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Abstract In a system of regression models, finding a feasible shrinkage is demanding since the covariance
structure is unknown and cannot be ignored. On the other hand, specifying sub-space restrictions for adequate
shrinkage is vital. This study proposes feasible shrinkage estimation strategies where the sub-space restriction
is obtained from LASSO. Therefore, some feasible LASSO-based Stein-type estimators are introduced, and their
asymptotic performance is studied. Extensive Monte Carlo simulation and a real-data experiment support the
superior performance of the proposed estimators compared to the feasible generalized least-squared estimator.
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1. Introduction

A multiple linear regression model’s goal is to describe the behavior of a given research variable (say,
response) in terms of a group of explanatory variables. In addition, it is reasonable that more than one
multiple regression equation must be utilized for real-life problems. Likewise, each equation may explain a
different economic phenomenon in a set of individual linear multiple regression equations. For example, in
a country with 20 states where the economic goal is to determine the country’s consumption pattern, each
state has to be attributed with a specific consumption equation, which ultimately makes 20 consumption
functions. The question of interest is the formulation of different multiple regression equations and the
associated mathematical challenges.

The possible approach is to consider a set of simultaneous equations models associated with each other.
It entails another possibility where none of the system’s dependent variables are explanatory in different
equations. However, interactions between the separate equations may still exist if at least some random
error components associated with the various equations are correlated. Because of the joint relation of
the distribution of error terms and the non-diagonal covariance matrix, these equations can be linked
statistically but not structurally. The “seemingly unrelated regression equations” (SUR)[43] model shows
this type of behavior, while the individual equations may not appear to be linked to one another at first
glance. For more information about the linear SUR model, the reader may refer to Srivastava and Jiles
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[38]. Thus, a system regression is used to solve linear models that appear unrelated but are related. It
may seem pointless at first since they could be solved separately. However, there may be correlations
between error terms that can be used to improve estimates.

It may not be necessary to include the same variables in all models; variables in each equation may be
different. While the equations appear distinct, there may still be some relationship between them. Such
simultaneous equations can determine the jointness of the distribution of the disturbances. Likewise,
demand equations are frequently specified in-demand studies to explain household-level consumption for
several commodities. The correlation between the equation disturbances could be due to various factors,
including correlated shocks to household income [5].

Now, consider the M -system of regression models given by

y = Xβ + ε, (1)

where y = (y⊤
1 , . . . ,y

⊤
M )⊤, X = Diag(X1,X2, . . . ,XM), β = (β1, . . . ,βM )⊤, and ε = (ε1, . . . , εM )⊤, in

which yk = (yk.1, . . . , yk.nk
)⊤ is an nk-dimensional vector of dependents variables. For the number

of observations, nk and the number of parameters, pk, Xk = (Xk.ij), i = 1, . . . , nk; j = 1, . . . , pk is the
matrix of explanatory variables. Finally, βk = (βk.1, . . . , βk.pk

)⊤ is a pk-dimensional vector of unknown
parameters, and εk = (εk.1, . . . , εk.nk

)⊤ is an nk-dimensional vector of errors in the kth equation, with
k = 1, . . . ,M .

Suppose that n∗ =
M∑
k=1

nk and p =
M∑
k=1

pi. As a result, y ∼ n∗ × 1, X ∼ n∗ × p, β ∼ p× 1, and ε ∼ n∗ × 1

are all easily found. Sometimes in practical situations, the number of observations in all equations is the
same, i.e., ∀k, nk = n, in this case n∗ = nM . We avoid confusing the reader throughout the paper by
using multiple notations with different subscripts. Thus, variables read as y ∼ nM × 1, X ∼ nM × p, and
ε ∼ nM × 1. Although it is preferable to use the notations yn, Xn, and εn rather than y, X, and ε, we
disregard it due to a misunderstanding of notations.

For the stacked errors, considering the interactions between the M equations, we shall assume: (i)
lim
n→∞

1
nX

⊤
i Xj = Cij , where Cij is a non-singular matrix with fixed and finite components, (ii) The

nM × nM covariance matrix is composed of n2 blocks of M2-blocks of the form E(εiεj) = σ2
ijIn where σ2

ij

is the covariance between the disturbances of ith and jth equations for each observation in the sample.
More succinctly, E(ε) = 0, and E[εkε

⊤
k ] = Σ⊗ In = Ω where ⊗ is the Kronecker product. The matrix

Ω is of dimension nM × nM , and Σ = (σ2
ij) is an unstructured positive definite symmetric matrix of

dimension M ×M . Thus, there are no linear relationships between the contemporaneous disturbances in
the M equations of the model.

The structure of Ω implies that n errors in each of the M equations have zero mean, equal variance,
and are uncorrelated, i.e., E [εk.iεk.j ] = 0 for all i, j = 1, . . . , n. The covariance between contemporaneous
errors for a pair of equations are potentially nonzero but equal, while non-contemporaneous/intertemporal
covariance are all zero, i.e.,

E [εi.tεj.s] = 0, E [εi.tεj.t] = σ2
ij ∀t, s = 1, . . . , n; ∀i, j = 1, . . . ,M.

Although the terms “contemporaneous” and “intertemporal” covariance imply that data are available
in time-series form, this is not required. Also, it is helpful for cross-sectional data. The homoskedastic
disturbances in a single equation model are natural generalizations of contemporaneous covariance.

