
DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

WANER SHAN

BSc in Electrical and Computer Engineering

XSS ATTACK DETECTION BASED
ON MACHINE LEARNING
DISSERTATION FOR OBTAINING THE MASTER’S DEGREE
IN ELECTRICAL AND COMPUTER ENGINEERING

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
September, 2022

DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

XSS ATTACK DETECTION BASED
ON MACHINE LEARNING
DISSERTATION FOR OBTAINING THE MASTER’S DEGREE
IN ELECTRICAL AND COMPUTER ENGINEERING

WANER SHAN

BSc in Electrical and Computer Engineering

Adviser: João Almeida das Rosas
Assistant Professor, NOVA University Lisbon

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
September, 2022

XSS attack detection based on machine learning

Copyright © Waner Shan, NOVA School of Science and Technology, NOVA University
Lisbon.
The NOVA School of Science and Technology and the NOVA University Lisbon have the
right, perpetual and without geographical boundaries, to file and publish this dissertation
through printed copies reproduced on paper or on digital form, or by any other means
known or that may be invented, and to disseminate through scientific repositories and
admit its copying and distribution for non-commercial, educational or research purposes,
as long as credit is given to the author and editor.

Abstract

As the popularity of web-based applications grows, so does the number of individuals
who use them. The vulnerabilities of those programs, however, remain a concern. Cross-site
scripting is a very prevalent assault that is simple to launch but difficult to defend against.
That is why it is being studied.

The current study focuses on artificial systems, such as machine learning, which can
function without human interaction. As technology advances, the need for maintenance is
increasing. Those maintenance systems, on the other hand, are becoming more complex.
This is why machine learning technologies are becoming increasingly important in our daily
lives.

This study use supervised machine learning to protect against cross-site scripting, which
allows the computer to find an algorithm that can identify vulnerabilities. A large collection
of datasets serves as the foundation for this technique. The model will be equipped with
functions extracted from datasets that will allow it to learn the model of such an attack by
filtering it using common Javascript symbols or possible Document Object Model (DOM)
syntax.

As long as the research continues, the best conjugate algorithms will be discovered that
can successfully fight against cross-site scripting. It will do multiple comparisons between
different classification methods on their own or in combination to determine which one
performs the best.

Keywords: Cross-site scripting, supervised learning algorithms, classifiers, javascript,
DOM, HTTP

vii

Resumo

À medida que a popularidade dos aplicativos da internet cresce, aumenta também o
número de indivíduos que os utilizam. No entanto, as vulnerabilidades desses programas
continuam a ser uma preocupação para o uso da internet no dia-a-dia. O cross-site scripting
é um ataque muito comum que é simples de lançar, mas difícil de-se defender. Por isso, é
importante que este ataque possa ser estudado.

A tese atual concentra-se em sistemas baseados na utilização de inteligência artificial e
Aprendizagem Automática (ML), que podem funcionar sem interação humana. À medida
que a tecnologia avança, a necessidade de manutenção também vai aumentando. Por outro
lado, estes sistemas vão tornando-se cada vez mais complexos. É, por isso, que as técnicas
de machine learning torna-se cada vez mais importantes nas nossas vidas diárias.

Este trabalho baseia-se na utilização de Aprendizagem Automática para proteger contra
o ataque cross-site scripting, o que permite ao computador encontrar um algoritmo que
tem a possibilidade de identificar as vulnerabilidades. Uma grande coleção de conjuntos de
dados serve como a base para a abordagem proposta. A máquina virá ser equipada com o
processamento de linguagem natural, o que lhe permite a aprendizagem do padrão de tal
ataque e filtrando-o com o uso da mesma linguagem, javascript, que é possível usar para
controlar os objectos DOM (Document Object Model).

Enquanto a pesquisa continua, os melhores algoritmos conjugados serão descobertos
para que possam prever com sucesso contra estes ataques. O estudo fará várias comparações
entre diferentes métodos de classificação por si só ou em combinação para determinar o
que tiver melhor desempenho.

Palavras-chave: Cross-site scripting, machine learning supervisionado, classificadores,
javascript, DOM, HTTP

ix

Contents

List of Figures viii

List of Tables ix

Glossary xi

Acronyms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 3
1.3 Research Objective . 3
1.4 Reading Guide . 4

2 Background and Related Studies 5
2.1 Web Applications . 5
2.2 JavaScript . 6

2.2.1 JS Features . 8
2.2.2 JS Composition . 8
2.2.3 Add JS to webpage . 9
2.2.4 JS Security . 9

2.3 Cross-Site Scripting Attack . 10
2.3.1 Stored/Persistent XSS . 11
2.3.2 Reflected/Non-persistent XSS . 12
2.3.3 DOM-based XSS . 13

2.4 Machine Learning . 14
2.4.1 Machine Learning Algorithms . 15
2.4.2 Supervised Learning . 17
2.4.3 Evaluation . 18

2.5 Existing XSS Detection Mechanisms . 20

xi

CONTENTS

2.5.1 Standard Methods . 20
2.5.2 Static/Dynamic analysis . 21
2.5.3 Machine Learning Analysis . 22

2.6 Summary . 26

3 Datasets 27
3.1 Data Collect . 27
3.2 Features Extraction . 28
3.3 Summary . 36

4 Classifiers 37
4.1 Train Model . 37

4.1.1 Linear Regression . 37
4.1.2 Decision Tree . 40
4.1.3 Support Vector Machine . 42
4.1.4 K-Nearest Neighbors . 43
4.1.5 Random Forest . 45
4.1.6 Naive Bayes . 47
4.1.7 Execution Time . 48

4.2 Discussion . 49

5 Ensemble algorithms 51
5.1 Introduction to ensemble algorithms . 51
5.2 The framework . 52
5.3 Random Forest with Decision Tree . 55
5.4 K-Nearest Neighbors with Random Forest 56
5.5 K-Nearest Neighbors with Decision Tree 56
5.6 Execution Time . 57
5.7 Discussion . 58

6 Real Time Application 60
6.1 Introduction to Chrome Extension . 60
6.2 The Framework and Language . 62
6.3 Backend Services . 63
6.4 Frontend Application . 65
6.5 Discussion . 70

7 Conclusion 71
7.1 Research Summary . 71
7.2 Research Discussion . 72
7.3 Future Work . 73

Bibliography 76

xii

List of Figures

2.1 Web Application Architecture . 6
2.2 Composition of JS . 8
2.3 Web Attack . 10
2.4 Types of XSS attacks . 11
2.5 Stored XSS process . 12
2.6 Reflected XSS process . 13
2.7 DOM-based XSS process . 14
2.8 Machine Learning Algorithms . 15

3.1 Model Creation Steps . 27
3.2 XSS payloads collected . 28
3.3 Extract XSS features process . 36

4.1 XSS evaluation process . 39
4.2 Create model process . 40
4.3 Cross-validation process . 45
4.4 Random Forest Process . 46

5.1 Ensemble Framework . 54

6.1 Chrome Extension System Framework . 62
6.2 Backend Service implementation . 65
6.3 Chrome Extension Directory Structure . 66
6.4 Chrome Extension Directory Structure Complex 67
6.5 Chrome Extension Manifest File . 68
6.6 Popup HTML code . 69
6.7 Popup JS code . 69

xiii

List of Tables

2.1 Confusion Matrix . 18
2.2 Literature comparisons in static and dynamic analysis 22
2.3 Predicting results of the literature [0] . 22
2.4 Predicting results of the literature [0] . 23
2.5 Predicting results of the study [0] . 23
2.6 Predicting results of the hybrid and semi-supervised learning approach . . . 23
2.7 Predicting results of the study[0] . 24
2.8 Predicting results of the literature[0] . 24
2.9 Predicting results of the research [0] . 24
2.10 Predicting results of the research [0] . 24
2.11 Predicting results of the model[0] . 25
2.12 Predicting results of the approach[0] . 25
2.13 Predicting results of the research [0] . 25
2.14 Ensemble-based Machine Learning (ML) Techniques 26

3.1 Collected datasets . 28
3.2 Non-Alphanumeric Features . 30
3.3 Alphanumeric Features . 32
3.4 Alphanumeric Features . 33
3.5 Alphanumeric Features . 34
3.6 Features extraction of malicious payloads 35
3.7 Features extraction of benign payloads . 35

4.1 Linear Regression Evaluation . 39
4.2 Decision Tree Evaluation . 41
4.3 Support Vector Machine Evaluation . 43
4.4 K-Nearest Neighbors Evaluation . 44
4.5 Random Forest Evaluation . 46
4.6 Naive Bayes Multinomial Evaluation . 48
4.7 Simple Classifiers Execution Time . 49

xv

LIST OF TABLES

5.1 Soft voting classifier probabilities . 53
5.2 Evaluation: Random Forest with Decision Tree 55
5.3 Evaluation: K-Nearest Neighbors with Random forest 56
5.4 Evaluation: K-Nearest Neighbors with Decision Tree 57
5.5 Ensemble Classifier Execution Time . 58

xvi

Glossary

Browser A web browser or browser is application software for accessing
the World Wide Web. When a user requests a web page from
a particular website, the web browser retrieves the necessary
content from a web server and then displays the page on the
user’s device. 5, 8, 11, 13

cookie A short text file saved on the PC of the user A cookie’s
maximum file size is 4KB. An HTTP cookie, also known as
a web cookie or an internet cookie, is a type of cookie that is
stored on a user’s computer. When a user visits a website for
the first time, the site transmits data packets to the user’s
computer in the form of a cookie. 7, 11

RESTful or REST API A REST (representational state transfer) API is an applica-
tion programming interface that conforms to the constraints
of REST architectural style and allows for interaction with
RESTful web services. REST stands for representational state
transfer and was created by computer scientist Roy Fielding.
64

session Used to temporarily store data on the server so that it can
be used across multiple pages of the website It refers to the
total amount of time spent on a particular activity. When
a user registers in to a network application, the user session
begins and ends when the user logs out of the program or
shuts down the machine. 11

xvii

GLOSSARY

token Can be used in place of or in addition to a password. It
functions as an electronic key that allows you to gain access
to something. A wireless keycard, for example, can enter
a locked door, or a customer seeking to access their bank
account online can use a bank-provided token to show that
they are who they say they are. 11

Website A website (also written as web site) is a collection of web
pages and related content that is identified by a common
domain name and published on at least one web server. 11

xviii

Acronyms

AI Artificial Intelligence 19
AJAX Asynchronous JavaScript And XML 7, 13
API Application Programming Interface 8, 14, 47, 60, 61, 63, 64

BOM Browser Object Model 8, 14

CLI Command Line Interface 66
CSS Cascading Style Sheets 6, 60, 62, 63

DDoS Distributed Denial of Service 2
DOM Document Object Model 8, 13, 14, 31

Gnb Gaussian Naive Bayes 25, 26, 37

HTML HyperText Markup Language 5, 6, 7, 9, 10, 29, 31, 32, 60, 61, 62, 63, 65, 69
HTTP Hypertext Transfer Protocol 4, 27, 28, 29, 34, 35, 69, 73
HTTPS Hypertext Transfer Protocol Secure 34, 35

JS JavaScript 3, 5, 6, 7, 8, 9, 10, 11, 14, 21, 22, 27, 29, 31, 34, 35, 60, 61, 62, 63,
65, 66, 67, 69

KNN K-Nearest Neighbor 18, 22, 25, 26, 37, 43, 44, 48, 49, 51, 56, 57, 59, 72, 73, 74

ML Machine Learning ix, 14, 15, 16, 22, 25, 26, 37

NPM Node Package Manager 66

OWASP Open Web Application Security Project 1

xix

ACRONYMS

RBF Radial Basis Function 42, 71
RegEx Regular Expressions 34

SVM Support Vector Machine 22, 23, 24, 25, 37, 42, 48, 72

URL Uniform Resource Locator 10, 13, 14, 31, 34, 35, 60, 64, 70

Web World Wide Web 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 22, 27, 30, 31, 37, 41, 51, 57, 60,
62, 63, 64, 65, 71, 72, 73, 74

XSS Cross-Site Scripting 1, 2, 3, 4, 5, 11, 12, 13, 14, 20, 21, 22, 23, 24, 25, 26, 27,
28, 31, 37, 41, 42, 43, 45, 47, 48, 49, 51, 53, 55, 56, 57, 58, 59, 60, 62, 63, 64,
71, 72, 73, 74

xx

1

Introduction

This chapter will begin with analysing the backgrounds of the Cross-Site Scripting
(XSS) and introducing the recent development of the XSS detecting systems. With different
systems, it explains the disadvantages and how to evolve to take better revolution for this
research. Also, it elaborates the main work and the organizational structure of this research.

1.1 Motivation

As the technology evolves, a huge number of World Wide Web (Web) applications
have appeared. The real world’s information has been stored to a virtual world. Since
then, the growth of the internet has brought us a lot of convenience. However, the risks
are coming at the same time. Consequently, the security of the Web applications has
been an indispensable part for the protection of our privacy towards different technology
devices through the network. Therefore, how to defend or prevent and detect against those
vulnerabilities, has become an important topic.

Based on Open Web Application Security Project (OWASP)’s Top-10 Project[0], the
XSS is now a part of Injections. It has become one of the most common and critical Web
attacks. For further information about top vulnerabilities, it can be found below:

1. Broken Access Control: By altering URLs and HTML pages, an attacker can get
around access control measures. They can also gain unauthorized access (vertical
and parallel) to sensitive resources, impersonate users, administrators, or privileged
users, and create, access, update, or delete any record.

2. Cryptographic Failures: The system suffers damage due to the leaking of sensitive
data caused by the use of outdated, unencrypted, or weakly encrypted hash functions
like MD5 or SHA1, the default encryption key, or frequent usage of a weakly encrypted
key.

3. Injections: Through a SQL injection vulnerability, a hostile attacker can create SQL
injection statements, send specific error information to the server to gather relevant
information, alter the contents of the database, and exercise their right to withdraw.

1

CHAPTER 1. INTRODUCTION

4. Insecure Design: A design flaw in the development process could result in an
injection exploit, file upload, and other problems.

5. Security Misconfiguration: This points to a significant number of wrongly config-
ured security settings, such as a completely insecure application stack, improperly
configured cloud server authorization, functionalities that are deployed or activated
without a need, etc.

6. Vulnerable and Outdated Components: One example of this type of vulnera-
bility is the inability of administrators to swiftly assess the security posture of the
components since they are uninformed of the version of every used component.

7. Identification and Authentication Failures: To stop threats connected to authen-
tication, user authentication, authentication, and session management are necessary.

8. Software and Data Integrity Failures: Code and infrastructure are related to
errors in software and data integrity. For instance, dangerous deserialization is easily
caused if an object or piece of data is encoded or serialized into a structure that an
attacker may view and alter.

9. Security Logging and Monitoring Failures: This category is intended to support
active intrusion detection, upgrading, and response. It is impossible to find infrac-
tions without logging and observation. At any time, insufficient logging, detection,
monitoring, and proactive response may take place.

10. Server-Side Request Forgery: When a Web application obtains a remote resource
without checking the URL the user gave, SSRF flaws happen. Even in the presence of
a firewall, virtual private network (VPN), or another kind of network access control
list (ACL) security, it enables an attacker to force a program to submit a well prepared
request to an unexpected location.

XSS attacks start up on the client side browser or frontend. For itself it can get user’s
password directly or it can be just the initial setup for the next attack. The followings are
some examples about precautions of XSS:

• To get the client’s cookie, to block browser’s communication and to execute bad
behaviors with other information of the user

• To plug trojan in Web pages for controlling the clients computers

• To trick users to access privacy information such as credit card password by phising

• To govern the users as span and perform a Distributed Denial of Service (DDoS)

• To spread anti-virus to damage the network environment

2

1.2. RESEARCH QUESTION

Hence, for the network security, it is needed to detect and defend against the abnormal
harms. To sum up, the XSS is becoming the most threatening invasion. To conquer it has
been the essential research topic in Web security in nowadays.

1.2 Research Question

In the era of Internet technology with such rapid development, it is becoming more and
more normal to deal a lot of security problems. The XSS is one of them. Even though the
XSS attack detection study is keeping going, the techniques is still facing serious challenges.
Not only the detection methods evolve, the attacks also become complex and challengeable.
Consequently, if the detection methods are being stagnant, it will be unable to cope with
the complex and challengeable XSS injections.

With more research, it was discovered that XSS assaults on existing online applications
are simple to carry out, but difficult to detect and prevent due to the complicated syntactic
JavaScript (JS) source code. This is the starting point for investigating the following
primary question: What is the efficiency and performance of machine learning
techniques for XSS detection?

1.3 Research Objective

Machine Learning has been used in image processing, voice recognition, machine trans-
lation, etc. In the big data environment, machine learning suits very well on huge and
complex tasks. The main purpose of this dissertation are the detection based on machine
learning, and how the research is going to use the machine learning to solve the difficult
problems that still exist in detection of XSS vulnerabilities.

By analyzing the current situation, the study concludes the insufficient parts (efficiency
of using machine learning to detect XSS vulnerabilities) of the literatures presented above.
Hereupon, by reviewing the gaps propose some possible solutions. Specially, the study can
be sum up to the followings:

1. (G1) To deeply understand about the behaviors and trigger mechanism of XSS prob-
lems.

