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Abstract

Nowadays, data sharing among different sources is is very challenging in the manufac-

turing domain, mainly due to industry competition, complicated bureaucratic processes,

and privacy and security concerns. Centralized Machine Learning (ML) poses an essential

aspect in several industries, including smart manufacturing. However this approach may

lead to several issues regarding security and performance.

In response to these problems, Federated Learning (FL) was created. FL is an innova-

tive and decentralized approach to ML, focused on collaboration and data privacy. In this

approach, data is kept in each source where it is trained locally, and only model weights

or gradients are shared to create a global model.

Although several works have already been implemented towards this problem, there

are still many unresolved issues concerning the application of FL frameworks in smart

manufacturing scenarios. Among the several issues found in the analysed works it is

important to emphasize the disregard facing industry 4.0 architectures, strategies and

the unavailability to improve those frameworks further.

This work aims to build a FL framework for smart manufacturing with specific con-

cerns in privacy and applicability in industrial scenarios. The main focus of this frame-

work is to facilitate a collaborative approach in the application of ML to manufacturing by

enabling the knowledge sharing for this purpose and taking privacy as a special concern.

In addition, the implementation and testing of privacy-preserving algorithms, while im-

proving the framework for industrial scenarios are emphasized. A modular approach is

chosen to create a framework adapted to various industrial cases by implementing several

nodes that focus on specific aspects of data collection, data treatment, connection with

the FL system, and ML model management.

The results revealed a competitive model performance of the framework compared to

the centralized approach while keeping data at each source, protecting its privacy. The

implemented framework also proved to be compliant with the IEEE Std 3652.1-2020

standard guidelines, attaining the established requirement levels.

Keywords: Federated Learning, Privacy-Preserving Federated Learning, Smart Manufac-

turing, Framework
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Resumo

Atualmente, a partilha de dados entre diferentes fontes é um grande desafio no domí-

nio da manufatura, principalmente devido à concorrência da indústria, processos burocrá-

ticos complicados e preocupações de privacidade e segurança. O Machine Learning (ML)
impõe-se como um aspeto essencial em várias indústrias, incluindo a manufatura inteli-

gente. Contudo, esta abordagem pode levantar várias questões relativamente à segurança

e ao desempenho.

Em resposta a estes problemas, foi criado o Federated Learning (FL). FL é uma aborda-

gem inovadora e descentralizada de ML, centrada na colaboração e privacidade de dados.

Nesta abordagem, os dados são mantidos em cada fonte, onde são treinados localmente, e

apenas os pesos ou gradientes dos modelos são partilhados para criar um modelo global.

Embora vários trabalhos já tenham sido implementados visando esta temática, ainda

existem muitas questões por resolver relativas à aplicação de frameworks de FL em ce-

nários de manufatura inteligente. Entre as várias questões encontradas na literatura

analisada, é importante enfatizar a desconsideração pelas arquiteturas e estratégias da

indústria 4.0 e a indisponibilidade para melhorar essas frameworks.
Este trabalho visa construir uma framework de FL aplicada à manufatura inteligente

com preocupações específicas no que toca a matérias de privacidade e aplicabilidade em

cenários industriais. O principal objectivo desta framework é facilitar uma abordagem

colaborativa na aplicação de ML ao fabrico, permitindo a partilha de conhecimentos para

este fim e enfatizando a preocupação na privacidade dos utilizadores. Uma abordagem

modular foi escolhida para criar uma framework adaptada a vários casos industriais atra-

vés da implementação de vários nós que se concentram em aspetos específicos da recolha

de dados, tratamento de dados, ligação com o sistema de FL e gestão do modelo de ML.

Os resultados revelaram um desempenho competitivo do modelo em relação a uma

abordagem centralizada, mantendo os dados em cada fonte e protegendo a sua privaci-

dade. A framework implementada também provou estar em conformidade com a norma

IEEE Std 3652.1-2020, atingindo os níveis de exigência estabelecidos.

Palavras-chave: Federated Learning, Privacy-Preserving Federated Learning, Manufatura

inteligente, Framework
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Introduction

1.1 Background

Nowadays, the usage of Artificial Intelligence (AI) in the industrial context faces two

major challenges: the isolation of data, and the rise of data privacy and security. In the

majority of fields, data is largely concentrated, leaving most of the stakeholders with

limited or poor-quality data. Breaking barriers that hold data to its origins and sharing it

between organisations is almost impossible. This obstacle results from industry compe-

tition, long and complicated bureaucratic processes and privacy, and security concerns.

Concurrently, there is an exponential growth in awareness relative to data security and

privacy. Recent events regarding data leakage by multinational companies have raised

the concern for data privacy. It is usual to have data transactions in traditional Artifi-

cial Intelligence (AI) methods, but since new regulations like General Data Protection

Regulation (GDPR) were created, such transactions may face legal issues [2].

In smart manufacturing, centralised Machine Learning (ML) poses an essential aspect

mainly for taking part in, for example, cost optimisation, productivity improvement,

error reduction, and quality control. In this context, a centralised approach to ML may

lead to several issues, including high latency in real time scenarios, lower resistance to

security attacks, and data leakage concerns [3].

To answer these problems, Google created Federated Learning (FL), an innovative and

decentralised approach to ML, focused on collaboration while maintaining data privacy.

In FL, data is kept in each source where it is trained locally, and only the parameters

(model weights or gradients) are shared. The purpose is to create a global model with

similar accuracy as a model trained with all the data gathered in the same place [2, 4, 5].
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CHAPTER 1. INTRODUCTION

1.2 Research Problem and Motivation

Several studies show progress towards creating FL frameworks. The great majority

are general-purpose frameworks which provide the necessary tools to apply FL to any

given problem. Most of the general-purpose frameworks can already be implemented,

but still do not provide the essential tools to guarantee users privacy, and also need

implementation and testing before being applied to a real scenario. In the specific case

of smart manufacturing, some frameworks were proposed to tackle difficulties in model

accuracy and data heterogeneity, which are frequent problems in industrial context [4].

Although the results are promising, these studies failed to address device heterogeneity

problems in smart manufacturing scenarios. The applicability is another problem in

smart manufacturing frameworks, since any research frameworks was not applied to

an industrial scenario, nor available for further improvement. Considering all of these

challenges that arise from the existing FL frameworks, a new solution is necessary. In this

sense, the following research question was already considered:

In which way can collaborative ML be implemented in complex manufacturing

environments whilst ensuring privacy and security?

To address the presented research question, the following hypothesis was formulated:

If a modular Privacy-Preserving Federated Learning (PPFL) framework that leverages
existing general-purpose FL frameworks and privacy-preserving algorithms is created,
collaborative ML can address several problems found in complex manufacturing environ-
ments whilst keeping data private and secure.

In order to validate the research hypothesis, several tests must be made to guarantee

the framework’s robustness, and a modular approach will be implemented to simulate a

distributed industrial scenario. As a result of this work, it is expected to obtain an open-

source framework ready to be implemented in industrial scenarios, with the capability to

add new modules and implement new algorithms to it.

1.3 Thesis Outline

Following the introduction, the second chapter presents a review of literature about

Industry 4.0, Cyber-Physical Systems, ML, FL, and Privacy-Preserving Federated Learning

(PPFL) will be provided to contextualize this work. A comparison between several works

reported in the literature and the identification of some implementation challenges will

also be presented. The third chapter will describe the proposed framework, mapping it to

the reference architecture present in IEEE Std 365.1™-2020 standard [6] and explaining

its composing modules.

The fourth chapter elaborates on the framework implementation, starting by explain-

ing the chosen use case. The development of each node and the communication processes

2
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between them are provided, and the implementation of privacy protection mechanisms

is depicted.

In the fifth chapter, the testing processes which shall be made to evaluate the frame-

work are described, and the required levels that the framework shall achieve are estab-

lished.

The sixth chapter covers the tests and results realized according to the fifth chapter.

A discussion of the obtained results is also provided with the drawn conclusions of each

testing criterion.

Finally, the seventh chapter formulates the conclusions drawn from the carried work

and the contributions and future work that may arise from this dissertation.
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2
Literature Review

2.1 Industry 4.0

Nowadays, the complex supply chains require flexible production environments that

can quickly and efficiently adapt the goods produced to the market’s flexibility and qual-

ity requirements. The fourth industrial revolution, or simply Industry 4.0, addresses

these challenges by enabling communication between all important production assets in

production and Information Technology (IT) [7].

Industry 4.0 is a concept initially introduced in Germany, in 2011, as a strategic initia-

tive to revolutionize the manufacturing process. Currently, the term represents a trend

where automation technologies are associated to the manufacturing industry. Among

the technologies employed it is important to highlight the enabling technologies such as

Internet of Things (IoT), cloud computing and Cyber-Physical System (CPS). Figure 2.1

shows the evolution and the main enablers of every industrial revolution so far [8–10].

The base principal of Industry 4.0 paradigm, and one of its main goals, is integration.

Integration can be divided as: Horizontal integration, which regards cooperation and IT

systems integration along the value chain; Vertical Integration, where a single company

is extensively automated with various IT systems; New work infrastructures; Presence of

engineering through the complete production lifecycle; and product customization via

small lots or even lot sizes of one [7, 10]. The work of Aceto et al. [10] highlights the

evidence that the enabling technologies above mentioned are well-established fields with

unique characteristics and concerns but also closely interrelated. According to Prisloo et
al. [11], by integrating this technologies together, several possibilities will be enabled con-

cerning manufacturing capabilities, productivity and efficiency. One of the main aspects

concerning the integration of these technologies will be the creation of industrial value.

The manufacturers will be able to react faster to market volatility, and create innovative

4
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Figure 2.1: Evolution of Industry 4.0 and enabling technologies through time. Adapted
from Aceto et al. [10].

solutions. Consequently, new trends regarding collaboration, innovation and problem

solving will emerge. For example, global partnership achieved through the Internet to

perform engineering and industrial design tasks with international, multidisciplinary

teams.

Several aspects have lead to the importance of creating of a uniform industry standard

and reference architectures. Among these aspects the following should be highlighted:

integration of existing proven technologies with new ones; integration of different stake-

holders; and the several limitations of Industry 4.0 implementation regarding security,

connectivity, standardization and interoperability [7]. A reference architecture is a docu-

ment which provides knowledge on the development, standardization and evolution of

systems in a certain domain. It has the purpose to show the best practices, improve com-

munication, promote reuse and consequently reduce costs and enhance interoperability

between systems and/or subsystems.

There are several reference architectures for Industry 4.0 that differ in purpose, con-

tent and format. In Industry 4.0, can be found multiple use cases and challenges, each

one with different requirements regarding the architecture. To better understand how the

architectures frame in an industrial scenario Nakagawa et al. [7] compares the industrial

automation pyramid to the several reference architectures.Following the same approach,

a similar comparison will be made afterwards. Firstly, an overview of the industrial pyra-

mid will be given, followed by a brief explanation of a selected reference architecture.

Finally a comparison between them will be presented.

The industrial automantion pyramid (Figure 2.2) is divided in five layers: (i) field
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layer, which comprehends physical entities such as machines, devices, sensors and actu-

ators that interact in the production floor; (ii) control layer, representing field devices

control and usually is represented by a Programmable Logic Controller (PLC) and/or a

Proportional–Integral–Derivative Controller (PID); (iii) system/process layer which ag-

gregates the systems that are responsible for the control of several devices at the industrial

floor level. This layer is manly referred to as Supervisory Control and Data Acquisition

(SCADA); (iv) operation layer that compiles Manufacturing Execution System (MES),

responsible for the monitorization of the complete manufacturing process from raw ma-

terials to finished product; and finally (v) the enterprise layer comprised by the systems

responsible for the integrated management of enterprises. It can be also called Enterprise

Resource Planning (ERP).

Enterprise

Opera�on

System/Process

Control

Field

Figure 2.2: Industrial Automantion Pyramid. Adapted from Nakagawa et al. [7].

Usually, all architectures cover all layers of the industrial pyramid to a certain extent.

Sometimes, each architecture module can cover more than one layer demonstrating that

the clear division of such layers is not clear in Industry 4.0. Of the several architectures

referenced in Nakagawa et al. [7] the Reference Architectural Model Industrie 4.0 (RAMI

4.0) will be highlighted for being one of the most popular, and an international technical

specification (IEC PAS 63088:2017).

The RAMI 4.0 is a reference architecture, based on international standards (IEC 62890,

IEC 62264, IEC 61512), developed for smart manufacturing, to insure that all stakehold-

ers have a common understanding since they have a generic view of it. To make sure

it fulfills the industry needs, it was conceived by a consortia of companies and research

institutions who were in charge of design, experiment and adopt it [7]. RAMI 4.0 has a

tridimensional architecture (Figure 2.3) whose axes represent Hierarchy Levels, Life-cycle

Value Stream and Architecture Layers. The Hierarchy Levels axis intends to spread the

idea of flexibility among machines and systems; distribute functions over the network

6
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promoting communication and interaction among all the involved participants; and to

include products as part of the architecture. The Product Life-cycle axis, as the name

infers, defines assets along the value chain from its ideation through development and

maintenance up to its production, usage and further maintenance after it is produced.

The assets are defined as goods which have value for an organization as, for instance, a

device or equipment. Finally, the axis of the Architectures Layers describes the modeling

of physical entities of the industrial network (e.g., devices, equipment and machines)

and matches them to their respective virtual representations, describing in detail the

properties of CPS [8].

Figure 2.3: Reference Architecture Model Industrie 4.0 (RAMI4.0). Adapted from Contr-
eras et al. [12].

Figure 2.4 demonstrates that some of the layers of RAMI 4.0 cover more than one level

of the pyramid. It shows that the hierarchy between the different levels of the traditional

pyramid are becoming less strict mainly due to the demand for flexibility and complexity

by the new industrial paradigm.

2.2 Cyber Physical Systems

CPS are the systems composed by computational entities that connect deeply with the

physical world, collaborating among them, and the associated processes. These systems

use and provide internet available services, for accessing and processing data which

allows them to achieve such connection [9].

In Industry 4.0, networked sensoring devices and software are already integrated

with complex physical machinery [13]. This assimilation of not only CPS, but also IoT

and Internet of Services with the purpose to control global networks, will result on an

emergence where the physical and digital representation cannot be reasonably differ-

entiated [14]. For instance, in the predictive maintenance area, process parameters of

mechanical components (e.g., stress and production time) which are subject to wear and
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Figure 2.4: Mapping of RAMI 4.0 layers to the Industrial Automation Pyramid. Adapted
from Nakagawa et al. [7].

tear are recorded digitally. The essential condition for ensuring the operation of these

systems results from the integration between the physical element and its digital process

parameters [15].

Industry is constantly changing. In the beginning of the 18th century, mechanical sys-

tems were the industry’s focus. At the start of the 20th century, mass production started

to being achieved in order to cope with the demands of a global market. Nowadays, the

industry cannot rely on mechanical systems exclusively in order to achieve mass produc-

tion. According to Industry 4.0, the transition from the linearity of a "value chain"to a

"value network", where automation and dynamic are key aspects, relies heavily on CPS

to interconnect product systems, infraestructures, and customers [10]. In Table 2.1, Lee

et al. [16] provides a general overview of the differences between a factory in today’s

perspective versus an Industry 4.0 factory.

Table 2.1: Comparison between today’s factory and an Industry 4.0 factory [16].

Data source Today’s factory Industry 4.0
Attributes Technologies Atributes Tecnologies

Component Sensor Precision
Smart sensors and
fault detection

Self -aware
Self-predict

Degradation monitoring &
remaining useful life prediction

Machine Controller
Productibility &
performance

Condition-based
monitoring
& diagnostics

Self-aware
Self-predict
Self-compare

Up time with predictive
health monitoring

Production
system

Networked
system

Productivity & OEE
Lean operations: work
and waste reduction

Self-configure
Self-maintain
Self-organize

Worry-free productivity

Usually a CPS is a centralized embedded computing system that contains a great
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quantity of physical systems composed by wireless sensor networks. Therefore CPS can

be characterized by four main components [17]:

i) Physical System: It englobates the hardware related aspects including, for example,

hardware design, energy management, connectivity encapsulation and system testing;

ii) Cyber and Information System: Responsible for transforming the information

provinient from the physical world into rules and models that can be interpreted by a

software system. One of its requirements is the balance between a variety of factors such

as concurrent design and formal verification, hierarchical storage systems, file systems,

memory management, modular software design, network systems, real-time systems;

iii) Product of Integration of Heterogeneous Systems: Deals with time synchroniza-

tion and space location issues of different parts;

iv) Security requirements, real-time capability and predictability: CPS shall be

able to overcome the uncertainties of a system, be scalable and toletant to threats. Part of

the goals of CPS are to attain a certain security level, be able to solve credibility issues in

monitoring and controlling processes and real-time capability

2.3 Machine Learning

Algorithms are a fundamental part of solving computer problems. An algorithm is

a set of instructions that transforms a given input into an output. Nevertheless, some

tasks are very difficult or even impossible to be solved by a traditional algorithm. In

many problems, only the input and the output are known to the user. For such problems,

Machine Learning (ML) comes as a solution.

ML is a subset of Artificial Intelligence (AI) where computational methods can make

predictions and decisions by learning from past information available, even without being

explicitly programmed to do so. In machine learning, the process of learning is done by

an algorithm, where parameters in a model are optimized using training data [18, 19].

