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ABSTRACT

Nowadays, due to governmental requirements to control climate change, there is a great inter-
est on the part of the automotive and aerospace industry to design structures as light as possible,
without jeopardize their performance, thus increasing their efficiency. Multi-material design is a
way to achieve this goal, as will be shown in this work

In this work, multi-material design is considered with the goal of improving the structure’s
stiffness, strength, and non-linear behaviour when it yields. Firstly, a microstructural topology
optimization is carried out seeking for multi-material microstructures with increased stiffness and
strength compared to equivalent single-material microstructures. Afterwards, this study is further
extended to perform multi-scale topology optimization, where a concurrent optimization of ma-
terial and structure is done. Ultimately, the non-linear behaviour of hybrid fibre reinforced com-
posites is optimized in order to introduce a so-called “pseudo-ductility”.

Two different optimization problems are formulated and solved here. One compliance mini-
mization with mass constraint problem and another stress-based problem where the maximal von
Mises stress is locally minimized in the unit-cell. The multi-material design is investigated here
using two different approaches. On one hand, the two solids coexist being bonded together across
sharp interfaces. On the other hand, a functionally graded material is obtained as an extensive
smooth variation of material properties on account of varying composition’s volume fractions of
both solids throughout the design domain. The compliance-based optimization results show that
multi-material microstructures can be stiffer compared to single-material ones for the same mass
requirement. Regarding the stress-based problem, lower stress peaks are obtained in bi-material
design solutions and, specially, in the case of graded material solutions.

As regards multi-scale topology optimization, the results show that a multi-material structure
can be stiffer than its single-material counterpart, which is in accordance with the microstructural

study performed earlier.



Hybrid composites can achieve the so-called “pseudo-ductile” behaviour mimicking the well-
known elastic-plastic behaviour. To understand under what circumstances such behaviour is ob-
tained, optimization problems are formulated and solved here. Two different types of optimiza-
tion problems are considered. Firstly, one finds out the optimal properties of fibres to hybridize
and get the pseudo-ductile behaviour. Once an optimal hybridization is found, another optimiza-
tion problem is solved in order to understand the influence of the fibre dispersion on the composite
response. The optimal results obtained show hybrid composites having a considerable pseudo-

ductile behaviour.

Keywords: Multi-material, Composites, Topology, Optimization.



RESUMO

Atualmente, devido as imposi¢cdes governamentais para controlar as alteragcdes climaticas,
existe um grande interesse por parte da industria automdvel e aeroespacial para o projeto de es-
truturas 0 mais leves possiveis, sem se comprometer o seu desempenho, aumentando assim a sua
eficiéncia. O projeto multimaterial de estruturas € um dos caminhos para se alcangar este objetivo,
conforme serd mostrado neste trabalho.

Neste trabalho, considera-se o projeto multimaterial de estruturas com o objetivo de se melho-
rar a rigidez, resisténcia, e comportamento ndo linear apos cedéncia. Primeiro, é feita uma otimi-
zacdo de topologia ao nivel da microestrutura procurando-se microestruturas multimateriais com
maior rigidez e resisténcia quando comparadas com microestruturas de material inico equivalen-
tes. Depois, este estudo € explorado também no contexto de otimizacéo topoldgica multi-escala,
onde é realizada uma otimizagdo concorrente do material e estrutura. Por fim, o0 comportamento
ndo linear de compositos hibridos refor¢ados por fibra é otimizado com vista a introdugéo de um
efeito de “pseudo-ductilidade”.

Séo formulados e resolvidos aqui dois problemas diferentes de otimizagcdo. Um problema de
minimizacdo de compliance (flexibilidade) sujeito a um constrangimento de massa e outro pro-
blema baseado na tenséo, onde a tensdo maxima de von Mises é localmente minimizada na célula
unitaria. O projeto multi-material é investigado aqui utilizando duas diferentes abordagens. Numa
das abordagens, os dois s6lidos coexistem na sua forma discreta originando-se interfaces com
uma variacao abrupta de propriedades. Na outra abordagem, obtém-se um material de gradiente
funcional onde existe uma suave variacao das propriedades obtida variando pontualmente a fragdo
volUmica dos sélidos ao longo de todo o dominio de projeto. Os resultados da otimizagdo baseada
na compliance mostraram que microestruturas multimateriais podem ser mais rigidas quando
comparadas com as de material Gnico para 0 mesmo requisito de massa. Relativamente ao pro-
blema baseado na tenséo, sdo obtidos picos de tensdo mais baixos nas solugBes constituidas por

duas fases discretas de material e, sobretudo, nas solugdes de material de gradiente funcional.
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No que que diz respeito a otimizacdo topoldgica multi-escala, os resultados mostraram que
uma estrutura multimaterial pode ser mais rigida que uma estrutura de material Unico equivalente,
0 que esta de acordo com o estudo realizado anteriormente ao nivel da microestrutura.

Os compositos hibridos conseguem alcangar um comportamento designado de “pseudo-dic-
til”, imitando o conhecido comportamento elasto-plastico. Para melhor se compreender sob que
circunstancias tal comportamento é obtido, sdo formulados e resolvidos problemas de otimizag&o.
S&o assim considerados dois tipos diferentes de problemas de otimizagdo. Primeiramente, desco-
brem-se quais as propriedades 6timas das fibras a hibridizar, obtendo-se o comportamento
pseudo-ductil. Assim que hibridizacdo étima tenha sido descoberta, outro problema de otimizacéao
é resolvido de modo a perceber-se a influéncia da dispersdo das fibras na resposta do compdsito.
Os resultados 6timos obtidos mostram compdsitos hibridos tendo um comportamento pseudo-

ddctil consideravel.

Palavas chave: Multimaterial, Compositos, Topologia, Otimizacéo.
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'
INTRODUCTION

This PhD thesis focuses on analysing and optimizing composite structures with microstructure
composed by two or more materials. A composite structure is basically a combination of two or
more different materials, giving rise to a new material with better mechanical properties than its
constituents. These constituent materials can be mixed according to a predefined layout, e.g.,
fibres embedded in polymer matrix, or the layout can be itself a design variable in a topology
optimization problem.

Structural analysis is understood as obtaining the response (e.g., displacements or stresses) of
a structure when subjected to an applied external load. There are two different methods of struc-
tural analysis: (1) analytical methods and (2) numerical methods. Analytical methods are those
which the response of a structure is given by a mathematical expression that yields the values of
the desired unknown quantities at any location in a body (or structure) and are thus valid for an
infinite number of locations in the body. Reasonable solutions can be easily obtained for simple
structures, but as the complexity of the structure increases it becomes impossible to accurate sim-
ulate all the details. Therefore, for complex structures, numerical methods must be invariably
employed. The numerical methods can be subdivided into two categories: (1) numerical solutions
of differential equations for displacements or stresses, and (2) matrix methods based on discrete-
element idealization. In the first type the equations of elasticity are solved using either finite dif-
ference techniques or direct numerical integration. In this approach the analysis is based on a
mathematical approximation of differential equations. In the second type, the continuous domain
occupied by the structure is replaced by a mathematical model consisted by an assembly of dis-
crete structural elements with assumed form of displacement or stress distribution. The response
of the structure is then obtained by combining each element approximate displacement or stress

distributions in a manner which satisfies the force-equilibrium and displacement compatibility at
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the junctions of these elements [1,2]. The well-known Finite Element Method (FEM) is a matrix
method based on discrete-element idealization.

The modern development of the FEM began in the 1940s in the field of structural engineering
with the work by Hrennikoff [3] in 1941 and McHenry [4] in 1943, who used a lattice of line
(one-dimensional) elements (bars and beams) for the solution of stresses in continuous solids.
The first treatment of two-dimensional elements was done by Turner et al. [5] in 1956 for truss
elements, beam elements, and two-dimensional triangular and rectangular elements in plane
stress. Extension to three-dimensional problems was done by Martin [6] in 1961. There are two
general direct approaches traditionally associated with the FEM: (1) the force (or flexibility)
method and (2) the displacement (or stiffness) method. In the first approach, internal forces are
used as the unknowns of the problem. To obtain the governing equations, first the equilibrium
equations are used. Then necessary additional equations are found by introducing compatibility
equations. The result is a set of algebraic equations for determining the redundant or unknown
forces. This approach was first developed by Levi [7] in 1947, and in 1953 another work of his
authorship [8] suggested the use of the displacement (or stiffness) method as a promising alter-
native. This second approach assumes the displacements of the nodes as the unknowns of the
problem. The compatibility conditions assume that elements connected at a common node, along
a common edge, or on a common surface before loading remain connected at that node, edge, or
surface after deformation takes place. Then the governing equations are expressed in terms of
nodal displacements using the equations of equilibrium and an applicable law relating forces to
displacements. Basically, these two direct approaches result in different unknowns (forces or dis-
placements) in the analysis and different matrices associated with their formulations (flexibilities
or stiffnesses). For the sake of knowledge, the displacement (or stiffness) method is more desira-
ble because its formulation is simpler for most structural analysis problems as shown in [9]. An-
other general method that can be used to develop the governing equations is the variational
method. The variational method includes several principles. One of these principles, is the theo-
rem of minimum potential energy that applies to materials behaving in a linear-elastic manner.
Another variational principle often used to derive the governing equations is the principle of vir-
tual work. This principle applies more generally to materials that behave in a linear-elastic fash-
ion, as well as those that behave in a nonlinear fashion. Summing up, the FEM involves modelling
the structure using small interconnected elements called finite elements. A displacement function
is associated with each finite element. Every interconnected element is linked, directly or indi-
rectly, to every other element through common (or shared) interfaces, including nodes and/or

boundary lines and/or surfaces. By using known stress/strain properties for the material making
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up the structure, one can determine the behaviour of a given node in terms of the properties of
every other element in the structure. The total set of equations describing the behaviour of each
node results in a series of algebraic equations best ex-pressed in matrix notation. More details
about FEM can be found in [10].

Structural optimization consists in finding a set of structural parameters (design variables) in
order to minimize or maximize a cost (or objective) function, satisfying constraints functions (if
exist). There are three main types of structural optimization problems: (1) sizing optimization, (2)
shape optimization and (3) topology optimization. In the 1960s, at the beginning of modern struc-
tural optimization, structural optimization was oriented towards solving sizing optimization prob-
lems. Back then, Schmit [11] was the one who first established the mathematical model of the
optimization design for elastic structures under multiple load cases and put forward the solution
method based on mathematical programming. In a sizing optimization problem, the goal may be
to find some type of structural thickness, i.e., the design variables can be either the cross-sectional
areas of truss members, or the thickness distribution of a sheet. After a research effort mainly
focused on sizing optimization, the shape optimization of structures began to be studied with more
interest in the beginning of 1970s [12, 13]. In shape optimization problems, the goal is to find the
form or contour of some part of the boundary of the structural domain. This boundary can be
defined by a set of points, a line or a surface. These can be modelled by mathematical functions
(splines or others) by defining control points. The design variables are then the coordinates of
those points along the boundary. Note that the connectivity of the structure is not changed by
shape optimization, i.e., new boundaries are not formed. Lastly, the most general form of struc-
tural optimization is the topology optimization. The history of topology optimization began in
1890s with Maxwell’s studies [14] on the layout optimization of the truss. Thereafter, Michell
[15] studied the layout optimization with stress constraints for the truss with coplanar forces ap-
plied to specified locations. However, as there was no FEM and mathematical programming at
that time, this topic did not receive due attention. In 1980s, this thematic was raised with the work
of Bendge and Kikuchi [16]. Topology optimization of solid structures involves the determination
of features such as the number, location and shape of holes and the connectivity of the domain.
Typically, topology optimization is an optimization procedure that rationally distributes/redistrib-
utes the material over a certain domain through the gradual removal of small portions of material
with low stress level that is not being used efficiently in the transmission of internal forces. In a
discrete case, such as for a truss, it is achieved by taking cross-sectional areas of truss members
as design variables, and then allowing these variables to take the value zero, i.e., bars are removed

from the truss. If instead of a discrete structure, a continuum-type structure discretized by a finite
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element mesh is considered, and considering that each finite element is assigned a density-like
design variable, then topology changes can be achieved by letting these variables take the value
zero, i.e., removing material. For a better understanding, imagine a two-dimensional sheet. In this
case, the density design variables can be seen as the thickness of the sheet, and if the thickness
(or density) goes to zero it means absence of material. This approach is the so-called density-
based topology optimization [17]. An alternative approach for density-based topology optimiza-
tion is the well-known level set method, where the structural boundary is represented by a level
set model that is embedded in a scalar function of a higher dimension [18]. Other examples of
topology optimization methods are methods based on the topological derivative [19], phase-field
method [20] and bubble method [21]. In addition to the three main aforementioned categories,
another category of structural optimization should also be mentioned, which is the material opti-
mization. In this case, the geometry and dimensions of the structure are not changed. The aim is
to find the optimum material. More details about structural optimization can be found in [22] and
[23].

The analysis and optimization of composite structures can be done in three different scales:
macroscale, mesoscale and microscale [24]. The macroscale models simulate the structure, where
it is considered homogeneous and continuous, and the material's behaviour follows an anisotropic
constitutive law [25]. These models require less computational effort than models in the other
scales, allowing the analysis of complex and large structures. However, the absence of important
microstructure information about the interaction between the constituents and the contribution of
each one to the failure of the structure, make these models very limited. The mesoscale models
simulate the composite’s layers, where the laminate is considered homogeneous and orthotropic
or transversely isotropic. Using these models, reasonable predictions of the composite’s behav-
iour can be obtained. However, there is a lack of relevant information about the microstructure,
which can lead to less realistic results [26]. The microscale models are used to simulate the mi-
crostructure of the material and its properties, e.g., the fibres and matrix. These models are based
on a Representative Volume Element (RVE) or Unit Cell (UC) which is a sample that is structur-
ally entirely typical of the whole mixture on average and contains a sufficient number of inclu-
sions for the apparent overall moduli to be effectively independent of the surface values of traction
and displacement, so long as these values are macroscopically uniform [27]. In other words, a
RVE or UC is the smallest volume capable of represent a whole heterogenous material. These
models present a more realistic approximation of the properties of the composite materials, thus
leading to more satisfactory results. However, this comes with a high computational cost and

complexity, making these models more challenging to implement.
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Composite materials are heterogenous and usually, comprise of a matrix which could be metal,
polymeric (like plastics) or ceramic, and a re-enforcement or inclusion, which could be particles
or fibres of steel, aluminium, silicon etc. The simplest case of a composite material is a cellular
body, comprising solids and voids. If composites with sufficiently regular heterogeneities are
considered, a periodic structure for the composite can be assumed. It should be emphasized that
in comparison with the dimensions of the body, the size of these non-homogeneities should be
very small. Owing to this, these types of material are sometimes called composites with periodic
microstructures, which can be described through a RVE or UC. If the periodic microstructure has
a large number of heterogeneities, numerical modelling of its detail becomes impracticable. A
natural way to overcome this difficulty is to replace the composite with a kind of equivalent ma-
terial model. This procedure is usually called homogenization. The mathematical theory of ho-
mogenization has been developed since the 1970s and it is used to find the effective properties of
the equivalent homogenized material [28-30]. From a mathematical point of view, the theory of
homogenization is a limit theory which uses the asymptotic expansion and the assumption of
periodicity to substitute the differential equations with rapidly oscillating coefficients, with dif-
ferential equations whose coefficients are constant or slowly varying in such a way that the solu-
tions are close to the initial equations [31]. This method makes it possible to predict both the
overall (macroscale) and local (microscale) properties of processes in composites. For more de-
tails about homogenization theory, see chapter 2.2. More details about homogenization can be
found in [32].

The design of the structure (macroscale) and material (microscale) can be done separately or
not. If the design of the structure is done concurrently with the material design, one is facing a
multi-scale problem. In a multi-scale problem, efficient distribution of the material in the domain
of the structure is seek simultaneously with the design of the most efficient material in each point
of that domain. Various multiscale computational technigues in the modern era can be classified
into the following two categories: (a) multiple scale expansion methods, and (b) superposition-
based methods. These two methods differ on how information is transferred between different
scales. In the first type of methods, the information (typically material properties) between scales
is passed from the smallest to the largest length scales through homogenization (the so-called
bottom-up transfer) [1, 33-37]. Lastly, the second type of methods implement the concept of sub-
structuring and concurrently consider different models (with different scales) in different regions
[38-43].
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1.1 Motivation and objectives of the dissertation

Nowadays, conventional materials like steel and aluminum have been increasingly replaced
by non-conventional materials like composite materials in various applications, e.g., aerospace,
automotive and aeronautic industries. In fact, lightweight construction industries are the most
prominent in the use of non-conventional materials. Parts such as fuselage and wings can make
extensive use of composites. There are innumerous reasons to choose non-conventional materials
over conventional ones. For instance, composite materials typically offer better strength-to-
weight ratio and has less sensitivity to fatigue and corrosion.

The present thesis explores multi-material design to improve even further the mechanical be-
haviour of composites. Typical composite materials are only composed by two distinct material
phases. One typically may have the combination of one solid material and void (cellular materials)
or the combination of a polymeric matrix where fibres are embedded (fibre-reinforced composite
materials). The multi-material setting of composite materials in the context of this thesis implies
three or more distinct material phases, e.g., two or more solid materials plus void, or fibres of two
or more materials embedded in a matrix (hybrid fibre-reinforced composite materials). In this
dissertation, one explores the multi-material design of composite materials to improve their stiff-
ness, strength and plastic deformation behaviour. In engineering practice, it is quite common to
open holes in structures for various reasons, e.g., weight reduction or porosity requirements for
fluid flow. In fact, for some cases, multi-material design allows to obtain better trade-offs between
design criteria involving weight, stiffness, and strength, when compared to the single-material
counterparts. When designing and optimizing single-material structures, the weight and stiffness
go hand-to-hand, i.e., an increased stiffness is sometimes only possible by increasing the weight
of the structure. In this thesis, one explores the possibility of increasing the stiffness of a structure
through multi-material design, while maintaining its weight. Another important design criterion
is the structure’s strength. If a structure presents highly stressed regions when subject to some
load, these regions will be the first to fail during service. Therefore, it is important to reduce these
highly stressed regions as much as possible, ideally having an even distribution of stresses. Again,
multi-material design can be explored to smooth the stress distribution field, thus reducing the
maximum equivalent stress value in the structure. The maximum equivalent stress of a structure
should be less than the yield stress of the material that composes it, ensuring that the structure
only deforms elastically. If the yield stress is exceeded in some point of the structure, then two
different scenarios can occur: (1) the material deforms plastically (ductile materials) or (2) it fails

catastrophically (brittle materials). Fibre-reinforced composite materials are characterized by
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having a brittle failure. A ductile failure is preferred over a brittle and catastrophic one that occurs
without warning. Therefore, fibre hybridization is a technique that mix fibres of different materi-
als in a matrix with the purpose of introducing a pseudo-ductile behaviour in fibre-reinforced
composite materials.

The objectives of this work are to design and optimize materials with improved mechanical
behaviour, both in linear elastic and non-linear regimes. In the elastic regime, one tries to improve
the stiffness or weight and the strength of composite materials. If the limit elastic stress of the
material is exceeded, then one tries to introduce a pseudo-ductile behaviour, allowing a reduction
on the high safety factors typically applied to design fibre-reinforced composite materials. These
objectives meet environmental and sustainability challenges by the rational use of resources and

energy.

1.2 Structure of the dissertation

This dissertation is structured in three parts, all naturally linked through the common theme
that is multi-material design. In the first part, the multi-material design combined with topology
optimization is applied to improve the structural performance, namely the stiffness and strength,
when the material does not yield (linear elastic regime). This is done either in the microstructure
level (Chapter 3) or in a multiscale framework (Chapter 4). For a better understanding of the work
done in this part, some important concepts are presented in Chapter 2. In the second part, the
multi-material design is applied to fibre reinforced composites with the goal of improving the
material behaviour after the yielding point (non-linear plastic regime). The optimal combination
of fibres in a hybrid composite is discovered by solving an optimization problem. One also studies
the influence of the fibre dispersion in the composite’s response with the aid of a layout optimi-
zation problem (Chapter 6). In Chapter 5 are introduced some important concepts required for
better understanding this part of the work. Lastly, the third part of this dissertation has the final

remarks of this work and possible future works.
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Topology Optimization in Linear Elastic Regime
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STATE OF THE ART: LINEAR ELASTIC
REGIME

This chapter covers the fundamentals for a better understanding of this first part of the disser-
tation. Firstly, a brief review on the theory of linear elasticity is done. Then, the homogenization
theory used to compute the homogenized properties and stresses in periodic microstructures is
introduced. Afterwards, an extensive chapter on structural optimization covers the key concepts
to perform topology optimization. After that, a state of the art about multi-material topology op-

timization is done. Lastly, a brief introduction to multi-scale topology optimization is done.

2.1 Theory of linear elasticity

Elasticity is a property that almost all structural materials have. When an elastic body is sub-
jected to external forces, it deforms, and equilibrium is attained. In the theory of linear elasticity,
it is assumed that the bodies undergoing the action of external forces are perfectly elastic, i.e., the
body returns to its undeformed state with the removal of the applied external forces, if a certain
limit (yield strength) is not surpassed. If the internal stresses caused by the applied external forces
exceed the yield point, the material deforms plastically and therefore the body is no longer able
to completely resume its initial form. This chapter is mainly based on [44-47].

Let the deformable body shown in Fig. 2.1 be in equilibrium. The body is subjected to a dis-
tributed load over the exterior (t), properly called surface force, and loads distributed within the

interior (b) known as body forces. An example of the latter is the effect of gravity which produces

11
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the self-weight of the body. Focusing on an element with an infinitesimal volume 8V within the
body, one can represent all the stress components acting on it. These stress components can be
organized in the well-known Cauchy’s stress tensor o;;, defined bellow in Eq. 2.1 for a three-

dimensional problem.
011 T12 T13
o;j = |T21 022 T23 (2.1)
T31 732 033

where o are the normal stresses and 7 are the shear stresses.

X1

-+
VYVYVVYVY

Fig. 2.1: Deformable body subjected to external loads and respective stress components act-
ing on a differential volume element 3V.
The equations governing the distribution of stresses are known as the equilibrium equations,
represented below in its differential form:
Oal-j

Y = 2.2
5 b =0 (2.2)

where b; correspond to body forces components, e.g., effect of gravity. Additionally, the stress
tensor must be symmetric, i.e., it is fully defined with six components. These equations must be
satisfied at all points throughout the volume of the body, QP°9Y. Obviously, the stress components
may vary over the volume and at the boundary they must be such as to be in equilibrium with the
external forces, so that external forces may be regarded as a continuation of the internal stress
distribution. These conditions of equilibrium at the boundary are named as boundary conditions.
There are essentially two types of boundary conditions: (1) force boundary condition (Neumann
condition); (2) displacement boundary condition (Dirichlet condition). Briefly, a force boundary
condition ensures that the internal forces are equal to the applied external forces and a displace-

ment boundary condition ensures that a displacement in a certain point of the body is obtained.
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In the example shown in Fig. 2.1, there are one force boundary condition and two displacement
boundary condition, corresponding to the applied load and supports respectively. These are given

by the following equations:

oijn; = tj (23)
u=20 (2.4)

where n; are cosines of the outwards unit normal vector on the boundary.

The problem of the theory of elasticity usually is to determine the stress state in a body sub-
mitted to external forces. It is necessary to solve the differential equations of equilibrium, and the
solution must be such as to satisfy the boundary conditions. However, these equations are not
sufficient for the determination of all the six independent stress components present in Cauchy’s
tensor (see Eq. 2.1). The problem is a statically indeterminate one, and in order to obtain the
solution, the elastic deformation of the body must also be considered.

In the deformation of an elastic body, it is assumed that there are enough constraints to prevent
rigid body motion, so that no displacements of particles of the body are possible without deform-
ing it. Also, only small deformations are considered. The small displacements of particles of a
deformed body are usually resolved into components w4, u, and us parallel to the coordinate axes
X1, X and x, respectively. Now, it shall be introduced the definition of strain. Basically, strain
is a geometrical measure of deformation representing the relative displacement between particles
in a material body. The Cauchy’s strain tensor is obtained through displacements using the strain—

displacement or kinematic equations, given by:

1 <6ui N auj> Fll : ]
Sij ==\ - | = 21 22
2 axj 0x; €31 €32 533

where ¢ is the normal strain and y is the shear strain.

V12/2 Y13/2]

Y23 /2

—_——

}’21/ €22 (2.5)

[V31/ V32/2 €33 J

The strain components ¢;; are expressed by displacement functions u;, hence they cannot be
taken arbitrarily, and there exists a certain relation between the strain components, ensuring that
these components will integrate into a unique displacement field. The relation between strain
components are the compatibility equations, which are given by:

aSij askl _ asik asjl
0x,0x; axiaxj‘ax]-axl dx;0xy

(2.6)

representing 3* = 81 equations, where only six of which are distinct. Even though we have the

compatibility equations, the formulation is still incomplete in that there is no connection between
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the equilibrium equations (see Eq. 2.2), three equations in six unknowns g;;, and the kinematic
equations (see Eq. 2.6), six equations in nine unknowns &;; and u;. Next, it is sought the connec-
tion between the equilibrium and the kinematic equations in the laws of physics governing mate-
rial behavior. This coupling is accomplished by considering the mechanical properties of the ma-
terials for which the theory of elasticity is to be applied and is expressed by constitutive or mate-
rial laws.