2. (G2) To find the best algorithm that can automatically detect through the features
analysis.

3. (G3) To test and evaluate the results in real time.

To reach the goals defined, the proposed research will focus on features extractions and
machine learning algorithms. The key aspects to focus can be listed as follows:

1. Collecting a large number of datasets

3

CHAPTER 1. INTRODUCTION

2. Preprocessing the data: sanitization, tokenization and vectorization

3. Training the datasets and testing them

As previously stated, it is possible to verify if this model can overpass the problems
discussed in section 1.2, and take suggestion for future works.

1.4 Reading Guide

The main structure of this dissertation is organized as follows:
The first chapter is the introduction. This chapter will present the background and the

objective of the research first. Besides, a brief understanding about the recent researches
will be discussed. At the end, it proposed the main work and study content of the research.

The second chapter is related to studies that have been done under the XSS attack
topic. This chapter begins with XSS attack theory, its types and its principle. After that,
it introduces the principal machine learning techniques, proposing the possible detection
model.

The third chapter is dedicated to model preparation, which includes dataset gathering
and XSS feature extraction.

The fourth chapter discusses many approaches to classification algorithms, including
the support vector machine, linear regression, naïve bayes, decision tree, random forest,
and k-nearest neighbor tests. After the models are completed, their performance will be
compared, and the models with the highest ratings will be chosen.

The fifth chapter discusses ensemble classifications, a mixture of algorithms. It incor-
porates various classifiers in different ways. The majority of this research is based on the
combination principle. Alternately, it indicates that the final class will be the one with the
largest portion of the votes. At the conclusion, evaluate the performance of the obtained
classifiers and select the top one to use in the next chapter.

Real-time testing and evaluations are covered in the sixth chapter. In other words,
it will create a web software that can identify XSS features and assess how dangerous
the website the user is now on is. This is constructed of two service layers, one of which
correlates to the user interface and displays the app’s content to the user, and the other
of which corresponds to a model in which the user’s inputs or payload serve as input and
are used to check for XSS threats as output. The Hypertext Transfer Protocol (HTTP)
protocol is being used by them to communicate between two service tiers.

The research will be summarized in the final chapter, which is the conclusion. It also
talks about the project and what can be done for upcoming projects.

4

2

Background and Related Studies

The chapter below focuses on the basic technologies and similar studies which have
been involved in the previous researches under the topic, typically including: the basic
principle of the World Wide Web (Web) applications, Cross-Site Scripting (XSS) attack
and its types, machine learning models and its principle and, finally, the techniques to
prevent and detect XSS vulnerabilities.

2.1 Web Applications

As the name implies, Web application is a computer program that performs tasks on
the Internet using Web Browser and Web technologies. These applications use a browser
as the client side, which is called the B/S structure. Through the common use of browsers
(like Google Chrome), it does not require installing the specific client application.

From a technical point of view, the application layer protocol for the Web application
is based on the HTTP protocol, which is characterized over the network layer protocol
(TCP/UDP). This structure helps to improve the efficiency of the network speed.

Web applications are typically written in browser-supported languages such as JavaScript
(JS) and HyperText Markup Language (HTML), which rely on the browser to render the
program and thus make it executable. Some applications are dynamic, requiring serverside
processing, while others are completely static, without any processing on the server. Web
applications require a Web server to manage requests from clients, an application server to
perform the requested tasks, and sometimes a database to store information. In the figure
2.1, there is an architecture of a Web application.

The following steps are an example of a typical Web application flow:

1. A request to a Web server is triggered over the internet by a user through a web
browser or the user interface of an application

2. The server performs the requested tasks, such as querying the database or processing
the data, and then generating the results of the requested data.

5

CHAPTER 2. BACKGROUND AND RELATED STUDIES

DATABASE
SERVER

User
Browser

Application
Server

HTTP request

HTTP respond

Figure 2.1: Web Application Architecture

3. The server responds back to the client with the processed data or the requested
information or the results of the processed data together, which then appears on the
user’s screen.

Online forms, shopping carts, word processors, spreadsheets, video and photo editing,
file conversion, file scanning, and email systems like Gmail, Yahoo and Outlook are examples
of Web apps. More concretely, there are Gmail, YouTube, Dropbox, Google Document, and
others Web Application products used in office. Among them, documents and calendars
can be shared online which realizes that each team member can work on a same document
at the same time.

The growth of technology has been influenced by the increase in the use of the Internet.
As a result, Web applications are rapidly moving from the old architecture to the cloud
model. Users can use those applications anywhere, without installation, thus, improving
the productivity and user experience.

2.2 JavaScript

Normally, Web pages are built with HTML, Cascading Style Sheets (CSS) and JS:

• HTML: A markup language that defines the web page’s backbone.

• CSS: A style language for statically customizing an HTML page.

• JS: A scripting language that can dynamically respond to user input.

6

2.2. JAVASCRIPT

JavaScript is built with the intention of "making the page more vibrant". Programs
developed under this programming language are called scripts. They can be written directly
into a Web page’s HTML and run as soon as the page loads. Scripts are provided in plain
text format and executed in that, working without any additional setup or compilation.

JS in the browser may perform a wide range of tasks, including:

• Modify the existing content and layout of a web page by adding new HTML.

• Respond to user actions, such as clicking the mouse, moving the pointer, or pressing
a key.

• Use Asynchronous JavaScript And XML (AJAX) methods to send network requests
to remote servers to download and upload files.

• Get or set cookie, in order to recognize the visitor’s identity.

• Keep track of the client’s information by using local storage.

All those operations can be done using the JS interpreter (JS engine). It is a component
present on the browser, which is commonly utilized in client-side scripting languages.

Here is an example of Web application code (HTML and JS):

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Web App</title>

</head>

<body>

<div class="box">

BOX

</div>

<script>

const box = document.querySelector('.box') //DOM

setTimeout(() => { //BOM

box.style.backgroundColor = 'black'

}, 1000)

</script>

</body>

</html>

7

CHAPTER 2. BACKGROUND AND RELATED STUDIES

2.2.1 JS Features

(1) Dynamic
JS is an event-driven scripting language that responds to user input without the need

for a Web server. It can directly respond to these events by clicking or moving the mouse
up or down, changing the window, etc. and so on while browsing a Web page.

(2) Weakly typed
JS is an interpreted scripting language. Unlike C, C++, and other languages, JS is

interpreted line by line as the program executes. The variable types is a weak type, and
the data type is not strictly necessary. Its design is basic and compact.

(3) Object-oriented/Prototype-based
JS is an object-oriented scripting language which uses prototypes to implement class

inheritance. The prototypes can bind objects together, giving the related object access to
both methods and variables.

2.2.2 JS Composition

The basic grammar components (such as operators, control structures, and statements)
and the standard library (a collection of objects with various functions such as Array, Date,
Math, and so on) are the only two aspects of JS’s core syntax (ECMAScript). Additionally,
for JS calls, the various host environments give additional Application Programming Inter-
face (API)s. Those APIs correspond to interfaces that can only be used in that context.
The additional APIs provided by browsers are separated into Document Object Model
(DOM) and Browser Object Model (BOM). So, as shown in figure 2.2, JS programming
language has three parts:

1. ECMAScript: describes the syntax and basic objects of the language.

2. DOM: is an API for the methods and interfaces that works with the document
content. In the Web every single Web page is also a document.

3. BOM: refers to the APIs, which includes methods and interfaces, related with Browser
interaction.

JavaScript

DOMECMAScript BOM

Figure 2.2: Composition of JS

8

2.2. JAVASCRIPT

2.2.3 Add JS to webpage

(1) Inline code
Internal and external JS do not necessitate the use of events in tandem, whereas inline

code does.

<body>

<button onClick="alert('JS code here')">CLICK HERE</button>

</body>

(2) Embedding code
The script tag can be used to insert JavaScript code into a head or body element. Here

is an example:

<head>

<script>

alert('JS code has inserted in head')

</script>

</head>

<body>

<script>

alert('JS code has inserted in body')

</script>

</body>

(3) External file
The JS code can alternatively be stored in a separate JS extension file. The script tag

must be used to introduce it into the HTML file.
In HTML file, there is an import:

<script src="jsFile.js"></script>

In a separated JS file, it can directly write JS code:

alert('This is a javascript file.')

2.2.4 JS Security

It is feasible to improve the user experience of Web apps by using JS. However, it also
provides opportunities for hackers to launch Web attacks. For this reason, it’s also crucial
to understand the security of Web apps.

The majority of JS security flaws are created by end-user involvement. Malicious users
have access to JS security, which includes detecting, preventing, protecting, and addressing

9

CHAPTER 2. BACKGROUND AND RELATED STUDIES

security concerns in JSbased applications. Cross-site scripting, malicious code, man-in-the-
middle attacks, and exploiting vulnerabilities in Web application source code are the most
prevalent JS vulnerabilities.

In the circumstance of online attacks, hackers typically embed or insert malicious code
into HTML pages, and then execute the code as scripts to achieve the attack’s goal. For
example, attackers can exploit vulnerabilities in the background management system to
gain direct access to database information and administrator privileges, or even control
the host remote loading malicious code or software, or redirect the access address to a
fake web page when the user browses the web, all with the goal of stealing user password
information and obtaining financial gain.

http://xxx?name=<script>alert('XSS')</script>

Click the
malicious link

Return
web

contents

<HTML>

Figure 2.3: Web Attack

As the process described in figure 2.3, during the execution of the JS program, the
server cannot determine whether the request is at risk of an attack. As a result, with a
variety of malicious attack measures, it can be difficult to detect all types of attacks in
particular instances.

2.3 Cross-Site Scripting Attack

As many other types of attacks, the success attack is against the input of the web
applications, especially the user input or key-value input. In the web applications, the
input is mainly from HTML forms, and is delivered to server through GET or POST
requests. For GET method, the request is covered in Uniform Resource Locator (URL) a
pair of key-values. About the POST method, a pair of key-value is presented on the body
of payload. Moreover, the malicious code is saved inside of those key-values.

10

2.3. CROSS-SITE SCRIPTING ATTACK

As far as XSS is concerned, it is introduced as one of the injection attack types, which
occurs when the victim visits the Web page, if an attacker has inserted malicious script
though the web server and the script is executed on the client-side. The major compromise
of XSS attack is the Web user, because it can steal the cookie or session token and other
sensitive information that can modify the contents of the Website. As a result, it won’t
cause damage on the Web server directly.

Taking the online marketplace Website as a demonstration, the buyers are allowed to
ask questions about the products in trade which can be answered by the seller afterwards.
It seems to be a very common action of exchange. However, it becomes a breakthrough
of the attack when it reaches the eyes of the hackers. If a buyer has inserted the question
that contains embed JS code, anyone who views this question will get a malicious script
executed in his Browser. Thereby, the user will bid a product unconsciously that is not
interested in, or the seller will accept the lower bid committed by the hacker to end the
trade.

Generally, the XSS can be described in four steps:

1. Constructing malicious code: the attacker insert a malicious code into a webpage
and waits for touching off

2. HTTP requests: when the user triggers the bad code it will send a request to server

3. HTTP responses: the server receives and handles the request and sends a response
with malicious code to client-side

4. Sensitive data acquisition: browser executes the evil code and the hacker gets the
sensitive data, such as cookies or session IDs

In brief, when a Web application is not able to purify the user’s input, as a dynamic
Web page, it may cause XSS attack. To classify the types of XSS attack, there are three of
them, which are reflected XSS, stored XSS, and DOM-based XSS as shown in Figure 2.4.

Types of XSS

StoredReflected DOM-based

Figure 2.4: Types of XSS attacks

2.3.1 Stored/Persistent XSS

In stored or persistent XSS attack (type-I XSS), the malicious script is injected into
servers and performs every time when the website is requested. The scenario of the stored
XSS can be characterized in phases stated as follow:

11

CHAPTER 2. BACKGROUND AND RELATED STUDIES

1. Hacker adds malicious script on vulnerable website through forms, posts or comments

2. The script is saved into target webpage server’s database

3. Victim browses the target website and gets the malicious script from database

4. The script is loaded and it conducts the victim into malicious database

5. Hacker collects victim’s private information from the malicious database

Hacker

Normal
Database

Malicious
Database

1

2

3

45

Victim

Figure 2.5: Stored XSS process

The malicious XSS code is saved to the database using various syntax symbols, and it
only executes when the user views the evil page, as shown in the code below:

<!DOCTYPE html>

<html lang="en">

<head>

<title></title>

</head>

<body>

<p><script>XSS CODE</script></p>

</body>

</html>

2.3.2 Reflected/Non-persistent XSS

In reflected or non-persistent XSS attack (type-II XSS), the script is only reported on
the client-side, which means the server won’t keep the script file. This type of hacking can
be represented with steps in Figure 2.6:

12

2.3. CROSS-SITE SCRIPTING ATTACK

1. Hacker puts a malicious URL on the website

2. The user visits the target webpage and clicks on the link inserted by hacker

3. Website returns to the malicious page making it looks like a normal Browser to the
victim

4. On user side, the website parses the XSS script and requests to the malicious web-
server

5. Hackers invocate victims to type in their privacy and obtain it

Hacker

Normal
Server

Malicious
Server

User

2
3

4

5

1

Figure 2.6: Reflected XSS process

If there is an input box (form or search bar) in web application, the hacker may use it
to put the harmful code:

<script>alert('XSS CODE')</script>

With the code above, it is going to reveal in URL as shown format: http://www.xss.
page/search.php?keyword=<script>alert(’XSSCODE’)</script>

2.3.3 DOM-based XSS

DOM-based XSS attack (type-0 XSS) is also Browser side vulnerability where the script
is not sent to server. At this context, hacker makes alterations to DOM elements under
document properties. With the increase of the network facilities, the user experience has
become progressively popular. Thus, to enhance the performance, the collaborative work
between the server and client appears. The client side will display only the minimums of
the website, and only when the user needs the browser will request to server for loading
more functionalities using AJAX.

13

http://www.xss.page/search.php?keyword=<script>alert('XSS CODE')</script>
http://www.xss.page/search.php?keyword=<script>alert('XSS CODE')</script>

CHAPTER 2. BACKGROUND AND RELATED STUDIES

Hacker

1

3

45

User

Website

2

Figure 2.7: DOM-based XSS process

On the web applications, the JS code is always on execution for processing dynamic
behaviors. Hence, JS is composed by ECMAScript (the basic language syntax) and Web
APIs (DOM and BOM). The webpage can be likened to a document and each website is a
file, with which the developers are able to reach the document content through the DOM
and BOM. DOM is an object model which is useful to access every HTML element and
read or modify. In this kind of attack, the malicious code is processed in client-side. Unlike
the reflected XSS, the user does not need to click on any link to start punishing and the
data does not reach to server. It is fully carried by JS implementation. As evidenced in
Figure 2.7, the procedure of the DOM-based XSS is:

1. Hacker injects malicious script involving DOM

2. User explores the target webpage and triggers the DOM malicious source

3. The page will receive spiteful request

4. The original website will respond and adapt with harmful issues to user’s DOM

5. When the DOM XSS fills up, hacker may gather victim’s details

The evidence presented thus far supports the idea that modifying DOM elements
can be done directly on URL parameters: http://www.xss.page/search.php?keyword=

<script>alert(’XSS’)</script>. Since this result has been found similar to reflected
XSS, the impacts would be effectively the same.

2.4 Machine Learning

In recent decades, the field of Machine Learning (ML) has exploded, not just to include
jobs that are not only performed on a regular basis, but also on a more extensive basis. In

14

http://www.xss.page/search.php?keyword=<script>alert('XSS')</script>
http://www.xss.page/search.php?keyword=<script>alert('XSS')</script>

2.4. MACHINE LEARNING

MACHINE LEARNING ALGORITHMS

Unsupervised
Learning

K-means
Clustering

Fuzzy
K-means
Clustering

Principal
Component

Analysis
[PCA]

Supervised Learning

Regression

Linear
Regression

Logistic
Regression

Classification

Decision
Tree

Random
Forest

Naive Bayes

Support
Vector

Machines
[SVM]

K-Nearest
Neighbor

Semi-supervised
Learning

Semi-
supervised
Generative
Adversarial

Network
[SGAN]

Graph-based
Algorithm

Robust
Semi-

supervised
Learning

Self-Training

Transductive
SVM

Low-density
separation

Reinforcement
Learning

Value-based

Policy-based

Model-based

Deep
Learning

Autoencoders

Recurrent
Neutral

Networks
[RNN]

Recursive
Neutral

Networks
[RvNN]

Convolutional
Neutral

Networks
[CNN]

Restricted
Boltzmann
Machines

[RBM]

Deep Belied
Networks

[DBN]

Figure 2.8: Machine Learning Algorithms

general, ML is defined as any stimulus that can be used to create an autonomous system
which can perform and master itself after being educated using collected data.

A good example of common use of ML today is a search engine or advertisement
recommendation. A descriptive study differs from an exploratory study in that it is
analyzed by a set of mechanisms that look for patterns in data to forecast what will happen
next.

2.4.1 Machine Learning Algorithms

To figure out how ML works, exploring the related algorithms is needed. Those algo-
rithms are separated into five different types, which is furnished in Figure 2.8. Simultane-
ously, from those algorithms, it might find a classifier that generate a match rule in which
the input object is related, in somehow, to output object. Therefore, through the classifier,
it may realize a model with the capability to hang out the automatic assignments.

