is problem [LO5] in Garey and Johnson
1979) that has been proved to be NP-hard in Garey et al. (1976).

Consider an arbitrary instance of Max 2-SAT, i.e., a collection
𝑐1, 𝑐2,… , 𝑐𝑚} of 𝑚 clauses over a set of Boolean variables 𝐵 = {𝑥1, 𝑥2,
… , 𝑥𝑛}, where each clause 𝑐𝑖 consists of exactly two literals. From this
instance we construct a weighted graph 𝐺 = (𝑉 ,𝐸,𝑤) as follows. Each
variable 𝑥 gives rise to a pair of vertices 𝑥 and �̄� corresponding to the
two literals associated to 𝑥. (If 𝑡 is a true assignment for 𝐵, 𝑥 = 𝑡𝑟𝑢𝑒 if
𝑡(𝑥) = 𝑡𝑟𝑢𝑒 and �̄� = 𝑡𝑟𝑢𝑒 if 𝑡(𝑥) = 𝑓𝑎𝑙𝑠𝑒.) We add an edge (a red edge)
linking 𝑥 to �̄�. Each clause 𝑐𝑖 = (𝑙, 𝑙′) gives rise to a vertex 𝑐𝑖 and we
connect by an edge (a black edge) 𝑐𝑖 to each of the two vertices that
correspond to literals 𝑙 and 𝑙′ (see Fig. 3).

For every one of the clauses 𝑐𝑖 = (𝑙, 𝑙′), we define two 𝑃3 (black
edges) paths: (𝑙, 𝑣𝑖1, 𝑣𝑖2, 𝑐𝑖) and (𝑙′, 𝑣′𝑖1, 𝑣

′
𝑖2, 𝑐𝑖), and add an edge (a red

edge) linking 𝑣𝑖2 to 𝑣′𝑖2. Finally, we append to vertex 𝑣𝑖2 and to vertex
𝑣′𝑖2 the triangles (𝑣𝑖2, 𝑣𝑖3, 𝑣𝑖4, 𝑣𝑖2) and (𝑣′𝑖2, 𝑣

′
𝑖3, 𝑣

′
𝑖4, 𝑣

′
𝑖2), respectively (edges

𝑣𝑖2𝑣𝑖3, 𝑣𝑖2𝑣𝑖4, 𝑣′𝑖2𝑣
′
𝑖3, 𝑣

′
𝑖2𝑣

′
𝑖4 are red, edges 𝑣𝑖3𝑣𝑖4 and 𝑣′𝑖3𝑣

′
𝑖4 are green). Let

𝐶𝑖 denote this graph (see Fig. 4).
Call 𝐺 the graph resulting from combining these structures. For the

weighting of the edges of 𝐺, (𝑖) assign the same value 𝐿 > 0 to (the
red) edges 𝑥�̄�, 𝑣𝑖2𝑣𝑖3, 𝑣𝑖2𝑣𝑖4, 𝑣′𝑖2𝑣

′
𝑖3, 𝑣

′
𝑖2𝑣

′
𝑖4; (𝑖𝑖) assign a weight 5 to (the

green) edges 𝑣𝑖3𝑣𝑖4 and 𝑣′𝑖3𝑣
′
𝑖4, and (𝑖𝑖𝑖) set a weight equal to 1 to all

other edges (the black edges). The value 𝐿 is set to be large enough
to ensure that the two vertices of every edge that has weight 𝐿 (every
red edge) belong to different sets of all optimal partitions of MOMIP
with respect to the weighted graph 𝐺. We are now ready to establish
the time complexity of MOMIP.

Proposition 1. MOMIP is NP-hard.

Proof. Let us consider the collection of clauses {𝑐1, 𝑐2,… , 𝑐𝑚}, over the
set of Boolean variables 𝐵 = {𝑥1, 𝑥2,… , 𝑥𝑛}, i.e., an instance of Max
2-SAT. Let 𝐺 be the weighted graph constructed from that instance as
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𝑐
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𝑥

Fig. 3. The graph corresponding to the instance of Max 2-SAT consisting of clauses
1 = (𝑥1 , �̄�2), 𝑐2 = (𝑥1 , 𝑥3), 𝑐3 = (�̄�1 , �̄�2), 𝑐4 = (𝑥2 , �̄�3), 𝑐5 = (𝑥2 , 𝑥3), over the set of Boolean

variables {𝑥1 , 𝑥2 , 𝑥3}.

Fig. 4. The graph 𝐶𝑖 corresponding to clause 𝑐𝑖 = (𝑙, 𝑙′).

escribed above, and let (𝑆, �̄�) be a vertex optimal partition for MOMIP
ith respect to 𝐺.

Recall that a large weight 𝐿 > 0 was assigned to the (red) edges
�̄� so that in every optimal partition either 𝑥 ∈ 𝑆 and �̄� ∈ �̄�, or

else 𝑥 ∈ �̄� and �̄� ∈ 𝑆. This determines a one-to-one correspondence
between true assignments 𝑡 for 𝐵 and the assignments of all pairs of
vertices 𝑥, �̄� of 𝐺 to the two sets of the partition 𝑆, �̄�. We will assume
that {𝑥 ∈ 𝑆 ≡ 𝑡(𝑥) = 𝑡𝑟𝑢𝑒} ({𝑥 ∈ �̄� ≡ 𝑡(𝑥) = 𝑓𝑎𝑙𝑠𝑒}).

