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Abstract

The design of robot behaviors to meet the requirements of the new industrial era -

Industry 4.0 - has grown significantly in recent years. Especially the demand for flexible

and adaptable systems has increased exponentially since intelligent robots started to be

integrated into assembly lines and replace human activities.

Tools such as Finite State Machines have proven to be an understandable and quick

way to solve high-level problems in robotics; however, unmanageable when complexity

rises. They become confusing and unreadable, making their modification and mainte-

nance a problem. New tools, such as Behavior Trees, have emerged, creating modular,

flexible, and adaptable systems without sacrificing readability with the increased com-

plexity.

The proposed architecture follows a hierarchical layered approach taking advantage

of Behavior Trees, developing modular robot skills and system interfaces to create an

autonomous behavior-based system. The software was implemented and tested in an

Autonomous Mobile Robot capable of navigating complex environments and executing

basic tasks.

The results showed real advantages in using the layer-based approach, particularly

giving the system modularity and increased flexibility capable of being easily improved

and used in other systems. It was also concluded that Behavior Trees are an adequate tool

for reactive systems in highly dynamic environments.

Keywords: autonomous mobile robots, behavior trees, industry 4.0, autonomous naviga-

tion, path planning, ROS, layer-based approach, robot skills
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Resumo

Nos últimos anos, tem-se verificado um crescimentos na modelação de comportamen-

tos robóticos com o objetivo de satisfazer necessidades dos novos paradigmas da indústria.

Em particular, na indústria 4.0, com a integração de robôs nas linhas de produção e a subs-

tituição dos humanos em diversas atividades, tem-se verificado um aumento na exigência

de sistemas mais adaptáveis e flexíveis.

Ferramentas tais como as máquinas de estado provaram ser percetíveis e de fácil uti-

lização na resolução de problemas na área da robótica. No entanto, com o aumento da

complexidade, tornam-se problemáticas pela sua desorganização e ilegibilidade. Por con-

seguinte, emergiram novas estruturas, tais como as árvores de comportamento, capazes

de tornar os sistemas mais modulares e flexíveis.

A arquitetura por hierarquisação de camadas proposta, tira partido das vantagens das

árvores de comportamento, com o desenvolvimento de comportamentos e interfaces de

modo a criar um sistema reativo e autónomo. O software foi implementado e testado num

robô móvel autónomo, capaz de navegar em ambientes complexos e de executar tarefas

basicas.

Os resultados mostraram vantagens na utilização da arquitetura proposta, em parti-

cular, trazendo modularidade e flexibilidade ao sistema robótico, permitindo uma futura

melhoria de cada um dos módulos, tal como, a sua utilização noutros sistemas.

Palavras-chave: robôs móveis autónomos, árvores de comportamento, indústria 4.0, na-

vegação autónoma, planeamento de rotas, ROS, abordagem por camadas, abilidades ro-

bóticas.
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1

Introduction

1.1 Context and Motivation

The term Industry 4.0 was first introduced by a German Federal Government ini-

tiative to strengthen the cooperation between universities and private companies. The

main goal was to develop advanced production systems to increase the productivity and

efficiency of the national industry [1]. This new industrial stage emerged to change the

way manufacturers and production systems work and reframe the human role in such

environments.

The intention is to approach the working activities in the production chain smartly

and more efficiently (Smart-Working), integrating technologies such as Internet of Things

(IoT), Machine Learning (ML), Artificial Intelligence (AI) and Data Analytics (DA) to

improve information quality from production processes, communication and build im-

provement areas’ awareness.

In Industry 4.0, the systems are meant to automatically adapt to numerous types of

products and conditions, increasing production efficiency and reducing the number of

resources needed (Smart Manufacturing). Therefore, these advanced and flexible systems

enable a deeper layer of customized products leading to faster innovation and manufac-

turers’ competitiveness.

Advanced robotics is one of the technology pillars of Industry 4.0 [2]. In fact, accord-

ingly to the Association for Advancing Automation [3], the third quarter of 2021 set the

record in robot sales, in North America, with nearly 29 000 units valued at 1.48 billion

dollars [4]. In Europe, a growth of 15% in sales corresponding to 78 000 (seventy-eight

thousand) was reported by the International Federation of Robotics (IFR) [5]. Particularly,

for Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs) market,

a report predicted an opportunity worth more than 18 billion dollars by 2027 with an

installed base of 2.4 million robots [6].

Robots are useful to perform repetitive and heavy-weight tasks such as predictive

maintenance, monitoring machines, transport, and handling heavy objects. Although

there are simple tasks such as screwing or wielding that don’t require complex behaviors
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CHAPTER 1. INTRODUCTION

and decision-making processes, there are other situations that robots must have those

skills, such as transporting objects in warehouses with human presence, guiding people,

or avoidance in dynamic and changing environments. Hence, in those situations, robots

must be aware of their surroundings and make decisions. For instance, during the trans-

portation of an object, the robot is confronted with a blocking obstacle in its path. In

that situation, identifying the obstacle and, consequently, the environment is mandatory,

and a decision to reroute its trajectory and take another collision-free path to the goal is

expected.

Therefore, decision-making processes lead to an execution of a new set of actions to

achieve a defined goal. Although humans have the capacity to adapt quickly to changes

and rapidly establish new plans, robots need to know how to behave in different situations

and plan their actions accordingly. Thus, a roadmap of choices has to be designed, in

detail, for machines to make decisions, modeling the human thought process in the

simplest way possible.

Finite State Machines (FSM) and Behavior Trees (BTs) are the most used design tools

to model robots’ decision-making skills. They use conditions, actions and other processes

to describe multiple behavioral possibilities and accomplish adaptation and flexibility.

FSM are widely used not only in robotics but in other fields as well, such as electronics [7],

cloud-based networks [8] and cryptocurrency’s smart contracts [9]. However, in recent

years, Behavior Trees emerged to model decisions and behaviors in computer games, and

they easily spread across other fields such as robotics [10], because of their advantages.

Among them are the increased modularity, scalability, and reusability without sacrificing

readability and complexity.

Moreover, modeling robot behaviors using BTs increases efficiency in the development

of new recovery mechanisms for robots. Encapsulating complex tasks in easy structures

makes them easy to modify, transform, and even reuse the same actions across different

use cases. Thus, the development of architectures benefiting from those advantages must

be explored and tested in robots to assure credibility, security, and usability in different

scenarios.

This dissertation explores the aforementioned advantages of Behavior Trees with a

newly implemented architecture. The proposed model is validated in an Autonomous

Mobile Robot (AMR) which belongs to a project called CONTIGO [11], in development

by INTROSYS [12] and Volkswagen Autoeuropa’s [13] partnership.

1.2 Path for Contribution

In robotics, there are several research projects using BTs to model behaviors. Rodiva
et al. [14] introduce an improved version of the classical BT, called extended behavior trees
(eBT). The extended version not only describe how to execute a behavior but also consider

its effects on the world state. Thus, its possible to optimize the actions’ execution in order

to reduce resources and time spent. Another study conducted by Giunchiglia et al. also
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extended the classical model of BTs and introduced the concept of conditional behavior

trees (CBT). These new concept enables, through pre- and post-processing conditions, to

verify the executability of BTs. With the different focus, namely BT design automation,

there are studies which take advantage of machine learning methods and algorithms

such as reinforcement learning (RL) [15] and genetic algorithms [16] to model and optimize

behaviors. Finally, Colledanchise and Natale [17] showed how synchronization between

BTs impact processes’ efficiency and the performance of systems [18].

Some of them are BT’s fundamental theory improvements, others are focused on robot

manipulation, and a few approach robot navigation. Thus, it is difficult to find real-world

implementations of robotic behaviors, especially in industrial environments. Among the

reasons are the rules and safety procedures that robots must follow and possess to work

in such environments. Furthermore, some industrial places are highly dynamic, meaning

that humans and machines are in movement on the shopfloor. Also, in factories there

are reusable workplaces, that is, they are not destined for just one task, but instead, they

usually hinge on the product being manufactured.

Although there are a few experiments, such as a self-adaptive task management layer

using BT’s and reinforcement learning for multiple AGVs, in a manufacturer shopfloor

[19] and a human-aware collaborative robot [20], there are numerous topics to research,

improve and validate. Hao Hu et al. [19] pointed out that validation in a real-world sce-

nario and algorithmic efficiency improvement is required to perceive the real advantages

of BTs.

Therefore, this dissertation aims to contribute to the application of Behavior Trees in

Autonomous Mobile Robots, demonstrating and validating their advantages using newly

researched methods for their implementation.

1.3 Proposed Approach

The work developed is based on the guidelines defined by the RobMoSys Robotic

Software Component [21], which encourages the composition of robotics applications

following model-driven techniques.

In this work, the robotic software will be categorized in:

• Task Layer, which defines how the robot accomplishes a goal. In particular, it

defines the Behavior Tree;

• Skill Layer where the basic capabilities of the robot are designed, for example,

grasp an object or navigate to a given location;

• Interface Layer serves as the access point for the skills to communicate with the

robot.

The other RobMoSys abstraction layers namely Mission, Function, Operating System,
and Hardware were not implemented or included in the developed software.
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The proposed architecture aims implement certain behaviors using Behavior Trees for

an Autonomous Mobile Robot (AMR) running the Robot Operating System (ROS) and

validate their advantages. The robot in which the implementation will be tested is in the

scope of the project Robótica Colaborativa Inteligente para Otimização Ergonómica de

Processos Industriais (CONTIGO) [11] by INTROSYS [12] and Volkswagen Autoeuropa

[22].

It proposes an Autonomous Mobile Robot with a robotic arm on the top, capable of

transporting car parts in the Volkswagen Autoeuropa shopfloor. Therefore, the AMR must

have the ability to navigate securely and autonomously inside the factory, which includes

avoiding both static and dynamic obstacles such as containers, forklifts, or people. As a

collaborative robot, it must identify operators and be capable of interacting with them,

having defined behaviors (routines) in that sense. Moreover, in alignment with the goal of

the project, it will also have pick and place routines in order to deliver the necessary car

parts to the operators for their work. Another characteristic of the AMR includes voice

and gesture recognition to execute certain tasks. The Figure 1.1 shows an illustration of

the project’s robot prototype.

Figure 1.1: 3D view of the AMR’s structure. a) Upper structure of the AMR b) Bottom
structure of the AMR c) Support structure to revert pieces’ orientation; d) Gripper; e)
Emergency button; f) Pieces’ transport boxes; g) Laser scanner; h) Camera.

In the development of the suggested architecture, the following technologies are used:

the BT library BehaviorTree.CPP [23], the BT visualization tool, Groot and Robot Operating
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System (ROS), the main operating system for robot applications development. Also, all

functional tests and validations will be performed on Gazebo, the ROS default simulator,

and visualized in RVIZ.

Nonetheless, a thankful word and acknowledgment have to be given to INTROSYS

for all the availability and support for the development of this dissertation.

1.4 Dissertation Structure

The following chapters of this document present a detailed description of the steps

followed in order to develop robot behaviors according to a generic architecture based on

abstraction layers. The chapters are structured as follows:

• Chapter 1: Introduction presents the basic pillars of Industry 4.0 and some important

concepts, describes the contribution of this dissertation for the implementation of

behaviors in Autonomous Mobile Robots using Behavior Trees, and exhibits the

approach followed.

• Chapter 2: State of the Art provides an overview of previous work accomplishments

in robot navigation and robot behaviors, as well as a detailed explanation of key

concepts. Possible flaws and solutions are explored and summarized.

• Chapter 3: Supporting Concepts outlines the most important concepts to understand

better the architecture and the mechanisms behind the work developed in this

dissertation, as well as the technologies used.

• Chapter 4: Architecture and Implementation provides a detailed description of the

proposed architecture and its implementation. It also analyses the choices made for

specific aspects of the architecture.

• Chapter 5: Experimental Results and Discussion. The experimental results of the

developed architecture and the approach followed are exposed, discussed and ana-

lyzed.

• Chapter 6: Conclusions and Future Work summarizes the implementation made and

achievements. Comments and improvements are considered. Future work and

research are acknowledged so that progress can be made on the topic of this disser-

tation.
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State of the Art

The goal of this chapter is to identify the research gap that motivated the work herein

presented by surveying the recent contributions of the robotics community to the topics of

autonomous navigation and robot motion behavior. The main focus is motion behaviors

because there are other possible types of behaviors, such as social or interactive, that are

out of the scope of this dissertation.

Section 2.1 explores robot path planning, distinctions between groups of planners and

algorithms are compared and analyzed, and the Section 2.2 describes Behavior Trees as a

solution to model robots’ decision-making process and principles of robot navigation.

2.1 Path Planning

The main output of motion behaviors is a motion planning. Thus, it is important to

first understand the concept of path planning both from global and local perspectives.

In this Section, a brief explanation of concepts such as path planning - global planning

and local planning - are performed. Some algorithms which belong to global planners and

local planners are explained and analyzed. Finally, the most well-known and widely used

planners are compared regarding certain characteristics as performance and movement

time.

The core functionality of an AMR is the ability to navigate safely and autonomously

in a human-centered environment (not built specifically for unmanned vehicles). Con-

sequently, to achieve an endpoint (goal) from the actual location, the robot must have

a navigation system capable of creating a collision-free trajectory, that is, a path, to its

final destination. During the navigation, the competence of identifying and avoiding

obstacles is paramount in a AMR, in order to perform it safely. Preferably, the planners’

calculations try to achieve the shortest trajectory possible based on some principles and

algorithms. In robotics, this concept is called path planning.

The path planning process has two components: the global planning and the local
planning. Global planners approach the path planning process broadly, as their goal is to

compute a path from an initial point to an endpoint. On the other hand, local planners are
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responsible for traversing the path calculated by global planners while dealing with the

uncertainties of the environment, the data produced by the sensors, and the robot’s kine-

matics and motion [24]. Both global and local planners use waypoints to navigate, that is,

reference points in the middle of the trajectory, to compute it as optimally, smoothly, and

shortly as possible without colliding with obstacles [25].

Path planning algorithms and complexity change depending on the environment and

the localization precision. For instance, structured environments, distinctive landmarks,

and static objects are easier to navigate than dynamic, uneven, and unstructured environ-

ments continuously changing. For this reason, sometimes custom modifications must be

made to the most common algorithms to accommodate the demands of the environment

in question.

In the next sections, global and local planners with their corresponding algorithms

will be specified and analyzed.

2.1.1 Global Planners

Global Planners require a a priori representation of the environment, commonly a

map, to compute the best route possible. Optimal paths and map analysis depend on

the algorithm used, and they can be divided into categories. According to Cai et al., [26]

there are three categories: graph search-based algorithms, random sampling algorithms,

and intelligent bionic algorithms. The most widely-known and frequently used graph

search-based algorithms include the Dijkstra algorithm [27] and A* (A-Star) [28]. Regard-

ing random sampling algorithms, based on the research, Rapidly-exploring Random Tree

(RRT) [29] and its variants, such as Risk-based Dual-Tree Rapidly exploring Random Tree

(Risk-DTRRT), [30] are widely implemented in robotics. Finally, there are algorithms cre-

ated in order to demonstrate some kind of intelligence, the intelligent bionic algorithms.