Supervised learning is a goal-oriented based method. Before training, you can clearly
know what you can get from there. To be trained, all the datasets need to be afforded with
labels. Therefore, with a deterministic result, it can be easily evaluated.

For unsupervised learning, unlike the supervised one, it does not need the labelled data
due to its uncertain aiming. That’s why the effects are unable to quantify. This type of
algorithms is normally used for intrusion detection, user segmentation or recommendation

15

CHAPTER 2. BACKGROUND AND RELATED STUDIES

systems.

Semi-supervised learning is a model with half labelled data and half unlabeled as indi-
cated by its naming, but usually, it has more unlabeled data than labelled. Although it
seems advantageous for containing a lot of unlabeled data, the semi-supervised learning
model demands much more rules. Therefore, some requirements are actually quite over-
whelming in practical application. However, under the big data era, it still hard to collect
data with label. In this case, it shows its potential.

Reinforcement learning has a very straightforward principle. Once it gets the good
outcome, it will strengthen the same strategy to achieve the best result. Compared with
the supervised and unsupervised systems, this system mainly differs that it learns some
abilities by endless attempt instead of being feed with a massive dataset. Currently, the
reinforcement learning is not mature enough, the application sceneries are still limited.
Whereas it is very popular in big game projects, such as "AlphaGo Zero", "Open AI", etc.
In addition, it also appears in many other fields like balancing control, reasoning ability
and trace tracking.

The deep learning concept derives from Artificial Neural Network. However. it is
unequal to Neutral Network but an upgrade based on it. The deep learning is built
based on the flows, which is a complex data processing. It can be assumed that all
information is a "electricity flow". The input is a power supply, allowing the current to
flow to destiny through a number of interrupters. The big tasks are divided into small
ones and set in multiple layers of the interrupters which are all connected, forming a fully
connected system. This type of model can apply some actions: sanitizing and labelling
data, normalizing, denoising and reducing dimension. The major disparity to the above
algorithms is the artificial, which means that the features are extracted automatically by
machine. Consequently, it performs oneself well but it has poor interpretability.

After reviewing different types of ML algorithms, this research is going to focus on
the supervised learning algorithms. The workflow of this ML model can be defined as the
follows:

1. Choose the suitable mathematical model

2. Provide some known "questions and answers"(training sets) to system

3. Get the training methodology

4. Give new questions to get answers from the methodology (test model)

The supervised part is interjected into the above-mentioned topic 2. As shown in
figure 2.8, it is also critical to comprehend the two types of supervised learning jobs. The
regression is a method for predicting both continuous and discrete numerical values. And
then there’s the classification, which deals with any remaining concerns in discrete mode.

16

2.4. MACHINE LEARNING

2.4.2 Supervised Learning

Supervised learning has three key elements to consider:

1. Model: review the internal logic, describe the system using mathematical terms

2. Strategy: select the optimal evaluation criteria for best model

3. Algorithm: select the specific method of the best model

Simultaneously, the two main types of supervised machine learning problems as men-
tioned before are classification and regression, which are, respectively, responsible for
predicting the class it belongs to (discrete or categorical output), and predicting an exact
value (continuous output).

2.4.2.1 Classification

When the output variable has a finite scatter value, the prediction issue becomes
a classification learning system model in supervised learning. A classification model or
classification decision function, known as a classifier, is learned from data via supervised
learning. Classifiers predict new inputs and export classes or targets/labels or categories.
Classification problems involve two processes: learning and classification. In the process
of learning, according to the known training data set, the machine learns the classifier.
During the classification process, the new input is tested using the learned classifier to get
categories.

To sum up, the key point of the classification problem is to predict category labels from
a predetermined optional list. Its problems can be divided into three groups:

1. Binary classifier: a special case of making a distinction between two categories, such
as 0 or 1, yes or no.

2. Multi-class classifier: making a distinction between more than two categories, like
the grades.

3. Multi-label classifier: turn a problem into one or more single-objective classification
problems or regression problems, e.g. B. the division of a film into action and crime.
In the same case, there can be multiple tags, or it can be divided into multiple classes.
And what differs to the multi-class is that multi-class has only one tag each.

2.4.2.2 Regression

In contrast to classification, the regression has a purpose of predicting a continuous
value, which maps input variables to continuous output variables. A simple example would
be to predict the electricity consumption, money spent, etc.

Regression problems can get target algorithm based on the provided input, which is
called regression equation. The coefficient is predicted through the method below:

17

CHAPTER 2. BACKGROUND AND RELATED STUDIES

1. Plot all input data into a graph

2. Get the most probabilistic line or curve with a coefficient (the minimum between the
line and the points)

2.4.3 Evaluation

After training a model for the classification task, the model’s performance must be
evaluated. An evaluation of the models is performed to determine the value of various
classifiers in terms of demonstrating the speculation with respect to their presentation once
prepared. To survey the exhibition of the models, cross-validation, confusion matrix, and
scores such as accuracy, precision, recall, and F1 are used.

2.4.3.1 Cross-validation

Cross approval [0] is a model assessment technique that separates the preparation
dataset into two sections. The first is utilized to prepare the model and the second is
utilized to test the model. The most widely recognized explicit strategy in such manner is
k-crease cross approval, in which the preparation dataset is separated into k subsets, k − 1

of which are utilized for preparing and the excess for testing. This last option process is
rehashed k times, with each time involving an alternate subset for testing and the leftover
subsets k − 1 for preparing. The typical misunderstanding is that all outcomes related
to all subgroups are not completely settled. The K-Nearest Neighbor (KNN) adopts this
strategy in the current study to find the best k in the range of 1 to 11.

2.4.3.2 Performance Scores

The confusion matrix methodology, as demonstrated in table 2.1, was used to test and
analyze the performance of the classifiers, which is the reason why it is vital to understand
it before digging more into these scoring notions. For each class, this table illustrates both
the correct and wrong classifications that occurred.

Table 2.1: Confusion Matrix

Predicted Class

ClassA ClassB

ClassA TP FPTrue

Class ClassB FN TN

The model is tested after training for each classification task, and the following four
situations happened:

1. True Positive (TP): The malware payloads have been classified as malicious.

18

2.4. MACHINE LEARNING

2. False Positive (FP): The harmful payloads are categorized as benign.

3. False Negative (FN): The malicious payloads are sorted as harmless.

4. True Negative (TN): The benign payloads are assigned as benign.

As can be seen, TP and TN predict positive outcomes, while FN and FP predict
negative outcomes. It’s significant to note that the motivation behind this investigation is
to avoid adding to the number of fictitious problems, which is a drawback of the Artificial
Intelligence (AI) technique. A false positive is a phony problem that poses a risk to the
security of online applications in this examination. This shows that the classifier has
classified a malicious payload as harmless, allowing the malicious payload to be stored
in the web application data set. For the web application, this is a high-risk situation.
Because the harmless payload is segregated and not authorized to be put away in the web
application data set, bogus negatives, in which a harmless payload is erroneously designated
as hazardous, can cause an application failure. This circumstance causes problems with
the program’s functionality, but it is safer in terms of security and does not put the web
application in danger. The accuracy, precision, sensitivity (TP rate), and specificity are all
factors in determining efficacy (TN rate) of the trained model.

2.4.3.3 Accuracy

Regardless of whether the predicted samples are positive or negative, accuracy is defined
as the ratio of accurately predicted samples to total predicted samples. The proportion of
accurately predicted data points to the total number of data points. This value is calculated
by dividing the total number of true positives and true negatives by the total number of
data points, and the formula 2.1 demonstrates how to calculate the accuracy value. Many
of the classifiers used here, for example, can be evaluated based on whether they classified
malicious payloads as malicious and benign payloads as benign.

accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

2.4.3.4 Precision

Precision is defined as the ratio of accurately predicted positive samples to the number
of samples predicted to be positive, or how many of the samples projected to be positive
are real positive samples. Precision only includes parts of the forecast that are positive
samples when making a contract with accuracy, whereas accuracy considers all samples. If
there are no false positives but only real positives, the accuracy is 1. The computation in
equation from is:

precision =
TP

TP + FP
(2.2)

19

CHAPTER 2. BACKGROUND AND RELATED STUDIES

2.4.3.5 Recall

The possibility of correctly anticipating a positive sample from the first sample is known
as the recall rate. In other words, it’s the ratio of the number of true positive samples to
the number of accurate positive samples. The formula below clearly shows how to estimate
recall.

recall =
TP

TP + FN
(2.3)

2.4.3.6 F1 Score

When FN and FP are both 0 and their values are 1, high precision and recall are
required in practice. They are mutually exclusive in other situations, such as this one,
where 50 positive samples and 50 negative samples all predict a positive outcome with a
precision of 1 and a recall of 0.5. As a result, a compromise must be found, and the F1-score
measurement is born. The harmonic average index of these measurements is indicated by
the F1-score, which pertains to both precision and recall. From the calculation equation
2.4, the F1-score drops as either recall or precision decreases, and vice versa.

F1− score =
2 ∗ precision ∗ recall
precision+ recall

(2.4)

2.4.3.7 Execution Time

A key performance metric for a good model is the execution time. The execution
time, as its name suggests, is the amount of time required for the code to run through
the computer (computer). And it goes without saying that the time will vary with diverse
machine capabilities possibilities.

2.5 Existing XSS Detection Mechanisms

A more detailed explanation of different XSS detection mechanisms is given in the
following section. It is important to review detections of different system, for taking the
most desirable measure by analyzing their benefits and obstructions. Those mechanisms
are classified as standard methods, source code analysis and machine learning approaches
as described below.

2.5.1 Standard Methods

The standard methods refer to the principal measure against XSS attack which are
filtering and sanitization. From the web developers’ perspective, it is their responsibility to
do some measure to prevent those kinds of security problems. It can be categorized into:

(A) Input Validation: syntactic and semantic part of the input data is reviewed to
confirm if it is harmless

20

2.5. EXISTING XSS DETECTION MECHANISMS

(B) Input Filtering: it detaches any special character with particular meaning or just
restricts the length

(C) Input Escaping: this technique makes sure that the data is secure before passing
into code execution, whose function is to encode special characters, such as ’<’, ’>’,
’/’ ...

(D) Blacklisting Values: it congests certain behaviors values

(E) Content-Security Policy: it can restrict the JS code allowed on the website

(F) Trusted Types: the input data arguments are required by centralized policy code

2.5.2 Static/Dynamic analysis

On the other hand, in spite of these standard preventions, other works have been done.
The current study focuses on source code of the program, which analyzes in static and
dynamic mode.

In static studies, the root code of the program is tested to identify susceptibilities
beyond the code. Therefore, it scans or crawlers the web application and gets the code
and its properties. According to this, it is able to predict and prevent the future actions.
However, the JS is a dynamic language, as a static analysis, with lack of strict type of
information that will make this study more challenging.

In contrast, dynamic analysis checks the program code under real time execution, but
it cannot access the code that is not executed yet. It is also frequently verified under JS
language. This kind of method will incur runtime overhead and require a lot of engineering
work to modify the complex runtime environment.

In the work[0], Vogt et al. exploit code by tracking sensitive data. If the code is
transferred to a location other than the server, the page will display a request authorization
for the user to pick from. In essence, it can be described as a client-side supplementary
protective layer.

Kirda et al.[0] introduces Noxes, which operates as a mini server, it represents a gateway
between client and real server. Noxes can automatically or manually generate rules that
can mitigate XSS attacks.

Halfond et al.[0] studied the prototype tool called SDAPT, with which it is possible to
implement a system that is composed by two steps. Through static analysis it learns the
input vectors. And with dynamic analysis, it is possible to discover the vulnerabilities in
real-time execution of the web application.

Shar et al.[0] employed a hybrid (static and dynamic) analysis to find all potentially
hazardous input code. As the first step, it plays a critical function. It is feasible to train
the data and use machine learning methods to create a model that detects and prevents
XSS vulnerabilities using those properties.

21

CHAPTER 2. BACKGROUND AND RELATED STUDIES

The above approaches are summarized in the table 2.2. In addition, the limitations are
reviewed, since they are useful suggestions for this study.

Table 2.2: Literature comparisons in static and dynamic analysis

Literature Technology Limitations

[0] Tainting and static analysis Taint variables relies on dependencies

[0] Generating rules Cannot handle DOM based XSS

[0] Hybrid approach Bad effectiveness and not automatic

[0] Hybrid with ML approach Low accuracy

2.5.3 Machine Learning Analysis

Recently, with the growth of the ML popularity, more and more researches have been
done under this topic. As a result, the problem reveals an importance to study and
implement. This section is going to discuss the diverse XSS attack prevention approaches
based on machine learning algorithms.

Choi et al.[0] advised to use N-gram and SVM classifier to determine untrusted input
string. The N-gram is a probabilistic category of language model which is represented
by endless subsequence of N successive tokens that will be used for the detail abstraction.
SVM algorithm is adopted for nonlinear partition. The tokenizer takes over the validate
data and breaks data into tokens and decodes it. Although, the tokenizer must be trained
repeatedly for latest harmful codes.

Table 2.3: Predicting results of the literature [0]

Algorithm Recall Precision

Support Vector Machine (SVM) 0.985 0.98

KNN 0.978 0.974

Grupta et al.[0] proposed SVM, NB, Bagging, J48 and JRip classifiers (machine learn-
ing) to deduce user input situation attributes and other basic attributes (input, output,
validation and sanitization routine characteristics). The table below shows the results of
this study.

Another work from Gupta et al.[0] shows that the automatic system can spot JS evil
code, which is estimated by three key representatives of PHP Web page: XSS Attack Vector
Injector, HTML Crawler and Script Locator. In this system, the detection rate has reached
80%.

22

2.5. EXISTING XSS DETECTION MECHANISMS

Table 2.4: Predicting results of the literature [0]

Algorithm Accuracy Precision

SVM 0.889 0.887

Naive Bayes 0.695 0.678

Bagging 0.926 0.934

Random forest 0.876 0.869

J48 0.92 0.929

JRip 0.836 0.992

Shar et al.[0] recommended prognosis based on classification and clustering mechanism
to process the attack. To reach the hybrid features to anticipate XSS vulnerabilities via
supervised and unsupervised learning, it starts from a static process that prepares an
organized security-related nodes, and then those nodes are sent for paired function to be
categorized.

Table 2.5: Predicting results of the study [0]

Algorithm Recall Precision

Logistic regression 0.86 0.84

Multi-Layer perceptron forest 0.78 0.89

Another work from literature[0] supplements their prediction to enhance the precision
by increasing the benefits came up with the hybrid study. In addition, more evaluations
must be done to take the advantages of integrating various proposals in prediction model.
The related results about XSS detection are presented in table below:

Table 2.6: Predicting results of the hybrid and semi-supervised learning approach

Algorithm Recall Precision

Logistic regression 0.73 0.61

Random forest 0.72 0.70

The study[0] implemented the model which was built in two major steps: first, to create
a features extractor that can get the feature on its own, and secondly, using the features,
the computer can identify the feature as harmful or not.

Rui wang et al.[0] present a detection method with their own input vector features ex-
traction, which is based on the n-gram model. Then the study has also made a combination
between diverse classifiers, and finally created their own classifier. The author suggested

23

CHAPTER 2. BACKGROUND AND RELATED STUDIES

Table 2.7: Predicting results of the study[0]

Algorithm Recall

ADTree 0.952

ADABoost.M1 0.958

two implementations. The first one is based on classifier to detect in code level, and then
uses the improved n-gram. The second implementation is based on the first but beyond it.
Finally, it uses another classifier to conclude the detection system.

Table 2.8: Predicting results of the literature[0]

Algorithm Recall Precision

1st implementation 0.965 0.900

2nd implementation 0.954 0.918

[0] suggested the utilization of supervised learning algorithms to detect XSS attacks.
It has two phases, the first is collecting malicious code features, and then the authors
used SVM classifier to train the machine over the dataset collected and preprocessed with
extracted input vector features.

Table 2.9: Predicting results of the research [0]

Algorithm Accuracy Precision

SVM 0.954 0.956

Zhou et al.[0] proposed the model with Bayesian network, which is based on the features
extracted from ontology of XSS. To increase the performance, the authors have combined
the bagging and majority voting method to get an ensemble technique.

Table 2.10: Predicting results of the research [0]

Algorithm Accuracy

Proposed model 0.985

Sharma et al.[0] has aimed for a model which is based on three classification algorithms:
J48 (decision tree), one rule (rule system) and Naive Bayes. It uses the J48 to evaluate the
algorithm chosen and it can improve the performance of it. The one rule is used for choosing
the best rule to fit the detection. And the Naive Bayes is for probability determination of
the issue belonging to each class.

24

2.5. EXISTING XSS DETECTION MECHANISMS

Table 2.11: Predicting results of the model[0]

Algorithm Recall Precision

J48 0.945 0.947

Naive Bayes 0.94 0.945

One rule 0.925 0.931

In[0], the authors resolved the problem based on generic algorithm and reinforcement
learning to deal with payload patterns. Due to the generic algorithm, it is necessary to
find the chromosomes that is the features extracted of the malicious code. After it, the
machine is trained and fitted with those patterns and it can find the similarities for the
input source, which is XSS code.