Consider now the graph 𝐶𝑖 associated to clause 𝑐𝑖 = (𝑙, 𝑙′) (see
Fig. 4), and the three possibilities for the assignment of the vertices
𝑙, 𝑙′ to 𝑆, �̄�: (𝑖) 𝑙, 𝑙′ ∈ 𝑆; (𝑖𝑖) 𝑙 ∈ 𝑆, 𝑙′ ∈ �̄� (or 𝑙 ∈ �̄�, 𝑙′ ∈ 𝑆); and (𝑖𝑖𝑖)
𝑙, 𝑙′ ∈ �̄�. If cases (𝑖) and (𝑖𝑖) hold then clause 𝑐𝑖 is satisfied, whereas
case (𝑖𝑖𝑖) indicates that 𝑐𝑖 is not satisfied.

Clearly, an optimal partition for 𝐺 has to be optimal for every 𝐶𝑖.
We claim that the optimal values for 𝐶𝑖 are 1 + 5𝐿, if (𝑖) or (𝑖𝑖) hold
and 0 + 5𝐿, in case (𝑖𝑖𝑖) holds.
4

Since the weights of (red) edges 𝑣𝑖2𝑣𝑖3, 𝑣𝑖2𝑣𝑖4, 𝑣𝑖2𝑣′𝑖2, 𝑣′𝑖2𝑣
′
𝑖3, 𝑣′𝑖2𝑣

′
𝑖4

are all equal to 𝐿, in every optimal partition, then exactly one vertex
of each of these edges will belong to 𝑆. Hence, either 𝑣𝑖2, 𝑣′𝑖3, 𝑣

′
𝑖4 ∈ 𝑆

and 𝑣′𝑖2, 𝑣𝑖3, 𝑣𝑖4 ∈ �̄�, or 𝑣′𝑖2, 𝑣𝑖3, 𝑣𝑖4 ∈ 𝑆 and 𝑣𝑖2, 𝑣′𝑖3, 𝑣
′
𝑖4 ∈ �̄�. In both cases

an edge with weight equal to 5 (a green edge) will have both vertices
belonging to 𝑆, thus counting −5 to the optimal value.

In case (𝑖) holds, there are two alternative optimal partitions for 𝐶𝑖:
𝑙, 𝑙′, 𝑣𝑖2,
𝑣′𝑖3, 𝑣

′
𝑖4 ∈ 𝑆 and the other vertices in �̄�, or 𝑙, 𝑙′, 𝑣′𝑖2, 𝑣𝑖3, 𝑣𝑖4 ∈ 𝑆 and the

other vertices in �̄�. Since the (black) edges 𝑐𝑖𝑙, 𝑙𝑣𝑖1, 𝑣𝑖1𝑣𝑖2, 𝑣𝑖2𝑐𝑖, 𝑐𝑖𝑙′,
𝑙′𝑣′𝑖1, 𝑣

′
𝑖1𝑣

′
𝑖2, 𝑣

′
𝑖2𝑐𝑖 have all weights equal to 1, the optimal value for 𝐶𝑖

will be 1 + 5𝐿.
In case (𝑖𝑖) holds, if 𝑙 ∈ 𝑆 (and 𝑙′ ∈ �̄�), the optimal partition of 𝐶𝑖

is 𝑙, 𝑣′𝑖1, 𝑣𝑖2, 𝑣
′
𝑖3, 𝑣

′
𝑖4 ∈ 𝑆 and the other vertices in �̄�. If 𝑙 ∈ �̄� (and 𝑙′ ∈ 𝑆),

the optimal partition is 𝑙′, 𝑣𝑖1, 𝑣′𝑖2, 𝑣𝑖3, 𝑣𝑖4 ∈ 𝑆 and the other vertices in
�̄�. Here, as in the previous case, the optimal value for 𝐶𝑖 is 1 + 5𝐿.

In case (𝑖𝑖𝑖) holds, there are two alternative optimal partitions for
𝐶𝑖: 𝑐𝑖, 𝑣′𝑖1, 𝑣𝑖2,
𝑣′𝑖3, 𝑣

′
𝑖4 ∈ 𝑆 and the other vertices in �̄�, or 𝑐𝑖, 𝑣𝑖1, 𝑣′𝑖2, 𝑣𝑖3, 𝑣𝑖4 ∈ 𝑆 and the

other vertices in �̄�. Either way, the optimal value for 𝐶𝑖 is 5𝐿.
Therefore, the value of an optimal partition of the vertices of 𝐺 is

𝑛𝐿 + 𝑠 + 5𝑚𝐿, where 𝑛 is the number of variables, 𝑚 is the number of
clauses, and 𝑠 is the maximum number of clauses satisfied by a true
assignment, i.e., 𝑠 is the correct answer to the Max 2-SAT problem, and
the result follows. □

4. Performance comparison between the two models

This section reports computational experiments to compare the
performances of the 0/1 linear programming (0/1 LP) formulation
(1)–(6) and the quadratic unconstrained binary optimization (QUBO)
formulation (8)–(9).

All computations were performed in R (R Core Team, 2020) on a
desktop computer with CPU Intel Core i7–9700, 3.00 GHz, 8 Cores,
RAM memory of 16 GB, running Windows 10 Enterprise 64–bits. For
solving MOMIP we use the gurobi function from package gurobi
(Gurobi Optimization, LLC, 2022).

We generated data in two different ways. One by assigning weights
uniformly in [0, 1] to the edges of random graphs with 𝑛 vertices, where
there is an edge linking each pair of vertices with probability 𝑝. We
considered 𝑛 = 50, 75, 100, 150 and 𝑝 = 0.1, 0.2, 0.5. For each 𝑛 and each
𝑝, we generated three weighted graphs. Thus, a total of 36 instances
were obtained. The main results for this graphs dataset are presented in
Table 1.