In situations where we are provided with some prior information in the form of a system of equations
on β, it is well-known that incorporating such information in estimation will improve the results. See
Saleh [30] Saleh et al. [27, 29]. However, it is also challenging to integrate such information into the
estimation. In this paper, the shrinkage estimation strategy attempts to incorporate general uncertain
prior information (here, Hβ = h) into the estimation process, where we use the least absolute shrinkage
and selection operator (LASSO) of Tibshirani [40] for eliciting the prior information. We consider three
critical members of this family: (1) the preliminary test estimator (PTE), (2) the Stein-type estimator
(STE), and (3) the positive-part Stein-type estimator (PRSTE).
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Many researchers have looked into these types of β estimations in different models. Saleh [30] is one of
the references. The interested readers are referred to Kleyn et al. [14] for economy; to Saleh and Norouzirad
[32] for non-orthogonal regression models, to Norouzirad et al. [21, 23], Norouzirad and Arashi [19, 20],
Saleh et al. [28, 31] for robust models; to Arashi et al. [7], Norouzirad et al. [22] for partially linear models;
to Roozbeh[24], Arashi and Roozbeh [6] for semi-parametric model, to NooriAsl et al. [18] for Poisson
regression model; to Zandi et al. [42] for different types of mixed models; to Mandal et al.[16] Mahmoudi et
al. [15] for gamma regression models; to Kashani [13] for fuzzy regression models; to Safariyan et al.[25, 26]
for estimating of stress-strength reliability based on ranked set sampling; to Arashi and Tabatabaey [8],
Arashi et al. [3, 4] for multivariate elliptic models; and etc.

The rest of this paper is organized as follows. The feasible generalized least squares estimator is reviewed
in Section 2. In Section 3, the shrinkage estimators are introduced. Section 4 focuses on the properties of
different estimators, which are investigated through the asymptotic. A numerical study including a Monte
Carlo simulation and Fringe dataset for investigating the performance of estimators is given in Section 5.
Some conclusive remarks are presented in section 6.

2. Feasible Generalized Least Squares

Because there are no simultaneous variables in the system, each equation has its explanatory variables
to explain the response. The M equations appear to be unrelated. The model’s equations are linked
stochastically via the serial correlation of disturbances across the model’s equations. As a result, the SUR
model is the name given to this system.

Each of the M equations is assumed to satisfy the linear regression model’s classical assumptions and
can be estimated separately. Naturally, this method ignores the correlation between the errors of different
equations, which can be utilized by joint estimation. Zellner [43] introduced a generalized least squares
(GLS) estimator for estimating the coefficients of a set of SUR models as follows:

β̂GLS =
[
X⊤Ω−1X

]−1
X⊤Ω−1y, (2)

where Ω−1 = Σ−1 ⊗ In. E[β̂GLS] = β in this case, and Var(β̂GLS) =
(
X⊤Ω−1X

)−1.
Assuming D = (X⊤X)−1X⊤ −

(
X⊤Ω−1X

)−1
X⊤Ω⊤, by the positive definiteness of Ω, Var(β̂LS)−

Var(β̂GLS) = DΩD⊤ is at least a positive semi-definite matrix where β̂LS = (X⊤X)−1X⊤y. Thus, for
estimating β, the GLS estimator is more efficient than the ordinary least squares estimator. See Fiebig
[9], Srivastava and Dwivedi [37], Srivastava and Jiles [38] for a succinct review of the literature in this
field.

However, since Σ is unknown, the estimator in (2) is not practical. The feasible generalized least
squares (FGLS) estimators are investigated by substituting a consistent estimator (say, S) of Σ in Eq.
(2). Therefore, the FGLS estimator of β is obtained from

β̂FGLS =
[
X⊤Ω̂−1X

]−1

XΩ̂−1y. (3)

where Ω̂ = S−1 ⊗ In. Assume S = (s2ij) is a non-singular matrix and s2ij is an estimator for σ2
ij .

Due to Shalabh [35], there are two possible methods for estimating σ2
ij :

(1) Consider Z = (X1

...X2

... . . .
...XM ) as an aggregated matrix with dimension n× p, where p =

M∑
i=1

pi. if

we regress each of the M response on the columns of the Z, we get an n× 1 residual vectors with
the formula ε̂k = P̄Zyk, for k = 1, . . . ,M where P̄Z = In −Z(Z⊤Z)−1Z⊤. As a result, s2ij = 1

n ε̂iε̂j =
1
ny

⊤
i P̄Zyj . It is simple to demonstrate that n

n−ps
2
ij is an unbiased estimator for σ2

ij .
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(2) Regress each equation, i.e, regress yk on Xk using the OLS method for k = 1, . . . ,M , and find the
residual vector as ε̃k = H̄Xyk where H̄X = In −Xk(X

⊤
k Xk)

−1X⊤
k . A consistent estimator of σ2

ij is
obtained by s∗

2

ij = 1
n ε̃iε̃j =

1
ny

⊤
i H̄Xi

H̄Xj
yj . Thus, to find an unbiased estimate of σ2

ij based on s∗
2

ij ,
replace n with tr(H̄Xi

H̄Xj
) = n− pi − pj + tr((X⊤

i Xi)
−1X⊤

i Xj(X
⊤
j Xj)

−1X⊤
j Xi.

Several approaches have been proposed to improve the FGLS estimator. Using extraneous or prior
information can help estimators improve. In applied research, prior information about the regression
coefficients may be available. According to the constant returns to scale in economics, the exponents in a
Cobb-Douglas production function should sum to one for the function to be considered valid. In another
example, consumers’ lack of belief in the existence of money implies that the sum of money income and
the price elasticized in a demand function should be zero. It is possible to obtain information about
these constraints or prior knowledge from theoretical considerations, the experimenter’s prior experience,
empirical research, outside sources, etc.

Assume that the prior information that binds the regression coefficients is available from some
extraneous source and can be expressed in the form of exact linear constraints as follows:

Hβ = h,

when H is a known q × p matrix of rank q (< p) and h is a q-vector of known constants.
Sengupta and Jammalamadaka [34] argue that the restrictions may be (a) a fact known from theoretical

or experimental considerations, (b) a hypothesis that may have to be tested, or (c) an artificially imposed
condition to reduce or eliminate redundancy in the description of the model.

Assume the true regression parameter vector β can be partitioned as β = (β⊤
1 ,β

⊤
2 )

⊤ where β1 and
β2 = 0 are of order p1 and p2, respectively with p1 + p2 = p. We can select the important variables per
equations in the SUR model using LASSO. Let βi = (β⊤

i1,β
⊤
i2)

⊤; we can write β1 = (β11, . . . ,βM1)
⊤ ∼

p1 × 1 and β2 = (β12, . . . ,βM2)
⊤ ∼ p2 × 1. Thus, the LASSO will define a sub-model that only has β1 and

β2 = 0. Following these considerations, this partition is a special case of a restriction, Hβ = h in case of
H = [0 I] and h = 0 where 0 is p2 × p1 matrix of zeros and I is the identity matrix of order p2 × p2.
Here, the dimension of H, q is equal to p2.