Table 2.12: Predicting results of the approach[0]

Algorithm Recall Precision

Proposed model 0.998 0.999

Munonye et al.[0] has contemplated seven supervised learning algorithms. In this model,
the system takes the relationship as a key point based on the state transitions of the input
parameters. Through this, it is possible to generate different state on the output. And it
just needs to focus on the workflow. Thus, if there is a change between input and output,
it means there is a vulnerability.

Table 2.13: Predicting results of the research [0]

Algorithm Recall Precision

Gradient Boosting 0.747 0.803

Random Forest 0.677 0.782

Naïve Bayes 0.700 0.694

Decision Tree 0.718 0.735

KNN 0.690 0.751

Logistic Regression 0.795 0.786

SVM 0.689 0.714

A recent research [0] implemented ensemble-based ML method, which is composed by
five classification algorithms: linear regression, decision tree, k-nearest neighbor, SVM and
Gaussian Naive Bayes (Gnb). This is a normal classification method but based on those

25

CHAPTER 2. BACKGROUND AND RELATED STUDIES

five algorithms instead of only one. This technique has reached high accuracy and it has
been compared to each of the algorithms in use (table 2.14).

Table 2.14: Ensemble-based ML Techniques

Algorithm Accuracy Precision

Linear regression 0.71 0.706

Decision tree 0.971 0.971

KNN 0.885 0.887

SVM 0.725 0.722

Gnb 0.617 0.671

Ensemble 0.981 0.982

As machine learning has become popular, many studies have found a solution to this
kind of problem, but it still has its limitations to get a perfect score on an assessment, and
it can be helpful for the user in daily life. This is the reason for this study, to create a
program that can be easily used in our daily life and that will guarantee our privacy.

2.6 Summary

It is easy to recall the flaws of each consideration from several works. Based on the pre-
vious work, it is possible to complete a better model to recognize significant vulnerabilities
of XSS attacks.

To sum up, after examining the literatures supplied above, the researches may be
generalized with the following flaws:

1. The XSS code can be obfuscated to avoid the detecting, resulting in bad readability
that cannot be identified.

2. Current technology cannot take advantage of relational information provided by
injected XSS code.

3. Combining three or more ML algorithms is required for improved efficiency and
performance, which adds to the effort.

As seen, supervised algorithms work better than others. So far, this work has focused
on determining the most appropriate combination of two supervised algorithms to achieve
the best performance in combination with learning-based automatic text feature extraction.

26

3

Datasets

This chapter tries to prepare the datasets for them to be trained and tested in real-world
scenarios. The process includes benign and malicious data collecting from different Web
pages using crawler tools, selecting and extracting identifiable features of the typical XSS
attack from collected payloads as well as the process of splitting instances in training and
testing data.

3.1 Data Collect

XSS is becoming increasingly complex as network technology advances. Because of
the prevalence of obfuscation techniques and the rising complexity of semantic reasoning
in attack statements, previously identifiable XSS attacks are becoming difficult to detect.
The use of obfuscation techniques and the addition of complicated semantic logic make the
initial vulnerabilities more difficult to detect. To begin with, the steps to create a template
are shown in the figure 3.1 as followed.

Collect Data Extract Features of XSS Split Data

Model FitModel TrainModel PredictEvaluate Model

Figure 3.1: Model Creation Steps

This dissertation heavily relies on JS scripts and Hypertext Transfer Protocol (HTTP)
payloads, hence using a dataset library is expected. The payloads of JS and HTTP requests
are acquired via a crawler using GitHub crawler tools [0], taking the malicious data from
[0] site and the benign payloads from trusted web pages.

In simple terms, a web crawler is an automated program that accesses a website, extracts
and stores the information it collects. The process usually goes like this: There are usually

27

CHAPTER 3. DATASETS

many third-party libraries that can help with development. Users can easily use these
libraries to simulate real HTTP requests and access requests and responses that can be
represented in data structures provided by third-party libraries. Therefore, only part of the
body needs to be scanned to analyze the content of the response, useful for later content
analysis. The next step is information extraction. In this process the crawler retrieves the
information content from the website and this content needs to be analyzed and extracted
into the data required by the crawler. Finally, after successfully extracting the information,
the robot should save the information data in the specified location.

In this investigation, the template of dataset collected has in total 400000 instances in
total, which contains half normal data and half malicious XSS data. For the first analysis,
the data is divided into training and testing in a ratio of 80:20. In order for the model to
work properly, the 20% of tests are enough to get the final results, because of the large
amount of data available, we don’t have to compromise and can use more of it to train the
model. The table below 3.1 summarizes all the information gathered.

Table 3.1: Collected datasets

Usage Malicious Normal

Training 160000 160000

Testing 40000 40000

Total 200000 200000

For a better idea of what the load looks like after the search, it is shown in figure 3.2.

Figure 3.2: XSS payloads collected

3.2 Features Extraction

Since the gathered payloads may contain specific issues that cannot help our analysis,
and all the instances aren’t coordinated in any way, different arrangements should be made

28

3.2. FEATURES EXTRACTION

at prior to continuing with include extractions. Here are the means to considerate before
passing into model classification:

• Eliminating additional spaces as well as extra lines:
The programmers usually use a lot of spaces or extra lines while writing the script
code to have a better structure and make the programming process easier. As a
result, to avoid the machine taking confusion while analyzing these untreated original
codes, it is important to remove all these extras before passing the blacklist filters.

• Lowercasing all letters:
The JS language is a case sensitive language, while the HTML language isn’t. Hacker
can handle diversity of the code using exchange between capital or lower case in order
to bypass the normal filters. The simple code ‘<iFrAMe sRC="javascript">

</IFraMe>’ the tag ‘<iFrAMe’ is a HTML tag and “sRC” is the attribute for this tag,
so those aren’t influenced by JS case sensitive rules. But, the code inside “sRC” needs
to be case sensitive. Through these manipulations it is able to bypass some of the
rules present in blacklists.

• Removing duplicated data:
Duplicated data are not only useless for computer analyze, but also take wrong
proportions to it. That is the reason for removing it.

• Converting ASCII codes:
Some sensitive and most used codes are normally present in blacklists. To overcome
this, the hackers usually use combination of ASCII code and normal letters to disturb
the filter list and bypass it. Consequently, this is also an important topic to consider
in dataset treatment.

These methods are founded on the principle that everything should be planned in the
same way. Alphanumeric and non-alphanumeric characters are two types of characters that
must be considered in those HTTP payloads.

As the name indicates, non-alphanumeric category is looking for symbols, punctuations
and, combination of both. It is summarized in table 3.2. With an addition of an ordinary
accentuation, an attacker might embed JS pernicious code into a site page. With the usage
of these non-alphanumeric characters, hackers can add some garbage into a normal script
or code. It is a common technique for hacker to bypass the normal network defenses, thus
it makes the malicious code more difficult to detect. The logic behind this usage is that the
computer cannot resolve the additional unrecognized symbols, and the attackers inject it
to make the script seems more confuse so that it cannot be filtered by the normal blacklist.
The blacklist is a list of danger stuffs that can be inserted by an attacker, such as tags or
attributes or even symbols. When the application receives the user inputs, it will filter it
with these blacklists.

29

CHAPTER 3. DATASETS

For instance, in a normal Web application the brackets ‘<’, ‘>’ are very common in
the blacklist. If it is the filter case, the hacker pretend to insert a‘<’, and then it needs to
add one more ‘<’ or other codes to bypass. So, if the hacker intends to insert the code:

<SCRIPT>a l e r t ("XSS")</SCRIPT>

Then, the code inserted to be filtered should be:

<<SCRIPT>a l e r t ("XSS") ; / /<</SCRIPT>

It is because the brackets and some punctuations are filtered, so the final result is what
the hacker need.

Table 3.2: Non-Alphanumeric Features

Features Terms

Punctuations &, %, /, +, ’, ?, ., #, =, [,], $, (,), ,̂ *, -, <, >, @, _, :, {, }, |, "

Combinations "><, ’"><, [], ==, &#, //, <

Each of the combination of the symbols has different meanings. All those features are
described and explained in the table 3.2.

(1) “><, ’”><
Normally, those two symbol combinations are used to close the previous tag and
begin a new tag with an executable code.
The example of the code is: “"><script> alert("XSS") </script>”, which refers
to ><script> alert("XSS") </script>.

(2) []
Through PHP-Shell, it is possible to inject encoded malicious code with those double
brackets, thus it can be insert into a server request.
The following is an example of an alert which says ’Hacked’ covered with script tags:

' (++[]) [−^[]]+(! []+ []) [−~ −~ []]
+([] [+ []]+ []) [−~ −~ −~ []]+(! ! []+ [])
[− ~ []] + (! ! [] + []) [+ []]) ; '

(3) ==
Hackers can use double equals to perform the logical operations (if, for) or use base64
encoding method to encode vulnerable payloads.
Also as a same example of the base64 encoding for alerting ’XSS’ text covered with
script tags:

30

3.2. FEATURES EXTRACTION

PHNjcmlwdD5hbGVydCgnWFNTJyk8L3NjcmlwdD4==

(4) &#
Through the Decimal form encryption, hackers are able to avoid the blacklist filters
of the HTML tags, and, consequently, insert malicious code.
The code is the same as encrypted decimal
form of the refered HTML entity:

\&\#60;\&\#73;\&\#77;\&\#71;\&\#32;
\&\#83;\&\#82;\&\#67;\&\#61;\&\#106;
\&\#97;\&\#118;\&\#97;\&\#115;\&\#99;
\&\#114;\&\#105;\&\#112;\&\#116;
\&\#58;\&\#97;\&\#108;\&\#101;
\&\#114;\&\#116;\&\#40;\&\#39;\&\#88;
\&\#83;\&\#83;\&\#39;\&\#41;\&\#62;

(5) //
Double slashes helps the hacker bypass the filters of those normal blacklists, normally
used in redirecting to other URL or escaping JS vulnerable codes. For instance, the
redirection of URL is present in the following code:

(<SCRIPT>var a="\\" a l e r t ("URL") ; / / ";</SCRIPT>)

(6) <
After decoding, the symbol “<” is the same as “<”. Thus, the hacker can use it to
insert HTML tags, because these tags are normally beginning with “<”. Usually in
XSS attacks, the “script” and “img” tag is especially important for inserting JS file.
Consequently, hackers intend to take ‘< script >’ rather than normal ‘’<script>’
tag.

The alphanumeric properties, on the other hand, are crucial for identification. Hackers
frequently use keywords or key tags like “script” or “image” to implant harmful executable
scripts or malware. The executable code should be written in JS due to the characteristics
of Web applications. These JS code should be covered between “script” tags for becoming
executable, which is the reason the term “script” is filtered. Other alphanumeric features
include DOM events let the script to listen for the target user’s click and redirect the user
to the XSS page, which is not declared in the application. The password can then be sent
to the hacker from here. This feature’s reasoning is different from that of non-alphanumeric
features. Non-alphanumeric qualities can be used to get around the blacklist, but the
attack’s performance is largely dependent on alphanumeric ones, so it’s critical that the
application can prevent it. All these features can be found in the table 3.3 below.

31

CHAPTER 3. DATASETS

Table 3.3: Alphanumeric Features

Features Terms Description

Readability If the script is not readable for human, then it has a
high possibility that it gets encoded. As a result, it
becomes more difficult to decipher and prevent the
vulnerabilities.

Objects document, win-
dow, iframe,
location

The objects in JS are useful for programmers to use
when accessing online APIs. The code can impact
the normal application and turn it into a susceptible
one by using these APIs.

Events onload, onerror,
onclick...

The events in JS can signify that something dynamic
on a web page has occurred, such as user clicks,
keyboard inputs, page loading state, or even the
specified time countdown. The hacker can introduce
code to handle various events in order to force the
user to click on a malicious link, allowing the hacker
to get access to his machine.

Methods,
Functions

String.normalize,
Search, Array,
eval...

Functions and methods in JS, like any other lan-
guage, are pre-defined processes that programmers
can utilize to solve implicit problems. The hacker
can easily reuse them and discover a means to enter
harmful code outside the filter’s influence by em-
ploying a single or combination of the methods and
functions. The “eval” function in JS, for example, is
used to evaluate a sentence in a JS context, result-
ing in a JS executable, which a hacker can exploit
by inserting harmful code into.

Tags div, img, script,
break, line

As mentioned in section 2.2 of chapter 2, the HTML
language is merely a descriptive language, which it
is made up of tags. For example, using the “”
tag to insert image sources or the “<script>” tag to
enter script sources to be recognized by the browser.
As a result, rather than entering malicious code
directly, hackers might examine susceptible code
within a script file or simply introduce a malicious
link through the “src” element of the “” tag
to request client access, resulting in an XSS attack.

32

3.2. FEATURES EXTRACTION

Table 3.4: Alphanumeric Features

Features Terms Description

Attributes src, href, cookie As described in the tags feature, tags must be used
in conjunction with the characteristics of it in order
to function effectively. Therefore, this is another
crucial criterion to consider. Like the cookie charac-
teristic, this is utilized by the computer to differen-
tiate between distinct users. Cookies are required
for all online data that requires user identity to be
saved in databases. As a result, cookies behave as
a key to gain access to the user’s privacy. If the
hackers capture this key, they will have access to all
the user’s personal information. The most obvious
example is the use of the credit card. If the user’s
credit card is linked to the account, the hacker can
easily purchase items from online stores and pay
with another card.

Reserved
words

var, let, const... The JS programming language, like any other pro-
gramming languages, features a large number of
reserved words. Variable declaration can be done
with “var”, “const”, or “let”; any of these can assist
the hacker in defining variables to complete the ma-
licious code of the attack.

Protocol HTTP, HTTPS Over a TCP connection, the browser and server can
interact using HTTP or HTTPS. These protocols
allow the browser to transmit and receive payloads
from the server. This method is used by hackers to
transmit malware to a server and have them stored,
granting them access to all data saved on it. As
a result, the payloads of direct network protocols
must be filtered before being stored in databases or
shown on the client side.

External file .js, .css External files that can be inserted into a browser
are usually script files in the “.js” format or style
files in the “.css” format. External file importation
allows a cyber criminal to implant malicious con-
tent inside a file, skipping the blacklist, whilst the
browser can execute these programs and disrupt the
application’s normal operation.

33

CHAPTER 3. DATASETS

Table 3.5: Alphanumeric Features

Features Terms Description

JavaScript
Command

alert, prompt,
console.log

The typical program can easily throw up a redirect
link to request the user to click it and take him or
her to another susceptible webpage, thereby being
attacked, using JS commands like “alert”. Other-
wise, if the user does not accept to be redirected to
another page, this dialog will repeat itself until the
user agrees to proceed to another site. As a result,
it is vital to draw attention to and prevention.

Letters,
numbers

ASCII codes In a computer, all the letters and symbols are, at the
end, transformed to zeros and ones. Therefore, the
hacker can write the planned dangerous program
using the most basic symbols - ASCII characters.
As a result, the ability of ASCII codes to perplex
machines is an important characteristic to consider.

For model training, characteristics extracted from crawling cross-site scripting data are
gathered. This investigation has considered four significant features for extraction: the
length of the payload, whether it is URL or not, the number of non-alphanumeric (symbols)
content, and the number of alphanumeric (words) content. The tables 3.6 and 3.7 give the
examples of the malicious or benign payloads and the respective characteristics extracted
of them.

The length of each payload is the first characteristic to examine between the instances,
as indicated in section 3.2. User inputs, whether it is the messages or the search contents,
are usually not as long as the executable code or script file. As a result, the transmitted
payload length should be kept to a minimum and so take difference for machine analyzes.

The type of input is the next point to examine. It leverages the terms “HTTP” or
“Hypertext Transfer Protocol Secure (HTTPS)” from network transmission protocols to
distinguish whether the respect payload is URL or not. It is a URL if the data has the
appropriate protocol; otherwise, it is not. Examining the syntax used, as well as the links,
files, or JS commands inserted, will make a difference.

It is feasible to generate a dictionary of malicious symbols and words using the tables 3.3
and 3.2 defined above. In order to extract them, Regular Expressions (RegEx) methodology
is used; the characteristics are simply extracted using this technique and the dictionaries
defined with alphanumeric and non-alphanumeric features. The RegEx approach uses a
standard and agreed-upon format and regular code to get or change anything that follows
a stated rule.

34

3.2. FEATURES EXTRACTION

Table 3.6: Features extraction of malicious payloads

Features
Payloads

Length Is URL Symbols Words

/%3Cscript%3Ealert("XSS") 25 no 7 2

?%3Ciframe%20src=http://xxs.js%3E 40 yes 13 5

/?a=le%3Cimg%20src=1%20onerror=alert(1)%3E 46 no 11 5

The third payload of the table 3.6 is used to show how it works in further detail. To
begin with, the instance is 46 characters long, and all that requires is to count the letters
and symbols. Then, if it’s a URL, it must have a network protocol, such as HTTP or
HTTPS, while it’s not a URL if it doesn’t. The number of symbols denotes the quantity of
symbols present; hence, there are 11 symbols. Finally, the words stand for the frequency
of alphanumeric characteristics. There are four: the ‘’ tag, the ‘src’ attribute, the
‘onerror’ event, and the ‘alert’ JS command.