In the other dataset the weights are the Euclidean distances between
pairs of 𝑛 points (vertices) in R2 generated as follows. Two points
𝑐1 and 𝑐2 were located at distance 𝑑 from each other. Then, 𝜃 × 𝑛
(0 < 𝜃 < 1) points were generated from a bivariate normal distribution
centered at 𝑐1 with standard deviation 0.05, and the remaining (1−𝜃)×𝑛
points were generated from a bivariate normal distribution centered
at 𝑐2 with standard deviation 0.1. We considered 𝜃 = 0.1, 0.3, 0.5 and
𝑑 = 0.25, 0.5, 1. We first considered 𝑛 = 50, 100, 150 and, for each
combination (𝑛, 𝜃, 𝑑), we generated three configurations, thus producing
a total of 81 weight matrices. Results obtained using this points dataset
are displayed in Table 2.

In Tables 1 and 2, columns ‘‘objval’’ indicate the objective values of
the computed solutions. Columns ‘‘time’’ give the execution CPU times,
in seconds, when the search for a solution stopped before the imposed
time limit of 10 min was reached by gurobi (≈ 4800 s since 8 cores are
used), and ‘‘T’’ otherwise. Columns ‘‘gap (%)’’ indicate the percentage
of optimality gap given by gurobi (i.e., 𝑔𝑎𝑝(%) = 𝑢𝑏−𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒

𝑜𝑏𝑗𝑣𝑎𝑙𝑢𝑒 × 100,
where 𝑢𝑏 is an upper bound on the optimal value). When a solution
is produced within the time limit, the solution is optimal and the gap
is zero.

In general the QUBO formulation performed better than the 0/1 LP.
Whenever 0/1 LP reached a solution within the time limit, QUBO also
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Table 1
Computational execution times (in seconds), objective values and optimality gaps for the two models over the graphs dataset.
𝑛 𝑝 run QUBO 0/1 LP

time objval gap (%) time objval gap (%)

50 0.1 1 0.14 47.96 0 0.26 47.96 0
2 0.24 51.98 0 0.25 51.98 0
3 0.11 48.62 0 0.34 48.62 0

0.2 1 1.11 77.18 0 2.23 77.18 0
2 0.87 83.89 0 2.50 83.89 0
3 0.76 75.00 0 2.80 75.00 0

0.5 1 26.18 160.25 0 1348.56 160.25 0
2 46.49 157.79 0 1868.34 157.79 0
3 47.81 150.35 0 1559.07 150.35 0

75 0.1 1 0.99 92.39 0 3.22 92.39 0
2 1.12 101.40 0 3.49 101.40 0
3 1.61 102.29 0 5.21 102.29 0

0.2 1 11.62 167.80 0 127.20 167.80 0
2 22.97 159.01 0 103.96 159.01 0
3 17.75 167.86 0 129.58 167.86 0

0.5 1 1555.58 346.06 0 T 336.78 28.40
2 3783.27 329.57 0 T 327.87 24.26
3 2359.46 333.88 0 T 324.27 28.11

100 0.1 1 52.60 171.53 0 1177.75 171.53 0
2 58.95 164.54 0 215.71 164.54 0
3 84.40 167.46 0 260.21 167.46 0

0.2 1 1630.80 256.54 0 T 256.54 5.18
2 4315.78 288.78 0 T 286.60 8.97
3 1328.14 277.02 0 T 277.02 6.27

0.5 1 T 566.39 18.35 T 551.67 39.19
2 T 574.64 20.60 T 566.97 37.10
3 T 580.21 21.16 T 570.04 36.42

150 0.1 1 T 334.63 7.58 T 332.90 15.92
2 T 350.86 8.14 T 350.06 14.89
3 T 361.05 5.76 T 351.25 15.88

0.2 1 T 576.34 15.35 T 583.58 23.58
2 T 579.47 12.51 T 559.22 27.13
3 T 605.20 13.39 T 607.68 22.61

0.5 1 T 1231.14 18.35 T 1216.79 65.86
2 T 1222.90 18.43 T 1201.48 65.90
3 T 1240.12 18.14 T 1210.32 66.40
found a solution and has been faster than the 0/1 LP. When both 0/1 LP
and QUBO reached the 10 min time limit, only in two cases ( Table 1,
𝑛 = 150) the objective values of the solutions produced from the 0/1
LP are greater than those found with QUBO.

For the graphs dataset, the computation times increase with the
number of vertices (𝑛) and also as graphs become more dense (when 𝑝
ncreases). Both models were unable to find a solution within the time
imit when 𝑛 = 150.

For the points dataset, the CPU times increase as the distance be-
ween the centers of the two groups (𝑑) decreases. This is an indication
hat when a group is well separated, then the computation times are
ower, and when the borderlines are less clear, the computation times
re heavier.

From the three considered proportions of group size (𝜃), the com-
utations were lighter when 30% of the points are in one group, and
ere heavier when a group has only 10% of points.

For all sets with 150 points and for most sets of 100 points, com-
utation time limit were attained when using the 0/1 LP model. The
erformance on these sets was significantly better with QUBO. We set
side the 0/1 LP model, and proceeded assessing the QUBO behavior
n larger points dataset. The main results for 𝑛 = 200, 500, 1000 are

given in Table 3. The columns of Table 3 have the same meaning as
the corresponding columns in Table 2 (w.r.t. QUBO).