The most elementary description of material behavior is the well-known Hooke’s law stated
by Robert Hooke in the late 17" century. The generalized Hooke’s law is written in the form of a

fourth-order tensor:
0ij = Eijricn (2.7)

in which the 81 coefficients (3D problem) of the stiffness tensor E; j; are called the elastic con-

stants. The Hooke’s law can be written in its inverse form as:

&ij = CijkiO1 (2.8)
where C; j; is the compliance tensor computed as the inverse of the stiffness tensor and, using the
Kronecker delta & operator, the equation below must be verified:

1
EijiaCijin = 5 (8uk6ji + 8ubjic) (2.9)

Since both stress and strain tensors are symmetric and that, usually, the material can be con-

sidered hyper elastic, the stiffness tensor has the following symmetries:
Eijii = Ejini = Eijik = Exuij (2.10)

Therefore, the number of independent equations in Eq. (2.7) for 3D problems reduces from
nine to six and the independent elastic constants from 81 to 21 (half of the off-diagonal plus

diagonal constants looking at the Hooke’s law written in the matrix form, see Eq. 2.11):

011 Ei111 Ei122 Ei13z Eii1z Eii2z Ei13ap énn

022 E3220  Ezz33 Ezziz Ezzzz Enosi|| €22

033| _ E3333  Ezz1z  Ezspz Eszzq|| €33 211
Tiz |~ E E E 281 (211)
12 1212 1223 1231

T23 [ sym Eyzpz  Eazzq||2€23

T31 l2€31J

E3131

The preceding characterization is the most general, where such material is termed anisotropic.
Most engineering materials possess properties of symmetry toward one or more planes or axes,

which allow the number of independent constants to be further reduced. The first reduction is for
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one plane of symmetry, allowing the reduction of 8 elastic constants, meaning that only 13 elastic
constants are independent. Such material is called monoclinic. Some materials show a higher level
of symmetry characterized by three mutually orthogonal planes of symmetry. This type of mate-
rial is called an orthotropic material, and it has 9 independent elastic constants. Next, a material
presenting symmetry about an axis that is normal to a plane of isotropy is called transversely
isotropic. This type of materials has 5 independent constants. Finally, an isotropic material is

characterized by an identical response in all directions, leading to the following stress-strain re-

lationship:
Eijki
(2.12)
0ij = 2818k + 1(8iSj1 + 6ubji) €1 = A8;j€xn + u(eij + €:)
or, in matrix form:
011 A+ 2u A A 0 0 0 £11
Gy A+20 A 0 0 0|ley
033 _ A + 2,u 0 0 0 833
Ti2| 2u 0 0 |lé12 (2.13)
T23 sym 2 0 |j€23
lT31J l 2'uJ |~‘€31J

From Eq. (2.13) it is possible to see that only two independent constants are needed to fully
define the stiffness tensor of an isotropic material. These two constants are called Lamé’s con-
stants, since they were correctly established first by Gabriel Lamé in the middle of the 19" cen-
tury. Although the Lamé’s constants are perfectly suitable from a mathematical standpoint, it is
common to use engineering material constants that are related to measurements from elementary
mechanical tests.

Solving Eq. (2.12) or (2.13) for a uniaxial stress a;; constant and all other g;; = 0, gives the
basic form of Hooke’s law:

_ u(2u+32)

Il T A 811 = E€11 (214)

011
where E is the Young’s modulus. From the same uniaxial stress state, the fractional contraction

may be computed as:

€22 €33 A

=———=—=vV 2.15
£11 g1 2+ ) ( )

where v is the Poisson’s ratio.
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A third engineering constant is obtained from the state of pure shear in two dimensions, given

by a,, = 05, = constant, all other g;, = 0. From Eq. (2.12) or (2.13),

01p = 2#812 = 26812 (216)

where G is the shear modulus.
Although the engineering constants E, v, and G are convenient, only two of these constants
are independent since G = u and both E and v are defined in terms of A and p. The relationships

between the Lamé and engineering constants are collected as:

A= vE 2.17
T (A+wv)(A-2v) (2.17)
= E 2.18
b Tery (2.18)
_ pu(2u+32)
= A 2.20
VISt (2.20)

Another relationship between the constants is defined as the Bulk Modulus, which defines
how resistant the material is under compression (hydrostatic pressure):

E

K=3a=m

(2.21)
Many physical problems are reducible from three- to two-dimensions, making the generalized
Hooke’s law simplified, which facilitates their eventual solution. If there is no traction on one
plane passing through the body, this state is known as plane stress since all nonzero stresses are
confined to planes parallel to the traction-free plane. This happens for bodies with one dimension
much smaller than the other two, such as a thin sheet. Another possibility is a body in which one
dimension is much greater than the other two, making the strain in one direction be negligible
comparing with the other two directions, e.g., a long pipe. This state is known as plane strain.
For an isotropic material in plane stress, assuming that the z-axis is stress-free, i.e., 013 =
053 = 033 = 0, the generalized Hooke’s law containing only the relevant components of stress

and strain, becomes:

1 v 0 €11
v 1 0 €22 (2.22)

0 0 1—vllé2
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For an isotropic material in plane strain, assuming that the z-axis is strain-free, i.e., &5 =

&,3 = £33 = 0, the generalized Hooke’s law containing only the relevant components of stress

011
012

So far, the equations that govern the elasticity problem were presented. It is also of great im-

and strain, becomes:

A+ 2u A 0 1r611
A A+2u 0 ] [522] (2.23)
0 0 2ullér2

portance knowing when the material will fail or sustain permanent damage such as cracks or
plastic deformations. For this, there are failure criterions. The Von-Mises’ criterion is among the
most used criteria in engineering, mainly in metal constructions. The Von Mises’ yield criterion

is expressed by the following inequality:

1
Ugéw - \/E [(011 = 022) + (022 = 033)? + (033 — 011)?] + 3(T12? + T23% + T137) (2.24)

< 0y

where the first equality defines the equivalent stress, o,77. The Von Mises’ criterion states that

the yield condition is reached under the combined loading, when the equivalent stress, ag,”,

reaches the yield stress measured in the standard test of uniaxial stress state applied, o, .

2.2 Homogenization theory

If a structure is built from periodic materials (e.g., cellular or composite materials), it is often
too cumbersome or even computationally prohibitive the modelling of every geometrical detail
of the periodic medium under consideration. When there is a low number of heterogeneities, the
solution may be obtained analytically or, numerically, using the finite element method. However,
when the number of heterogeneities is really large, the aforementioned methods are not attractive,
leading us to the application of homogenization techniques. The general idea of homogenization
theory is to replace the heterogeneous medium by a homogeneous equivalent one. The homoge-
nized or equivalent properties reflect the structure behavior on account of its material microstruc-
ture but without looking at the details of all the material points of the body. Rather, the focus is
on the behavior of the UC only.

In the first part of the dissertation, the homogenization theory for periodic media based on

asymptotic expansions at two scales is applied. This theory assumes basically three hypotheses
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that must be verified. In the first hypothesis, the homogenization theory assumes that the distri-
bution of heterogeneity is periodic throughout the macroscopic domain. This does not imply that
the microstructure is the same all over the macroscopic domain. In fact, smooth transitions of
topology in the UC are acceptable as long as periodicity is still verified locally. In other words,
asymptotic homogenization is only applicable to periodic, or quasi-periodic materials. Another
hypothesis of the homogenization theory is that the stress or strain macroscopic fields are seen as
uniform or as averages of local/microscopic distributions. Therefore, this technique in not valid
in situations where those macroscopic fields have significant variations, e.g., cracks, which dis-
play high stress concentration factors. Finally, there must exist scale separation, i.e., the UC rep-
resenting the heterogeneity must have a characteristic dimension d, much smaller than the char-
acteristic dimension of the macroscopic domain, D. The ratio between these dimensions defines

the parameter ¢, i.e.:
£=— (2.25)

In the homogenization theory it is assumed that € << 1, and the homogenized properties are
actually computed for the limit € — 0. In practice, such condition is not possible since both char-
acteristic dimensions are finite values in real materials. However, if the condition d << D is as-
sured, then the results obtain by the homogenization method are guaranteed to be sufficiently
accurate.

Consider the elasticity problem illustrated in Fig. 2.2, characterized by a body of periodic
heterogeneous medium, e.g., composite material, subjected to some load and boundary condi-
tions. For instance, assume that the body is made of two different material phases (solid material
and void) whose mixture is represented by an UC that is very small, of order € (where ¢ is a very
small positive number defined above, see Eq. 2.25), compared with the dimensions of the struc-
tural body. The variable x defines the position vector for the macroscopic length scale, while the
variable y defines the position vector for the microscale. These two variables are related as fol-

lows:
y - - 2-26
& ( )

This means that the microscopic domain Y defined by an UC can be seen from the macroscopic
domain Q° when magnified by a factor of 1/¢. In general, the characteristic functions (e.qg., strains
or stresses) of these highly heterogeneous media, rapidly vary within a very small neighborhood
of a point x. This fact inspires the consideration of two different scales of dependencies for all

guantities: one on the macroscopic or global level x, which indicates slow variations, and the
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other on the microscopic or local level y, which describes rapid oscillations. Consequently, as-

suming a general function g, we can say that g = g(x,x/¢) = g(X,y).
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Fig. 2.2: Body with size D composed of a periodic heterogeneous medium repre-
sented through an UC with size d.

The objective here is to investigate the mechanical behavior (e.g., displacements u®) in a vol-
ume of a regular enough domain Q¢ in a periodic heterogeneous medium through the homogeni-
zation method. The homogenization process here involves solving elasticity problems in the pe-
riodic UC (local problem, where the equilibrium equations and constitutive laws are known) and
then contemplating its effect on the macroscopic scale (global problem). In the asymptotic ho-
mogenization it is assumed that functions determining the behavior of the composite can be ex-
panded as an asymptotic expansion. For instance, the expansion for the displacement field can be
written as:

[ee)

uft(x) = u’(x,y) + cul(x,y) + 2u?(x,y) + -+ = Z shul(x,y) (2.27)
i=0

Considering the symmetries present in the stiffness tensor (see Eq. 2.10) and assuming that
the strain energy density is always positive, the tensor must be positive definite:
Ips0t Efjuatijenm = PEijeij, Ve = & (2.28)

The equations of equilibrium and boundary conditions of the elasticity problem presented in Eq.

(2.2)-(2.4) can be rewritten for the current problem as follows:

a0 ( . Oug P
o, \Bit 3 ) 7B =0 in 0 (2.29)

ous,
Eigjkla_):ni =t in T, (2.30)
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u®=0in Ty (2.31)

Since ¢ is a very small number, it is impossible to directly obtain an analytical or numerical solu-
tion of ué. Alternatively, one can seek a solution in the form present in Eq. (2.27). The elasticity
problem can be equivalently expressed in the weak form (principle of virtual work) thus serving
as the basis for a finite element formulation:

f . Oug oy

—dQ = bfvi dQ + f tivi dr : Vve VQ£ (232)

ijkl 3— A~
Qg axl ax] Qs Ff

where v is the virtual displacement. Basically, the weak form is defined to be a weighted-integral
statement of a differential equation in which the differentiation is transferred from the dependent
variable u to the weight function v, such that all boundary conditions of the problem are also
included in the integral statement. This form is not only equivalent to Eqg. (2.29) but it also con-
tains the boundary conditions of the problem Eq. (2.30)-(2.31). Just for the sake of knowledge,
notice that the Eq. (2.32) and the following developments on homogenization theory can also be
obtained through the minimum total potential energy principle. The purpose of the homogeniza-
tion process is to find an equilibrium problem equivalent to Eq. (2.32) that is only described using
macroscopic quantities.

Introducing Eq. (2.27) until term £2 in Eq. (2.32) the following is obtained after some mathe-
matical manipulation:

10ulov; 1[/oud oul\ov; ouadv;

f E{}kl{—z—"—‘+— <_k+_k>_l+_k_l

Q€ g* 0y, dy; €|\0x; 0y J0dy; 0Jy, 0x;

oud oui\dv; our  ou?\dy;
4| (e T8\ O (Tt W)\ OV L g (2.33)
dx; 0y ) 0x; dox;  0dy; ) dy;

= bfvidﬂ+ftividl", VVEVQS
Qs r,

To obtain the equation above it should be reminded that the spatial derivative with respect to x of

any function ¥ (x,y) depending on two length scales is given by:

<a¢(x,y)) - ("’_¢ +a_¢l>y=§ (2.34)

dx; ~\dx; 0y, €

&

For a Y-periodic function ¥ (x,y) and considering it is smooth enough, when ¢ - 0* the fol-

lowing is proven (see [48]):

1

lim X,y)dQ = f —
lim Qg‘/’( y) VT

f Y(y) dYdQ (2.35)
¥
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The equation shown above has a physical interpretation. Assuming small values of €, the value of
the limit calculated at a y coordinate for any macroscopic point x is the same as considering the
integral of the average value of the function i in a small enough neighborhood of y. In other
words, this means that instead of considering the function i in each microscopic point to charac-
terize the macroscopic behavior, one can simply compute the volumetric average of such function

in the UC domain, ¥. The volumetric average of i is expressed as follows:

—i dY 2.36
W) =77 ) v (2.36)

Equating the terms with the same power of ¢ in Eq. (2.33) and considering Eq. (2.35) the

following is obtained:

auk avl

(2.37)
j f Ouy | Oui) v | Oui v dYdo=0, YVeEV (2.38)
1),k \ax, T 3y, ) oy, T 3y, ox; vEtar |
Jup  0ui\dv; (dui  dug)dv;
9% o (2% dy do
f |Y|f ikt [(axl ayl>ax,-+ ox, " ay,)ay;
(2.39)

f lylfbvldeQ+f tiv;dl, Vv E Ve
r

t
Note that the stiffness tensor has now a local nature, characterizing the base material of the mi-
crostructure, i.e., depends only on the variable y in the domain Y.

Taking a more detailed look at Eq. (2.37), the following problem within the microstructure
(local problem) is obtained:

auk avl

The solution of this problem exists, and it is independent of y (see [48]). Based on this, it can be
said that the first term of the expansion for the displacement field (Eq. 2.27) depends only on the

macroscale x, i.e.:
u’(x,y) = u’(x) (2.41)

Using this result in Eq. (2.38), the following local problem arises:
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dul a K 9
f By =t vy u"(x) f “Ldy, vvevy (2.42)

dy, ay ”kla

Due to the linearity of the problem in Eq. (2.42), the solution u! can be written as:

A)H+m® (2.43)

ut(x,y) = — ox

where @i} are arbitrary additive constants in y and X is the solution of the modified local prob-
lem:

dxkl gv, av;
fEijrsi_L dy :fEukz dy, Vve (2.44)
¥ HYS ayj a

Note that Eq. (2.44) can be seen as a system of linear equations and the right-hand side can be
rewritten as follows:

a)(rl avl o(kl) 9Vi v,

where x*! vectors can be interpreted as characteristic deformations when unit states of macro-
scopic deformation are applied, e®® D Assuming plane stress or plane strain cases, three “load
cases” must be solved, i.e., corresponding to e?(11) e%(22) and e°(12) in order to get the x**, x*2
and x'?, respectively.

Next choosing the arbitrary field v in Eq. (2.39) as a function only of the macroscopic variable

X, 1.e., v = v(x), the following equation is obtained:

J‘ [ <6uk auk> dY] av; 40
Y| Jy Eijia y, 0x;

=f—fbivideQ+ftividF, VVEVQ
QlYl ¥ r

t

(2.46)

Substituting Eq. (2.43) into Eq. (2.46), a macroscopic (global) equilibrium problem can be stated

as.

d d
j gr Qw0 up (x) 0v;(x) 40 = j(b)vz(x) dQ+f tiv;(x)dl, VveEV, (2.47)
o 0x 0 Iy

where (b;) are the average body forces and E}! k1 1S equal to:

d d
l]kl f ijkl — l]rs X ay J- Urs( T'kSSl Ar ) day (2-48)
1] Ay, Y] 0ys
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which are the equivalent or homogenized material properties and &;; is the Kronecker delta. The

homogenized tensor has some symmetries, also obeying the properties present in Eq. (2.10). The

homogenized stiffness tensor equation (Eq. 2.48) can be rewritten in a symmetrical form given

by:

axk oxy)
= s e

Once the solution u® has been found by solving the equivalent macroscopic equilibrium prob-
lem (Eq. 2.47), u! can be completely characterized by Eq. (2.43). The displacement field u¢ up
to the first term is no longer unknown, and if higher terms on the asymptotic expansion (Eq. 2.27)
are required, they can be obtained by investigating the local and global problems that arise from
the different power of ¢ in Eq. (2.33). It is important to point out that when & - 07, the solution
uf converges in weak sense (energy) to the solution u® (see [48]). The displacement field u®

involving details of the microstructure is given by:

k() kl

ox, (y) + ﬁl(x)> (2.50)

ui() = W) (X) +euj(xy) = ul(x) +e (

After the homogenization problem is solved, Eg. (2.50) can be used to compute the stresses in

each point of the domain (local stresses), which are given by:

ouy,
o = Eiju %, (2.51)

substituting Eqg. (2.50) in Eq. (2.51) gives the first approximation of the stress as:

oup) du;
cri(} Eijr <6xl + _6y1> (2.52)
and then introducing Eq. (2.43) into Eq. (2.52) gives:
axkl auo
08- (%Y) = Ejjrs <5rk5sz - ﬁ) a_x’; (2.53)
S

The relation between the homogenized stress (global or averaged) 0 and a can readily be seen
by applying the “average” operator (Eq. 2.36), i.e.

0
duy,

1
ag(x,y)=mfa dy = Efl — ox (2.54)
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To conclude, the homogenization method was characterized by derivations of equations. It is
important to emphasize that all these derivations were performed assuming that all functions and
functionals involved were smooth enough. Basically, the homogenization method was character-
ized by the solution of three distinct problems: two in the microscopic level (Eq. 2.42 and 2.44),
and the other in the macroscopic level (Eq. 2.49). The principle of virtual work was used to derive
such problems in order to formulate the homogenization method using the FEM. The FEM for-
mulation of the homogenization method will not be covered here. More details about the homog-

enization method can be found in [37].

2.3 Structural optimization

Structural optimization consists in formulating the design problem of structural components
as an optimization problem in order to take advantage of mathematical programming tools. The
formulation of the optimization problem must be mathematically rigorous and mirror the problem
that is intended to be solved in practice, using design variables, objective function (in some cases,
more than one objective function is required) and constraints. The design variables can be seen
as parameters that can be modified to improve the design. The objective function is a cost function
or a performance index to be minimized or maximized aiming a better design. And finally, the

design constraints h; and g;. The standard optimization problem formulation is as follows:

min  f(x) (2.55a)
X
st hip(x) =0; k=1,..,p (2.55b)
gj(x) <0; j=1,...m (2.55¢)
X, <x; <%; i=1.,n (2.55d)

where x are the design variables, f(x) is the objective function, h; are the equality constraints
and g; are the inequality constraints. Once the optimization problem is properly formulated, it
can be solved using an optimization algorithm.

There are essentially two categories of optimization algorithms: (1) gradient-based optimiza-
tion algorithms (see Chapter 2.3.2) and (2) gradient-free optimization algorithms (e.g., Genetic
Algorithm, see Chapter 6). The first category needs gradient information of the objective function
as well as the constraints, therefore it is necessary to guarantee the differentiability of these func-
tions at all points of the design domain. Regarding the gradient-free optimization algorithms,

these do not require gradient information since they rely on probabilistic and/or heuristic
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techniques to progress in the optimization process. An advantage of these algorithms is the ability
to escape from local minima, but it is not guaranteed (and there is no way to prove) that the final
solution is a global minimum in multimodal problems. The main disadvantage of these algorithms
is typically their computational time cost.

As introduced in Chapter 1, there are three main types of structural optimization problems. In
this work, the focus will be on Topology Optimization (TO) which has been the most active re-

search area in structural and multidisciplinary optimization in the past decades [7].

2.3.1 Topology Optimization

Topology optimization was already introduced in Chapter 1 but now is more detailed. Con-
sider a domain () that represents a fixed area or volume. The classical topology optimization
problem involves to distribute/redistribute a material phase over the domain Q, in such way that
at the end there is a clear distinction between the regions occupied with material Q,,,; and void
Qyoid, See Fig. 2.3. In order to obtain the optimal distribution of material in the domain Q it is
necessary to determine to which subdomain, Q.+ or Q,.iq, €ach of the points x of that domain
belongs. The most basic approach for that is defining discrete design variables with the aid of the

following step function:

1, X€Qunat
= 2.56
500 =1 e (2.56)

The stiffness tensor E;;;,; may vary from point to point according to the following relationship:

Eijra(6(%)) = §(0Eiju (2.57)
where Eijkl(o) is the stiffness tensor of the given base material that is intended to be distributed

over ().



26 Chapter 2 - State of the art: linear elastic regime
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Fig. 2.3: TO applied to a L-bracket example. Adapted from [17].

Topology optimization problems are efficiently solved using gradient-based optimization al-
gorithms (see Chapter 2.3.2) and therefore, the design variables must be continuous. In 1989,
Bendsge [50] proposed the SIMP (Solid Isotropic Material with Penalization), also known as a
power-law approach, where the stiffness tensor or material properties of each element e of the

domain are interpolated according to:
Eiji(pe) = psEijkl(O): p=1A p,€]01] (2.58)

where p,, is the so-called element “density”” and p is the penalty exponent. In a classical topology
optimization problem, one seeks designs consisting almost entirely of regions of material or void.
The penalty exponent p ensures that intermediate density variables are penalized when p > 1
(typically p = 3 or 4 is chosen). This is a standard procedure for stiffness/compliance-based op-
timization problems. The penalization effect to render “black-white” or “1-0” designs has to do
with the fact that intermediate densities become unfavourable in the sense that the stiffness ob-
tained is small compared to the cost (volume) of the material, see Fig. 2.4.

To better understand how this penalization works, consider the standard minimum compliance

(or maximum global stiffness) formulation:

min l(U) = fQ biui dQ + fl"t tiui dr

2.59a

Pe ( )

st [ Eijiu(pe) ej(@eq(v)dQ=1(v), e=1,..,n  (2.59)
JopedQ=V*<0, e=1,..,n (2.59¢)

0<pPmin<pe<1l, e=1..,n (2.59d)
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R4 pT

Fig. 2.4: Graphical representation of the SIMP law for increasing penalization p exponent.

where the objective function [(u) is the applied force potential that is intended to be minimized
when subjected to a volume constraint, with VV* as the target volume. The equilibrium equation
(Eq. 2.59b) is written in its weak form, where ¢;; are the linearized strains, which depend on the
displacement fields u (solution of the equilibrium equations) and v (virtual). Both u and v belong
to the set of kinematically admissible displacement fields U, i.e., u,v € U. To avoid singularities,
Pmin 1S defined as a small number. The volume of material is computed through the integral

fQ pe dQ. Rather than having the equilibrium condition as a constraint, one could alternatively

express it as part of the objective function using the principle of minimum potential energy:

1
max min {Ef Eijki(pe) €ij(u) g (w)dQ — l(u)} (2.60a)
pe UEU Q
st [,pedQ—V*<0, e=1..,n (2.60b)
0<pmin<pe<1l e=1,..,n (2.60c)

In practice, the equilibrium conditions are verified when running a FEM software, therefore as-
suming now that u is the unique solution of the equilibrium, i.e., a minimizer of the total potential

energy, Eq. (2.60a) can be rewritten as:
1 1
max —-l(u) = ——f Eijii(pe) €ij (W)€ (w)dQ (2.61)
2 2J)q
Pe
Alternatively, the objective function in Eq. (2.61) could be written resorting to the complementary
energy —%fﬂ Cijii(pe) 0ij(0) oy (u)dQ, where C;jy; is the compliance tensor and o;; are the

stresses. Furthermore, the maximization of a negative quantity as objective is equivalent to the

minimization of its positive value.
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It is well known that density-based TO is prone to checkerboard and mesh-dependency prob-
lems. Checkerboards are regions of alternating solid and void elements ordered in a checkerboard
like fashion. Mesh-dependence concerns the effect that qualitatively different optimal solutions
are reached for different mesh-sizes or discretizations. To overcome these issues, filtering tech-
niques promoting a regularization of the density field can be conveniently applied. These tech-

niques will be further explored in Chapter 2.3.4.

2.3.2 Gradient-based Optimization Algorithms

Gradient-based optimization algorithms are suitable to solve TO problems. These algorithms
start by the starting design point, x(%), definition. Then, if it does not satisfy a given convergence
criterion, it is necessary to calculate a search direction d using gradient information of the objec-
tive function and constraints, ensuring that d is a descent direction in terms of the objective func-
tion value, while satisfying the constraints. An optimal step a in the search direction d should also
be found. A new point x™ = x(® + ad with better performance than x(® is found in design
domain. Next, the same procedure is applied to the point x(® and so on, until a solution meets
the convergence criteria.

One of the simplest gradient-based optimization algorithms to perform small-size TO is the
Optimality Criteria (OC). This algorithm is based on the necessary conditions of optimality. For
TO problems of high size, i.e., with high number of design variables and constraints, the Method

of Moving Asymptotes (MMA\) is preferred. These two algorithms will be summarized next.