Data is a crucial aspect of ML and it can take many forms. Quality and size are two

key aspects of data that should always be considered for being vital to the success of

the prediction algorithm [20]. One of the reasons for the ML popularity are the many

petabytes of data that are generated nowadays, mainly due to the Internet phenomenon

and how it has become part of our daily life. [21] The application of ML methods to large

quantities of data is commonly called data mining, a process where large amounts of data

are processed to construct a model. In these cases, the stored data reveals its usefulness

when analyzed, and knowledge is inferred from it [19].

ML has a very intimate relation with data analysis and statistics. Statistical theory

is fundamental to make the ML models infer from training data, evaluate the model’s

performance and filter the noise from data [22, 23].

A system is considered intelligent when has the ability to learn and adapt to change.

If a system is able to do so when created, it does not need to have a solution for all possible

situations it encounters. With the previous statement in mind, it is possible to find a vast

9
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Table 2.2: Machine Learning techniques, adapted from Mohri et al. [20].

Machine Learning technique Description
Classification Assigns a category to each item.
Regression Predicts the real value of each item.
Ranking Learns to order a specific set of items according to certain criteria
Clustering Partitions a set of items into subgroups.

Dimensionality reduction
Transforms a initial set of items into a lower-dimensional
set without losing most of its properties

range of applications for ML including computer vision, unassisted control of vehicles

(e.g., robots or cars, speech processing, analysis of gene and protein networks, network

intrusions, medical diagnosis, design of recommendation systems, search engines, fraud

detection) [20]. A large number of areas can benefit from ML as far as the correct dataset

is provided to the algorithm.

Such a number of applications cannot be solved with a single ML technique, and quite

a few learning techniques were developed. In the Table 2.2, it is possible to see some of

the standard ML techniques which have been the subject of extensive studies.

To fully understand how a ML algorithm works, it is necessary to break down the

learning process into its several stages and comprehend the vocabulary often used in the

literature.

A typical learning process starts with a dataset of examples, instances of data nec-

essary for learning and previous evaluation, which can be labelled or not. The dataset

is then broken into training sample, validation sample and test sample. The training

sample is used to train the model. The validation sample is necessary to tune the learning

algorithm’s parameters when labelled data is used. And, finally, the test sample is crucial

to evaluate the algorithm’s performance.

Before the training, the features (relevant attributes) are associated with the examples.

After that, the training process will tune the values of the hyperparameters(Θ), specific

inputs of the learning algorithm(A), creating a hypothesis which is a function that maps

the features to a set of labels. The best hyperparameters(Θ0) are chosen by calculating the

algorithm’s performance with the validation sample. At last, the hypothesis will be used

in the test sample and evaluated using a loss function, which is a function that calculates

the difference between a predicted label and a true label. If the hypothesis chosen fits the

training examples perfectly but other examples are missclassified, it is called overfitting.

Overfitting occurs when the model fails to generalize a problem and, consequently, fails

to predict other examples [20]. The typical learning process is illustrated in Figure 6.1.

Usually, ML is divided into three types based on the learning "task"characteristics:

Supervised Learning, Unsupervised Learning and Reinforcement Learning [22]. In Su-

pervised Learning, labelled examples are used to predict their relationship, mainly for

classification and regression problems. On the other hand, in Unsupervised Learning,

unlabeled examples are used to learn about their distribution and focus on tasks like

clustering, compression and feature extraction [21]. Both Supervised and Unsupervised
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Figure 2.5: Typical training process. Adapted from Mohri et al. [20].

Learning will be the subject of the following subsections.

Reinforcement Learning is another type of ML, where the training and the testing

phases are deeply interconnected. Every action has a reward, positive or negative. The

objective is the maximization of the reward by interacting with the environment [20].

2.3.1 Supervised and Unsupervised machine learning

Supervised Learning maps the input space, constituted by a dataset of labeled ex-

amples, to an output space. Most of the Supervised Learning falls into two categories:

regression or classification. In a regression problem, the output is real-valued. Other-

wise, it is a classification problem. When trained, the model learns a classification rule,

allowing to make predictions based on past knowledge [22]. In order to effectively test

the rule’s accuracy, unseen data is presented to the model and an unbiased evaluation is

performed. The accuracy of the predictions is related with a probability so the model can

classify with a degree of certainty [18, 22].

In some instances, where a probability calculation is wanted, the rule becomes an

association between input and output. The classification rule is used as a describer of

data, which gives an insight of the data and allows knowledge to be extracted. Supervised

learning can also be used to detect outliers, as long as, after the rule is learned, it is

possible to detect the instances that do not obey to such rule. Such data points can

represent anomalies in a system that can be further analyzed [22].

In contrast to Supervised Learning, Unsupervised Learning uses unlabeled data (Fig-

ure 2.6). The objective of this method is to find patterns in the input data. Generally, a

certain structure can be found in the input space, where certain occurrences and patterns

can be found more often than others. In statistics, this occurrence is called density estima-

tion. One method that uncovers such hidden patterns and groups similar data together

is called clustering [19].
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Clustering can be used to explore data and understand its structure or even to prepro-

cess it. In preprocessing, clustering will map data to a new dimensional space where the

new dimensionality can be greater than the original dimensionality.

Some advantages of Unsupervised Learning are its less cost, since it doesn’t require

labelled data, and it is more beneficial to detect anomalies and features possibly hidden

in the data structure [22].

Input
Class

Representa�on Error

Cost Fun�onCost Fun�on

Known
Label

Input
Cluster 

Representa�on

Cost Fun�onCredit
Assignment

Error

Distance
Func�on

Figure 2.6: Supervised Learning model (up) and Unsupervised Learning model (down).
Adapted from Zincir-Heywood et al. [22].

2.4 Deep Learning

One of the main challenges of AI is to solve tasks that the human being considers

easy to solve but difficult to describe. Problems like recognizing elements on a picture,

or giving meaning to written sentences are complicated for a machine. Deep Learning

(DL) comes as a solution for those problems. In DL, a computer learns from experience,

gathering knowledge without the need of a human specification. The name Deep Learn-

ing comes from the quantity of layers that computers use to learn complex concepts by

hierarchically building them on top of simple ones [24]. Figure 2.7 illustrates the general

differences in architecture between Neural Network and a Deep Neural Network.

DL is based on the concept of artificial neural networks, which began to be the subject

of research in the 1940s. Artificial neural networks, or just Neural Network (NN), are
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Hidden layer Hidden layer 1 Hidden layer n

Output layer Output layer

Figure 2.7: Difference between a Neural Network (left) and a Deep Neural Network (right).
Adapted from Lee et al. [21].

based on the structure and characteristics of human neurons. They adopt a hierarchi-

cal structure of simply connected processors (“neurons”) gathered in layers where each

neuron produces a sequence of activations. The higher layer neurons’ input is directly

connected to the proceeding lower layer neurons’ output through simple linear or non-

linear calculations. An “epoch” or “episode” is a passage through all the NN. It occurs

when an environment’s input activates the first layer, and then information is paired

to a respective weight. All the pairs connected to a neuron are summed or multiplied

and passed through an activation function originating the output. As previously men-

tioned, the neurons’ output is directly connected to the next layer neurons’ input until

it reaches the final layer [25, 26]. Figure 2.8 demonstrates the architecture of a simple

neural network composed by three neurons.

The algorithm presented before is an example of a NN. Over the years, various DL

models have been introduced and the more typical include the Autoencoder, Deep Belief

Network, Convolutional Neural Networks and Recurrent Neural Networks [26].

Applying DL techniques to a given set can take a significant amount of time, depend-

ing on the computing and storage specifications of the machine running the algorithm.

Nowadays, a plethora of accelerators with the capability to do specific tasks have been

invented, such as arithmetic co-processors, sound cards and Graphics Processing Unit

(GPU). Even more recently, the rise of new hardware optimized for ML and DL has al-

lowed scientists to improve the performance of their models. Among those, the more

popular are GPUs, Field-Programmable Gate Array (FPGA) and more recently, Tensor

Processing Unit (TPU). The main advantage of this hardware, specifically GPUs is their

parallel architecture, which allows increasingly fast computation involving matrix-based

operations, typically present in many DL/ML implementations. To enhance this hard-

ware, and take the full capability of its features for DL/ML, manufacturers offer acceler-

ated libraries as a way to access the parallel power of GPUs. Among these, the most used

are the NVIDIA CUDA®, NVIDIA CUDA® Deep Neural Network (cuDNN), Intel® MKL
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Figure 2.8: Architecture of a Neural Network composed by three neurons.

and OpenCL™[27].

The scientific community has quickly realized the advantages of DL and rapidly this

type of learning [27]. With the purpose to create an easier way to design, train and vali-

date DNNs with high-level programming interfaces, DL frameworks were developed [28].

These frameworks work on top of the previously mentioned libraries producing a signif-

icant advantage for the scientific community, both academia and industry. Some of the

most popular frameworks are Tensorflow, CNTK, Torch, Caffe, MXNet and Theano. The

fact that all the previously mentioned frameworks are open source, allows the community

to access all resources to assist their work [27].

DL approaches to enable better performance in a wide range of applications. The

applications are vast, from computer vision, including object detection, object tracking

and image segmentation, to Natural Language Processing [26]. More and more areas are

adopting DL techniques to improve the quality of their systems. Among them is worth

noting the following: Financial Services, Financial Time Series Forecasting, Prognostics

and Health monitoring, Medical Image Processing, Power Systems and Recommender

Systems [29].

2.5 Federated Learning

Nowadays, the interest in AI is partially driven by the large quantity of existing data.

With the Big Data phenomenon is expected that, by 2025, dozens of zetta-bytes will be
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created only by IoT devices [30]. However, the availability of this data for AI purposes

faces two significant challenges. Firstly, in the majority of industries, data exists in

isolated form, and secondly, due to several cases of data compromisation, data security

and privacy have become a worldwide concern. One of the major issues in most fields is

data scarcity or poor-quality data. In addition, complicated administrative procedures

related to data privacy and security and industry competition, makes it almost impossible

to break barriers between data sources in different companies and even between different

departments in the same company.

FL comes as a possible solution for the problems mentioned above. Unlike other ML

solutions, in FL data is not centralized and not exposed. The idea instead is to each data

source train their models locally, and only then those models are exchanged without the

risk of data leakage, to form an aggregated global model (Figure 3.2). The accuracy of

this final global model shall be very similar to the performance of a model trained with

the same data centralized [2].

Stakeholder 1

Local-model 1

Dataset 1

Stakeholder 2

Local-model 2

Dataset 2

Stakeholder 3

Local-model 3

Dataset 3

Global-model 1

Central Server

Figure 2.9: Federated Learning reference architecture. Adapted from IEEE Guide for
Architectural Framework and Application of Federated Machine Learning [6].

2.5.1 Taxonomy

As a recent technology, FL is under active development with various techniques. In

order to better understand FL approaches, and to guide the design of Federated Learning

systems, it is important to understand some aspects of its taxonomy, as it is shown in
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Figure 2.10. FL will be classified in the following paragraphs regarding data partition,

network topology, and data availability.

• Cross-Silo
• Cross-device

• Centralized
• Decentralized

• Horizontal FL 
• Ver�cal FL
• Transfer FL

Federated Learning

Data
Par��oning

Network
Topology Data Availability

Figure 2.10: Federated Learning Taxonomy. Adapted from Li et al. [31].

Data Partition

When data is spread across several owners, its characteristics are also distributed, and

the FL approach should be adapted based on the distribution characteristics of the data.

Aspects like features and samples may be nonidentical. Based on how data is distributed

across various entities. FL approach can be classified as Horizontal, Vertical or Federated

Transfer Learning.

Horizontal Federated Learning (HFL), also called sample-based FL, is applied in cases

where data shares the same features but vary in samples. In Yang et al. [32] is given an

example of two regional banks where the intersection of costumers may be very small due

geographic distance, albeit the same features are collected. These characteristics make

HFL more likely to be used in situations where a large number of devices is involved.

In Vertical Federated Learning (VFL) (or feature-based FL), datasets have the same

samples, but differ in features. In the example given by Yang et al. [33], a bank and an

e-commerce company from the same city share a large propotion of customers, since they

correspond to the residents of the city. However, the bank is interested in a certain number

of features different from the e-commerce business, and vice-versa, only containing a

small number of features in common.

In practical cases, it is usual to find situations where the features and the samples are

very limited, for example, in cases related to finance and health care. In order to solve

these situations, where each client can have its own specific feature space, FL and Transfer

Learning can be combined, originating Federated Transfer Learning (FTL). In this ap-

proach, a model is trained to resolve a particular problem. However, by taking advantage

of Transfer Learning properties, the trained model can be applied to different problems

that may share similar properties. The performance of FTL is strongly correlated with

the interrelation between the problem’s domain, making it a suitable approach for many
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FL scenarios where most of the stakeholders are correlated not only by the nature of their

industry, but also by the nature of their problems [4, 6].

Network Topology

Regarding network topology, FL can be categorized as centralized or fully decentral-

ized. Centralized FL, differs from a traditional ML approach mainly because data is not

transferred to a server where the model is trained. Instead, all the stakeholders train lo-

cally their models with their respective data and only the parameters/weights are shared

with the central server, protecting each of the stakeholders data from being compromised.

On the other hand, in a fully decentralized FL approach, the necessity of a centralized

server and the global model concept are discarded. A third party authority is only needed

to establish the protocols to be followed during the FL process. To substitute the necessity

of a central server, peer-2-peer communication is implemented, and a set of algorithms

are used to ensure reliability and trust among stakeholders [34].

Data Availability

Initially, FL was only applied in mobile and edge devices. Since FL has gained visi-

bility, an interest has been developed to involve groups of fewer stakeholders, essentially

focused on organizations, to collaborate in training a model. To face the differences

in data availability between both approaches, two data settings for FL where minted:

cross-device FL and cross-silo FL [35].

In cross-device FL, a large quantity of edge devices are comprehended, including IoT

or even mobile phones. Mainly due to the nature of the devices, most of the data share

the same features, being most appropriate for the use HFL. In scenarios where there is

a great amount of spread devices, only a fraction of the clients are available in a given

time frame making it impossible to identify each individually. Although the density of

devices, in the majority of cases unreliability is a problem, mainly due to battery, network,

or idleness issues. The resource allocation strategies were the found solution to overcome

these problems. In particular, client selection and device scheduling should be employed

to maximize the contributions to the final model.

In contrast to cross-device FL, cross-silo FL comprehends fewer clients, typically

organizations with distributed data centers. Although there are fewer clients, they are

more reliable and able to be addressed individually, and consequently there is more data

available to train. In cross-device FL cases, where large amount of data from fewer clients

is concerned, the employment of encryption techniques is preferred as a way do address

data security and privacy issues. [34].

2.5.2 Algorithms

Algorithms play a key role in integration, optimization, aggregation, and achievement

of consensus in the different approaches of FL. These algorithms may vary depending
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on the architecture used in specific FL scenarios. In centralized FL, aggregation algo-

rithms are fundamental to gather all local model updates and optimize them. Some

algorithms already account for privacy issues, preserve communication bandwidth or

support asynchronous updates from clients [34]. This section is aimed to review some

of those algorithms in order to understand how they work and the advantages they can

bring to the FL system. In particular, the following algorithms will be briefly presented:

Federated Averaging (FedAvg), Federated Stochastic Variance Reduced Gradient (FSVRG),

Co-Op and FedOpt.

Federated Averaging (FedAvg)

The FedAvg algorithm begins with the initialization of the global model and its distri-

bution throw a subgroup of clients. The clients who received the model update perform

the updates using, usually, the Stochastic Gradient Descent (SGD) algorithm for opti-

mization. Finally, the clients transfer every updated local model to the central server,

which will be create the global model by computing the weighted sum of all the received

models.

Federated Stochastic Variance Reduced Gradient (FSVRG)

FSVRG is another algorithm with synchronized model updates. The FSVRG starts

with the download of the global model by all the clients and respective training with

each local data. After that, the clients upload the gradients to the central server, where

the full gradient is formed. The full gradient is downloaded by the clients, and each

client initializes their local model and their local step-size. The process is followed by

the creation of a permutation of the local data. Subsequently, the clients will perform as

many Stochastic Variance Reduced Gradient (SVRG) updates as the number of training

examples held by each client. This process is interactive and use, not only the local step

size, but also the full gradient. At last, when all the local models are computed, the

central server forms a new global model similarly to FedAvg.

Co-Op

In contrast to the algorithms mentioned above, the Co-Op algorithm proposes an

asynchronous approach. Each client starts optimizing their algorithm with its training

data. Afterwards, the client requests the global model from the central server. When

having the global model, the client makes a comparison between the ages of both models.

In case the local model is outdated, the client fetches the global model. On the other

hand, if the client is overactive, the training continues. Only if the client’s model’s age is

between a certain threshold this model is merged with the global model [36].
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Federated optimization (FedOpt)

The FedOpt algorithm works similarly to the FedAvg algorithm, with the difference

that the server and the clients are "gradient-based" optimizers. With the FedOpt algo-

rithm, the client aims to minimize the loss function with its local data, while the server

allows for the usage of adaptive optimizers for aggregation. The usage of these optimizers,

for example, YOGI, ADAM and ADAGRAD, provides for the integration of adaptivity to

the FL process, improving FL’s convergence [37].

2.6 Privacy Preserving Federated Learning

In order to get a distributed FL approach, it is mandatory the protection of the in-

volved data. Each stakeholder must be assured that their data is secured and their privacy

concerns are met. Privacy Preserving Federated Learning, as the name indicates, is a

combination of privacy preserving techniques with FL. In order to guarantee this require-

ments, it is necessary to understand the threats to privacy and security and find solutions

to mitigate these threats.In the implementation of privacy preserving techniques to FL, a

challenge is the balance between data privacy and model accuracy, as privacy mechanisms

might affect the performance of FL models [5].