Only for 𝑛 = 200 and for one instance with 𝑛 = 500, the computa-
tions finished within the time limit. The pattern relating computational
times with parameters 𝜃 and 𝑑 are similar to that observed with less
points. Except for three instances, the optimality gaps were less than
10%. Gaps were lower when one group has 30% of points and higher
when one group has only 10% of points. In general, gaps decrease when
5

a group is well separated, however this was not observed for 𝑛 = 1000
and 𝜃 = 0.1.

From these set of experiments we can conclude that the performance
of QUBO clearly overcomes that of 0/1 LP, although QUBO failed to
produce guaranteed optimal solutions (i.e., with zero gaps) for 𝑛 =
500. The gaps indicate that the obtained solutions could be considered
as good heuristic solutions. Furthermore, the gurobi program we are
using is not specialized to solve QUBO problems. Specialized QUBO
solvers have evolved in the last years (Kochenberger et al., 2014). If,
as expected, QUBO problems can be solved in the near future with up
to a million variables (see, e.g., Şeker et al., 2022), then our quadratic
formulation could also be a convenient option for large-scale real data
sets.

5. Two applications in data analysis

To give further insight into MOMIP, we illustrate its applicability on
two different areas of data analysis: variable selection and clustering. In
what follows, 𝑋 is a numeric matrix representing a data set consisting
on the measurements of 𝑝 variables (columns) in 𝑛 individuals or objects
(rows).

Variable selection

The first application consists of identifying a subset 𝑆 of the 𝑝
original variables that is optimal for a given criterion of adequate
approximation to the complete data set. The goal is the reduction of
dimensionality in the original data set, by discarding the redundant
variables and retaining a set of independent variables.
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Table 2
Computational execution times (in seconds) and objective values for the two models over the points dataset with number of points 𝑛 ≤ 150.
𝑛 𝜃 𝑑 run QUBO 0/1 LP

time objval gap (%) time objval gap (%)

50 0.1 1 1 2.39 234.98 0 34.88 234.98 0
2 1.24 227.97 0 40.57 227.97 0
3 0.87 226.51 0 33.08 226.51 0

0.5 1 13.91 165.61 0 T 165.61 12.40
2 1.49 143.13 0 2191.18 143.13 0
3 2.62 151.01 0 T 151.01 6.89

0.25 1 3.03 117.79 0 T 116.89 19.33
2 2.01 119.43 0 T 119.43 16.50
3 1.97 128.02 0 2304.05 128.02 0

0.3 1 1 0.16 519.04 0 6 9.03 519.04 0
2 0.05 513.86 0 6 24.17 513.86 0
3 0.14 537.89 0 6 11.68 537.89 0

0.5 1 0.11 272.95 0 6 161.28 272.95 0
2 0.11 249.97 0 6 161.98 249.97 0
3 0.11 286.22 0 37.02 286.22 0

0.25 1 0.40 150.90 0 2847.4 150.90 0
2 0.36 146.93 0 2913.23 146.93 0
3 0.27 138.19 0 297.39 138.19 0

0.5 1 1 0.08 565.05 0 11.14 565.05 0
2 0.14 613.51 0 4.08 613.51 0
3 0.06 591.09 0 11.22 591.09 0

0.5 1 0.14 298.20 0 83.77 298.20 0
2 0.22 288.48 0 48.16 288.48 0
3 0.22 284.12 0 30.56 284.12 0

0.25 1 0.98 140.69 0 245.72 140.69 0
2 0.52 144.06 0 203.12 144.06 0
3 0.40 149.23 0 214.86 149.23 0

100 0.1 1 1 7.99 920.36 0 T 584.46 128.89
2 2.78 951.88 0 T 607.46 129.06
3 4.90 962.49 0 T 700.07 108.89

0.5 1 T 602.43 7.28 T 508.63 111.72
2 T 583.23 6.39 T 551.35 79.61
3 T 585.69 3.55 T 486.74 90.34

0.25 1 T 493.17 6.72 T 352.17 138.83
2 T 475.63 5.52 T 410.75 114.69
3 T 486.22 5.81 T 327.18 149.39

0.3 1 1 0.19 2101.93 0 3836.93 2101.93 0
2 0.28 2052.02 0 2796.78 2052.02 0
3 0.17 2147.71 0 2743.86 2147.71 0

0.5 1 0.30 1038.40 0 T 1038.40 24.80
2 0.55 1080.08 0 T 1080.08 28.26
3 0.28 1050.16 0 T 873.06 49.13

0.25 1 2424.37 570.36 0 T 532.79 61.74
2 T 550.17 4.62 T 412.20 105.37
3 3371.55 590.66 0 T 430.12 107.97

0.5 1 1 0.86 2404.83 0 T 2404.83 4.22
2 0.81 2367.40 0 2715.56 2367.40 0
3 0.73 2476.18 0 4247.41 2476.18 0

0.5 1 1.25 1197.36 0 T 1197.36 18.56
2 1.39 1178.10 0 T 1178.10 18.94
3 1.97 1155.23 0 T 1155.23 19.44

0.25 1 T 624.03 4.98 T 620.39 44.27
2 T 664.31 5.71 T 588.24 57.79
3 3815.91 589.30 0 T 544.64 59.23

150 0.1 1 1 453.96 2089.85 0 T 1306.80 140.10
2 411.43 2095.19 0 T 1249.77 143.72
3 60.47 2109.87 0 T 1294.93 148.17

0.5 1 T 1323.79 4.77 T 923.37 162.65
2 T 1350.57 3.60 T 917.70 158.41
3 T 1324.94 3.96 T 923.78 148.28

0.25 1 T 1026.00 3.74 T 734.13 165.36
2 T 1071.19 3.85 T 750.29 158.03
3 T 1047.25 2.51 T 722.60 166.12

0.3 1 1 0.46 4679.95 0 T 3169.10 72.32
2 0.35 4538.99 0 T 2499.17 114.59
3 0.28 4780.95 0 T 3091.86 77.88

0.5 1 9.28 2330.01 0 T 1383.45 127.60
2 2.58 2355.35 0 T 1503.34 120.42
3 1.64 2428.40 0 T 1479.40 125.40

(continued on next page)
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Table 2 (continued).
𝑛 𝜃 𝑑 run QUBO 0/1 LP

time objval gap (%) time objval gap (%)