The similar method is used in table 3.7 for benign cases. For same type of analysis, the
third message has 22 pieces of writing. It is a URL since it starts with HTTP. It contains
7 symbols and there are no alphanumeric properties.

Table 3.7: Features extraction of benign payloads

Features
NO. Payloads

Length Is URL Symbols Words

1 /stylesheet.php?version=1331749591 34 no 4 1

2 /135482/ 8 no 2 0

3 http://.:80/nessus.txt 22 yes 7 0

4 /javascript/javascript.key 26 no 3 2

35

CHAPTER 3. DATASETS

Figure 3.3 shows what happens in a real project and how the feature extraction process
is implemented in Python language.

Figure 3.3: Extract XSS features process

3.3 Summary

This chapter is the initial stage in the investigation’s practical component. It details
the numerous datasets used, their sizes, and how they are put together, as well as how
the data is acquired in comparison to their sources. It also includes a description of
the component determination cycle and how they are handled in the testing, with each
trademark explained in detail alongside the hijacking process with which it is linked. The
mechanism for extracting highlights from payloads is also investigated. It also makes sense
of the relationship between individual highlights and a class, as well as the level of the
relationship between them.

36

4

Classifiers

A variety of classifier types are utilized in the present chapter to develop models that
can detect XSS, built using the extricated characteristics which have been depicted in
Chapter 2. Decision tree, SVM, KNN, linear regression, Gnb and random forest classifiers
are totally developed through features which can be extracted as (0,1) values and later
learnt via prepared model, showing the aftereffects of the prepared model at the end.

4.1 Train Model

In this chapter, it comes the model fit and train step. To detect attacks, the selected
characteristics are used as inputs for training the classifiers. The decision tree classifier uses
features with values ranging from 0 to 1, reflecting the fraction of the feature included in
the payload. All the classifiers mentioned above are tuned using a variety of parameters in
order to attain the best classification results across all of them. The classifiers are trained
using supervised learning as a general approach. These ML algorithm are chosen due to
the well-known approaches to categorization and consistent results for the Web attacks
detection.

Furthermore, relevant parameters for use in developing the model have been discovered.
These parameters have been tweaked to produce the best outcome, and the optimization
is presented in respect to each classifier separately.

4.1.1 Linear Regression

Opposed to mathematics, statistics and biology, many techniques of machine learning
come from other subjects, limited to the infancy of it. And linear regression is no exception.
It’s a method that comes from statistics.

Feature contraction or feature selection in linear regression refers to the selection of a
subset of features to be included in the model from the available features in order to lower
the model’s dimension. On the other hand, it refers to reducing the size of the coefficient
estimations, which can be zero. It’s worth noting that if the coefficient is reduced to zero,

37

CHAPTER 4. CLASSIFIERS

the related variable is removed from the model. As a result, this circumstance might be
thought as feature selection.

Feature selection or feature contraction is a technique for improving simple linear
regression. There are two basic reasons why changes may be required:

1. Precision of prediction: linear regression estimates have a low bias and a high vari-
ance or over-fitting. To reduce variance and improve model stability, the model’s
complexity (the number of parameters to be estimated) is lowered, but at the cost
of introducing additional deviations. If the best site for the overall error can be
identified, the accuracy of the model’s predictions can be improved by reducing the
variance in the error produced by the error that is easiest to detect.

2. Interpretability of the model: it is challenging to get a handle on each one of the
connections among the factors since there are an excessive number of prescient factors.
At times, few factors can be distinguished that have the best effect, consequently
forfeiting a few factors to upgrade the interpretability of the model.

Starting with simple linear regression, it will model y target to p predictions or linear
features X groups:

f(X) = β0 +

p∑
j=1

Xjβj (4.1)

In the model, there is p + 2 parameters which must be calculated from the training
data:

1. The effect of the corresponding feature on target prediction is shown by the p char-
acteristics of p’s beta coefficient.

2. An intercept parameter, shown by the letter β above, is a forecast in which all
X is equal to zero. It is not necessary to include it in the model, and in some
circumstances it should be eliminated, as seen below. However, it usually provides
the model additional flexibility.

3. A variance parameter of the Gauss error term.

Finally, the table 4.1 is a result of the linear regression model’s evaluation.
The experimental results are based on the expressions explained in Chapter 2, Section

2.4.3, which in practice means using functions already available in Python’s package -
sklearn, as shown in Figure 4.1.

By putting everything together like this, the model can be easily created as shown in
the code in Figure 4.2.

38

4.1. TRAIN MODEL

Table 4.1: Linear Regression Evaluation

Linear Regression Results

Accuracy Score 98.3087%

Precision Score 96.0613%

Recall Score 87.8135%

F1 Score 91.7524%

Confusion Matrix [[53931, 234],[792, 5707]]

Figure 4.1: XSS evaluation process

39

CHAPTER 4. CLASSIFIERS

Figure 4.2: Create model process

4.1.2 Decision Tree

The decision tree classifier model has in base supervised machine learning method. This
method has a tree structure, also called top to bottom architecture. In this structure the
tree is composed by:

1. Root Node: The root node of the classification, has a high degree of relevance.

2. Branches: representing feature choices, the intermediate decision making process,
where each node is comparable to a partition of the data set. When there are more
features than nodes, the data is divided into smaller chunks.

3. Leaves: representing the class (labels) or targets, and the final decision is made at
the leaf node.

Each node holds a set of samples that are separated into sub-nodes based on the feature
test results, with the root node containing the entire set of samples. A decision test sequence
corresponds to the path from the root node to each leaf node. So, once the decision tree
is built, all we have to do now is to judge the samples from the root node layer by layer,
till we reach the leaf node. In the decision-making process, we can also rank features in
the order of relevance from top to bottom, which explains why the tree model contains
a feature parameter. The function seeks to return the most appropriate classification for

40

4.1. TRAIN MODEL

an instance by starting at the root of the tree and going through the branches (decisions)
until it reaches a leaf, from which the class (label) is obtained.

The selection process and feature segmentation, more specifically, how to build and
prune a decent decision tree, are the most challenging aspects of this technique. There are
three primary steps that can be completed in the described algorithm:

1. Feature Selection: the detection of the XSS attacks is presented in the section 3.2.

2. Build Process: calculate information gain or other indicators to find the best feature.
The decision tree is built recursively from the root node, with the locally optimal fea-
tures selected continually to split the training set into subsets that can be categorized
roughly correctly.

3. Pruning process: pre-pruning and post-pruning are two typical pruning techniques.

The input data is classified as normal or dangerous payload using a decision tree classifier.
Because it requires examination of all possible choice outcomes and traces every path to
a conclusion, this algorithms was employed to classify the scripts. A decision tree that
employs all its features if there are no constraints risks overfitting because it will exhaust
all its features throughout the generation stage until the stop condition. The number of
leaf nodes is at its highest point at this point, and the more leaf nodes there are, the more
probable there will be over-fitting and a lack of generalization ability, necessitating pruning
to overcome it.

Furthermore, the decision tree technique makes classifications quickly and works well
with extremely non-linear data. As a result, the decision tree classifier is a good option for
these types of classifications. This type of classifier is also useful for the first in the series
of cascading classifiers used to identify XSS vulnerabilities on Web applications. The table
4.2 shows the results of the trained decision tree model, and all the evaluation methods
will be explained later in 2.4.3 section.

Table 4.2: Decision Tree Evaluation

Decision Tree Results

Accuracy Score 99.4939%

Precision Score 97.8812%

Recall Score 97.3842%

F1 Score 97.6321%

Confusion Matrix [[54028, 137],[170, 6329]]

41

CHAPTER 4. CLASSIFIERS

4.1.3 Support Vector Machine

The support vector machine classifier model is another supervised learning approach
that is beneficial for detecting susceptible code. The classifier learns from samples, each of
which has a set of attributes associated to class names (labels) in some way. The presence of
these traits is then used by the classifier to predict the classes of new data. The purpose of
SVM is to devise a mathematically efficient method for separating important hyperplanes
in a high-dimensional feature space. Support vector machines can be utilized in both
classification and regression supervised learning. SVM is based on Vapnik’s statistical
learning theory [0], which focuses on pattern classification problems and includes a method
in which the feature-space is divided into two subspaces using a two-way linear function.
The hyperplane defined by this function divides the multi-dimensional space into two
areas, one representing one class and the other representing non-membership of that class.
To map the feature space into a new features space in such way that the class-dividing
hyperplane may be described in a linear form, non-linear functions are also utilized. In this
study, a linear kernel and a Gaussian Radial Basis Function (RBF) kernel were used [0].
The polynomial kernel was also examined, but the results were not as good as the other
two, therefore it was not considered. Both considered kernels are used to categorize web
application attack. These kernels are used to distinguish between payloads, whether they
contained malicious or benign scripts.

The equation 4.2 describes the expression for the linear model, where the x1 xn are the
n characteristics for the model input and θ0 θn are the parameters of the n+1 linear model.
The express of the SVM model is obtained by substituting fi for xi in the linear model, as
illustrated in the equation 4.3, where fi is the kernel function of the xi, i.e. the non-linear
polynomial term of xi, for example f1 = x1 ∗ x2. SVM and linear regression are quite
similar as shown. Because of the non-linear polynomial factor, SVM may fit non-linearity
very well, but it is influenced by noise.

hθ(x) = θ0 + θ1x1 + θ2x2 + ...+ θnxn (4.2)

hθ(x) = θ0 + θ1f1 + θ2f2 + ...+ θnfn (4.3)

SVM is chosen because it is a common supervised learning method that can learn
from examples to predict new data, and the model will be trained using the XSS dataset.
Furthermore, the purpose of SVM is to orient the hyperplane as far away from the nearest
member of both classes as possible in order to find a hyperplane that divides the two
categories and has the highest margin of both classes. This can be used with the XSS
dataset because the margins between the two classes are meant to be as wide as possible in
order to achieve high classification accuracy. As a result of the preceding, SVM classifiers
with a linear kernel and RBF kernel are developed, and the evaluation results are showed
in table 4.3.

42

4.1. TRAIN MODEL

Table 4.3: Support Vector Machine Evaluation

SVM with Linear Kernel Results

Accuracy Score 98.3087%

Precision Score 96.0613%

Recall Score 87.8135%

F1 Score 91.7524%

Confusion Matrix [[53931, 234],[792, 5707]]

SVM with RBF Kernel Results

Accuracy Score 98.2642%

Precision Score 98.8343%

Recall Score 84.7977%

F1 Score 91.2795%

Confusion Matrix [[54100, 65],[988, 5511]]

4.1.4 K-Nearest Neighbors

KNN is a classification method that sorts new data into categories based on the previous
encountered instances which are closest in terms of feature space. This strategy is also
applicable to both classification and regression. By evaluating the distance between new
inputs and training instances, KNN tries to analyze the similarity between fresh input and
examples of the training data. New data is classified using KNN by the most common class
discovered among its closest neighbors in space. In order to identify XSS payloads, the
approach has been used to classify input data as malicious or benign [0]. To summarize,
the algorithm’s markable phases are as follows:

1. Each sample point in the training sample and the test sample is measured and the
distance between them is determined.

2. Sort all the distance values that have been determined.

3. Choose a sample of the first K minimum distances.

4. To get the final classification categories, vote on the k label samples.

The distance between two instance points in feature space represents their degree
of similarity. Distance metrics such as Euclidean distance 4.4, Manhattan distance 4.6,
Minkowski distance 4.5, and others are routinely used, and this work solely uses the default
Minkowski distance to train the model. The distance between two or more points in
definition implies Euclidean distance in Euclidean space, and the N features of the sample

43

CHAPTER 4. CLASSIFIERS

data are represented by the value on axis x1 xn. The Manhattan distance is calculated
by adding the projected distances of lines formed at fixed right angles to Euclidean space.
Minkowski distance is a collection of distance definitions that is a generalization of many
distance measuring formulas. The European and Manhattan lengths are both variants of
the Minkowski distance.

d(A,B) =

√√√√ n∑
i=1

(xia − xib)2 (4.4)

d(a, b) = p

√√√√ n∑
i=1

(|xia − xib|)p (4.5)

d(a, b) =

n∑
i=1

(|xia − xib|) (4.6)

The reason for using KNN is that it does a test to see how close the new instances are
to the training data before storing a large amount of categorized data. In this study, the
model will identify instances that are closest to the training space as harmful or benign.
KNN uses the distance between an unknown instance and the nearest training instance to
categorize unknown instances, with classification based on the majority vote of neighbors.

The number of neighbors evaluated for each classification can be modified to fine-tune
the KNN classifier. As k declines, the model becomes more sophisticated, and the filter
becomes more prone to over-fitting due to noise in the training data. The model becomes
simpler as the value of k grows. Because the KNN may contain distant and heterogeneous
data points, the nearest neighbor classifier may misclassify the test sample. If k is too large
in the application, k is typically chosen as a smaller value, and cross-validation (explained
in the section 2.4.3.1 of the chapter 2) is performed to determine the best k value. In the
current model, k = 10 is found to be the best k. The findings are shown in table 4.4 and
the experimental results in the figure 4.3.

Table 4.4: K-Nearest Neighbors Evaluation

K-Nearest Neighbors Results

Accuracy Score 99.4873%

Precision Score 97.2511%

Recall Score 97.9843%

F1 Score 97.6163%

Confusion Matrix [[53985, 180],[131, 6368]]

44

4.1. TRAIN MODEL

Figure 4.3: Cross-validation process

4.1.5 Random Forest

Random forest is another classification approach that incorporates a number of tree-
based predictors. Each tree is constructed using randomly chosen variables. All the trees in
the forest have the same distribution. More trees lead to more accurate results in a random
forest classifier. Random forests are characterized as “Methods that embody the level of
integrated learning technology” since they are simple, quick to build, having low computing
overhead, and, even more surprising, demonstrate excellent results in classification and
regression. The random forest algorithm can be broken down into the following steps:

1. N samples from the data set are chosen as a training set using the bootstrap method.

2. To construct a decision tree, use sampling to obtain a sample set. Each node’s
generation includes the following steps:

• D characteristics are chosen at random on a regular basis.

• To divide the sample set and determine the best feature, D features are utilized.

3. Steps 1 and 2 are repeated k times, where k is the number of random decision trees
in the forest.

4. To obtain the forecast test sample, the random forest, and the decision to anticipate
the results of the voting method.

All the above steps are clearly shown in the figure 4.4. The random forest is chosen
as the model for categorizing payloads as malicious or benign because of its flexibility in
accommodating binary, category, and numerical information. The XSS dataset has a large

45

CHAPTER 4. CLASSIFIERS

Original Training Samples

Bootstrap Resampling

Sample 1 ... Sample n

...

Class 1

Tree #1 Tree #... Tree #n

Class n...

Final Class: Majority Voting

Figure 4.4: Random Forest Process

number of attributes, and while the random forest can only operate with a subset of them
at a time, it can manage hundreds. Outliers are handled similarly by the random forest,
which effectively ignores them. Random forest’s purpose is to reduce overall error rates.
The random forest is chosen for above reasons, with the goal of having a high accuracy
rate.

In order to build a random forest classifier, two factors must be set: the number of trees
and the algorithm. By setting the number of trees parameter to an initial value, computing
the misclassification created by a test run, incrementing the value, and testing again, the
number of trees parameter is tuned. When determining the value of this parameter, the
best way to lowest rate of misclassification achieved is considered, as well as the time spent
on creating the model.

Table 4.5: Random Forest Evaluation

Random Forest Results

Accuracy Score 99.1758%

Precision Score 98.0458%

Recall Score 94.1837%

F1 Score 96.0760%

Confusion Matrix [[54043, 122],[378, 6121]]

46

4.1. TRAIN MODEL

4.1.6 Naive Bayes

Bayes’ theorem describes the likelihood of an event depending on prior knowledge of
the event in probability theory and statistics. The following is a representation of Bayes’
theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(4.7)

The meanings of each probability event are similar. The edge probability of independent
occurrences A and B is P(A) or P(B). P(A|B) is the likelihood of B occurring under the
conditional probability of A, while P(B|A) is the likelihood of A occurring under the
conditional probability of B. According to the full probability formula depending on the
nature of the denominator, P(B) can be split into:

P (B) =
n∑

i=1

P (Ai)P (B|Ai) (4.8)

Bayesian inference, a special type of statistical inference in which Bayes theorem can
be used to update the probability of the assumptions as the amount of information rises, is
one of the numerous uses of Bayes’ theorem. Bayesian inference is commonly referred to as
“Bayesian probability” in decision theory since it is closely related to subjective probability.
Bayes inference is based on prior probability and a probability model to export the outcome
as a “likelihood function”, which can then be used to determine the posterior probability
based on this inference.

The Naive Bayes classifier in machine learning is a simple probability classifier based
on the Bayes theorem, where naive refers to the assumption that each feature in the model
is largely independent and that correlation between features is ignored. Spam detection
with the Naive Bayes classifier, which employs text attributes to identify spam, is the most
well-known one among the applications. Naive Bayes classifiers e-mails by using a token to
detect the relationship between spam and non-spam, and then computing the probability
using Bayes’ theorem. As a result, when compared to spam detection, XSS detection is
similar, while actually it is an effective method for detecting XSS problems.

