
 

 

 

 

 

 

  

EPIGENETICS AND GENETICS  

OF HEMATOPOIETIC STEM CELLS HETEROGENEITY 

 

 

 

 

NADIYA KUBASOVA  

Tese para obtenção do grau de Doutor em Envelhecimento e Doenças Crónicas 

Doutoramento em associação entre: 

Universidade NOVA de Lisboa (Faculdade de Ciências Médicas | NOVA Medical School 

- FCM|NMS/UNL) 

Universidade de Coimbra (Faculdade de Medicina - FM/UC)  

Universidade do Minho (Escola de Medicina - EMed/UM)  

 

 

 

 

 Fevereiro, 2022  

 
 

  



 

  



 

 

 

 

 

  

EPIGENETICS AND GENETICS  

OF HEMATOPOIETIC STEM CELLS HETEROGENEITY 

 

 

 

 

Nadiya Kubasova  

Vasco M. Barreto, Investigador Principal da FCM | NMS/UNL 

António Gil Castro, Professor Associado da EMed/UM 

 

 

Tese para obtenção do grau de Doutor em Envelhecimento e Doenças Crónicas 

 

Tese para obtenção do grau de Doutor em Envelhecimento e Doenças Crónicas 

Doutoramento em associação entre: 

Universidade NOVA de Lisboa (Faculdade de Ciências Médicas | NOVA Medical School 

- FCM|NMS/UNL) 

Universidade de Coimbra (Faculdade de Medicina - FM/UC) 

Universidade do Minho (Escola de Medicina - EMed/UM) 

 

 

 

 

Fevereiro, 2022  



 

 

 



 

 
 

 

Preface 

This work was developed at the Chronic Diseases Research Centre (CEDOC) of Faculdade 

de Ciências Médicas (FCM) | Nova Medical School (NMS). It was supported by the FCT 

(Fundação para a Ciência e a Tecnologia) with grants PTDC/BEX-BCM/5900/2014 and 

IF/01721/2014/CP1252/CT0005. and with a Ph.D. fellowship PD/BD/114164/2016 

attributed by the Inter-University Doctoral Programme in Ageing and Chronic Diseases 

(PhDOC). Ph.D. fellowship was attributed by FCT, from FSE (Fundo Social Europeu) and 

POCH (Programa Operacional Capital Humano). 

Results obtained during this dissertation produced 

publication of papers in peer-reviewed journals: 

Research article 

Kubasova, N., Alves-Pereira, C.F., Gupta, S., Vinogradova, S., Gimelbrant, A., and Barreto, V.M. 

(2022). In vivo clonal analysis reveals random monoallelic expression in lymphocytes that traces 

back to hematopoietic stem cells. Front. Cell Dev. Biol. in press. doi: 10.3389/fcell.2022.827774. 

 

Review article 

Barreto, V.M., Kubasova, N., Alves-Pereira, C.F., and Gendrel, A.-V. (2021). X-Chromosome 

Inactivation and Autosomal Random Monoallelic Expression as “Faux Amis”. Front. Cell Dev. Biol. 

9, 2599. doi: 10.3389/fcell.2021.740937. 

 

reposition in NCBI Gene Expression Omnibus: 

RNA-seq and WES-seq expression data under series accession number GEO: GSE174040. 

 

The procedures in this thesis involving animals have been approved by Órgão 

Responsável pelo Bem-Estar dos Animais (ORBEA) of Instituto Gulbenkian de Ciência 

(PTDC/BEX-BCM/5900/2014 reference).   



 

 
 

  



 

 
 

Acknowledgments 

All scientific work is the outcome of more than one person's contribution, and this thesis 

is no exception; it is the product of the collective effort of people that surrounded me 

over these years and without whom it would not have been possible to complete this 

work.  

In the first place, I would like to thank my supervisors Vasco M. Barreto and António Gil 

Castro for accepting me as a Ph.D. student, with a special acknowledgment to Vasco for 

receiving me in his team, allowing me to develop this project under his guidance, and 

for his confidence. It was a special experience to develop this Ph.D. project with him 

over these years. He gave me support, advice, and motivation every time I needed it, 

and helped me at the bench with the reconstitution experiments that took long hours.  