2.6.1 Data Security

To better understand and tackle security issues in FL, it is crucial to identify its key

elements, including vulnerabilities, threats, and the defense techniques that may be used

to counter such threats.

2.6.1.1 Vulnerabilities

Vulnerabilities are weaknesses in a system that can be exploited unauthorizedly. To

build a more secure system, it is essential to identify vulnerabilities and implement

defense mechanisms. According to Mothukuri et al. [34], there are five primary sources

that can be considered as weak points to exploitation:

1. FL involves a significant amount of client-client and server-client communications.

As so, insecure communication channels are an open vulnerabilities.

2. In FL, the possibility of having numerous clients translates into numerous opportu-

nities for data and model parameters manipulation. Each client can be a vulnera-

bility in the system if it is itself vulnerable.

3. The central server is responsible for aggregation and sharing models and updates

for clients. An attack on these server is a major vulnerability has it connects directly

to all the clients.
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4. The aggregation algorithm should also have the capability of identifying abnormal

updates from clients. A weaker aggregation algorithm which disregards abnormal

or even malicious updates presents itself as a vulnerability to data manipulation

from the clients and consequently as vulnerability to the system.

5. Finally, the architecture of a FL framework is a weak point, since it can be attacked,

promoting data exposure. Examples of possible failures are the cases when the ar-

chitecture is not correctly implemented, or when the privacy and security concerns

are not completely fulfilled.

2.6.1.2 Security Threats

A threat is a possibility to exploit a weakness in a system, violating the security and

the privacy of a system. In FL, a threat usually intends to access sensible data or even the

training procedure, which can compromise the FL process. Some of the main threats to

FL are analyzed in this section.

Poisoning

Poisoning occurs when an element of the FL process is tampered at critical points,

and this attack can occur at different levels. For example, data poisoning occurs where

malicious data is injected into a client and affects his model. On the other hand, model

poisoning is where a malicious model is sent for aggregation, poisoning the global model.

Finally, the data modification occurs where the clients’ data are changed. For example,

the label swapping in a client is a case of data modification.

Poisoning attacks become more relevant in FL due to the high number of stakeholders

involved in the process, increasing the probability of success of this attack [34].

Backdoor attacks

In backdoor attacks, a participant in the FL process may replace the global model

with another, keeping the accuracy, but controlling the model’s performance on a specific

subtask. The attacker has a direct influence on the weights of the global model for being

part of the FL process. He can modify the weights of his local model or even incorporate

the evasion of defences into the local model loss function. Since the model’s accuracy is

kept, this threat is relatively difficult to identify [38].

Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) are primarily used in image classification

algorithms. In a FL environment, the attacker creates a replica of the global model which

classifies fake computer-generated images. While the attacker continues receiving the

global model updates, the generator algorithm will improve until high-quality is reached,
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and the fake images are able to interfere with the global model. These images can poison

the global model, affecting the performance on specific classification targets [39].

System disruption IT downtime

System disruption is an unavoidable threat that can be exploited to steal information

from the FL environment. Although the training can resume after the system disruption

without any malicious interference, as it is an non planned disruption, it is a threat to be

considered and specific measures should be applied [34].

Malicious Server

A central server takes a key role in several FL architectures. Compromising this server,

would be nefarious, since an attacker could extract the client’s private data, manipulate

the global model, or even take advantage of the shared computational power to do mali-

cious tasks [34].

Communication Bottlenecks

Communication is a key point of FL, and in an environment with heterogeneous data,

one big challenge is to preserve communication bandwidth. The usage of complex ML

algorithms, or model uploads of large quantities of data by numerous users, can lead to a

severe bottleneck in communication [40].

Free-riding attacks

Free-riding attacks are carried by stakeholders, who do not contribute to the update

of the global model. In FL, every stakeholder contributes with its local training to update

and further enhance the global model. The free-riders are clients who generate fake

weights which are uploaded to the global model (free-riding attack). This attack can

occur for several reasons: the lack of the required data, concerns about stakeholders

privacy privacy and shortage of computing power sometimes by non-using it for the FL

process [41].

Eaves Dropping

An eavesdropping attack occurs in the communication round of FL. Ineffective com-

munication between clients and the server can be created when the proper safety mea-

sures are not met. This attack is highly improbable to happen once the system architects

verify the right configurations [34].
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Interplay with data protection laws

This threat can happen due to misconfiguration of the FL environment. The occur-

rence of this threat is almost improbable to happen, since the global model is verified

adequately before being deployed [34].

2.6.1.3 Defensive Techniques

Defensive techniques are applied to mitigate the possibility of a FL system suffering

from an attack, or even lower the risk of being attacked. These techniques which prevent

model corruption cannot necessarily avoid training the model with malicious data, but

ensure that the model does not overfit that data minimizing the damage taken by the

model. Two types of defences can be identified: proactive, which identifies threats and

risks prematurely, and reactive, which identify attacks and takes defensive measures.

Several defensive techniques can be employed in a FL system to prevent specific attacks.

Table 2.3 presents a summary of the most popular techniques.

Table 2.3: FL security defensive techniques adapted from Bouacida et al. and Mothukuri
et al. [34, 42].

Defensive techiques Description
Sniper Based on euclidean distance, it excludes adversarial updates

Federated Destillation
Transfers knowledge from a fully trained model to another model.
It saves computational cost and enhances robustness by transfering
knowledge instead of the weights

Anomaly Detection Monitors suspicious client updates in order to prevent malicious attacks

Moving Target Defense
Reduces the likelyhood of a successful attack by randomizing the FL
modules.

Trusted Execution
Environment

A trusted ecosystem which provides integrity and confidentiality by
atesting anf verifying the code.

Pruning
Reduces the size of the Neural Network model by droping some of its
neurons. It reduces complexity, improves acuracy and prevents backdoors

Federated Multi-Task
Learning

Trains models for multiple related tasks in simultaneous to enhance fault
tolerance

2.6.2 Data Privacy

One of the major concerns of FL is the privacy. Although FL maintains the client’s

privacy by utilizing model parameters instead of data, it is still possible to suffer some

privacy attacks due to training data revelation based on the parameters. For a better

understanding of how privacy concerns should be addressed it is important to know the

threats faced and the technique that can mitigate those threats. In this section threats

and defense techniques will be addressed as well as the cost of implementing privacy

techniques in a FL system.
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2.6.2.1 Threats

Although all the security threats should also be addressed to privacy it is important

to denote two significant threats that affect mainly privacy, as they can be used to recon-

struct users’ data. Those threats are Membership Inference Attack (MIA) and GANs &

Reconstruction Through Inference which will be addressed in this section

Membership Inference Attacks

A MIA infers the aspects of data through misusing the trained model. In MIA,an

attacker deliberately misuses the global model to obtain the model output. By analyzing

several inputs and the respective outputs, the attacker can infer and predict the original

training data, risking the system’s privacy [43].

GANs & Reconstruction Through Inference

GAN were mentioned before as a security attack. In a privacy scenario, GANs can be

used to generate data from the global model, retrieving sensitive information that was

originally used to train it. This attack allows the user to take advantage of FL global

model to infer the training data used by other FL stakeholders [34].

2.6.2.2 Techniques to mitigate threats and enhance privacy

The FL system should employ privacy-preserving techniques and algorithms to pre-

vent attacks on privacy and maintain data integrity. The most mentioned techniques in

the literature are presented in this section.

Secure Multi-Party Computation

Secure Multi-Party Computation (SMC) is used in models where multiple clients are

involved, preventing that each client does not know anything except the input given, and

the respective output. The main objective to not leak any knowledge, which it would

require complicated computing protocols, and may not be efficient. Although attainable,

in some scenarios, partial data leakage is preferred if security is guaranteed [2].

Differential Privacy

It is a method that adds noise into data and/or uses generalization algorithms to hide

private and sensitive attributes, making it impossible to be restored. In FL, this method

hides a stakeholder contribution to the global model. However, this method still requires

data transferring which may be a liability [2].

According to [35, 44, 45], we can summarize the definition of differential privacy as

follows: An algorithm A is differentially private if for all S ⊆ Range(A), and for all the
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adjacent datasets D and D ′:

P (A(D) ∈ S) ≤ eεP (A(D ′) ∈ S) + δ (2.1)

Where P [.] represents the probability and D and D ′ are decentralized datasets called

adjacents if D ′ differs from D by the addition or subtraction of a record. The privacy loss

(ε,δ) is the quantifier of DP, where the smaller the (ε,δ), the greater the privacy of the

algorithm.

Applying DP to any given dataset to enhance data privacy often recurs upon adding

a certain amount of noise to data using noise generation mechanisms such as Gaussian or

Laplace mechanisms [44].

In FL, it is possible to distinguish between two definitions of DP, global differential

privacy (GDP) and local differential privacy (LDP). In Liu et al. [44], the distinction is

made by dividing the perspective of who adds noise to data. In FL approaches where

the central server is responsible for applying the DP mechanism to the global model are

called GPD approaches. On the other hand, when each client is responsible for adding

DP to their models and protecting their privacy, we call it an LDP approach.

While GDP follows Eq. (1), an LDP approach is held by the following:

P [An(Dn) ∈ Sn]
P [An(D ′n) ∈ Sn]

≤ eεn (2.2)

Where n means the n-th participant.

Homomorphic Encryption

It allows every client to compute functions in encrypted data by using parameter

exchange and encryption mechanisms. Homomorphic encryption lets mathematical op-

erations be done in encrypted ciphertexts. This encryption does not transmit either data

or model, protecting these details from malicious clients [2, 35].

Adversarial Training

Adversarial training protects FL models from evasion attacks that try to inject fake

data and disturb the models. This protection is done by trying all permutations of an

attack at the beginning of a training phase. This technique improves the privacy of users’

data, and makes the ML model more robust to attacks, even minimizing the threat of data

inference [34].

2.6.2.3 Costs of privacy

To boost privacy preservation in FL, the cost in accuracy and efficiency needs to be

accounted. A study mentioned in [34] shows that FL with Differential Privacy (DP) has

a cost in accuracy in heterogeneous environments. DP adds noise to the parameters to

ensure privacy, which inevitably affects accuracy. In conclusion, privacy directly impacts
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accuracy and efficiency, the level of privacy shall always be adjusted to the models, to

achieve the desired accuracy, privacy, and security requirements.

2.7 Challenges and Gaps

Being a relatively recent technology, FL is in current development. Its application to

an industrial scenario is still conceptual, and several challenges are yet to be mitigated.

As an effort to create a FL solution to a smart industry scenario, in 2021 Franco et
al. [46] proposed a self-adaptive divided framework to cope with the existing industrial

automation systems architecture as well as the ML procedures used in the industry. The

focus of this work was the improvement of accuracy and efficiency of a FL framework. In

order to achieve these improvements, the authors proposed modelling a multi-assignment

optimization problem and, subsetting the datasets through the involved devices.

Model accuracy is also the focus of the work of Liu et al. [47]. However, the effort

to achieve the desired accuracy relies on a Gradient Compression Mechanism where

local gradients are compressed to reduce the number of gradients exchanged between the

clients and the central server.

In 2021 I-Kai Wang et al. [48] created a framework for an industrial scenario based on

Federated Transfer Learning. This framework was focused on adapting the base industrial

knowledge to each smart device’s needs using FTL to local specific data. The data division

was made through every device, making each one a client of the federated learning. This

approach leads to every device’s specific adaptation of the global model suited to its

particular needs.

The works mentioned above, propose a Federated Learning framework applied to an

Industrial scenario, focusing only on efficiency and adaptability to smart manufacturing.

Data privacy problems are only addressed by using a FL system. In addition, with the

information presented in the previous section, it is safe to assume that only the FL system

is not enough to protect data privacy it is also necessary further measures to safeguard

each FL client’s data.

With the focus on privacy preservation, Jiang et al.[49] proposed the use of mem-

bership proof in the FL system. Such membership proof is generated by cryptographic

accumulators and is issued as a smart contract by the server on the blockchain. This

technique ensures robustness to failures, verifiability of the clients and resistance against

active adversaries.

Another similar approach is the work of Hao et al. [50] which also uses encryption

mechanisms to ensure privacy, and the communication between all the elements of the

framework is encrypted. Although the high level of encryption and the computational

cost, the framework still achieves a decent accuracy in training the MNIST dataset.

In Liu et al. [51], privacy and security of FL users were the primary concern. A

blockchain-based FL framework was proposed, where attackers are recognized by the

execution of smart contracts, defending the system against poisoning attacks. This study
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proved the trade-off between model performance and client protection, which although

ensures better protection against attacks, also underperforms compared to a simpler FL

model.

The previous studies focus primarily on the security and privacy of FL models. Al-

though an improvement in privacy is noticeable, a deprecation on accuracy is evident. In

addition, all the above-mentioned frameworks create a FL system from scratch. However,

applicability to a real case scenarios is not a concern as data collection and preparation is

not mentioned. In the testing of these frameworks, the used datasets were manly MNIST

and CIFAR, which do not translate the challenges of an industrial scenario where data

is more complex and even may be untreated. Finally, beyond the literature, none of

the frameworks were available for further improvement or testing, making it difficult to

reproduce and implement.
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3
Proposed Framework

The present chapter will provide a full description of the proposed framework. The

framework’s primary goal is to face industrial scenarios while facilitating cooperation

between stakeholders and accounting for privacy preservation and security. Not only to

ensure the proposed capabilities but also the minimum requirements of quality, safety

and measurability, this framework will follow the guidelines of the standard IEEE Std

365.1™-2020 [6] on the creation of Federated Learning (FL) frameworks.

This chapter will start with the framework requirements, emphasising functional

and non-functional requirements. Then the fundamental taxonomy aspects that must be

considered in the framework building will be explained. An overview of the framework

will be provided along with its mapping to the reference architecture and correspondent

system layers. Finally, the framework’s composing modules and interactions will be

described.

3.1 Requirements

This section will briefly explain the functional and non-functional requirements neces-

sary to achieve the proposed work. According to the standard ISO/IEC/IEEE 24765:2017

[52], the functional requirements state the results that a particular process should pro-

duce. Therefore, the functional requirements of the proposed framework are the follow-

ing:

• FR-01: The framework shall include data collection nodes and the ability to com-

municate with a database system to store the collected data safely;

• FR-02: Include data preprocessing capabilities to fit the Machine Learning (ML)

training requirements. The framework needs preprocessing capabilities to fit the
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raw data present in the database to the ML algorithm requirements;

• FR-03: Support privacy-preserving techniques. The framework shall implement

privacy-preserving algorithms to secure each stakeholder’s data during the FL pro-

cess;

• FR-04: Optimise each stakeholder’s model performance. The use of the framework

shall serve each stakeholder in improving its ML models allowing for decentralised

training;

• FR-05: Allow metric monitoring for model improvement. The framework shall

implement model evaluation on the trained models to guarantee that the previous

requirement is met;

• FR-06: Provide the collaborative improvement of ML models through the usage of

FL capabilities. The framework must implement a FL system that collaboratively

improves each stakeholder’s ML models using FL techniques.

Additionally, non-functional requirements establish constraints on how the system

will execute its processes [52]. The establishment of the non-functional requirements

was adapted from the guidelines of the IEEE Std 3652.1-2020 [6]. Considering these

guidelines and based on the procedures explained in the previous section and the func-

tional requirements mentioned above, the following list of non-functional requirements

is presented.

• NFR-01 (Efficiency): The framework should be efficient concerning time and mem-

ory consumption;

• NFR-02 (Security): The framework should guarantee the stakeholders’ data secu-

rity;

• NFR-03 (Privacy): The framework should provide means to perform collaborative

ML while keeping each stakeholder’s data private;

• NFR-04 (Model performance): The framework should provide a competitive ML

model performance compared to a centralized approach.

3.2 Taxonomy

For the proposed FL framework to achieve the capabilities mentioned at the beginning

of this chapter it will require a foundational architecture that provides a starting point to

be adapted to several scenarios. According to the standard IEEE Std 365.1™-2020 [6], the

reference architecture (Figure 3.2) presents a guideline which sits on three main classes

of entities, that should be addressed when creating a FL framework: data distribution,

user roles, and system modules.
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3.2.1 Data

When data distribution is concerned, as explained in section 2.5.1, it can be classified

as Horizontal Federated Learning (HFL), Vertical Federated Learning (VFL) or Federated

Transfer Learning (FTL). Each type of data distribution carries unique features that the

framework’s FL setting shall overcome. The data differentiators and colliders across

heterogeneous clients must be considered when federating the ML training.

3.2.2 Users

Regarding user participation, the guideline for creating a FL framework involves four

essential roles that users may play. It is important to mention that each user can play

more than one role, depending on the implementation scenario. As explained in the

standard IEEE Std 365.1™-2020 [6], the four roles are the following:

Data Owners

The data owners are responsible for collecting, preparing, and training data. It is also

its responsibility to maintain the privacy and security of the local model, which will be

provided for aggregation, by recurring to privacy-preserving techniques and algorithms.

Finally, the data owner is responsible for participating in the training and evaluation

rounds and communicating the intermediate results to other parties and the server during

the inference phase.

Model Users

The model users have particular interest in the federated learning process. In the

great majority of cases, they are the ones who will benefit from the use of the trained

model and the FL services.

Coordinator

The coordinator works as an administrative entity in the federated learning process. It

is responsible for various procedures, including: developing the algorithm, the infrastruc-

ture, and the service; coordination of the train and test of the model; privacy-preserving

and secure computing through, for instance, security protocol determination, key gener-

ation, and data decryption; and model management including training and testing.