In the scikit-learn API [0], there is five classes of naive bayesian classification algorithm:

• Gaussian NB: The sample features are primarily continuous values, hence naive
bayesian prior to gaussian distribution is employed.

• Multinomial NB: Prior to the distribution of polynomial naïve bayes classifier, it
was mostly used to classify discrete features based on the number of occurrences of
value.

• Bernoulli NB: It is likewise used for discrete feature classification prior to the
standard bayesian Bernoulli distribution. However, unlike Multinomial NB, it is for
a binary or boolean attributes.

47

CHAPTER 4. CLASSIFIERS

• Categorical NB: For categorical features, naive bayes is utilized, which is used for
discrete indicators that are logically distributed.

• Complement NB: For imbalanced datasets, naive bayes is utilized to rectify several
“hypotheses” in the normal Multinomial NB classifier.

The Multinomial NB fits the best for XSS detections in this study, and table 4.6
shows the results of these detections in the same way. To gain a better understanding
of Multinomial NB, it can be assumed that the feature’s prior probability is a normal
distribution, as shown in the following formula:

P (Xj = xj |Y = Ck) =
1√
2πω2

k

exp(−(xj − µk)
2

2ω2
k

) (4.9)

µk and ω2
k are the values to be estimated from the training set, and Ck is the kth

category of Y. According to these training sets, Gaussian NB will get µk and ω2
k. In

category Ck, µk is the average of the all Xj , and the ω2
k is the variance of all Xj .

Table 4.6: Naive Bayes Multinomial Evaluation

Naive Bayes Multinomial Results

Accuracy Score 96.8136%

Precision Score 83.9530%

Recall Score 86.8595%

F1 Score 85.3815%

Confusion Matrix [[53086, 1079],[854, 5645]]

4.1.7 Execution Time

The MacBook Pro 2017 with 3.3GHz dual-core Intel Core i5 and 16GB of RAM memory
is the device employed in this study. The execution times of each of the classifiers mentioned
above are shown in the table 4.7 in this way. As a result, the decision tree is frequently
the quickest classifier, according to some. This classifier is the best choice for this thesis
because it is also the most accurate.

The table demonstrates that the SVM classifiers, particularly with the linear kernel one,
typically execute at the slowest speed. Next, in descending order respectively of execution
time, decision trees outperform KNN, random forests, linear regression, and naive bayes.

48

4.2. DISCUSSION

Table 4.7: Simple Classifiers Execution Time

Seq. SVM-linear SVM-RBF LR RF KNN DT NB

1 1m21s 1m 467ms 1.76s 4.94s 407ms 422ms

2 1m18s 1m1s 416ms 1.78s 4.86s 365ms 401ms

3 1m14s 1m 414ms 1.89s 4.85s 367ms 408ms

4 1m17s 1m 438ms 1.8s 5.26s 417ms 407ms

5 1m17s 1m 401ms 1.81s 4.96s 396ms 376ms

6 1m15s 1m 437ms 1.88s 4.98s 381ms 392ms

7 1m17s 1m 479ms 1.88s 4.99s 379ms 393ms

8 1m16s 1m1s 448ms 1.98s 4.95s 433ms 406ms

9 1m18s 1m1s 445ms 1.89s 4.84s 402ms 395ms

10 1m17s 1m5s 431ms 1.83s 4.92s 368ms 451ms

11 1m15s 1m11s 443ms 1.8s 4.81s 388ms 429ms

12 1m17s 1m4s 432ms 2.01s 5.1s 405ms 405ms

13 1m16s 1m2s 442ms 1.91s 5.07s 386ms 384ms

14 1m16s 1m13s 481ms 1.79s 5.29s 407ms 396ms

15 1m8s 1m3s 467ms 1.95s 5.01s 375ms 382ms

16 1m13s 1m5s 461ms 1.91s 4.82s 391ms 418ms

17 1m25s 1m4s 456ms 1.83s 4.25s 402ms 388ms

18 1m26s 1m1s 414ms 1.9s 4.95s 398ms 397ms

19 1m20s 1m1s 445ms 1.96s 5.1s 423ms 411ms

20 1m22s 1m 439ms 1.97s 4.86s 405ms 411ms

Average 1m19s 1m3s 438ms 1.88s 4.84s 395ms 404ms

4.2 Discussion

This section is the basis of the thesis, and it examines classifiers in connection to
detecting XSS attacks against web applications, which is the focus of the thesis. When
looking at the findings of the various classifiers, it can be seen that they all performed
well in terms of detecting harmful payloads. Several criteria must be considered while
choosing the optimal classifier, the most significant of which is accuracy and precision, as
these measurements define the classifier’s usefulness. With a 98.04% precision and 99.17%
accuracy, the Random Forest classifier produced the best results of all the classifiers. Then,
the decision tree and the KNN are also a good classifier for the XSS detections, which are
the core focus for the next section.

49

CHAPTER 4. CLASSIFIERS

The anomalies returned by all the classifiers are found to be limited in terms that only
a small number of factors seem to have caused them. First, some short scripts which are
classified as benign are found to contain a redirection using an IP address. In addition,
some long scripts are defect because they did not contain enough features. Some cases
are incorrectly categorized due to insufficient characteristics in the testing dataset. Some
suggestions for overcoming these false positive classifications include the addition of new
features, such as more ASCII codes. Besides, the testing dataset ought to be analyzed to
ensure there are no erroneous marks.

50

5

Ensemble algorithms

The performances of several types of classifiers are demonstrated in the previous chapter,
as well as how to determine whether the payload contains XSS attacks. The present chapter
will concentrate on the employment of the combination of classifiers to improve the detection
of those threats. It will also test with additional parameters in order to improve the main
goal’s performance and accuracy. Since the random forest, KNN, and decision tree are the
best performers, the objective will be the integration of those three.

5.1 Introduction to ensemble algorithms

General machine learning has been extensively used to detect Web attacks in the related
work that has already been done. Those models are typically created by training on massive
amounts of data. It may efficiently model, recognize, and identify data with particular
patterns or qualities on the basis of this. Although the deep learning model’s performance
is generally excellent. There may still be a few flaws, such as inaccurate modeling of attack
types for this data for a limited number of samples.

When detecting XSS assaults, for instance, the payload might have some of the crucial
characteristics given in table 3.2 and 3.3. If there aren’t enough of them, the attack can’t
be categorized as an XSS attack, leading to a misclassification.

In most cases, gathering data is much simpler, and training the model will produce
excellent detections. However, gathering data of this kind will be somewhat challenging
for some uncommon or specialized varieties.

Due to a paucity of training data for this subdivision type and insufficient training
of the model, the model will have a higher false negative rate when attempting to detect
this sort of event. When faced with this circumstance, the typical course of action is to
repeatedly sample this portion of a small number of sample types or to utilize the sampling
algorithm to extend the sample, but the new. Sample overlap and low quality are common
issues. The model frequently trains these samples repeatedly.

A generic meta approach to machine learning called ensemble learning [0] combines the
predictions from various models to get greater predictive performance.

51

CHAPTER 5. ENSEMBLE ALGORITHMS

There are three techniques that rule the world of ensemble learning, despite the fact
that you can create an apparently limitless number of ensembles to solve your predictive
modeling problem. So that instead of being algorithms in and of itself, each is a subject of
study that has given rise to numerous more specific techniques.

The three primary classes of ensemble learning techniques are bagging, stacking, and
boosting, and it’s critical to grasp each technique in-depth and take it into account in the
predictive modeling project.

• Bagging: entails averaging the predictions from many decision trees that have been
fitted to various samples of the same dataset.

• Stacking: when numerous distinct model types are fitted to the same data, it is used
to learn how to combine the predictions most effectively.

• Boosting: a weighted average of the predictions is produced by it, which requires
adding ensemble members in a sequential manner that corrects the predictions pro-
vided by earlier models.

5.2 The framework

A novel model is introduced based on the technology of fusing various machine learning
algorithms, and in this study the voting classifier (bagging) is applied. Using a majority
vote or the average projected probability, the voting classifier combines conceptually distinct
machine learning classifiers to predict class labels. In order to counteract the flaws of a
group of models that perform equally well, such a classifier can be helpful. There are two
types of voting:

1. Hard/Majority: the class label that represents the majority (mode) of the class
labels predicted by each individual classifier is the one used as the expected class
label for a given sample.

2. Soft: each classifier can have a specific weight applied to it using the weights option.
The predicted class probabilities for each classifier are gathered, multiplied by the
classifier weight, and averaged where weights are given. The class label with the
highest average probability is then used to determine the final class label.

Let’s use a straightforward example to demonstrate the soft mode. Assume we have
three classifiers and a classification issue with three classes. We give each classifier the
same weight: w1=1, w2=1, and w3. The sample’s weighted average probabilities would
then be determined using table 5.1, which would produce the anticipated label B because
it has the highest average probability.

Figure 5.1 depicts the detection model architecture. The initial stages of collection and
characteristic extraction are the same as those shown for the straightforward classifier in

52

5.2. THE FRAMEWORK

Table 5.1: Soft voting classifier probabilities

Classifier A B C

Classifier A w1*0.1 w1*0.6 w1*0.2

Classifier B w2*0.5 w2*0.4 w2*0.3

Classifier C w3*0.2 w3*0.2 w3*0.5

Average 0.27 0.4 0.34

the preceding chapter. The next model’s primary distinction is that it has undergone two
separate training sessions using various classifiers. The success rate of the model will rise
if the second classifier can filter the XSS attack features while the first cannot.

53

CHAPTER 5. ENSEMBLE ALGORITHMS

Collect Data

Extract features of XSS

Split Data

Train model: 1st classifier Train model: 2nd classifier

Fit model

Predict

Evaluate

Figure 5.1: Ensemble Framework

54

5.3. RANDOM FOREST WITH DECISION TREE

5.3 Random Forest with Decision Tree

To enhance the form of the code in the current XSS venerability, the code replaces the
original module with some function combinations that perform the same purpose, or inserts
some sophisticated conditional branches, loop statements, and other structures. In its logical
form, these methods make the code complex and diversified. The more complicated the
script logic is, the more complex the semantics it contains, and the challenge of detecting
malicious code increases dramatically. Script code is similar to language text, and the code
has a meaningful link. In addition, the following information can be used to deduce the
meaning of some attack information.

Combinations of the best classifiers were suggested for training a classifier to recognize
XSS kinds with the same data collected as referred in the chapter 3. The most up-to-date
strategy is to rely on the features provided in section 3.2 as the categorization basis. They’re
more likely to be found in XSS scripts, making them useful for detecting such attacks.

The combinations of the classifiers proposed between the best accuracy classifier are
mentioned at the end of the chapter above. The first combination to focus on is random
forest and decision tree, and the outcomes are displayed in table 5.2. The dataset payloads
are first classified using a random forest classifier and then use a decision tree in this
system’s pipeline procedure. According to the hard voting method, the anticipated class
label for a given sample serves as the class label that represents the majority.

Table 5.2: Evaluation: Random Forest with Decision Tree

RF + DT Results

Accuracy Score 99.1741%

Precision Score 98.4648%

Recall Score 93.7529%

F1 Score 96.0511%

Confusion Matrix [[54070, 95],[406, 6093]]

The datasets with the characteristics retrieved are utilized for the first phase, which is
the same process as described in sub-section 3.2 chapter 3. The decision tree classification,
as described in sub-section 4.1.2 of the chapter 4, is then applied to the random forest
classified model (in sub-section 4.1.5), resulting in the ensemble classifier, which is the
final model and can identify XSS attacks. Using both classifiers has improved the trained
model’s precision when compared to using either classifier alone (97.88% and 98.04%), as
seen in the results table above. Other test results, however, fall short of expectations. It
can be accounted by the fact that the results of the straightforward classifiers are already
almost 100%.

55

CHAPTER 5. ENSEMBLE ALGORITHMS

5.4 K-Nearest Neighbors with Random Forest

The following system is using both KNN and random forest for the same proposal
because these two also received high performance ratings in the chapter 4 evaluation. The
suggested system is distinctive since its list of pioneering techniques includes one of the first
approaches to employ the stacked ensemble methodology to identify XSS attacks on the
server side. The system’s objectives are to increase the precision of classifiers that identify
XSS vulnerabilities and filter inputs by only sending scripts to the next step as described
in the figure 5.1.

The contextual uses the results from the base level to create its own final classification,
which employs XSS features to distinguish between malicious and benign scripts. The
base level gives this classification based on XSS features (of either benign or malicious) as
explained in the section 3.2 of chapter 3. Remember that all targets have a value of 0 or
1, with 0 denoting that a feature does not appear in a script and 1 denoting the contrary,
that a feature does appear in a script.

Table 5.3: Evaluation: K-Nearest Neighbors with Random forest

KNN + RF Results

Accuracy Score 99.1708%

Precision Score 98.4330%

Recall Score 93.7529%

F1 Score 96.0359%

Confusion Matrix [[54068, 97],[406, 6093]]

The decision tree classifier has been replaced with a KNN one for the identical method
described in the section above. Therefore, it is clear from comparing the results showed
in the table 5.3 that they are fairly comparable. Despite not being exactly equal, they
produce comparable outcomes. However, it shows that the performance is unchanged.
Consequently, it is necessary to keep merging the additional classifiers.

5.5 K-Nearest Neighbors with Decision Tree

The following specific models are utilized for evaluation after classifiers are improved
during training. By training them on the complete training dataset, the final trained
classifiers utilized on the test data are created. Again, the decision tree is used in place of
the random forest and the KNN is maintained. The method of classification is the same
as that explained in the sections 4.1.2 and ?? in the chapter 4. Given that the majority
voting method is used as in the previous ensemble classifications, the system does not care
about the order of the classifiers.

56

5.6. EXECUTION TIME

On the testing dataset, which has not been utilized in the tuning or training, these
classifiers are then assessed. This test’s objectives include choosing the top classifier
simulating an actual attack. The datasets, which includes both scripts and links, was used
to test the final, trained decision tree and KNN classifier for categorizing the payload type.
The testing dataset, which consists of 200000 instances with labels for text and 200000
instances with labels for script, is prepared to test the ensemble classifier. This approach
differs from the approach in that the particular classifier is used to detecting XSS datasets
rather than the ensembling classifier.

Table 5.4: Evaluation: K-Nearest Neighbors with Decision Tree

KNN + DT Results

Accuracy Score 99.4939%

Precision Score 97.8960%

Recall Score 97.3688%

F1 Score 97.6317%

Confusion Matrix [[54029, 136],[171, 6328]]

The accuracy has gone up from 99.2 percent to 99.5 percent, while the other scores
have all increased to about 98 percent, as seen in table 5.4. It indicates that the developed
XSS detecting system will function significantly better. As a result, it can go on to the
real-time application, which will be discussed in the following chapter.

5.6 Execution Time

Now, the average run time of the model’s code is tested using the same system and
same processors from the MacBook Pro 2017. Noting that there are two classifiers to pass
instead of the simple classifiers, the time required to complete the model won’t rise by a
factor of two. Although it’s fast is quick through the table 5.5, the user will experience these
models as being immediate, which will enhance their interaction with the Web application
that will be constructed in a later chapter.

The random forest and decision tree is the best classifier combination in terms of
time performance, while the KNN with random forest must be the worst, as the table
demonstrates. KNN and decision trees will be used for the construction of Web applications
because they have a medium performance level, also due to these classifiers have the highest
levels of accuracy and precision.

57

CHAPTER 5. ENSEMBLE ALGORITHMS

Table 5.5: Ensemble Classifier Execution Time

Seq. RF+DT KNN+RF KNN+DT

1 2.73s 6.67s 5.14s

2 2.55s 7.28s 5.13s

3 2.56s 7.53s 5.13s

4 2.44s 6.9s 5.92s

5 2.44s 7.47s 5.3s

6 2.72s 7.36s 5.56s

7 2.65s 7.21s 5.21s

8 2.53s 6.75s 5.6s

9 2.66s 7.31s 5.49s

10 2.61s 7.22s 5.38s

11 2.58s 7.36s 5.36s

12 2.42s 7.16s 5.59s

13 2.84s 7.44s 5.47s

14 2.44s 7.56s 5.27s

15 2.63s 6.78s 5.57s

16 2.8s 6.65s 5.86s

17 2.62s 6.87s 5.7s

18 2.76s 7.31s 5.75s

19 2.98s 7.34s 5.81s

20 2.57s 6.79s 5.53s

Average 2.63s 7.15s 5.21s

5.7 Discussion

An introduction to the ensemble technique has been given in this chapter. It contains
a summary of the key techniques employed with this strategy as well as information on
cascading classifiers. Additionally, it examines the earlier research on the use of ensemble
approaches and the fusion of classifiers with intrusion detection systems and provides a
thorough explanation of the suggested approach for spotting XSS assaults, along with
an explanation of the stages that are utilized to distinguish between malicious and good
scripts. The evaluations of the classifiers in both phases utilizing cross validation and
holdout approaches are provided with their findings. The findings of the system-wide test
have also been presented. The methods that may be employed to get the best performance
are shown along with the execution time performance of the overall system.