0.25 1 40.74 1280.65 0 T 1066.85 95.66
2 T 1322.75 1.92 T 877.81 144.67
3 T 1346.93 1.26 T 901.86 147.40

0.5 1 1 6.52 5402.92 0 T 3764.95 58.05
2 5.50 5538.78 0 T 3822.87 59.67
3 5.34 5380.35 0 T 3701.91 61.43

0.5 1 17.56 2576.17 0 T 1887.86 69.81
2 143.09 2653.98 0 T 1963.08 76.17
3 159.08 2639.57 0 T 1937.78 74.95

0.25 1 T 1228.96 3.11 T 978.00 100.72
2 T 1389.40 1.08 T 1081.08 94.93
3 T 1257.07 4.19 T 926.84 116.32
Although the problem is multivariate in nature, we propose a crite-
ion based on pairs of variables. Let us consider MOMIP with the graph
hose vertices are the 𝑝 variables and the weight associated to each
dge 𝑢𝑣 is the square of the Pearson correlation between the variables 𝑢
nd 𝑣. The squared correlation quantifies the proportion of variability
f one variable that is explained by a linear regression on the other.
his corresponds to consider the weight matrix 𝑊 = [𝑤𝑢𝑣], defined in
ection 2, as the 𝑝×𝑝 matrix with zero entries on the diagonal, and the
quared Pearson correlation between columns 𝑢 and 𝑣 of matrix 𝑋 as

the off-diagonal elements.
An optimal solution of MOMIP provides a set 𝑆 of variables that

aximizes the sum of the squared correlations between each variable
n 𝑆 and each variable outside 𝑆 and that minimizes the sum of
he squared correlations between all pairs of variables in 𝑆. Let 𝑘 be
ardinality of the solution set 𝑆.

The results were compared with those obtained by a classic opti-
ization algorithm implemented using the eleaps function of the R
ackage subselect (Cerdeira et al., 2020). This function identifies,
or an arbitrary 1 ≤ 𝑘 ≤ 𝑝, a 𝑘-subset of variables which is optimal

with respect to a given criterion that measures and quantifies how
well each subset approximates the whole data set. We consider the
three following multivariate criteria (Cadima et al., 2004; Cadima and
Jolliffe, 2001)

• RM: measures the similarity of the spectral decompositions of
the 𝑝-variable correlation matrix, and of the matrix which results
from regressing all the variables on a subset of only 𝑘 variables.

• RV: measures the similarity (after rotations, translations and
global resizing) of two configurations of 𝑛 points given by: (𝑖)
observations on each one of the 𝑝 variables, and (𝑖𝑖) the regression
of those 𝑝 observed variables on a subset of the variables.

• GCD: computes Yanai’s Generalized Coefficient of Determination
for the similarity of the subspaces spanned by a subset of variables
and a subset of the full Principal Components data set.

For the set of 𝑘 variables selected by MOMIP, and the sets with the
same cardinality, 𝑘, selected by eleaps, we quantify the four criteria:
MOMIP, RM, RV, and GCD.

Cluster analysis

The second application is a particular case of cluster analysis. The
goal of clustering is to identify pattern or groups of similar individuals
or objects within a data set. Cluster analysis seeks to partition a given
data set into groups based on specified features so that the observations
within a group are more similar to each other than the observations in
different groups; see, e.g., Everitt et al. (2011).

The partition of observations into groups requires the definition of
a distance or dissimilarity between each pair of observations. Common
dissimilarity measures for numerical data are Euclidean and Maha-
lanobis distances (Gan et al., 2007). Other dissimilarity measures, such
7

as correlation-based dissimilarities, are often used. These measures
consider two observations similar if their features are highly corre-
lated, even though the observed values may be far apart in terms of
Euclidean distance. They are useful when one aims to identify groups
of observations with the same general patterns, regardless of their
individual magnitudes of each feature. This is particularly the case in
the analysis of gene expression data (Jiang et al., 2004). When using
Pearson’s correlation, one can easily prove that the squared Euclidean
distance between two standardized vectors (after subtracting the mean
and dividing by the standard deviation) is equal to one minus the
Pearson correlation coefficient divided by twice the dimension.

Clustering methods differ also on the definition of the distance
between an object and a cluster and between two clusters, and in
the clustering algorithm. Many conventional clustering algorithms are
hierarchical: agglomerative when the two most similar groups are
merged to form a large cluster at each step, or divisive when the process
is reversed by starting with all data observations in one cluster and
subdividing into smaller clusters. In both cases, an optimal number of
clusters is needed.

We propose the following 1-cluster method. Consider MOMIP with
the graph whose vertices are the 𝑛 observations and where the weight
associated to each edge is the dissimilarity between the observations,
defined by one minus the Pearson correlation. Notice that each ob-
servation is a 𝑝-dimensional vector. This corresponds to consider the
weight matrix 𝑊 = [𝑤𝑢𝑣], defined in Section 2, as the 𝑛 × 𝑛 matrix
with entry (𝑢, 𝑣) equal to one minus the Pearson correlation between
rows 𝑢 and 𝑣 of matrix 𝑋. An optimal solution of MOMIP provides
a set 𝑆 of observations that maximizes the sum of the dissimilarities
between each observation in 𝑆 and each observation outside 𝑆, and
that minimizes the sum of dissimilarities between observations in 𝑆.