2.3.2.1 Optimality Criteria (OC) Method

Implementing the OC to solve problem (2.60), involves deriving the necessary conditions of

optimality. The Lagrange function, based on objective function (2.61), can be written as:

1
L= _EJ Eijk €ij€dQ — A, <f pe A2 — V*> —Jlg(Pe -1 da
0 0 & (2.62)

- f /1; (pmin - pe) dQ
Q

where A, is the Lagrange multiplier associated with the volume constraint (Eq. 2.60b), and A}
and A; are the Lagrange multiplier associated with the side constraints (Eq. 2.60c). To obtain the
necessary conditions of optimality, one must evaluate the stationarity of the Lagrange function

w.r.t. the design variables p,:
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oL 10Ef B
5. =073 a;j eijentlQel = Ao + 231901 — 25102 | (2.63)

where |Q,| is the element volume and the derivatives of the compliance function C =

lfQEijklgijgkldQ are obtained using the adjoint method, which simply gives ;TC
e

1 aEL]kl

2 9, ——¢&;j€r|Qe| (solution of the self-adjoint problem, see [17]). For intermediate values of the

design values, i.e., pmin < Pe < 1, the conditions can be written as:

0Efik

—Lgie =24 2.64
ape ‘Sufskl e ( )

The OC method simply consists in implementing the following update scheme based on the

optimality conditions:

max[(1 - C)péc:pmln if pe (Bk) < max[(1 — {)pe'pmm]
Pk =S min[(1+Q)pk, 1] if min[(1 +{)pk, 1] < pk(BE)” (2.65)
pé‘(Bé‘)n otherwise

where k denotes the iteration step, ¢ is a move limit, 7 is a tuning parameter and BY is given by
the expression:
dpk UK (2.66)
24k

B¥ =
with the update scheme for the Lagrange multiplier A% given by:

AR+ = max [0, Ak + ¢ <f pkda — V)] (2.67)
Q

where c is a penalty constant. The expression for the update scheme of the Lagrange multiplier
Ak can be easily obtained by alternatively defining the augmented Lagrangian as in [51] and then

compute its stationarity w.r.t. the Lagrange multiplier A,. Simply put, the update scheme in Eq.
(2.65) promotes the decrease of the element density, p,, in case (Bé‘)’7 < (1 — Q) or the increase

of p, incase (BX)" = (1 + Q).

2.3.2.2 Method of Moving Asymptotes (MMA)

MMA is a Sequential Convex Programming (SCP) method, firstly introduced by Krister

Svanberg [52] in 1987, to solve non-linear constrained optimization problems. Generally, a SCP
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method combines the concepts of approximation and dual solution, which will be summarized
next.

In most of the structural optimization problems, especially in topology optimization, obtaining
a solution directly can be prohibitive, due to the computational cost of the structural and sensitiv-
ity analysis of the problem. An interesting way to circumvent this problem is using the approxi-
mation concepts approach, which replaces the primary optimization problem by a sequence of
explicit approximate subproblems. MMA does exactly that, with the original objective function
fo and constraints f; replaced by approximating convex functions (f, and £, respectively) mainly
based on gradient information at the current iteration point, and also (implicitly) on information
from previous iteration points. In MMA, each subproblem for a given iteration k is formulated in

the following way:

m
min ﬁ)(k) x)+z+ Z CiYi (2.68a)

X i=1
70 A = 2.68b
st.  fi X -y <fi; i=1,...m (2.68D)
a9 <x; < p; j=1,...n (2.68c)
yi = 0; i=1,..,m (2.68d)
220 (2.68¢)

where x = (x4, ..., x,) are the design variables, and both y = (y4, ..., ¥,) and z are the so-called
artificial variables. Artificial variables are meant to never get unfeasible solutions from the opti-
mization problem, and it is also ensured that the solution is as close as possible to being feasible
by choosing an appropriate “cost” for these variables. Constants c; are sufficient large numbers
so that the variables y; become expensive, f; is the right-hand side of constraint i, n and m are

the total number of design variables and constraints, respectively. Both the objective function f;

and the constraints f; are continuously differentiable, real-valued functions. The parameters aj(k)

and Bj(k) are usually referred as move limits. To avoid the possibility of any unexpected “division

by zero” while solving the subproblem, the following rule must be applied when choosing the

move limits:
19 < a® < x" < p® <y (2.69)
For example, aj(k) and ﬁ].(k) can be chosen as:

k ; k k
aj( ) — max {xj"”n, 0.9L](. ) 4 0.1xj( )} (2.70)
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k . k K
ﬁj( ) = min {x]max,0.9Uj( )+ 0.1xj( )} (2.71)

with x]-’”i" and x;"** being the original design variables bounds which satisfy xjmi" < x".
The parameters L§k) and Uj(k) are the moving asymptotes. The default rules for updating the
asymptotes are as follows. In the first two iterations, i.e., for k = 1 and k = 2, the asymptotes are
given by:
k K -
L§- ) = xj( ) Yo (xjm“x - xjmm) (2.72)

T _ () j
U™ =x"" +vo (xjmax - x}"m) (2.73)

where y, is a given real number less than unity, e.g., yo = 0.5. In latter iterations, i.e., for k = 3,

the asymptotes are given by:

W _ (0 _ () (=1 _ (=1)
19 =2 =y (5 1Y) (2.74)

0 _ 00 () (k=D _ (k=1
Ui = x4y (U - D) (2.75)

where yj(k) is computed as follows:

sy if (xj(k) - x.(k_l)) (x.(k_l) — x.(k_z)) <0

j j j
=L (PN 50 e
1 if (xj(k) — xj(k_l)) (xj(k_l) - xj(k_z)) =0

s, and s, are given real numbers, e.g., s; = 0.7 and s, = 1.2, that obey the following rule. If the

optimization process tends to oscillate, i.e., the signs of (xj(k) — xj(k_l)) and (x].(k_l) — x].(k_z))

are opposite, then it needs to be stabilized. This stabilization may be accomplished by moving the

asymptotes closer to the current iteration point, i.e., choosing s; < 1. On the other hand, if the

optimization process is monotone and slow, i.e., the signs of (x].(k)—xj(k_l)) and

(x'(k—l) _ (2

g ; ) are equal, it needs to be “relaxed”. This may be accomplished by moving the

asymptotes away from the current iteration point, i.e., choosing s, > 1.

The approximating functions ﬁ(k), foreachi = 0,1, ..., m, used in the subproblem are defined

by:

n
~ pij qij K
fo @ =Z U(")U— -+ —UL(k) +1, (2.77)
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where
((U.(k) ("))2 oy iy
(k) J J axj Ox]
D of, (2.78)
0, if —2<0
an
0, if i >0
O 0x;
ij 20 0
3 (x@ L(k)) 9fi ” ﬁ (2.79)
J J 6x] ax]
) )
2 q;
k ij ij
= fi(x") - Z P 0 T (2.80)
xj — Lj

An arbitrary function f; is represented in the Fig. 2.5, as well as its convex approximating
function £, between the lower L; and upper U; asymptotes in a point x}). This figure helps under-

standing some of the concepts mentioned above.

f 1_ I . ; moving f|  moving :
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Fig. 2.5: Convex approximation function £, of an arbitrary function f; as-
: ofi ofi
suming (a) o7 < 0and (b) ax0 > 0.

In 1995, Svanberg [53] proposed an MMA extension, so-called Globally Convergent Method

of Moving Asymptotes (GCMMA), which uses simultaneously both asymptotes to create a non-

homogeneous approximating function £. This can be done while using the same formula of the
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approximating function shown above (Eqg. 2.89), but with different coefficients p ) and q(k)

which are now non-zero in general. The coefficients are chosen as follows:

( 1)

W _ G0\ (2 PPy _ a0 . Ofi
(v =) 7 (v L)), if 7 >0
k
pi) = w0 2.81)
(0 - x®) (2 (u® - 1) ¢ Uiy
i T 2 i )| ox,
\
( L[ p® 5
o _ N [P () _ k0 . Ofi
(5 =4°) | 5 (- 1) ). L
0 = |
X (2.82)
(00 _ 00N 9t W _ k) . Of
& (2 - 1{9) ot z (U -], i 7 <O

where p}k) are strictly positive parameters (to ensure the convexity of the approximation) which

are updated together with the asymptotes. These parameters allow the approximating function to
be non-monotonous by using both asymptotes at the same time. In 2002, Svanberg [54] proposed
an improved version of GCMMA that converges faster.

In 1996, Zhang et al. [55] proposed a new version of MMA called Generalized Method of
Moving Asymptotes (GMMA). The main difference between this version and the original MMA
version of Svanberg is that in GMMA, each design variable x; in each function £, is associated
with its proper moving asymptote L;; or U;; to improve the approximation quality. For example,
moving asymptotes can be largely relaxed for linear inequality constraints and tightened for non-
linear ones.

The success of the approximation strategy adopted by MMA comes from the fact that the
subproblems generated can be solved efficiently. One of the most efficient strategies to solve the
subproblems is the dual method proposed initially by Fleury [56]. Dual methods are suitable to
structural problems because the dimensionality of the dual solution space is generally much lower
than the primal design space. With efficient algorithms, dual solvers can solve sub-problems
within a reasonable computational time. Next, some basic concepts about dual solution algorithms
will be explored.

Firstly, one shall define the Lagrange function associated to the subproblem defined in Eq.
(2.68):



34 Chapter 2 - State of the art: linear elastic regime

pO] + Zl 1(’11291]) CIO] + Zl 1(’1LqU)
£l ) = Z( G-y m- )
(2.83)

+ Z(Ci%’ — L+ b)) +z+1

where 1; > 0 is the vector of Lagrange multipliers or “dual variables” and b; = f; — r;. Note that
the Lagrange transformation replaces the constraints by a linear term in the Lagrange function.
This can be interpreted as adding to the objective function a linear cost, with marginal price 2;,
which has to be paid whenever a constraint is violated. The dual objective function ¥ can now be

defined as follows:
Q) =min{L(x, Q)| o; < x; < B} (2.84)

To find out the solution x; that minimizes the Lagrangian, one must derive the necessary condi-

tions for optimality (KKT conditions), computing the following derivative:

0L(xj, A;) _Pojt ¥ (ipij) Qo t Y (haip)
9% U - %) (5 - 1)°

It is proven in [52] that the unique solution x; (4;) of (2.84), corresponding to the relation between

(2.85)

primal (x;) and dual (4;) variables, is obtained doing az;j(x]-,ai)/ax]- = 0, which gives the fol-

lowing explicit expression for x;(4;):

(pOJ +ZL 1(/11pl])) L + (CIO] + Z 1(’11%1)) U
(poj + Zﬁ1(/1ipij))7 + (qo; + E?il(/liqij))E

In GMMA there is no such explicit expression or closed form due to non-linearity of the La-

x(A) = (2.86)

grange function derivative (Eq. 2.88), see [55]. In this case, where each approximate function has
its own pair of asymptotes, the Lagrange function associated to the subproblem takes the follow-

ing form:

L(x;, ;) = Z( Poj doj +Zi=1(/1ipij)+Zi=1(/1iqij)>

Uoj—x] _L0] Uij_xj X]—LU
(2.87)
+ Z(Ci%' — L+ b)) +z+1

i=1

and the optimality condition of the separable Lagrangian function takes the form:
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0L(g,A) _ _ Poj 4o N 2t (ipy) X (hay) _

] 2 2 2 2
0x; (Uoj—%)" (x—Loj) (Uyj-%) (x—Ly)

Since an explicit relation between primal and dual variables is impossible to obtain in this case,

0 (2.88)

the Newton-Raphson method can be adopted to obtain the values of the primal variables given
the values of the dual ones. The developments below applied to MMA could also be easily
adapted to GMMA just considering that each function has its own pair of asymptotes, i.e., L;; and
Uij.

Once primal and dual variables are related (explicitly or implicitly), the dual objective function
can be written as W(4) = L(xj (A),A). The derivatives of W(A), w.r.t. the dual variables A, are
given by:

n

o0vY@) _ bij qij

j=1

Finally, the dual problem corresponding to MMA sub-problem (2.68) can be stated as:

max Y@A) st A=0 (2.90)

The dual problem can be solved by any gradient method. In MMA, it is solved by the steepest
ascent method, in the first two iterations, followed by the Newton’s method. Regardless of the
method used, once the search direction is found, a line search is carried out to find the next point.
This iterative process ends when a specified convergence tolerance is met. Once the dual problem
has been solved, the optimal solution of the “primal” sub-problem Eg. (2.68) is obtained through
Eqg. (2.86), for the obtained optimal dual solution A*. The dual problem has the following proper-
ties: (1) if the primal problem is a minimization problem, the dual problem is a maximization
problem; (2) the dual problem possesses a solution if the primal problem does; and (3) a solution
of the dual problem also provides a solution to the primal problem.

As specified above, the Newton’s method is used to solve the dual problem. The method im-
plies setting and solving repeatedly the following system of equations:

AP
oA;

H(A)d = (2.91)

where H(A4) is the Hessian matrix of the dual objective function and d is the search direction.

Using results from Lagrangian duality (see [57]), the Hessian can be computed as:
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-1 T
HQD) = 1(6%’_@) [a_f: ( 0 (a‘v_m)) (2.92)

ox; \ 04 0x;? a EY)
where
9 (0¥ py a;
a_xj< 94 ) T W-%)" (y-L) (2.93)
and
02L _ 2(po; + X4 (Aipy)) | 2(d0s + T (Rigy)) oo

.2 3 3
0% (U; - x;) (% —Ly)

In this work, one uses the MMA version implemented by Professor Krister Svanberg himself
in Fortran code. This code has several subroutines that implement the equations presented
throughout this chapter. Fig. 2.6 tries to help the reader to link the mathematical equations with
their computational implementation.

To conclude, there are basically two key features that subproblems must satisfy: (1) convexity
to ensure that there is a unique solution, and that the solution of the dual problem is the solution
of the original problem; and (2) separability which is essential to obtain the relations between

the primal design variables and the Lagrange multipliers that are easy to compute.

2.3.3 Sensitivity analysis

Sensitivity analysis is required whenever a gradient-based optimization algorithm is used. It
consists of studying the variation of a given function with respect to a design variable or a set of
design variables. The sensitivity calculation is then equivalent to the mathematical problem of
obtaining the derivatives of a given function. When dealing with complex functions, the direct
differentiation may be impractical. Instead, the gradients can be computed using a numerical or
analytical method.

The most widely used numerical method is the Finite Difference Method. This method is easy
to implement, however it is computationally expensive.

Regarding analytical methods, the two most used are the direct method and the adjoint method.
These have the advantage of being more accurate and less computationally expensive comparing
to the Finite Difference Method, but they are more difficult to implement. The three aforemen-

tioned methods will be detailed next.
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MMA. f

ASYMPT. f >
GENSUB. £ >
MAXIM. £ >
XYZLAM ., £ | woeveeereeees »
GRADI . | oo >
LINESE. £ . >

LINDER. £

HESSI.f
............. >

LDLFAC.f
............. >

LDLSOL. £

Computes the asymptotes (L; and Uj)
and the move limits («; and g;).
See Eq. (2.70)-(2.76).

Generates the approximation func-
tions f, based on p;;, q;; and ; pa-
rameters. See Eq. (2.77)-(2.80).

Solves the dual problem.
See Eq. (2.90)

Computes the primal variables x
given the dual variables A.
See Eq. (2.86)

Computes the gradient of the dual
objective function. See Eq. (2.89).

Performs a line search in a given
search direction.

Computes the Hessian matrix of the
dual objective function.
See Eq. (2.92)-(2.94).

Makes an LDL factorization in the
Hessian matrix.

Solves the linear system of equations
shown in Eq. (2.91)

Fig. 2.6: Schematic representation of the MMA Fortran computational implementation.

2.3.3.1 Finite Difference Method

Given a function ¥ (x) of a design variable x, the finite difference approximation Ay /Ax to

the derivative dy/dx is obtained by slightly perturb the design variable Ax (called step size) and

compute the ratio between the perturbation obtained in the function Ay and the design variable

perturbation. The finite difference can be computed in three different ways: (1) forward-
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difference approximation; (2) backward-difference approximation; and (3) central-difference ap-
proximation.
The forward-difference approximation is given by:

dp MY _ P+ a0 - ) 295
dx  Ax Ax '

The backward-difference approximation is given by:

dx ~ Ax Ax '

The central-difference approximation is given by:

ap Ay _w(x+ 28%) = (x—387) (2.97)

—_— —

=

dx Ax Ax

Itis also possible to employ higher-order finite-difference approximations, but they are rarely
used in structural optimization applications due to the high computational cost associated. If one
needs to find the derivatives of structural response with respect to n design variables, the forward
or backward-difference approximation requires n additional analyses, the central-difference ap-
proximation 2n additional analyses, and higher order approximations are even more expensive
[58].

2.3.3.2 Analytical methods

When applying the FEM, the static equilibrium equations are stated in terms of the nodal dis-
placement vector u in the well-known form Ku = f, where K and f are the stiffness matrix and
load vector, respectively. The equilibrium equations of the local homogenization problem in Eqg.
(2.44) when solved by FEM takes a similar form considering the micro-displacements vector y for
asingle load case, i.e., Kx = f. The developments shown below consider the local homogeniza-
tion problem, but they follow a standard procedure that could be applied to the static equilibrium
problem in like manner (just replace x by u).

Consider now a general function 1 (x, x (x)) that depends explicitly and implicitly (through
the solution x of the equilibrium equations) on the design variable x. The sensitivity of a func-
tional ¥ w.r.t. x cannot be calculated directly, thus requiring the chain rule to be applied. There-

fore, the total derivative can be calculated through:
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dp_ oy opdx

dx  9x  dxdx (2.98)
Explicit  mplicit
part part

The explicit part of the derivative is straightforward to obtain. Therefore, henceforth one discusses
only how to obtain the implicit part of the derivative.
Differentiating both sides of the equilibrium conditions w.r.t. x, i.e.:

d(Ky) B d(f) - dK N dy B df
dx  dx dxx dx  dx

(2.99)
Doing some mathematical manipulation on Eq. (2.99), one gets the derivative of y w.r.t x:

a_&, 22 (2.100)

dy _ k-1 df dK ]—K‘l of 0K
dx dx dx™l Ox Ox

Note that the total derivatives of f and K w.r.t. x coincide with the respective partial derivatives.
Substituting Eq. (2.100) in Eq. (2.98), the following is obtained:

d d d of 0K
W0 o K
dx Jdx 0y dx 0x

AT

(2.101)

The direct computation of K~ is impractical. Two different methods are proposed to circum-
vent this drawback: direct differentiation method and adjoint variable method. The direct dif-
ferentiation method consists of numerically solve Eq. (2.99) for dx/dx and insert the result in
Eqg. (2.98). On the other hand, the adjoint variable method simplifies Eq. (2.101) introducing the
so-called adjoint variable A defined as:

A= [‘;—;/(’ K—l]T _ K1 (‘;—;/(’)T (2.102)

Multiplying both sides of Eq. (2.102) by K, the following adjoint equation is obtained:

KA = (%)T (2.103)

The solution of A is obtained solving Eq. (2.103) and then it can be inserted in Eq. (2.101).
These two analytical methods differ in computational effort depending on the relative number
of constraints and design variables in the optimization problem to be solved. In structural optimi-
zation, it is common to have multiple design constraints and variables. The direct differentiation
method requires the solution of Eq. (2.99) once for each design variable. On the other hand, the

adjoint variable method requires the solution of Eq. (2.103) once for each design constraint.
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Therefore, the direct method is more efficient than the adjoint method when the number of design
variables is smaller than the number of constraints. However, when the number of design con-

straints is smaller than the number of variables, the adjoint method is preferable.

2.3.4 Filtering techniques in TO

As already mentioned in Chapter 2.3.1, filtering techniques aim to regularize the density field
in TO problems, avoiding problems such as checkerboards and mesh-dependency of results. The
two most popular filtering methods are: (1) the density filtering and (2) the sensitivity filtering
[59]. The density filtering consists in redefining the density in each element based on the
weighted average of the densities of neighbouring elements. This is done before calling the finite
element solver, and afterwards the sensitivities are modified in a consistent way. On the other
hand, the sensitivity filtering consists in heuristically modify the sensitivities, after solving the
finite element problem in standard way, based on the weighted averages of the neighbour sensi-
tivities. Both methods use the concept of neighbourhood. The neighbourhood of an element N, is
defined by the elements that have centres included in the range of a filter radius R defined from

the centre of element e, i.e.:
Ne = {i | lIx; — x.ll <R} (2.104)

where x; is the spatial (centre) location of element i.

2.3.4.1 Density filtering

Density filters work by modifying the density fields according to the specified neighbourhood
of an element. Therefore, the modified element density g, is a function of the neighbouring den-
sity variables, i.e., p.(p; € N,). Itis important to note that all the properties related with the FEM
analysis (e.g., material properties, volume or stresses) must be based upon the filtered density.

In 2001, Bruns and Tortorelli [60] introduced the density filtering that was latter mathemati-

cally proven as a viable approach by [61]. The filtered density is computed as:

5 = Yien, WX)Vip;
¢ Yien, wX)V;

(2.105)

where v; is the volume of element i and w(x;) is the weighting function given by the linearly

decaying (cone-shape) function:

w(x;) = R — |Ix; — x| (2.106)
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Recall that the functions used to formulate the TO problem depend on the filtered density but
these ones in turn depend on the non-filtered densities. These last ones are defined as the problem
design variables, i.e., the ones being updated by the optimizer used. Therefore, sensitivities of the
objective and constraint functions w.r.t. non-filtered densities are required. The sensitivity of a
given function, say i, w.r.t. a design variable p,, depends on the respective filtered density p; by
applying the chain rule:

ap; | %) '

dpe B N 9p; dpe - : ENiW(xj)vj

{EN,

2.3.4.2 Sensitivity filtering

In 1997, Sigmund [62] introduced the sensitivity filtering as a technique to base the design
updates on the filtered sensitivities instead of the real sensitivities. The filtered sensitivities can

be computed based on the non-filtered sensitivities as:

d
T Yien, W(X)V; d_/lfl
dpe - Pe ZiENe W(Xi)
where w(x;) is the weighting function given by Eq. (2.106). Just to clarify, these filtered sensi-

(2.108)

tivities are intended to be the “input” of the optimizer along with the non-filtered densities which

are the problem design variables.

2.4 Stress-based topology optimization

Topology optimization problems with stress-based criteria are especially interesting to engi-
neering practice because they guarantee very efficient designs and directly address aspects of
material failure. The stresses on a structure can be controlled using stress constraints, i.e., one
simply adds constraints to the problem formulation saying that the stresses in the structure must
be less than the stress limit, or directly minimizing the maximum stress in the structure. The
former is the most used approach to control stresses (see e.g., [63] and [64]), due to its less com-
plicated calculus. The latter aims to get most effective design in terms of stresses, but a min-max
problem raises differentiability issues. One way to circumvent these issues is using the so-called
“bound formulation” as suggested by [65]. This approach replaces the objective function max(o)

by an artificial design variable z € ]0, +o] to be minimized, and consequently adds constraint(s)
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in the form of o < z. In this formulation, z can be seen as an unknown stress limit that it is
intended to be the smallest possible value. Table 2.1 tries to summarize the ideas above presented,
where f is a given objective function (e.g., compliance). Note that additional constraints would

be required to properly solve a stress-based problem.

Table 2.1: Different stress-based problems formulation.

Stress constrained formulation Bound formulation Min-max formulation

min f min z .
st. o<o” st. <z min max o

Dealing with stresses is quite challenging, mainly due to: (1) local nature of the stress con-
straint(s); (2) highly non-linear stress behavior w.r.t. design changes; and (3) design singularity
phenomenon [63]. There are many works tackling these issues on the macrostructure (e.g., [66]
and [67]), but not so many on the microstructure (e.g., [68]) due to higher complexity. Even more
complex to work on is multi-scale topology optimization controlling stresses, which is even quite
scarce in the published literature (see e.g., [69]).

In the framework of finite element discretization, to ensure that the stress in each element is
less than an admissible limit, the stresses must be controlled pointwisely or locally, i.e., there
must be a stress constraint per element in the mesh. This implies that the number of constraints
to consider in the optimization problem greatly increases which is dictated by the FE discretiza-
tion level. To circumvent this problem, many authors have used aggregation techniques to lump
the local stress constraints into a single aggregation function. In 1996, Yang and Cheng [70] con-
trol the stress level on three different structures by minimizing a linear combination of the com-
pliance and a p-norm of the macroscopic stresses. Thereafter, Duysinx and Sigmund [71] in 1998
proposed to use a single constraint aggregating the local stress constraints taking the singularity
problem into account, which in [70] was not considered. This approach has been used by many
authors after these two publications, see e.g. [72]. Some authors consider a regional stress control,
i.e., the local stress constraints are sorted and aggregated in clusters or groups (see e.g. [73]).
Using this latter approach, it is possible to play between the local and global approaches, depend-
ing on the number of clusters, where the opposite cases are a number of clusters equal to the
number of design variables or to just one, respectively. Despite the less computational effort as-
sociated to these strategies, it is not possible to control the peak stress values effectively or accu-
rately.

Typically, the stress field is highly non-linear with design sensitivities strongly dependent on

design geometrical details. Boundaries exhibiting strong curvatures (holes) or re-entrant corners
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possess high stress concentration factors, thus having high stress gradient values. Therefore, it is
expected that errors related to the FE discretization occur. In case stresses are not being computed
accurately, reliable optimal designs cannot be expected. To address this issue, a mesh conver-
gence analysis is mandatory.