58

5.7. DISCUSSION

This chapter has shown that the bagging ensemble technique has produced accuracy
values that are strikingly similar to those of single classifiers. The bagging strategy is more
expensive in terms of time than utilizing single classifiers. Therefore, using single classifiers
rather than the bagging strategy can be recommended. The takeaway from this chapter
is that one of the pioneering attempts in XSS attack detection is the bagging ensemble
technique.

In addition, at the end of this chapter, the entire process of achieving results over time
is recorded and evaluated. This is useful for real-time program analysis, which is described
in the next chapter. The next chapter will provide an application design for the browser,
taking the Chrome extension as an example, to test the design system in real-time. The
ensemble classifier with KNN and decision tree performs better in terms of accuracy and
precision, but it is also important to consider the time factor when think about real-time
application performance. So, it is necessary to verify if this ensemble classifier can be used
in the final model.

59

6

Real Time Application

The suggested system from the preceding chapter will be put to the test in this chapter
in real-time. The goal is for the browser to warn the user to exercise caution when it
encounters a URL that contains an XSS attack. As a result, XSS vulnerabilities are closed,
protecting users from harms.

This proposal suggests developing a Chrome extension, a browser application that may
identify user behavior and take appropriate action to prevent disrespect. Beginning with
the introduction of web applications, moving on to the framework and language to be used,
and ending with the features from the backend layer services to the frontend requests, are
the steps in developing a respect system.

6.1 Introduction to Chrome Extension

The biggest advantage of Chrome is that it supports a wide range of reliable and useful
add-ons. In order to properly recommend some of the best plug-ins, it is necessary to
analyze how plugins are generated and how they differ from the way consumers frequently
create web pages for browsers. A saying goes that since decent Chrome doesn’t have add-
ons, it doesn’t smell as wonderful. An add-in is a customized browsing interface for brief
software applications. Users can alter how Chrome behaves and functions in a number of
different ways. The following features are offered by various plug-ins: productivity tools,
more knowledge about the web, and entertainment (games).

Through the creation of the Chrome extension, it has the following meanings: improving
browser functionality, putting their own bespoke plug-in function in place, comprehending
current plug-ins, and maximizing their functionality. However, the purpose of this study
is to once more conduct a real-time test of the trained model once more to thwart XSS
attacks.

Web technologies like HTML, JS, and CSS are used to build plug-ins. They interact
with the Chrome browser while operating in a separate sandbox execution environment. By
modifying browser behavior and accessing Web material through the use of APIs, plug-ins
enable us to expand and improve the capabilities of the browser using APIs. Plug-ins work

61

CHAPTER 6. REAL TIME APPLICATION

with developer APIs and end-user user interfaces:

1. The user interface should be expanded so that users may manage their extensions in
a consistent manner.

2. The API’s expansion allows the browser to access functions such as activating tags
and changing network requests.

In order to develop a plug-in, we must first create a list of the resources that go into it,
such as the JS and HTML files, graphics, and so on. To load these “unzips” into Chrome
for testing and development, utilize the developer mode plugin. If we are satisfied with our
plug-ins, we can bundle and distribute them to other users via the internet shop. If you
create a plugin and intend to make it available on the Chrome Web App Store, you must
abide by the following rules:

1. Plug-ins must have a single purpose, which is clearly stated and simple to comprehend.
As long as each component and function helps achieve the overall objective, a single
plug-in can have a variety of parts and functions.

2. The user interface should be purposefully simple and uncluttered. Simple icons to
the creation of a new window with a form are all possible.

There are no formal project structure requirements for Chrome plugins, such as di-
rectories like src, public, components, etc. As a result, if we examine the source code of
numerous plugins, it can discover that each plugin has a unique project structure, and
even the file names within the project are distinctive. However, it must contain a manifest
file in the executable file of root directory. It is a json language file, which serves as the
applet’s app and is the plug-in configuration file that describes the various information
about the plug-in. A variety of helpful APIs for modifying browser behavior are provided
by the Chrome plugin, including but not limited to:

• Bookmark management

• Download control

• Window management

• Label management

• Control of the network requests and monitoring all occurrences

• Specific raw menu

• Ideal communication system

Additionally, Chrome plug-ins can work with DLL (dynamic link libraries) written in
C++ to implement some more underlying functions than just front-end technology.

62

6.2. THE FRAMEWORK AND LANGUAGE

6.2 The Framework and Language

BROWSER / USER BACKEND / MODEL

Request to check web venerabilities
(URL or requests as payload)

Pass the payload through model
and send response

Send the output by passing it th
rough the model

DATABASE:
TRAINED MODEL

Pass the payload to database

Figure 6.1: Chrome Extension System Framework

As was mentioned in the section above, the languages to utilize are once more JS for
logical behaviors, HTML for the structure of web content, and CSS for styling and making
content more aesthetically pleasing. Figure 6.1 depicts the basic system structure, which
is comparable to any other typical Web application in that it consists of a frontend user
interface and backend services. In this instance, the model that was created and trained in
the previous chapter is represented by the backend services. This model is now used as the
service layer that will supply the response to the request from the front-end app. And in
this instance, it relates to the XSS vulnerabilities on the browser page being used by the
current user. If there is a risk of XSS on the current web page, the frontend application,
which corresponds to the user view, will make a signal or dialog for the user.

For this study, in the frontend user interface side, the progressive framework Vue.js is
used. A JS framework for creating user interfaces is called Vue. It provides a declarative
and component-based programming approach that aids in the speedy development of user
interfaces, whether they are basic or complicated, and built on top of industry-standard
HTML, CSS, and JS.

Python is used for the backend services because it is also used for model development.
It contains a straightforward backend micro framework called Flask and a basic language
for quick learning. “Micro” doesn’t mean you have to put the entire web application in

63

CHAPTER 6. REAL TIME APPLICATION

a Python file, nor does it mean that Flask is functionally deficient. “Micro” in the micro
framework means that Flask is designed to keep core functions simple and easy to extend.
Flask doesn’t make many decisions for you, such as which database to use. The decisions
that Flask makes for you (such as which template engine to use) are easy to replace.

6.3 Backend Services

Simply by reading the quickstart section of the Flask official manual [0], it is easy to
create a basic website using Flask. The level of HTML, CSS, and JS, which are outside
the purview of Flask, will naturally determine how well the site looks. As was previously
mentioned, backend services employ the Flask micro Web framework. The following are
some features of Flask and the rationale for using it:

• It is free, versatile, expandable, and has a large range of third-party libraries, when
combined with your preferred wheels and the most well-known and potent Python
libraries.

• It is easy to get started and create a website even if you have no expertise with web
development.

• It is ideally suited for the creation of tiny websites and web service APIs.

• Large websites can be developed without pressure, but they must have a code archi-
tecture, and their cost will depend on the developers’ skill and expertise.

Programming in Flask is therefore flexible and user-friendly. The trained model data
are saved in files with the extension “pkl” (database) so that they can be used as determined
in the development of the previous chapter. The goal of the backend layer service is to
connect the front Web application request and database response in some way. It receives
the request sent by the front application, passes the payload to the database side (which
also constitutes a portion of the backend), and then sends the response to the front web
application after testing to see whether there is an XSS vulnerability. An example Flask
application that forms a site utilizing only a couple of lines of direct code is as follows:

from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

return 'Hello World!'

if __name__ == '__main__':

app.run()

64

6.3. BACKEND SERVICES

Information or error return, page rendering, static file loading, URL generation, session
or cookie management, request and response processing, etc. are some of the website’s
most fundamental operations. It only requires creating an instance of Flask (similar to the
code before) and calling the “run()” method to generate a straightforward website. The
functionality to be used while accessing the URL is implemented by the following functions.
The route (’/’) specifies the website’s URL path. The functionality of any Python library
may be converted into a website or a simple Web API using the logic of the preceding
uncomplicated code. Although using third-party modules connected to RESTful or REST
API is preferred, this logic can be used to build a RESTful or REST API API from scratch.

Even for a small site, the best way to do this is to put different logic into different
files, which are organized in a way that suits your tastes. As the functionality of the site
increases, so does the number of lines of code, which can be difficult to manage when all
the code is in one file.

Flask can connect directly to the database to retrieve the data without any issues, but
doing so will make the application more tightly tied with the database, which is bad for
expansion and will increase the workload required to maintain the code logic. By using
the database abstraction layer, the logic of Flask interacting with the database will be
made simpler and transferred to the database abstraction layer, improving the clarity of
the business logic and narrowing the focus of development. Because Flask is a micro
framework, it lacks a database abstraction layer of its own. However, there are many
database abstraction layers accessible in Python, and there are many possibilities for Flask,
so it can select the most comfortable database abstraction layer for development. Since this
study’s theme does not primarily center on this application, the database will only consist
of one file in order to facilitate real-time testing. Therefore, the file is posted immediately
on the Flask app.

The development of the backend service is shown in Figure 6.2. It proves that the
Flask framework makes the work easier. All left is implementing the appropriate API
whose URL ends in “\api\model” and making a response to the request of the front-end
program. In this specific case, the program takes the arguments from the request sent by
the client and inserts them as input into the machine learning model implemented in the
previous chapters, and when it has an output or result, the service responds to the client
with whether XSS vulnerabilities exist.

65

CHAPTER 6. REAL TIME APPLICATION

Figure 6.2: Backend Service implementation

6.4 Frontend Application

The Vue framework with JS as a basis is chosen as the technology to construct web
applications for the frontend side. The Vue framework and ecosystem are renowned for
providing the majority of the typical functionality needed in frontend development. The
Web, though, is incredibly diverse, and the things we create there may differ greatly in
scale and form. In light of this, Vue is made to be adaptable and gradually adopted. Vue
has a variety of uses that you can choose from according to your use case:

• Static HTML improvement without a build step.

• Web components can be embedded on any page.

• Single-Page Application (SPA)

• Full-stack / Server-Side Rendering (SSR)

• Jamstack / Static Site Generation (SSG)

• Targeting the terminal, WebGL, mobile, and even desktop

Despite the flexibility, all these use cases share the fundamental understanding of how
Vue operates. Even if you are only starting out right now, the knowledge you pick up along
the way will be helpful as you advance and take on more challenging objectives in the
future. If you are an experienced user, you may choose the best strategy to use Vue based
on the issues you are trying to resolve while maintaining your productivity. Vue is known

66

6.4. FRONTEND APPLICATION

as “the progressive framework” because it is a framework that can change and develop with
the change as necessary.

It is advised to start a development of chrome extensions using a Node Package Manager
(NPM) package [0] to simplify the design of the project’s schematic. The default package
manager for Node.js, the runtime for JS, is NPM. A Command Line Interface (CLI) tool
for publishing and downloading packages and an online repository that houses JS packages
make up the two primary components of NPM. Thus, adopting the NPM package makes
using the Chrome extension development CLI easier. And using this CLI, all that is
required is to select the options that are necessary for the extension.

During the development of the Chrome extension, the directory folder structure is
shown in figure 6.3. In particular, the actual directory structure will be more complex, also
shown below, in figure 6.4.

 background.js
 images
 128.png
 16.png
 32.png
 48.png
 manifest.json
 popup.html
 popup.js

chrome extension main directory

Figure 6.3: Chrome Extension Directory Structure

The manifest file is a configuration file that lists the files required for the application to
run. The manifest file also contains the extension’s fundamental details in JSON format,
such as its name, version, needed permissions, etc. The following Chrome extension will
use JSON objects, a language and platform-independent data standard, to send structured
static data between modules. It is transmitted as a straightforward string and received
as an object by JS when it gets JSON data, which may contain hierarchical information.
Due to its low data redundancy, readability, and ease of parsing, this format can be used
for data sharing not only between Chrome extensions but also across platforms and other
programs. A sample manifest is shown below in JSON format:

{

"name": "chrome-plugin",

"version": "1.0",

"description": "Build an Extension!",

"manifest_version": 3

}

First, the above string surrounded in curly brackets “{}” is a JSON object and serves
as an illustration of how we interpret the JSON format. In essence, a JSON object is

67

CHAPTER 6. REAL TIME APPLICATION

Figure 6.4: Chrome Extension Directory Structure Complex

a structure with fields that are separated by commas and have a space after the final
field. Every field has the format “key: value”, where each “key” denotes an attribute of the
structure. An attribute must have a concrete value in order to be considered concrete. To
write the manifest in accordance with Chrome’s requirements, it has been discovered to
employ a set of “Templates” that Chrome has established for JSON. More details on a real
case are shown in figure 6.5.

When a Chrome extension is published and installed, both the Chrome store and
Chrome will verify the manifest file. With JSON format, it extracts the essential data
from it, and determine whether the writing is legal. For instance, if the content field in
popup.html, which has a built-in JS script and is empty, an error will be returned when
attempting to load your extension in Chrome. The information is not only necessary for
users to see, but also the browser. The latter informs Chrome of the entrance point to your

68

6.4. FRONTEND APPLICATION

Figure 6.5: Chrome Extension Manifest File

application and other details about how it is functioning.

Name, version, and manifest version are the three properties that must be present in a
number of common fields in the manifest file. The extension’s name is the calling that has
been established for it. It must be a string saved in UTF-8 encoding for the JSON to work
correctly when loaded into the browser. Version is an acronym for the extension’s version
number. However, it should be a string rather than a string of numbers as the version
number is typically a string of integers. The version number of the manifest file format is
specified by manifest version (defined by Chrome). It should be 2 after Chrome 18 and
will migrate from V2 to V3 in November 2020.

The background script is typically used for background debugging of other files. In
this work, the background script is not implemented. The app’s logos are represented by

69

CHAPTER 6. REAL TIME APPLICATION

images’ directory (it includes various proportions: 128x128, 64x64, etc.).

The file ‘popup.vue’ also contains the application and the content of the popup. The
popup content display behavior for user interaction, and it is represented by the popup.js
script file. Therefore, the main file distributed in this work is the popup script. In
this particular case, the main work of a request to services using the HTTP protocol is
implemented there. The main process is to use the third-party provided package, called
“axios” [0], to send a query to the backend. And when it gets a result, it will pop up a
dialog box for the user to know the result. Since Vue.js is used in this project, ‘popup.vue’
can be split into two parts: the first HTML part, shown in figure 6.6, and the second JS
part, shown in figure 6.7.

Figure 6.6: Popup HTML code

Figure 6.7: Popup JS code

70

6.5. DISCUSSION

According to this constitution, the popup script file is in charge of identifying changes
to the web page, which is the fundamental logic that underpins how this program functions.
The popup script will immediately send request (with the URL information) from the
backend to determine whether the website is secure if the user changes the web page. In
the absence of a warning dialog, it will state that the active page is safe. Naturally, if the
client clicks on the extension icon directly, the same approach is taken.

6.5 Discussion

In this chapter, a brief overview of the concepts involved with Chrome extension and, in
particular, the web application with the detection of XSS - along with a description of the
backend layer service interacting with the designed model (database) and web application
with user interface, including sending information through the network and checking results
by passing this information through the trained model. The proposed system, which is
considered to be the contribution of this thesis, is described in terms of detecting and
preventing the XSS attacks through the machine learning - with a detailed explanation of
all the factors which it depends on. Emphasis is placed on the sampling system whereby
samples are derived from the training dataset and then utilized to find the correct response
(class) for each rule in the truth table.

Moreover, the practical application of the developed model using the ensemble methods
in machine learning is covered in this chapter. This will enhance user experience and secure
users’ privacy across the network while also increasing the quality of machine existence.
Although it is impossible to provide a precise number based on test findings, it is highly
advised that clients install it and use it for their regular network browsing.

71

7

Conclusion

7.1 Research Summary

Finally, by employing two categories of features (alphanumeric and non-alphanumeric)
and representing them as Boolean (false or true), this research has created a machine
learning system that detects XSS attacks. Linear Regression, Support Vector Machine
with both linear and RBF kernels, K-Nearest Neighbor, Random Forest, Decision Tree and
Naive Bayes Gaussian are among the classification techniques utilized in the trials. These
classifiers were used to distinguish between harmful and benign user input into a Web
application. The efficacy of applying machine learning to defend Web applications from
XSS attacks has been shown through experiments carried out during this research. All the
examined classifiers have high rates of accuracy and precision, all of which are higher than
96%. In terms of precision, the results of this study can be compared to those of earlier
methods. Other studies may also obtain a precision rate of more than 96%, but this study
has tried other methods.

The Decision Tree classifier is used in this investigation to reach an accuracy rate of
99.5%, whereas the same classifier was used in a prior study to achieve an accuracy rate
approximately of 99%. The classifiers are trained using a dataset designed for this purpose,
and malicious and benign scripts are gathered from several trustworthy sources as stated
in chapter 3 to construct the dataset.

Additionally, the retrieved features are the primary factor in the classifiers’ high accuracy.
Since these qualities are chosen based that they are present in the payload. Additionally, a
boolean value that represents a feature also helps to boost accuracy. Chapter 3 discusses how
to select the features for each sort of assault and how to portray them for training purposes.
Moreover, choosing useful traits to recognize XSS threats is crucial for the detection of
such attacks. The characteristics are divided into two categories: characteristics common
to all types of attacks and characteristics unique to specific types of attacks.