We consider four data sets, chosen with respect to different proper-
ties like number of data points, number of features and complexity of
the classification task. The two procedures described above (variable
selection and clustering) are applied to each data set.

Next, a brief description of each of the four considered data sets
will be given, and the results obtained will be presented and analyzed.
All computations were performed in R (R Core Team, 2020), using the
computer described in Section 4.

Iris data set

The first example is the Iris flower dataset, one of the most popular
multivariate datasets in pattern recognition literature. This dataset
was introduced by Fisher in 1936 (Fisher, 1936) as an example of
application of linear discriminant analysis.

It consists on measurements of 𝑝 = 4 morphometric variables
(length and width of sepal and petal) in 50 iris flowers of each of
three species: Iris setosa, Iris virginica and Iris versicolor, thus making
𝑛 = 150 observations. For additional details see the web page https:

//en.wikipedia.org/wiki/Iris_flower_data_set.

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set
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Table 3
Computational execution times (in seconds) and optimality gaps for the QUBO model
over the points dataset with number of points 𝑛 ≥ 200.

QUBO

n theta d run CPU gap (%)

200 0.1 1 1 697.22 0
2 T 0.89
3 401.25 0

0.5 1 T 5.03
2 T 5.84
3 T 5.80

0.25 1 T 5.09
2 T 5.49
3 T 5.13

0.3 1 1 0.79 0
2 1.25 0
3 0.84 0

0.5 1 3.50 0
2 13.50 0
3 4.57 0

0.25 1 T 2.17
2 T 3.55
3 T 3.58

0.5 1 1 67.76 0
2 148.83 0
3 212.68 0

0.5 1 1955.30 0
2 504.80 0
3 3678.32 0

0.25 1 T 4.89
2 T 4.70
3 T 3.86

500 0.1 1 1 T 7.13
2 T 7.67
3 T 6.58

0.5 1 T 8.33
2 T 8.64
3 T 8.50

0.25 1 T 8.28
2 T 7.52
3 T 8.02

0.3 1 1 T 0.70
2 T 0.73
3 2001.85 0

0.5 1 T 3.11
2 T 2.53
3 T 2.24

0.25 1 T 6.70
2 T 6.13
3 T 6.07

0.5 1 1 T 2.67
2 T 2.71
3 T 2.90

0.5 1 T 3.90
2 T 3.39
3 T 3.83

0.25 1 T 8.22
2 T 8.04
3 T 7.85

1000 0.1 1 1 T 10.24
2 T 12.21
3 T 11.13

0.5 1 T 8.37
2 T 8.42
3 T 8.80

0.25 1 T 8.03
2 T 8.48
3 T 8.49

0.3 1 1 T 1.81
2 T 1.82
3 T 1.79

0.5 1 T 3.41

(continued on next page)
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Table 3 (continued).
QUBO

n theta d run CPU gap (%)

2 T 3.27
3 T 3.63

0.25 1 T 7.26
2 T 6.58
3 T 6.01

0.5 1 1 T 3.41
2 T 3.66
3 T 3.65

0.5 1 T 5.04
2 T 4.62
3 T 4.38

0.25 1 T 8.51
2 T 9.25
3 T 9.39

Fig. 5. Scatter plot of the Iris data set (red = Setosa, green = Versicolor, blue =
Virginica) with the squared Pearson correlation coefficients.

Table 4
Values of each criterion for the common optimal solution with cardinality 𝑘 = 1 for
Iris data set.

MOMIP value RM value RV value GCD value

1.8706 0.8471 0.9375 0.9832

In Fig. 5 we show the scatter plot of the data set, with the squared
Pearson correlation coefficients between each pair of variables. When
the squared correlation coefficients were used for the off-diagonal
elements of 𝑊 , the solution obtained by MOMIP selects 𝑘 = 1 vari-
ble, the Petal Length. Now, using 𝑘 = 1, the optimization algorithm
mplemented in function eleaps with each one of the three criterion
RM, TV, and GCD) selects exactly the same variable. The values of each
riterion for the (common) optimal solution is presented in Table 4.

Note that RM, RV, and GCD take values between zero and one, and
hat both RM and RV increase with cardinality 𝑘.

When considering each iris flower as a 4-dimensional vector, and
he square matrix 𝑊 , with dimension 𝑛 = 150, whose entry (𝑢, 𝑣) is
− 𝑟𝑢𝑣 where 𝑟𝑢𝑣 is the Pearson correlation coefficient between irises

𝑢 and 𝑣, the optimal solution of MOMIP is the set of irises of Setosa
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Table 5
Comparison between MOMIP and the other 3 criteria for the Crayfish data set.

MOMIP RM RV GCD

MOMIP value 12.508 11.804 12.004 10.766
RM value 0.882 0.905 0.893 0.884
RV value 0.965 0.960 0.965 0.901
GCD value 0.500 0.763 0.579 0.866

species. Thus, the proposed 1-cluster methodology was able to identify
etosa and correctly distinguish this species from the other two.

rayfish data set

This dataset is taken from Somers (1986) and consists of measure-
ents (in millimeters) of 𝑝 = 13 morphometric variables for 𝑛 = 63

rayfish collected in Lake Opeongo, Ontario. The 13 variables are:
arapace length, tail length, carapace width, carapace depth, tail width,
reola length, areola width, rostrum length, rostrum width, postorbital
idth, propodus length, propodus width, and dactyl length. Out of the
3 crayfish, 21 are female and 42 are male.