They were based on insect behaviors - Ant Colony Algorithm (ACO) [31] and Particle

Swarm Optimization Algorithm (PSO) [32] - and genetics - Genetic Algorithm (GA) [33].

Graph search-based algorithms are optimal for 2D structured environments where

navigation is relatively simple with static objects. However, using them with large maps

or high-dimensional environments can cause a computational overload. That is, its com-

putation of global planners increases proportionally with the map size. On the other

hand, random sampling algorithms, compared to graph search-based algorithms, are

much more efficient and widely adopted in dynamic and multi-dimensional environ-

ments. Therefore, algorithm must be chosen correctly depending on the environment to

achieve optimal performance.

Furthermore, global planning algorithms all suffer from the local optima problem. The

problem is that the first optimal path found is the result of the algorithm. This behavior

is considered optimal because better solutions can exist, and they are not explored by

the algorithm. However, there are proposed solutions based on the fusion of some of

8



2.1. PATH PLANNING

the aforementioned algorithms, such as the Genetic Algorithm-Particle Swarm Optimiza-

tion Algorithm (OGA-PSO), [34] or adaptation of others imposing some multi-objective

constraints to compute the optimal global path [32].

2.1.1.1 Algorithms

Since the Dijkstra algorithm and A* are two widely used and implemented algorithms

in ROS supporting the majority of global planners, they are explained in detail, in the next

sections.

Dijkstra’s Algorithm

As a graph search-based algorithm, Dijkstra [27] is used for finding the shortest path

between two nodes in a graph. With knowledge of the start and end nodes, the algorithm

calculates the path with the lowest distance between the two.

At first, all vertices of the graph, i.e., distances between two linked nodes, are set to

infinity, meaning that their actual distance to the goal is unknown. Hence, they were

considered unvisited. The source node is marked with zero distance and as a current

node. After that, all the distances between the source node to its unvisited neighbors’ are

computed, considering that the shortest path was not found yet. The shortest distance

between them is saved, and the visited node is removed from the list and set as visited.

A visited node will never be checked again. In case of the goal node is visited, or all the

unvisited set nodes are marked with infinity, the algorithm stops the search, meaning

that the shortest path was found. Otherwise, the current node is assigned as the shortest

distance node, and the algorithm continues the search. The algorithm 1summarizes the

previous explanation.

A* Algorithm

The A* (A-star) algorithm is an extension of the previously explained Dijkstra algo-

rithm. This algorithm is similar to Dijkstra’s but also approaches the search problem

with a heuristic approach. Although there’s a possibility of finding a sub-optimal path

instead of the shortest one, the heuristics-oriented search guide proves to achieve better

performance. Heuristics define an approximate distance to the goal node, sometimes

being shorter than the real distance.

The algorithms’ function - f (n) = g(n)+h(n) - is used to calculate the distance between

the initial node and the goal node, passing by the n node. The g(n) is the effective distance

from the initial node to the node n. The h(n) is defined as the heuristic value estimation

of the distance between node n and the goal node. The A* algorithm starts on the initial

node and calculates the distance f (n) of its neighbors. After choosing the shortest distance

neighbor and the procedure is repeated until the goal node is reached. The following

pseudocode (algorithm 2) summarizes the a-star algorithm.
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Algorithm 1: Pseudocode of Dijkstra’s Algorithm [35]
1: Function Dijkstra(graph[n], source) :
2: for node in graph do
3: dist[node]← inf;
4: path[node]← und;
5: end for
6: dist[source]← 0;
7: Q← G[N];
8: while G[N ] is not empty do
9: small_dist_node← smallestDistNode(G[N]);

10: remove small_dist_node from G[N ];
11: for each neighbor of small_dist_node do
12: new_dist← dist[small_dist_node] + dist_between(small_dist_node, neighbor);
13: if new_dist < dist[neighbor] then
14: dist[neighbor]← new_dist;
15: path[neighbor]← small_dist_node;
16: end if
17: end for
18: end while
19: return path[];

Algorithm 2: Pseudocode of A*(A-Star) Algorithm (adapted from [35])
1: Function Dijkstra(graph[n], source) :
2: for node in graph do
3: dist[node]← inf;
4: path[node]← und;
5: end for
6: dist[source]← 0;
7: Q← graph[n]];
8: while graph[n] is not empty do
9: small_dist_node← smallestDistNode(G[N]);

10: remove small_dist_node from graph[n];
11: for each neighbor of small_dist_node do
12: new_dist← dist[small_dist_node] + dist_between(small_dist_node, neighbor);
13: new_dist_heur← dist[small_dist_node] + distBetween(small_dist_node,

neighbor) + heuristicFunc(small_dist_node, neighbor);
14: if new_dist_heur < distheur[neighbor] then
15: dist_heur[neighbor]← new_dist_heur;
16: dist[neighbor]← new_dist;
17: path[neighbor]← small_dist_node;
18: if ′GOAL′ in graph[n] then
19: break;
20: end if
21: end if
22: end for
23: end while
24: return path[];
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Discussion

Regarding Dijkstra’s algorithm, despite finding the shortest path between two nodes,

it is not the most efficient possible due to its unfocused search. This means that, as it

doesn’t know which direction to search for the goal node, time can be wasted searching

in the wrong direction. However, the heuristic function of the A* algorithm fixed the

problem since it prioritizes the nodes going in the right direction. Moreover, another

consequence of its unfocused search is that the optimal path is not always found by

Dijkstra’s algorithm when weights or distances between nodes are the same.

Therefore, it is clear that the A* algorithm is usually faster than Dijkstra’s. The Figure

2.1 shows the comparison between both algorithms in terms of the search focus.

Figure 2.1: Comparison between Dijkstra’s (left image) and A* algorithms (on the right)
[36].

In relation to the A* algorithm, a possible drawback can be the heuristic algorithm

since it depends on its accuracy to compute the function h(n).

Finally, a limitation can be encountered in both algorithms complexity-wise. For

instance, in large and high-dimensional maps, they are computationally intensive, despite

A* being a big improvement over Dijkstra. Though, there are numerous alternatives

of, mainly the A* algorithm adaptations, regarding global planners, that present some

advantages over the original ones.

2.1.1.2 ROS Planners

NavFn

The NavFn [37] global planner is based on the NF1 navigation approach [38] and

provides a fast interpolated navigation function to create plans. Assuming that the robot

has a circular shape, the inputs for computing the minimum cost plan are the costmap,

starting point, and end point. Nonetheless, it only uses the graph-based search Dijkstra

algorithm, the developers expect to add the A* algorithm in the future.
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The disadvantage of NavFn is that the obstacle circumvention does not take into

account the robot’s motion characteristics and footprint, only the shortest straight path,

meaning collisions can still occur [39].

Global_Planner

The global_planner [36] is the replacement of NavFn Global Planner as it implements

a more flexible solution of the interpolated function used to create plans. This planner

supports both Dijkstra and A* algorithms and has a slightly different approach to calcu-

lating the potential fields compared to the previously presented planner. It also includes

an option to reproduce the behavior of the old NavFn global planner and an orientation

filter as a post-processing step to decide which orientation the robot has along the path.

2.1.2 Local Planners

According to the global plan, local planners assure the robot follows the trajectory

generated, dynamically avoiding previously unknown obstacles present in the environ-

ment, i.e., not represented in the initial costmap. Local planners, as global planners,

use waypoints to create collision-free paths. Considering the information (waypoints)

from the global planner together with sensors’ data, a limited local path is generated at a

specific rate, using only portions of the map surrounding the robot. Thus, local planners

try to update the map cyclically, creating a collision-free path as close as possible to the

global trajectory considering known and unknown obstacles.

Some of the most used local planners are the Dynamic Window Approach (DWA)

and Time Elastic Band (TEB), which are presented in the next sections. They are not

exclusively from ROS, since there are many implementations outside of the framework

as path planning solutions for other applications besides robotics.

2.1.2.1 ROS Planners

Dynamic Window Approach (DWA)

The Dynamic Window Approach planner algorithm [40] relies on the concept of a

rolling window in the surroundings of the robot calculated according to the kinematics

model and the current speed of the robot. The trajectories are generated for each set of

speeds within the window range. Then the optimal speed is obtained by estimating the

trajectories based on a certain evaluation function which generally considers three factors:

speed, path angle, and distance from the obstacle (obstacle clearance).

The main advantage of this planner algorithm is that numerous paths are calculated

(predicted), that is, rolled out, and then the optimal one is chosen based on some im-

portant factors or constraints related to the robot, its state, and the environment. This

behavior makes the planner suitable for different types of locomotion, such as differen-

tial and omnidirectional [41], and environments both static and dynamic. However, is
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not suitable for car-like robots since it does not calculate solutions considering motion

reversals. Moreover, another disadvantage of this planner is the high computational de-

mand due to its predictive behavior. The Figure 2.2 shows the DWA planner’s predictive

behavior.

Figure 2.2: Dynamic Window Approach planner’s behavior [42].

Elastic Band (EB)

The Elastic Band (EB) Planner is based on the Elastic Band approach [43]. As the name

suggests, the concept relies upon the deformation of the path generated as an elastic band.

There are two forces applied to the path: an internal contraction force which simulates

the tension in a stretched elastic band, and an external repulsive force which confers

a repulsive behavior from obstacles. Thus, these two forces in equilibrium mimic the

nature of an elastic band.

This type of behavior gives the planner the ability to handle dynamic situations with

moving obstacles since the two forces deform the path in real-time, always reaching new

equilibrium positions as the robot perceives new unknown obstacles.

Furthermore, the standard Elastic Band approach resides on the concepts of the path’s

deformation generated by the global planner, avoiding obstacles in the way and mini-

mizing its length. However, this approach is not considering the mobile base motion

constraints, leading to possibly not perfectly suitable paths for the type of robot being

used, being one of the major limitations of the EB planner.
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Time Elastic Band (TEB)

Time Elastic Band (TEB) Local Planner is based on the same approach as the last

planner.

The TEB approach improves the prior by taking into account the constraints of the

robot being commanded for motion planning. Contrary to Elastic Band’s planner, it

considers temporal aspects of motions for a more realistic approach to path planning. It

also contemplates kinematic constraints, such as linear and angular velocity, acceleration,

and, as the EB planner, the trajectory generated derives from the deformation of the

global path. As the main objective, TEB wants to reach a goal in minimal time, following

a collision-free path in order to adhere to the kinematic and dynamic constraints of the

robot. The TEB approach also maintains and optimizes a set of candidate trajectories in

parallel. This way, it can change between the candidate trajectories, choosing the best

current globally optimal trajectory.

One of the major disadvantages of TEB is that, the repeated calculation of a new path

at every cycle causes a big computational overhead, and, as a result, it needs a powerful

computer in order to meet such computational demand.

Discussion

Pimentel et al. have conducted two studies [44] [45], in mobile robot navigation using

different ROS planners. The first [44], evaluated the navigation performance in a static

environment with and without objects, and several tests were performed with different

types of sensors and combinations: only the front laser scanner, both front and back laser

scanners and also, and the front and back laser scanners combined with a 3D camera. It

is clear that the performance of the planners was consistent and dependent on the type

of environment and not the number of sensors. That is because the results’ consistency

depends on the representation of the environment, despite the number of sensors. How-

ever, sensor redundancy is a strategy to mitigate the noisy data produced by some, not

affecting the planners’ performance.

Thus, the tests’ results, with different sensors’ combinations, were similar in each

scenario (Figure 2.3). EB planner was the best in scenario one, and TEB was the best

in scenario two. The DWA planner was the worst in both scenarios. The study also

concluded that EB Planner was the best for social navigation as its performance is the

most balanced in both scenarios and independent of the sensors used.

In the second study [45], the tests targeted both global and local planners and were

divided into six stages with multiple configurations and scenarios, but only four of them

are important for this discussion. The stage one was characterized by a simple configura-

tion, and the scenarios used had only easy-to-perceive obstacles or no obstacles at all. The

main focus of the second stage was to evaluate the performance of global planners. The

tests were executed in the same scenarios as the previous stage, however, the localization
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Figure 2.3: Scenarios used for EB and TEB planners’ comparison [44]. (a) Environment
without obstacles (b) Environment with static objects.

source was changed (to the localization given by the simulator, in contrast to the previ-

ously used Adaptive Monte Carlo Localization (AMCL)), as well as the global planners

(to Navfn and Global Planner). In relation to the stage three, the Navfn was chosen as the

global planner due to the best results and different local planners were tested (Trajectory
Planner, DWA, EB and TEB) while the test scenarios stayed the same. In the fourth stage,
more difficult obstacles (hard to see by laser scanners) were introduced into the environ-

ment. TEB was selected as the local planner, and different sensors’ observation sources

were tested. The test scenarios and corresponding stages are depicted in Figures 2.4 and

2.5.

Figure 2.4: The simulated environments used in stages 1, 2, and 3. The green area
represents the start region, and the blue area represents the goal region [45].

In the simple configuration (stage one), the results showed that the best performer

overall was the EB planner. In the fourth stage, where the environment was dynamic

with people walking and human interaction, TEB was the winner, but EB’s performance
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Figure 2.5: The simulated environments used in stage 4. The green area represents the
start region, and the blue area represents the goal region.

was close to TEB’s. Regarding DWA planner, it was worse than the others in all stages.

Although it is very popular among the robotics community, nowadays, there are better

solutions to address new navigation problems, such as elastic band theory-based plan-

ners[46] [47].

From both studies, evidence shows that EB planner was the most balanced planner

considering both static and dynamic scenarios and is less computationally demanding

than TEB planner. Nonetheless, TEB local planner was the most adequate and natural for

dynamic environments. Finally, the second study also suggests that it has higher precision

in narrow environments.

Regarding highly dynamic environments, unpredictable and unexpected situations

have a high chance of happening. Therefore, robots have to be provided with recovery

mechanisms that help them to make decisions when encountering new situations and to

know how to behave. The next section describes the inner mechanisms of such behaviors

and how they function.

2.2 Behavior Trees

Behavior Trees (BTs) was first introduced by the necessity of creating Non-Player Char-

acters (NPCs) in the gaming industry, who can switch between different tasks depending

on the action of the main character. They appear in popular gaming engines like Pygame

and Unreal Engine. Before them, Finite State Machines (FSM) was the first widely used

solution for decision-making processes. They are based on one-way control transfer. That

is, the base code behind every scheme is executed sequentially with no return [10]. This

behavior raises a limitation: a tradeoff between modularity and reactivity.
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In reactive systems, multiple scenarios must be considered, which, in terms of the

implementation itself, means many transitions between states. Therefore, removing a

component of the system creates the necessity of revising and refactoring it. Consequently,

FSM does not provide much modularity to build complex systems and be easily reused

and adapted. The following Figure 2.6 shows an example of a FSM.

Figure 2.6: Example of a FSM. States are characterized by circles. The text near arrows
symbolizes actions and conditions [48].