Using both sample data and prior information simultaneously with the restricted least squares
estimation method is possible. This method selects β such that the error sum of squares is minimized
subject to Hβ = h. This hypothesis is compared with the one in Arashi and Roozbeh [5].

The restricted FGLS (RFGLS) estimator can be found by

β̂RFGLS = β̂FGLS −
(
X⊤Ω̂−1X

)−1

H⊤
(
H(X⊤Ω̂−1X)−1H⊤

)−1 (
Hβ̂FGLS − h

)
. (4)

Let us define G1
n = (X⊤Ω̂−1X)−1 and G2

n = (HG1
nH

⊤)−1. It is worth noting that G1
n is a positive

definite matrix and the FGLS estimator’s variance-covariance matrix. Now, we can rewrite the equations
(3) and (4) as

β̂FGLS = G1
nX

⊤Ω̂−1y, (5)

β̂RFGLS = β̂FGLS −G1
nH

⊤G2
n

(
Hβ̂FGLS − h

)
. (6)

Because Hβ ̸= h in this case, the FGLS estimator does not follow the restriction Hβ = h and thus does
not use the prior information; so, it is known as an unrestricted FGLS estimator (UFGLSE). As a result,
the question is how to use the information from the samples with prior knowledge to produce an improved
estimator of β. We propose utilizing the shrinkage approach for SUR models to answer this question.

Shrinkage estimation has established itself as an essential technique for data modeling, attempting to
attract the interest of academics and practitioners in a wide range of fields. This estimation technique
enables the combination of data from different sources. Zellner and Vandaele [44] proposed shrinkage
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estimations in SUR, which extends the results of James and Stein [11] and Sclove [33] to multivariate
regression equations and gives a technique for creating an estimate whose risk is less than the risk of the
GLS estimator. However, the resulting estimator is not practical because it depends on unknown matrices.
Srivastava [36] investigates the estimator’s properties when these unknown matrices are replaced with
consistent estimators.

Srivastava and Wan [39] proposed the following formula for a general Stein-rule estimator of β:

β̃SW =

[
1−

(
h

2n− p+ 2

)
(y −Xβ̂FGLS)⊤Ω̂−1(y −Xβ̂FGLS)

β̂FGLS⊤X⊤Ω̂−1Xβ̂FGLS⊤

]
β̂FGLS, (7)

where h is a positive non-stochastic shrinkage factor characterizing the estimator.
Mehrabani and Ullah [17] consider a Stein-type shrinkage as an averaging estimator, which is a weighted

average of the unrestricted GLS and the restricted GLS under the constraint β1 = β2 = . . . = βk = β. The
weight has an inverse relationship with a weighted quadratic loss function, which quantifies the weighted
difference between the unrestricted and restricted GLS estimators. They defined the average estimator
as β̂A = (1− τ

D )β̂ + τ
D β̃ where D = (β̂ − β̃)⊤W (β̂ − β̃) is a quadratic loss function with W , an arbitrary

symmetric positive definite weight matrix, and τ , a positive characterizing parameter.
Yuzbasi and Ahmed [41] assumed that each equation’s vector regression coefficient in a SUR model

has two parts: one for the main effects and another for the nuisance effects, which may be close to
zero. Thus, each equation was subjected to two competing models: one that included all coefficient
regressions (full model) and another that included only the coefficients of the main effects based on the
auxiliary information (sub-model). Considering explanatory variables are affected by multicollinearity,
they proposed restricted (or sub-model) ridge, preliminary, and shrinkage SUR regression estimations to
improve the full model ridge SUR regression [1].

3. Shrinking towards the prior information

Under the assumption that the model has been correctly specified, it is common practice to conduct a
statistical model on a sample of data. Some estimators (e.g. OLS, maximum likelihood, Bayesian, …) have
been used for the purposes of estimation and drawing statistical inferences from the sample. Sometimes
non-sample information provides prior information or constraints. For efficient estimation, it is important
to incorporate and use such prior knowledge, provided it is correct. As a result, the suitability of the
estimator depends on the accuracy of the underlying assumptions. To remove the uncertainty in the null
hypothesis, Ho : Hβ = h, the Wald test is used. It is defined by

W =
1

n

(
Hβ̂FGLS − h

)⊤
G2

n

(
Hβ̂FGLS − h

)
. (8)

Under the null hypothesis, W has a χ2 distribution with q degree of freedom (d.f.) [10, p. 347].

3.1. Shrinkage estimators
From now on, let us use the notations β̃ and β̂ instead of β̂FGLS and β̂RFGLS to avoid confusion in the
notations of the following introduced estimators.

The family of shrinkage estimators of β is given by

β̂Shrinkage = g(W)β̂ + (1− g(W))β̃ = β̃ − g(W)(β̃ − β̂). (9)

where W is the test-statistic for testing the null hypothesis, and g(W) is a non-decreasing function of W.
In this study, g(W) is limited to the following functions:
(i) g(W) = 0, then β̂Shrinkage = β̃ = β̂FGLS, the unrestricted FGLS estimator (or briefly, FGLS

estimator).
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(ii) g(W) = 1, then β̂Shrinkage = β̂ = β̂RFGLS, the restricted FGLS estimator (or briefly, restricted
estimator).

(iii) g(W) = I(W ≤ χ2
q,α), then β̂Shrinkage = β̂PT(α), the preliminary test FGLS (PTFGLS) estimator (or

briefly, preliminary test estimator).
(iv) g(W) = (q − 2)W−1, then β̂Shrinkage = β̂S, the Stein-type shrinkage FGLS (SFGLS) estimator (or

briefly, Stein-type estimator).
(iv) g(W) = (q − 2)W−1 +

(
1− (q − 2)W−1

)
I(W ≤ (q − 2)), then β̂Shrinkage = β̂S+, the positive part

Stein-type shrinkage FGLS (PRSFGLS) estimator (or briefly, positive rule estimator).