The singularity phenomenon was first observed in 1968 by Sved and Ginos [74] and, years
later, by Kirsch [75]. This phenomenon occurs since optimal points are singular, i.e., they are
located in degenerate feasible domain subspaces, which are of a lower dimension than the design
space, and thus unreachable by gradient-based optimization algorithms [63]. Degenerate feasible
domain subspaces are associated with the fact that there is a finite (non-zero) stress value in the
“absence” of material. Stress-constraints relaxation techniques can overcome the singularity phe-
nomenon, such as: (1) e-relaxation and (2) gp-approach.

In 1997, Cheng and Guo [76] presented e-relaxation technique to overcome the singularity
phenomenon. It consists of introducing a very small parameter ¢ in the constraints to slightly
tolerate a stress constraint violation, i.e., considering a stress constraint in the form g < 0, this
technique modifies it to g < e. This technique modifies the design space, smoothing the con-
straints, in such way that the optimal value obtained by solving the relaxed problem differs from
the one obtained in the original (non-relaxed) problem. Thus, a continuation approach is usually
applied to the parameter ¢, such that one meets at the end of design iterations the optimal values
of the design variables and objective function associated with the original problem. Note that as
€ — 0, the relaxed problem tends to the original problem.

In 1998, Duysinx and Bendsge [77] proposed a stress criterion for layered composites (includ-
ing the optimal rank-2 material, which consist of a layering at two length scales, see the reference
for more details) and power-law materials (which use SIMP law to interpolate material properties,
see Eq. 2.58). In order to establish a stress criterion for power-law materials at intermediate den-
sities, it is necessary to propose a relationship between stresses, and the stress limit of the given
material and the density parameter. This relationship must satisfy the following requirements: (1)
the local stresses are a function of the inverse of the density parameter and (2) the local stresses
must remain finite and non-zero at zero density. One approach that satisfies all these requirements
is to consider that the local stress tensor o;; is given by:

_Aay) _ pP

— . 0
gjj = b0 Eijkilerr) (2.109)

where the exponent q is a number (greater than 1) that must be equal to p (p is the SIMP penalty

exponent) to satisfy requirement (2), {o;;) is the macroscopic stress tensor and (e2;) is the
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macroscopic strain tensor. Therefore, the stress constraint for the SIMP model using a von Mises

criterion for the local stresses can be expressed as:

(0)eq
pq

< oy (2.110)

where (o)eq is the von Mises equivalent stress and oy is the stress limit. In [77] the stress con-
straints were imposed locally, and the singularity phenomenon was overcome using the ¢-relaxa-
tion technique.

As an alternative to e-relaxation, Bruggi proposed in 2008 [78] the gp-approach to overcome
the singularity problem. In [77] it was said that the penalty exponents (p and g) must be equal to
assure a physical consistency to the final optimal design all over the density range. However, with
such condition one incurs in the singularity phenomenon. In [78] it was shown that the choice
g < p gives no discontinuity of local stress at zero density. This choice thus eliminates the arising
of the singularity phenomenon, although a single optimization performed with g < p implements
a stress constraint that is not physically consistent all over the density range, and the proposed
power relaxation must be regarded as a pure mathematical manipulation to solve the problem.
The relaxed problem converges to the original problem as g — p. Typically, a continuation ap-
proach on g is adopted, where the value of g gradually approaches p. In a nutshell, the gp-ap-
proach consists in formulate the stress constraint as stated in Eq. (2.110) choosing a value for g <
p. This method may be likened to an adaptive e-relaxation, where the magnitude of the stress

constraints relaxation depends on the q range.

2.5 Multi-Material Topology Optimization

Performing TO of a structure considering two or more different non-void material phases is
called Multi-Material Topology Optimization (MMTO). Considering multiple material phases
when designing a structure may lead to better performance than considering just one material
phase plus void. Several authors considered MMTO to improve the stiffness of a structure when
subjected to volume and/or mass constraints, see e.g. [79-81]. Strength-oriented MMTO consid-
ering stress control, by adding constraints or directly minimizing the maximum stress in a struc-
ture, has been investigated to a much less extend, see e.g., [82-84]. In recent years, MMTO has
increasingly interest due to the advancements of additive manufacturing technologies, see e.g.
[85,86]. There are quite a few interpolation schemes to perform MMTO and some of the most

relevant used are summarized next.
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2.5.1 Multi-material interpolation schemes for topology op-
timization

Multi-material interpolation schemes are mathematical expressions that allow to obtain the
distribution of material in a structure based on two or more base materials. For density-based TO
there are essentially two different types of material interpolation schemes: (1) SIMP method ex-
tensions and (2) Discrete Material Optimization (DMO). These material interpolation schemes
should allow intermediate material choices (i.e., intermediate densities) in the optimization pro-
cess. However, if a discrete material design is aimed, one should penalize intermediate solutions
in such way that at the end a clear distinction between the material phases is obtained. Within the
scope of other methodologies for performing topology optimization, such as the Level-set method
or Phase-field method, there are also techniques capable of dealing with multiple materials that
are not covered here. For the Level-set method, one suggests see [87], where the so-called “color”
level sets methodology is applied. Regarding the Phase-field method, the following references are

suggested [88] and [89], where a MMTO minimizing the compliance is performed.

2.5.1.1 SIMP method extensions

In density-based TO, the SIMP method shown in Eq. (2.58) is the most popular and easiest
approach to interpolate between one solid material and void. In 1997, Sigmund and Torquato [90]
were the first to extend the classic SIMP method to consider more than one solid material phase.
A natural extension to this model able to consider two solid material phases without adding extra

design variables is simply given by:
Eija(pe) = pPEjiu™ + (1= pP)Eija®,  p =1 A p. €10,1] (2.111)

where p is the penalty exponent, p, is the element e artificial density, and Eijkl(i) is the stiffness
tensor or material properties of material phase i. Note that if void is considered as second material
phase, i.e., Ei]-kl(z) = 0, EQ. (2.111) becomes the classic SIMP interpolation (Eq. 2.58).

For three-phase materials, Eq. (2.111) can be extended in the following way:

Eijia(pe1s Pe2) = pﬁi(pZEEuu“) +(1- pg_zz)Eijkl(Z))

) ) (2.112)
+(1=pl)Ej®, D=1 A perpes €10,1]
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where two design variables per element are now required, p, ; and p, ,, each of which may have

its own penalty exponent, p; and p,. This equation is represented in Fig. 2.7a and it can be written

in its discrete form as:

Eijkl(l) if pe1 =1Apez=1
Eijkl(pe,lvpe,z) = Eijkl(Z) if Pe1 = 1 /\Pe,z =0, V Pe 1, Pe2 € {0; 1} (2-113)

Eijia® if per =0Apey =0

In the case void is considered as material phase, i.e., El-jkl(” = 0, one can rewritten Eq. (2.113)

as:

Eijki(Pe Pez2) = Pg,ll(szinjkl(l) +(1- Pf,zz)Eijkz(z)),
p = 1 /\ pe,l'pe,z € ]0,1]

(2.114)

where the design variable p, ; can be seen as a topology variable, since it controls the presence

or absence of material. The design variable p, , can then be seen as the material selection variable.

(1) (1)
Eukﬂ J Eqk/ .
(2)
Eqk/
(2)
Eukﬂ
E_ &
ijkl =
E 3

@
ikt
"

pe,?

Pe4 Pe2

(a) (b)

Fig. 2.7: Extended SIMP interpolation schemes plots considering two design vari-
ables per element for (a) three-phase materials and (b) four-phase materials.

The three-phase materials interpolation scheme can be further extended to accommaodate four
material phases without increasing the number of design variables per element:
Eijia(Pers Pe2) = P23 (PE2Eijia™® + (1 — p22)Eija®)
+ (1= p23) (025 Eij® + (1 = pl3)Eijra™®), (2.115)
P=1A pe,pep €101]

This equation is represented in Fig. 2.7b and it can be written in its discrete form as:
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Eijkl(l) if pe1 =1Ape,=1

Eijkl(z) if pe1 =1Ape,=0
3)

(4

Eijkl(pe,l'pe,z) = v Pe,1:Pe,2 € {O; 1} (2-116)

Eijiu™ if pes =0Aper=1

Eijia™® if peq =0Ape, =0
These four-phase materials interpolation scheme is equivalent to the Shape Function Parametri-
zation (SFP) which is explained in the light of the FEM theory where the shape functions of a
quadrilateral first order finite element are used to interpolate material phases (see [91]).

The three-phase materials law shown in Eq. (2.112) can be generalized for n material phases

as shown in the literature [92]:

Eijkl (pe,lr Pe,2r s pe,n)

(2.117)

n m—1
= > (1= @b = PEmSmn) )| | [0e)” | Biga™ 0
m=1 q=1

Wm

where w,, can be seen as the weight that the properties of a given material phase m has on the
final design and &, ,, is a Kronecker delta, i.e.:

_{1, m=n

={0 man (2.118)

5m,n

With such generalization, one requires (n — 1) design variables per finite element to interpolate
material properties between n materials. The four-phase materials scheme in Eq. (2.115) can be
similarly generalized (see [93]) reducing the required design variables per finite element to log, n.

In fact, the number of design variables per finite element is an important issue when perform-
ing TO since it is directly related with the computational time. Taking this into account, Zuo and
Saitou [94] proposed the so-called Ordered SIMP interpolation. This interpolation scheme allows
to interpolate among n materials using only one design variable. The material properties are sorted

in the ascending order of the normalized density variable, p7*:

m _ Pe" _
pot = , m=(1,..,n) (2.119)

pmax

where p,q, 1S the maximum of the all candidate densities. Using the normalized density in Eq.
(2.119), the classical single-material SIMP in Eq. (2.58) is extended to construct the ordered in-
terpolation of the elastic modulus of multiple materials, as shown in Fig. 2.8. Introducing the
scaling coefficient Ag and translation coefficient By, the extended power function is formulated

as:



48 Chapter 2 - State of the art: linear elastic regime

Eijii(pe) = Agpy +Bg , 0<p, <1 (2.120)

where Ag and By, for p, € p,,, pm+1 @re given as:

E, —E
Ap = ——— (2.121)
Pm ~ Pm+1
Bg = E,, — Agph, (2.122)

and E,, and E,,,,, are the elastic modulus or material properties of ordered material i and i + 1,
respectively. The Ordered SIMP interpolation shown in Eq. (2.120) is continuous, but the first
order derivatives w.r.t. p, are discontinuous at the interpolation points. It is well-known that dis-
continuity of derivatives leads to numerical instabilities in the optimization processes if a gradi-
ent-based optimizer is used. Zuo and Saitou [94] acknowledge this issue, but they argue that it is

an extremely rare event that design variables hit exactly an interpolation point.

A Material 3
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Fig. 2.8: Ordered SIMP interpolation scheme plot. Retrieved from [94].

2.5.1.2 Discrete Material Optimization (DMO)

In 2005, Stegmann and Lund [92] proposed a different approach to interpolate material prop-
erties among any distinct number of materials, called Discrete Material Optimization (DMO).
Although this methodology is density-based, it differs from SIMP in the way the weight functions
of each material phase are assigned. In DMO, the weight functions are uniform, i.e., they are
identical, differing only in the design variables that make the selection of each material phase.
This method requires n design variables per finite element to interpolate between n different solid
materials. The resulting material properties in each finite element (E ;) is given by the weighted

sum of the different material properties that one wants to interpolate:
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n
1 2
Bijia = ) WemB Q) = Wen By + We 2B+ + WemES) (2.123)
m=1

where w, ,, € ]0; 1] are the weight functions of each material properties, ESZ?
Since 2005, several DMO schemes were proposed, differing only in the weight functions used
[92,95]. Here, only DMO 1 is presented, which is the simplest version of DMO and consists of

having only one design variable per weight function, i.e.:
n
1 2
Eijiy = z PEnE = PELESY + pELESY + - + pemEly (2.124)
m=1

where p, ,, € ]0; 1] is the density design variable of element e associated with the properties of

the base material m. In Fig. 2.9 is represented the interpolation surface for three material phases

(two solid materials plus void), which is given by:

1 2
Eiji = pg,lEi(jk)l + pg,ZEi(jk)l (2.125)

(1) (2)
Ej " +E g

0.4

] 0 o0
Po2 Pe.1

Fig. 2.9: DMO1 interpolation scheme plot considering two solid materials plus void.

Taking a closer look to Eq. (2.125) or Fig. 2.9, it is possible to see that the resulting material
properties for (p?,pF,) = (1,1) is Eyjq = Egjpy + Eqjpy. 1€, the resulting material is the sum
of the two materials to interpolate. This cannot happen in multi-material optimization. Later, in
2011, the works [96,97] proposed a linear constraint that prevents the sum of the weight functions
(or element densities) from exceeding 1. Besides this, in [97] an additional constraint to prevent

intermediate density values is also proposed. Without these later constraints, it would be impos-

sible to obtain a realistic multi-material solution, with clear distinction between material phases.
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To conclude, DMO has the advantage of not increasing the complexity of the interpolation
law, when the number of material phases increases. However, the number of design variables and
constraints highly increases, as it is typically necessary to have several design variables and one

extra constraint per finite element to correctly interpolate material properties.

2.5.2 Functionally Graded Material (FGM)

Functionally Graded Materials (FGMs) were introduced in 1980s by a group of materials sci-
entists as a new class of advanced composite materials whose equivalent properties vary gradually
along one (or more) direction(s) to obtain modified response to external loadings [98]. The ver-
satility (or freedom) of FGM designs makes them a perfect candidate for topology optimization
problems. Topology optimization readily accommodate multi-material design, using interpolation
schemes, as seen in the previously chapter. FGMs can be seen as a particular solution of a multi-
material topology optimization problem, where the mixture of materials is allowed. In fact, FGMs
have been recently explored in the framework of topology optimization.

Perhaps, the first attempt to apply topology optimization to FGM designs was by Xia and
Wang in 2008 [99]. They utilized a volume fraction model of material composition and averaged
the Hashin-Shtrikman bounds [100] to compute the effective elastic modulus in each finite ele-
ment, where their objective function was the sum of the mean compliance. In this work, as in
others since then (see e.g. [101-103]), the FGM is seen as an extensive smooth variation of mate-
rial properties on account of varying composition’s volume fractions throughout the design do-
main, while allowing simultaneous lay-out optimization (i.e., where to put holes). In such works,
the mixture of two distinct materials prevails extensively over their discrete distribution.

In the literature, one can find ways to obtain the FGM effect slightly different from what was
just described above. In [104] the FGM effect is created varying the microstructure with location,
where it is observed a continuous transition in space from denser microstructures to highly porous
microstructures related to a functional gradation. Another type of FGM aims to achieve smoothly
varying interface regions (transition zones) between discrete materials in composites, which is
appropriately obtained with the level-set approach in topology optimization, see [105,106].

FGM structures are very appealing for lightweight construction. The classical compliance
minimization problem is the most addressed in the literature (see the above-mentioned contribu-
tions). However, in many applications it is of central importance to control stress concentrations
inside composite structural components. Regions of large stresses (e.g., sharp material interfaces)
are most likely the first to exhibit failure during service. Despite this, stress-based optimization,

and specially in the context of FGM designs, is poorly covered in the literature (see e.g., [107-
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109]). In 2021, Coelho et al. [68] considered the design of FGM-like microstructures using
strength criteria and setting p = 1 in the classic SIMP interpolation law (see Eq. 2.58). Therefore,
intermediate densities were not penalized in the classical way. Instead, to ensure the correctness
of material volume calculations, a Heaviside-like function was implemented for volume evalua-
tion. This methodology guarantees that intermediate values of density count to volume as one
(i.e., presence of solid material). In each point the isotropic elastic tensor Ejjy,; is obtained by
linearly interpolating between void and base material, depending on the local density value. This
is the so-called free-material optimization (see [81]), where the densities can be seen as the thick-
ness of a 2D sheet. Simply put, the material gradation model here is obtained by varying the
microstructure’s thickness. In reality, this work does not explore the full concept of FGM because
the mixture of two homogeneous solids is overlooked.

Actually, to perform TO aiming FGM designs obtained by mixing two homogeneous solid
materials, it would be required a multi-material interpolation scheme. More recently, Conde et al.
[82] performed MMTO seeking discrete multi-material and FGM microstructures that were opti-
mal in terms of stress distribution. To correctly model FGM microstructures, the authors consid-
ered the multi-material SIMP interpolation scheme in Eq. (2.114) with specific values for p; and

P2, as it will be explained in Chapter 3.

2.6 Multiscale Topology Optimization

Multi-scale structures are defined using different length scales. The most common case of a
multi-scale structure has two length scales, macroscale and microscale, where each point in the
macroscale structure effectively represents a periodic repetition of a local microstructure, see Fig.
2.10. Multi-scale structures can be found in nature, e.g., bone and bamboo, and they hold the
promise of achieving superior performance while being intrinsically lightweight, robust and
multi-functional. Actually, a necessary condition to achieve ultimate stiffness is having a compo-
site material consisted of several length scales [110], so-called rank-N laminates, which are ca-

pable of achieving the theoretical upper bounds for maximum strain energy density [111-114].
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Fig. 2.10: Illustration of a multi-scale structure. Retrieved from [115].

Over the past years, there has been a growing interest in optimal design of multi-scale struc-
tures due to the rapid developments in Addictive Manufacturing (AM). AM provides an effective
means to fabricate complex mono-scale structures, as well as delicate multi-scale structures, i.e.,
exhibiting fine geometrical details. Combining AM with TO gives a powerful tool to design these
multi-scale structures, that promise superior performance in a general case. Fig. 2.11 illustrates

some examples of multi-scale structures designed by TO.

Fig. 2.11: Some examples of 3D multi-scale structures designed by topology optimization.
Retrieved from [115].

The term multi-scale has been used extensively in the literature to describe structures and
modelling techniques, as well as design approaches. Many design approaches make use of multi-
scale modelling, i.e., they assume separation of length scales. However, mono-scale modelling
can also be used to design multi-scale structures. The former design approaches are typically
referred to as multi-scale approaches. Approaches that do not make this assumption, i.e., mono-
scale approaches, optimize distribution of a homogeneous material. When the design domain is
discretized by a finite-sized mesh, such mono-scale approaches typically result in mono-scale
structures. However, as the discretization of the design domain increases, it can directly be used
to achieve multi-scale structures, since theoretical stiffness optimal structures span multiple
scales. By employing careful continuation techniques and sufficiently fine meshes, and in the

absence of regularization for mesh independence such as control of minimum length, perimeter,
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or slope, multi-scale structures should appear naturally. However, the appearance of fine scale
structures may also be stimulated by controlling the layout locally. In these approaches, analysis
and optimization of structures are performed in the full resolution of the domain (full-scale ap-
proaches). For local control approaches, two strategies can be distinguished: (1) pattern repetition
and (2) local volume constraints. In the former strategy, the design domain is partitioned into a
number of subdomains that are further refined. The layout in each subdomain is enforced to be
the same as that in the others, leading to periodic patterns in the full domain. In a variation, the
subdomains are grouped, and an identical layout is enforced in subdomains per group, resulting
in, for instance, periodic patterns along one axis with gradation along another. The pattern repe-
tition strategy can be applied in full-scale approaches [116] as well as multi-scale approaches.
The second strategy to stimulate fine scale structures is to apply local volume constraints [117].
The idea is to impose an upper bound on the fraction of solid elements in the neighbourhood of
every point in the full design domain. Fig. 2.12 compares compliance-minimized structures opti-
mized using a conventional mono-scale formulation under a total volume constraint (left), with
pattern repetition (middle) and with local volume constraints (right). By analysing the figure, the
following conclusions can be drawn: (1) porous structures from local volume constraints exhibit
continuous variations in orientation, while periodic patterns have a constant orientation. In this
sense, local volume constraints are less restrictive than pattern repetition in constraining the op-
timization problem; and (2) both pattern repetition and local volume constraints restrict the solu-
tion space, and the structure is expected to be less optimal than obtained from a formulation on

the same resolution without these constraints. [115]

Fig. 2.12: Full-scale optimized structures using the same amount of material.
Retrieved from [115].

As aforementioned, multi-scale structures can also be obtained through multi-scale modelling,
existing different approaches to do so. It is now important to accurately define the multi-scale
optimization problem. One can rewrite the compliance minimization problem for mono-scale
structures in Eq. (2.60) to accommodate the hierarchical optimization of multi-scale structures

considering spatially varying microstructures [118]:
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1
max min {E,f max  Epppg(pe) emn(uj)qu (uj)dﬂ — l(uj)} (2.126a)
Q

Pe uj el Emnpq €Eqd
st [,pedQ—V*<0, e=1.,n (2.126Db)
0<pmin<pe<1l e=1,.,n (2.126¢)

where p,, is now the macroscale design variable describing the porosity of the varying microstruc-
tures, which is subject to an upper bound on the available material V*. E; ;;; describes the effective
stiffness tensor of the microstructures, which must be in the physically admissible set of stiffness
tensors E,4. Note that usually, the homogenization method is used to obtain the homogenized
stiffness tensor of the microstructures, i.e., E;ji; = Ei’}kl.

In [115] the authors classify the different multi-scale topology optimization approaches by (1)
the restrictions that are applied to the admissible set of properties E,4 that can be achieved by the
parameterized microstructure, and (2) the restrictions that are applied to the (macro) density dis-
tribution p,.

Regarding the restrictions applied to E, , one can categorize approaches based on the follow-

ing restrictions, starting with the least restricted category:

I.  Optimal set of elasticity tensors: E, is represented by a geometry parameterization that

allows the local problem to be solved to optimality. This is for elasticity and conduction
problems the set of rank-N laminates [119].

Il.  Unrestricted unit-cell design: E,4 contains the set of unit cells that can be obtained using

inverse homogenization (i.e., design of the microstructure with desired properties, see
[120]), without restrictions on the material distribution, shape, connectivity, or orienta-
tion of the unit cell. This means that if a fine enough discretization is used, the micro-
structures should converge to what is theoretically possible.

I1l.  Restricted unit-cell design: E,4 contains the set of unit cells that can be obtained using

inverse homogenization with restrictions on material distribution, unit-cell shape, con-
nectivity, or orientation. For example, this can be a square unit cell or a design with pre-

defined solid elements, both resulting in severely restricted design freedom.

IV. Parameterized unit cell with multiple parameters: E,; contains a set of pre-computed
parameterized unit cells such that the microstructure is parameterized using more than
one parameter. For example, this can be the rectangular hole microstructure by [16], see
Fig. 2.13. Due to the rotational freedom, the rectangular hole cell actually performs

almost as well as rank-2 microstructures [81], if properly de-homogenized (process of
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constructing connected and physically realizable designs from homogenization-based
optimization, see [121]).

V.  Parameterized unit cell based on density: E,4 contains a single constitutive tensor E j;

or E{J’-k, for a given microstructure density p,. This is the most restrictive case since it
does not involve a local optimization problem. Isotropic microstructures satisfying the
Hashin-Shtrikman bounds [100] fall in this category since the isotropic elasticity tensor
depends only on the density. Likewise, the SIMP approach with a penalty parameter p
(see Eqg. 2.58) that satisfies the Hashin-Shtrikman bounds [81] falls into this category.

y2+ \]1>\ X2 A

1y

- - X
— Y1 1
2

Fig. 2.13: Layout of the unit cell with a rectangular hole, in local (y1, y2), and global
(x1, x2) coordinate systems. Retrieved from [115].

As regards the restrictions applied to p,, the different multi-scale topology optimization ap-

proaches can be categorized into three different categories:

A. Unrestricted density: There are no restrictions on the density, i.e., p, € [0,1].

B. Restricted density: Only a few values of p, are allowed. For example, this applies to the

SIMP method (possibly combined with a projection method [122] to reduce elements
with intermediate densities), and also the Porous Anisotropic Material with Penalization
(PAMP) approach (see [123]) falls into this category. This also applies to interface
bounded approaches [124-126] with a fixed infill density and a solid outer shell.

C.  Fixed density: The density field p,, is fixed, i.e., there is no outer optimization problem.
This is, for example, a uniform density field or a density distribution based on some

prior optimization problem.

Finally, one can identify 5 x 3 different categories of multiscale topology optimization prob-

lems, which are summarized on Table 2.2. It is also provided a fundamental paper for each cate-

gory.
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Table 2.2: Categories of multi-scale topology optimization problems and representa-
tive papers according to [115].

A: Unrestricted B: Restricted  C: Fixed density

density density
I: Optimal set of elasticity tensors Rank-2 [50] [128] [129]
I1: Unrestricted unit-cell design [127] - -
I11: Restricted unit-cell design [118] [123] [130]
IV: Parametrized unit-cell with [16] [125] [131]
multiple parameters
V: Parametrized unit-cell based on SIMP [50] [122] Finite element
density analysis

This work aims to perform multi-scale topology optimization using restricted unit-cell design
with unrestricted density values, falling into Category I11.A of Table 2.2. Hierarchical optimiza-
tion of structure and material dates back to [118] which was later extended to 3D [132], both
using SIMP. The formulation involves one problem at the global (or macro) scale and many prob-
lems at the local (or micro) scale. The global problem determines the macroscopic spatial distri-
bution of homogenized material, and local problems determine microscopic spatial distribution
of solid and void phases by optimizing for homogenized properties. In each iteration of a hierar-
chical solution process, following a solved global problem, the local problems become independ-
ent from each other. On the positive side, the independent problems can be solved in parallel by
sending sets of local problems to different processors [133], gaining a recognized computational
speed-up. On the other hand, the independent nature of the local problems creates a critical chal-
lenge regarding the compatibility of microstructures across the shared boundary. Note that the
problem of concern is related to structural properties beyond the disconnected geometry, and thus
one chooses to use compatibility in lieu of connectivity. The compatibility problem arises since
disconnections between adjacent microstructures are not captured in the global analysis using
homogenized properties (separation of scales). In the literature, there are some approaches for
improving connectivity (e.g., [134,135]), where the connectivity is often visually assessed, but a
mechanical assessment is unfortunately missing. A compatibility improvement can be obtained
by using extended domains that overlap in local optimizations, see [136]. To completely circum-
vent the compatibility issue, the optimization problem must be reformulated to design structures
consisting of repetitive microstructures, at the cost of reduced structural performance (see [130]).