When applying MOMIP to select a subset of variables, the solution
s the set of 𝑘 = 4 morphometric variables: carapace length, tail
ength, carapace width and propodus length. The solution of eleaps
lgorithm with the same cardinality depends on the quality criterion.
riterion RM selected variables: carapace width, areola width, ros-
rum length and propodus length; RV determined: carapace width,
ail length, rostrum length and propodus length, and criterion GCD
elected: areola length, areola width, rostrum length and propodus
ength.

In order to compare the solutions obtained by the 4 criteria, each
olution was evaluated by each of the 4 criteria. Results are presented
n Table 5.

Table 5 shows that, when comparing the solution of MOMIP with
he solutions of eleaps with the same cardinality, the scores of
OMIP are quite similar to the scores of the other 3 criteria.

The solution of the 1-cluster method is the set of the female crayfish
21 observations) together with 2 males.

eeds data set

This data set was taken from Dua and Graff (2019) and consists of
alues of the characteristics of the internal structure of the kernel of
heat seeds, detected by means of a soft X-ray technique. The research

hat produced those values was conducted using combined harvested
heat grain, originating from experimental fields, explored at the

nstitute of Agrophysics of the Polish Academy of Sciences in Lublin.
eventy seeds from each of three wheat varieties (Kama, Rosa and
anadian) were analyzed. For each seed, seven geometric parameters
f wheat kernels were measured: area 𝐴, perimeter 𝑃 , compactness
= 4 ∗ 𝑝𝑖 ∗ 𝐴∕𝑃 2, length of kernel, width of kernel, asymmetry

oefficient and length of kernel groove. Thus, this data set has 𝑛 = 210
bservations and 𝑝 = 7 features. For additional details see the web page
ttp://archive.ics.uci.edu/ml/datasets/seeds.

The solution obtained by MOMIP, to the selection variable problem,
s the set of the following 𝑘 = 3 features: width of kernel, asymmetry
oefficient and length of kernel groove. The comparison between the
uality measures of the best subsets with 𝑘 = 3 variables, given
y each of the 4 criteria is presented in Table 6, showing that the
uality of the solution obtained by MOMIP is similar to the remaining
riteria. Criteria RM and RV selected the same three variables: area,
ompactness and asymmetry coefficient, while criterion GCD chose
ompactness, length of kernel groove and asymmetry coefficient.

The solution to the 1-cluster problem is composed by 67 observa-
ions: 62 out of 70 seeds of the Canadian variety and 5 seeds out of
9

Table 6
Comparison between MOMIP and the other 3 criteria for the Seeds data set.

MOMIP RM RV GCD

MOMIP value 5.228 4.237 4.237 4.632
RM value 0.981 0.990 0.990 0.988
RV value 0.990 0.995 0.995 0.989
GCD value 0.940 0.989 0.989 0.989

Table 7
Comparison between MOMIP and the other 3 criteria for the WDBC data set.

MOMIP RM RV GCD

MOMIP value 40.763 33.456 40.319 35.379
RM value 0.957 0.968 0.960 0.961
RV value 0.989 0.987 0.991 0.983
GCD value 0.781 0.866 0.785 0.897

70 of the Kama variety. We note that no seed of the Rosa variety was
selected.

Wisconsin diagnostic breast cancer data set

The Wisconsin Diagnostic Breast Cancer (WDBC) data set was taken
from Dua and Graff (2019). It consists on numerical characteristics of
the cell nuclei, computed from an image analysis of a breast mass.
Ten real-valued features were computed for each cell nucleus: radius
(mean of distances from center to points on the perimeter), texture
(standard deviation of gray-scale values), perimeter, area, smoothness
(local variation in radius lengths), compactness (perimeter2/area - 1),
concavity (severity of concave portions of the contour), concave points
(number of concave portions of the contour), symmetry and fractal
dimension (‘‘coastline approximation’’ - 1). The 30 variables of this
dataset are the mean, standard error and mean of the three largest
values of each feature, across all cell nucleus in an image. There are 569
instances, 357 corresponding to benign cases and 212 to malignant. For
details see https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wis
consin+(Diagnostic).

MOMIP selected a set 11 variables: radius (mean and largest values),
mean texture, mean concavity, symmetry (mean and standard error),
standard errors of area, concave points, and fractal dimensions, largest
values of smoothness and compactness. Standard error of symmetry and
of fractal dimension were also selected by the other three approaches,
which also selected standard error of radius. Beside those choices,
RM selected mean perimeter and smoothness, symmetry (mean and
standard error), radius (standard error), texture (standard error and
largest values) and compactness (largest values). RV selected mean
area, mean compactness, standard error of concave points and largest
values of texture, perimeter, smoothness, concavity and symmetry.
GCD criterion selected mean radius, texture (mean and standard er-
ror), mean compactness, mean symmetry, standard error of texture,
smoothness and concave points and largest values of concavity.

Table 7 reports the values of all criteria of the optimal selection
obtained for each criterion. We can observe, once again, that the scores
of the optimal solution of MOMIP are similar to the scores of the other
3 criteria.

The 1-cluster method determined an optimal partition (𝑆, �̄�) of the
69 instances with |𝑆| = 164. Table 8 reproduces the confusion matrix

that relates the elements of 𝑆 and �̄� to the instances identified as benign
and malignant. TN, FN, FP and TP mean true negative, false negative,
false positive and true positive, respectively.