To avoid confusion, Table 1 summarizes the shrinkage estimators.

Table 1. The shrinkage family member’s

g(W) Notation Name Abbr. A.K.A.
0 β̃ = β̂FGLS Unrestricted FGLS UFGLS FGLS
1 β̂ = β̂RFGLS Restricted FGLS RFGLE Restricted
I(W ≤ χ2

q,α) β̂PT Preliminary test FGLS PTFGLS Preliminary test
(q − 2)W−1 β̂S Stein-type shrinkage FGLS SFGLS Stein-type
(q − 2)W−1 +

(
1− (q − 2)W−1

)
I(W ≤ (q − 2)) β̂S+ Positive part Stein-type shrinkage FGLS PRSFGLS Positive rule

3.1.1. Preliminary test estimation When the true sampling model’s content is unknown, the current
statistical model can be determined by a preliminary test of hypothesis using the available sample data.
These procedures are carried out in two stages and are based on a hypothesis test that establishes a rule
for selecting between two estimators: (1) based on sample data and (2) consistent with the hypothesis.
This necessitates the conduct of a compatibility test between the FGLS estimator purely based on sample
information and the restricted estimator based on the linear hypothesis. Depending on the outcome, one
can choose an estimator. Thus, the FGLS or restricted estimator can be selected. This procedure is called
the preliminary test FGLS estimate of β and is defined as

β̂PT = β̃ −
(
β̃ − β̂

)
I
(
W ≤ χ2

q,α

)
, (10)

where χ2
q,α denotes (1− α)th quantile of a χ2

q variable such that 100(1− α)% area under the curve of the
χ2 distribution is to the left of the χ2 distribution with q d.f., χ2

q,α, for large n.
If Ho is accepted at level α of significance, the prior information is correct, so the restricted FGLS

estimator is better than FGLS estimation; the preliminary test estimation improves the estimation
procedure. On the other hand, if Ho is rejected at the α significance level, we conclude that the FGLS
estimator is superior to the restricted estimator.

3.1.2. Stein-type shrinkage estimator It is worth noting that the probability of type I error (rejecting
Ho when it is true) is 0 for α = 0 and 1 for α = 1. As a result, the entire area under the sampling
distribution represents the area of acceptance or rejection of the null hypothesis. Therefore, preliminary
test estimators’ sampling performance is heavily dependent on their α choice.

Further, for q ≥ 3 a Stein-type shrinkage FGLS estimator is defined as follows:

β̂S = β̃ − q − 2

W

(
β̃ − β̂

)
; q ≥ 3. (11)

The idea behind this estimator is that when the test statistic, W defined in Eq. (8) is small, the Stein-
type estimator gives a higher weight to the restricted estimator, as it is the most efficient estimator.
Nonetheless, when the value of W is large, the Stein-type estimator shrinks the FGLS estimator in the
direction of the restricted estimator and always has the remarkable property of yielding a lower risk than
the FGLS estimator provided with p ≥ 3.

Stat., Optim. Inf. Comput. Vol. 11, March 2023



264FEASIBLE PRELIMINARY TEST AND STEIN-TYPE ESTIMATIONS IN THE SYSTEM REGRESSION MODEL

3.1.3. Positive-rule Stein-type shrinkage estimator The Stein-type estimator is not a convex combination
of the restricted and unrestricted FGLS estimators. As a result, this estimator has the potential to change
the sign of the FGLS estimator. To prevent this strange behavior, we truncate the SFGLS estimator,
resulting in a convex combination of the FGLS and restricted estimators. We call this a positive-rule
Stein-type FGLS estimator. This estimator is denoted by β̂S+ and defined as

β̂S+ = β̂ +

(
1− q − 2

W

)
I(W > q − 2)(β̃ − β̂)

= β̂S −
(
1− q − 2

W

)
I (W ≤ q − 2)

(
β̃ − β̂

)
; q ≥ 3. (12)

4. Asymptotic Bias and Risk Performance

This section derives some fundamental characteristics of the estimators that we discussed previously.
In order to provide a reasonable analysis, a sequence of local alternatives Kn is taken into consideration

and is represented by the expression

Kn : Hβ = h+
ξ√
n
, ξ = (ξ1, . . . , ξq)

⊤.

For our purpose, we need to set the following regularity conditions.
Here, for each of M equations as the classical regression model, the following assumptions are satisfied:

(i) Xk is fixed. (ii) pk = rank(Xk), (iii) lim
n→∞

1
nX

⊤
k Xk = Ckk where Ckk is a non-singular matrix with

fixed and finite elements, (iv) E [εk] = 0, (v) E
[
εkε

⊤
k

]
= σ2

kkIn, where In is an identity matrix of n× n
dimension, and σ2

kk is the variance of disturbances in the kth equation.

(i) lim
n→∞

1
nG

1
n = G1, G1 = (X⊤Ω−1X)−1,

(ii) lim
n→∞

nG2
n = G2 G2 = (H⊤G1H)−1.

Amemiya [2, p. 198] demonstrated that the FGLS estimator is unbiased for a fixed n by assuming
that the error terms have a symmetric distribution. In large samples, it is consistent and asymptotically
normal with the limiting distribution,

√
n
(
β̃ − β

) D−→ Np(0,G1), (13)

where D→ denotes convergence in distribution. Note that in small samples, it does not follow normal
distribution.

Allow Q1 to equal √n
(
β̃ − β

)
. According to Eq. (13), it has asymptotic distribution Np(0,G1). Using

this fact, under {Kn}, we have

Q2 = HQ1 + ξ =
√
n
(
Hβ̃ − h

) D−→ Nq

(
ξ,G−1

2

)
,

Q3 = Q1 −G1H
⊤G2Q2 =

√
n
(
β̂ − β

)
D−→ Np (−δ,G1 −G⋆) ,

Q4 = G1H
⊤G2Q2 =

√
n
(
β̂ − β̃

)
D−→ Np (δ,G

⋆) ,

where δ = G1H
⊤G2ξ, and G⋆ = G1H

⊤G2HG1, and q is the number of rows in matrix H. It is easy to
conclude the following lemma.
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Lemma 4.1
Under Kn, we have [

Q1

Q2

]
D−→ Np+q

([
0
ξ

]
,

[
G1 G1H

⊤

HG1 G−1
2

])
,[

Q1

Q4

]
D−→ N2p

([
0
δ

]
,

[
G1 G⋆H⊤

G⋆ G⋆

])
,[

Q3

Q4

]
D−→ N2p

([
−δ
δ

]
,

[
G1 −G⋆ 0

0 G⋆

])
.