I am also deeply grateful to Alexander Gimelbrant for his kind collaboration, impressive 

experience, and crucial contribution for the results. I thank him for believing in this 

project and the endless patience during the zoom meeting discussions.  

Definitely, Vasco and Sasha (Gimelbrant) are role models to follow in the scientific world. 

They are always able to find a solution to every problem, share their scientific knowledge 

and raise important questions, which end up leading to important results. 

I would also like to single-out Clara F. Alves-Pereira, who never gave up on this work and 

introduced me to the R programming language. Despite the long-distance, her support 

was important for an excellent working environment and to finish what seemed like a 

never-ending project. 

To all lab members for sharing their time with me and their precious help for this project.  

To Elsa Seixas, who has been my support by being always present, available, and truly 

believing in me.  

And finally, a very special thank goes to my family, friends, and all close friends, for their 

support and encouragement. Your help was very important for the success of this work. 

This project has taken me a lot of effort, and I would have faced many more difficulties 

without the help of the people mentioned above. 



 

 
 

 



 

I 
 

Table of contents 

List of figures .................................................................................................................... V 

List of tables ................................................................................................................... XIX 

List of abbreviations ...................................................................................................... XXI 

Resumo ........................................................................................................................ XXIII 

Abstract ........................................................................................................................ XXV 

1. Introduction .............................................................................................................. 1 

1.1. Monoallelic expression ...................................................................................... 3 

1.1.1. Random Monoallelic Autosomal Expression.................................................. 7 

1.1.2. Clonal versus dynamic RMAE ....................................................................... 15 

1.1.3. Mechanisms ................................................................................................. 17 

Negative feedback .................................................................................................. 18 

Nuclear organization .............................................................................................. 20 

Bidirectional promoter switches ............................................................................ 21 

Asynchronous replication ....................................................................................... 22 

DNA methylation .................................................................................................... 23 

Histone modifications ............................................................................................. 25 

Long interspersed nuclear element-1 .................................................................... 25 

Bivalent domains .................................................................................................... 28 

1.1.4. Consequences .............................................................................................. 29 

1.2. Hematopoietic stem cells ................................................................................ 33 

1.2.1. Heterogeneity of HSCs ................................................................................. 36 

2. Objectives ............................................................................................................... 43 

3. Materials and methods .......................................................................................... 47 

3.1. Animal breeding ............................................................................................... 49 



 

II 
 

3.2. HSCs isolation ................................................................................................... 49 

3.3. Animal reconstitutions ..................................................................................... 50 

3.4. Processing of animal samples .......................................................................... 51 

3.5. RNA and DNA extraction .................................................................................. 52 

3.6. Monoclonality screening ................................................................................. 52 

3.7. cDNA library preparation and whole-transcriptome sequencing ................... 53 

3.8. DNA library preparation and whole-exome sequencing ................................. 54 

3.9. VDJ clonotypes ................................................................................................. 54 

3.10. Allele-specific gene expression analysis from RNA-seq ............................... 54 

3.11. t-distributed stochastic neighbor embedding (t-SNE) analysis .................... 55 

3.12. Abelson clones ............................................................................................. 55 

3.13. XCI escapees ................................................................................................. 56 

3.14. Annotation of XCI escapees along the X chromosome ................................ 57 

3.15. Enrichment analysis ..................................................................................... 57 

3.16. Statistical analysis......................................................................................... 57 

3.17. Data availability ............................................................................................ 58 

4. Results..................................................................................................................... 59 

4.1. Hematopoietic stem cell reconstitutions ........................................................ 61 

4.1.1. Introduction.................................................................................................. 61 

4.1.2. Optimization of single-HSC reconstitutions ................................................. 63 

4.1.3. Multilineage and long-term reconstitutions ................................................ 69 

4.1.4. Evaluating the quality of the collected samples .......................................... 72 

4.2. Transcriptome analysis .................................................................................... 76 

4.2.1. Introduction.................................................................................................. 76 

4.2.2. Quality of RNA-seq and samples .................................................................. 80 

4.2.3. Identification of autosomal allele-specific expression ................................. 86 



 