To assess the ability of MOMIP to distinguish between benign
and malignant samples, we calculated the balanced accuracy; see,
e.g., Guyon et al. (2015). The balanced accuracy is the average between
sensitivity and specificity, where sensitivity is the ratio TP/(TP+TN)
and specificity is TN/(FP+TN). The balanced accuracy of MOMIP gave
0.849, which can be considered as an acceptable accuracy.
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Table 8
Comparison between the optimal partition (𝑆, �̄�) of MOMIP and the diagnostic (benign
and malignant) for the WDBC data set.

�̄� 𝑆 Total

Benign 347 (TN) 10 (FP) 357
Malignant 58 (FN) 154 (TP) 212
Total 405 164 𝑛 = 569

We close this section with some general comments. The results
btained for these four datasets seem promising. MOMIP was well
ucceeded in both the reduction of dimensionality, and the selection of
subset of observations that share similar feature relationships. Notice

hat MOMIP does not take advantage of the knowledge of the variable
esponse, as it is usually done by the supervised algorithms for feature
election and classification.

Concerning the computational effort measured in CPU time, using
he QUBO formulation, Gurobi obtained the solution of each of the
hree first variable selection problems in less than 0.22 s. Selecting
ariables for the WDBC data set required 158 s. For the 1-cluster

approach the execution CPU times in seconds were 2.06 for iris, 0.58
for crayfish, and 117.76 for seeds. For WDBC, gurobi stopped after the
imposed time limit of 10 min producing a solution with an optimality
gap of 6%. We note that, for this latter problem, we let gurobi work up
to 24 h obtaining the same solution only reducing the optimality gap
to 5.03%.

6. Conclusions and perspectives

We have developed a graph-based combinatorial optimization ap-
proach which is effective for variable selection and a particular type of
clustering. A key feature of solving this novel max-out min-in problem
(MOMIP) formulation is that the cardinality of the involved sets is not
required in advance. We have established that MOMIP is NP-hard. In
addition, we have illustrated its performance, for variable selection
and clustering, on four different data sets with a variety of distinct
properties.

It is worth mentioning that a generalization of MOMIP can be
obtained by replacing the matrix 𝑊 ≡ [�̂�𝑢𝑣], in the QUBO formulation
(8)–(10), by the following one

�̂�𝑢𝑣(𝜆) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

𝑠∈𝑉
𝑤𝑢𝑠 if 𝑢 = 𝑣

−3
2
𝜆𝑤𝑢𝑣 if 𝑢 ≠ 𝑣,

(11)

where 𝜆 > 0 is a real parameter. We note that if 𝜆 = 1 then we recover
he original MOMIP formulation (8)–(10), and if 𝜆 = 2∕3 then we obtain

the well-known weighted maximum cut problem; see, e.g., Shylo and
Shylo (2010). Moreover, if 𝑊 is the adjacency matrix of graph 𝐺 and
(𝐺) denotes the maximum degree among the vertices of 𝐺, then it can
e seen that for any arbitrary 𝜆 > 𝛥(𝐺)∕3 an optimal solution 𝑆 cannot

have an edge with both vertices in 𝑆, i.e., 𝑆 is an independent set of 𝐺.
Furthermore, if 𝑆 is an optimal set, every vertex not in 𝑆 is adjacent to
some vertex in 𝑆, i.e., 𝑆 is a maximal independent set or, equivalently,
it is a dominating set. Hence, for whatever different values of 𝜆 >
𝛥(𝐺)∕3, the optimal solutions will be the same and all of them (if
more than one exists) will be an independent dominating set of 𝐺.
Independent dominating sets have been largely studied in graph theory,
see, e.g., Goddard and Henning (2013). Particular attention has been
directed to the independent domination number of a graph, denoted
by 𝑖(𝐺), which is the minimum size of an independent dominating
set. Therefore, a related problem is the variant of MOMIP that can be
obtained by setting 𝜆 > 𝛥(𝐺)∕3 in (11): find an independent dominating
set 𝑆 of graph 𝐺 having the largest number of edges with one end in
10

𝑆.
We also note that the 1-cluster approach that we described and il-
lustrated in Section 5, as an application of MOMIP, is not an archetypal
clustering procedure. The 1-cluster solution 𝑆 maximizes dissimilarities
from elements in 𝑆 to the elements outside 𝑆 and minimizes the
dissimilarities between pairs of elements in 𝑆. No concern is explicitly
given to dissimilarities among the elements which are not in 𝑆. The
dissimilarities among the elements outside 𝑆 is a consequence of the
goals defined for finding 𝑆. So, it is expected that, if the sum of the
dissimilarities between elements of a subset 𝑆′ ⊆ �̄� = 𝑉 ⧵𝑆 to elements
in �̄�⧵𝑆′ is large and the sum of dissimilarities between pairs of elements
in 𝑆′ is small, then the elements of 𝑆′ should be very dissimilar from the
elements of 𝑆. Taking this remark into account, the following iterative
hierarchical clustering procedure could be considered. At each iteration
MOMIP defines, on the current weighted graph 𝐺, an optimal 1-cluster
solution 𝑆, with the additional concern to add to 𝑆 every isolated
vertex; and then the graph 𝐺 is updated removing 𝑆 from the current 𝐺.
The procedure stops when 𝐺 has no edges. This hierarchical clustering
algorithm has the advantage of having no need to know in advance
the number of clusters. Continuous optimization models in which the
number of clusters is not required, have also been recently proposed;
see, e.g., Shah and Koltun (2017). We plan to explore our iterative
hierarchical clustering procedure in a future work.
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