Since W = Q⊤
2 (n

−1G2
n)Q2, it will be equal to W = Q⊤

2 G2Q2 as n → ∞ by the regularity assumption
(ii). Therefore, the asymptotic distribution of W under Kn is χ2

q(∆), the non-central χ2 distribution with
q d.f. and the non-centrality parameter ∆ = δ⊤G2δ.

We need the following lemma to find the asymptotic distributional bias and risk of the proposed
estimators.
Lemma 4.2
Let Z = (Z1, . . . , Zk)

⊤ be a k-dimensional vector with the distribution Nk(µ, Ik). For a measurable
function ϕ, we have

E
[
Zϕ

(
Z⊤Z

)]
= µE

[
ϕ
(
χ2
k+2(∆)

)]
,

E
[
ZZ⊤ϕ(Z⊤Z)

]
= Ip E

[
ϕ
(
χ2
k+2(∆)

)]
+ µµ⊤

E
[
ϕ
(
χ2
k+4(∆)

)]
.

Proof
See [12].

4.1. Asymptotic distributional Bias (ADB) Performance

The asymptotic distributional bias (ADB) of an arbitrary estimator β̂⋆ is defined as

ADB(β̂⋆) = E
[
lim

n→∞

√
n(β̂⋆ − β)

]
. (14)

Theorem 4.1
Suppose that the assumptions (i) and (ii) are held. Under Kn and Eq. (13), the ADBs of FGLS, RFGLS,
PTFGLS, SFGLS, and PRSFGLS estimators are given by

ADB
(
β̃
)
= 0,

ADB
(
β̂
)
= −δ, δ = G1H

⊤G2(Hβ − h),

ADB
(
β̂PT

)
= −δHq+2

(
χ2
q,α;∆

)
,

ADB
(
β̂S

)
= −(q − 2)δ E

[
χ−2
q+2(∆)

]
,

ADB
(
β̂S+

)
= ADB

(
β̂S

)
− δ E

[(
1− (q − 2)χ−2

q+2(∆)
)
I
(
χ2
q+2(∆) ≤ (q − 2)

)]
,

where χ2
ν(∆) is the non-central χ2 distribution with ν degrees of freedom and non-centrality parameter

∆ = δ⊤G−1
1 δ = n−1ξ⊤G⊤

2 HG1H
⊤G2ξ and Hν(·;∆) is its cumulative distribution function. Furthermore,

E
[
χ−2
ν (∆)

]
= exp

{
−∆

2

}∑
r≥0

1

r!

(
∆

r

)r
1

ν + 2r − 2
= ER (ν + 2r − 2)

−1
,

E
[
χ−4
ν (∆)

]
= ER [(ν + 2r − 2) (ν + 2r − 4)]

−1
,

E
[
χ−2
ν I

(
χ2
ν(∆) ≤ c

)]
= ER

[
(ν + 2r − 2)−1Hν+2r−2(c; 0)

]
,

E
[
χ−4
ν I

(
χ2
ν(∆) ≤ c

)]
= ER

[
(ν + 2r − 2)−1(ν + 2r − 4)−1Hν+2r−4(c; 0)

]
,

where ER is the expectation of the variable (R) given by the Poisson distribution with parameter ∆/2.
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Proof
By the Eq. (14), definition of the ADB, under Kn, we have

ADB(β̂Shrinkage) = lim
n→∞

E
[√

n
(
β̂Shrinkage − β

)]
= lim

n→∞
E
[√

n
(
β̃ − g(W)

(
β̃ − β̂

)
− β

)]
= lim

n→∞
E
[√

n
(
β̃ − β

)]
− lim

n→∞
E
[√

ng(W)
(
β̃ − β̂

)]
= ADB(β̃)− lim

n→∞
E [Q4g(W)]

= ADB(β̃)− lim
n→∞

E
[
G1H

⊤G2Q2 g(Q
⊤
2 G2Q2)

]
. (15)

Using the Eq. (13), ADB(β̃) = 0 and considering Z = G
1
2
2 Q2, we use Lemma 4.2 to obtain

ADB(β̂∗) = −δ E
[
g(χ2

q+2(∆
2))

]
.

To complete the proof, just use the definition of shrinkage estimators.

Additionally, the asymptotic distributional quadratic bias (ADQB) of an estimator β̂⋆ is given by

ADQB
(
β̂⋆

)
=

(
ADB

(
β̂⋆

))⊤
G1

(
ADB

(
β̂⋆

))
.

Therefore, the ADQBs of the estimators are

ADQB
(
β̃
)

= 0,

ADQB
(
β̂
)

= ∆,

ADQB
(
β̂PT

)
= ∆

{
Hq+2

(
χ2
q,α;∆

)}2
,

ADQB
(
β̂S

)
= (q − 2)2∆

{
E
[
χ−2
q+2(∆)

]}2
,

ADQB
(
β̂S+

)
= ∆

{
(q − 2)E

[
χ−2
q+2(∆)

]
−E

[(
1− (q − 2)χ−2

q+2(∆)
)
I
(
χ2
q+2(∆) ≤ (q − 2)

)]}2
.

When ∆ = 0, the ADQB of all estimators is the same as that of the FGLS estimator. If ∆ > 0, the
restricted estimator has no control over its ADQB. As ∆ → ∞, Hq+2

(
χ2
q(α);∆

)
→ 0. Using this fact, the

ADQB of the preliminary test estimator vanishes when ∆ approaches ∞, and it also offers good control
of the ADQB function. The ADQB of the Stein-type estimator increases to a point and then decreases
toward zero because E

[
χ−2
q+2(∆)

]
is a non-decreasing log convex function of ∆. Finally, by comparing the

ADQB function of the Stein-type and positive-rule estimators, it is obvious that the ADQB curve of the
positive-rule estimator is the same or stays a little below the curve of the Stein-type estimator.