When the structural analysis is performed on the full resolution, a poor connectivity is reflected
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by a suboptimal objective. Thus, full-scale approaches naturally ensure good connectivity be-
tween microstructures or subdomains, at the price of intensive full-scale analyses. Therefore, re-
sults from relevant full-scale approaches may serve as a reference for multi-scale approaches.
Compatibility is an important topic that has yet to be fully explored. In this work, the compatibil-
ity of microstructures is disregarded. This important issue will be addressed in the near future.

In this work, multi-scale topology optimization of multi-material structures aiming improved

stiffness is performed in Chapter 4.

2.6.1 Hierarchical problem formulation

Assume a structure in equilibrium defined in the macro domain Q composed by a periodic
heterogeneous material. The material behaviour can then be modelled by means of the homoge-
nization theory through an UC representing the micro domain ¥, i.e., the smallest periodic heter-
ogeneity. Multiscale TO consists then in concurrently optimize the topology of the structure Q,
as well as its microstructure ¥. Therefore, two different but coupled optimization problems must
be formulated and solved. One can discretize the macro domain Q into several subdomains €;
that are aimed to be optimized in the microscopic level, see Fig. 2.14. Note that this domain
discretization must not be confused with the FEM discretization where the finite elements domain

Q, may or may not coincide with the subdomains Q;, i.e., Q, = Q; or Q, c Q;.
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Fig. 2.14: Multiscale material model with the macro domain Q divided into subdo-
mains ;. Each subdomain has defined a microstructure in the micro domain ¥.

The multi-scale optimization problem in Eq. (2.126) can be rewritten to highlight the hierar-

chical structure of the problem:
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) 1
max min {5_[ b (pe,uj) dQ — l(uj)} (2.127a)
Pe Uj evu Q
st [ pedQ—V* <0 (2.127h)
0 <Pmin <pe <1 (2.127c)

where the functional ¢ (p., u;) is given by:

fgi Efanpqemn (1)) €pq () d

qb(pe,uj) = max 2.128
E E Q; (2.128)
mnpq € Lgq l ll

Thus problem (2.127) is the outer problem that determines the macroscopic spatial distribution of
material, while (2.128) is the inner problem that determines the effective properties of the optimal
microstructure within the class of allowable set of properties.

Assuming that u is the unique solution of the equilibrium equations (minimizer of the total
potential energy) found by the FEM (analogously to what was done in the Section 2.3.1, see Eq.
2.61) and, in order to control the lay-out of the microstructures by means of topology design
methods (i.e., SIMP method), the hierarchical problem comprised by the problems (2.127) and
(2.128) can be rewritten in its final form:

1
max _EL‘P(‘) erty) A2 (2.129a)
Pe
st f,ped2—V'<0 (2.129b)
0 < pmin <pe <1 (2.129c¢)

where the functional ¢ (p., u;) is given by:

fgi Efinpq (i) €mn () £pq (w) A

¢(pevuj) = max 19| (2130&)
Hk '

st [,ud¥—p,=0 (2.130b)

0 < pmin<px <1 (2.130c)

The set of equations (2.129) states the TO problem of the macrostructure, while the set of equa-
tions (2.130) states the TO problem of the microstructure, where |€;| is the subdomain volume
or area. The macrostructural TO problem is equivalent to the minimum compliance problem,
while the microstructural TO problem corresponds to the maximization of the strain energy den-
sity. Note that these problems are coupled through the so-called macro densities p, (design vari-

ables of the macro problem) as seen in Eq. (2.130b). The macro densities establish the porosity
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distribution in the macro domain Q, taking into account that the maximum allowable material
volume VV* cannot be exceeded (see Eq. 2.129b). Therefore, in each point of the macrostructure
is associated a material with periodic microstructure defined in the domain ¥ and volume fraction

equal to p; (see Eg. 2.130b). The so-called micro densities u;, define the microstructure topology.

2.6.2 Optimality conditions

To obtain the necessary conditions for the optimal design of the multiscale problem, the La-
grange functions for both macro and micro problems must be defined. The Lagrange function
associated with the macro problem (Eq. 2.129) at points where p takes intermediate values (i.e.,

bound or side constraints are inactive) is stated as:

Lz—%Lq’)(p,u)dQ—A(Lde—V*) (2.131)

where A = 0 is the Lagrange multiplier associated with the global resource (inequality) con-
straint. The stationarity of the Lagrange function £ defined above w.r.t the design variable p is
given by:

oL 0 1d¢ folo}

= —271:] = AlQ: — =24 2.132
70 ﬁzaplll IlI@ap (2.132)

Remember that the derivatives of the compliance function C = %fﬂ ¢ dQ are obtained using the

adjoint method, where dC/dp < 0 (see Chapter 2.3.2). The condition (2.132) imposes that the
derivative of the weighted sum of the strain energy densities w.r.t. p is constant at all points of
the macrostructure. This shall be verified at the optimal solution p*.

Regarding the Lagrange function associated with the micro problem (Eg. 2.130) at points

where u;, takes intermediate values, it is defined as:

fQ. ‘Smngpq dﬂi
= Efpqg— ol -2 <Luk d¥ — pe> (2.133)

where A is the Lagrange multiplier associated with the local resource constraint (porous material
relative density). The stationarity of the Lagrange function £ defined above w.r.t the design vari-

able u; is given by:

ﬁ — 0o aEf,’mpq fQi Emnépq d-Qi

=¥ (2.134)
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Note that the macro strains € do not depend on the micro density field because these are fixed
from the macro problem when solving the micro problem.

Since ¢(p, u) is the objective function value of the micro problem at the optimum, using the
sensitivity theorem it is easy established that (see e.g. [137]):

9
35 = (2.135)

and substituting this result into Eq. (2.132) one obtains the following relation, between the macro

and micro Lagrange multipliers, that should be satisfied at the optimum:

=24 (2.136)



3]
MULTI-MATERIAL MICROSTRUC-
TURAL TOPOLOGY OPTIMIZATION

The present chapter addresses multi-material topology optimization of a periodic composite
material UC, with properties predicted by homogenization, using strength and/or stiffness design
criteria, under bulk and mixed loading cases. Depending on the material interpolation law set-
tings, two design solutions are investigated. On one hand, two solids coexist being bonded to-
gether across sharp interfaces, so-called Multi-Material Topology Optimization (MMTO). On the
other hand, a FGM is obtained as an extensive smooth variation of material properties on account
of varying composition’s volume fractions of both solids throughout the design domain, so-called
Functionally Graded Material Topology Optimization (FGMTO).

The classical TO problem of minimizing the compliance is revisited here for the multi-material
case considering mass and/or material volume constraints. Such approach aims to obtain an in-
crease on stiffness compared to the optimal single-material designs, while maintaining the same
mass and/or volume requirements. In many applications, it is of central importance to control
stress concentrations inside composite structural components. Regions highly stressed are most
likely to fail first during service. So, another performance criterion explored here is the material
mechanical strength, where the maximal von Mises stress is intended to be minimized in the UC
full domain. This tends to favour Fully Stressed Designs (FSD), meaning that, ideally, every ma-
terial point of the structure is equally stressed.

The well-known single-material Vigdergauz microstructures [138,139], obtained for plane
stress conditions with macroscopic applied stresses of same sign and magnitude (bulk-type load),

are equally optimal for both stiffness and strength considering Single-Material Topology

61
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Optimization (SMTO). The Vigdergauz solutions satisfy the Equi-Stress Principle (ESP, see
[140]) which means that the hoop stresses oy, along the hole free-traction boundary T, are constant
and with magnitude o, = tr(a)/V, where o is the average applied stress tensor and V is the
material volume fraction. Therefore, the ESP identifies the optimal hole shape that minimizes
both compliance and stress concentration. Although the single-material Vigdergauz microstruc-
tures under bulk load, are equally optimal for both stiffness and strength, a stress concentration
factor arises at the hole-free traction boundary. This can be reduced on account of introducing a
softer homogeneous layer (ring) around the hole [68,141]. This can be done through bi-material
TO. However, the resulting sharp interfaces between the two homogeneous solid phases lead to
interfacial mismatch-induced stresses jeopardizing resistance to delamination or fatigue. An im-
proved design solution involves a continuous gradation of material properties in the vicinity of
the interface region (transition zone) between discrete materials. This localized FGM design so-
lution can be extended to the full-design domain to completely explore its stress mitigation po-
tential. The fabrication of such advanced composite (FGM) constitutes another challenging work
yet to be met by the research community [142].

The contents of this chapter are based upon a peer-reviewed paper already published in journal,
see [82]. This chapter is structured as follows. Firstly, the material model used is described in
Section 3.1. Afterwards, Section 3.2 focuses on the methodology used to perform MMTO and
FGMTO based upon original problem formulations, sensitivity analysis and parallel computing
techniques. The results obtained are presented in Section 3.3. Finally, the main conclusions of

this part of the work are presented in the Section 3.4.

3.1 Material model

The material model used here considers the in-plane repetition of a UC composed of three
different material phases (two solids and void), defined in the square domain ¥ with feature size
d, representing the smallest periodic heterogeneity of the material domain Q of size D, see Fig.
3.1. A plane stress field (g;;) is remotely applied to €. Separation of scales is assumed, i.e., d is
much smaller than D. Periodic displacement-based boundary conditions are applied to ¥.

The behavior of the periodic material is extracted from the UC analysis through asymptotic
homogenization [37], as detailed in Section 2.2. The FEM is applied to numerically solve the
continuous homogenization equations, i.e.: (1) the equilibrium problem defined in Eqg. (2.44) in

order to obtain the micro displacements y; (2) the homogenized stiffness tensor E¥ defined in Eq.
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(2.49); and (3) the local stress tensor components o defined in Eq. (2.53). The domain ¥ is dis-
cretized by a square-grid FE mesh, as illustrated in Fig. 3.1, having the element e area |Y,|. The
von Mises stress o)™, in each Y,, considers the volume average of the values computed at each
Gauss point of the FE, i.e.,

f \/% [(of) — 053)? + (011)? + (05,)%] + 3(07,)? dYe (3.1)
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Fig. 3.1: Material model considering a porous composite with periodic multi-
material microstructure. Retrieved from [82].

The micro-displacements y and the homogenized stiffness tensor E are obtained through the
FE implementation named pPREMAT, and then the postprocessor named POSTMAT is used to obtain
the micro-stresses ¢ and the von Mises stresses o/, see [37].

To perform MMTO or FGMTO with up to three phases based on density design variables, a
material interpolation scheme is required to interpolate among void (blue), stiffer solid E; (red)
and weaker solid E, (green), as illustrated in Fig. 3.1. Both SIMP (see Section 2.5.1.1) and DMO
(see Section 2.5.1.2) interpolation schemes are suitable for this purpose. However, the SIMP is
chosen here as its application is straightforward to either MMTO or FGMTO problems. As ex-
plained below, SIMP adequately models the rule of mixtures in FGMTO. Therefore, the SIMP-
based multi-material interpolation scheme in Eq. (2.114) is used here.

In the case that the objective is to obtain designs presenting two distinct solid phases plus void
(typical MMTO), the design variables p; and p, should touch their bounds at the end of the design
iterations. In this case, depending on the combination of extreme values of p; and p,, a unique

phase is selected, see Fig. 3.1. In this setting, the design variable p; works as a topological variable
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as it identifies presence or absence of solid phase, and the design variable p, is responsible for
material selection.

In case that the objective is to obtain FGM microstructures, p; and p, in Eq. (2.114) must be
carefully chosen to accommodate desired penalization effects and consistency with the physics
of solid mixtures. In this setting, intermediate values of the design variable p; are unfavorable
such that void and solid regions can be identified. Additionally, intermediate values of p,, which
sets the proportion of each solid phase (E; and E,) in the resulting solid mixture, must be con-
sistent with the bounds provided for the effective elastic moduli of multiphase materials, e.g., the
Hashin-Shtrikman (HS) bounds [100]. These are upper and lower bounds for the elastic moduli
of composite materials depending on the volume fractions of each constituent materials, and it is
assumed that these materials are mixed uniformly with no microstructure. Assuming the 2D case
and that both materials are isotropic, as well as their mixture, with the same Poisson's ratio, equal

to 1/3, the HS bounds can be expressed as (see also [81,99]):

_ 2+ p)E; + (1 -p)E,

HS =201 — p)Ey + (1 + 2p)E, 2 (3.2)

+ _ PEi+(B-p)E;
HS ™ (3—2p)E; + 2pE,

(3.3)

where Ejg and Efjs are respectively the lower and upper HS bounds. The volume fraction of the
stiffest constituent material E; (Young’s Modulus) is given by p € [0,1], while the volume frac-
tion of the softest constituent material E, is given by 1 — p. The HS bounds are plotted in Fig.
3.2 to check how the interpolation law (Eq. 2.114), function of p, only (one sets p; = 1), com-
pares with HS bounds. In Fig. 3.2, different values of exponent p, are tested to investigate curve
fitting.

From Fig. 3.2 is seen that, mixing two different isotropic solids, the resulting elastic properties
do not linearly correlate with the volume fraction of each constituent. Therefore, to adequately
capture FGM properties, the interpolation scheme predictions must be within the HS bounds for
the entire volume fraction range. It is clearly observed that p, value must be comprised between
1 and 2. A value of 1.6 seems to render a good enough approximation in the scope of a Power-
law based interpolation scheme. In fact, the match is not perfect as seen for some volume frac-
tions. For low and high p values the bounds are slightly violated. The proposed value, p, = 1.6,
is kind of a trade-off that avoids violating too much the bounds either for lower or higher p values.
For an improved fitting, one might use another scheme, e.g., the average of the two HS bounds

[99]. In terms of physics that strategy is sound, but it introduces much more mathematical
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complexity especially when it comes to sensitivity analysis. As a Power-law mimics just that,
without much loss of accuracy, and it is mathematically much simpler, one proceeds with Eqg.
(2.114) in this work.

To sum up, the material model used here is a twofold one. As explained, it models either a
composite material comprised by two discrete solids (conventional composite) or a mixture of
two solids (advanced composite, FGM), plus void. Furthermore, the model assumes: linear elas-
ticity; perfectly bonded solid phases; ductile solids such that failure can be predicted by the von

Mises stress criterion.
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Fig. 3.2: Plot comparing the HS bounds with the SIMP interpolation scheme interpo-
lating two isotropic solids using different values of exponent p,. Retrieved from [82].

3.2 Topology optimization framework

To perform TO, an algorithm was developed in Fortran language, see Fig. 3.3, as explained
next. This algorithm starts by generating an initial design for the periodic microstructure based
on the two density design variables, po ; and py ,. It is well known that optimal solutions obtained
by gradient-based optimizers might not be the global optimum, and highly depend on the starting
point. So, it is important to test out different initial designs, see Fig. 3.4. The initial designs should
be comprised by intermediate densities with non-uniform distribution across the domain ¥ such
that gradient of the elastic properties exists in order to have micro-displacements y different from
zero. Density-based TO requires the use of filtering techniques, as explained previously in Sub-
chapter 2.3.4. Both the density and sensitivity filter are suitable to solve compliance-based TO
problems. However, when dealing with stress-based TO problems, the density filtering is the most

appropriate, see Eq. (2.105). Filtered densities p; and p, are the input for the homogenization
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Fig. 3.3: Flowchart of the developed algorithm to perform multi-material TO.

procedure. All the physical quantities computed through homogenization are based on these fil-
tered densities, including their derivatives. After the homogenization is completed, a convergence
criterion (e.g., number of iterations) is evaluated. If this convergence criterion is verified, the
algorithm stops. Otherwise, it continues iterating. The objective function f; and design constraints
gi values, and their derivatives are then computed. Depending on the optimization problem to be
solved these functions may differ, see Subchapter 3.2.1. The optimizer (MMA) updates the design

variables, i.e., the non-filtered densities. So, sensitivities w.r.t. the non-filtered density design
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variables must be computed using the chain rule in Eq. (2.107). This process is called “Density

filter grad” in the flowchart. This algorithm keeps running until the convergence criterion is met.

(a) (b) (@ (d)

Fig. 3.4: Examples of initial designs: (a) centred circles; (b) centred squares; (c)
centred circle plus corners; and (d) cross plus square corners. The colours illustrate
intermediate values of density variables, representing a mixture of material phases.

3.2.1 Optimization problems formulation

Two different TO problems are formulated. Firstly, the compliance-based problem (Section
3.2.1.1) is presented in the context of MMTO to be compared to SMTO. The stress-based problem
(Section 3.2.1.2) is presented in the context of both MMTO and FGMTO to be compared to
SMTO as well.

3.2.1.1 Compliance-based MMTO

Compliance C is minimized subject to (s.t.) mass and/or material volume constraints. In the
context of SMTO the mass and volume fraction constraints are equivalent. However, in MMTO,
different materials have different mass density p*. Therefore, the compliance-based MMTO prob-

lem, with two solids plus void, is formulated as follows:

1
min  C(py,P) = 5 (@)CHa)Y] (3.42)
P1.P2 2
st ﬂ* _ Z::1[l~)1,e(l~)2,ep;t(l_ﬁz,e)p;)We'] <1 (34b)
m m
Vo ZelPrelell _ (3.40)
v* v*

where the design variables py, p2 € [pmin, 1]; (o) is the macroscopic average applied stress ten-
sor; CH is the homogenized compliance tensor computed as the inverse of the homogenized stiff-

ness tensor EX, see Eq. (2.9); |Y| is the UC area (considered here unitary); m is the effective mass,
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which interpolates, at each FE, mass densities p* and void resembling the material properties
interpolation (Eq. 2.114) but now considering p; = p, = 1; m* is an upper bound on m; V is the
material volume fraction with an upper bound V*; and n® is the total number of elements present
in the FE mesh. When solving the MMTO problem (3.4), one seeks the stiffest design for a given

mass and/or volume requirement.

3.2.1.2 Stress-based MMTO and FGMTO

In this optimization problem formulation, the minimization of the maximum von Mises stress
a/M is sought. However, a min-max problem raises non-differentiability issues. To overcome
these issues, the so-called “bound formulation” is used here [65,68]. This means replacing the
original min-max stress problem by the problem of minimizing a variable z subject to stress con-
straints bounded by z, i.e., 6¥™ < z. The bound z is an additional design variable that replaces
the non-differentiable original functional, max g™, and z € ]0,+oc].

The proposed stress-based MMTO, with two solids plus void, is formulated as:

pr}EZ z (3.5a)
st %1, e=1,. (3.5h)
c
p=s <1 (3.5¢)
—<1 (3.5d)
—<1 (3.5€)
»1—01 — ZZzl[(l_ﬁl,e)(ﬁi.e_Pmin)]_zl < 1 (35f)
{1 {1 -
®2=% _ Z:il[(l‘ﬁz.e)(52.e—9min)]—fz <1 (3.5)
Q2 Q2 -

where the design variables p;, p2 € [Pmin, 1]; C* is a compliance upper bound; V* and m* are
limits on volume fraction V and effective mass m, respectively, as defined in Eq. (3.4); ¢, and
@, measure the level of intermediate values (gray) present on filtered density fields p; and p,,
and {; € 10, +oo] and {, € ]0, +oo] are their respective upper bounds, to be kept small. The con-
straints in formulations (3.4) and (3.5) are written in the format to be read by MMA (Fortran
version).

The bound C* in Eq. (3.5¢) is used to ensure that the resulting design is stiff enough, i.e.,

connectivity of the solid phase exists, and the trivial solutions of uniform intermediate density or
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structure absence are avoided [143,144]. In the context of MMTO, one expects that the optimal
design obtained through Eq. (3.5) presents discrete material phases. To that purpose, the presence
of intermediate densities (gray) is penalized through the exponents p; and p, in Eq. (2.114).
However, this may not suffice in strength-oriented design. That is why constraints (3.5f) and
(3.50) are added here. Bear in mind that, the averaging imposed by the density filter (Eq. 2.105),
necessarily opens an exception regarding the presence of gray. Gray always appears at the border
of each two neighboring phases. In fact, such border looks like a bit blurred as shown later in the
results (Section 3.3). Hence, careful choice of parameters ¢; and , is demanded which, compre-
hensively, can be problem dependent. To illustrate, for high material volume fractions, ¢; and {,
are possibly lower comparing to low material volume fractions. The reason why is that higher
material volume fractions may exhibit interfaces between phases with less perimeter and thus less
gray appears. Results in Section 3.3 show this trend. Adjusting such parameters may thus require
running the optimization problem more than once to get insight. In general, it is good to start not
having such ¢ bounds too tight. Then they must become gradually smaller by means of a contin-
uation approach such that at the end of the design iterations their values are small enough to
evidence shaper interfaces which facilitates design interpretation.

Regarding the stress constraints present in (3.5b), the bound z is both the design variable and
the objective to be minimized. Here, there is no interpolation among different material yielding
stresses depending on the materials present in the pool for selection. Such formulation goes be-
yond the scope of the developed work here, but it might be interesting to explore it in the future
as it also benefits engineering practice. In the present framework, one seeks instead the optimal
spatial distribution of two solids amidst void to reduce the peak stress. No particular stress relax-
ation, i.e., gp-approach [78] or epson-relaxation [77], is required when solving the problem using
the bound formulation [68]. To sum up, the stress-based MMTO aims here to find multi-material
designs, with multiple discrete solid phases, which are optimal in terms of strength, for compli-
ance, volume fraction and/or mass requirements.

The stress-based FGMTO problem formulation is very similar to the MMTO case. FGM de-
signs are achieved here by interpolating the two solids according to Fig. 3.2, as previously ex-
plained in Section 3.1. The intermediate density values of p, have physical meaning now, as they
represent different proportions of each solid present in the mixture. Therefore, the constraint
(3.50) is not used. However, the intermediate values of p; remain penalized, such that solid-void

regions can be obtained, i.e., constraint (3.5f) must be kept.
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3.2.2 Sensitivity analysis of the optimization problems

Remember that the derivatives of the objective function and constraints w.r.t. non-filtered den-
sities p are computed applying the chain rule (Eq. 2.107), which depend on the respective filtered
density p. The required derivatives w.r.t. p to solve the problems formulated in Section 3.2.1 are
show below. Keep in mind that index j € {1,2} defines the corresponding density field (i.e., p1
or p3), indexes i,e € {1, ...,n°} correspond to the FE index, and index [ € {1,2} defines the re-

spective functions ¢; and ¢,. The compliance derivative is,

dc 1 OEH
— - H H 36
_dﬁ =3 (o)C _66 cH(o)|Y| (3.6)

The volume derivative is,

dV_{lYil if j=1 37
dp;; 0 if j=2 37
The mass derivative is,
dm _ {(ﬁz,ipf + (1 - ﬁz,i)P§)|Yi| if j=1 (3.8)
dpji  Prilpr — p)IYil if j=2
The penalization function ¢ derivative is,
dipl _ {_Zﬁj,i + Pmin +1 ?f ] =1 (3.9)
dpj,i 0 if ] * [
The von Mises stress derivative is,
dO'VM aO.VM aO.VM d mn
e e e Xk (3.10)

dpji  0p;  oxp™ dpjy
In Eq. (3.6), the derivative of the homogenized stiffness tensor w.r.t. density field p; ;, can be

easily evaluated solving a self-adjoint problem as explained in [17], which gives the following

result:
aErI;{lkm 1 aqurs < a){g,m> ( aXrtll>
— =— | —\ 6,40, ——— || 6,:,04; — dy 3.11
a/-)j,i ¢ Y; aPj,i piCam 83’51 ot s ( )

where the derivatives of E,, s are simply obtained deriving the SIMP multi-material interpolation

scheme (see Eq. 2.114), i.e.:
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1 ~ e
aqurs plpgl )(pg pqrs(l) +(1- Pg,zi)qurs(z)) if j=1

(3.12)
.. 1 . .
9pji p“pzp(pz )( Epgrs @ qurs(z)) if j=2

The total derivatives of the von Mises stresses in Eq. (3.10) depend explicitly and implicitly
(through the solution y of the homogenization equations) on the design variable 5; ;. To compute
these derivatives, the adjoint method is used, review Section 2.3.3.2.