Before introducing the advantages of BTs, is important to clarify the concept. A BT is

a directly rooted tree which has four control flow nodes - fallback, sequence, parallel, and

decorator - and two execution nodes - action and condition. The execution of the nodes in

the tree is controlled by a signal called tick1 that is propagated throughout the tree. The

root initiates the cycle from left to right, ticking its children, and they have three possible

answers to return to its parent node. They can return running meaning the execution of

the node is still in progress, success in case they successfully achieved their goal or failure
in case of no success. The following subsections explain the different types of nodes.

2.2.1 Control Flow Nodes

Fallbacks

Fallbacks, also called Selector nodes, represent the versatility BTs can have. The

fallback node provides different ways to achieve the same goal. Each fallback item is
1Ticks are generated signals with a given frequency to ensure synchronization of the system’s nodes
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executed only upon the failure of the previous one, meaning that if the first child returns

success, the node returns success as well. Thus, the next children are not ticked because

the previous one had already returned success. However, if a child is not successful, the

next ones are executed, from left to right, until one returns success. This type of behavior

opens a range of possibilities for applications and increases the flexibility of the system.

The fallback node is represented graphically by a question mark (?). The Algorithm 3

clarifies how the fallback node works.

Algorithm 3: Pseudocode of a Fallback node with N Children
1: Function T ick() :
2: for i← 1 to N do
3: ChildStatus← child(i).Tick()
4: if ChildStatus == Running then
5: return Running
6: else if ChildStatus == Success then
7: return Success
8: else
9: return Failure

10: end if
11: end for

Sequences

Sequences are a set of dependent actions that need to be performed in order. Therefore,

the success or failure of one child, directly influence the entire sequence. In contrast to

the fallback node, the success of one child is required in order to move to the next one.

If one child returns failure, the sequence fails. On the other hand, if all the children are

successful, the node returns success. The sequence node is usually represented by an

arrow (->). The Algorithm 4 shows how the sequence node works.

Algorithm 4: Pseudocode of a Sequence node with N Children
1: Function T ick() :
2: for i← 1 to N do
3: ChildStatus← child(i).Tick()
4: if ChildStatus == Running then
5: return Running
6: else if ChildStatus == Failure then
7: return Failure
8: else
9: return Success

10: end if
11: end for
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Parallel

Parallel nodes (Algorithm 5) obey to a rule of execution. Considering N the total

number of children and that all children are ticked, a parallel node returns success if M

children return success, failure if N −M + 1 returns failure or running otherwise. Parallel

nodes are mostly used in probabilistic behaviors, and they are represented by two arrows.

Algorithm 5: Pseudocode of a Parallel node with N Children
1: Function T ick() :
2: for i← 1 to N do
3: ChildStatus[i]← child(i).Tick()
4: if

∑
i:ChildStatus[i]==Success = M then

5: return Success
6: else if

∑
i:ChildStatus[i]==Failure > N −M then

7: return Failure
8: else
9: return Running

10: end if
11: end for

Decorator

Decorator nodes are control flow nodes with only one child, and they change the

return value of its child or Ticks1 it, according to a defined rule. Some examples of

decorator nodes are the inverter which does as it’s called, it inverts the return value of its

child, the max-N-tries which only lets its child fail N times before return Failure and the

Timeline which Ticks its child nodes for a limited amount of time.

2.2.2 Execution Nodes

Action

An action node is set to perform some operation when it receives Ticks1. The node

returns Success if the operations are completed and Failure if it fails to complete them.

Otherwise, it returns Running. During the Running phase, if the node stops receiving

Ticks, it aborts its execution. of an action node. An action node is represented graphically

by a rectangle, and the Algorithm 6 shows an example of it.

Condition

When a condition node receives a Tick, it checks whether the condition is satisfied

and returns Success or Failure accordingly. Algorithm 7 exemplifies the condition node,

and it is represented graphically by a circle.

Finally, the following figure (Figure 2.7) summarizes all the possible standard nodes

used to create BTs.
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Algorithm 6: Pseudocode of an Action Node
1: Function T ick() :
2: ExecuteAction()
3: if action− succeeded then
4: return Success
5: else if action− f ailed then
6: return Failure
7: else
8: return Running
9: end if

Algorithm 7: Pseudocode of a Condition Node
1: Function T ick() :
2: if condition− true then
3: return Success
4: else
5: return Failure
6: end if

Figure 2.7: Type of BT nodes [10].

2.2.3 Discussion

In the beginning, BTs brought a new and easier way to build robust and complex

systems which can adapt and behave in different circumstances, that is, being capable

of making decisions, easily reusable, and modular to address numerous applications.

Therefore, in the last decade, the robotics community showed interest in the benefits of

BTs to develop more robust, complex, and modular robotics and autonomous systems[49].

Contrary to FSM, BTs are based on two-way control transfers which is the way that

most modern programming languages work: using function calls. Functions are called

by the main code for the execution of specific tasks and return to it to continue the code’s

execution. BT nodes have the same behavior where higher-level nodes can represent

a global task (main code) which is divided into smaller ones (functions) that directly

influence the success of the global task. Consequently, the main important advantages of

these types of structures are [49]:
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1. Task Hierarchies. The idea of task hierarchies is common when it comes to modular

systems. For example, different agents in multi-agent systems are managed by a

coordinator which defines a higher hierarchical level than the agents[50]. In case of

BTs, there are tasks composed of subtasks which, consequently, can have their own

subtasks as well. For instance, the Figure 2.8 represents an example of a task using a

BT - a player decision-making process (represented by the first fallback node) - with

subtasks - its behavior in different scenarios (another fallback node and sequences).

First, if any opponent player is visible, he just wanders around. However, if there’s

an opponent in sight, he goes to battle mode, which is divided into three actions:

firing a gun, swinging a sword, or taunting the opponent player. Moreover, firing a

gun implies that more than three sub-actions are taken.

Figure 2.8: Example of a BT of a game (adapted from [49]).

2. Reactivity implies that the system is capable of interrupting less important tasks

in order to execute the more important ones. Prioritization is one of the key com-

ponents of a robust and autonomous system. For example, a robot system has to

prioritize the amount of battery left more than almost any other task. Hence, in case

of a low battery, the robot should interrupt the current task and start its routine to

search and navigate to a charging station.

3. Modularity is the biggest advantage of BTs over FSM. It is achieved by having the

same interface for every node. Each node returns success, failure or running, which

is enough for higher tasks to decide where the system evolution’s direction. For

instance, the fully modular ROS2 Navigation Stack [51] (Figure 2.9) is built by BTs.

The recovery, controller, and planner server are managed by a higher entity - the BT

Navigation Server. These completely modifiable servers show clearly that BTs can
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make can give a system the ability to be modular and reconfigurable. Thus, regard-

ing ROS2 Navigation Stack, each developer can use their own recovery, controller,

or planner server as they can be fully replaceable.

Figure 2.9: ROS2 navigation stack scheme[51].

However, there are disadvantages to be highlighted when it comes to the complexity

and performance of BTs.

Behavior Tree based applications can be complex to implement. As the synchroniza-

tion of the system is maintained by tick’s1 generation, it has to happen in parallel with the

actions being executed, therefore implementing BTs with single-threaded programming

can be a challenge[10] as some tasks can be performed asynchronously.

Moreover, the creation of different alternatives that BTs provide comes with a per-

formance cost, especially in closed-loop task execution[10]. In smaller systems, the cost

can even surpass the advantages. Consequently, they become too slow or unfeasible for

their purpose and don´t have any advantage compared to other more simple architec-

tures. For example, when robots operate in very structured, simple, and easy-to-predict

environments.

Finally, BTs software tools are in the early stages of development compared to oth-

ers, for instance, FSMs. However, despite the aforementioned drawbacks, the robotics

community has been developing more tools in recent years which take advantage of BTs.

Related work about BT applications in robotics revealed a mid-stage development. Impact-

ful projects were developed or under development and reveal that they can be versatile

and easily adapted across different applications. Their modularity, flexibility, and ability

to create complex reactive systems and decision-making processes have made the adop-

tion of these structures beneficial to the progress of robotics research and the creation of

new, improved, and efficient solutions. Among them are manipulators [52], [53], aerial
robots [54], [55] and wheeled robots [56], [51]. The majority of BTs studies on ground
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robots show that they are useful for the robot’s control system, helping decision making,

obstacle avoidance, and multi-task switching in industrial environments and search and

rescue scenarios.

2.2.4 Behavior Trees Open-Source Libraries

In this section, the most used BT Open-Source Libraries will be analyzed and com-

pared with respect to important characteristics. Thus, regarding the development of

behaviors using BTs, the important characteristics considered are:

• The language;

• The compatibility with ROS;

• The existence of proper documentation;

• The existence of a GUI to visualize the developed BTs;

• Code maintenance and development.

The Table 2.1 summarizes the BT libraries and the chosen characteristics.

Table 2.1: BT Open-Source Libraries identified (adapted from [57]).

Name Language ROS Doc. GUI Last Commit
BehaviorTree.CPP C++ yes [58] yes 02-02-2022
py_trees Python no [59] no 01-12-2021
py_trees_ros Python yes [60] yes 10-05-2021
CoSTAR C++ yes [61] yes 10-09-2018
UE4 Behavior Tree UnrealScript no [62] yes N/A

From the six chosen BT libraries for the comparison, there is a distinction to be made:

five of them were developed for the purpose of robotics (highlighted in bold) and one for

games. Therefore, the analysis will not cover Unreal Engine 4 (UE4) BT library since the

development is focused on modeling intelligent behaviors for characters in games. Hence,

the criteria to classify a well-developed and structured BT library for games cannot be

the same since these two fields prioritize different characteristics. For instance, event-

driven programming is the major concern in the gaming industry, whereas robotics is

time-triggered control [57]. Although, it is important to mention that UE4 is one of the

famous engines for game development, well documented and actively developed.

BehaviorTree.CPP

BehaviorTree.CPP is one of the most used BTs libraries to develop applications using

BTs. Although the main use case is robotics, it can be used to build AI for games [58].

The library is written in C++ 14 and trees can be written in a scripting language (based on
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Extensible Markup Language (XML) and loaded at run-time. Nodes can also be converted

into plugins and loaded at run-time as well. This is an important feature to address as

the performance of ROS and its structure benefit from code that can be loaded as plugins.

Therefore, BehaviorTree.CPP is fully compatible and easily integrated with ROS.

Using the date that the libraries were checked (04-02-2022) as a reference, Behav-

iorTree.CPP was the most up-to-date (02-02-2022) with 847 commits and eighty contrib-

utors, signaling that is being actively developed to date. It is also very well documented

[58] with a considerable number of tutorials and detailed information. Finally, this library

has a GUI interface called Groot, which makes easy the debug, monitoring, and visual-

ization processes. However, according to the authors, Groot is not actively supported by

them.

Py_Trees and Py_Trees_Ros

Py_Trees is the main BT library used by the Python community [57]. However, since

it was not developed to work with ROS directly, but in robotics in general, it was added

Py_Trees_Ros, because it is an extension of the former which works with ROS. Regarding

composite nodes, it includes sequence, Selectors, and Parallel nodes. To date, the fallback

node is not implemented.

Py_Trees and Py_Trees_Ros libraries, are actively supported as their last commit date

was 01-12-2021 and 10-05-2021, respectively. Both have more than 1000 commits to

date and between ten to twenty contributors. Although the number of contributors is

slightly less than the previous library, this library is considered actively supported and

in development. They are also well documented as the available resources and tutorials

[59], [60] are many. According to the documentation, Py_Trees does not support a GUI,

however, Py_Trees_Ros does.

CoSTAR

As stated in [61], CoSTAR is an end-user interface for authoring robot task plans. CoSTAR

aims to facilitate users in programming robot tasks for different use cases. It integrates

perception and planning in a BT base user interface.

It is a library implemented in C++, and it works with ROS. However, according to

the documentation, it only supports ROS Kinetic and Indigo versions. Regarding nodes,

Sequences, Fallbacks, and Decorator nodes are implemented, however, with a different

categorization such as Service, Variable, Logic, Action, Query, and Condition Nodes [53].

This library has a beautiful BT based GUI with several boxes depending on the type of

node and action pretended. The documentation is not as abundant as BehaviorTree.CPP

and Py_Trees, but are carefully made. However, the last commit date (10-09-2018) leaves

the perception that the platform is not being actively developed, despite having about

1900 commits and ten contributors.
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2.2.5 Behavior Trees Libraries Discussion

In this section, the aforementioned will be compared, and the advantages and disad-

vantages of each one will be outlined.

Studies show [57] that in Py_Trees, decorators were rarely used in robotics projects,

constituting only 6% of the composite nodes (Decorators, Parallel, Fallback, and Se-

quence). That is because in Python code is much easier to apply transforming operations

than using the BT abstract syntax. However, the same thing cannot be said about Behav-

iorTree.CPP library as decorators are used almost three times more (19% of the composite

nodes). The benefit of having a GUI is clear in this case, as decorators can be visualized,

monitored, and controlled. In Py_Trees, the nonexistence of this type of interface makes

it harder to use certain types of nodes since debugging is difficult and tedious in case of

some errors occur.

Moreover, the presence of a dedicated XML file to program the BTs, in the BT library

BehaviorTree.CPP comes with a structural advantage: the rest of the system can read

and write from the backboard when BTs can be fully written in another independent

file. This separation allows BTs models to be processed in other systems. Therefore,

BehaviorTree.CPP developers thought about one of the keys of BTs, their modularity.

Nevertheless, in the study conducted by Ghzouli et al. [57], 30% of the projects ana-

lyzed belonged to BehaviorTree.CPP, whereas 70% was from Py_Trees_Ros. The suspicion

is that the reuse by reference through file inclusion is harder because it has to be made at

the source code level, and the BTs are declared in a separate XML file rather than in the

latter, as BT models are intertwined with the Python code.

Finally, compared to BehaviorTree.CPP and Py_Tree_Ros, CoSTAR’s Graphical User

Interface is the best, by its structure, functionality and ease of use by users. However,

CoSTAR seems like a all-in-one integration tool. It has perception, and path planning

were not needed in a BT tool as ROS has those packages integrated. Moreover, the fact

that only old versions of ROS are supported and the source code is not actively maintained

closes the doors for more improvement and for attracting more people into the project.
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Supporting Concepts

In this chapter, supporting concepts to understand the work developed are outlined.

That is, the Robot Operating System (ROS). In Section 3.1, the architecture of ROS is

explained so the reader can understand its inner mechanisms and communications with

some examples supporting the presentation of such concepts.

3.1 ROS Concepts

Robot Operating System (ROS) is an SDK (software development kit) that provides the

building blocks needed for developers to build robot applications [63] which have been

widely used, over the years, in numerous applications such as research projects [64], [65]

and real-world implementations [66], [67], [68]. It provides hardware abstraction, device

drivers, libraries, visualizers, message-passing, package management, and numerous

other tools [69] to help developers to achieve their goals faster.