III 
 

4.2.4. Identification of XCI escapees ...................................................................... 96 

4.2.5. Identification of genes with differential AI between B and T cells .............. 99 

5. Discussion and conclusions .................................................................................. 103 

6. Bibliographic references ....................................................................................... 119 

7. Supplementary results .......................................................................................... 149 

 



 

IV 
 

  



 

V 
 

List of figures 

Figure 1. 1. Schematic representation illustrating biallelic expression features and 

different types of random monoallelic expression. Monoallelic expression can be 

divided into cases based on a deterministic choice of allelic expression, including 

imprinting genes, and cases based on stochastic choice, including X-chromosome 

inactivation (XCI) and random monoallelic autosomal expression (RMAE). Xp, X 

chromosome of paternal origin; Xm, X chromosome of maternal origin; p, paternal 

autosome; m, maternal autosome. Adapted from our review (Barreto et al., 2021). .... 4 

 

Figure 1. 2. Half-matrix showing all pairwise intersections of autosomal gene 

collections identified as random monoallelically expressed in the genome-wide 

studies described in Table 1.2. (except Jeffries et al., 2012, which is not publicly 

available). ASL, astrocyte-like cells; NSC, neural stem cells; NPC, neural progenitor cells; 

ESC, embryonic stem cells; SPC01, clonal neural stem cells (before epigenetic 

reprogramming); iPSC, induced pluripotent stem cells after epigenetic reprogramming 

of SPC01. Note that “NPC” in Jeffries et al., 2016 is derived from iPSCs. Colors represent 

instances where a different cell/tissue type was studied more than once. To obtain 

intersections, gene ids were briefly manually curated for inconsistencies (e.g., gene 

name-to-date conversions when the originally provided data were in Microsoft Excel 

format). All gene sets were then parsed with the gprofiler2 R package (Raudvere et al., 

2019) for gene id consistency, using transcript ids as query whenever possible and 

ENSEMBL gene ids as target (performed July 12th, 2021). Orthology conversion (from 

human to mouse) was performed with the same package for datasets involving human 

data. For Gimelbrant et al. (2007) and Zwemer et al. (2012) gene collections, MAE classes 

I, II, and III were used to retrieve genes with RMAE, and for Gendrel et al. (2014), the 

“NPC_random_catalog” classification was retrieved as RMAE. Adapted from our review 

(Barreto et al., 2021). ..................................................................................................... 14 

 

Figure 1. 3. A schematic representation of mechanisms responsible for X-chromosome 

inactivation (XCI) and mechanisms possibly responsible for RMAE. The gray arrow 



 

VI 
 

represents a potential parallel between XCI and RMAE associated with LINE-1 elements 

(L1). Adapted from our review (Barreto et al., 2021). ................................................... 20 

 

Figure 1. 4.Hematopoiesis models. The classical model assumes that HSCs are a 

homogeneous population of cells. All blood cells come from the HSC pool through a 

differentiation process (lineage commitment) that is characterized by discrete 

intermediate progenitors, each with reduced self-renewal ability. The HSC sits at the top 

of the hierarchy, and the binary branching represents the cell fate decisions during 

lineage commitment direction. The first step of lineage commitment is the separation 

of MPPs into CMPs and CLPs. CLPs give rise to lymphocytes, whereas CMPs differentiate 

into MEPs and GMPs. MEPs are progenitors of megakaryocytes/platelets and red blood 

cells. GMPs produce granulocytes, macrophages, and dendritic cells. With the 

improvement of HSC isolation, new cell surface markers, and a large collection of works 

based on single-cell or limiting dilution cell transplantation, new findings on HSC were 

revealed. This led to a revised version of the classical model. This model includes a new 

branching decision, the first lineage separation that produces CMPs and LMPPs. CMPs 

give rise to MEPs and GMPs. LMPPs produce CLPs and also GMPs. Additionally, a direct 

shortcut into the megakaryocytic lineage was suggested (dashed lines). As these two 

models cannot explain the heterogeneity of the HSC compartment, a new model was 

proposed. In this model, it is assumed that HSC is a heterogeneous pool of cells and this 

heterogeneous behavior of HSC is an intrinsic feature epigenetically established early in 

development. Hematopoiesis is defined as a continuous flow of differentiation and 

emergence of lineage trajectories independent of each other without obvious 

hierarchical boundaries. The classical Waddington landscape is used to visualize this 

model. HSC, hematopoietic stem cell; MPP, multipotent progenitor; CMP, common 

myeloid progenitor; CLP, common lymphoid progenitor; LMPP, lymphoid-primed 

multipotent progenitor; MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-

macrophage progenitor; MgK, megakaryocytes; RBC, red blood cells; Mac, macrophage; 