The total derivatives of y;° w.r.t. ;; in Eq. (3.10) are obtained differentiating both sides the
equilibrium equations of the local homogenization problem Eq. (2.44) in its FE or discrete form

Ky = F. Therefore, Eq. (3.10) can be rewritten in the following way:

doM  ggyM oF 0K
T 2 i aT|=-Z (3.13)
dp ap Jap dJp

where A is solution of the following adjoint problem:

vM\ T
Kh = <‘93X ) (3.14)

The challenge now is to analytically derive the Von-Mises stress function o™ (see Eq. 3.1)

w.r.t. the micro-displacements x. This is given by:

do/M
ox
_ doy1 00y, doq4 doy, doy
(011 022)( ox oxX )+ ox 011 +—5== X Oy +6—= ax 012 v (3.15)
_ 2 2 e
: 2\/(011 2022) +0121 +0222 + 30,2
B Y|

where the local stress tensor components g;; for a given applied averaged macroscopic stress state

(oy;) are given by:

X
Oij = Eijrs 6rk651 - P Cklpq(o-pq> (316)
Vs
where C,’jlpq(apq) is the applied average macro strain tensor (&g;). The local stress components

derivatives w.r.t. x are computed in the following way:

aO'ij a(Pa

ang(lx ijrs ay klpq rq

where ¢, are shape functions. Remember that in FEM, the nodal displacements are multiplied by

shape functions to estimate displacements at any point in the element’s domain, i.e., X' = x¥. ¢,,.
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With the developments shown above, it is possible to calculate the implicit part of the Von-
Misses stress derivative in Eqg. (3.10), remaining only the calculation of the explicit part of the

derivative. The VVon-Misses stress derivatives w.r.t. p are given as follows:

do/M
ap
do do do do: do
(01— 022) (S8 — G2 + Gt oy + B0, + 620y, IR CEL)
(011 — 022)% | 011?% | 027 2 :
_ Y% 2\/ 2 R A
- |Yel

where the derivatives w.r.t. 5;; of the local stress components of an element e are computed as

follows:
domn aEmnrs(ﬁje) dxt
= 20 80 — —— | CH 5;
9pj,; apj,; TSt 9y, kipa{%pa)die 3.19)
a)(7’~d> aClgllpq (ﬁj e) |
+E Die)| Orilss — —=(0pq)
mnrs(p],e)< rkUsl ays apj,i rq

The Kronecker delta §;, means that the first term of Eq. (3.19) is always zero apart from i = e.

The homogenized compliance tensor derivatives are given as:

ac,‘jlpq_ u OEfny

=— —4 cH 3.20
aﬁj,i kltu aﬁj,i hvpq ( )

where the homogenized stiffness tensor derivatives are shown in Eq. (3.11).

3.2.3 Parallel computing

To speed up computations, the developers of computing systems started to think on using
several of their existing computing machines in a joint manner. Nowadays, parallel computers are
very common. Most of the computers available in the market have a processor (CPU) with several
cores that allows the user to perform parallel computing. However, the generation of codes able
to use the parallel capabilities of the hardware is not an easy task. Back in April 1958, Stanley
Gill [145] started discussing parallel programming and the need for branching and waiting.

There are mainly two different families of parallel machines that can be identified: (1) shared-
memory architectures and (2) distributed-memory architectures. The shared-memory machines
are built up on a set of processors which have access to a common memory. Usually, the name of

SMP machines is used for computers based on this architecture, where SMP stands for Symmetric
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Multi-Processing. In contrast, in distributed-memory machines each processor has its own private
memory and information is interchanged between the processors through messages. The name of
clusters is commonly used for this type of computing devices. Each one of these two families has
its advantages and disadvantages, and the actual parallel programming standards try to exploit
these advantages by focusing only on one of these architectures.

For shared-memory machines, Open Multi-Processing (OpenMP) is the most suitable ap-
proach for parallel programming. OpenMP is an Application Programming Interface (API), and
consists of a set of compiler directives, library routines, and environment variables that can be
used to specify shared-memory parallelism. In the past, limited support for coarse-grain parallel-
ism has led developers to think that shared-memory parallel programming was inherently limited
to fine-grain parallelism. Nowadays, OpenMP addresses the inability of previous shared-memory
directive sets to deal with coarse-grain parallelism. Coarse-grain parallelism means that the par-
allelism in the program is achieved through a decomposition of the target domain into a set of
subdomains that is distributed over the different processors of the machine. Fine-grain parallelism
means that the parallelism in the program is achieved by distributing the work of the do-loops
over the different processors, so that each processor computes part of the iterations or loops [146].

On the contrary, the Message Passing Interface (MPI) [147] is the most suitable approach for
parallel programming in distributed-memory machines. MPI is a communication protocol for par-
allel programming, where data is transferred from one processor/node to another processor/node
through “send” and “receive” calls. Both point-to-point and collective communications are sup-
ported. MPI and OpenMP can run on a computer cluster simultaneously, such that OpenMP is
used for parallelism within a (multi-core) node while MPI is used for parallelism between nodes.

The hardware used in this work is a Workstation HP Z8 G4 (shared-memory machine), 2 CPUs
Intel Xeon 6242R 3.1GHz 2933MHz 20C, 256GB RAM. This workstation allows us to use up to
40 physical CPU cores (plus 40 logical cores with hyperthreading). Furthermore, one uses Intel®
software for programming, OneAPI Base and HPC Toolkits.

In this part of the work, parallel computing is used to speed up the two main bottlenecks in
running the algorithm developed, which are the sensitivity analysis and the optimizer (MMA ).
To study the impact of parallel computing on the algorithm run, one has to choose a test case.
Therefore, the stress-based FGMTO problem for V* = 0.90 is chosen here for that purpose.
Nonetheless, the conclusions drawn from this study also apply for all the stress-based problems
solved later in Subchapter 3.3. In Fig. 3.5, one shows the percentage of time spent in different
program routines in several iterations. It is clearly seen that in the first design iterations sensitivity

analysis is alone the bottleneck. After some iterations, the MMA becomes the main bottleneck.
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I Sensitivity Analysis
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Fig. 3.5: Bottlenecks identification throughout the optimization process for
the stress-based FGMTO problem with V* = 0.90. Retrieved from [82].

Regarding the sensitivity analysis, it is usually a time-consuming task. Here, the total number
of stress constraints equals the total number of finite elements considered. This means stresses
are treated as they are, local, but that also means many problem constraints. Furthermore, each
function requires derivatives w.r.t. all density variables. Comparing to SMTO, the number of
these variables doubles in the MMTO and FGMTO cases considered here, as two density fields
are needed. The derivatives computation involves nested loops. Basically, two main loops. An
outer loop through all constraints and an inner loop through all density variables. Notice that the
sensitivity evaluation of each stress constraint is independent of another. To speed up the compu-
tational time spent here, the code is parallelized resorting to OpenMP directives for Fortran. The
parallel implementation considered here splits the outer loop into several parts, each one handled
by a different processor.

As regards the optimizer (MMA), due to the large number of stress constraints in the stress-
based MMTO and FGMTO problems, an important bottleneck appears in MMA when it fully
runs in serial. That may discourage its use. Therefore, an MMA parallel framework is proposed
here, with important speedups when many constraints are treated. In [148], the MPI is used to
propose a MMA parallel framework dealing well with huge number of design variables. Recall
that one considers in this work two design variables per FE, but more variables could be consid-
ered in case more phases would be interpolated. As previously discussed, MPI is undoubtedly
suitable for distributed-memory computer architectures. In the case of shared-memory architec-
tures, OpenMP is the most suitable protocol for code parallelization since, unlike MPI, no com-
munications through “send” and “receive” calls among processors are required [149]. This is the
main reason to propose here an alternative parallel version of MMA to be used in shared-memory

architectures and when thousands of constraints are treated. In next paragraph, a detailed
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description of the parallelization work done in the original Svanberg’s MMA [52] is shown.
Please recall some important concepts about MMA explained back in Section 2.3.2.2.

Finding the solution of the dual problem described in Eq. (2.90) requires computing Eq. (2.84)
and Eq. (2.85) several times. Therefore, parallel computing can be conveniently applied to these
parts of MMA code. Equations (2.84) and (2.85) are programmed in MMA Fortran subroutines
XYZzLAM and GRADT, respectively. Each one involves nested loops, being the outer loop paral-
lelized here. In Eq. (2.84) it corresponds to j = 1, ..., n (number of primal variables) and in Eq.
(2.85) corresponds to i = 1, ..., m (number of dual variables).

An even more important part to be parallelized is the Newton’s method itself, as it iterates a
lot. The method implies setting and solving repeatedly the system of equations in Eq. (2.91),
which can be expensive. The Hessian matrix (Eq. 2.92) construction is carried out in MMA
Fortran subroutine HESST, and it can be expensive as it involves nested loops in each iteration
of Newton’s method. The outer loop corresponds to the index j = 1, ...,n and the inner loop cor-
responds to the index i = 1, ..., m. The Hessian dimension is equal to the number S of “free” dual
variables, i.e., dual variables A; that correspond to y; > 0 in MMA subproblem. Comprehen-
sively, this dimension can change during the iterative process of solving the dual problem. This
IS an active set constraints strategy which is helpful in case a relatively small number of con-
straints are active. However, in MMTO and FGMTO one expects a high number of active ones.
Hence, for the construction of Hessian matrices with dimension g > 100, parallel computing is
used here. It is important to notice that this parallelization is only possible due to the OpenMP
directive ! SOMP ATOMIC that prevents several processors from overwriting/updating the same
memory location simultaneously. Finally, to solve the system of equations one takes advantage
of LAPACK routines available in Intel® oneAPI Math Kernel Library (oneMKL). These are ef-
ficient routines that support parallel computing. Here one uses the driver routine DPPSV that
solves the system of linear equations, Ax = B, where A is a symmetric positive definite packed
matrix using Cholesky decomposition. The parallel version of this routine here is only used for
system of equations with dimensions 8 = 1000.

Table 3.1 summarizes the required modifications in the original MMA Fortran source files
(and respective subroutines): maxim.f (HEssT and suBspa) and maxsu.f (xYzLaM, GRADT and
LINDER). See that the date indicated in Table 3.1 for these sources correspond to the MMA ver-
sion modified. Before compiling the modified code, enable the compiler to use the OpenMP di-

rectives as well as the Intel Math Kernel Library (check the actual Fortran project properties).
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Table 3.1: Modifications for MMA parallelization to be inserted at the indicated lines of the original MMA code.
Retrieved from [82].

Source Lines Modifications Lines Modifications
95 add USE OMP_LIB 265 | @dd USE OMP_LIB
176 add NYDIM as an argument add the code below
MAXPROC = OMP_get_max_threads()
211 delete CALL LDLFAC IBETA=100
IF (NYDIM.LE.IBETA) THEN
220 delete CALL LDLSOL 302 NPROC=1
dd th de bel ELSE
aad the code below NPROC=MAXPROC !User specified
MAXPROC = OMP_get_max_threads() ENDIF
IBETA=1000 IF (NPROC.LE.2) THEN
maxim.f IF (NYDIM.LE.IBETA) THEN
NPROC=1 add the code below
291 NPROC=MAXPROC !User specified I3OMP PARALLEL DO PRIVATE (PJ, QJ,
ENDIF MJ1, P1J, Q1J, SRPJ, SRQJ, XJ,UJXJ, XJLJ,
CALL mkl_set_num_threads( NPROC ) UJXJ2, XJLJ2, RR, KK, PKJ, QKJ, TTK; IK,
CALL DPPSV( 'Lower, NYDIM, 1, TTI), NUM_THREADS(NPROC)
HESSF, UU, NYDIM, INFO) 345 Repeat lines 303-339 updating statement
- labels
delete the lines below ISOMP ATOMIC
222-224 DO 80 I=1.M Repeat lines 340-344 updating statement
UU(1)=DSRCH(I) Jabels
80 CONTINUE ISOMP END PARALLEL DO
255 add NYDIM as an argument ENDIF
add the code below 94 add the code below
NPROC=8 !User-specified 1SOMP END PARALLEL DO
19 ISOMP PARALLEL DO PRIVATE (PJ, QJ,
MJL, P, QU, SRPJ, SRQJ, XJ), add the code below
NUM_THREADS(NPROC) NPROC=8 !User-specified
133 ISOMP PARALLEL DO PRIVATE (MJ1,
add the code below UJXJ, XJLJ, P, QN), NUM_THREADS
40 1I$SOMP END PARALLEL DO (NPROC)
add the code below B Replace the original code by:
NPROC=8 !User-specified DO 30 I=1.M
82 I$OMP PARALLEL DO PRIVATE (MJ1, o
UJXJ, XJLJ, P, QIJ), NUM_THREADS IF(IYFRFE(I)'EQ'O) GOTO 30
maxsu.f DO 40 J=1,N
(NPROC) MJI1=M*(J-1)
(Oct. 1999 UIXJ=XUPP(J)-X(J)
el : 134- B '
Replace the original code by: XILI=X(2)-XLOW()
DO 20 I=1,M P1J=P(MJ1+I)
DO 30 J=1,N QI=Q(MJI1+1)
MJ1=M*(J-1) UU()=UU(1)+P1J/UIXI+QIIXILI
UJXJ=XUPP(J)-X(J) 40 CONTINUE
XILI=X(J)-XLOW(J) 30 CONTINUE
83-93 PII=P(MJ1+)
8g;g$:hzllilngADF(l) +P1J/UIXJ + 145 add the code below
= 1
Q13 / XJLJ ISOMP END PARALLEL DO
30 CONTINUE
20 CONTINUE

Speedup curves for the sensitivity analysis and the Hessian matrix construction (HESSI sub-

routine in MMA) are plotted in Fig. 3.6. Remind that the speedup S,, is defined by:

(3.21)
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where T is the execution time of the serial algorithm and T;, is the execution time of the parallel
algorithm with n cores. The Hessian matrix dimension 8 considered here to generate the HESST
speedup curve shown is fixed, § = 2316. This curve initially exhibits a plateau since paralleliza-
tion is skipped for NPROC<2, see Table 8. The reason is that the needed command for parallel-
ization ! SOMP ATOMIC has a time cost such that only when the number of processors is above

2 it becomes worthy.
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Fig. 3.6: Speed up curves of the sensitivity analysis and Hessian matrix construction
for the stress-based FGMTO problem with V* = 0.90. Retrieved from [82].

As previously mentioned, one also parallelizes the MMA subroutines, GRADT and LINDER,
to reduce the computational time even further since these subroutines are called quite often. From
experience running the examples of this work, the number of processors used in these subroutines
that gives a meaningful speedup is up to 8, the user-specified number indicated in Table 3.1.

The factorization of the Hessian matrix and the solution of the system of equations is now
efficiently carried out at once by the oneMKL driver routine, DPPSV, instead of the original
LDLFAC and L.DLSOL subroutines. For instance, one notices that the original computational time
spent in these computations is reduced at least by 99%. The subroutine DPPSV is suitable to solve
large-scale system of equations and it also supports parallel computing.

In the present framework, the parallelization of the Hessian matrix construction and the re-
placement of the LDLFAC and LDLSOL subroutines by the DPPSV subroutine are indeed the two
main factors which greatly impact on the MMA speedup.

Ultimately, a runtime comparison between serial and parallel codes for the entire design opti-
mization history is shown in Fig. 3.7. The proposed parallel code can reduce 82% of the total

optimization runtime compared to the serial run.
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Fig. 3.7: Graph comparing serial and parallel runtimes (cumulative) for the stress-
based FGMTO problem with V* = 0.90. Retrieved from [82].

3.3 Results: Microstructural Topology Optimization

This Section presents the obtained results solving the MMTO and FGMTO problems formu-
lated in Section 3.2.1 for three different prescribed macroscopic (average) stress tensors, one bulk-
type load (Eq. 3.22) and two mixed loading cases (Egs. 3.23 and 3.24). The solid material phases
(stiff and weak) selected for the examples that follow are presented in Table 3.2. To simplify, the
values of ratios E/Estee and p*/psieer (in bold) are here used as problem data for E [GPa] and
p* [kg/m?], respectively, instead of the absolute values indicated. Interestingly, this normalization
also highlights that Young’s Modulus ratios and mass densities ratios between engineering alloys

are similar, see [150]. A Poisson ratio of 0.3 is assumed for both solids.

(01>=:_01 _01] [MPa] (3.22)
(0= os] MPal (3.23)
(0 =[7 o M) (3.24)
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Table 3.2: Material properties of Steel (stiff solid) and Aluminium (weak
solid). Property ratios highlighted in bold.

Materials  E[GPa] E/Eswe p " [Kg/m3] p*/p stel
Steel 200 1 7900 1

Aluminium 68 0.34 2700 0.34

Due to symmetry, only a quarter of the UC needs to be considered in the bulk case which is
an advantage in terms of reducing the number of design variables and stress constraints. In con-
trast, the mixed loading cases require the full UC meshing and thus the computational cost in-
creases considerably because of the same number of stress constraints and finite elements. Typi-
cally, in SMTO, an active-set strategy reduces this cost [68,151]. However, in MMTO, stresses
tend to be more evenly distributed, especially in the FGMTO case, which means that much more
constraints become active. For example, the FGMTO results, as shown later, for the bulk case
(with V* =0.9) and the last mixed loading case (with V* = 0.8) have 2315 (out of 2500) and 3552
(out of 4096) active stress constraints, respectively. Hence, the active-set strategy savings can be
questioned. Notice also that one needs an enlarged design space (two design variables per finite
element) to interpolate between two solid phases plus void. Therefore, one conveniently resorts
to parallel computing to reduce the computational cost (see Section 3).

The mesh discretization must balance well between accuracy and runtime. In [63], a 2D mesh
convergence analysis in SMTO problems concludes that square-grid meshes between 64x64 and
128x128 are reasonable choices. Therefore, the results here are obtained on the top of 100x100
meshes for the bulk load case and 64x64 meshes for the mixed loading cases. The initial designs
either exhibit a centered square or circle of low density surrounded by a higher density region,
see Fig. 3.4a) and b).

This Section is outlined as follows. Firstly, one addresses the bulk-type load in Section 3.3.1
performing a compliance-based MMTO (Section 3.3.1.1), a stress-based MMTO (Section 3.3.1.2)
and a stress-based FGMTO (Section 3.3.1.3). SMTO results are revisited for comparison pur-
poses. Finally, the two mixed loading cases are addressed in Section 3.3.2 performing a compli-
ance and stress-based SMTO (Section 3.3.2.1), a stress-based MMTO (Section 3.3.2.2) and a
stress-based FGMTO (Section 3.3.2.3).

3.3.1 Bulk-type load

Due to symmetry, results can be presented in quarters of the UC domain as shown in Fig. 3.8.

The final topology is characterized by the E distribution, remember the colour map in Fig. 3.1. In
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multi-material designs the individual density fields are plotted next to each other for comprehen-

sion. Notice that the density field p, is only meaningful in FEs where p; = 1.

E g™
' [MPa]
P1 i P2

Fig. 3.8: Template chosen to present the multi-material results for the bulk-type load.
Retrieved from [82].

3.3.1.1 Compliance-based MMTO

In this section, results of problem (3.4) are shown considering different upper bounds on mass
and volume fraction, m* and V*, respectively. A continuation approach is applied to p; and p, in
SIMP-based multi-material interpolation law (see Eq. 2.114), i.e., p; = p, = 2 — 4 during the
first 20 design iterations for all m* considered, exception made to the m* = 0.9 where such grad-
ual increment takes 40 iterations.

The compliance-based MMTO problem with only a volume constraint always privileges se-
lection of the stiffest materials available, which is trivial and thus skipped here. Here, one imposes
a global mass constraint with m* € {0.6; 0.7; 0.8; 0.9}. Fig. 3.9 (top) shows the SMTO results for
these mass thresholds when only steel is used. In this case Egs. (3.4b) and (3.4c) coincide, as
P, = p* = 1. The optimal layout change from a square-type into a circle, across different volume
fractions, is consistent with the Vigdergauz results [111,112]. These results can be compared to
the MMTO results shown in Fig. 3.9 (bottom), obtained for the same mass, i.e., only constraint
(3.4b) exists as the total volume fraction is free. The multi-material case mixes the stiff and weak
solids to the point of eliminating the original void. This results in a non-porous composite where
the stiffer phase embraces the weaker phase. Table 3.3 presents all the compliance values, the
steel volume fraction Vsieep in MMTO designs, and the percentage & that shows how less com-
pliant the multi-material design is comparing to SMTO. So, material combinations can outper-
form here hole openings. In fact, for compliance and mass (or weight) performances, regardless
which one is constrained, the other one, as an objective, can be further reduced in the multi-

material setting.
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Fig. 3.9: SMTO (top) and MMTO (bottom) results for compliance minimization with dif-
ferent mass thresholds. The lowest and highest stress values in SMTO and MMTO de-
signs are indicated in the colour scale between pictures. Retrieved from [82].

Table 3.3: Compliance values [J] for the SMTO and MMTO results shown in Fig. 3.9.

0.6 0.7 0.8 0.9

SMTO C 2133 1619 1239 944

Vsteel | 039 055 070 085
MMTO
¢ | 1379 1171 995 839

5 [%] -353 -27.7 -19.7 -11.1

Comparing the top and bottom stress plots in Fig. 3.9, see the stress scale in between, one can
conclude that MMTO not only lowers compliance but also the von Mises stress (at least in 40%).
However, the stress-based formulation is best adequate to find equi-stress holes (ESP) comparing
to the compliance-based, as compliance is a quite flat function and rather insensitive to local stress
changes [63,68]. This explains some lack of equi-stressness (unevenly distribution of stresses)
seen in the stress plot of Fig. 3.9 (top), compare to Fig. 3.11 (top), being the peak stress there
higher than the theoretical value (minimum) obtained through oy = tr{a)/V.

In practice, certain engineering applications may require a porous composite material. In that
case it is of interest solving problem (3.4) with mixed constraints. However, mass and volume
upper bounds must be carefully chosen such that room is still found in MMTO to improve the

compliance of SMTO. This means that if the SMTO design has mass m°?¢ (e.g., 0.6), which
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coincides with volume VPt (e.g., 0.6), the MMTO problem with m* = m°Pt must have at least
V* > VPt (e.g., 0.9). For these example values (m* = 0.6 and V* = 0.9), the MMTO compli-
ance is 1558, which is above the prior MMTO result of 1379 but still below the SMTO compli-
ance result of 2133. Fig. 3.10 shows the corresponding layout. It is the stiffer solid that embraces

the hole and also notice that the peak stress is still below the SMTO case.

0 /M 271

Pmin 1

Fig. 3.10: Result for compliance-based MMTO with mass (m * = 0.60) and volume (V * = 0.90)
constraints. Optimal compliance is 1558J and peak stress is 2.71MPa. Retrieved from [82].

3.3.1.2 Stress-based MMTO

Solving problem (3.5) with mass and compliance constraints, choosing as upper bounds the
previous values in Section 3.3.1.1, one obtains the same plots of Fig. 3.9 (bottom) where stress
improvements can already be recognized. Therefore, one now optimizes for different volume
fraction limits, i.e., V* € {0.60; 0.70; 0.80; 0.90}. This way the original hole area in Fig. 3.9 (top)
is not compromised. For each V*, further stress reduction is possible in MMTO on account of
introducing a more compliant second material phase. This means that the original compliance
value, from SMTO, is now increased. To that purpose, the constraint (3.5c¢) is considered with a
compliance limit C” that is 25% higher, compare compliance values in Table 3.4. Although com-
pliance increases, its upper limit still ensures that the optimized solid part of the design domain
is connected (the design is stiff enough). Even so, constraint (3.5¢) may not suffice to capture
well-defined discrete phases, i.e., two solids plus void. Undoubtedly, the exponents p; and p, in
the multi-material SIMP law (Eq. 2.114) play an important penalization role. In MMTO here,
these exponents are constant and equal to 4 during the optimization history. However, it can still
be difficult to get rid of intermediate densities. In fact, “gray” is in favour of lowering stresses. In

order to eliminate such “gray”, one penalizes the intermediate values of p; and p, through



Chapter 3 - Multi-material microstructural topology optimization 83

constraints (3.5f) and (3.5g), respectively. In these equations, {; and ¢, must be tuned and Table

3.5 presents their final values.

Table 3.4: Compliance [J], mass and stress [MPa] results for the SMTO and
MMTO problems. Comparative study.

V*
0.60 0.70 0.80 0.90
c 2133 1619 1239 944
o
E m =V
w
oM | 340 283 240 204
c 2632 2024 1520 1141
e
s m* 0.534 0.634 0.734 0.834
=
oM | 3.08 2.41 2.01 1.48
c +234 +25 +22.7 +209
§%) m | -11  -94 -83 -73
o™ | 941 -148 -163 -274

Table 3.5: Parameters {1 and {2 for each V * considered in stress-based MMTO.

V*

0.60 0.70 0.80 0.90

|50 57 50 26

| 105 83 85 53

Interestingly, since p; = 1, constraints (3.5d) and (3.5¢) would coincide in case only solid E;
exists, i.e., V* in (3.5d) would be also the total mass of Steel (St). In the MMTO case, the strategy
pursued here is selecting a mass threshold m™* in (3.5e) such that m* < V*, which then enforces
the presence of a certain amount of solid E,, Aluminum (Al). Considering the relationships V* =
Vsr + Vo, m* = pg Vs, + paVa; and the following data pg, = 1, py; = 0.34, V4=0.1, after some
algebra, one obtains m* =V* — 0.066 which justifies the m* values presented in Table 3.4. There-
fore, constraint (3.5€) can be interpreted as equivalent to the Aluminium volume fraction con-

straint with a minimum threshold of 10%, i.e., V4;> 0.1. The rationale of using the mass constraint,
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instead of two volume fraction constraints, is to better highlight the fact that the obtained stress
reduction comes also along with mass savings on account of more compliant designs, compared
to SMTO, as highlighted in bold at the bottom of Table 3.4.