4.2. Asymptotic Distributional Risk (ADR) Performance

An estimator’s asymptotic distributional risk (ADR) of an estimator β̂⋆ is given by

ADR(β̂⋆) = lim
n→∞

E
[
n(β̂⋆ − β)⊤W (β̂⋆ − β)

]
, (16)

where W is a positive definite matrix.

Theorem 4.2
Under Kn and Eq. (13), the ADRs of FGLS, restricted, preliminary test, Stein-type, and positive-rule
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FGLS estimators, respectively are given by

ADR
(
β̃
)

= tr (WG1) ,

ADR
(
β̂
)

= tr (WG1)− tr (WG⋆) + δ⊤Wδ,

ADR
(
β̂PT

)
= tr (WG1)− tr (WG⋆)Hq+2

(
χ2
q,α;∆

)
+ δ⊤Wδ g1(α;∆),

ADR
(
β̂S

)
= tr (WG1)− (q − 2) tr (WG⋆) g2(∆) + (q2 − 4)δ⊤Wδ E

[
χ−4
p+4(∆)

]
,

ADR
(
β̂S+

)
= ADR

(
β̂S

)
− tr (WG⋆) g3(∆) + δ⊤Wδ g4(∆),

where G⋆ = G1H
⊤G2HG1 and

g1(α;∆) = 2Hq+2(χ
2
q,α;∆)−Hq+4(χ

2
q,α;∆),

g2(∆) = 2E
[
χ−2
q+2(∆)

]
− (q − 2)E

[
χ−4
q+2(∆)

]
,

g3(∆) = 2E
[
(1− (q − 2)χ−2

q+2(∆))I(χ2
q+2(∆) ≤ (q − 2))

]
−2E

[
(1− (q − 2)χ−2

q+4(∆))I(χ2
q+4(∆) ≤ (q − 2))

]
−E

[
(1− (q − 2)χ−2

q+4(∆))2I(χ2
q+4(∆

2) ≤ (q − 2))
]
,

g4(∆) = Hq+2 (q − 2;∆)− (q − 2)2 E
[
χ−4
q+2(∆)I

(
χ2
q+2(∆) ≤ (q − 2)

)]
.

Proof
By the definition of the ADR, Eq. (16), we have

ADR(β̂shrinkage) = lim
n→∞

E

[
n
(
β̂shrinkage − β

)⊤
W

(
β̂shrinkage − β

)]
= tr (WΓ) , (17)

where Γ = lim
n→∞

E

[
n
(
β̂shrinkage − β

)(
β̂shrinkage − β

)⊤
]
. As a result,

Γ = lim
n→∞

E

[
n
(
β̃ − g(W)(β̃ − β̂)− β

)(
β̃ − g(W)(β̃ − β̂)− β

)⊤
]

= lim
n→∞

E
[
(Q1 − g(W)Q4) (Q1 − g(W)Q4)

⊤
]

= lim
n→∞

E
[
Q1Q

⊤
1

]
− 2 lim

n→∞
E
[
Q⊤

1 Q4g(W)
]
+ lim

n→∞
E
[
Q4Q

⊤
4 g

2(W)
]
. (18)

The first term is the Q1 covariance matrix of which equals G−1
1 . To calculate the second term, we need to

know the asymptotically multivariate normal conditional distribution of Q1|Q2, which has a mean vector
G1H

⊤G2 (Q2 − δ) and covariance matrix G1 −G⋆. Using this fact, we have,

lim
n→∞

E
[
Q⊤

1 Q4g(W)
]
= G1H

⊤G2 lim
n→∞

E
[
Q⊤

1 Q2g(W)
]

= G1H
⊤G2 lim

n→∞
E
[
E
[
Q⊤

1 Q2g(W)|Q2

]]
= G1H

⊤G2 lim
n→∞

E
[
Q2g(W) E

[
Q⊤

1 |Q2

]]
= G1H

⊤G2 lim
n→∞

E
[
Q2g(W)(Q2 − δ)⊤G2HG1

]
= G1H

⊤G2 lim
n→∞

E
[
Q2Q

⊤
2 g(W)

]
G2HG1

−G1H
⊤G2 lim

n→∞
E [Q2g(W)] δ⊤G2HG1

= G1H
⊤G2HG1 E

[
g(χ2

q+2(∆))
]

+ δδ⊤
{
E
[
g(χ2

q+4(∆))
]
− E

[
g(χ2

q+2(∆))
]}

.
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Let Z = G
1
2
2 Q2 once more. Therefore, the last line is then resulted by Lemma 4.2. Also, the third term

of Eq. (18) is equal to

lim
n→∞

E
[
Q4Q

⊤
4 g

2(W)
]

= G1H
⊤G2 lim

n→∞
E
[
Q2Q

⊤
2 g

2(W)
]
G2HG1

= G1H
⊤G2HG1 E

[
g2(χ2

q+2(∆))
]
+ δδ⊤ E

[
g2(χ2

q+4(∆))
]
,

For that reason, Eq. (18) is

Γ = G1 − 2G1H
⊤G2HG1 E

[
g(χ2

q+2(∆))
]

−2δδ⊤
{
E
[
g(χ2

q+4(∆))
]
− E

[
g(χ2

q+2(∆))
]}

+G1H
⊤G2HG1 E

[
g2(χ2

q+2(∆))
]
+ δδ⊤ E

[
g2(χ2

q+4(∆))
]

= G1 −G1H
⊤G2HG1

{
2E

[
g(χ2

q+2(∆))
]
− E

[
g2(χ2

q+2(∆))
]}

−δδ⊤
{
2E

[
g(χ2

q+4(∆))
]
− 2E

[
g(χ2

q+2(∆))
]
− E

[
g2(χ2

q+4(∆))
]}

.

So,

ADR(β̂shrinkage) = tr(WG1)− tr(WG⋆)
{
2E

[
g(χ2

q+2(∆))
]
− E

[
g2(χ2

q+2(∆))
]}

−δ⊤Wδ
{
2E

[
g(χ2

q+4(∆))
]
− 2E

[
g(χ2

q+2(∆))
]
− E

[
g2(χ2

q+4(∆))
]}

.