Auditor

The auditor is responsible for verifying the legitimacy of the data providers, request-

ing explanations from the coordinators on their data management, model management

and economic incentive activities and monitoring the federated ML model building pro-

cess. In this dissertation, the auditor role will be played during the development and use

of the proposed framework.
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3.2.3 System

According to the standard IEEE Std 365.1™-2020 [6], the composing modules of the

reference architecture are grouped by layers, according to their functional relevance. It

is important to note that the use of specific modules may depend on the requirements of

each use case, so that some modules may be included or omitted from a framework. In

the particular case of this dissertation, only the modules required for a framework in an

industrial scenario will be discussed. The reference architecture is divided into five layers:

Service layer, Operator layer, Algorithm layer, Infrastructure layer, and Cross-layer.

In the Service layer, the business logic is implemented. All the management of

participants, tasks and services are managed in this layer, providing every user access to

the functionalities needed for each role they may play in the federated learning system.

In the Operator layer, the responsibility is to implement the characteristic operations

of a federated learning algorithm. This layer shall implement the machine learning algo-

rithm and the optimisation and aggregation algorithms. Also, it is in this layer where the

encryption and privacy preservation algorithms are implemented.

In the Algorithm layer, the algorithmic logic for federated learning is implemented.

It includes data structuring, model selection for the specific scenario, and evaluation

metrics for performance, efficiency, privacy preservation and security. The outcome of the

capabilities of this layer shall assist in the decision-making and troubleshooting process

as it provides essential data for both tasks.

The Infrastructure layer is responsible for supporting the operations of the FL frame-

work. It provides a computing component, a storage component, a communication com-

ponent and an interface between these components, this layer, and the operation layer.

In the Cross-layer, the interaction between layers is realised, offering supporting capa-

bilities such as security functionalities, service and strategy management, and regulation

and auditing of the system.

3.3 Overview

After presenting the guidelines in Section 2.5.1, and the functional and non-functional

requirements, the developed framework will be composed of four modules. Three mod-

ules will be associated with each stakeholder as the base operation flow within them. In

contrast, one of the modules will have a similar role as a FL aggregation server.

As the framework was built following the guidelines from the IEEE Std 365.1™-2020

[6], it can be mapped to the reference architecture system’s layers, and a clear user distinc-

tion of roles can be identified. Figure 3.2 depicts the framework’s architecture and a brief

description of the interactions between the modules. In addition, it can be visualized the

system layers and role mapping of the proposed framework to the reference architecture.
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Local Federation 
Node (LFN)
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Node (GFN)
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∑
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Model 
Evaluation

Data 
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Legend:
- Service layer
- Operator layer
- Algorithm layer
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Coordinator

Model UserData Owner

LFN

LFN

Figure 3.1: Proposed framework with system layers and role mapping to the reference
architecture.

3.4 Component Specification

As shown in Figure 3.2, each stakeholder contains at least three different nodes: DCN,

LIN and LFN. The Global Federated Node (GFN) acts as an aggregator for every stake-

holder in the FL context. In this section, each module will be further explored.

Global Federation Node (GFN)

The GFN is a comprehensive implementation of the aggregation server in a FL context.

Its role is to manage the stakeholders involved in the FL process and provide a secure

mechanism where each local model, trained by its respective stakeholder, is aggregated by

an aggregation algorithm. Consequently, it does not have direct access to the stakeholders’

data

The GFN shall be agnostic to the used algorithm and the type of machine learning

algorithm. Also, the GFN is responsible for initialising the parameters used by the stake-

holders providing a common ground for the model training. These functionalities map

the GFN component to the operator layer.

Local Federation Node (LFN)

The Local Federation Node acts as an extension of the FL client. It is responsible

for training the local dataset and participating in the FL training and evaluation rounds.

31



CHAPTER 3. PROPOSED FRAMEWORK

Global Federaton Node (GFN)

- Model aggrega�on;

- Parameter ini�alisa�on;

- Connec�on establishing;

-FL round coordina�on.

Local Federaton Node (LFN)

- Par�cipa�on on FL rounds;

- Model training;

- Data preprocessing;

- Ensure model and data privacy.

Data Collec�on Node (DCN)

- Data collec�on;

- LIN connec�on;

- Actua�on upon inference.

Local Intelligence Node (LIN)

- Model opera�onalisa�on;

- Model quality evalua�on;

- Model u�liza�on upon request;

- Data storage.

Server

Stakeholder

Figure 3.2: Composing nodes of the proposed framework and correspondent main func-
tionalities.

It is also responsible for delivering the model to the respective LIN nodes. This node

provides the functionality to make secure connections to the database for data retrieval

and preprocessing it to be used in the FL process. The LFN also uses evaluation metrics to

verify the resulting model’s performance and privacy intake according to the stakeholders’

quality parameters.

However, when considering a straightforward approach to LFN-GFN interaction, a

problem arises as it is required that each stakeholder relies on the GFN. To address this

problem, the LFN implements privacy algorithms such as Homomorphic Encryption or

Differential Privacy.

As mentioned in Section 2.6.2.2 with HE, data can be computed while still encrypted.

The LIN node can homomorphically encrypt the respective model updates before sending

them to the GFN. By taking advantage of the properties of HE, the GFN may aggregate

the encrypted updates without accessing the raw values from the stakeholders. After

that, the GFN send the. updated global model back to the stakeholders, where it will be

decrypted and used in the next training round.

On the other hand, by using differential privacy, as explained in the Section 2.6.2.2, it
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is possible to add an amount of noise to data while keeping its usability for ML training.

This process introduces plausible deniability to data, safeguarding each stakeholder from

being associated with it.

The LFN can be mapped to the operator and algorithm layers when considering the

privacy-preserving algorithms, the data preprocessing functionalities, and the model

selection techniques it implements.

Local Intelligence Node (LIN)

The main functionality of LIN is the operationalisation of the FL model. The LIN

node receives the updated model and is responsible for checking its quality compared

to the existing model, employing the best-suited model for inference. Also, this node

is responsible for fusing data from multiple associated DCNs and storing the data in a

secure database. When considering its data evaluation and the provision of the trained

ML models for inference, this node can be mapped to the algorithm and service layers.

This node’s functionality allows multiple implementations, including agent-based or

service-based approaches, which will be later discussed in Section 4.3.

Data Collection Node (DCN)

Finally, DCN is a key part of digitalising a physical component. It provides the means

for run-time data to be collected and then used for training, evaluation and inference.

Upon collecting data, the DCN runs a data cleaning method following an established

data structure each stakeholder defines. When the collected data may present missing

values, the DCN relies on a mechanism of data imputation to standardise the data saved

in the database. This methodology allows a generic procedure for structured and unstruc-

tured data to be stored and used in future applications when suitable.

Data collection and cleaning functionalities map the DCN to the service layer.

3.5 Interaction Specification

After establishing the framework requirements and presenting the composing com-

ponents, it is essential to tackle the interactions aggregated with each module. Regarding

the component interaction, it is possible to divide them into three main flows: data flow,

ML model flow, and FL flow.

3.5.1 Data Flow

Data flow sums up the interaction between the DCN and the LIN. As shown in Figure

3.3, in this process, data is collected in the DCN model, sent to the LIN node, where

the ML model is located, and the inference is made. After the inference, the collected

data is stored in a secure database that stays until needed. This interaction process is
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LIN

DCN

Inference

Database

End

Data Collection

Start

Preprocessing

Data cleaning

Figure 3.3: Data flow between the DCN and the LIN.

deliberately simplified and agnostic to the implementation technology, making it possible

to implement, for instance, agent-based or service-based approaches or another approach

that the stakeholders might find suitable for their specific industrial scenario.

3.5.2 Model Flow

The Model flow is one of the most important interactions on which the proposed

framework is based. As shown in Figure 3.4, the LFN node starts by accessing the nec-

essary data to train the ML model and preprocesses it to match the ML training model

criteria. After being ready to begin the Federated training of the model, the LFN signs

into the FL training by acknowledging the GFN of its availability. When all the necessary

stakeholders are ready to begin the FL training, the GFN sends the initial model param-

eters, and each stakeholder trains the model with its data. Upon finishing the training

round, each stakeholder sends the parameters to the GFN, where the chosen aggregation

algorithm aggregates all the parameters, creating the global model. This global model is

then sent to each stakeholder as the new starting parameters, where the cycle continues

until the agreed number of global training rounds finishes.

When the last global model is sent to each stakeholder, the LIN node verifies it by

evaluating and comparing its performance against the already employed model. If it

outperforms the current model, the new ML model is saved and employed in the LIN

nodes that will use it.
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Figure 3.4: Model training and evaluation flow.

3.5.3 Federated Learning Flow

Finally, the FL interaction characterises the FL process associated with the decen-

tralised training of the ML models. This process allows the collaborative improvement of

ML learning models by federating the ML train. This data flow follows the guideline of

the reference model presented in the standard [6].

Figure 3.5 presents an example of the FL system applied in this framework. It is

essential to mention that the shown example only assumes two stakeholders and two

training rounds to reduce the reading complexity. Both these values can be escalated

accordingly.

The FL flow is applied when several stakeholders desire to train a common ML model

without needing to share data and take advantage of the FL benefits . To do so, each stake-

holder’s LFN sign in to the GFN, demonstrating its availability to initiate the FL training.

After each sign-in, the GFN responds with the initialisation parameters, which provide a

common starting ground for the local training. Upon receiving the starting parameters, a

global round is initiated where each stakeholder trains the algorithm with its data. After

finishing the local training, each stakeholder sends the respective model’s parameters to

the GFN, where the aggregation occurs according to the chosen algorithm. When the

aggregation finishes, the new global model parameters are sent to the stakeholders, and
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:LFN 2 :GFN

Aggregated global model parameters

Aggregated global model parameters

Parameters

Sign In

Local model parameters

:LFN 1

Parameters

Sign In

Local model parameters

Local model parameters

Local model parameters

Figure 3.5: FL interaction between the GFN and the connected LFNs.

a new round begins. When all the rounds have finished, the stakeholders keep the last

global model parameters which is the final trained model.

Although not mentioned in the Figure 3.5, an evaluation round can be included at the

end of each training round to evaluate the global model training progression.

It is relevant to mention that the training parameters (e.g., number of global rounds,

ML model, type of dataset, aggregation algorithm, number of stakeholders which will

participate) are previously agreed upon, following an economic system.

Although creating an FL economic system sits out of this dissertation’s scope, its

presence must be accounted for. The importance of an economic system relies on the

presumption of fairness between all the stakeholders, even though they might not bring

the same value to the FL process. Economic incentives (whether monetary or influential)

should be attributed to the stakeholders proportionally to their contribution to the FL
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process to tackle this issue.
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4
Implementation

Recalling the framework architecture presented in Figure 3.2 and the system inter-

actions, it is possible to divide the framework into three action stages: data collection,

model update and Federated Learning (FL) training. Each of these stages involves specific

functionalities and interactions.

This Chapter will present the implementation of each component mentioned in the

previous chapter, the architectural decisions and the tools adopted throughout the devel-

opment of this framework.

4.1 Case study

The case study, which will provide a starting point for building the framework, is

based on a real industrial application (Figure 4.1) adapted from Peres et al. [53]. In this

scenario, different defects can occur in the adhesive cord, which an automated quality

inspection system should detect. The classes are depicted in Figure 4.2 and represent two

types of defects: discontinuity and excess.

This case scenario aims to serve the built framework with a real scenario to demon-

strate the impact that a multi-stakeholder collaborative approach based on FL can have

when compared to the performance (in terms of accuracy) of local, single-stakeholder

solutions.

For this purpose, the chosen dataset1 comprised 372 images, 207 images of the Dis-
continuity class, and 165 belonging to the Excess class. It was split into three subsets

attributed to each client considered in this case study. Two subsets were artificially ma-

nipulated to predominate one of the defects and the third subset was built with a minimal

amount of data. This division pretends to emulate a scenario where each manufacturer

1https://github.com/RicardoSPeres/federated_learning_iros_2022
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has limited access to data for a specific type of defect and an abundance of data from the

other or limited data for both defects, enhancing the likelihood that each manufacturer

will benefit from a collaborative approach.

Figure 4.1: Reference industrial application for the case study [53].

(a) (b)

Figure 4.2: The two classes of images contained in the study case dataset. Discontinuity
(a) and excess (b).

4.2 Technologies

Implementing the proposed framework to validate the case study requires hardware

and software components. This section discusses the devices and the main tools chosen in

developing the framework nodes, the FL component, and the network layer that integrates

the components.
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4.2.1 Hardware devices

The hardware devices used to run the framework were two Personal Computers (PC).

A PC with an Intel® Core™ i7-9750H CPU @ 2.60GHz, 16GB of RAM (15.9 GB usable)

and an NVIDIA® GeForce RTX 2060 with 6.0 GB of dedicated memory graphics card was

used to run the Global Federated Node (GFN). Furthermore, a PC with an Intel® Core™

i7-9700K CPU @ 3.60GHz, 16.0 GB (15.8 GB usable) and an NVIDIA® GeForce RTX 2070

with 8.0 GB of dedicated memory graphics card was used to run three stakeholders, each

with one Data Collection Node (DCN), one Local Intelligence Node (LIN) and one Local

Federation Node (LFN). Both PCs were connected in the same network environment

through an ethernet cable.

4.2.2 Software tools

Python: The programming language chosen to implement the framework was Python,

a general-purpose, high-level, interpreted programming language. The choice of Python

over other programming languages was due to its simplicity, great range of use due to

its many community-made libraries, support of major machine learning and federated

learning frameworks and an active developer community who can help solve problems

that arise during implementation.

SQLite: SQLite was the chosen database engine to implement each stakeholder’s

database mainly due to its accessibility through Python language being the data conden-

sate in a file, reduced complexity and versatility.

Flower: Flower is the FL framework chosen to implement the FL system. This open-

source, end-to-end, federated learning framework offers the tools and functionalities to

perform experimentation with a high level of customization. Flower presents several ad-

vantages compared to similar frameworks, which include scalability, client-agnosticism,

privacy-agnosticism and flexibility. Also, it is possible to implement the client side of

this framework in heterogeneous environments, which presents an advantage for a man-

ufacturing setting. Finally, one major advantage of this framework is the capability to

integrate different Machine Learning (ML) frameworks in the same workload, allowing

different clients to work on different training frameworks while using the same FL envi-

ronment [54].

TensorFlow: TensorFlow presents itself as an end-to-end open-source platform for

implementing machine-learning algorithms. It offers different levels of abstraction and

flexibility to build and train ML models. Also, it presents an API (Keras API2) which

makes the implementation of ML solutions intuitive. The user-friendliness and the grad-

ual learning curve were the fundamental aspects of the choice of this framework in the

implementation.

2https://keras.io/

40

https://keras.io/


4.3. DCN – LIN INTERACTION

4.3 DCN – LIN interaction

The implementation of the DCN – LIN interaction was made recurring to a client-

server model, where the chosen communication protocol was HTTP. For that purpose, in

the LIN script, a Flask server was created with a simple API to take requests from the

associated DCN, which will act as a client in this process. The HTTP protocol was chosen

as a proof of concept of the interaction between the DCN and the LIN. This choice is not

exclusive and does not prevent the possibility of another choice of implementations as

long as the base architecture is respected.

4.4 The data collection node (DCN)

As mentioned in the Section 3.4, the Data Collection Node is responsible for collecting

and cleaning data and sending it to the connected LIN.

In this implementation, the data collection process was abstracted, therefore the

collection method was substituted by a folder containing the respective dataset where the

respective images were saved. The DCN script collects the image and converts it into a

data stream. The data stream is then added to a JSON file, and an HTTP POST request is

built and sent to the LIN. After sending the HTTP POST request, a response is collected

to be sent for the respective actuation function. Denote that the data cleaning process

was skipped due to the type of collected data. A cleaning process should be implemented

if a different type of data is collected.

4.5 The local inference node (LIN)

In the LIN, the data collected is fed to the ML model, which classifies it and saves it

into the database, sending back the result of the classification to the DCN. Also, the ML

model is evaluated and updated in this node.

The LIN script was implemented as an HTTP server recurring to the Flask framework.

For the development of the API, the REST architectural style was followed to promote

interoperability among the developed nodes.

As demonstrated in Table A.1 the LIN API provides two POST methods. An inference

method is associated with the DCN and the data flow, and a model evaluation method is

associated with the LIN and the model flow. Further detail on the API endpoints can be

found in Appendix A.

Table 4.1: LIN API methods.

Method Route Requirements
POST <server_url>/img_inf image file
POST <server_url>/model_eval .h5 model file
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In the inference method (Figure 4.3), the DCN provides a JSON message with an

image string encoded in base64. The JSON format and the existence of the image are

vital elements for the acceptance of the request, being verified at the beginning of this

method. If the elements are confirmed, the base64 string is converted to bytes and back

as a PIL image. Before being fed to the model for prediction, the image needs to be

preprocessed and converted into an acceptable format. This process is made available

through TensorFlow, which offers functions for preprocessing images by leveraging the

Keras API. After the prediction, the result is assessed, and the image and respective label

are encrypted and saved into the database in the expected format with the corresponding

label. Finally, the prediction results are returned to the DCN.

flask.request.json verification

Start

Message conversion into image using
base64 and PIL libraries.  

End

Image preprocessing with 
tf.keras.preprocessing.image.load_img() 

function. 

Image and label saving into the sqlite3
database.

Response with result

Image and label encryption
using cryptography.fernet library.

Model preparation and image prediction
using tf.keras.models functionalities.