In order to confirm that the features can be combined, multi-class classifiers that could
categorize all three types of attack are developed. The development of multi-class classifiers
that may divide user input for a Web application into the XSS class and benign categories

73

CHAPTER 7. CONCLUSION

has been thoroughly discussed in chapter 5. As described in this chapter more detailed,
ensemble approaches and cascading classifiers are utilized to filter the inputs and improve
accuracy. The classification results produced by this approach are marginally superior to
those by utilizing a single classifier. These classifiers achieved accuracy rates of more than
99% and precision rate more than 98%. This technique is one of the earliest to employ
stacking to identify XSS vulnerabilities.

Rules from the decision tree and KNN classifiers that described decision-making are
retrieved in order to comprehend the choices made by these “black-box” classifiers. In
chapter 6, a potential web application is described in detail. It would execute the model
in real time and extract rules from classifiers. The chapter focuses on the framework
of the application, which is split into the front and back sides, correspond to the two
service sections. In order to bypass the payload gathered on the front side and obtain the
classification, the back side attempts to apply the prior ensemble classifier model. Send
the outcome to the front end through the network, where it will be shown on the user’s
screen.

Processing-time performance, accuracy, and precision are crucial, when choosing a
classifier, especially one that will serve as a protective layer for a web service. Therefore,
an attempt has been made to relate processing times, accuracy and precision scores to
user-friendliness. In these terms, it is determined that the final ensemble classifier performs
well enough to be applied in this situation.

7.2 Research Discussion

The research aiming to identify XSS attacks against Web applications is reviewed in
this section. These results help to choose a classifier or method that can be used as a
security layer for Web pages. Understanding the fundamentals of how a hacker can utilize
coding to conduct XSS threats, as described in chapter 2, is important to accomplish this.
This knowledge satisfies the study’s first aim (G1).

The rates of a classifier’s accuracy, precision, false positive rate, and speed are all
acceptable criteria. High accuracies were obtained while using a single classifier to identify
XSS vulnerabilities. SVM with a linear kernel completed the testing dataset classification
in 1 minute and 19 seconds in average of 20 tries with a 98.31% accuracy, 96.06% precision,
and a recall score of 87.81%. With 234 cases labeled as false positives, SVM with a
polynomial kernel obtained a 98.26% accuracy and 98.83% precision; it took 1 minute
and 3 seconds in average to finish classifying the testing dataset. With an accuracy and
precision of 99.49% and 97.25%, respectively, and a false positive rate of 180 instances,
the KNN classifier classified the testing dataset in 4.84 seconds. Likewise, the random
forest classifier classified the testing dataset in 1.88 seconds with a 99.18% accuracy, 98.05%
precision, and 122 false positive occurrences reported. The testing dataset classification
was finished in 0.404 seconds by the naive bayes Gaussian classifier, which had a poor
accuracy rate of 96.81 percent, a poor precision of 83.95 percent, and returned 1079 false

74

7.3. FUTURE WORK

positive occurrences. The linear regression made 98.31% of accuracy, 96.06% of precision,
234 false positives and takes 0.438 seconds in average to complete. The decision tree takes
in accuracy 99.50%, 97.88% in precision, 137 of false positives and wasted 0.395 seconds to
finish. Since the decision classifier is the quickest, it was chosen from a security standpoint,
which also provided the lowest amount of false positive cases, is the best classifier for
detecting XSS attacks, as the data shows in the chapter 4. Therefore, using the decision
tree classifier, in this case, as a protective layer for a Web application is justifiable.

Using an ensemble technique with cascade classifiers, the second objective (G2) of this
study has completed, which is to find the model to detect XSS vulnerabilities and increase
its accuracy. The detection of XSS attacks is highly accurate thanks to this combination
approach. The suggested system uses cascading classifications to categorize the inputs into
different kind of features. In this stage, the inputs are categorized using the classifiers
that have already been discussed, and the results are then used as inputs for the Web
application’s backend service. With 136 false positive cases returned (in 80000 cases), the
proposed system attained a 99.50% accuracy and 97.9% precision. It took 5.21 seconds
to complete the classification throughout both phases utilizing KNN and decision tree
classifiers. The proposed system, on the other hand, is one of the first to use the stacking
ensemble technique to find XSS assaults.

The classifiers that have been generated should be used on the server side as a barrier
between the Web application and HTTP requests that are loaded with user inputs. This
allows achieving the third objective of this research possible (G3). The classifier receives
features that are taken from the request and uses them to determine whether the request
is malicious. Whether the request is valid or not, it is always sent to the Web program.
It merely serves as a user alert and does not actively block the website. By developing a
website that would accept inputs and categorize them as harmful or benign, the classifiers
were put to the test. The classifiers developed in this study have produced good results for
this site, which is created for a single user.

7.3 Future Work

As was said in chapter 4 and 5, the performance results of the classifiers are in line with
the literature’s use of machine learning to identify XSS attacks against Web applications.
Classifiers have been shown to be capable of identifying both old and new XSS. However,
classifiers are constrained by the following factors:

• The false positives: these chapters have described how XSS attacks are incorrectly
categorized. A false positive occurs when a harmful occurrence is mistakenly labeled
as benign. False positives occur when the relevant events are either too brief or lack
sufficient characteristics to be classified as malicious, or when the features are not
as noteworthy as they were retrieved. Alternatively, an instance may be too long
to allow for comparisons to be conducted with less aberrant texts or the attributes

75

CHAPTER 7. CONCLUSION

are not very noteworthy. In connection with these characteristics, the inclusion of
non-alphanumeric aspects may be the primary cause of the majority of the false
positives.

• Processing time performance: KNN and decision tree are the classifiers that produced
results with high accuracy and precision, although they required longer than other
researches. Both the single classifier and the cascade classifier scenarios showed this.

• Dataset size: since XSS attacks have such brief lives on the Web before being erased,
it is difficult to detect them in large numbers. Therefore, there are extremely few
sites that provide examples of attacks.

Some final thoughts on this project, in order for the program to run in real time without
too much impact on the user, the execution time needs to be reduced. Since we need reliable
execution time, we have to abandon the absolute best scoring model and choose a model
with lower scores for better real-time execution of the program. Thus, a more mature
technological approach could be used, which reduces the real-time execution time of the
application and improves the interaction with the user. Therefore, to get suggestions for
future work, should consider combining the assessment of precision and accuracy with
runtime, which may include other more advanced models.

Finally, this research has gained a wider foundation on which future work can be
performed by avoiding focusing on just one type of assault or just one type of machine
learning technique. Based on this, the future research projects can be relevant to the
followings:

• To increase performance, it may be useful to investigate deep learning as well as other
types of unsupervised machine learning algorithms that can be used to identify XSS
attacks on Web programs. To further develop the order productivity of classifiers
that detect XSS attacks and lessen the quantity of dishonestly hopeful expectations,
the focal point of the examination of these calculations will be on involving similar
elements as in this review and similar strategy as the highlights are addressed. Pa-
rameters should be tuned, and attributes that separate various attacks should be
investigated using a way other than employing typical or comparable features.

• Adjust to similar practical standards, remembering for the examination subject every
one of the weaknesses in web applications. Injection of operating system commands,
CRLF (Carriage Return and Line Feed) injection, code injection, and access points
into web applications are all examples of intentional vulnerabilities. The study
field will be widened by eliminating other helpful features that can be utilized to
differentiate between various attack types based on their similarities and differences
in order to develop a classifier that can classify any assault that utilizes holes in online
programs.

76

7.3. FUTURE WORK

• The suggested method for removing the rules from the black box classifiers can be
created using values other than 0 and 1. The extraction of a function whose conditions
employ the logical keywords can be facilitated by restricting the data to a particular
range during the development process. A change in the sampling technique from
using nearby samples to using distant ones could have additional potential results,
which can be achieved by keeping track of samples, comparing them to practice
data to eliminate out samples that are exact replicas of practice data, and using
new samples can all help achieve this. In order to extract the rules from classifiers,
processing-time performance is being watched carefully.

77

Bibliography

[0] 1.11. Ensemble methods — scikit-learn 0.22.1 documentation. Scikit-learn.org, 2012.
url: https://scikit-learn.org/stable/modules/ensemble.html (cit. on p. 51).

[0] 1.4. Support Vector Machines — scikit-learn 0.20.3 documentation. Scikit-learn.org,
2018. url: https://scikit-learn.org/stable/modules/svm.html (cit. on p. 42).

[0] API Reference — scikit-learn 0.23.1 documentation. scikit-learn.org. url: https://
scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes

(cit. on p. 47).

[0] axios. axios/axios. GitHub, May 2019. url: https://github.com/axios/axios

(cit. on p. 69).

[0] R. Binux. pyspider. GitHub, Jan. 2023. url: https://github.com/binux/

pyspider (visited on 01/30/2023) (cit. on p. 27).

[0] J. Choi et al. “Efficient malicious code detection using n-gram analysis and SVM”. In:
2011 14th International Conference on Network-Based Information Systems. IEEE.
2011, pp. 618–621 (cit. on p. 22).

[0] scikit-learn developers. sklearn.neighbors.KNeighborsClassifier — scikit-learn 0.22.1
documentation. Scikit-learn.org, 2019. url: https://scikit-learn.org/stable/

modules/generated/sklearn.neighbors.KNeighborsClassifier.html (cit. on
p. 43).

[0] M. K. Gupta, M. C. Govil, and G. Singh. “Predicting Cross-Site Scripting (XSS) secu-
rity vulnerabilities in web applications”. In: 2015 12th International Joint Conference
on Computer Science and Software Engineering (JCSSE). 2015, pp. 162–167. doi:
10.1109/JCSSE.2015.7219789 (cit. on pp. 22, 23).

[0] S. Gupta and B. Gupta. “Automated discovery of JavaScript code injection attacks in
PHP web applications”. In: Procedia Computer Science 78 (2016), pp. 82–87 (cit. on
p. 22).

79

https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/svm.html
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
https://github.com/axios/axios
https://github.com/binux/pyspider
https://github.com/binux/pyspider
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://doi.org/10.1109/JCSSE.2015.7219789

BIBLIOGRAPHY

[0] W. G. Halfond, S. R. Choudhary, and A. Orso. “Improving penetration testing through
static and dynamic analysis”. In: Software Testing, Verification and Reliability 21.3
(2011), pp. 195–214 (cit. on pp. 21, 22).

[0] G. Kaur et al. “Detecting Blind Cross-Site Scripting Attacks Using Machine Learning”.
In: Proceedings of the 2018 International Conference on Signal Processing and Machine
Learning. 2018, pp. 22–25 (cit. on p. 24).

[0] E. Kirda et al. “Noxes”. In: Proceedings of the 2006 ACM symposium on Applied
computing - SAC ’06 (2006). doi: 10.1145/1141277.1141357 (cit. on pp. 21, 22).

[0] K. Munonye and M. Péter. “Machine learning approach to vulnerability detection
in OAuth 2.0 authentication and authorization flow”. In: International Journal of
Information Security (2021), pp. 1–15 (cit. on p. 25).

[0] OWASP. OWASP Top 10:2021. owasp.org, 2021. url: https://owasp.org/Top10/
(cit. on p. 1).

[0] Quickstart — Flask Documentation (2.1.x). flask.palletsprojects.com. url: https:

//flask.palletsprojects.com/en/2.1.x/quickstart/ (visited on 07/28/2022)
(cit. on p. 63).

[0] SciKit-Learn. 3.1. Cross-validation: evaluating estimator performance — scikit-learn
0.21.3 documentation. Scikit-learn.org, 2009. url: https://scikit-learn.org/

stable/modules/cross_validation.html (cit. on p. 18).

[0] L. K. Shar, L. C. Briand, and H. B. K. Tan. “Web application vulnerability prediction
using hybrid program analysis and machine learning”. In: IEEE Transactions on
dependable and secure computing 12.6 (2014), pp. 688–707 (cit. on pp. 21, 22).

[0] L. K. Shar, L. C. Briand, and H. B. K. Tan. “Web Application Vulnerability Prediction
Using Hybrid Program Analysis and Machine Learning”. In: IEEE Transactions on
Dependable and Secure Computing 12.6 (2015), pp. 688–707. doi: 10.1109/TDSC.20
14.2373377 (cit. on p. 23).

[0] L. K. Shar, H. B. K. Tan, and L. C. Briand. “Mining SQL injection and cross site
scripting vulnerabilities using hybrid program analysis”. In: 2013 35th International
Conference on Software Engineering (ICSE). IEEE. 2013, pp. 642–651 (cit. on p. 23).

[0] S. Sharma and N. S. Yadav. “Ensemble-based Machine Learning Techniques for Attack
Detection”. In: 2021 9th International Conference on Reliability, Infocom Technologies
and Optimization (Trends and Future Directions)(ICRITO). IEEE. 2021, pp. 1–6 (cit.
on p. 25).

[0] S. Sharma, P. Zavarsky, and S. Butakov. “Machine Learning based Intrusion Detection
System for Web-Based Attacks”. In: 2020 IEEE 6th Intl Conference on Big Data
Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and Security
(IDS). IEEE. 2020, pp. 227–230 (cit. on pp. 24, 25).

80

https://doi.org/10.1145/1141277.1141357
https://owasp.org/Top10/
https://flask.palletsprojects.com/en/2.1.x/quickstart/
https://flask.palletsprojects.com/en/2.1.x/quickstart/
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://doi.org/10.1109/TDSC.2014.2373377
https://doi.org/10.1109/TDSC.2014.2373377

BIBLIOGRAPHY

[0] I. Tariq et al. “Resolving cross-site scripting attacks through genetic algorithm and
reinforcement learning”. In: Expert Systems with Applications 168 (2021), p. 114386
(cit. on p. 25).

[0] V. N. Vapnik. The nature of statistical learning theory. Springer, 1998. url: https:
//dl.acm.org/citation.cfm?id=211359 (visited on 03/26/2019) (cit. on p. 42).

[0] P. Vogt et al. “Cross site scripting prevention with dynamic data tainting and static
analysis.” In: NDSS. Vol. 2007. 2007, p. 12 (cit. on pp. 21, 22).

[0] vue-cli-plugin-chrome-extension-cli. npm. url: https://www.npmjs.com/package/

vue-cli-plugin-chrome-extension-cli (visited on 07/27/2022) (cit. on p. 66).

[0] R. Wang et al. “Improved N-gram approach for cross-site scripting detection in Online
Social Network”. In: 2015 Science and Information Conference (SAI). IEEE. 2015,
pp. 1206–1212 (cit. on pp. 23, 24).

[0] R. Wang et al. “Machine learning based cross-site scripting detection in online social
network”. In: 2014 IEEE Intl Conf on High Performance Computing and Commu-
nications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE
11th Intl Conf on Embedded Software and Syst (HPCC, CSS, ICESS). IEEE. 2014,
pp. 823–826 (cit. on pp. 23, 24).

[0] XSSed | Cross Site Scripting (XSS) attacks information and archive. xssed.com. url:
http://xssed.com (visited on 04/28/2022) (cit. on p. 27).

[0] Y. Zhou and P. Wang. “An ensemble learning approach for XSS attack detection
with domain knowledge and threat intelligence”. In: Computers & Security 82 (2019),
pp. 261–269 (cit. on p. 24).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [0]

[0] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL:https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 78).

81

https://dl.acm.org/citation.cfm?id=211359
https://dl.acm.org/citation.cfm?id=211359
https://www.npmjs.com/package/vue-cli-plugin-chrome-extension-cli
https://www.npmjs.com/package/vue-cli-plugin-chrome-extension-cli
http://xssed.com
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Front Matter
	Cover
	Front Page
	Copyright
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Glossary
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Research Question
	1.3 Research Objective
	1.4 Reading Guide

	2 Background and Related Studies
	2.1 Web Applications
	2.2 JavaScript
	2.2.1 JS Features
	2.2.2 JS Composition
	2.2.3 Add JS to webpage
	2.2.4 JS Security

	2.3 Cross-Site Scripting Attack
	2.3.1 Stored/Persistent XSS
	2.3.2 Reflected/Non-persistent XSS
	2.3.3 DOM-based XSS

	2.4 Machine Learning
	2.4.1 Machine Learning Algorithms
	2.4.2 Supervised Learning
	2.4.3 Evaluation

	2.5 Existing XSS Detection Mechanisms
	2.5.1 Standard Methods
	2.5.2 Static/Dynamic analysis
	2.5.3 Machine Learning Analysis

	2.6 Summary

	3 Datasets
	3.1 Data Collect
	3.2 Features Extraction
	3.3 Summary

	4 Classifiers
	4.1 Train Model
	4.1.1 Linear Regression
	4.1.2 Decision Tree
	4.1.3 Support Vector Machine
	4.1.4 K-Nearest Neighbors
	4.1.5 Random Forest
	4.1.6 Naive Bayes
	4.1.7 Execution Time

	4.2 Discussion

	5 Ensemble algorithms
	5.1 Introduction to ensemble algorithms
	5.2 The framework
	5.3 Random Forest with Decision Tree
	5.4 K-Nearest Neighbors with Random Forest
	5.5 K-Nearest Neighbors with Decision Tree
	5.6 Execution Time
	5.7 Discussion

	6 Real Time Application
	6.1 Introduction to Chrome Extension
	6.2 The Framework and Language
	6.3 Backend Services
	6.4 Frontend Application
	6.5 Discussion

	7 Conclusion
	7.1 Research Summary
	7.2 Research Discussion
	7.3 Future Work

	Bibliography
	Back Matter
	Back Cover