Using the definition of shrinkage estimators, the proof is completed.

The ADR of the FGLS estimator does not depend on the ∆ while the restricted does. When ∆ equals
0,

ADR(β̂)−ADR(β̃) = − tr(WG⋆) < 0.

Thus, the restricted estimator strictly dominates the FGLS estimator when the null hypothesis is true.
If ∆ moves away from zero, then

ADR(β̂)−ADR(β̃) = − tr(WG⋆) + δ⊤Wδ.

The restricted estimator outperforms the FGLS estimator for δ⊤Wδ < tr(WG⋆). Consequently, the
performance of the restricted estimator will strongly depend on the reliability of the null hypothesis.

For α ∈ (0, 1) and ∆ > 0, we know that

Hq+4

(
χ2
q,α;∆

)
≤ Hq+2

(
χ2
q,α;∆

)
≤ Hq+2

(
χ2
q,α; 0

)
= 1− α.

As mentioned before, as ∆ → ∞, Hq+4

(
χ2
q,α;∆

)
→ 0. When ∆ is set to 0, Hq+2

(
χ2
q,α;∆

)
and g1(α;∆)

approach to 0 and the ADR of the preliminary test estimator approaches that of the FGLS estimator. The
ADR function of the preliminary test is smaller than that of the FGLS estimator; when ∆ is near zero,
it increases, crosses the ADR function of the FGLS estimator, reaches a maximum point, then decreases
monotonically to the ADR of the FGLS estimator. The preliminary test estimator is superior to the FGLS
estimator if

δ⊤Wδ <
tr (WG⋆)Hq+2

(
χ2
q,α;∆

)
g1(α;∆)

.

Note that the ADR function of the restricted estimator is unbounded while its preliminary test estimator
controls the risk as described.

Like the preliminary test, the Stein-type estimator enjoys the asymptotic property, i.e. as ∆ → ∞, its
risk converges to that of the FGLS estimator. When ∆ is near 0, both the restricted and preliminary
test estimators dominate the Stein-type estimator. However, in the rest of parameter space, they behave
worse than the Stein-type shrinkage FGLS estimator. The ADR functions of the FGLS and Stein-type
estimators reveal that β̂S will dominate β̃ if

δ⊤Wδ >
tr(WG⋆)g2(∆)

(q + 2)E
[
χ−4
q+4(∆)

] . (19)
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Finally, we compare the ADR functions of both the Stein-type and positive-rule estimators. It is concluded
that ADR(β̂S+) ≤ ADR(β̂S) for all ∆. For that reason, the positive-rule Stein estimator dominates the
FGLS estimator if the condition (19) satisfied.

5. Monte Carlo Simulation Study

A system regression model is considered as Eq. (1). The matrix Xk, k = 1, . . . ,M in this model is made
up of p variables generated by a standard p-variate normal model.

For k = 1, . . . ,M , β0
k = (1k,0k,1k,0k, . . . ,1k,0k)

⊤ where 1k = (1, . . . , 1)⊤, p1k-vector and 02k =
(0, 0, . . . , 0)⊤, p2k-vector, where p1k + p2k = pi. Also, ε = (ε⊤1 , . . . , ε

⊤
M )⊤ ∼ NM (0,Ω = Σ⊗ In), where the

error covariance matrix Σ elements are Σij = ρ|i−j|, i, j = 1, . . . ,M . In this study, ρ ∈ {0, 0.2, 0.9}.
We are interested in testing the hypothesis Ho : βj2 = 0 for j = 1, . . . ,M . For that reason, the regression

coefficients are partitioned as β = (β⊤
11,β

⊤
12,β

⊤
21,β

⊤
22, . . . ,β

⊤
M1,β

⊤
M2)

⊤ where βi1 = 1 is a fixed pi1 vector
and βi2 = (0, . . . , 0,∆)⊤ is a p2i vector for different ∆. The degree of deviation from the null hypothesis
is obtained by ∆∗ = ∥β − β0∥2. They are used to generate the response variable Y = (y1, . . . , yM )⊤ for
some values in [0, 10] of ∆∗.

When ∆∗ = 0, the submodel is the true model under the null hypothesis, while ∆∗ > 0 means a
departure from the hypothesized model. Data have been generated for both ∆∗ = 0 and ∆∗ > 0.

The risk performance using the relative mean squared error (RMSE) criterion is measured. The RMSE
of an estimator β̂∗

1 is defined as

RMSE(β̂∗
1 ; β̃1) =

MSE(β̃1)

MSE(β̂∗
1)

, (20)

where β̂∗
1 is one of the estimators listed and β̃ is the FGLS estimator. The presence of RMSE values

greater than 1 indicates that the estimator β̂∗
1 outperforms β̃1. Several simulation datasets were generated

to investigate the behavior of the estimators in the proposed model. The results are the same. Thus they
are reported only for particular values in Figure 1.

Based on Figure 1, we can find that
(1) The restricted estimator has the best performance at ∆∗ = 0 when the null hypothesis is true.
(2) When ∆∗ becomes larger, the RMSE of the restricted estimator decreases and quickly behaves worse
than that of the FGLS estimator.
(3) With an increase in ∆∗, all other estimators perform better than the FGLS estimator.
(4) When ∆∗ obtains larger values, the preliminary test, Stein-type, and positive-rule Stein-type
estimators behave the same as the FGLS estimator.
(5) The preliminary test estimator has a good performance near the null hypothesis; although this is true,
it depends upon how close βi2 is to zero vectors for i = 1, . . . ,M .
(6) Both shrinkage estimators have better performance concerning the FGLS estimator for all values of
∆∗.

The LASSO is used as a variable selection method in this simulation study. It produced a submodel
and was employed to construct the preliminary test and shrinkage estimators. Figure 2 is a report of
the performance of this simulation, which is consistent with the results of Figure 1. Consequently, we
recommend using the proposed estimators when (1) there is a high correlation between covariates and
(2) when the number of nuisance parameters is large.