Figure 4.3: Inference behaviour.
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On the other side, in the model evaluation method (Figure 4.4), the LFN, after par-

ticipating in the FL training rounds, gathers a final ML model and sends it to the LIN

through the model_eval method. In this method, the LIN receives an ML model and sets

it for testing, where a pre-determined number of images are selected to evaluate the new

model’s accuracy. Then the results are compared to the existing model present in the LIN.

If the new model outperforms the currently employed one, the LIN will substitute it, and

the performance parameters are updated for further evaluations

Start

Save model file

Test model using
tf.keras.model.evaluate() 

Discard model

No YesModel performs  
better?

Substitute current
model file

Update model
performance
parametes

End

Figure 4.4: Model evaluation behaviour.

4.6 The local federation node (LFN)

As mentioned in Section 3.4, the LFN is the node responsible for participating in the

FL process and implementing the privacy algorithms to prevent data leakage from the

client side of the FL process.
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However, the FL process is a rather complex process to implement on its own, so

by leveraging the Flower framework, it is possible to implement a robust FL system

customizable for the needs of this project.

4.6.1 Data preprocessing

To initiate the FL process, each involved stakeholder needs to preprocess its data

for training the ML model. The LFN starts by connecting the respective stakeholder’s

database and collecting the data necessary for the training. To preprocess the data, the

Keras API provides functionalities for image preprocessing. As the optimization of the

ML model is not the main focus of this project, the preprocessing consisted of the follow-

ing steps:

• Image resizing into a shape of (224, 224, 3) which is the required input image size

for the used model;

• Image rescaling in a factor of 1/255 to lower the image’s RGB values to a 0-1 scale

allowing the model to process these values;

• Division into a training set and validation set fit and evaluate the ML model, respec-

tively;

• Shuffling the training set to minimize the training loss.

4.6.2 Deep Learning model construction

The purpose of this case study, as mentioned in Section 3.4, is to make an image

classification for two classes (discontinuity and excess) in the provided training set. In

order to provide the same baseline in this case study, a deep learning classification model

architecture must be implemented for every stakeholder.

TensorFlow provides a plethora of pre-trained deep learning model architectures

through the Keras API 3. From the provided architectures, the MobileNetV24 was chosen

due to being a lightweight, high-performing visual recognition model with low computa-

tional cost.

The creation of the Deep Learning (DL) model for the case study started with the ap-

plication of the MobileNetV2 as a base model, with the parameters described in the table

4.2, followed by the addition of two layers, a GlobalAveragePooling2D layer and a Dense
layer with a dimensional output space of two (corresponding to the two classification

classes) and a softmax activation function.

3https://keras.io/api/applications/
4https://keras.io/api/applications/mobilenet/#mobilenetv2-function
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Table 4.2: MobileNetV2 utilized parameters.

Paremeter Input Description

input_shape (224, 224, 3)
MobileNetV2 required input shape that must have three input channels, width
and height

include_top False
Boolean input which tells wheter to include the fully-connected layer
at the top of the network

weights ’imagenet’ Weights initialization file.

4.6.3 Flower client architecture

Creating the FL framework using Flower involves two steps, the definition of a Flower

client, the definition of a Flower server and its corresponding strategy (the latest will

be described in further detail in Section 4.7). In the LFN, each stakeholder defines its

Flower client, which will provide the functionalities to participate in the FL training. This

section describes the details of the Flower client’s creation in the LFN.

4.6.3.1 Interface

The interaction between the Flower clients and the server is made through an interface

implemented in the clients called Client. This interface executes necessary methods each

client needs for FL training; whenever each method is needed, the server calls for it to

each client.

Flower provides a class named NumPyClient to implement the Client interface. As

shown in Figure 4.5, the NumPyClient already provides several methods that each client

can build upon and customize according to its specific requirements.

NumPyClient

get_parameters()

fit()

evaluate()

Figure 4.5: Customizable methods provided by the NumPyClient class.
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4.6.3.2 Client Sign in

Upon server readiness, each client must sign in for federated training. Flower ab-

stracts this process from the user by providing a gRPC Remote Procedure Calls (gRPC)

connection between the server and respective clients. When a stakeholder wants to con-

nect to the server to enter the FL training, it must initiate its Client interface by calling

the method start_numpy_client() and passing, as parameters, the server’s IP address and

its NumPyClient class with the DL model, the training and validation data.

When the NumPyClient class is instantiated, it starts by adding the model configu-

rations necessary for training in the __init__() method. These configurations include a

stochastic gradient descent optimizer function, a categorical cross-entropy loss function

and the evaluation metrics. The chosen evaluation metrics were Accuracy, AUC, Recall

and Precision.

4.6.3.3 Training

The local training of each stakeholder is implemented in the fit() method of the

NumPyClient class. As depicted in Figure 4.6, the fit() method starts by obtaining the

parameters sent by the server. The first time this method is called, each stakeholder re-

ceives the initialization parameters from the server, creating a common baseline among

all the FL clients. The other times the fit() method is called, each stakeholder starts with

the aggregated model and trains the new local model on top of it.

To proceed with the DL model training, each stakeholder can choose to get the hy-

perparameters from the server or use their own hyperparameters. If the first option is

chosen, the server passes the hyperparameters in a configuration dictionary (explained

in Section 4.7) available to every client.

The DL model training is then started using the TensorFlow fitting function, where

the model, dataset and hyperparameters are passed.

For evaluation of the model training, it was chosen to retrieve the resulting metrics of

the fitting function and save them into an Excel file.

Finally, the parameters of the newly trained model, the number of training samples

used and the collected results are returned from the fit() method to the server for aggre-

gation and evaluation.

4.6.3.4 Evaluation

The Flower framework allows the model evaluation process to be done in the server

or the clients. The choice of the model evaluation in the server would imply that the GFN

had access to all clients’ data to perform an independent evaluation. The scope of this

dissertation is to create a framework that prioritizes FL clients privacy while leveraging

the benefits of FL, so the access to data by the GFN would represent a major privacy

breach that would invalidate this project’s purpose.
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Local parameters update with 
tf.keras.model.set_weights()  

Start

Set hyperparameters with the  
config dictionary or with self chosen

variables 

End

Train model recurring to
tf.keras.model.fit() function  

Save training results in  
an Excel file

Return: 
- Newly trained model parameters; 

- Number of training samples; 
-Collected training results.

Figure 4.6: fit() method behaviour.

To perform a decentralized evaluation of the global model in the NumPyClient class,

Flower offers the evaluate() method where each client can use their own test set to perform

the model evaluation. Although the evaluation is done locally, each stakeholder can

choose from using the server configuration or their own.

In the evaluate() method, the global model parameters are received and passed to

the local model. As shown in Figure 4.7, the global parameters are then assigned to the

local model, which in turn is used by the Tensorflow model’s evaluation function. The

resulting metrics are saved in an Excel file for each user and returned by the evaluate()
function.

4.6.3.5 Differential Privacy

Although a FL learning approach introduces an extra level of privacy to a distributed

ML approach, it still presents some vulnerability points. Even though the proposed

framework addresses the implementation of both the FL client and the aggregation server,
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Local parameters update with
tf.keras.model.set_weights()

Start

Evaluate model using
tf.keras.model.evaluate()

End

Save evaluation results into an
Excel 

Return: 
- Number of testing samples; 

 - Collected evaluation results.

Figure 4.7: evaluate() method behaviour.

it is plausible that a stakeholder still does not feel comfortable participating in the FL

process. In order to add an extra layer of privacy to the stakeholders, this framework

allows the use of differential privacy in the local model training.

Recalling differential privacy described in Section 2.6.2.2, it introduces a certain

amount of noise to data to enhance its privacy, which can be done locally or globally.

In this framework, the choice of local differential privacy was made by considering that

the server might not be trustworthy so that each stakeholder may choose if it wants to

train its model with Differential Privacy (DP) or not.

The implementation of DP in each stakeholder in the Flower framework involves the

readjustment of the NumPyClient class for accepting the training with DP and providing

the necessary extra functionalities needed in the differentially private training of the DL

model. The choice between differentially private training and regular training is made by

a boolean variable called DPSGD. As seen in Figure 4.8, this variable controls the training

flow by changing the model parameters and using or not the additional methods for the

differentially private training.

Figure 4.8 shows both the regular FL flow and the differentially private FL flow. As

the regular FL flow functions on the LFN side were explained above, now the focus is

redirected to the differentially private FL flow and the additional methods it brings.

In the DP training, each stakeholder needs to provide a set of additional custom con-

figuration parameters specific to this training, namely the number of MICROBATCHES,

the value of L2_NORM_CLIP and the NOISE_MULT IP LIER value.

When the DP train flow starts, data verification is necessary, precisely the quantity of

examples used by each stakeholder. The chosen DP optimizer depends on an even choice
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of three factors, the MICROBATCHES, the BATCH_SIZE and the number of training

samples, which each stakeholder can configure. The MICROBATCHES must divide evenly

the BATCH_SIZE, which must be a multiple of the chosen number of samples in the

dataset. In the differentially private mode, for the NumPyClient to accept the training

dataset, the training batches must equally distribute the number of examples used in the

local training. Figure 4.9 shows an example configuration a stakeholder must consider

when training its local model with DP.

NumPyClient's __init__()NumPyClient's __init__()

Start

End

Dataset length 
verification

True False
DPSGD

Model compilation

Optimizer and loss
function initialization

Differential Privacy
optimizer and loss

function initialization

Microbatch verification

Model compilation

(a)

NumPyClient's fit()NumPyClient's fit()

Start

End

True False
DPSGD

(b)

Local parameters update 

Set hyperparameters

Train model

Save training results

Return:
- Newly trained model parameters; 

- Number of training samples; 
-Collected training results.

Calculate epsilon

Local parameters update 

Set hyperparameters

Train model

Save training results

Return:
- Newly trained model parameters; 

- Number of training samples; 
-Collected training results.

Figure 4.8: Comparison between the addition or not of differencial privacy in the NumPy-
Client’s __init__() method (a) and fit() method (b).

Once the number of MICROBATCHES is verified, the NumPyClient class initializes

the model compilation. Equally to regular FL training, the model compilation requires

an optimizer function and a loss function.

DP optimizer and loss function

For differentially private training, the chosen optimizer was the VectorizedDPKerasSG-
DOptimizer. This optimizer is the key to adding DP to the model training. However, it is

fundamental to understand firstly how an Stochastic Gradient Descent (SGD) optimizer

works before diving into the addition of DP to it.

SGD is an iterative method used to optimize a loss function. The SGD process, pic-

tured in Figure 4.10, starts by selecting a random training data batch with known inputs
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Number of samples (N)
      N = 100

N % b = 0

Batch size (b)     
      b = 25

Micro-batches (n)
            n = 5

b % n = 0

Figure 4.9: Example choice of the data related variables.

x and the respective labels y. Then the loss function computes the loss between the model

prediction and the associated label. After that, the gradient of the loss function concern-

ing the model parameters is computed. Finally, the resulting gradients are multiplied

by the learning rate, which is then used to update the model parameters. The calculated

gradients explain how each parameter should be updated to predict the correct labels

better [55].

After understanding the fundamental functionality of the SGD, it is needed to modify

it to become a differentially private optimizer and introduce noise to the gradients. The

VectorizedDPKerasSGDOptimizer implements two significant changes to the SGD algo-

rithm (Figure 4.11).

Firstly it limits the influence of each training point sampled from a micro-batch on the

resulting gradient computation, bounding the sensitivity of each gradient. This limitation

is achieved by clipping each computed gradient on each training point, bounding how

much each training point impacts the model parameters.

Secondly, the algorithm needs to be randomized, so it is impossible to know whether

or not a specific point is included in the training set. This randomness is achieved by

adding samples of random gaussian noise to the clipped gradients. This technique makes

it difficult to compare the updates applied by the SGD with and without a specific point

in the training set.

In Figure 4.11, it is possible to see the usage of the configuration hyperparameters de-

fined in advance by the stakeholder in the DP optimizer. Two of them, L2_NORM_CLIP
and NOISE_MULT IP LIER, are of particular note. These two variables are significant in

the steps mentioned above on introducing DP to the SGD algorithm.

The L2_NORM_CLIP variable represents the maximum Euclidean distance of each

gradient computed on an individual training example of a minibatch. This parameter

serves to bound the optimizer’s sensitivity to individual training points. The optimizer
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Sample a minibatch 

Start

Compute loss' gradient between the model's
prediction and the true value

End

Multiply the gradients by the LEARNING_RATE  

Apply the previous product to update the model
parameters

Compute the gradient of the loss respecting the
model parameters

Figure 4.10: SGD behaviour.

needs to be able to compute per example gradients, so the loss function needs to output

a vector loss instead of the averaged loss of the entire MINIBATCH.

On the other hand, the NOISE_MULT IP LIER variable controls the amount of noise

sampled and added to the gradients before they are applied to the optimizer. It is impor-

tant to note that the amount of noise is generally correlated to better privacy results and,

often, lower utility in data.

The VectorizedDPKerasSGDOptimizer requires a loss function that computes the vector

of per-example loss instead of its mean (set by default). The CategoricalCrossentropy loss

function was chosen to fulfil this requirement, considering that the reduction parameter

should be set to NONE to output the required vector.

Epsilon calculation

Lastly, after implementing the necessary changes for the DP training, it is necessary

to measure the privacy budget spent to train the DL model so each stakeholder can

51



CHAPTER 4. IMPLEMENTATION

Sample a minibatch 

Start

Compute loss' gradient between the model's
prediction and the true value

End

Clip gradients to guarantee each gradient has a
known maximum L2_NORM_CLIP

Add random noise by a factor
of NOISE_MULTIPLIER, to the clipped gradients  

Multiply the clipped and noised gradients by
the LEARNING_RATE  

Apply the previous product to update the model
parameters

Compute the gradient of the loss respecting the
model parameters

Figure 4.11: Diferentially private SGD behaviour.

clearly understand the tradeoff between the accuracy drop and the privacy optimization.

The function compute_epsilon() was developed for the stakeholder to have a measuring

reference for its privacy loss each time the fit() method is called.

As explained in Section 2.6.2.2, the (ε,δ) values provide the privacy loss value for each

training round. The delta value represents the bounding probability that an information

point is disclosed, and ε is the privacy budget value, or in other words, the strength

of guaranteed privacy. As a bounding value, ε is usually a small value, although the

existence of a significant value of ε does not necessarily mean lousy privacy protection.

As the Figure 4.12 demonstrates, the compute_epsilon() function starts by calculating

the steps the optimizer takes over the training data and the sampling_probability, which

is the probability of a single training point being included in a training batch.
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Steps calculation 

Start

Sampling probability calculation

End

Orders calculation

Compute the Rényi Differential
Privacy

Get the privacy budget of the local
training round

Figure 4.12: compute_epsilon() method behaviour.

To calculate the epsilon value, it is still necessary to calculate the Rényi Differen-

tial Privacy (RDP). The RDP is used to analyze the DP guarantees given by the sampling

process and following the addition of Gaussian noise tasks performed by the VectorizedDP-
KerasSGDOptimizer. The T ensorf low_P rivacy library provides a function compute_rdp()

which takes as parameters the steps, the sampling_probality, the noise_multiplier and

the orders. The orders variable defines a list of orders on which the Rényi divergence will

be calculated. This list is already provided in a TensorFlow privacy example on GitHub5

The RDP function and the list’s creation transcend the scope of the present dissertation.

In case the reader has an interest in delving deeper into these subjects, more explanation

can be found in the work of Mironov et al. [56].

After getting the RDP value, it is finally possible to calculate the privacy budget asso-

ciated with the DL model training. Tensorflow privacy offers a function that calculates

epsilon value by giving the delta value beforehand. This function takes as parameters

the list of orders, the calculated RDP and the target delta. Concerning the TensorFlow

5https://github.com/tensorflow/privacy/blob/89de03e0dbc5ebf32835ca00a2426ea607bf6516/
research/audit_2020/mean_audit.py.
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privacy documentation, the value of the target delta was set to be the inverse of the value

of the training data size.

Diferentially private training

Finally, the value of epsilon is then presented to each stakeholder in each training

round so it can be analyzed to discover if there is privacy leakage in the DL training.

4.7 The global federation node (GFN)

The last node that constitutes the framework is the GFN. This node is an extension of

the FL server, connecting each client to the FL. Like the LFN, the GFN is also implemented

recurring to the Flower framework as part of the FL system. The Flower framework allows

for a high level of customization for the FL training by passing to the fl.server() function

a set of custom configurations that are passed to the clients and altered in the chosen

strategy. Taking into account this level of customization GFN script has been divided into

four parts which constitute the flow of this node (Figure 4.13).

Server initialization 

Strategy instantiation 

Custom configurations 

Initial parameters extraction 

Figure 4.13: GFN script construction.

4.7.1 Custom configurations

In the Flower server, it is possible to customize the aggregation strategy with functions

regarding several steps of the FL training. Each aggregation strategy to be implemented

in Flower follows a standard class which may take five optional functions (Table 4.3) as

parameters to customize the functionality of the strategy.

For the implementation of the GFN, it was chosen to implement the on_f it_conf ig_f n
parameter with a function called f it_conf ig(). This function passes a Python dictionary

that tells the FL clients the size of each batch of data which should be used in the model

training and the number of epochs that each client should train its data locally.
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Table 4.3: Strategy customization functions.