Gr, granulocyte; DC, dendritic cell; NK, natural killer cell. ............................................. 35 

 



 

VII 
 

Figure 4. 1. Strategy to produce the monoclonal hematopoietic system in vivo. (A) 

Ly5.1 and Ly5.2 pan-leukocytic markers distinguish recipient from donor cells in 

reconstituted animals, respectively. Ly5.1 and Ly5.2 do not label the CAST progenitor 

line. When CAST is crossed with B6Ly5.1/Ly5.1 and B6Ly5.2/Ly5.2 to produce the recipient and 

donor F1 animals, respectively, the recipient and donor cells are distinguishable using 

these two markers. Blood samples of progenitor and descendants (F1) were lysed for 

red cells, stained with FITC-conjugated anti-Ly5.2 and PE-conjugated anti-Ly5.1, and 

analyzed using FACSCanto. (B) Schematic representation of monoclonal and polyclonal 

hematopoietic system establishment in vivo. A single hematopoietic stem cell (HSC) or 

50–200 HSCs were injected into sub-lethally irradiated recipient mice to generate a 

monoclonal or polyclonal hematopoietic system. Different donor mice were used in 

each experiment. Secondary reconstitutions and isolation of B/T cell populations were 

performed after 12 weeks of cell differentiation in vivo. .............................................. 64 

 

Figure 4. 2. Isolation of pure long-term HSC (LT-HSC) population. (A) The different 

protocols used to separate LT-HSC from short-term HSC and progenitor cells. All 

protocols included the first step of lineage-marked cells depletion using MACS 

Streptavidin MicroBeads. For this, the bone marrow cells of an F1 CASTLy5/Ly5 x B6Ly5.2/Ly5.2 

(protocols 1,2.1, 2.2 and 3) or B6 Ly5.2/Ly5.2 / β-actin-GFP/ β-actin-GFP (protocol 2.2) mouse were 

stained with a cocktail of biotin-conjugated antibodies for surface markers of lineage-

committed cells (anti-B220, anti-CD19, anti-Mac1, anti-Ter119, anti-Gr1, and anti-CD3). 

After depletion, cells were stained with fluorophore-conjugated antibodies according to 

each protocol. Protocol 1: APC-conjugated anti-c-Kit, PE-Cy7-conjugated anti-Sca-1, PE-

conjugated anti-CD34, FITC-conjugated anti-CD135, Streptavidin/Pacific-blue (SAV/PB), 

and PI, and sorted on a FACSAria. The cells were gated for PI- / SAV- to exclude dead cells 

and any remaining lineage-positive cells, then for c-Kit+/Sca-1+ to obtain Lin-Sca+c-Kit+ 

(LSK) cells, and finally gated for CD34-/CD135- to obtain LT-HSCs. Protocol 2.1: APC-

conjugated anti-c-Kit, FITC-conjugated anti-Sca-1, BV421-conjugated anti-CD48, PE-

conjugated anti-CD150, Streptavidin/APC-Cy7 (SAV/APC-Cy7), and PI, and sorted on a 

FACSAria. The cells were gated for PI- / SAV- to exclude dead cells and any remaining 

lineage-positive cells, then for c-Kit+/Sca-1+ to obtain Lin-Sca+c-Kit+ (LSK) cells, and finally 



 

VIII 
 

gated for CD48-/CD150+ to obtain LT-HSCs. Protocol 2.2: APC-conjugated anti-c-Kit, PE-