ROS architecture (Figure 3.1) is based on the Publish-Subscribe paradigm where pro-

cesses, called nodes, communicate with each other through topics and services. Moreover,

as ROS is not a real operating system[70] [63], despite the name, and it runs on Linux

(Ubuntu). ROS was created to build distributed systems in which each block in the sys-

tem doesn’t depend on each other, however, this goal was only achieved with the second

version of ROS, ROS2 [71]. In the first version of ROS, the small programs (nodes) that

are saved inside packages (building blocks) run in a distributed way, but they all depend

on roscore, which turns the solution fairly centralized.

3.1.1 ROS Core Elements

The core of the ROS involves two parts: the ros master and the parameter server. Ros
master node is basically a database of all the topics, nodes, and services available on the

system, including their names, message types, and configuration files, as well as their

locations (packages). The parameter server works as a global list of settings for the nodes.

It carries all the values of the variables used by the nodes in the network. As they are

public, all the different nodes have access to the same list of settings.
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Figure 3.1: ROS architecture[72].

3.1.2 ROS Nodes

ROS nodes are small programs written to execute one or more tasks. They are in-

tended to interact with other nodes, provide and gather the necessary information from

the network - specifically from topics - to reach their goal. Nodes are the kernel of the

robotic system. For instance, one node is responsible for analyzing the laser scanner’s

data from the robot’s sensors in order to avoid obstacles, another node controls the robot

wheels, and another performs the localization of the robot in the environment. They

communicate with each other using topics, services and actions.

ROS nodes are created inside a special folder that is called package. Each package

can have multiple nodes communicating with each other and other nodes outside the

package. Moreover, each version of ROS has its standard packages, which are used by

all robotics developers. For example, the package move_base implements an action that,

given a goal in the world, will attempt to reach it with a mobile base [73]. Basically, this

package provides the implementation of the architecture for any robot to move from one

point to another in space. Moreover, inside the move_base, there are other packages that

perform specific tasks. Each is a building block of one architecture, such as the global and

the local planners, implementation of costmaps and localization, and recovery behaviors.

Therefore, it is paramount that ROS developers follow the default rules and best

practices so that each package can be easily updated, adapted, or changed in order to

meet the needs of different systems.

3.1.3 ROS Communication Tools

There are three ways of communication in ROS: via topics, services and actions, using

standard messages.

• Topics are the main form of interaction in ROS. Topics are endpoints for data

streams to be exchanged by nodes, actions, and services. The communication pro-

cess starts when an entity wants to publish or gather information on a topic. The en-

tity communicates to the master the exact port it deserves to open. Then a response
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is received from the master server with a list of the current open ports. Thus, the

requests for opening ports and closing ports of communication in the systems are

handled by the master server. Once information is published in a port (topic), other

nodes that need it to listen to that port to gather the right information to perform

their tasks. Nodes can create entities called publishers and subscribers according to

their intent, for instance, the direction of the data. If they want to gather informa-

tion, they create a subscriber to listen to a topic, whereas the intent is to provide

information to the network, they create a publisher. Each publisher and subscriber

have to mention the name of the topic they want to subscribe to or publish. Finally,

ROS nodes can have multiple publishers and subscribers according to their com-

plexity. The process of communication via topics is illustrated in Figure 3.2. In the

example, the node called /amr/localization/map_server publishes information in the

topic called /amr/localization/map. Then the the node /amr/localization/lama_loc sub-

scribes the topic /amr/localization/map which means it is receiving messages from

the /amr/localization/map_server node.

Figure 3.2: Communication example between ROS nodes. Nodes are represented by
circles, whereas topics are represented by rectangles.

Security-wise, ROS does not provide any restriction about the integrity of the data

being published, therefore, there is no access control regarding topics.

• Messages. Information in ROS is structured in different message’s types. ROS mes-

sages are a standard way of organizing information, so all the systems follow the

same rules. Thus, each topic, service, or action has a message type associated with it,

so rules for communication have to be respected. For example, node A (publisher)

sends data to a topic of the type sensor_msgs/Laserscan. The only way node B

(subscriber) can listen to the information published by node A is by accepting to

receive that message’s type. Therefore, the communication of each set of publish-

ers/subscribers is only possible if they all use the same message type. In Figure

3.3 is illustrated the aforementioned example and Listing 3.1 shows the message

geometry_msgs/Pose type which includes in its structure the geometry_msgs/Point
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Figure 3.3: ROS nodes communicating via the topic scan.

type, describing a position in space and the geometry_msgs/Quaternion type, de-

scribing an orientation. Moreover, the types geometry_msgs/Point and geome-

try_msgs/Quaternion are described by three and four numbers with the float type.

Finally, having standard message types increases modularity and development effi-

ciency. There are numerous ROS standard types of messages, although developers

are free to create their own types if it suits their applications.

Listing 3.1: Structure of ROS Geometry Messages Pose type.

#geometry_msgs/Pose

geometry_msgs/Point position

geometry_msgs/Quaternion orientation

• Services provide an easy way of establishing synchronous client/server communi-

cations. The client sends requests to the server, and the server responds by giving

feedback to the client. They are usually used for simple tasks that don’t require ac-

knowledgment of completion, such as enable/disable, set/unset or request for data.

For example, in a robotic system, it is required to enable/disable some sensors to

perform some task or are causing a decrease in performance (laser scanners or RGB

cameras), ask for information about the robot’s location at a given time or trigger an

action (start charging after docking). Although multiple service clients can use the

same service, only one service server can exist for a given service. In Figure 3.4 and

Listing 3.2 are shown the client/server communication data flow and the structure

of a ROS service’s declaration, respectively. A ROS service declaration have two

two fields: the request and response variable(s) name(s) and type(s), separated by

three dashes. In Listing 3.2, the client has to send an integer in the request mes-

sage, and the response message received has two variables: one boolean, which is

meant to give the success state, and a string with a message. Nonetheless, as ROS

messages, new ROS services can be created by the developers to meet the needs of

their applications.
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Figure 3.4: ROS Service communication structure [74].

Listing 3.2: ROS Service declaration structure.

int8 value # node id

---

bool success # returns success or failure

string message # in case of failure returns the error message

• Actions, similarly to services, are based on a client/server communication approach,

however asynchronous. They are usually implemented to execute more complex

tasks with a longer duration. Consequently, they are asynchronous since blocking

the system during a long period of time can have catastrophic consequences in some

applications. Hence, the client can access the active state at any time, monitor the

process, and, in case of need, cancel or halt it. For instance, a client makes a request

for the robot to go to a location in space, but suddenly a motor stops working. In

that case, the action has to be canceled, and the robot starts the emergency proce-

dure. Similarly to ROS services, ROS actions have a request message and a response

message. However, as they execute processes with a longer duration, they provide

feedback during the execution. Thus, ROS actions include two ROS services, the

goal service, the response service, and a feedback topic. Moreover, depending on the

task of each entity and the name of the action, there is a type of message associated

with it. For instance, in ROS navigation stack, there is an action called MoveBaseAc-
tion. Thus, the type of messages associated with the goal service, response service

and feedback topic are MoveBaseActionGoal, MoveBaseActionResponse, and Move-
BaseActionFeedback.
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In Listing 3.3 and Figure 3.5 are shown the communication data flow and a declara-

tion structure of a ROS action, respectively.

Listing 3.3: ROS Action declaration structure.

#goal definition

geometry_msgs/PoseStamped goal

---

#result definition

bool result

---

#feedback definition

float64 current_velocity

Figure 3.5: ROS Action communication structure [75].
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Architecture and Implementation

In this chapter, the implemented architecture is explained. After a general overview,

each important block of the architecture is described in detail, their dataflows, and each

main algorithm. Section 4.1 presents the overview of the architecture, whereas the Section

4.2 details the role of each layer and shows the dataflows and algorithms in them. Finally,

the Section 4.3 presents the created robotic behaviors.

4.1 Architecture Overview

The implemented architecture follows similar principles as the research work led by

colledanchise et al. [76] and which presents a system divided by three separated layers

organized by order of abstraction: the Task Layer, the Skill Layer and the Service Layer. In

the architecture herein proposed, the name and the implementation changes from Service
Layer to Interface Layer and practical differences will be detailed further ahead in the next

sections.

The first layer possesses the most conceptual abstraction, whereas the last holds the

least. Conceptual abstraction means broadness of control within the system. Particularly,

the Task Layer knows what the system will do but doesn’t know how. It just sends to

the layers above an order (task) without knowing how it will be done. Progressively, the

task will be broken down into small processes as the level of abstraction reduces. The

Figure 4.1, demonstrates the communication between layers. The Task Layer sequentially

sends an Execute Skill orders to the Skill Layer (middle-level layer) with the purpose of

executing the behavior.

The Skill Layer is where the skills are declared and executed. A behavior is a set of

skills organized together to produce an outcome. Thus, it is in the Skill Layer where

the basic capabilities of the robot can be identified, for instance, grasping an object or

moving to a position. Consequently, skills are broken down into small requests to the

Interface Layer, which are necessary to complete them successfully. The Figure 4.1 shows

that service and action requests are performed between the Skill Layer and the Interface

Layer.
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Finally, the Interface Layer has the necessary interfaces to communicate with the out-

side entity, which can communicate directly with the robot’s hardware. It is mandatory

that the Interface Layer sends and receives data from the robot and transforms it in a way

that the above layer understands. Ideally, this layer is only one centralized entity that

communicates with other(s) outside entity(ies), although, depending on the developer’s

implementation, it can have more than one if it improves the final application. As seen

in the Figure 4.1 after receiving requests from the Skill Layer, the Interface Layer estab-

lishes the connection with the outside entity (in this case ROS) to receive the necessary

information for its processes.

It is important to mention that each layer communicates with the layer right after

and/or before aiming to build a robust architecture. Thus, there is no communication

between no adjacent layers, for instance, the bottom layer communicating directly with

the first one. In this example, the data have to go through all the layers above the last

layer in order to reach the first one.

Figure 4.1: Proposed architecture overview diagram.
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4.2 Layer Based Approach

In this section, each of the layers in the proposed architecture will be explained along-

side implementation details.

As mentioned in the previous chapter, the proposed architecture is divided into three

layers:

1. Task Layer;

2. Skill Layer;

3. Interface Layer;

The first and higher level layer is the Task Layer, then below it is the Skill Layer, and

the lowest level layer is the Interface Layer.

4.2.1 Task Layer

The Task Layer (higher level entity) is where the main goal of the system is defined,

where is designed how the robot accomplishes a goal, that is, the skills to execute, dis-

regarding the implementation details. It describes the tasks which together compose a

behavior. They are organized in a tree structure called Behavior Tree(BT), as the following

XML code demonstrates(Listing 4.1).

Listing 4.1: Example of a Behavior Tree in XML.

<root main_tree_to_execute = "MainTree" >

<BehaviorTree ID="MainTree">

<SequenceStar name="approach_pose_sequence">

<SetBlackboard output_key="approach_pose" value="2.4;0;0" />

<Fallback name="approach_pose_fallback">

<Action ID="CheckPose" goal_pose="{approach_pose}" current_pose="{input_pose}" />

<Action ID="GoToPose" target_pose="{approach_pose}" />

</Fallback>

</SequenceStar>

</BehaviorTree>

</root>

In the XML code example(Listing 4.1), the skills are identified by the words "Ac-

tion ID"and their name. After them, it is possible to declare their inputs and outputs,

for example, the GoToPose skill have as an input the approach_pose declared in the tag

SetBlackboard.

Finally, each skill described in the BT is triggered in order and executed in the Skill

Layer.
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4.2.2 Skill Layer

The Skill Layer is where the basic capabilities of a robot (e.g., grasping an object) are

designed. It describes the implementation of a BT’s leaf node. Leaf nodes can run in

mainly two ways regarding the BT engine[77]:

• In the same executable file. Therefore, the source code of the skill is written inside

the BT’s engine leaf node where the Tick() and the Halt() methods are implemented.

• In a separate executable. Hence, the source code of the skill is written in a separate

program that exposes the interface for calling the Tick() and the Halt() methods. A

BT’s engine leaf node forwards the calls to the corresponding executable.

The approach presented in this dissertation will follow the implementation of the leaf

nodes in the same executable file, that is, the Tick() and Halt() methods are in the same

executable as the code of the skill. The skills implemented used in the behaviors that will

be presented further along are:

• GotoPose

• CheckPose

• CallService

• ApproachObject

4.2.2.1 GoToPose

The GotoPose skill has the goal of moving the robot from one point in space to another,

as the ability to move, given a goal position, is mandatory in any AMR. It takes the x and

y coordinates (linear) and the yaw (angular) coordinate of the goal position as an input

and returns success in case the robot reaches the goal position or failure in case it does not.

The action starts by receiving the goal position (target_pose) from the Task Layer and

creating the message of the type move_base_msgs, which is the proper message type to

communicate with the move base server in the navigation stack(ROS). After that, the

message is sent together with the server’s name to the Service Layer. This process is

executed in the Skill Layer.

To communicate with the move base server, the Interface Layer (Service Node) creates

an action client to send the goal position. As it is a ROS action, it provides feedback

until it returns the result. Moreover, as explained earlier, if required, the action can be

canceled and halted at any time. When the action is finished, the result is sent back to

the Skill Layer.

Finally, depending on the result, the Skill Layer report to the Task Layer the node

status, which can be success or failure.
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It is shown the aforementioned action data flow, the GoToPose BT Node algorithm,

and the Service Node algorithm relative to the GoToPose skill in Figures 4.2, 4.3 and 4.4,

respectively.

Figure 4.2: GoToPose skill data flow scheme.
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Figure 4.3: BT GoToPose node algorithm
flowchart.

Figure 4.4: Service node algorithm rela-
tive to the GoToPose skill.

4.2.2.2 CheckPose

The goal of the CheckPose skill is to verify whether the actual position of the robot is

equal to the desired position. Thus, the BT Node receives two inputs, the desired position

and the current position of the robot, and compares them. The node returns success if

they are equal or failure if they are not.

Checking the robot’s pose at any given time is important to start new skills (making

sure it is in the right position, for instance, to execute the pick of a piece) or to monitor

the robot’s position (for diagnostics).

The Figure 4.5 shows the algorithm of the CheckPose skill.
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Figure 4.5: BT CheckPose node algorithm flowchart.

4.2.2.3 CallService

The CallService skill was implemented with the purpose of triggering any service from

the Interface Layer(Service Node). It gets the name of the service as an input and then

checks if it exists in the list of services of the Service Node. If it exists, the procedure for

making a request to the desired service is executed. If it receives the response message,

the CallService BT node returns success to the Task Layer otherwise, it returns failure.

Depending on the service, the inputs and outputs of this skill may vary due to the nature

of the services. For instance, a service that gets the actual position of the robot may output

that position for other nodes. In the Figure 4.6is depicted the flowchart of the CallService

skill.