Customization function Description

on_fit_config_fn
Function which may customize the clients’ local
training hyperparameters.

on_evaluate_config_fn
Function which may customize the clients’ local
evaluation hyperparameters.

fit_metrics_aggregation_fn
Function that passes the custom metrics from the fit()
function which the clients want to be aggregated.

evaluate_metrics_aggregation_fn
Function that passes the custom metrics from the evaluate()
function which the clients want to be aggregated.

evaluate_fn Function that performs the server side evaluation if called.

4.7.2 Model initialization

The GFN is responsible for providing the model parameters at the beginning of the FL

training. This provision is made by instantiating the DL model in the same way as done

in Section 4.6.2 and compiling it with the optimizer function, the loss function and the

evaluation metrics. In the GFN implementation, the optimizer used was SGD, and the

loss function was categorical cross-entropy. After the model compilation, its parameters

are extracted by a function provided by Flower and saved into a variable.

The choice of model, optimizer and loss functions in a real-case scenario should

be agreed upon between the stakeholders through an economic system. However, this

dissertation is merely based on a real scenario, so the choice was made without this system.

Also, the choice of optimizer was made accordingly with the use or not of DP, so whether

the stakeholder chooses or not to use DP, the initial parameter can serve both scenarios.

4.7.3 Strategies

One of the significant advantages of the Flower framework is the use of a standard

model for strategy development which allows a high customization level. In Flower, the

strategies are responsible for the FL computation tasks at the server level. In each strategy

Flower provides, a specific set of methods are expected. These methods are essential for

the FL algorithm, as they control the FL flow. Table 4.4 depicts a general overview of the

constituent methods of the strategies.

Table 4.4: Methods present in Flower strategies.

Method Description
initialize_parameters() Initial method responsible for providing the initial global parameters.

configure_fit()
Method responsible for selecting the clients which may participate in
the training round and passing the instructions to send to those clients.

aggregate_fit()
Method responsible for aggregating the results of the successfully trained local
models. The implementation of this method will depend on the aggregation algorithm.

configure_evaluate()
Method responsible for selecting the clients which may participate in
the evaluation round and passing the instructions to send to those clients.

aggregate_evaluate()
Method responsible for aggregating the results of the chosen evaluation clients which
successfully performed the local evaluation.

evaluate() Method responsible for the server side evaluation.
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Each of the methods described above can be customized to fit the needs of the FL

system. In the GFN script, a Strategy customization class, SaveModelStrategy(), was de-

veloped to exemplify this process. This class aims to save the aggregated model in each

global round on the server side for result collection. The development of the SaveModel-
Strategy() class starts with its definition taking a FL strategy as a parameter. The chosen

strategy was fl.server.strategy.FedAvg, which implements federated averaging as an aggre-

gation algorithm. To save the model in each global round, it was necessary to redefine the

aggregate_f it() method to gather the aggregated weights from the Federated averaging

algorithm and save them in a specific directory.

Although the development of this class facilitates the analysis of the global model

results, it should not be implemented in a production environment as the GFN should

save any data related to the clients in any circumstances.

To conclude the strategy creation, a SaveModelStrategy() object is created with the

chosen configuration functions, the initial model parameters and five additional variables

related to the FL clients. These additional variables (Table 4.5) aim to inform the server

of how the task distribution should be done by informing it of the quantity or percentage

of clients allocated to each task.

Table 4.5: Customization variables of the SaveModelStrategy() class.

Variable Description
fraction_fit Percentage of avaliable clients used in the training.
fraction_evaluate Percentage of avaliable clients used in the evaluation.
min_fit_clients Minimum number of necessary clients to perform the training round.
min_evaluate_clients Minimum number of necessary clients to perform the evaluation round.
min_available_clients Minimum number of available clients in the system.
accept_failures Boolean variable responsible for allowing or not rounds that contain failures.

4.7.4 Server initialization

The final step in the GFN script is the server initialization. After defining the cus-

tom functions, the personalized strategy and its parameters, the server initialization is

provided by the Flower framework by the server class. This class calls a method named

start_server() which takes the server address, the strategy object and a config dictionary

which takes the number of global rounds the training should last.

4.7.5 LFN – GFN communication

Lastly, after implementing all the nodes, it is essential to describe how the GFN and

the LFN communicate and how the FL training flow works in the Flower framework. This

explanation allows a better understanding of the FL process implemented on both the

GFN and the LFN. In Flower, the communication between the server and the clients

follows a specific data flow. This flow is aligned with the proposed FL flow described in
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Section 3.5. It presents significant changes that do not compromise the proposed flow but

are relevant to mention.

GFN
Flower server

Federated 
Training

Federated 
Evaluation

LFN 1
Flower client

Evaluation results

Aggregation request
[Clients' parameters]

Strategy
LFN 1

Flower client
LFN 1

Flower client

Evaluation request
[Aggregated parameters

and configuration]

Initial parameters request

Parameters

Training round
configuration request

Configurations and parameters

Training request
[Round parameters
and configuration]

Training results

Training results

Agregated Model parameters

Aggregation request
[Clients' evaluation results]

Evaluation round
configuration request

Configuration and
aggregated parameters

Evaluation request
[Aggregated parameters

and configuration]

Aggregated evaluation results

Training request
[Round parameters
and configuration]

Evaluation results

initialize_parameters()

strategy.configure_fit()

fit_clients()

fit_clients()

strategy.aggregate_fit()

strategy.configure_evaluate()

evaluate_clients()

evaluate_clients()

strategy.aggregate_evaluate()

Figure 4.14: FL flow implemented by the Flower framework.

In Figure 4.14, it is possible to see how Flower implements the flow of the first FL

round. The following FL rounds follow the same flow except for the initialization of

the model parameters. In each round, the FL server asks the strategy script to select the

clients participating in the training round and provide the necessary configurations. Then

the server provides the round’s base parameters and configurations and asks the clients to

train their local models. After each client trains its model, they send their results which

are then provided to the strategy to aggregate them with the chosen algorithm.

Finally, the most significant change that Flower provides relating to the proposed FL

flow is the local evaluation in each round. This process is similar to the training process
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as it starts with the strategy providing the client with the evaluation configurations. Each

client makes its evaluation of the current global model, and lastly, the evaluation results

are sent for aggregation.

4.7.6 SSL

The Flower framework communication system works on top of gRPC Remote Pro-

cedure Calls (gRPC) streams, providing an efficient binary serialization format [54]. In

this communication system, raw bytes of data are serialized and transmitted through the

network between the server and the clients.

The data streams transmitted between the aggregation server and the clients are by

default not encrypted, which presents a significant vulnerability. Even though differential

privacy adds an extra protection layer to each stakeholder, there is still a significant

security flaw in having unencrypted private data between the FL clients and the server.

By having an unencrypted communication route, the framework is prone to man-in-the-

middle attacks where the data parameters of each client can be gathered for a membership

inference attack, revealing critical points in the training data.

This vulnerability is mitigated by using a secure communication bridge between the

GFN and the LFNs. Flower offers the possibility to use the SSL protocol to provide secure

communication between the FL server and the clients. SSL provides a private connection

through a Symmetric-key algorithm to encrypt the transmitted data.

Adding this protocol to the implemented framework required creating and using SSL

certificates passed to the GFN and the connected LFNs forming a secure network. A shell

script provided by the Flower framework developers was used to generate self-signed

certificates whose path was passed as an additional parameter called certificates in the

start_server() method present in the GFN script and equally in the start_numpy_client()
present in the LFN script.

It is important to note that the usage of self-signed certificates should not be imple-

mented in a production environment and only serve as a proof of concept in developing

this project.

58



C
h
a
p
t
e
r

5
Tests

This chapter illustrates the testing scenarios and performance evaluation metrics used

to assess the conformity of the framework according to the guidelines of the performance

evaluation scheme presented in IEEE Std 3652.1-2020 [6].

The implementation presented in Chapter 4 based on the proposed framework will be

tested based on four criteria: model performance, privacy and security, computation effi-

ciency and data sets. An additional criterion regarding economic viability is mentioned,

though it sits outside this dissertation’s scope.

The first sections will specify the tests that should be made and the evaluation param-

eters used in each testing criteria.

The last section will explain the chosen test case scenario, its suitability for the context

of this dissertation and the requirements that should be met regarding all the test criteria.

5.1 Model performance

Federated Learning models are expected to perform similarly to a centralized Machine

Learning (ML) model. Each stakeholder expects to obtain a model capable of suiting

its needs and an advantage to be taken from the Federated Learning (FL) process. As

mentioned in Section 4.6.2, the presented framework works with a Deep Learning (DL)

algorithm for image classification. According to IEEE Std 3652.1-2020 [6], the verification

process for image classification passes by comparing the accuracies of the centralized, the

local, and the federated training. The evaluation should follow the following equation:

Accdisc = Acccent −Accf ed (5.1)

The Accdisc value provides the distance between an FL model accuracy and a central-

ized training accuracy. The greater the Accdisc, the higher the discrepancy between the
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FL model’s and centralized model’s accuracy. Table 5.1 should be followed as a reference

to attribute a quantitative level to the model performance with reference to the Accdisc.

Table 5.1: Model accuracy requirements [6].

Model accuracy
requirement

level
Requirements

0 Achieving an equivalent or more competitive performance to that of a single-data-node model

1
Achieving a performance with noticeable deterioration compared to that of a
data-centralized model

2
Achieving a performance with insignificant deterioration compared to that of a
data-centralized model

3 Achieving an equivalent or more competitive performance to that of a data-centralized model

5.2 Computation efficiency

Regarding computation efficiency, to be considered efficient, a FL framework should

be tested regarding time and memory consumption. The time and memory an algorithm

consumes will depend on the environment in which a framework is entered. It is nec-

essary to consider and describe several aspects to contextualize the framework before

analyzing time and memory. In the Table 5.2 can be found a list of the aspects that should

be considered before testing a framework efficiency.

As time is concerned, the evaluation of a FL framework should consider two steps of

the FL flow, the model training time and the model evaluation time. In model training and

evaluation time, Tte is measured between the starting and end of the respective session,

as the Equation 5.2 explains.

Table 5.2: Factors concerning efficiency [6].

Factor Evaluation aspect

Roles and structure
When evaluating the FML algorithm, the entire framework structure should be explained.
The evaluation of an algorithm should be organized by roles or tasks.

Data set For each client, the data set it owns should be described.
For horizontal FML models, the sample size of the data set, or the batch sizes, should be recorded.
For vertical models, the number of features and the feature data types in each platform should be

specified.

Hardware
The hardware information, including the number of servers, CPUs, GPUs, memory, and storage,
should be elaborated
For edge devices including phones, home terminal devices, remote cameras, etc., the cost of
battery energy and network resources should be specified as well.

Implementation
The choice of programming language, the choice of a compiler, the compilation options, and the
operating system used should be specified.

Encryption and decryption
Encryption and decryption, significantly, increase computational complexity and the required
memory space. The choice of encryption/decryption algorithms, as well as the parameter settings
should be specified, when reporting the training/testing time and required memory.

Communication efficiency
The communication efficiency depends on both the hardware and network capability. Specifically,
data size, bandwidth, network topology, firewall, switch, and network types should be specified
when evaluating the communication efficiency in FML.
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Tte = Tend − Tstart (5.2)

However, as the training and the evaluation time increases proportionally to the train-

ing data size, it is necessary to discount the influence of the dataset size by normalizing

the training time according to the Equation 5.3, where:

Tte_norm =
Tte

Numte
(5.3)

In Table 5.3, it is possible to assess the level requirements which will be used when

evaluating the time efficiency of the code.

Table 5.3: Time efficiency requirements [6].

Time efficiency
requirement

level
Requirements

0 Supporting completion in the order of weeks
1 Supporting completion in the order of days
2 Supporting completion in the order of hours
3 Supporting completion in minutes or seconds

Concerning memory usage, the FL standard addresses the evaluation of two types of

usage: Intrinsic and Auxiliary. Intrinsic memory usage Mintr evaluates the quantity of

memory needed for the data on which the code will operate. As for auxiliary memory

usage Maux, it evaluates the quantity of memory needed by the code. Table 5.4 depicts

the evaluation requirements for which the memory efficiency shall be tested.

Table 5.4: Supporting computations on edge devices [6].

Memory
efficiency

requirement
level

Requirements

0 Supporting computations on super-computing clusters
1 Supporting computations on high-performance single-node machines
2 Supporting computations on ordinary computing power servers
3 Supporting computations on edge devices

5.3 Privacy and security

A FL framework to be considered privacy-preserving and secure must effectively de-

fend against leakage and manipulation attacks. According to the FL standard, the attacks’

extension and influence should be considered when evaluating the privacy-preserving

and security mechanisms. Regarding privacy preservation, to evaluate the capabilities of

the framework, the tests presented in Table 5.5 should be followed.
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Table 5.5: Privacy requirements [6].

Privacy
requirement

level
Requirements

0 No defending ability
1 Successfully defending leakage during transferring
2 Successfully defending database and aggregator leakage

As seen in Table 5.5, the attribution of each level presumes the successful defence

against specific attacks. The criteria chosen for a successful defence are failure of the

attack, or if the attack is successful, the data acquired is not viable to cause any damage

to the defender. On the other hand, when considering the evaluation of the security of a

FL framework, the tests depicted in Table 5.6 should be considered.

Table 5.6: Security requirements [6].

Security
requirement

level
Requirements

0 No corresponding plans for potential attacks
1 Successfully defending read-write attack for a model on a central server
2 Successfully defending data recovery for channel monitoring
3 Successfully defending data recovery for read-write attacks database and channel monitoring
4 Successfully defending model controlling based on 1–3 attacks

Similarly to the privacy testing, in Table 5.6, the security level presumes the defence

with success against specific attacks. The criteria to decide if the defence against a security

attack is successful are similar to privacy testing. For a level of security to be achieved,

the correspondent attack should fail, or in the case of a successful attack, it does not cause

damage to the FL framework or its participants.

5.4 Datasets

The used datasets are the final evaluation topic to be considered in a FL framework.

Although the FL standard does not propose evaluation metrics for analyzing the used

datasets, it provides qualitative measures to be examined in the context in which the

framework is implemented. The quality of data is essential to machine learning. Whether

a centralized or a distributed approach is concerned, the data used is crucial for the

outcome of the machine learning model. Four measures should be followed to properly

evaluate the quality of the data used: Sparsity, Skewness, Distribution and Data number

[6]. Verifying these measures in the context where the framework is inserted contributes

to preventing anomalies in the FL training.
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5.5 Test scenario

The IEEE Std 3652.1-2020 [6], provides a diverse and representative list of applica-

tion domains of FL, which are divided into three application areas: business-to-consumer

(B2C), business-to-business (B2B) and business-to-government (B2G). It would be ex-

pected to place the framework developed in the business-to-business category. However,

after analyzing the provided test cases (Finance, Health and Marketing), it was decided

that neither case would fit the framework objectives. Alternatively, a test scenario for IoT

was chosen in the business-to-consumer case, which is the most approximate scenario for

testing this dissertation’s work. This choice was made by evaluating several similarities

between the presented work and the IoT scenario, from which it is important to highlight

the following:

• Local data processing and Machine Learning (ML) model built with privacy preser-

vation;

• More control in each client site to prevent privacy leakage;

• Lower communication costs, as FL emphasize principles such as data localization,

low latency, and lower power consumption.

Although the most approximate testing scenario, the IoT test case was followed only

in the required levels for each test criteria mentioned above. The role design and main

activities were developed considering an industrial case scenario as presented in Section

4.2.

For an FL framework to conform to the standard, it must meet the requirements relat-

ing to each criterion. These requirements, as seen in the previous sections, are measured

quantitatively on a variable scale for each criterion. The following table presents the

acceptable levels for a framework to comply with the IoT test case.

Table 5.7: Requirements for IoT application [6].

Use case type Use case
Efficiency requirements

Security
requirements

Privacy
requirements

Model
performance
requirements

Training
time

Testing
time

Intrinsic
memory

usage

Auxiliary
memory

usage

B2C
Internet of

Things (IoT)
0 1 2 2 3 2 2

The levels presented in the Table 5.7 correspond to test scenarios to which the frame-

work must be submitted regarding the criteria above mentioned.
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6
Results and Validation

In this Chapter, the testing results are presented and discussed in order to evaluate

the level achieved by the proposed work in each evaluation criterion.

The first section describes the dataset used to test the framework and evaluate its

suitability for the testing scenario. The following sections will provide the results and

analysis of the tests realized for the three remaining criteria: Model Performance, Com-

putation Efficiency, and Privacy and Security.

6.1 Dataset

The used dataset, as mentioned in Chapter 4.2, is composed by 372 images and derives

from a real industrial scenario of two defects presented in a glue application case. With

the intention to apply federated learning to this scenario, the training subset containing

256 images was divided into three subsets, each representing a stakeholder. This division

is depicted in Table 6.1, where it is possible to identify the predominance of one class

over the other in the first two stakeholders and a scarce dataset in the third stakeholder. A

validation subset of 116 images was used in all the model evaluations. In a real scenario,

a validation dataset should be attributed to each stakeholder, though to have a common

evaluation baseline, the same validation dataset was used to evaluate all stakeholder’s

data.

Table 6.1: Quantity of data entries in each stakeholder by label.

Client Dataset
Discontinuity Excess

Stakeholder D 120 8
Stakeholder E 4 92
Stakeholder F 16 16
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Each stakeholder trained its model locally with its corresponding dataset. Moreover,

with the data of all the three stakeholders, a fully centralized model was trained and

evaluated with the same validation subset. These trains provide a baseline comparison

for the Federated Learning (FL) model.