Cy7-conjugated anti-Sca-1, BV421-conjugated anti-CD48, PE-conjugated anti-CD150, 

Streptavidin/APC-Cy7 (SAV/APC-Cy7), and PI, and sorted on a FACSAria. The cells were 

gated for PI- / SAV- to exclude dead cells and any remaining lineage-positive cells, then 

for c-Kit+/Sca-1+ to obtain Lin-Sca+c-Kit+ (LSK) cells, and finally gated for CD48-/CD150+ to 

obtain LT-HSCs. GFP+ and GFP- donor bone marrow cells were stained separately with 

the same antibodies for this approach. Then each cell population was individually single-

cell sorted. Protocol 3: APC-conjugated anti-c-Kit, PE-Cy7-conjugated anti-Sca-1, A700-

conjugated anti-CD34, PE-conjugated anti-CD135, Streptavidin/Pacific-blue (SAV/PB), 

and PI, and sorted on a FACSAria. The cells were gated for PI- / SAV- to exclude dead cells 

and any remaining lineage-positive cells, then for c-Kit+/Sca-1+ to obtain Lin-Sca+c-Kit+ 

(LSK) cells, and finally gated for CD34-/CD135- and CD49b- to obtain LT-HSCs. (B) After 

single-cell sorting into Terasaki pates, each well was confirmed under the microscope to 

contain only one HSC. ..................................................................................................... 66 

 

Figure 4. 3. Levels of chimerism for the different experiments. Percentages of 

chimerism identified in the blood of reconstituted animals for 16 experiments at 12 

weeks post-injection (orange dots, monoclonal animals; blue dots, polyclonal animals; 

fraction, number of animals with chimerism/number of injected animals; asterisk, 

experiments used for further RNA-seq analysis). An animal was considered reconstituted 

if the chimerism percentage was above 1%. .................................................................. 69 

 

Figure 4. 4. A single HSC gives rise to myeloid and lymphoid cells in the blood with 

long-term reconstitution. (A) Evolution of donor-derived cell population percentages 

over time in the peripheral blood of the recipient animals. After blood collection, red 

cells were lysed, stained for Ly5.2 cells, and analyzed in a FACSCanto or FACScan 

instrument. (B) A single donor HSC differentiates into lymphoid and myeloid 

hematopoietic populations in vivo. Cells from different hematopoietic organs of 

recipient animals were isolated, stained, and gated on PI-, FITC anti-Ly5.1+, PE anti-Ly5.2- 

and PE-Cy7 anti-CD19+ (spleen), PE-Cy7 anti-CD4+ (thymus), or BV786 anti-Mac1+ (bone 

marrow). (C) A single donor HSC repopulates secondary recipients. Plots of secondary 



 

IX 
 

reconstitutions four weeks post-reconstitution with bone marrow cells isolated from 

polyclonal and monoclonal primary reconstituted animals are represented. Blood 

samples of secondary reconstituted mice were lysed for red cells, stained with FITC-

conjugated anti-Ly5.2 for donor cells, and PE-conjugated anti-Ly5.1 for recipient cells 

and analyzed using FACSCanto. Representative plots are shown. ................................ 70 

 

Figure 4. 5. Representative plots of pre-sorted and post-sorted B and T-cell populations 

of an animal reconstituted with a single HSC. Cells from the spleen and thymus of the 

recipient animal were isolated, stained for B-cell markers with PE anti-Ly5.2, FITC anti-

Ly5.1, and PE-Cy7 anti-CD19 and APC anti-IgM (splenocytes), or T-cell markers with PE-

Cy7 anti-CD4 and BV605 anti-CD8 (thymocytes), and sorted on a FACSAria. The cells 

were gated for PI- to exclude dead cells and CD19+/IgM+ to select B-cells or for 

CD4+/CD8+ to select T-cells Ly5.2+/Ly5.1- to obtain pure donor cells. The purity of sorted 

cells was assessed by analyzing 150–250 sorted cells. .................................................. 72 

 

Figure 4. 6. Estimation of donor population contamination with recipient cells using 

Sanger sequencing. Identification and cDNA Sanger sequencing focus on three different 