The CallService skill was an implementation choice to generalize the call of services,

increasing the system’s efficiency. It is completely possible to make service requests with-

out this skill, however, every skill would have to implement a service call procedure to the

desired service, which is always the same and is directly attached to the Interface Layer

(Service Node). One of the advantages of BTs is increasing modularity and flexibility of

systems, therefore creating a skill that allows the detachment of every other skill in the

system from the Interface Layer is advantageous. Moreover, the development of generic
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Figure 4.6: BT CallService node algorithm flowchart.

code that can be used for a broad variety of use cases usually increases the pace of devel-

opment as it doesn’t require many changes from case to case. Therefore, the CallService

is seen as a valuable skill to the system.

4.2.2.4 ApproachObject

The goal of the ApproachObject skill is to enable the approaching to an object. As

an input, it receives the object ID, object type and the object pose (the object’s position and

orientation in the environment). It also contains some adjustable parameters such as

the dimensions of the object (width and length), the distance desired from it, that is, the

distance from the object at which the robot should stop, the error from the goal position

allowed for the navigation stack (linear and angular) and the velocity for approaching

the object (linear and angular). These parameters are easily adjusted in a separated

configuration file (YAML), represented in the Listing 4.2.
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Listing 4.2: Approach object configuration file (YAML).

chargers:

- id: 1

dimensions:

length : 0.600 # meters

width : 0.370 # meters

params:

distance_from_object : 0.02 # meters

distance_to_goal_tolerance : 0.1 # meters

heading_tolerance : 0.01 # meters

angular_velocity_approach : 0.1 # m/s

linear_velocity_approach : 0.08 # m/s

yaw_goal_tolerance : 0.01 # radians

containers:

- id: 31

dimensions:

length : 1.0

width : 1.2

params:

distance_from_object : 0.05

distance_to_goal_tolerance : 0.05

heading_tolerance : 0.01

angular_velocity_approach : 0.2

linear_velocity_approach : 0.1

yaw_goal_tolerance : 0.01

- id: 32

dimensions:

length : 1.2

width : 1.0

params:

distance_from_object : 0.5

distance_to_goal_tolerance : 1.8

heading_tolerance : 0.4

angular_velocity_approach : 0.3

linear_velocity_approach : 0.1

yaw_goal_tolerance : 0.05

The Listing above illustrates not only the parameters of the objects but also their’ IDs

and types.

The first word, more to the left side, indicates the type of object to approach. In the

system presented, there are one charging station and two containers. Below the word

’chargers’ is declared the charging station(s) (can be more than one) in the system, in this

case, it’s only one with the ID number one. Below the word, ’containers’ are declared

the containers known by the system. There are two containers with IDs thirty-one and

thirty-two, respectively. One rule in the declaration of the objects is that they are spaced

by thirty numbers, that is, it’s possible to declare thirty chargers (from ID one to thirty)

and thirty containers (from ID thirty-one to sixty).
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Indentation determines the hierarchy of the parameters. The first are the objects

(chargers and containers), the second is the characteristics of the objects (ID and dimen-

sions, parameters), and the third are the entities that specify the characteristics such as

inside dimensions, there are length and width, and inside params are the distances and

velocities determined to approach the object.

At this stage, it is important to clarify that the word ’distance’ refers to the distance

from the center pose. Consequently, when it’s mentioned the distance between the robot

and the object, it refers to the difference between their center poses.

The execution of the ApproachObject BT node (Skill Layer) starts by checking if the

object ID and type are valid and known. In case they are, the server action client is

created, and the pose coordinates of the goal are converted to build the necessary ROS

action message(Listing 4.3). Completed the process, the BT node sends the server client

name and the completed ROS message to the Interface Layer (Service Layer node). The

Service Layer node simply sends the message received from the Skill Layer whenever the

action server is available. In this stage, the message sent triggers the algorithm presented

in the ROS ApproachObject node.

The algorithm starts by gathering from the robot’s odometry, published by the nav-

igation stack to know where the robot is. Then it starts looping through the following

steps:

1. With the object’s pose received, the parallel and perpendicular distance to the object

is computed, as well as the yaw difference between the robot and the object;

2. The yaw difference is reduced by moving the robot angularly to align it with the

object (the difference must be between zero and the yaw tolerance);

3. The perpendicular distance (y-axis) is reduced by moving the robot sideways, in the

direction of the object;

4. The distance between the robot and the object (x-axis) is reduced by moving the

robot forward until it reaches the desired position.

The desired position is determined by taking into account the dimensions of the

object thus, the robot does not collide with the object. Hence, the distance from the object
parameter value in the configuration file refers to the difference between the robot and

the object boundaries instead of the center poses.

In each iteration, the distances between the robot and the object on each axis are

updated and published in a feedback message (Listing 4.3). The approach object message

was declared in the ApproachObject.action file which belongs to the amr_msgs package.
This package contains all the custom services, messages, and actions created for the AMR

system. It is also important to emphasize that this algorithm is only valid for robots that

can move perpendicularly to a point (y-axis).
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Listing 4.3: Approach object action message.
#goal definition

geometry_msgs/PoseStamped goal_pose

---

#result definition

bool result

---

#feedback definition

float64 x_distance_to_object

float64 y_distance_to_object

float64 delta_angle

Finally, when the algorithm finishes, the result from the action server is returned

(success or failure) to the Service Layer node, which sends the result to the BT Node (Skill

Layer). The Skill Layer then reports its status to the Task Layer. Figures 4.8, 4.7, 4.9, and

4.10, describe the algorithm of the BT node, the algorithm of the ROS ApproachObject

node, the algorithm of the Service Layer node, and the data flow of the skill, respectively.

Figure 4.7: ROS Approach Object node algorithm flowchart.
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Figure 4.8: BT ApproachObject node algorithm flowchart.
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Figure 4.9: Service Layer node algorithm relative to the Approach Object skill.
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Figure 4.10: BT Approach Object skill data flow.

4.2.3 Interface Layer

The Interface Layer sets a bridge between the implemented architecture and ROS. It

provides the connection to ROS services and Actions’ servers, so data provided by the

sensors and ROS processes can be accessed.

The Interface Layer contains system-level entities that serve as an access point for the

skills to command the robot and receive the necessary information (e.g., move mobile

base destination, read sensor input). Particularly, this layer is comped by two ROS nodes:

the Service node and the ApproachObject node.
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The former possess inner services to communicate with ROS action and service servers

in order to send the needed information to the skill layer as well as to receive continuously

important messages from ROS (e.g., odometry messages which determine the robots’

localization).

The services implemented in this node are:

• Get Robot Pose. The service get_robot_pose gathers the odometry data published by

ROS navigation stack and returns the current position of the robot in the environ-

ment.

• Get Object ID. The service get_object_id returns the object ID considering its name

as the input value.

• Get Object Type. The service get_object_type returns an integer representative of a

type (zero in case of being a charger and one in case of a container) and receives the

object’s ID as an input.

The ApproachObject node implements the approach algorithm described in Section

4.2.2.4 and provides feedback (Listing 4.3) to the system through the ROS action server.

Therefore these two entities communicate indirectly with each other through the

action server.

4.3 Behaviors

As mentioned in the Section 1.3, the definition of robotics behaviors is ample, there-

fore, a robotic behavior is a set of skills (more than one) organized purposefully to

reach a goal. This section presents the behavior implemented for the AMR from the

research project CONTIGO[11] in development by INTROSYS[12] and Volkswagen Au-

toeuropa[13].

Hence, the behaviors explained in detail in the next subsections are the folllowing:

move and check pose, approach single container, approach multiple containers, and charge.

4.3.1 Move and Check Pose

The ability of the robot to localize itself in the world is crucial to navigate safely and

smoothly in the environment. Thus, a repetitive task has to be executed multiple times

during navigation to guarantee a good overall performance of robotic system which is

checking to inform all the dependent algorithms and robot functions of the robot’s pose.

47



CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

Therefore, three skills where organized as follows creating simple behavior:

1. GotoPose

2. CallService

3. CheckPose

Creating a behavior similar to the move and check pose will allow the robotic system to

continuously know its location after a change in position. The Figure 4.11 represents the

behavior, graphically.

Figure 4.11: Move and check pose behavior tree.

The tree represented above is composed of a sequence of the three skills mentioned

earlier. From a known initial position the robot moves to the goal pose received as an input,

then the CallService skill receives as an output the current pose of the robot. Finally, the

robot’s pose is compared with the goal pose in the skill CheckPose. The result of the last

skill, being positive if the robot is in the goal position or negative if it isn’t, can then be

used to trigger other action from another BT according to the system needs.

4.3.2 Approach Single Container

The approach single container behavior represents a mandatory task performed by the

robotic system in the project CONTIGO. The robot have to approach a container to pick

the pieces necessary to deliver to the operator. Therefore, it was created a generic node

which gives the robot the ability to approach any object.
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The behavior is composed of two skills:

1. CallService

2. ApproachObject

The Figure 4.12 illustrates the approach single container behavior.

Figure 4.12: Approach object behavior tree.

Firstly, the CallService skill receives the object type to be approached (in this case, the

container), which is needed to execute the next skill ApproachObject. Then, the algorithm

to approach the object is triggered receiving as an input the object_id, the object_pose and

the object_type sent by the previous skill.

4.3.3 Approach Multiple Containers

Although approaching a single object is useful, the robotic system have to be capable

of scalı̃ng the task, that is, approaching multiple containers with different pieces necessary

to be picked and transported. Therefore, the approach multiple containers behavior was

created based on the previously explained one. The Figure 4.13 shows the approach
multiple containers behavior.

The tree is composed of two sequences: the first is a high level sequence which coor-

dinates the main skills to be executed; the second creates a final behavior after three of

the four containers have been approached.

In the figure each ApproachContainerTree is a sub BT which has another tree inside.

This hierarchization of trees represents one of the advantages of BTs. In this way it’s

easier to read and understand the system’s behavior.
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Figure 4.13: Approach multiple objects behavior tree.

Each ApproachContainerTree has an approach single container behavior inside and the

only thing that changes is the container_id and the container_pose. The final sequence

ends with the robot moving to the home position executed by GotoPose skill.

4.3.4 Charge

Autonomous battery charging should be a crucial task for future intelligent mobile

systems which run on batteries. At any time, it is critical for the system to be aware of

the amount of battery left and have procedures in case it’s necessary to charge, otherwise,

it might result in some undesirable, even catastrophic consequences. Regarding factories’

shopfloor, it is even more important this kind of awareness as critical and dangerous

processes might be in execution. The work herein presented thus offers a solution by

defining a Charge behavior.

To accomplish autonomous charging, a set of tasks need to be performed. Thus,

the aforementioned skills in the Subsection 4.2.2 were organized to create the Charge

behavior.

The order of execution is the following:

1. CallService

2. CheckPose

3. GoToPose

4. ApproachObject
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The Figure 4.14 shows the Behavior Tree (BT) of the Charge behavior, in a horizontal

layout, using the BT visualization tool groot [78] and, the Listings A.1 and A.2 presented

in the appendix A of this dissertation, describes the same BT and its subTrees, in XML

code format. The full tree with the expanded subtrees is presented in Figure B.2 inside

appendix B.

Figure 4.14: Main Tree of the charging behavior.

The main tree is composed by a sequence of instructions. Firstly, it is a sequence node

because the goal is to execute a set of dependent instructions, hence if one of them fails,

the whole process fails as well, instead of, for example, a fallback type node which tick1

the next child with the previous one reporting failure.

Secondly, as shown in the Figure 4.14, the main sequence has the type sequence star,
since the desired behavior is to tick1 the child the node which previously returned failure,
thus the whole sequence is not restarted, and the procedure does not repeat from the

beginning as it would if it was a normal sequence node.

The main BT starts with the execution of a subtree called PreApproachTree. SubTrees
are Behavior Trees inside other trees which are hierarchically at a higher level and used

with the similar purpose of functions in code. That is, to clean the main tree improving

its readability, and provide more modularity, flexibility, and reusability throughout the

whole tree structure. For example, the PreApproachTree is a subtree of the main tree,

51



CHAPTER 4. ARCHITECTURE AND IMPLEMENTATION

although it can have one or more trees inside (subtrees) to describe inner actions.

The Figure 4.15 shows the PreApproachTree.

Figure 4.15: SubTree PreApproachTree of the charging behavior.

For the same reasons aforementioned earlier, the main sequence has the type sequence
star.

The main sequence starts by declaring the variable approach_pose with the action

SetBlackboard. The value of the variable has the type Pose2D, a created custom type that

describes three coordinates: the position on the x-axis (first number), the position in the

y-axis (second number), and the rotation in the x-axis (third number). Therefore, the

approach_pose variable describes the position: x = 2.4, y = 0 and yaw = 0.

Then, the CallService action node (represented in the Figure 4.15 by the ’A:’) with the

service input get_robot_pose (srv field) to get the current robot’s pose. This information

is important for the system to be aware of the robot’s localization, thus, the trajectory to

the closest charging station can be planned and, for example, in case the battery is not

enough to reach the station, it can output an alert to the operators or the people around

the robot signing a critical situation.

The output of the CallService node, the current robot’s pose (robot_pose) is used as an

input of the Fallback node (pre_approach_fallback). This node type only tick1 the next

node if the current had returned failure. Therefore, the two poses (the current robot’s

pose and the approach pose) are compared by the action CheckPose. As the robot’s initial

pose is at the map’s frame center, the next action GoToPose is triggered, commanding the

robot to move to the desired approach pose.
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Returning to the main tree, the variables charger_id and charger_pose are set to be used

as an input of the subtree ApproachChargerTree (Figure 4.16).

Figure 4.16: SubTree ApproachChargerTree of the charging behavior.

The ApproachChargerTree is composed by two skills (action nodes): the CallService and

the ApproachObject. The former is necessary to get the object type (service get_object_type)
needed for the next node. The latter receive as inputs the object_id, the object_pose
remapped as input_pose when being used by the subtree ApproachChagerTree (Figure

4.14), and the object_type output of the action CallService.
To conclude, the Charge behavior can be divided into two phases: the pre-approach

phase, where the position of the robot is acknowledged by the system, and it moves to the

desired position prior to the execution of the approach algorithm; and the approach phase

where the necessary inputs are reunited to successfully perform the charging station’s

dock procedure.

In the next sections, all of these procedures are validated in a simulated environment

to conclude the real advantages of this type of architecture in the development of robotic

systems.
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Experimental Results and Discussion

This chapter aims to present the results obtained during the evaluation of the archi-

tecture and behaviors implemented when facing a recreation of a real-world scenario.

Testing was performed with increasing complexity levels, from the simplest to the

more challenging ones. Every test case was performed in a controlled and simulated

environment. Nonetheless, simulated test scenarios can give a good approximation of

how the system would respond to certain types of environmental changes, and a good

comparison can be made between the theoretical and experimental aspects.

Moreover, the layer-based architecture is tested more in-depth with multiple case

scenarios. Advantages and possible drawbacks due to the implementation of the system

using BTs and the layer-based approach are identified, and a general reflection is made

about the approach followed.

5.1 Simulation Overview

The main simulation engine used for the development of this dissertation was Gazebo
[79], the default ROS simulation environment. Although the robot’s model and the other

components of the simulation can be visualized in Gazebo, RVIZ 3D visualization tool

ROS’ plugin [80] was adopted as RVIZ is less computationally demanding compared to

Gazebo and it also provides more important visualization resources from the navigation

perspective, for example, costmap layers, transform frames and planning paths. There-

fore, the main demonstration environment for all the test cases, presented in the next

sections, is RVIZ.