Recalling Section 5.4, the dataset used for a FL training should be examined concern-

ing four measures: sparsity, skewness, distribution and data number [6]. These measures

evaluate the suitability of the dataset for a FL train. However, it is essential to consider

the scenario where the FL framework sits, as the dataset evaluation is a subjective topic.

Sparsity

The sparsity of data verifies if a large quantity of data is divided through many stake-

holders, where each stakeholder only contains a small amount of data. In these cases, the

dataset should not be suited for FL training as it may cause communication overheads.

In this dissertation’s scenario, there are only three stakeholders, each with a significant

amount of data. Although one of the stakeholders purposely contained a smaller dataset,

it did not cause a communication overhead.

Skewness

Data skewness verifies if the number of samples between each stakeholder differs

so that the imbalance of the training time affects the FL system. The most significant

difference between stakeholders’ data is verified between stakeholders E and F. This

difference was not considered relevant in this scope as the difference in the average

training time was not relevant.

Distribution

The data distribution measure verifies the fairness of the quantity of data each stake-

holder provides to the FL training process. In the studied scenario, data was distributed

evenly except for stakeholder F, in which a deliberate small amount of data was attributed

to simulate a data scarcity scenario.

Data number

Finally, the data number measure verifies if the total data is enough for the FL training.

Since the dataset was obtained indirectly, the results produced by applying it to the

proposed framework generated reasonable statistical value.

After the previously mentioned measures, it was considered that the dataset is fit

for a FL training and the results produced are relevant for applying FL in an industrial

scenario.
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6.2 Model performance

The evaluation of the FL model consists of comparing its accuracy to a central baseline

model with the decentralized data gathered in one sight. Although this evaluation works

as a comparison term where FL might stand as an advantage, several additional results

might be relevant to demonstrate the FL model’s performance.

In this section, the analysis of the FL model performance will be discussed regarding

the following aspects: choice aggregation algorithm; choice of combination between

global and local training rounds; evaluation metrics of the best performing models of

each aggregation algorithm; and the algorithm comparison with the best performance to

the centralized and local models.

6.2.1 Central and local models

First, to evaluate the federated learning model, it is essential to set a baseline for com-

parison. This baseline is set by training the model locally in each stakeholder, emulating

a scenario where each manufacturer has limited access to a specific type of defect, or a

general lack of data. Another baseline setting is made by training a centralized model,

where all the data from the three stakeholders is gathered in one sight. For the baseline

trainings, the configurations depicted in Table 6.2 were followed.

Table 6.2: Baseline models’ configurations.

Configuration Value
Batch size: 32
Learning rate: 0.0001
Epochs: 200

The primary metric to evaluate the Deep Learning (DL) classification algorithm was

the model’s accuracy (Equation 6.1). This metric provides insight into the relationship

between the correct predictions and the total of predictions made by the algorithm.

Accuracy =
Number of correct predictions

Number of total predictions
(6.1)

After training each stakeholder with its algorithm, it was possible to verify that the

lack of an even dataset does not allow the algorithms to learn from their features but

instead memorize the training algorithm.
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Figure 6.1: Local training accuracy and loss graphics of stakeholder D (a, b), stakeholder
E (c, d) and stakeholder F (e, f).
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Figure 6.1 depicts the accuracy and loss graphics per stakeholder. By analysing these

plots, it is evident the lack of data leads to the general underperformance of the DL models

and the overfitting of the training data scenario. This underperformance is notorious by

comparing the training and validation accuracies. In the accuracy graphic of stakeholder

D (Figure 6.1-a) the model improves slightly all over the epochs with a slight decrease in

the first training epochs. This accuracy slope might occur due to the lack of a significant

subset of data with one of the labels.

In contrary, stakeholder E’s model does not learn. As the validation accuracy of the

model decreases (Figure 6.1-c), it is possible to infer that the data does not allow for the

model to learn and is overfitting the training data. Stakeholder F also had a slight learning

curve with a small decrease in the middle of the training and an underperformance

relatively to stakeholder D which is depreended to result from the lack of data.

In the loss graphics (Figure 6.1-b, d, f), the losses show that the models fit the training

data as the losses tend to zero. However, only stakeholder F has a decreasing validation

loss, when comparing with the other two stakeholders. A high validation loss means a

low ability to fit new data, indicating that a model with a high validation loss and a low

training loss has most probably overfitted the training data.

Another noteworthy aspect is that the stakeholder D, the one with more data, per-

formed better than the others, with an accuracy of 0.77. In contrast, stakeholder E had

the worst performance, which is assumed to derive from the lack of data samples with

the discontinuity label. Figure 6.2 confirms the previous statement, as it is possible to

verify the influence of the shortage of one label in the model’s performance.
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Figure 6.2: Confusion matrixes of the local models of each stakeholder when tested with
the validation data.

As expected, the centralized training (Figure 6.3) provided generally better results

than the local trains. With an accuracy of 0.77, the centralized model outperformed two

of the three stakeholders. The similarity of performance found between stakeholder D

and the centralized model might be due to the fact this stakeholder holds half of the

entire dataset. However, in contrast to the centralized model, stakeholder D overfitted
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the training data, presenting both low training and validation loss.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 40 80 120 160 200

A
cc

ur
ac

y

Epochs

Training Validation

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 40 80 120 160 200

L
os
s

Epochs

Training Validation

(a) (b)

Figure 6.3: Centralized training accuracy (a) and loss (b) graphics

Aggregation algorithms

FL training was performed with three algorithms: Federated Averaging (FedAvg),

Federated Optimization (FedOpt) and Federated Optimization with the adaptive opti-

mizer YOGI (FedYOGI). All the algorithms were tested under the same conditions. As

mentioned in Chapter 2.5, FL training comprises local and global aggregation rounds,

influencing the federated model’s final accuracy. In order to test and optimize the result

of each algorithm, the batch size and learning rate parameters were kept constant, while

the number of local and global rounds was variable. Table 6.3 clarifies which test values

were used in the stakeholders’ configuration.

Table 6.3: Stakeholders’ configuration values.

Stakeholders’ configurations
Batch size: 8
Learning rate: 0.0001
Global rounds: 10, 20, 50
Local rounds: 5, 10, 20

Table 6.4 presents the accuracy results generated by trains. It is worth noting that

each algorithm achieved its maximum accuracy at different combinations of global and

local rounds. The FedAvg algorithm attained its maximum accuracy with 50 global

and 5 local rounds. The increase of local training rounds was proven ineffective, as the

accuracy value decreased. In the FedOpt scenario, the utmost accuracy was achieved

with the use of 50 global rounds and 20 local rounds. This aggregation algorithm showed

improvement, as the total number of rounds increased. Federated Optimization with
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Table 6.4: Accuracy values resulting from the FL trains with different combinations of
local and global rounds.

Algorithm
FedAvg FedOpt FedYogi

Global Rounds 10 25 50 10 25 50 10 25 50

Local Rounds
5 0.4655 0.5603 0.8017 0.5948 0.6034 0.7155 0.7069 0.7845 0.7759
10 0.5776 0.6293 0.7672 0.5776 0.6896 0.7155 0.7240 0.7759 0.7759
20 0.7759 0.7845 0.7759 0.6466 0.6810 0.8017 0.7845 0.7672 0.7672

the adaptive optimizer YOGI (FedYOGI), the last aggregation algorithm, achieved the

maximum accuracy with two training combinations: 10 global rounds with 20 local

rounds; and 25 global rounds with 5 local rounds. In this case, increasing the number of

global or local rounds negatively affects performance, beyond those that achieved the top

accuracy.

When taking a closer look at the best accuracy training of FedOpt algorithm (Figure

6.4), there is possible an accuracy drop between global rounds in the stakeholders D and

E. This drop is more accentuated in stakeholder E, although the stakeholder D has more

training data. However, all the model’s accuracy increases over the epochs, which means

that the overall algorithm is learning over time. On the other hand, Figure 6.5 denotes

a general loss decrease across all stakeholders, translating into a growing capability of

the model to learn from new data. The best performing accuracy and loss evolution

throughout the training and validation epochs of FedAvg and FedYOGI algorithms can

be found in Appendix A.

Evaluation metrics

The final step of the model evaluation is the assessment of the classification Machine

Learning (ML) models through the additional metrics. For this purpose, the following

metrics were chosen: validation loss, Area under the ROC curve (AUC) and F1 score.

As mentioned before, validation loss measures how well the model fits new data. In

its turn, AUC corresponds to the area under the receiver operating characteristic curve.

This metric shows how well the classifier distinguishes the different classes. Finally, the

F1 score gives a comparison value when several classifiers are evaluated.

Table 6.5 compares the models with the best accuracy from each aggregation algo-

rithm, standing out the FedAvg algorithm and the FedOpt algorithm as the models with

better validation accuracy. However, the model aggregated with the FedOpt algorithm

has lower validation loss and slightly higher AUC. These differences mean that the Fe-

dOpt model better fits new data, and better distinguishes the two classes provided for

classification. Thus, FedOpt is the tested FL algorithm with the best performance.

Discussion

Table 6.6 compares the FL algorithm with the best overall performance, and the cen-

tralized model. The values suggest that there is a performance advantage in training
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Figure 6.4: Accuracy (a) and validation accuracy (b) graphics of the three stakeholders in
FedOpt training with fifty global epochs and twenty local epochs.

the model recurring to FL. The accuracy slightly outperforms the centralized model’s

accuracy, even thought the higher values of AUC and F1 score.

Upon applying Equation 6.1 the resulting ACCdisc is -0.0239. Although the similar

value with the FL model, ACCdisc evidences a more competitive performance than the

centralized model.

The comparison between the centralized and FL models reveals one of the advantages

of applying FL in an industrial scenario. The proposed work suggests a competitive

performance compared to the centralized model, while keeping the datasets in the sources

without having data transference.

According to Table 5.1, it can be attributed the "Model accuracy requirement level
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Figure 6.5: Loss (a) and validation loss (b) graphics of the three stakeholders in FedOpt
training with fifty global epochs and twenty local epochs.

3", which results on an equivalent or more competitive performance than a model with

centralized data.

6.3 Computation Efficiency

A FL framework has several aspects that must be considered about computation effi-

ciency. Throughout this document, most of these evaluation aspects have been explained,

such as the roles, dataset, hardware used, software implemented, and used encryption

protocols. The network, also an evaluation aspect, will be covered below in more detail.

The proposed framework was tested in a Local Area Network (LAN) environment,
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Table 6.5: Evaluation metrics of the models with the best accuracy from each aggregation
algorithm.

Algorithm Accuracy Loss AUC F1 Score

FedAvg
50 global rounds
5 local rounds

0.8017 0.5354 0.8345 0.8017

FedOpt
50 global rounds
20 local rounds

0.8017 0.4585 0.8801 0.8017

FedYogi
25 global rounds
5 local rounds

0.7845 0.4865 0.8496 0.7845

FedYogi
10 global rounds
20 local rounds

0.7845 0.4880 0.8425 0.7845

Table 6.6: Comparison between the FL train with the best performance and the centralized
training.

Model Loss Accuracy AUC F1 score
Centralized 0.5137 0.7778 0.8299 0.7778
FedOpt 0.4585 0.8017 0.8801 0.8017

where two computers communicated through Wi-Fi. During the training, the communi-

cation bandwidth was collected with a mean of 2.83 ms of ping, 66.14 Mbps of download

speed and 79.75 Mbps upload speed.

To evaluate the computation efficiency of a FL framework, two main aspects must be

taken into account: time consumption and memory efficiency. The evaluation of these

aspects is needed to assess the framework efficiency, and the viability of the FL use as an

alternative to centralized ML.

6.3.1 Time consumption

The time consumption of a FL learning framework must be verified in the most time-

consuming subprocesses, which are the model training and the model evaluation.

Training time

In order to assess the time consumption during the training of a model, the Equation

5.2 was applied. The gathered times per stakeholders were divided by the number of local

training epochs. As the model aggregation algorithm does not influence each stakeholder

local training time, the distinction between aggregation algorithms was not considered

in this evaluation.

Table 6.7 shows the average training time of each stakeholder sorted by the number

of local epochs. In order to calculate each average time, all the training times of each

local round were included, disregarding the number of global epochs and the aggregation

algorithm. The collected values demonstrate no significant time consumption variations
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Table 6.7: Average training time for each stakeholder.

Local Rounds Time
Stk D Stk E Stk F

5 14.3309 14.7096 12.2448
10 25.6122 26.9116 22.4272
20 49.0445 50.4290 42.4213

between stakeholders, probably because of all them were executed on the same hardware

and software conditions. Naturally, higher local training rounds end up in higher training

times. However, the influence of each stakeholder’s dataset size is still not considered. To

verify how the dataset size might influence the training time, is necessary to normalize

the training times according to the Equation 5.3.

Table 6.8: Normalized training time for each stakeholder.

Local Rounds Normalized time
Stk D Stk E Stk F

5 0.1088 0.1493 0.3711
10 0.1974 0.2767 0.6950
20 0.3846 0.5265 1.3235

Usually, the training time should increase with the amount of data used to train the

dataset. In this way, Table 6.8 presents unexpected results, since denotes the opposite

event. This occurrence might be due to all three stakeholders were trained in the same

machine, without dedicated hardware, or without the batch size standardization. In

particular, a standardization for all stakeholders might not be suitable for the dataset size

of stakeholder F, since its batch size and dataset size are the same.

Evaluation time

When concerning the evaluation time, all the stakeholders executed the evaluation

process once in each global round. In this framework, the global model was locally

evaluated for privacy reasons, providing three evaluation times per global round. The

mean of each stakeholder evaluation time is depicted in the Table 6.9.

Table 6.9: Average evaluation time for each stakeholder.

Stakeholder Average evaluation time
D 1.0539
E 1.6881
F 0.4342

The results from Table 6.9 demonstrate that the evaluation round is done in a short

period of time, for each stakeholder, presenting a low time consumption in each global

round. However, similarly to the average training time, these results do not provide

information about the relation between the evaluation time and the number of samples.

In order to enlighten this relation, it is necessary to normalize these evaluation times.
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Table 6.10: Normalized average evaluation time for each stakeholder.

Stakeholder Normalized average evaluation time
D 0.0083
E 0.0177
F 0.0136

Table 6.11: Time consumed in the tested algorithms with different training round combi-
nations.

Algorithm
FedAvg FedOpt FedYogi

Global Rounds 10 25 50 10 25 50 10 25 50

Local Rounds
5 389.818 761.491 1390.930 474.748 425.024 2738.085 393.124 364.475 643.027
10 485.296 620.377 2159.300 299.078 575.915 2108.503 521.773 611.349 1121.014
20 476.325 971.225 1644.940 810.449 1801.977 3514.829 817.608 1019.637 3538.451

Table 6.10 shows the evaluation times normalized by the validation data. As men-

tioned before, the validation dataset used to evaluate the global model was the same in all

stakeholders to provide an uniform global model evaluation. Its is possible to conclude

that the usage of the same dataset for evaluation in all threes stakeholders was the cause

of the similar evaluation time results.

Total time

As previously mentioned, the most time-consuming subprocesses in a FL framework

are the training time and evaluation time. However, only evaluating these two subpro-

cesses does not provide a general insight into the time consumption of the whole FL

process. For a better understanding of FL’s time consumption, the whole process was

timed for every aggregation algorithm with every combination of local and global rounds.

Table 6.11 highlights the FL processes duration with higher accuracy for each al-

gorithm. FedOpt and FedAvg algorithms provided the models with the best accuracy,

whereas the latter finished in less than half the time of FedOpt. As expected, FL pro-

cesses’ duration increases with both the number of local or global rounds.

Discussion

Upon evaluating the time taken by the FL framework during the FL process and sub-

processes, the framework performs efficiently. The most consuming FL processes did not

reach an hour. The average time consumed was 1136.25±0.01 seconds, corresponding to

18.94 minutes in all global and local rounds combinations. It is notable a significant time

difference between the two most accurate algorithms (FedAvg and FedOpt). FedOpt took

more than double the time of FedAvg, even though FedOpt provided better validation

loss and AUC and the resulting accuracy was equal for both.

For completing the FL process in minutes, it is possible to attribute the "Time effi-

ciency requirement level 3" to this framework, for completing the FL process in minutes.
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However, it is relevant to denote that the realized tests were made in a research environ-

ment with a good network connection. To properly test the FL framework’s speed in a

real scenario, it should be applied in an industrial network or even on a global network

between several industrial sights.

6.3.2 Memory consumption

The memory usage of a FL framework is naturally higher than a standard ML training

algorithm, which may present a setback on the used hardware depending on the use case.

The evaluation of the memory usage of the proposed framework was divided into two

subsets, the memory used by the training and evaluation data (Mintr), and the memory

used by the framework’s code (Maux). Each stakeholder’s training dataset and the val-

idation dataset were contemplated to evaluate the memory of the data. The latter was

included in all three stakeholders as they used it in the evaluation rounds.

As for the training and evaluation data corresponding to Mintr , stakeholder D had a

dataset with 1.98 Mb, stakeholder E had 1.97 Mb, and stakeholder F’s dataset had 1.3 Mb.

On the other hand, the memory used for the framework’s code Maux was equally di-

vided as no stakeholder possesses more functionalities than the other. However, in a

real-world scenario where the stakeholders might not be associated, the memory con-

sumption might vary between them. As the framework was programmed in Python, to

evaluate the Maux more accurately, it is necessary to consider the virtual environment

and the libraries used.

Table 6.12: Auxiliar memory consumed by each entity, measured in Mb.