5.1. Application
In economics, the employees’ willingness to pay is important. Employers frequently want to attract good
employees by offering attractive compensation packages. On the other hand, compensation extends beyond
an employee’s hourly or salary wages. It also includes fringe benefits, which are additional small business
employee perks. Fringe benefits are the additional benefits offered to an employee above the stated
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salary to perform a specific service. Some fringe benefits such as social security and health insurance
are required by law, while the employer voluntarily provides others. Free breakfast and lunch, gym
membership, employee stock options, transportation benefits, retirement planning services, childcare,
and education assistance are all examples of optional fringe benefits. So, one of valuable questions is
“Do the employees prefer wages or fringes?”. The answer is fundamental to future planning. Invariably, a
trade-off between wage and fringes is an exciting topic for economics; using SUR models simultaneously
leads to an investigation of both. Also, Injecting additional information into the model improves the
accuracy.

In this section, the dataset “Fringe†”, wages and fringe benefits, are used to estimate a two-equation
regression system for hourly wage and hourly benefits.

†Available at http://fmwww.bc.edu/ec-p/data/wooldridge/fringe.dta

Figure 1. The RMSE of the estimators with respect to the FGLS estimator for n = 100, M = 3, p11 = p21 = p31 = 2,
p12 = p22 = p32 = 3, and α = 0.05 for different ρ.
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Figure 2. The RMSE with respect to FGLS estimator for p1 = 5, ∆∗ = 0 and α = 0.05.

There are 616 workers in the dataset. There are two response variables, here: hearn, hourly earning
($), and hrbens, hourly benefits ($). The explanatory variables for both of the equations are: educ,
years schooling; exper, years work experience; tenure, years with current employer; union, = 1 if a union
member; south, = 1 if live in south; nrthcen, = 1 if live in north central; nrtheast, = 1 if live in northeast;
married, = 1 if married; white, = 1 if white; male, = 1 if male, age, age in years; office, = 1 if an office
worker.

The AIC, BIC, and LASSO approaches have selected the important predictors. Selected variables by
each method are presented in Table 2. Thus, there are two models: a full model with all covariates and
three suspecting sub-models based on the AIC, BIC, and LASSO methods, which exclude the nuisance
variables.
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Table 2. Selected variables of the “Fringe” dataset by the AIC, BIC and LASSO approaches.

AIC
educ ✓ educ ✓
exper✓ exper
tenure tenure ✓
union✓ union✓
south south
nrtheast✓ nrtheast
nrthcen nrthcen
married married ✓
white✓ white
male ✓ male✓
age ✓ age
office✓ office✓

BIC
educ ✓ educ✓
exper ✓ exper
tenure tenure ✓
union ✓ union ✓
south south
nrtheast nrtheast
nrthcen nrthcen
married married
white ✓ white
male ✓ male ✓
age age
office ✓ office ✓

LASSO
educ ✓ educ ✓
exper✓ exper
tenure tenure✓
union✓ union ✓
south south
nrtheast✓ nrtheast
nrthcen nrthcen
married✓ married
white ✓ white
male ✓ male✓
age age
office✓ office✓

To compare estimators, the K-fold cross validation method is employed. In this method, K different
equal and random subsets of the dataset are considered. One of the subsets, {(Xtest,ytest)}, a test set is
left and other subsets, training sets, are used to fit the model. The result estimator is called β̂train. Using
this estimator, the responses of the test dataset can be estimated. The prediction error (PE) is given by

PEk =
∥∥ytest

k − ŷtest
k

∥∥2
; k = 1, . . . ,K,

where ŷtest
k = Xtest

k β̂train
k . The process is repeated for all K subsets, and the prediction errors are combined

via their mean (say PECV) is obtained by

PECV =
1

K

k∑
i=1

PEk.

It varies across runs for different values of K because the cross validation method is a random procedure.
So, the average of PECV (APE) is considered as a criterion for comparison. The below formula shows how
APE is calculated.

APE =
1

N

N∑
j=1

PEj
CV,

where PEj
CV is the value obtained in jth iteration and N is the number of repetitions.

The performance of the arbitrary estimator, β̂⋆
1 with respect to the full model estimator β̃1 is obtained

by the Efficiency (Eff) formula defined as

Eff(β̂⋆
1 ; β̃1) =

APE(β̃1)

APE(β̂⋆
1)

.

If the value of Eff is greater than 1, then β̂⋆
1 will perform better than β̃.

The relative efficiency based on 10-fold cross-validation of size 1000 is reported in Table 2. We determine
that if we use the LASSO procedure only as a selection operator, the restricted estimator performs
better than other methods since it can select the active variables included in the submodel, which are
indeed/nearly indeed important. It is preferable to use BIC to select data to obtain the best shrinkage
estimator. Moreover, the shrinkage estimator based on the LASSO procedure is still performing better
than the full model estimator.
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Table 3. RAPEs based on 10-fold cross validation

Selection Criterion β̂1 β̂PT
1 β̂S+

1 β̂LASSO
1

AIC 1.0227 1.0161 1.0176 0.6042
BIC 1.3908 1.3211 1.3758 0.8191
LASSO 1.6093 1.0000 1.2088 0.9495

6. Conclusion

This paper proposes preliminary test and shrinkage estimators in a SUR model regression based on the
feasible generalized least squares estimator. In comparison to FGLS estimation, our suggested estimators
show better performance. The simulation results especially recommend using the positive rule shrinkage
feasible generalized least squares estimator in two cases: (i) there exists a high correlation between
covariates and, (ii) in a sparse model, the number of nuisance parameters is large. The proposed estimator
behaves better than the LASSO estimator. Although selecting important variables by the LASSO method
yields less error in prediction, the positive-rule Stein-type shrinkage FGLS estimator obtained by the BIC
approach predicts better than that achieved by the LASSO. The BIC method is consistent. However,
when the number of parameters gets large, it is less efficient than the LASSO. For that reason, and
because of the better performance of the positive-rule Stein-type FGLS estimator, we suggest using this
estimator in a SUR model. Other penalized estimators, such as Enet [45] estimator, can be used instead
of LASSO to select variables in future research.
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