The main models used in the simulation are:

• The AMR (Figure 5.1) with the box for holding the car components, the robotic arm

on the top and the magnetic gripper in its flange, and, next to it, the structure for

holding the car parts while the rotation and the QR code verification processes are

being executed.
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• The charger (Figure 5.2) with six spring-like charging pins (meaning they can con-

tract about 2cm to the inside) where the AMR dock and the contact with the metal

plates start the charging procedure.

• The environment (Figure 5.3) which is consisted of four delimiting walls in a square-

shaped form.

• The container (Figure 5.4) where the pieces are to be grasped by the robotic arm

(however, the grasp of the pieces is out of the scope of this dissertation).

For navigation the ROS planners used are the NavFn[37] as a global planner and

TEB[81] as a local planner.

Furthermore, a tool called Groot[78] is used to visualize the structure of the Behavior

Trees created in XML code format.

Figure 5.1: Model of the AMR in
RVIZ. The sloped is where the
boxes for the pieces stand. The
robotic arm is on the top of the
structure with the magnetic grip-
per on its flange. The two pieces
near the arm are the supports to
hold the grasped objects.

Figure 5.2: AMR’s charger. Concave
triangle to provide a model matching
reference to laser scans and the six
charging pins (two for the positive ter-
minal, two for the negative terminal,
one for the CAN line negative refer-
ence, and one for the CAN line posi-
tive reference).
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Figure 5.3: Model of the square-like shape
environment in RVIZ.

Figure 5.4: Model of the con-
tainer in RVIZ.

5.2 Hardware Overview

In this section, the hardware of the system in which real-world tests will be performed

is presented.

Firstly, the Autonomous Mobile Robot (Figures 5.5 and 5.6). In the figure below (Fig-

ure 5.5), it is displayed the AMR’s base structure. Hardware details cannot be disclosed

since it is still a prototype, hence it is INTROSYS’s proprietorship. Nonetheless, the robot

can be described more generally. It carries six cameras, four on the sides, one on the back,

and another on the front, for full 360-degree 3D image perception, two laser scans for

360-degree coverage, four mecanum omnidirectional wheels powered by two computers,

a dedicated processing unit (Nvidia Jetson AGX Xavier) and a fully centralized power

management system. Each motor of the AMR has a 0.51 KW rated power, which leads to

a total power of 2 kW and 2.7 hp. The computers and the dedicated GPU’s characteristics

are the following:

• Computer 1:

– Intel Core i7-9700TE CPU;

– Intel UHD Graphics 610 GPU;

– 16 GB of RAM;

– SSD 256 GB of storage.

• Computer 2:

– Intel Core i7-8665UE, Quad Core, 8M Cache, 1.7 GHz CPU;

– Intel UHD Graphics 610 GPU;

– 8 GB of RAM;
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– SSD 256 GB of storage.

• NVidea Jetson AGX Xavier

– 512-Core Volta GPU with Tensor Cores;

– 8-Core ARM v8.2 64-Bit CPU;

– 32 GB of RAM;

– 32 GB eMMC storage;

– MicroSDXC Sandisk Extreme Pro 256 GB of storage;

Figure 5.5: The base structure of the AMR.

In the Figure, is depicted the top structure of the AMR. In the center is the place for

the 12-box compartment for the car parts. On the top of the structure is attached the

robotic arm with the magnetic gripper on its flange, and on the side of the robotic arm

is a structure to hold the piece while the process of rotation and QR code verification is

being executed.

The robot’s two parts are separated due to the development of the perception/naviga-

tion and the manipulation being executed in parallel.

Regarding other important components in Figures 5.7 and 5.8, the robot charger and

the container where the pieces remain are exhibited, respectively.
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Figure 5.6: Top structure of the AMR.

Figure 5.7: The charger of the AMR.

Figure 5.8: The container from
where the car components are
picked.
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Finally, the laptop used to run all the simulation processes is a Lenovo ThinkPad E580

with the following characteristics:

• CPU - Intel Core i7-8550U, 1.80Hz (8 cores);

• Graphics Card - Radeon 550X and Intel UHD Graphics 620;

• Memory - 16GB of RAM;

• Storage - SSD 250GB.

5.3 Simulation Test Case: Go to Pose and Check Pose

The first test case is the most simple one, and it has the goal to demonstrate the ROS

navigation between two points using BTs. As aforementioned earlier, it is achieved

through the communication between the Interface Layer and the ROS Move Base server.

Therefore, the BT built for this example is composed by three skills: GoToPose, Check-
Pose and CallService.

Firstly, the AMR receives a pose to move to, using the GoToPose skill. Then, when it

arrives at the goal, the CallService skill is triggered to get the robot’s pose. Finally, the

outputted pose from the CallService skill (the robot’s pose) is compared with the goal pose

by the BT node CheckPose. The Figures 5.9, 5.10 and 5.11 shows the BT of this test case

and the respective skills being executed (highlighted in green). The highlight in green

means that they were successfully completed, otherwise the highlight color would be red.

Additionally, the Listing A.3 represents the XML code of the BT.

Figure 5.9: Structure of the test’s case 5.3 Behavior Tree.
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Figure 5.10: Visualization of BT nodes GoToPose execution success (highlighted in green).

Figure 5.11: Visualization of BT nodes CallService and CheckPose execution success (high-
lighted in green).

In the Figure 5.12, the execution of the skill GoToPose can be visualized, in simulation,

by the AMR’s trajectory (green line). The full process is displayed in the Figure B.1 in

appendix B and a video1 is available to better perceive the behavior of the AMR.

Figure 5.12: Trajectory took by the AMR in the sequence (green line).

1https://youtu.be/3TLEJiWs2CI
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5.4 Simulation Test Case: Move and Check Pose (failure)

The goal of this test case is to validate the CheckPose BT node. The skills selected are

the same compared to the test5.3, however, the structure of the tree is different (Figure

5.13 and XML code in Listing A.4 of appendix A).

There are two sequences nested in a fallback node, thus, if the first sequence returns

failure, the next sequence will be ticked1. As the CheckPose node is meant to be tested,

the first sequence goal pose is not the right one on purpose. Therefore, the BT node will

return failure and the second sequence is triggered. Since the robot went to the correct

goal pose, the second sequence will return success.

Figure 5.13: Structure of the test’s case 5.4 Behavior Tree.

In the Figure 5.14 is shown the BT’s state when the first sequence fails, due to the BT

node, CheckPose, failure (highlighted in red). This means that the robot pose is not in the

correct pose, thus, the second sequence is executed (highlighted in orange). Finally, the

second sequence returns success because the robot is in the correct pose (Figure 5.15).
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Figure 5.14: Behavior Tree of the test case 5.4 in execution. The first sequence returned
failure (highlighted in red), and the second sequence is being executed (highlighted in
orange).

Regarding the simulation, the execution of the trajectories on the first sequence (Fig-

ure 5.16) and on the second (Figures 5.17, 5.18 and 5.19, respectively) is represented by

the green line. Furthermore, a video2 is available to better understand the simulated

behavior of the AMR.

5.5 Simulation Test Case: Approach to the Charging Station

This test case has the intention of validating the Approach Object BT node. The

AMR’s charger will be added to the environment, and its coordinates are used as the

input to the BT node. Therefore, the AMR should align with the charger regarding all the

axis and stop in front of it, according to the distance parameterized.

The AMR starts with a pose that differs from the charger in both linear (x, y, and z)

and rotational axes (row, pitch, yaw), thus, the alignment can be perceived.

As explained in the Section 4.2.2.4, the Approach Object BT node starts by aligning the

orientation of the AMR with the orientation of the object (charger). The Figure 5.20 shows

the initial pose of the robot, whereas the Figure 5.21 displays the orientation alignment

process.

2https://youtu.be/bdvpZt3gZ6I
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Figure 5.15: Final state of the test case 5.4. The second sequence returned success since
the position of the AMR is the predefined goal pose.

Figure 5.16: Trajectory (green line)
taken by the AMR on the first se-
quence.

Figure 5.17: Trajectory (green line)
taken by the AMR on the second se-
quence.

Secondly, the next step assures that the AMR is aligned on the y-axis with the charger,

which can be seen in the Figure 5.22.

Finally, the AMR decreases its distance from the object until it reaches the desired

distance (Figure 5.23).
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Figure 5.18: Trajectory (green line)
taken by the AMR on the second se-
quence.

Figure 5.19: Final pose of the AMR,
where the Check Pose BT node is being
executed for the second time.

Figure 5.20: AMR’s initial pose in the Approach Charging Station test case.

A 3D view (Figure B.12 in appendix B) and a video3 are available to better visualize

the test performed.

According to the B.13 and the know variables - the length of the robot (1.3234m) and

3https://youtu.be/Sj8l5lCd9ZQ
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Figure 5.21: Orientation alignment process with the charger (only the yaw coordinate).

Figure 5.22: Alignment process with the charger (y-axis).

the relation between the footprint (geometric center of the robot projected on the ground)

and one of the six charging pins (0.64267m), and the distance from the object (0m),

defined in the configuration file - it results in an error of -0.03048 in the x-axis comparing

to the defined distance from the object. The meaning of the negative connotation is that

the AMR forced the pins to contract around 3mm.

5.6 Simulation Test Case: Approach to the Container

To demonstrate the flexibility of the Approach Object node, in this section, two

tests are performed: approaching a container (a different object than the last section)

and multiple containers. The AMR in the project CONTIGO has to approach multiple

containers to execute to grasp each ordered piece and place it in the correct box located
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Figure 5.23: Alignment process with the charger (x-axis).

on top of the robot’s structure. Thus, the next examples have a real-world application in

the project.

The first test (subsection 5.6.1) aims to prove the general application purpose of the

skill ApproachObject since a different object is approached (container). It also demon-

strates that BTs provide a high level of actions’ generalization. The second (subsection

5.6.2) has the goal of validating the flexibility of BTs and the ease of scalability that they

can bring to systems.

5.6.1 Approach to a Single Container

This test case, as aforementioned, is similar to the described in section 5.5 - Approach

Charging Station - because it aims to approach an object, but this time, a container.

Thus, the container’s pose, ID, and type (container) are the inputs of the node. Then,

the alignment algorithm is performed to position the AMR in front of the container, as

shown in the following Figures 5.24, 5.25, 5.26 and 5.27.

The AMR starts, again, with a pose that differs from the container in both linear (x,

y, and z) and rotational axes (row, pitch, yaw), and it should align successfully with it,

performing translations and rotations.

The main tree code can be seen, in detail, in Listings A.6 inside appendix A, respec-

tively. Furthermore, a demonstration video4 is also available to better visualize the test

performed.

4https://youtu.be/N0p6Y8BV_YE
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Figure 5.24: AMR’s initial pose in the Approach Object Container test case. The colors
near walls (white line) represent the increase in weight of trajectories as AMR get closer
to them - costmap. The green (around the AMR) and blue rectangles represent the robot’s
footprint and the container, respectively, and the red dots around the latter are the laser
beams colliding with the object.

Figure 5.25: Orientation alignment process with the container (only the yaw coordinate).

Figure 5.26: Alignment process with the container (y-axis). Ellipse with colors red and
blue exhibit the inflation layer. Each color represents the weight of the area in the
costmap.
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Figure 5.27: Alignment process with the container (x-axis). The distance from the object
decreases progressively until the distance is equal to the one parameterized in the con-
figuration file. The colored ellipse shows the increase in weight of the area around the
object.

According to the Figure B.14, in appendix B, and the know variables - pose of the

container (x=2, y=4.5, z=0, row=0, pitch=0, yaw=0), the robot’s (1.3234m), and the

distance from the object (0.05m), defined in the configuration file - it results and error of

0.11515m.

5.6.2 Approach to Multiple Containers

The goal of this test is to demonstrate the scalability of Behavior Trees. Therefore,

four containers were added to the simulation. Inside appendix A are presented the List-

ings A.8 and A.7 to demonstrate that the difference between the two cases (approach

one and multiple containers) relies on the containers’ ID, pose, and the actions’ organiza-

tion into SubTrees. Moreover, only a slight change in the structure of the BT and YAML

configuration file was necessary to scale the first case for multiple containers.

The main BT enclose two Sub Trees: one describe the actions needed for the robot

to approach the object (identify the object’s ID in the configuration file and its type and

performing the approach algorithm) and the other which only have one action - to move

the AMR to the home pose (the center of the map - x = 0, y = 0, z = 0 - without applied

rotation - row = 0, pitch = 0 and yaw = 0).

The first Sub Tree named ApproachContainerTree starts by getting the object type from

the object ID since that information is needed for the next action, which is performing

the approach object algorithm. Hence, the Approach Object node receives as an input the

object ID, type, and pose in order to execute.

Regarding the second Sub Tree named MoveHomeTree, it only consists of a single action

- going to the home pose. The decision to create a subtree with only one action was with

intention of not only describing better the use of the GoToPose node in the context of

the test but also with the idea that the robot could perform more actions that could be
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described in this tree, therefore it made sense to separate it.

To sum up, the behavior of the robot in the simulation is to approach each container

and return to the home pose (the center of the map). Figures 5.28, B.3, 5.29 and 5.30

illustrate the sequence executed to approach the container with the ID thirty-two in the

Main Tree, the full BT of the test, the Sub BT that describes the actions used to approach

the object and the Sub Tree that describes the return to the home pose, respectively. The

full tree (Figure B.3) can be better visualized in the appendix B - Figure B.3. Moreover,

the Figure 5.28 was chosen to understand the sequence of approaching each container

since it executed the same set of actions for all four containers except in the first one, in

which the home_pose variable is also declared.

Figure 5.28: BT’s branch of the container thirty-two approach sequence. Each sequence
shows the type (pink-colored) and the name below. The SetBlackboard node is used to
declare the variables container_id and container_pose. The ApproachContainerTree receives
the container_id and container_pose variables to execute and, finally the MoveHomeTree is
called, receiving the home_pose variable as input.

70



5.6. SIMULATION TEST CASE: APPROACH TO THE CONTAINER

Figure 5.29: Approach Container Sub Tree. Two actions are defined in a sequence named
approach_container_sequence with the type sequence star(in color pink). The CallService
action node receives as inputs the objects ID and type and the name of the service to
execute. Then the approach algorithm is performed in the node ApproachObject which
takes in the object’s ID, type, and pose as inputs.

Figure 5.30: Move Home Sub Tree. This sequence named move_home_sequence and with
the type sequence star, defines only one action - GoToPose. The action node takes the
input_pose variable as an input.

The following figures (Figures 5.31 and 5.32) present the process of approaching one

container and returning to the home pose.