Ideally in multi-material optimization, numerical issues apart, the algorithm should be able to
distribute softer solid E, in the UC domain to reduce stresses without having its amount pre-
scribed. This statement is supported in [68] where multi-material shape optimization is carried
out. However, in the density-based MMTO case, allowing an extra solid phase, E,, implies in-
creasing {, such that more “gray” can be accommodated. Bear in mind that including more phases
in design means also more interface perimeter, i.e., it really means more “gray” presence because
of density filtering. Therefore, one realizes that unless a minimal amount of phase E, be enforced,
the algorithm simply finds a blurry transition between void and solid E; resembling a FGM, as
much as threshold ¢, allows. The FGM is really effective in stress mitigation as addressed in the
next Section. However, in this Section, one aims discrete phases characterization, MMTO. There-
fore, for the sake of a well-defined solid E, presence, one proceeds adding the mass constraint as
just justified above.

To avoid convergence issues some strategies are followed. A continuation approach that grad-
ually decreases C*, {; and ¢, values during the first design iterations is applied. The design vari-
able z update is prevented from jumping too much by changing the ALBEFA parameter in MMA,
i.e., ALBEFA = 0.995 — 0.5 during the first design iterations.

V=106 V=07 V*=108 V=109
O G.VM O—VM
H 5
=
n
0 3.40 0 2.83 0 2.40
oM j—l VM p—l VM j——l
. . 0 2.01
P1 P2
OSS—_
Pmin 1  Pmin 1 Pmin 1 Pmin 1

Fig. 3.11: Stress-based SMTO and MMTO results for different material volume fractions.
Retrieved from [82].
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Fig. 3.12: Optimization history of the stress-based MMTO problem for V * = 0.70.
Retrieved from [82].

Fig. 3.11 presents the results for MMTO and compares them to the SMTO results. The stress-
based SMTO results better capture the ESP, compare to Fig. 3.9 (top). The compliance and the
maximum stress values between SMTO and MMTO can be compared in Table 3.4. The percent-
age & summarizes how more compliant and lighter MMTO designs are, and how less stressed
they are when compared to SMTO ones. Therefore, MMTO designs can be stronger and lighter

than SMTO ones although more compliant for the same material volume fraction. Furthermore,
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higher material volume fractions have more potential in stress reduction. Finally, one representa-
tive case (IV* = 0.7) is selected as an example of the optimization history of the objective and
constraint functions as well as the continuation approaches used for compliance and ¢ values

along design iterations, see Fig. 3.12.

3.3.1.3 Stress-based FGMTO

Problem (3.5) here is simplified since constraints (3.5e) and (3.59) are discarded. As in Section
3.3.1.2 one considers VV* € {0.60; 0.70; 0.80; 0.90} but now the compliance originally obtained
in SMTO is worsened till 40%. Remind that the penalization exponents in the multi-material
SIMP law (Eqg. 2.114) are now constant and equal to p; = 4 and p, = 1.6 (as explained in Section
3.1) throughout the optimization history. Intermediate values of p, are penalized through (3.5f)
with ¢; € {80; 70; 60; 50} for the respective V* values. Fig. 3.13 shows the FGMTO results and
Table 3.6 summarizes the respective compliances and peak stresses. The percentage § summa-
rizes how less stressed FGMTO designs are compared to SMTO and MMTO designs. Relevant
stress mitigation is attained on account of approaching a fully stressed design, see the stress maps
in Fig. 3.13. Every FGMTO result here, in terms of compliance, touches bound C*. In fact, to
reduce stresses, the more compliant the better. Ultimately, the trivial optimal solution would be

structure absence.

V* =0.60

Pmin Pmin 1

Fig. 3.13: Optimal designs obtained for the stress-based FGMTO problem
considering different material volume fractions. Retrieved from [82].
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Table 3.6: Compliance [J] and stress [MPa] results for the stress-based FGMTO
problem considering different material volume fractions.

V*

0.60 0.70 0.80 0.90

o c | 2986 2267 1735 1323
=
£ oM | 271 217 170 132
SMTO | -23.8 -264 -32.0 -36.8
5 (%)

MMTO | -12.0 -10.0 -154 -10.8

3.3.2 Mixed loading cases

Consider now the mixed loading cases in (3.23) and (3.24). For demonstration purposes, the

SMTO problems are here solved for a specified volume fraction, VV* = 0.80.

3.3.2.1 Compliance and stress-based SMTO

The SMTO results serve as reference in the subsequent Sections for comparative purposes. In
fact, benchmarks for the single-material UC subjected to the generalized average stress case are
not so common in the literature, unlike the bulk and shear-type load cases. Firstly, one minimizes
compliance subjected to constraint on mass (or volume, equivalently). The optimal compliance
value found is then defined as the upper bound on compliance to minimize the maximal von Mises
stress. The same design is found with both compliance and stress-based formulations, i.e., the
stiffest and strongest designs coincide here. Fig. 3.14 shows the optimal layouts, a kind of an
inclined ellipse is obtained when different normal stresses of same sign dominate (3.23) and a
kind of perforated plate exhibiting distorted rectangular holes is obtained when such remote ap-

plied stresses have opposite signs (3.24), shear dominated load. The respective stress plots are
provided.
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Applied average stress
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Fig. 3.14: SMTO results for both compliance and stress [MPa] minimization consid-
ering two average stress fields and V * = 0.80. Retrieved from [82].

3.3.2.2 Stress-based MMTO

The approach here is similar to Section 3.3.1.2. One selects the case V* = 0.80 with m* =
0.734, which enforces presence of solid E, (at least 10%), and compliance is worsened in ap-
proximately 25% comparing to the SMTO counterpart. The values of {; and ¢, for both load cases
are presented in Table 3.7. Fig. 3.15 shows the layouts obtained which resemble those in Fig. 3.14
apart from the emerging small areas of solid E,. We realize that the softer phase around the hole
now can lower the initial peak stress located at the hole border, on account of increasing the
stresses located in inner subregions such that new stress peaks appear of lower magnitude. Table
3.7 also compares the compliance and peak stress between the SMTO and MMTO designs. The
percentage & shows a relevant peak stress decrease for the load (o,), 21.9%, but not that much
for {a3), only 6.6%. This is consistent with the prior observations in [68], i.e., the multi-material
potential for stress reduction is seen more on the side of bulk-type loads rather than shear domi-

nated loads.



Chapter 3 - Multi-material microstructural topology optimization 89

-
- -,
g @ -
a —
[«5)
B vm
172} P1 P2 A a il
q) ey - L .
%D | — | —_——
= Pmin 1 0 oM 1.64
)
>
©
o]
2
a.
o)
<
(03)

Fig. 3.15: Stress-based MMTO results considering two average stress fields,
V*=0.80 and m " = 0.734. Retrieved from [82].

Table 3.7: Results of compliance and peak stress for stress-based MMTO compared to
SMTO. Values of parameters {1 and {2 used in MMTO.

Applied average stress
(02) (03)
o C 805 1200
F
E VM
Omax 2.10 2.29
C 990 1521
o oM 1.64 2.14
F
=
= (1 23 41
{5 40 54
6y (%) -21.9 -6.6

3.3.2.3 Stress-based FGMTO

The approach here is similar to Section 3.3.1.3, the compliance is worsened in approximately

40% comparing to the SMTO counterpart. Fig. 3.16 shows the layouts obtained which now differ



90 Chapter 3 - Multi-material microstructural topology optimization

more from Figs. 3.14 and 3.15, as more design freedom is allowed. Table 3.8 summarizes the
compliance and peak stress obtained with FGMTO in both load cases, and values of {; are also
provided. The percentage 6 shows a relevant peak stress decrease for load (a,) when compared
to the SMTO case. Stress improvements are much lower, and similar for both loads, when results
are compared to MMTO. Yet, FGM overall results clearly show, in both load types, an interesting
stress mitigation effect as one approaches a fully stressed design (see the stress plots in Fig. 3.16),

though a less remarkable stress decrease is again seen in shear dominated loads.

(03)

Applied Macro Load

(03)

Pmin

Fig. 3.16: Stress-based FGMTO results considering two average stress fields, V * = 0.80.
Retrieved from [82].

Table 3.8: Results of compliance and peak stress values for stress-based FGMTO
compared to SMTO and MMTO. The values of parameter ; used in FGMTO.

Applied Macro Load
(02) (03)
c 1127 1704
=
= oyM 1.50 1.95
O
&5
(1 25 54
SMTO | -28.6 -14.9
85 (%)
MMTO -8.5 -89
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3.4 Conclusions: Microstructural Topology Optimiza-

tion

Topology optimization with stress constraints is currently a quite active research topic as it
brings to the conceptual design stage an important design criterion in engineering practice that is
the admissible stress. The anticipation of stress influence at earlier design stages helps attaining
more efficient feasible designs at the end stage of product development. Acknowledging that, this
part of the work is a contribution to the state-of-the-art in strength-oriented microstructural TO.
The minimization of maximal von Mises stress, not well covered in the literature, is explored and
extended to the multi-material setting (MMTO) to find the benefits in stress mitigation consider-
ing different types of loads, which is the main contribution here.

Two different MMTO formulations are addressed, compliance and stress-based. Firstly, the
compliance-based MMTO problem is solved for a bulk-type load to find a stiffer design compar-
ing to SMTO for the same mass requirement. Solving such problem, one shows that multi-mate-
rial designs can outperform single material ones regarding stiffness, and it also impacts favoura-
bly on stress distributions. That is observed in connection with an increase in the total material
volume fraction. Therefore, in applications where porosity is not mandatory, material combina-
tions can outperform hole openings. Secondly, the stress-based problem is explored in two dif-
ferent ways. On one hand, one optimizes the distribution of three discrete phases, two solids plus
void, which results in a conventional composite material. On the other hand, one optimizes the
variation (gradation) of material properties across the UC continuous domain on account of two
solids mixture amidst void, which results in an advanced composite known as FGM. The stress-
based MMTO for the bulk load, renders stronger and lighter designs than SMTO while keeping
the same total material volume fraction and letting the compliance be worsened. This happens on
account of allowing the selection of an extra more compliant solid phase. Eventually, for no upper
limit on compliance, the best for stress minimization would mean either uniform distribution of
density (likely an intermediate value to comply with the volume requirement), in case no void (or
hole) is enforced, or structure absence, in case porosity is enforced on design. These trivial solu-
tions are thus skipped here as one always limit compliance enough. Also notice that under the
same mass and compliance requirements, the stress-based MMTO just replicate the compliance-
based MMTO optimal designs. Furthermore, fully stressed designs are here well approximated
through FGMTO, which results in quite low stress levels. The corresponding designs reveal ideal

solid mixtures in the continuum setting for a specific total material volume fraction. The
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compliance upper bound used in FGMTO is further increased, comparing to MMTO, such that
enough freedom is given to the gradation of properties resulting in greater stress mitigation ben-
efits.

The study is also extended here to other average stress fields to gain insight on how multi-
material plays an important role in stress mitigation as one moves farther away from the well-
studied bulk-type load. Two fields are considered, one more bulk dominated and another more
shear dominated. The multi-material design advantage in lowering stresses is recognized in both
cases but, as one moves toward loads where shear dominates, lesser benefits can be found. This
observation gives valuable insight on the multiscale problem where material and structure are
concurrently optimized. In that more complex framework, a variety of stress fields exist, spanning
loads from bulk to shear type, which, as envisaged here, will impact differently in material com-
binations for stress mitigation. Since multiscale TO is nowadays quite a hot research topic [115],
it is an interesting research avenue bringing stress control into such problem (see e.g., [69,152]),
where in Chapter 4 an exploratory work is made to reach this end, thus advancing previous works
[1,118,132]. The connectivity issue of microstructures in the multiscale problem would be also
an interesting aspect to consider (see e.g., [153]).

Finally, another relevant contribution of the present work is the parallelization of two im-
portant bottlenecks, i.e., the sensitivity analysis and the MMA optimizer. As regards the first one,
important speedups are attained as shown in Fig. 3.6. As regards MMA, an existing MPI-based
parallel framework from [148] is quite relevant to attain important speedups when dealing with
huge number of design variables. However, the greatest concern in this part of the work is having
MMA dealing well with thousands of constraints. That is why the original MMA Fortran code
[52] was revisited here, where the focus is on the dual problem parallelization resorting to intel®
oneAPI Math Kernel Library as well as explicit OpenMP instructions. This is detailed in Section
3.2.3 hoping that the optimization community can easily take advantage of a few extra lines of
code in original MMA to speedup computations when, in general, many problem constraints need
to be considered.

The density-based MMTO methodology proposed here has its own pros and cons. Whereas it
offers a well-known design freedom to efficiently capture disruptive optimal layouts, it lacks on
rendering well-defined solid boundary contours. Density filtering blurs discrete phase transitions
(interfaces are “gray”) which raises some issues that are in the present work properly handled to
accommodate discrete phase selection. However, it would be interesting to see other TO methods
being applied to the same problem (e.g., the Level-set method [18]), which possibly could better

handle this kind of multi-phase modelling issues.



4
MULTI-SCALE OPTIMIZATION OF
MULTI-MATERIAL STRUCTURES

Multi-scale Topology Optimization (TO) of multi-material structures is covered in this chap-
ter. This part of the work is structured as follows. The multi-scale material model is detailed in
Section 4.1. The hierarchical optimization problem formulated back in Section 2.6.1 (see Egs.
2.129 and 2.130) is revisited here and reformulated to solve the minimum compliance problem
considering a mass constraint (instead of volume) and multi-material setting. This is done in Sec-
tion 4.2. Actually, the hierarchical optimization problem can be solved using different algorithmic
strategies [1]. In Section 4.3, a brief discussion about the two different algorithmic strategies is
presented. A comparison between these two strategies is also carried out by solving the compli-
ance minimization hierarchical problem in a single material setting, see Section 4.5.1. This also
serves to validate the hierarchical model developed. The details about the computational imple-
mentation of the hierarchical algorithm are given in Section 4.4. The obtained results are shown

in Section 4.5 and the main conclusions of this part of the work are in Section 4.6.

4.1 Hierarchical material model

The material model used here is two dimensional and comprises two scales: the structure do-
main £ (macro or global scale) and the material domain ¥ (micro or local scale) from which the
structure is manufactured. At the microscale it is assumed a cellular/composite material with local

periodicity. Since there exists separation of length scales, i.e., the periodic microstructure has a
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characteristic dimension much smaller than the characteristic dimension of the structure, the ho-
mogenization method can be conveniently applied (see Section 2.2). By applying the homogeni-
zation method, it is possible to treat a heterogeneous medium as an equivalent homogeneous one,
i.e., with equivalent or homogenized mechanical properties. At the macroscale level, the goal is
to find an optimal structure layout, defined by the macro design variable p*. Whereas at the mi-
croscale level the aim is to find the optimal design for the representative unit cell defined by the
micro design variables p; and p,. Details about the formulation of the hierarchical optimization
are given next in Section 4.2.

The macrostructure considered here is the classical example of a cantilever beam, where on
one side all degrees of freedom (DOFs) are constrained and on the opposite side the load is applied
in a distributed fashion, see Fig. 4.1. The FEM is used to solve the macrostructural equilibrium
problem. The FEM used in this work is the version in Fortran proposed by Kikuchi (FEM2D,
[154]), but could be alternatively used any FEM software (e.g., ANSYS). Based on a structure
design domain discretized using a conforming finite element mesh, the natural way to perform
the hierarchical optimization is to associate each finite element with a cellular material design,
thus aiming at a (global) pointwise or element-by-element definition of optimal material. This
design model parametrization leads to a very high number of local problems required for the
material microstructure characterization across the whole structural domain, demanding parallel
computing to speedup computations. Alternatively, the structure domain Q can be divided into a
number of larger design subdomains Q; where the material microstructure remains uniform, i.e.,
the design variables are constant within each Q; level. Although more constrained, this parame-
terization helps to maintain the material continuity in the structure, reduces the number of design
variables and the spatial variation of properties and thus facilitates manufacturing [155]. These
two different design model parametrizations are carried out in this part of the work. On one hand,
each subdomain Q; coincide with the FE domain Q,, i.e., Q, = Q;. On the other hand, each sub-
domain consists of symmetric layers distributed in the x, direction, containing several finite ele-
ments, i.e., Q. < £;. In the present work, the layers coincide with a row of finite elements, but
they do not necessarily have to coincide.

To each design subdomain corresponds a periodic medium with microstructure, whose mate-
rial properties are homogenized [37], defined by a single unit cell. The microstructure is assumed
to be composed of three different materials phases (void and two different base materials). There-
fore, the microstructure design is done using the multi-material interpolation SIMP law presented
in Section 2.5.1.1 in Eq. (2.114).



95

Chapter 4 - Multi-Scale Optimization of Multi-Material Structures

Macro design Multi-material
- . scheme
Structure design parametrization Microstructure .
domain = design domain Hie=1 .
]—» Q c _ Hi=1
du 3 2 A
) E,
X2 ': = /- 12=0
\\ i oF Y2 \
¥ ux=0
Y1
(b) ©) (d)

X1
(@
Fig. 4.1: Hierarchical material model description: (a) structure design domain ( discretised into 8-node quadrilateral

finite elements €.,; (b) two different macro design parametrizations; (c) microstructure design domain ¥ discretised
into 4-node quadrilateral finite elements ¥, ; and (d) multi-material interpolation scheme.

4.2 Hierarchical optimization problem

With the goal of improving the stiffness (compliance minimization) of structures composed of
periodic multi-material microstructures, one proposes the following hierarchical problem formu-

lation:
n 3 [0 wao
min — ,u
o 2Ja P (4.1a)
st. [,prdQ—M"<0 (4.1b)
0< p*min = p* = p*max = pI (4'10)
with ¢(p*, u) given by:
. ] fQi Crl;llnpq(ulv 12)Omn (u)o'pq (u) dQ;
¢(p*,u) = min o (4.2a)
Hy, K2 t
st fomi(ueps + (1 —pp)p;) d¥ — p*|¥] <0 (4.2b)
f (1 —pp) d¥
. ~V;<0 (4.2c)
%]
(4.2d)
(4.2¢)

0<tmin=pm <1
0< HUmin < M2 = 1
The set of equations (4.1) states the TO problem of the macrostructure, while the set of equa-

tions (4.2) states the TO problem of the microstructure. The macro design variable p* is a vector
containing the mass densities (i.e., mass per unit of volume) of all subdomains £;, and must not
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be confused with the dimensionless density variable typically used in TO. To correctly model and
optimize multi-material microstructures composed of three material phases, two micro design
variables p; and p, are now required. The micro design variables are the standard density varia-
bles used in TO.

The macro problem aims the global compliance minimization of the structure (Eq. 4.1a) while
subject to a global mass constraint (Eq. 4.1b) with M* as the mass limit of the structure. This mass

limit value can be easily obtained by defining a limit on the global mass density p*, €

*

[p ] and multiplying it by the structure volume |Q|. The micro problem aims the local

minimization of the complementary strain energy density of the material domain Q; (Eq. 4.2a)

. *
min’ P max

while subject to a local mass constraint (Eq. 4.2b), where p; and p; are the mass densities of the
stiffer and weaker solids, respectively. The local mass constraint is originally an equality con-
straint, but for reasons of computational implementation it is considered here as an inequality
constraint. However, since the objective is the compliance minimization, the constraint is active
or nearly active during the optimization procedure. This local mass constraint is responsible for
relating the macro and micro design variables enabling the hierarchical optimization.

To avoid singularities p; and p, € [Umin; 1] With py,in = 0.001. Note that if all micro densi-
ties py and p, touch their bounds, the Lagrangian multiplier A (provided by MMA) related to the
local mass constraint is undefined. Consequently, the derivative of the functional ¢ (macro ob-
jective function, see Table 4.1) is also undefined. Either the density filter (see Section 2.3.4.1) or
the sensitivity filter (see Section 2.3.4.2) can be used to help overcome this setback since these
techniques ensure some “gray” (i.e., iy and p, intermediate values) on the local solutions, while
also avoid problems such as checkerboards and mesh-dependency of results. Even so, in the

global problem, the variable p* could take the lower or upper bounds, i.e., p* . or p* If

min max’

*
P min

= fmin P1 OF P, = P1, the values of all py and p, would be enforced by Eqg. (4.2b)
such that iy = pmin Nz = 10rpy =1 Ny = 1, respectively. To prevent this from happen-
ing, one considers bounds for p* slightly modified, i.e., p* .. = Uminp1 +¢andp* . =pi—
¢, where { is a small positive number (e.g., ¢ = 0.009). This strategy is sound for single material
design [1]. However, for multi-material design another scenario might happen where all values
of py and py are forced to their bounds. This is the case of a microstructure composed only by
the weaker solid, i.e., iy = 1 N my = pmin- A clever way to prevent this scenario from happen-
ing is to constrain (Eqg. 4.2c) the volume fraction of the weaker solid such that it can never be
unity, i.e., V' = 0.99. This method requires then one additional local constraint for each material
phase added. If more than three material phases were considered, it will be more efficient to con-

sider a single porosity constraint instead of multiple material volume fraction constraints.
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These strategies used to prevent the design variables p, and p, from touching their bounds
provide a way to obtain defined values for the Lagrangian multiplier 2. However, such strategies
make it impossible to obtain microstructures fully composed of only one material phase without
any “gray”, see results in Section 4.5 (e.g., Fig. 4.15). Consequently, a disrupted stress field is

obtained for those cases.

4.2.1 Optimality conditions

In Section 2.6.2, the optimality conditions were already derived for the hierarchical optimiza-
tion problem of single material structures subject to a material volume constraint. The same pro-
cedure is once again applied to obtain the optimality conditions of the hierarchical optimization
problem (4.1) and (4.2) of multi-material structures subject to a mass constraint.

The Lagrange function associated with the macro problem (4.1) at points where p* takes in-

termediate values (i.e., bound constraints are inactive) is stated as:

L=1f¢(p*,u)dﬂ+/l<f p* dQ—M*) 4.3)
2 Jq Q

where A > 0 is the Lagrange multiplier associated with the global mass (inequality) constraint.

The stationary of the Lagrange function £ defined above w.r.t the design variable p* is given by:

65—0@16¢|n|— AlQ| ©1=24 (4.4)
p* 20p* Y ' - '
The sensitivity theorem (see e.g. [137]) is applied in the above equation to obtain the relation

between the macro and micro Lagrange multipliers, i.e., g—z

= —A. Note that this relation is iden-
tical to the one obtained back in Section 2.6.2 (see Eq. 2.136).

Now consider inactive the constraints on the volume fraction of the weaker solid (Eq. 4.2c)
and design variables bounds (Egs. 4.2d and 4.2¢), the Lagrange function of the micro problem
(4.2) can be written as:
fﬂi OmnOpq A

£= Cnnv 19|

(4.5)
+ A <f .uk,l(.uk,sz + (1 - Iik,z)P;) d¥ — P;|¥|>
¥

where A is the Lagrange multiplier of the local mass constraint. The stationary of the Lagrange

function ¢ defined above w.r.t both design variables p 1 and py, , is given by:
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a4 CH g Jo, FmnOpq A
-0 | = —A(e2pi + (1= te2)pz) ¥l 4.6
Ok, Oty 1 1] (ur2pi + (1= te2)p3) i (4.6)
9¢ CH o Jo, FmnOpq A
Oli,2 Otk 2 19 (Mk.lpl #k,1pz) k 4.7

Note that the macro stresses o do not depend on the micro density fields because these are fixed

from the macro problem when solving the micro problem.

4.2.2 Sensitivity analysis

Sensitivity analysis must be performed whenever a gradient-based optimizer is used and con-
sists in computing the derivatives of the objective and constraint functions of a given optimization
problem. The hierarchical optimization problem has two coupled optimization problems (macro
and micro), and therefore the sensitivity analysis must be performed for both problems. Table 4.1
shows all the functions and their corresponding derivatives required to solve the hierarchical op-

timization problem.

4.3 Hierarchical algorithmic strategies

This section presents different algorithmic strategies [1] to solve the hierarchical optimization
problem. In Section 4.5.1.1, these algorithmic strategies are tested and compared solving the sin-
gle material version of the hierarchical problem, i.e., only one design variable per FE (p) and
global mass constraint (Eq. 4.1b) are considered. The algorithmic strategies can be divided into

two main categories:

e Type | Strategies: assume the micro design variables as independent ones while the
macro design variables are implicitly computed through the micro design variables

once these are known.

e Type Il Strategies: assume both design variables, the macro and micro, as independ-

ent design variables, each at its respective scale.
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Table 4.1: Objective and constraint functions of the hierarchical problem with the corresponding derivatives.