Memory usage Entity
Stakeholder D Stakeholder E Stakeholder F Server

Code 26.73 26.73 26.73 0.0150
Virtual environment 5457.92 5457.92 5457.92 5457.92
Total 5484.65 5484.65 5484.65 5457.93

Table 6.12 depicts the consumed memory by each stakeholder and the server. The

virtual environment memory consumed was common to all the entities as the used virtual

environment possessed the same dependencies and libraries. Also, it is essential to note

that the virtual environment was common to all the stakeholders as they were instanced

in the same machine. The choice to include the virtual environment memory in three

stakeholders was made to simulate a real scenario where all three stakeholders must

include the same dependencies in their respective machines.

Discussion

From the memory consumption results collected and considering the choice of hard-

ware made, it is possible to affirm that the proposed framework is suitable for execution in

standard personal computers. As the application of this framework aims at an industrial
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scenario where the computation power is typically more significant, it is safe to affirm

that the proposed work is suitable for a manufacturing scenario. Also, according to Table

5.5 is possible to frame the memory consumed in the "memory efficiency requirement

level 2", corresponding to the framework being able to be computed in ordinary com-

puter power servers. The usability in edge devices were not tested due to not being a use

case requirement. Therefore, the framework was not qualified for the "memory efficiency

requirement level 3".

6.4 Privacy and Security

The privacy of the proposed framework was one of the important topics approached

in this dissertation. Also, as mentioned in the Chapter 2.6.1, the framework’s security

influences its ability to keep the FL client’s data private.

6.4.1 Security

The security testing was made regarding the security requirements necessary for the

test scenario. According to Table 5.7, the security requirements level 3 is necessary to

achieve the desired security. Therefore it is necessary to defend successfully against a

read-write attack on the database and channel monitoring.

Read-write attacks

The security measure taken to defend the database was the encryption of the data

upon its storage. Data recovery then depends on a decryption key to reveal the database’s

contents. Assuming a successful breach of the database, the attacker to access the content

must pass the SQL command "SELECT * FROM image_table". However, the retrieved

content is encrypted, as shown in Figure 6.6. The retrieved data is unusable without the

decryption key, and its security is still kept.

Channel monitoring

The SSL cryptographic protocol was implemented regarding channel monitoring to

prevent man-in-the-middle attacks. For that purpose, certificates were generated for the

Global Federated Node (GFN) and the stakeholder’s Global Federated Nodes (GFNs) cre-

ating an encrypted channel among them. The secure channel was tested with Wireshark,

a network analyzer which allowed to follow the communication between the stakeholders

and the GFN.

In Listing 6.1, it is possible to see part of an unencrypted communication stream

between the GFN and the LFNs. Although the gRPC communication is done throw byte

streams which, without proper conversion to the proper format, are not understandable

to the naked eye, it is still possible to identify some information by looking through the
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Figure 6.6: Example of an encrypted data point.

message stream. A knowledgeable attacker with the proper tools and knowledge would

easily convert the data stream and retrieve the information contained in it.

Listing 6.1: Unencrypted communication stream.
1 PRI * HTTP/2.0

2

3 SM

4

5 ..$.....................?.....?...... .................?......................@

6 :authority.localhost:8080@.:path$/flower.transport.FlowerService/Join@.content-type.

↪→ application/grpc@.grpc-accept-encoding.identity,deflate,gzip@.accept-encoding

7 identity,gzip@.te.trailers@

8 user-agent2grpc-python/1.43.0 grpc-c/21.0.0 (windows; chttp2)

↪→ ....................................O............O...............................V

↪→ .....V............D............[.~.............................u.....u

↪→ ..?..................

9 ....

10 ...NUMPY..v.{'descr': '<f4', 'fortran_order': False, 'shape': (3, 3, 3, 32), }

On the other hand, as Listing 6.2 depicts, the same part of the data stream is encrypted.

Even with knowledge of the transferred data type and the proper tools, it would be

challenging to decrypt the transmitted data without the proper decryption key. This

transmission prevents data retrieval during its transfer between stakeholders and the

GFN, adding a security layer to it.

Discussion

Upon testing, the framework’s security was demonstrated to be effective against the

performed attacks. Although the security breaches in the whole system were assumed

beforehand in order to evaluate a more profound attack, the framework proved to have im-

plemented a security system that allows the data to remain secure within the framework’s
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Listing 6.2: Encrypted data stream.
1 ..............q..>....!

2 ...o...%....,)...c. "<..[]0..{'.R=.........m.x

3 q..

4

5 .........+.,./.0............␣␣localhost..........
6 .............#.........grpc-exp.h2.

7 ......................3t...3.G.E...A.)r.\....8..#Zv..Q.W..X..D0.=.Kz...{.....t.I/$.u.-..B

↪→ ..%..I....Ta.-.....+.................

8 .....................................................................................,...

↪→ A.......e..*.2.;.M.b.w`.u..␣"<..[]0..{'.R=.........m.x
9 q..

10 ....O.3.E...A.......!.|../.9.5.)......<x{...

Table 6.13: Resulting accuracy of the differentially private FL train with the FedAvg and
the FedOpt algorithms, when applied different learning rates and levels of noise.

Algorithm
FedAvg FedOpt

Noise Value 1.2 2 5 10 1.2 2 5 10

Learning rate
0.0015 0.7759 0.5776 0.5776 0.5776 0.7845 0.7931 0.7672 0.7500
0.1500 0.8017 0.7500 0.7500 0.6034 0.8017 0.7414 0.7069 0.6983

processes. When evaluating the framework’s security level taking into account Table 5.6,

it is possible to verify that the proposed work defended against a read-write attack on

the database and a channel monitoring attack successfully, not leaking any viable data

to the attacker. With these defences considered, it is possible to affirm that the proposed

framework fits the "security requirement level 3" corresponding to successful defences in

the database and the communication channels. The "security requirement level 4" was

not considered as the test case scenario requires only the “security requirement level 3”.

6.4.2 Privacy

The chosen approach to improve the framework’s privacy was the addition of differ-

ential privacy to the clients’ training. However, Differential Privacy (DP) presents itself

with a setback. Adding noise to data increases its privacy and decreases the training ac-

curacy. The FedAvg with fifty global rounds and five local rounds and FedOpt with fifty

global and twenty local rounds were chosen to test the model’s accuracy depending on

the amount of noise to be added and the variation of the learning rate. These algorithms

were chosen for being the ones that provided the best accuracy in the model evaluation.

In Table 6.13, the influence of the noise addition on the model accuracy becomes

clear. Four noise levels were tested in both algorithms, and the results show an evident

decrease in accuracy as the amount of noise increased. It is also possible to verify the

influence of changing the learning rate in each algorithm for the different noise values.

In the FedAvg algorithm, the increased learning rate showed improvements in the model

accuracy in constant noise values. On the other hand, in the FedOpt algorithm increasing
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the learning rate proved, in general, to worsen the accuracies when the noise value was

constant.

Regarding the privacy budget spent on the differentially private training (ε), Figure

6.7 compares the two chosen algorithms and the values of added noise. Naturally, the

value of ε decreases with the increased addition of noise. In other words, the training

guarantees more privacy for the stakeholder. However, both algorithms have a visible

difference in the ε values. As the aggregation algorithm does not influence the privacy

budget, this difference is attributed to the number of local epochs applied to each study

case. The FedOpt algorithm used twenty local epochs, and the FedAvg algorithm only

used five, which provoked the evident discrepancy in the epsilon value computation. It

is also important to denote that the learning rate does not influence the ε, so it was not

considered for this evaluation.
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Figure 6.7: Resulting ε from the diferentially private trains with different noise levels.

Upon comparing the epsilon values of Figure 6.7, it is evident that the FedAvg algo-

rithm with DP provided better ε results than the FedOpt algorithm. In addition, when

verifying the accuracy values of Table 6.13 concerning the ε value of each train, the Fe-

dAvg train with the noise value of five and the learning rate of 0.15 stands out for being

the train with a lower ε and with lower accuracy loss.

Influence of DP in the training

When DP is applied to the FL training process, it is expected that the training process

is affected by the generated loss and the accuracy loss between global rounds to be higher

than in non-differentially private training. However, the value of noise applied cannot be

in a quantity that profoundly affects the absolute accuracy of the model.

As it is possible to verify in Figure 6.8, the FL training with the FedAvg aggregation

algorithm with fifty global rounds, five local rounds, a learning rate of 0.05 and a noise
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Figure 6.8: Accuracy (a) and validation accuracy (b) graphics of the three stakeholders in
FedAvg training with fifty global epochs and five local epochs when differential privacy
is added with a noise value of two.

value of 5 presents to be affected by the introduction of DP in its training. In the validation

accuracy evolution graphic (Figure 6.8 (b)), the accuracy loss between global rounds is

evident and even challenging to perceive the accuracy evolution. Only by following

the trend lines in the graphic is it possible to visualize an accuracy evolution in the FL

training.

When comparing the performance of the FedAvg in the same training conditions as in

Figure 6.8, though, without DP (Figure 6.9), it is possible to understand the correlation

between DP and model performance and the tradeoff existent between these two factors.

The tradeoff becomes clearer when evaluating both models’ losses (Figure 6.9 (b)). In

the train with added DP, it is evident that the loss gain might constitute a severe problem

when applied new data to the model for inference. As an alternative, the choice of a

lower level of noise will reduce the loss. For example, the choice of a noise factor of two

provided an equal accuracy and less than half the loss, as it is possible to verify in Figure
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Figure 6.9: Comparison of the training accuracy (a) and loss (b) of the FEDAVG algorithm
with fifty global epochs, five local epochs with and without the usage of DP with a noise
value of 5.

6.10.

Discussion

Differential privacy introduces an arbitrary quantity of noise to the DL training pro-

cess, which translates into an additional layer of privacy for the data used in each local

training. As it was verified, the addition of noise also presents a setback in the model

performance, lowering its accuracy and increasing its loss. The existing tradeoff between

model performance and privacy depends on several factors, from which two were high-

lighted, the noise volume and the learning rate of the model. Although the learning

rate does not directly influence the differential privacy process, it influences the training

process and, consequently, the final model’s performance. It was later verified that the

model with the best accuracy/privacy ratio was not the most viable for usage. From this

verification, it can be inferred that a thorough validation is needed for differential privacy
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Figure 6.10: Comparison of the training accuracy (a) and loss (b) of the FEDAVG algorithm
with fifty global epochs, five local epochs with and with the usage of DP with a noise value
of 2.

as it may be deeply involved with the model performance.

It can be concluded that the usage of DP in FL brings an additional privacy layer to

the framework with a performance cost. As the framework is agnostic to the study case

implemented, an absolute noise value cannot be recommended as it depends more on the

ML scenario than on the framework configuration. However, the framework successfully

supported the usage of DP in its trains. The ability to configure the training and DP

parameters presents itself as an advantage in the protection of privacy of the framework’s

clients.

Privacy testing

According to Table 5.5, privacy testing is similar to the security tests already per-

formed on the proposed work. However, it is interesting to put such tests into a privacy

perspective.
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Discussion

When viewing the performed security tests from a privacy perspective, data privacy

would still be secure if assuming a security breach of the database. Although data re-

trieval would be possible, it would still possess an encryption barrier. The encrypted data

does not reveal any information the attacker might use to infer information from each

stakeholder. Regarding the transmission of data between the stakeholders and the GFN

when encrypted, the SSL protocol adds a robust layer of encryption to the whole commu-

nication. An attempt to infer the model parameters would be most improbable without

the correct decryption key. In addition, through the gRPC communication, the Flower

framework does not transfer the data in a format easily convertible without knowledge

of the data types used by this framework.

Finally, the prevention of leakage would be challenging regarding aggregator leakage

without an algorithm that allows the aggregation of the encrypted local models’ weights,

such as homomorphic encryption. However, the addition of differential privacy to the

aggregated models partially secures data privacy, complicating the inference of data from

the model’s weights.

Considering the tests that must be done in Table 5.6 for achieving the "privacy re-

quirement level 2", the defences against leakage during transference and database leak-

age were considered successful. Although the defence against aggregator leakage was

not considered successful, the implementation of differential privacy during the training

contributed profoundly to this test. Finally, the framework was considered to achieve the

"privacy requirement level 2" in a research environment, but if applied to a real industrial

scenario, the privacy requirement level achieved would be one.
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7
Conclusions

The work developed throughout this dissertation resulted in a functional prototype

of a federated learning framework, suitable for industrial study case scenarios. There is

a plethora of industrial scenarios in which the employment of a Federated Learning (FL)

framework can be an advantage. Therefore, a defect classification scenario was chosen

to establish a research guideline, where three stakeholders were simulated with data

deficiency. Based on the experiments carried out in [57], this type of approach shows

promise regarding the generalization beyond the bead shape included in the training set.

The application of FL to the case study was proven to be an advantage for the tested

stakeholders’ performance. When comparing the FL results with the centralized training

results, slightly superior performance was achieved, proving FL to be a solution to reach

larger data quantities in a distributed setting while not compromising the privacy of each

data owner.

The computation resources taken by the framework to complete the FL task were

deemed very efficient, considering the scenario where the proposed framework should be

included. Although the time consumption was dependent on the quantity of data, the FL

process was completed with low computational power and in less than an hour.

Regarding the security and privacy of the framework, the application of encryption al-

gorithms in the database and in the communication process was revealed to be fruitful in

defending against possible attackers. In the considered scenario of a security breach, the

framework was still capable of maintaining data confidentiality, whether in the database

or communication process. The addition of differential privacy to the local training

was also considered fruitful, enabling the data to remain confidential when training the

models. However, this privacy technique also proved to affect the model performance

negatively. With this factor in consideration, the framework allowed the stakeholders to

configure the DP parameters and get the best performance/privacy ratio. The ability of
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the stakeholder to use (or not) DP in its training process gives the framework’s clients the

choice to increase their privacy with the setback of decreased accuracy.

Overall the results obtained from the proposed framework’s performance were in line

with the requirements established in Table 5.1. The proposed work successfully imple-

mented a framework which improved a manufacturing process using privacy-preserving

federated learning. The datasets were kept in each stakeholder without information

sharing among them.

In conclusion, this dissertation’s work fulfilled the objective of creating a FL frame-

work capable of facing industrial scenarios where data sharing is still a problem. The

results produced in Chapter 6 confirm the formulated hypothesis, from which can be

concluded that for the insurance of privacy and security, collaborative Machine Learning

(ML) can be implemented in complex manufacturing environments with the resource

of a federated learning framework, allowing decentralized training and the addition of

security measures and privacy-preserving algorithms.

Neverwithstanding, some improvements to achieve even better privacy results and

improve the economic system in FL are not excluded. A description of work contributions

and potential ways to pursue future work are detailed in the following sections.

7.1 Contributions

This dissertation provided the following contributions:

• A novel approach to the application of federated learning in an industrial context

that provides access to ML without privacy leakage. The developed framework

allows collaborative ML through the process of FL with additional privacy and

security measures. The framework was constructed with a modular design adding

to the advantages of the already existing general purpose FL frameworks, namely

Flower (Figure 7.1), allowing it to be adapted to various industrial scenarios.

DCN LIN LFN GFN

Flower Client

HTTP Server

Flower
Server Strategy

LIN API

Custom
Configurations

HTTP
Client

HTTP
Client

Custom ConfigurationsData
gathering and

cleaning

Legend: 
    - General Purpose FL framework 
    - Added contributions 
    - Framework nodes

Figure 7.1: Framework contribution.
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• A prototype software that allows the implementation and customization of the

framework. This prototype presents itself as a tangible contribution. Since it is

open-source, the community can freely use, customize and improve it. The devel-

oped framework is available online at the following link: https://github.com/

AlexCosta157/CISP_FL.

• An article was also prepared and submitted as an output of the developed work.

Until the submission of this thesis, the manuscript is under review.

7.2 Future Work

Despite the satisfactory results in this dissertation, as an initial prototype framework,

further work is required to improve the framework’s robustness and fairness for all its

clients. Some potential solutions are given below:

• Implement different AI problems to improve the framework’s customization and

adaptability to new challenges;

• Realize scalability tests with a more significant number of modules and clients with

a more robust dataset to verify the performance scalability;

• Deploy the framework in a real scenario to verify its behaviour in a real industrial

scenario. Also, it would be interesting to realize a test between stakeholders from

different parts of the world to test the communication efficiency in such a scenario;

• Implement an economic system of rewards to attract stakeholders into using the

framework. The economic system must also address the scenario of one stakeholder

possessing a more considerable amount of data than the others and contributing

more to the FL training;

• Apply homomorphic encryption to the FL training. In this dissertation, it was as-

sumed that the Global Federated Node (GFN) is a trustworthy framework node.

However, in a real scenario, that might not be the case. With homomorphic en-

cryption, the aggregator never accesses the raw data, thus protecting each client’s

privacy.
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Figure A.2: Accuracy (a) and validation accuracy (b) graphics of the three stakeholders
in FedAvg training with fifty global epochs and five local epochs.
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Figure A.3: Loss (a) and validation loss (b) graphics of the three stakeholders in FedAvg
training with fifty global epochs and five local epochs.
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Figure A.4: Accuracy (a) and validation accuracy (b) graphics of the three stakeholders
in FedYOGI training with ten global epochs and twenty local epochs.
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Figure A.5: Loss (a) and validation loss (b) graphics of the three stakeholders in FedYOGI
training with ten global epochs and twenty local epochs.
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Figure A.6: Accuracy (a) and validation accuracy (b) graphics of the three stakeholders
in FedYOGI training with twenty five global epochs and five local epochs.
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Figure A.7: Loss(a) and validation loss (b) graphics of the three stakeholders in FedYOGI
training with twenty five global epochs and five local epochs.
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