SNPs for the Ly5 gene, distinguishing two pan-leukocytic markers, Ly5.1 and Ly5.2, and 

recipient and donor animals. CAST Ly5 and B6 Ly5.2 loci have the same SNPs, which are 

different from B6 Ly5.1, allowing the estimation of the level of recipient cell 

contamination in the donor cell populations. ................................................................ 73 

 

Figure 4. 7. Monoclonality assay that confirms the reconstitution of the recipient 

system with a single HSC. The cDNA Sanger sequencing chromatograms cover a region 

with two SNPs in the Xist locus that assigns the Xist transcript to the CAST or B6 X 

chromosome. Due to XCI, when a single cell is used for the reconstitution, a single peak 

is expected in the position of the SNP; when multiple cells were used for reconstitutions, 

two peaks should be observed in each of the SNP positions. ........................................ 75 

 



 

X 
 

Figure 4. 8. Overview of allele-specific expression analysis. Adapted from 

https://github.com/gimelbrantlab/Qllelic/wiki. ............................................................ 79 

 

Figure 4. 9. Adapter content before and after trimming. Results were produced with 

the FastQC tool (Anders, 2010) and images created with MultiQC (Ewels et al., 2016) for 

samples control_B, control_T, E13.1_T, E13.24_B. Note that the scale of plots is 

different. ......................................................................................................................... 81 

 

Figure 4. 10. Overview of single and multiple HSC reconstitutions that originated the 

samples used for RNA-sequencing (experiments E6, E13, and E15). In each experiment, 

HSC cells isolated from one donor mouse F1(CASTLy5/Ly5 x B6Ly5.2/Ly5.2) were injected in 

multiple sub-lethally irradiated recipient animals F1(CASTLy5/Ly5 x B6Ly5.2/Ly5.1). Different 

donors were used for each experiment. All animals showed long-term reconstitutions, 

and both monoclonal and polyclonal cells from primary repopulated animals 

reconstituted a secondary recipient. The density plots represent the allelic ratios of X 

chromosome-linked genes for each sample, as measured by RNA-Seq. ....................... 83 

 

Figure 4. 11. Estimation of donor population contamination with recipient cells using 

RNA-seq. Percentages obtained from next-generation sequencing of recipient cells in 

the sorted donor cell populations focusing on three different SNPs for the Ly5 gene that 

distinguish two pan-leukocytic markers, Ly5.1 and Ly5.2, that allow us to identify 

recipient and donor cells, respectively. The nucleotide bases for Ly5.1 and Ly5.2 were 

counted for each SNP, considering that CAST and Ly5.2 have the same SNPs, and the 

average percentage of Ly5.1-recipient cell contamination was calculated. The dashed 

line (0.5%) represents the percentage of artifactual SNPs due to errors introduced by 

sequencing, which was estimated by the sequencing results of the unmanipulated donor 

mouse. ............................................................................................................................ 84 

 

Figure 4. 12. The complexity of the VDJ repertoire in sequenced B and T samples. VDJ 

clonotypes in different populations of donor B and T cells expanded in vivo and the 

file:///C:/Users/Geral/Dropbox/PhD%20thesis/pre-thesis_final_draft-vmb.docx%23_Toc96939140
file:///C:/Users/Geral/Dropbox/PhD%20thesis/pre-thesis_final_draft-vmb.docx%23_Toc96939140


 

XI 
 

control animal. The number of VDJ rearrangements identified with the MiXCR tool 

(Bolotin et al., 2015, 2017) on each sample (x-axis) were plotted against the number of 

sequenced reads (y-axis). ............................................................................................... 85 

 

Figure 4. 13. Venn diagram representing the overlap between the initially identified 

genes and genes used in the allele-specific expression analysis. Genes with no 

expression, loss of heterozygosity, and genetic biases were removed to avoid an 

overestimation of allelic imbalance. .............................................................................. 86 

 

Figure 4. 14. Comparison analysis of samples to search for genes that maintain allelic 

imbalance during hematopoietic differentiation. (A) Representative dot plots of 

pairwise comparisons of AI between monoclonal vs. polyclonal samples, polyclonal vs. 