Figure 5.31: Simulation of the AMR (grey shape) approaching container number thirty-
one (the first counting from upwards to downwards). The first figure (counting left to
right) represents the alignment of the AMR with the container (dark blue square) on the
y-axis, the second, the reduction of the distance on the x-axis, and the third, the AMR
aligned with the container. The colored ellipses (light blue and red) are the inflation layer
created by the costmap, the red dots around the containers are the laser scan beams, and
the green square around the AMR is the robot’s footprint.
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Figure 5.32: AMR returning to the Home Position. The green line shows the trajectory
followed by the AMR (grey shape) after approaching the container with the ID number
thirty-one (dark blue square). The colored ellipses (light blue and red) are the inflation
layer created by the costmap, the red dots around the containers are the laser scan beams,
and the green square around the AMR is the robot’s footprint.

Finally, all figures regarding the test are available in the appendix B (Figures between

B.4 and B.11) and a video5 was published for demonstration purposes.

5.7 Simulation Test Case: Charge Behavior

This section presents the validation of the Charge behavior. It is composed of all the

action nodes developed in this dissertation, thus, it can be considered the richest and the

most complete test.

The charging procedure can be divided into the pre-approach phase and the approach

phase. In the former, the first action is to localize the robot to know its position. In case

it is not already in the pre-approach pose, the AMR moves in order to be prepared to

approach the charger. Then, when in position, the approach algorithm is executed. The

full process is depicted in the Figure 5.33.

Regarding the BT structure, the pre-approach phase is enclosed in the sub tree named

PreApproachTree (Figure 5.34) composed by the nodes CheckPose and GoToPose and the

actions of the approach phase, CallService and ApproachObject, are inside the sub tree

called ApproachChargerTree which is similar to the tree in the Figure 5.29 only changing

the value of the inputs - charger’s ID and charger’s pose.

Finally, the code of the main charge BT and its subtrees, in XML, is displayed in ap-

pendix A (Listings A.1 and A.2), whereas a 3D view of the AMR approaching the charger

is in B (Figure B.12) and a video6 was published to exhibit the behavior’s simulation.

5https://youtu.be/-a8Y-C5JUw0
6https://youtu.be/ppbwTsfr2M0
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Figure 5.33: AMR (grey shape) approaching the charger (grey rectangle). In the first
picture (counting left to right), the green line represents the trajectory followed by the
robot to the goal pose. In the second and third pictures, the colored ellipses are the
costmap’s inflation layer. Since the robot navigates where the costmap has the least weight
(grey space), the inflation layer creates increasing weights around obstacles, contributing
to the robot’s avoidance system. Lastly, the red dots around the charger are laser scan
beams colliding with it, and the green rectangle around the AMR is its footprint.

Figure 5.34: Pre Approach Sub Tree. This sequence named pre_approach_sequence and
with the type sequence star(footnote), defines two actions - SetBalckboard and CallService.
The former declares a variable named approach_pose (field output_key). The latter re-
ceives the service name as an input (/service_layer/get_robot_pose) and outputs the value
robot_pose. The other branch is a fallback sequence where two actions are executed the
CheckPose which receives two inputs - current_pose and goal_pose - and GoToPose that
receives only one - target_pose.

5.8 BT Implementation vs. ROS Node Implementation

This section aims to compare the performance of the BT’s implementation against

a ROS node implementation timewise. In other words, the former, regarding the test

case approach multiple containers (Section 5.6.2), was centralized in a single ROS node

to compare the time it takes to complete the full process (approach four containers and

return to the home pose). The approach multiple containers test case was chosen for this

comparison as it is the longest process, thus, the real impact of communication times
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between the implemented architecture and ROS and ROS nodes’ interaction itself can be

uncovered.

It is important to mention that the laptop used is the one described in detail in Section

5.2. There weren’t any applications running in the background while the simulation was

running (other than the internal processes of the operating system), and the computer was

restarted between each test to guarantee that most amount of the computer’s resources

were available for the simulation.

Five full processes were run for each implementation, and the results were disclosed

in the following table.

Table 5.1: Time spent (in minutes) on each kind of implementation in the full process to
approach four containers.

Attempts ROS Node Behavior Tree Nodes

1st 02:29 02:40
2nd 02:26 02:38
3rd 02:24 02:29
4th 02:27 02:32
5th 02:27 02:33

Avg 02:27 02:34

From the table, it can be concluded that, on average, the BT Node implementation

takes more 7 seconds than the ROS Node.

The results of each test are analyzed and discussed in the next section (Section 5.9).

5.9 Experimental Results’ Discussion

This section aims to analyze and discuss each of the tests presented in the previous

sections.

Firstly, the first two cases (Sections 5.3 and 5.4) were simple and used to validate

the overall functioning of the system. Hence, it can be perceived that the implemented

layered architecture (Task Layer, Skill Layer, and Interface Layer) can operate with an

external system capable of providing the necessary feedback, in this case, ROS. One of the

most important skills developed, the GoToPose, which provides the communication with

ROS navigation stack, proved to work fluently and successfully in all the simulations.

It can also be understood the flexibility and independency of the skills with the

figures showing the BT’s structure of the tests (Figures 5.9 and 5.13), since some nodes

have several inputs and outputs which are used according to the situation without being

mandatory. For example, the skill CallService, when the service name is /get_robot_pose,
the output is a pose whereas in case of the name being /get_object_type, it outputs an

integer (referring to an object type) - flexibility.
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Regarding independence, all the skills are independent of each other, meaning that

they can be integrated and work in another system as long as the necessary inputs are

provided. That’s the goal of BT actions. However, in this dissertation, some work had to

be done outside of the proposed architecture, meaning creating a custom action server

node to perform the approach algorithm. ROS possess some inner mechanisms that have

to be carefully approached when designing fully independent solutions. Custom ROS

service and action’s servers (entities that doesn’t exist by default in ROS) have to run

inside ROS nodes. For instance, there is the ROS navigation stack developed for mobile

robots by default, which has action servers already ready to receive requests from external

nodes. In that case, it’s not necessary to develop a custom server to interface with the

robot’s mobile base.

Therefore, there is no guarantee that, when developing a BT node, it will work in

another robotic system running ROS if the appropriate servers are not running. For ex-

ample, the ApproachObject skill make a request to an action server called approach_node.
Consequently, it was created a ROS node (ApproachNode) running the approach_node ac-

tion server, otherwise it would not be possible to link the BT action with ROS. Despite

that, the majority of the mobile robots running ROS use the navigation stack for naviga-

tion, its inner mechanisms and packages developed to work with it, hence the advantages

provided by this architecture outweigh the possible few adjustments to be made.

In relation to the third (Section 5.5) and fourth (Section 5.6.1) tests, it is recognized

another advantage Behavior Trees - modularity. With the same node (ApproachObject)
and a slight modification (Figures A.5 and A.6), it was proved that different types of

objects defined in the configuration file of the system (YAML file) could be approached.

Particularly, two object types were approached successfully (a charger and a container)

within the expected error margins (Figures B.13 and B.14) in appendix B). Both errors

resulting from the tests would not have had a great impact in the real world as the charger

pins are flexible (meaning that they can contract about 2cm), and the software of the

robotic arm, in the AMR, can adjust its trajectories of picking the pieces as long as it’s not

too far away from the container, in the x and y-axis.

Respecting the fifth example (Section 5.6.2), it can be understood the easiness of scale

and modify BTs. Comparing the configuration files from the simulation case where a sin-

gle container is approached (Listing A.9) and the approach multiple containers examples

(A.10), the only step necessary was to define 3 more containers with different, define their

dimensions and parameters for the approach algorithm to use. The same method would

be valid for adding more charging stations or other objects that the developer wants to

define. On the side of the Behavior Tree, the only required change is to the ID number of

the object. Moreover, in the Figure B.3, the complexity does not compromise the readabil-

ity of the tree because it is still clear the flow of the process to be executed. It is clear that

the mentioned BT could be more simplified. For instance, create a loop where in each

sequence, the input would be the container’s ID and pose. Then the four branches would

turn into one.
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Similarly, in the Charge Behavior Case (Section 5.7), different actions were encapsu-

lated into two SubTrees, resulting in a behavior easier to read and understand. Thus, BTs

can enhance the process of designing behaviors, making them easier to grow and from

the outside (more generic) to the inside (more specific).

Finally, comparing two different implementations (Section 5.8), it can be perceived

one of the most discussed disadvantage of Behavior Trees - performance. From the Figure

5.1 can be observed that the BT implementation took longer to execute the full process,

in every attempt, with the average time being 7 seconds more than the full process im-

plemented in only one ROS node. It was also noticed that the BT implementation took

longer to initialize before the system started to communicate and the simulation to run.

Consequently, some considerations can be concluded. The extra time taken by the BT

implementation can be due to the data’s exchange between layers, which is not a concern

when it is considered a centralized approach (ROS node) since the code runs sequentially

with shorter waiting times between processes. Hence, due to longer communication times,

occurrences of timeouts waiting for the transforms, necessary to the ROS Navigation
Stack, were triggered, in four of the five attempts regarding the BT node implementation,

resulting in simulation delay.

ROS is, intrinsically, a multi-threaded system with increasingly data throughput,

which makes, on a larger scale, resource demanding. On the other hand, Behavior Tree

are also computationally demanding due to their inner processes and default abstraction

level, making it easier to load numerous nodes with the tendency, in more complex sys-

tems, to overload them. Therefore, combining ROS and Behavior Trees can be challenging

performance wise. However, comparing the advantages with the disadvantages, it can

be perceived that the majority of the robotic systems can improve, being more modular,

more flexible, and easily and rapidly modified.

Returning to the comparison of the duration for each test, seven seconds has little

to no impact when it comes to robot navigation. It can be easily mitigated increasing

the velocity of the robot or introducing a more powerful hardware. However, it can be

a become a problem in computationally modest to weak systems. For instance, regard-

ing critical systems (which the majority does not run ROS), robots in factories and big

companies exist to automate and increase the performance of the production. If a robot

takes more than a human to complete a process or compromises the assembly line, it can

lead to money loss or even accidents since an assembly line is composed of a variety of

robots. Thus, in some systems, it is mandatory to extensively test the BT implementation

in order to adopt it or even abandon this option because of the resource demand of such

application.

To conclude, BTs possess some advantages for implementing robot behaviors. They

provide modularity, which is beneficial for reusing code and behavior tree design across

different systems and adding, removing, or transforming modules easily, and some level

of independence that needs to be approached and analyzed between system to system,

that is, when working with ROS BTs is not a fully independent entity which can be added
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or removed to the system without any consideration. The capacity of encapsulating

basic actions into sub-processes (SubTrees), visualize, and increase complexity without a

compromising readability is an improvement over other methodologies. However, these

advantages come with a price - performance. BTs are computationally demanding and

can cause problems in critical systems, thus, it is important to measure applicability of

them in each system.
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Conclusions and Future Work

This chapter summarises the goals achieved in this dissertation, discusses the pro-

posed approach, and compares the intentions of the implementation and comparing the

results obtained. Furthermore, some suggestions to take into consideration for future

research are outlined.

6.1 Conclusions

A behavior-based autonomous mobile robot was presented. The design of Behavior

Trees to define a set of actions, and the advantages of such structures began to spread

through the gaming industry. Shortly, other industries and research fields, like robotics,

began to recognize them as well. The implementation of the researched architecture

proposed by Colledanchise and Natale [76] was developed with slight modifications to

accommodate the link between ROS, the main operating system in robotics research, to

accelerate the development of full robotic solutions and such architecture.

The proposed architecture consisted of three layers hierarchically structured by the

level of abstraction: the Task Layer (the Behavior Trees itself), the Skill Layer (set of generic

action nodes), and the Interface Layer (communication interface between the based lay-

ered approach and ROS and named by the aforementioned researchers as Service Layer).
Both the Task layer and Skill Layer were developed accordingly to the approach followed

by Colledanchise and Natale [76], however, the Interface Layer was enhanced to meet

some ROS inner logistics. Despite affirming the impossibility of developing a centralized

Interface Layer, in this dissertation, such layer was composed of two nodes: the Service
Node and the Approach Node. The former was used to communicate with ROS services and

default action servers, and the latter handled the approach node action server. Therefore,

it was concluded that ROS custom action servers need their own nodes to run.

Four action nodes were developed to show the capabilities of BTs in a robotic system.

More behaviors were planned to be implemented, for example, the pick and place, by

developing the grasping BT action and creating nodes to make unitary trajectories for

robotic arms, which would be a great modular solution for robot manipulators. Despite
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this, such nodes proved their usability in a simulated environment, from the simplest

to more complex actions. All the simulated scenarios were completed successfully, the

ability to create a behavior for charging the AMR was validated as well as his ability to ap-

proach known objects present in the loaded configuration file. Hence, the communication

with ROS was successfully achieved with the developed architecture, and was possible to

analyze some real results.

The seven test cases evidenced the advantages of the BT approach to create behav-

iors and the possible drawbacks. Firstly, it was noticed the flexibility provided by such

approach with the number of test scenarios created, combining the developed actions in

different sequences. It was also perceived the increasing modularity and independence

of BT nodes when considering complex systems. Particularly, the former characteristic

was revealed by using exactly the same node (Approach Node) to approach two different

objects. Hence, the only change required to switch from approaching a charging station

to approaching a container was just an adjustment of the required inputs. Regarding

independence, it was perceived that skills (action nodes) achieve some level of indepen-

dence but do not necessarily need each other to work properly. Nonetheless, skills that

require communication with ROS action servers must be carefully analyzed before being

considered fully independent of the system.

Behavior Trees also exhibited that they can accelerate the process of scalability in

some complex systems. For instance, from approaching one container to approaching

four, it was only necessary to add more three containers in the YAML file for it to perform

the action for all of them. This characteristic can be a real advantage when considering

ever-changing environments where new entities are being added to the environment

and the robots need to consider those changes rapidly. Furthermore, developing new

solutions from the previously existing ones can improve drastically timewise. This idea

of agile scalability also can require less savvy individuals to proceed with the required

changes. Lastly, the final test case concluded that all these advantages come with the cost

- performance. Behavior Trees are computationally heavy to process, thus, the delay can

increase the longer the process is. Communication delays between different layers were

also verified compared to a simple implementation via only one ROS node due to the

intrinsic extra load of processing the trees. Although these symptoms can be mitigated

with more resourceful systems, integrating a BT solution in a modest to low-end system

has to be carefully considered.

In conclusion, the proposed approach offered useful insights into the advantages,

drawbacks, use cases, and conditions to implement such systems. Further real-world

tests, with AMR of the project CONTIGO, [11] need to be executed, but simulations

displayed beneficial results for scalability and rapid implementation of new robotic be-

haviors when considering changing environments. In terms of applicability, the AMR is

going to perform its tasks in the Volkswagen Autoeuropa shopfloor where BTs can have a

real benefit, although delays can have an impact security-wise, hence, those aspects have

thought about.
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6.2 Future Work

Following the guidelines of Behavior Trees, the work developed can be deeply ex-

plored, but it also opened multiple opportunities for new researchers, based on the results,

namely:

• Validate other skills and behaviors in terms of usability and scalability. In the indus-

try, these two characteristics are of high importance to transition from a prototype

to a product, hence, taking a research topic into real-world use cases;

• Automatically create Behavior Trees from natural language descriptions;

• Validate the full solution of pick and place in a real-world industrial environment

and study the impact of possible overloads in the systems with the proposed archi-

tecture.