Macro problem (4.1) Micro Problem (4.2)
F = % d’ do f _ fﬂi Crl;lmpqo-mno'pq in
ET. o | |
D
(@]
a Pi dug,  Ouga | |
2
g df _ C,I;Impq fﬂi OmnOpq in
dlik,z aIik,z | |
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4.3.1 Type | strategy

The Type | Strategy is the simplest way to solve the hierarchical problem. In fact, this algo-
rithmic strategy allows to treat the hierarchical problem in a simplified way, where the minimi-
zation of the global strain energy is done through the micro design variables. The macro design

variables p* are thus obtained by the following relation (single material case):

p* = f¥(llpf + (1 —ppy) d¥ (4.2b)
¥
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Two different optimizers are used here to solve the hierarchical problem using this strategy:

(1) Optimality Criteria (OC) Method and (2) Method of Moving Asymptotes (MMA). These op-
timizers were described back in Section 2.3.2. Depending on the optimizer used, the methodology
to solve the hierarchical problem is different.
The OC method typically use a fix-point type update scheme to update the design variables based
on the optimality conditions, see Eq. (2.65). The flowchart presented in Fig. 4.2 describes the
algorithm developed in Fortran that solves the hierarchical problem using the OC method. The
algorithm starts by generating an initial design equal in each macro subdomain i, i.e., the initial
micro design variables p, that define the microstructure are equal in all macro subdomains. This
leads to equal macro design variables pg in all macro subdomains defined through Eqg. (4.2b).
Since the microstructure is equal in all macro subdomains, the homogenization subroutine only
needs to be called once. The homogenization subroutine provides the initial homogenized stiff-
ness or compliance (E{! or C§!) tensor and its corresponding derivatives w.r.t. the micro design
variables. The algorithm has two main loops. An outer loop that runs the global problem and an
inner loop that runs through the various local problems. The global problem starts by performing
a FE analysis to solve the global equilibrium problem. Then, the global objective function (strain
energy) F and the Lagrange multiplier A are computed. The outer loop runs while the convergence
criterion is not met. Regarding the inner loop, there are as much local problems to solve as the
number of macro design subdomains N;. Each local problem runs the OC method giving updated
values for the micro design variables {p corresponding to the macro subdomain i, which naturally
leads to a new p; value. Afterwards, the homogenization subroutine computes the new homoge-
nized material properties of the microstructure that composes the macro subdomain i, and the
new derivatives.

An alternative optimizer to the OC method to solve the hierarchical problem is the MMA. In
this case, one has a single optimization problem with N, x N; design variables pu, where N is the
total number of micro elements and N; is the total number of macro subdomains. Unlike OC
method, MMA optimizes all design variables at once. The flowchart presented in Fig. 4.3 de-
scribes the algorithm developed in Fortran that solves the hierarchical problem using the MMA.

This algorithm starts by defining the initial design variables (p, and py) and the initial ho-
mogenized stiffness or compliance (Ef' or C}!) tensor along with its derivatives, likewise the al-
gorithm described previously that used OC method. Again, this algorithm has two main loops.
The outer loop runs the macro FE model and MMA. In each outer loop iteration, an inner loop
that goes through all the local problems to find out the new homogenized material properties

tensor and corresponding derivatives is performed.
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Fig. 4.2: Flowchart of the algorithm developed in Fortran to perform the hierarchical optimization
considering a Type | Strategy using OC method.

To conclude, this strategy allows a simple algorithmic implementation to solve the hierarchical
TO problem either using OC method or MMA. The OC method is easy to implement, however it
proves to be only efficient handling just one constraint (material volume fraction or mass) in
single-material compliance minimization problems. Also, this method requires tuning some pa-
rameters, which is a monotonous and time-consuming task. A more versatile and efficient method
to solve optimization problems is MMA. However, using such algorithmic strategy, MMA faces
one high-dimensional optimization problem since all micro design variables are being optimized
at the same time. To speed-up the optimization procedure, a parallel version of MMA could be
used [82,148]. A far more interesting (and complex) approach to solve the hierarchical problem

is to consider the so-called Type Il Strategy, which will be described next.
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Fig. 4.3: Flowchart of the algorithm developed in Fortran to perform the hierarchical optimization
considering a Type | Strategy using MMA.

4.3.2 Type Il strategy

The Type Il Strategy naturally fits the original hierarchical problem formulation, where the
two optimization problems at different scales are solved in a coupled fashion using two separate
optimizers. One can think in several combinations of optimizers to solve the global and local
optimization problems. Here, MMA is used to solve both. This obviously improves the quality of
the final solution, not being so prone to getting stuck in local minima. However, such strategy
greatly increases the complexity of the optimization problem. In fact, there are a few key factors

to consider for this strategy to work smoothly, which will be discussed later in Section 4.4.
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In Fig. 4.4 is shown the flowchart of the algorithm developed in Fortran to solve the hierar-

chical TO problem using a Type Il Strategy with MMA as the optimizer to solve both the global

and local problems. In a similar manner to the algorithms presented previously, this algorithm

starts with an initialization to define the initial design variables (pn, and pg) and the initial ho-

mogenized stiffness or compliance (Ef' or C') tensor along with its derivatives. Two main loops

can be identified in the flowchart. The outer loop optimizes the macrostructure (p*), while the

inner loop optimizes the microstructure (p). Only one MMA iteration is performed in the inner

loop to avoid premature convergence. To speedup computations the inner loop can be conven-

iently parallelized, to solve and optimize different local problems in different CPU cores [133].
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To sum up, this algorithmic strategy is the most promising one due to its ability to efficiently
solve the hierarchical TO problem in its multi-material version considering several constraints.
Despite its undeniable efficiency, this strategy requires some care to obtain a stable convergence
and, therewith, a good optimal solution. Some important key factors and advices to apply when

solving hierarchical TO problems using this algorithmic strategy are given in next section.

4.4 Methodology

The focus of this section is to provide an efficient methodology to solve the hierarchical TO
problem. As mentioned before, the type Il strategy requires some care when implementing and
solving it. Some key factors to improve the algorithm efficiency are provided next.

Firstly, it is advisable to use a variant of MMA called GMMA (see Section 2.3.2.2). Using
GMMA, different functions might have different asymptotes, improving the quality of the ap-
proximating functions. To solve the hierarchical problem stated in (4.1) and (4.2), it is advisable
to have a convex approximation of the compliance function based on moving asymptotes and a
linear approximation of the constraints based on fixed and distant asymptotes. Note that the con-
straints are linear functions w.r.t. each design variable (i.e., bilinear functions), meaning that the
approximation is exact. Actually, this methodology sounds very similar to what CONLIN (an-
other variant of MMA) does. However, the approximation of the compliance function on
CONLIN is not based on moving asymptotes. Instead, the lower and upper asymptotes are fixed
to zero and infinity, respectively. This gives a crude approximation of the compliance function.

In fact, the asymptotes play an important role in the optimization process. Both global and
local optimization problems use GMMA as the optimizer. However, the asymptotes are not built
in the same manner in both problems. In the global problem, the update scheme for the asymptotes
used to approximate the global strain energy follow the original methodology described in Section
2.3.2.2. In each local problem, only one GMMA iteration is performed, which means that the
asymptotes are only computed based on Egs. (2.72) and (2.73). To improve algorithm’s conver-
gence, a continuation approach on the parameter that controls distance between the lower and
upper asymptotes y, (GHINIT in Fortran GMMA) is suggested. This ensures that as the algo-
rithm converges to the optimum, the approximation of the complementary strain energy density
function becomes more conservative and, consequently, more accurate.

Another important issue is the move limits (see Eqgs. 2.70 and 2.71) that control the variation

of the design variables. To obtain stable convergence, it is important to tighten the variation
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bounds of the global design variables, and relax the variation bounds of the local design variables.
This means that the move limits should be closed to each other when solving the global problem,
and distant when solving the local problems. The parameter that controls the distance between
the move limits is the so-called ALBEFA in Fortran GMMA. A high ALBEFA value means tight
move limits and vice-versa.

A continuation approach applied to the penalization exponents in the material interpolation
scheme has been proved to be an efficient method to improve the quality of the optimal solution.
Also, a filtering technique (sensitivity or density filter) is required to solve the local problems.
The global problem does not require a filtering technique.

Parallel computing can be conveniently applied when solving large-scale problems. For in-
stance, solving the hierarchical problem using an Element-by-Element parametrization on the
macro design implies solving as many local problems as the total number of macro elements.
Even for coarse mesh discretizations, thousands of local problems need to be solved. Since the
local problems are independent from each other, these can be tackled in different processors. Both
MPI and OpenMP are suitable to parallelize the code in Fortran language. The hardware used in
this work is a Workstation HP Z8 G4 (shared-memory machine), and therefore OpenMP is used

to parallelize the code.

4.5 Results: Multiscale Topology Optimization

This section presents the obtained results for the multiscale topology optimizations solved.
The hierarchical TO problem is solved for single material (Section 4.5.1) and multi-material (Sec-
tion 4.5.2). Both versions are solved assuming two different micro design parametrizations: (1)
Element-by-Element and (2) Layer-by-Layer. An Element-by-Element parametrization assumes
that to each macro FE exists a set of micro design variables that define the microstructure. This
approximates a pointwise optimal material definition, thus leading to very efficient designs but
of problematic manufacturability. To improve manufacturability, the Layer-by-Layer parametri-
zation can be used. This parametrization assumes a uniform micro design within each subdomain
Q; characterized by two symmetric layers (see Fig. 4.1). Now, instead of having a set of micro
design variables per FE, one has a set of micro design variables per subdomain, thus significantly
reducing the total number of micro design variables.

The different algorithmic strategies presented in Section 4.3 are tested out within the frame of

single material hierarchical TO using a Layer-by-Layer design parametrization. This study helps
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to understand the most effective strategy to subsequently solve high-dimensional (Element-by-
Element parametrization) and more complex problems (multi-material).

As in the previous Chapter, Steel and Aluminum are used here as solid material phases, where
the ratios of their properties (E/Esteer and p*/psieer) are used instead of their absolute values,
see Table 3.2. The single-material results are obtained using only steel.

The ultimate goal of this work is to see whether multi-material TO applied to multi-scale
structures is able to improve the global stiffness of the structure compared to single-material TO.
The idea is to solve the single-material version of the hierarchical problem formulated in (4.1)
and (4.2) with a given mass threshold M*. The value for M* must be chosen with care. Small
values for M* tend to create discontinuous designs, while high values for M* might compromise
stiffness gains through multi-material design. A good reference value for M* requires calculating
the total mass of the structure, composed only by the stiffest material, assuming a material volume
fraction of 30%. This gives room for multi-material design to improve the stiffness of single-
material continuous designs. In fact, with multi-material design is possible to obtain continuous
structures that would be impossible to obtain using only one material with lower volume fractions.

The hierarchical TO problem is computational expensive by nature since several microstruc-
tural optimizations are performed in a single iteration of the macrostructural optimization. There-
fore, both macro and micro models must have a modest mesh discretization, otherwise high com-
putational times would prevent obtaining results in a timely manner. The macro model is the
classical example of a cantilever beam with dimensions 1 x 0.2, discretized in a 50 x 20 mesh.
The micro model (homogenization) considers a unitary square mesh using a discretization of
40 x 40.

This section is structured as follows. Firstly, one addresses single-material hierarchical TO in
Section 4.5.1 performing a Layer-by-Layer parametrization (Section 4.5.1.1) and an Element-by-
Element parametrization (Section 4.5.1.2). Then, multi-material hierarchical TO is performed in
Section 4.5.2 for both Layer-by-Layer parametrization (Section 4.5.2.1) and Element-by-Element
parametrization (Section 4.5.2.2).

4.5.1 Single-material hierarchical TO

As mentioned before, this section presents results obtained solving the hierarchical TO prob-
lem in its single-material version using two different design parametrizations (Layer-by-Layer
and Element-by-Element). Next, one benefits from the reduced computational time of the Layer-

by-Layer parameterization to compare different algorithmic strategies.
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4.5.1.1 Layer-by-Layer

Here one solves the single-material hierarchical problem using three different approaches: (1)
Type | Strategy using OC, (2) Type | Strategy using GMMA and (3) Type Il Strategy using
GMMA. Solving the hierarchical problem with these approaches one aims to compare them and
validate the algorithm developed. All approaches are solved using the sensitivity filter, while the
third approach also uses the density filter for comparison purposes.

The results for the three different approaches are shown in Fig. 4.5, Fig. 4.7 and Fig. 4.9. The
optimization histories are shown right below the results in Fig. 4.6, Fig. 4.8 and Fig. 4.10. Fig.
4.11 and Fig. 4.12 shown the results obtained using density filter and the optimization history,
respectively. The results are organized in the following way. Since the macro design is symmetric,
the mass density distribution (p*) is shown on the upper half of the beam, while the corresponding
stress distribution is shown on the lower half. Each layer of the macrostructure is characterized
by having a microstructure, which is also shown for the different layers. A stress analysis is also
performed on the microscale. One chooses the most stressed macro elements in different layers

to see the corresponding stress distribution in the microstructure.
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Element 1

o [MPa] 287
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_—
o0 [MPa] 543

o [MPa] 679

Fig. 4.5: Results obtained solving the single-material hierarchical problem using the
Type | Strategy with OC.
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Fig. 4.6: Optimization history of the Type | Strategy with OC. Total strain energy and
global mass constraint violation are shown upside. Mass density values for the differ-
ent layers throughout the optimization are shown downside.
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Fig. 4.7: Results obtained solving the single-material hierarchical problem using the
Type | Strategy with GMMA.
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Fig. 4.8: Optimization history of the Type | Strategy with GMMA. Total strain energy
and global mass constraint violation are shown upside. Mass density values for the
different layers throughout the optimization are shown downside.
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Fig. 4.9: Results obtained solving the single-material hierarchical problem using the
Type Il Strategy with GMMA. Sensitivity filtering technique is used here.
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Fig. 4.10: Optimization history of the Type Il Strategy with GMMA using sensitivity
filter: (a) Total strain energy and global mass constraint violation; (b) Mass density

values; and (c) Lagrange multiplier values.
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Fig. 4.11: Results obtained solving the single-material hierarchical problem using the

Type Il Strategy with GMMA.. Density filtering technique is used here.
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Fig. 4.12: Optimization history of the Type Il Strategy with GMMA using density
filter: (a) Total strain energy and global mass constraint violation; (b) Mass density
values; and (c) Lagrange multiplier values.

The single-material hierarchical problem was solved using different algorithmic strategies and
filtering techniques, where optimal solutions with similar total strain energy values were found
(see Table 4.2). Thus, it can be stated that all different approaches manage to solve the problem.
Nevertheless, it is appropriate to perform a comparative analysis among the different approaches
used. The Type | Strategy using OC is the simplest approach to solve the single-material hierar-
chical problem, as previously mentioned. The OC method is straightforward to implement, but
the most challenging part is tuning its parameters. This can be a time-consuming task, discourag-
ing the use of this method. Besides, this method is characterized by an unstable convergence (see
Fig. 4.6) and its efficiency can be questioned when dealing with several constraints. Alternatively,
GMMA can be used to solve the hierarchical problem using a Type | Strategy. This robust opti-
mizer is suitable to solve optimization problems with high number of design variables and
low/moderate number of constraints. The convergence is now much smoother compared to OC
(see Fig. 4.8). Since GMMA optimizes all micro design variables at the same time, the various
local design problems cannot be tackled on different processors (coarse-grain parallelism). Only

fine-grain parallelism can be applied in this case (e.g., to GMMA). However, this is not ideal
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from a computational efficiency point of view. A coarse-grain parallelism is preferable over a
fine-grain parallelism whenever it is possible. With this in mind, the Type 1l Strategy is the most
promising approach to solve the hierarchical problem. When using this strategy, the optimality
condition (4.4) must be verified in the optimum (see Figs. 4.10c and 4.12c). Both the sensitivity
filter and density filter were tested out using this strategy. The density filter tends to optimal
designs with increased strain energy (see Table 4.2). In Fig. 4.123, the total strain energy does not
monotonously decrease due to the continuation approach applied to the penalization exponent p
in the SIMP law during the first 50 iterations. In fact, such continuation approach proved to be
beneficial whenever the density filter is used. Using the density filter, one can explore different

objective functions beyond compliance (out of the scope of this work).

Table 4.2: Total strain energy values obtained using different algorithmic strategies
and filtering techniques. SF means Sensitivity Filter and DF means Density Filter.

Type | Strategy  Type | Strategy ~ Type |l Strategy Type Il Strategy
(0C) (GMMA) (GMMA - SF) (GMMA - DF)
Total Strain
285.93 283.50 288.60 312.73
Energy [J]

4.5.1.2 Element-by-Element

This section presents the obtained results solving the single-material hierarchical problem us-
ing the Type Il Strategy, the sensitivity filter and an Element-by-Element parametrization. In Fig.
4.13 one shows the mass density distribution (p*), where now each macro element can have a
different mass density and consequently a different microstructure. Representing all microstruc-
tures would be cumbersome, so only a few are shown here. Stress plots are provided as well for
both macro and micro scales. Symmetry is not enforced when solving the optimization problem.
Fig. 4.14 shows the optimization history.

An Element-by-Element parametrization naturally has greater design freedom, achieving de-
signs with better performance (greater stiffness) compared to the Layer-by-Layer parametrization.
The strain energy value obtained here is 223.32 J, which represents a decrease of 22.6% compared
to the optimal solution obtained using a Layer-by-Layer parametrization. However, some micro-
structures lost the material connectivity. This is the major drawback of this parametrization and

must be conveniently addressed in the future.
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Fig. 4.13: Results obtained solving the single-material hierarchical problem using an

Element-by-Element parametrization.
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Fig. 4.14: Optimization history of the single-material hierarchical problem using an
Element-by-Element parametrization: (a) Total strain energy and global mass con-
straint violation; (b) Mass density values; and (c) Lagrange multiplier values.
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4.5.2 Multi-Material Hierarchical TO

The objective of this section is to support the premise that structures composed of more than
one solid material perform better than single-material structures. In this case, one aims to improve
the global stiffness of a structure with a given mass threshold by designing its microstructure
using two different solid materials (Steel and Aluminum, see material properties in Table 3.2).
The color scheme used to plot the material properties distribution E, follows the one used in

Chapter 3, i.e., the red corresponds to steel, the green to aluminum and the blue to void.

4.5.2.1 Layer-by-Layer

Here one solves the multi-material hierarchical TO problem formulated in (4.1) and (4.2).
Once again, both types of algorithmic strategies can be used to solve this problem. For brevity,
only results obtained using a Type Il Strategy and two filtering techniques are presented. The
results obtained here are to be compared with the single-material ones to see if improvements are
achieved. Fig. 4.15 and Fig. 4.17 show the optimal multi-material solutions using the sensitivity
filter and density filter, respectively. The corresponding optimization histories are right bellow in
Fig. 4.16 and Fig. 4.18. Table 4.3 shows the total strain energy values for the multi-material so-
lutions and the decrease § in these values compared to the single-material solutions with the cor-

responding filtering technique.

Table 4.3: A comparison between the total strain energy values obtained for multi-
material and single-material using different filtering techniques.

Multi-Material (SF) Multi-Material (DF)

Total Strain Energy [J] 234.43 255.10

8 [%] -19 119

Performing hierarchical multi-material TO one discovers designs with increased performance
compared to the single-material ones. An increase on material’s stiffness of approximately 20%
is achieved by considering multi-material design. Even further gains could be achieved for lower
mass thresholds. Besides the increased stiffness of multi-material designs, they are less stressed

than their single-material counterparts, meaning stronger designs as well.
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Fig. 4.15: Results obtained solving the multi-material hierarchical problem using the Type Il Strategy with GMMA.

Sensitivity filtering technique is used here.
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Fig. 4.17: Results obtained solving the multi-material hierarchical problem using the Type Il Strategy with GMMA.
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4.5.2.2 Element-by-Element

Here one solves the multi-material hierarchical problem using an Element-by-Element para-
metrization. The optimal designs are shown in Fig. 4.19, where the total strain energy value is
193.78 J. Comparing this value with the one obtained solving the single-material version of the
problem, an increase of 13% in the overall structure’s stiffness is achieved by considering multi-
material-design. Less stressed microstructures are typically obtained by performing multi-mate-

rial design, despite here the maximum macro stress value is actually greater.

Element 853 Element 805 Element 759

Element 549

Element 951

|
[MPa]

E:q
1.94 [MPa] 566

Element 853 Element 759 Element 549

.

. 1 -
095 [MPa] 255 o [MPa] 354 o [MPa] gg7 o [MPa] 122

Fig. 4.19: Results obtained solving the single-material hierarchical problem using an
Element-by-Element parametrization.
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Fig. 4.20: Optimization history of the multi-material hierarchical problem using an Element-by-Ele-
ment parametrization: (a) Total strain energy and global mass constraint violation; (b) Mass density
values; and (c) Lagrange multiplier values.

4.6 Conclusions: Multi-Scale Topology Optimization

Multiscale topology optimization is an interesting, challenging, and quite active research the-
matic. This part of the work contributes to the state-of-art of this thematic by successfully per-
forming multi-scale TO considering multi-material design in the microscale aiming for improved
overall structure’s stiffness. The hierarchical optimization problem solved here considers the
compliance minimization subject to mass constraint.

Two different macro design parametrizations are used and compared within the scope of this
part of the work. On one hand, an Element-by-Element parametrization of the macro domain is
considered. In this case, to each macro FE is associated a periodic material/microstructure that
needs to be locally optimized. Therefore, there are as many local problems to solve as macro
elements. This parametrization offers the possibility of optimizing the material domain of a struc-
ture in a pointwise manner, at the expense of poor manufacturability and high computational cost.
On the other hand, one also considers a Layer-by-Layer parametrization that divides the macro
domain into several subdomains, each one composed of a pair of symmetric layers. This para-

metrization delivers optimal designs with decent manufacturability at reduced computational cost
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but with worst performance when compared to the ones obtained using an Element-by-Element
parametrization.

The hierarchical problem can be solved using two different algorithmic strategies, the so-
called Type I and Il Strategies. Both strategies managed to solve the problem, where different
solutions but with similar performance were obtained. The Type Il Strategy is the most promising
technique to solve the problem when more elements and constraints are considered.

Multi-material design undoubtedly offers the possibility to improve structural performance.
This was proved back in Chapter 3 for single scale (microscale) problems for stiffness and stress.
In this chapter, the overall stiffness of a multi-scale structure composed of two different solid
materials is improved compared to the single-material structure for the same mass. The minimum
compliance problem solved in its multi-material version tends to less stressed designs, which is
in agreement with what was said back in Chapter 3. Exception made for the results obtained using
an Element-by-Element parametrization. In fact, solving the multi-material hierarchical problem
for compliance minimization does not guarantee a lower stress peak on the structure. The only
way to assure this is to control the stresses through design constraints, which is an interesting path
for future works. However, performing a stress-based multiscale optimization is not straightfor-
ward. Besides, the issue related with non-defined Lagrange multipliers using a Type 1l strategy
when the micro design variables touch their bounds must be correctly handled to avoid irregular-

ities in the stress field that might compromise the optimization procedure.
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STATE OF THE ART: LONGITUDINAL
FRACTURE OF HYBRID COMPOSITES

So far, the focus of this work was on modelling and optimizing composite materials aiming
for stress and compliance reduction. In Chapter 3, a microstructural stress-based topology opti-
mization was carried out, achieving optimal microstructures with minimal stress values. In that
study, exceeding the yield strength (failure) of the material was disregarded. Undoubtedly, this is
a rather important aspect when designing a composite structure. Now, such consideration is stud-
ied within the frame of unidirectional (UD) fibre-reinforced composites. This second part of the
dissertation consists in modelling the fracture of UD composites, which are characterized by hav-
ing a brittle failure, and optimize its non-linear behaviour in order to have a more safe and con-
trolled failure by means of introducing a so-called pseudo-ductile behaviour.

This chapter begins with a brief introduction to the mechanisms of longitudinal fracture of UD
composites. Multi-material design of UD composites, by means of fibre hybridization, aiming for

a pseudo-ductile behaviour is then discussed.

5.1 Mechanisms of longitudinal fracture

Modelling composite materials is a challenging task due to the complexity of its internal struc-
ture and interactions between constituents (interface fibre/matrix). The mechanisms of longitudi-
nal failure of UD composites under longitudinal loadings are based on two essential aspects: (1)

fibres do not have a deterministic value for tensile strength [156] and (2), after a fibre fractures,
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the stress is redistributed among the intact fibres in a complex way [157]. The failure of UD
composites occurs in the following way: as one increases the applied strain, the weakest fibres
fail, meaning that, locally, they are no longer able to carry stress. At low applied strains the fibres
fail in random locations and there is nearly no interaction between breaks. Once a fibre fractures,
the matrix is loaded and it transfers the load back to the broken fibre, making it able to carry stress
away from the point of fracture. The stress is redistributed to the remaining intact fibres by the
matrix, which leads to stress concentrations in the intact fibres, increasing their probability of
failure. The stress concentration in the intact fibres will cause their failure leading to the creation
of clusters of broken fibres. These clusters will grow, when other fibres fail and, when a cluster
reaches a certain critical size, it will propagate unstably leading to the failure of the composite.
Therefore, the tensile strength of a UD composite is of statistical nature and function of the me-
chanics of load redistribution around broken fibres [158]. In Fig. 5.1 is shown this process, help-

ing to understand the failure of UD composites.
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Fig. 5.1: Schematic representation of the failure development in unidirectional non-hybrid composites: (a) all fibres
intact, (b) one broken fibre, with the surrounding fibres subjected to stress concentrations, (c) development of a bro-
ken fibre cluster, and (d) crack propagation and final failure. Retrieved from [159].

As previously mentioned, fibres do not have a single and deterministic value for tensile
strength. Due to their brittle behaviour the fibre tensile strength is governed by surface or volume

flaws [156] and exhibits weak-link characteristics. There are several statistical distributions that



Chapter 5 - State of the art: Longitudinal facture of hybrid composites 125