• Test the resilience of the architecture by creating multiple simulation worlds ex-

ploiting domain randomization;

• Adapt Behavior Trees to perform human-aware navigation.
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Appendix A - Behavior Trees XML code

Listing A.1: Charge BT (Main Tree).

<root main_tree_to_execute = "MainTree" >

<!-- MainTree ================================================================== -->

<BehaviorTree ID="MainTree">

<SequenceStar name="charge_sequence">

<SubTree ID="PreApproachTree" />

<SetBlackboard output_key="charger_id" value="1" />

<SetBlackboard output_key="charger_pose" value="4;0;0" />

<SubTree ID="ApproachChargerTree" input_id="charger_id" input_pose="charger_pose"/>

</SequenceStar>

</BehaviorTree>

</root>
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APPENDIX A. APPENDIX A - BEHAVIOR TREES XML CODE

Listing A.2: Charge BT (Sub Trees).

<!-- SubTrees =================================================================== -->

<BehaviorTree ID="PreApproachTree">

<SequenceStar name="pre_approach_sequence">

<SetBlackboard output_key="approach_pose" value="2.4;0;0" />

<Action ID="CallService" srv="/service_layer/get_robot_pose"

output_pose="{robot_pose}" />

<Fallback name="pre_approach_fallback">

<Action ID="CheckPose" goal_pose="{approach_pose}"

current_pose="{robot_pose}" />

<Action ID="GoToPose" target_pose="{approach_pose}" />

</Fallback>

</SequenceStar>

</BehaviorTree>

<BehaviorTree ID="ApproachChargerTree">

<SequenceStar name="approach_charger_sequence">

<Action ID="CallService" srv="/service_layer/get_object_type"

object_id="{input_id}"

output_type="{object_type}"/>

<Action ID="ApproachObject" object_id="{input_id}"

object_type="{object_type}"

object_pose="{input_pose}"/>

</SequenceStar>

</BehaviorTree>

Listing A.3: Simulation Test Case: Move and Check Pose BT code.

<root main_tree_to_execute = "MainTree" >

<!-- MainTree =================================================================== -->

<BehaviorTree ID="MainTree">

<Sequence name="move_and_check_sequence">

<SetBlackboard output_key="goal_pose" value="4;2;0" />

<Action ID="GoToPose" target_pose="{goal_pose}" />

<Action ID="CallService" srv="/service_layer/get_robot_pose" output_pose="{

↪→ robot_pose}" />

<Action ID="CheckPose" goal_pose="{goal_pose}" current_pose="{robot_pose}"

↪→ goal_tolerance="0.1;0.1;0.09"/>

</Sequence>

</BehaviorTree>

</root>
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Listing A.4: Simulation Test Case: Move and Check Pose (failure) BT code.

<root main_tree_to_execute = "MainTree" >

<!-- MainTree ================================================================== -->

<BehaviorTree ID="MainTree">

<Fallback name="approach_pose_fallback">

<Sequence name="move_and_check_sequence_failure">

<SetBlackboard output_key="half_pose" value="2;4;0" />

<Action ID="GoToPose" target_pose="{half_pose}" />

<Action ID="CallService" srv="/service_layer/get_robot_pose" output_pose="{

↪→ robot_pose}" />

<Action ID="CheckPose" goal_pose="4;2;0" current_pose="{robot_pose}"

↪→ goal_tolerance="0.1;0.1;0.09"/>

</Sequence>

<Sequence name="move_and_check_sequence_success">

<SetBlackboard output_key="goal_pose" value="4;2;0" />

<Action ID="GoToPose" target_pose="{goal_pose}" />

<Action ID="CallService" srv="/service_layer/get_robot_pose" output_pose="{

↪→ robot_pose}" />

<Action ID="CheckPose" goal_pose="{goal_pose}" current_pose="{robot_pose}"

↪→ goal_tolerance="0.2;0.2;0.09"/>

</Sequence>

</Fallback>

</BehaviorTree>

</root>

Listing A.5: Simulation Test Case: Approach Charger BT code.

<root main_tree_to_execute = "MainTree" >

<BehaviorTree ID="MainTree">

<SequenceStar name="approach_sequence">

<SetBlackboard output_key="container_pose" value="2;4.5;0" />

<SetBlackboard output_key="object_id" value="31" />

<Action ID="CallService" srv="/service_layer/get_object_type" object_id="{object_id}

↪→ "

output_type="{object_type}"/>

<Action ID="ApproachObject" object_id="{object_id}" object_type="{object_type}"

↪→ object_pose="{container_pose}"/>

</SequenceStar>

</BehaviorTree>

</root>
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APPENDIX A. APPENDIX A - BEHAVIOR TREES XML CODE

Listing A.6: Simulation Test Case: Approach Container BT code.

<root main_tree_to_execute = "MainTree" >

<BehaviorTree ID="MainTree">

<SequenceStar name="approach_sequence">

<SetBlackboard output_key="container_pose" value="2;4.5;0" />

<SetBlackboard output_key="object_id" value="31" />

<Action ID="CallService" srv="/service_layer/get_object_type" object_id="{object_id}

↪→ "

output_type="{object_type}"/>

<Action ID="ApproachObject" object_id="{object_id}" object_type="{object_type}"

↪→ object_pose="{container_pose}"/>

</SequenceStar>

</BehaviorTree>

</root>

Listing A.7: Simulation Test Case: Approach Multiple Containers BT code (SubTrees).

<!-- SubTrees ====================================================================-->

<BehaviorTree ID="MoveHomeTree">

<SequenceStar name="move_home_sequence">

<Action ID="GoToPose" target_pose="{input_pose}" />

</SequenceStar>

</BehaviorTree>

<BehaviorTree ID="ApproachContainerTree">

<SequenceStar name="approach_container_sequence">

<Action ID="CallService" srv="/service_layer/get_object_type"

object_id="{input_id}"

output_type="{object_type}"/>

<Action ID="ApproachObject" object_id="{input_id}"

object_type="{object_type}"

object_pose="{input_pose}"/>

</SequenceStar>

</BehaviorTree>
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Listing A.8: Simulation Test Case: Approach Multiple Containers BT code (Main Tree).

<root main_tree_to_execute = "MainTree" >

<!-- MainTree ====================================================================-->

<BehaviorTree ID="MainTree">

<SequenceStar name="approach_sequence">

<SequenceStar name="approach_sequence_31">

<!-- Variables -->

<SetBlackboard output_key="container_id" value="31" />

<SetBlackboard output_key="container_pose" value="4;5;0" />

<!-- Actions -->

<SubTree ID="ApproachContainerTree" input_id="container_id"

input_pose="container_pose"/>

<SubTree ID="MoveHomeTree" input_pose="home_pose"/>

</SequenceStar>

<SequenceStar name="approach_sequence_32">

<!-- Variables -->

<SetBlackboard output_key="container_id" value="32" />

<SetBlackboard output_key="container_pose" value="4;2;0" />

<SetBlackboard output_key="home_pose" value="0;0;0" />

<!-- Actions -->

<SubTree ID="ApproachContainerTree" input_id="container_id"

input_pose="container_pose"/>

<SubTree ID="MoveHomeTree" input_pose="home_pose"/>

</SequenceStar>

<SequenceStar name="approach_sequence_33">

<!-- Variables -->

<SetBlackboard output_key="container_id" value="33" />

<SetBlackboard output_key="container_pose" value="4;-1.3;0" />

<!-- Actions -->

<SubTree ID="ApproachContainerTree" input_id="container_id"

input_pose="container_pose"/>

<SubTree ID="MoveHomeTree" input_pose="home_pose"/>

</SequenceStar>

<SequenceStar name="approach_sequence_34">

<!-- Variables -->

<SetBlackboard output_key="container_id" value="34" />

<SetBlackboard output_key="container_pose" value="4;-5;0" />

<!-- Actions -->

<SubTree ID="ApproachContainerTree" input_id="container_id"

input_pose="container_pose"/>

<SubTree ID="MoveHomeTree" input_pose="home_pose"/>

</SequenceStar>

</SequenceStar>

</BehaviorTree>

</root>
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APPENDIX A. APPENDIX A - BEHAVIOR TREES XML CODE

Listing A.9: Simulation Test Case: Approach Single Container configuration file.

containers:

- id: 31

dimensions:

length : 1.2

width : 1.0

params:

distance_from_object : 0.1

distance_to_goal_tolerance : 0.1

heading_tolerance : 0.01

angular_velocity_approach : 0.3

linear_velocity_approach : 0.3

yaw_goal_tolerance : 0.01
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Listing A.10: Simulation Test Case: Approach Multiple Containers configuration file.

containers:

- id: 31

dimensions:

length : 1.2

width : 1.0

params:

distance_from_object : 0.1

distance_to_goal_tolerance : 0.1

heading_tolerance : 0.01

angular_velocity_approach : 0.3

linear_velocity_approach : 0.3

yaw_goal_tolerance : 0.01

- id: 32

dimensions:

length : 1.2

width : 1.0

params:

distance_from_object : 0.05

distance_to_goal_tolerance : 0.05

heading_tolerance : 0.01

angular_velocity_approach : 0.3

linear_velocity_approach : 0.3

yaw_goal_tolerance : 0.01

- id: 33

dimensions:

length : 1.2

width : 1.0

params:

distance_from_object : 0.05

distance_to_goal_tolerance : 0.05

heading_tolerance : 0.01

angular_velocity_approach : 0.3

linear_velocity_approach : 0.3

yaw_goal_tolerance : 0.01

- id: 34

dimensions:

length : 1.2

width : 1.0

params:

distance_from_object : 0.05

distance_to_goal_tolerance : 0.05

heading_tolerance : 0.01

angular_velocity_approach : 0.3

linear_velocity_approach : 0.3

yaw_goal_tolerance : 0.01
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Appendix 2 - Support Figures

Figure B.1: Trajectory took by the AMR in the sequence (green line).
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APPENDIX B. APPENDIX 2 - SUPPORT FIGURES

Figure B.2: Full Tree of the Charge behavior with the expanded subtrees.
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Figure B.3: Full BT of the approach multiple containers test case. The full process is a
sequence star node (footnote of the first tree) with four nested sequences of the same type,
one for each container. Values in the SetBlackboard node with ’[IN]’ before them, means
that they will be stored inside the variable with the name in the output_key’s field. The
ApproachContainerTree and MoveHomeTree are Sub Trees, because they have an ’Expand’
button, thus they can be expanded in more action nodes. Both trees have input variables
so they can be accessed by the action nodes in them.
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Figure B.4: Simulation of the AMR (grey shape) approaching container number thirty one
(the first counting from upwards to downwards). The first figure (counting left to right)
represents the alignment of the AMR with the container (dark blue square) in the y-axis,
the second, the reduction of the distance in the x-axis and the third, the AMR aligned
with the container thirty one. The coloured ellipses (light blue and red) are the inflation
layer created by the costmap, the red dots around the containers are the laser scan beams
and the green square around the AMR is the robot’s footprint.

Figure B.5: AMR returning to the Home Position. The green line shows the trajectory
followed by the AMR (grey shape) after approaching the container number 31 (dark blue
square). The coloured ellipses (light blue and red) are the inflation layer created by the
costmap, the red dots around the containers are the laserscan beams and the green square
around the AMR is the robot’s footprint.
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Figure B.6: Simulation of the AMR (grey shape) approaching container number thirty
two (the second counting from upwards to downwards). The first figure (counting left to
right) represents the alignment of the AMR with the container (dark blue square) in the y-
axis, the second, the reduction of the distance in the x-axis and the third, the AMR aligned
with the container thirty two. The coloured ellipses (light blue and red) are the inflation
layer created by the costmap, the red dots around the containers are thye laserscan beams
and the green square around the AMR is the robot’s footprint.

Figure B.7: AMR returning to the Home Position. The green line shows the trajectory
followed by the AMR (grey shape) after approaching the container number 32 (dark blue
square). The coloured ellipses (light blue and red) are the inflation layer created by the
costmap, the red dots around the containers are the laserscan beams and the green square
around the AMR is the robot’s footprint.
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Figure B.8: Simulation of the AMR (grey shape) approaching container number thirty
three (the second counting from upwards to downwards). The first figure (counting left
to right) represents the alignment of the AMR with the container (dark blue square) in
the y-axis, the second, the reduction of the distance in the x-axis and the third, the AMR
aligned with the container thirty three. The coloured ellipses (light blue and red) are
the inflation layer created by the costmap, the red dots around the containers are thye
laserscan beams and the green square around the AMR is the robot’s footprint.

Figure B.9: AMR returning to the Home Position. The green line shows the trajectory
followed by the AMR (grey shape) after approaching the container number 33 (dark blue
square). The coloured ellipses (light blue and red) are the inflation layer created by the
costmap, the red dots around the containers are the laserscan beams and the green square
around the AMR is the robot’s footprint.
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Figure B.10: Simulation of the AMR (grey shape) approaching container number thirty
four (the second counting from upwards to downwards). The first figure (counting left
to right) represents the alignment of the AMR with the container (dark blue square) in
the y-axis, the second, the reduction of the distance in the x-axis and the third, the AMR
aligned with the container thirty four. The coloured ellipses (light blue and red) are
the inflation layer created by the costmap, the red dots around the containers are the
laserscan beams and the green square around the AMR is the robot’s footprint.

Figure B.11: AMR returning to the Home Position. The green line shows the trajectory
followed by the AMR (grey shape) after approaching the container number 34 (dark blue
square). The coloured ellipses (light blue and red) are the inflation layer created by the
costmap, the red dots around the containers are the laserscan beams and the green square
around the AMR is the robot’s footprint.
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Figure B.12: AMR approaching the charger (grey parallelepiped). The green rectangle
around the AMR is the robot’s footprint. The red dots in the front face of the charger and
the walls are laserscan beams colliding with them. The coloured ellipses on the ground
and lines near the walls represent the costmap’s inflation layer which is created around
every obstacle. The colours represent the increase of the trajectory weight around the
charger and close to the walls.

Figure B.13: AMR connected to the charger (grey parallelepiped). On the left side of
the figure, inside the red ellipse, it it is mentioned two poses (position and orientation).
The first pose is the difference between the AMR center projected on the ground, and the
charger’s pins. The second (relative), it’s the pose given by the robot’s odometry (position
the robot thinks it is on the map). The coloured ellipses on the ground represent the
costmap’s inflation layer which is created around every obstacle. The colours represent
the increase of the trajectory weight around the charger.
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Figure B.14: AMR final pose in front of the container (blue and grey object). On the
left side of the figure, inside the red ellipse, it it is mentioned two poses (position and
orientation). The first, it’s the AMR’s pose in the map. The relative pose it’s the position
given by the robot’s odometry (position the robot thinks it is on the map). The coloured
ellipses on the ground represent the costmap’s inflation layer which is created around
every obstacle. The colours represent the increase of the trajectory weight around the
charger.
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