polyclonal samples, and monoclonal vs. monoclonal samples. The red circles signal the 

genes for which differential AI remained statistically significant after QCC correction on 

the binomial test. The total number of these genes per comparison is shown above each 

plot. The Pearson's coefficient correlation for all AI pairwise comparisons is also shown 

at each dot plot's upper left corner. A greyscale coloring the dots represents the mean 

expression between the two samples, calculated from each sample's TMM-normalized 

counts. (B) Correlograms for B and T samples. Pearson's coefficient correlation of AI for 

all pairwise comparisons between samples. Pearson's coefficient is represented in the 

upper right corner within each square, and the number of genes with a significant 

differential AI in each pairwise comparison after applying QCC correction on the 

binomial test is also shown. ........................................................................................... 87 

 

Figure 4. 15. Visualization of high-dimensional data of autosomal allelic imbalance in 

a low-dimensional space using the t-SNE algorithm to compare the dispersion of 

polyclonal and monoclonal samples. ............................................................................ 88 

 

Figure 4. 16. Allele-specific states for some genes are stable and persistent over 

extensive cell expansion and differentiation from the hematopoietic stem state. (A) 



 

XII 
 

Dot plot showing standard deviations (SD) of AIs for five B-cell monoclonal samples (x-

axis) against the SD of AIs for five polyclonal samples (y-axis). Dashed vertical and 

horizontal lines - arbitrarily set at an AI SD of 0.15 - represent the threshold above which 

genes were considered potentially intrinsically imbalanced. Pink-circled dots represent 

the autosomal genes, and uncircled dots represent the X-linked genes (control). Only 

genes for which differential AI remained statistically significant after QCC correction in 

at least one pairwise comparison (i.e., the red dots in Figure 14) within monoclonal B 

samples or polyclonal B samples and with expression in all B-cell samples are shown. 

Abundance values are TMM-normalized counts. (B) Comparison of putative 

transcriptionally stable allelically imbalanced genes between all samples and non-clonal 

control B. Grey dots are AIs of the unmanipulated animal control sample, and empty 

circles are AIs of monoclonal or polyclonal samples. Red circles represent comparisons 

for which AI differences remained statistically significant after QCC correction for control 

B comparison. The diameter of dots/circles is proportional to the abundance (in TMM-

normalized counts). (C) Dot plots show the AI of putative transcriptionally stable 

allelically imbalanced genes in B cells (x-axis) against those in T cells (y-axis). Pairwise 

comparisons for two monoclonal animals are shown. In the left plot, each animal's B and 

T cell data are paired (within animal comparison). In contrast, the right plot is an artificial 

control in which the B and T cell data from different animals are paired (comparison 

between animals). Each plot shows the Pearson's coefficient correlation considering the 

combined animal datasets; the Pearson's coefficient correlations for each animal 

dataset are R=0.33 (p=0.147) and R=0.85 (p<0.001). .................................................... 90 

 

Figure 4. 17. Loss of heterozygosity analysis of putative transcriptionally stable 

allelically imbalanced genes. AI from RNA-seq data plotted against AI from whole-

exome sequencing data for the same animals (polyclonal sample E6.2, and monoclonal 

samples E6.43 and E15.10). Only genes with abundance>10 TMM-normalized counts are 

represented. For the DNA axis (x-axis), all of these genes fall in the vicinity of the dotted 

vertical lines highlighting the 0.4–0.6 AI balanced range. ............................................. 91 

 



 

XIII 
 

Figure 4. 18. Bootstrapping analysis of difference between the AIs in DNA data and 

RNA data (AIDNA - AIRNA) in two monoclonal samples for the genes with persistent 

clone- and allele-specific autosomal transcriptional states (highlighted in 4.16 B). In 

the left panel, the histogram represents the distributions of the means of the difference 

for 13 or 14 randomly sampled genes generated by bootstrapping the transcriptomics 

data (100,000 replicates per distribution). The dashed lines show the observed AIDNA - 

AIRNA means for the 13 and 14 of the 14 putative transcriptionally stable allelically 

imbalanced genes detected in the monoclonal samples E6.43 and E15.10, respectively, 

which are statistically different from the mean of a random sample considering the 

respective distributions (p=0.0003 and p=0.0002, respectively), unlike the AIDNA - AIRNA 

mean for the 14 putative transcriptionally stable allelically imbalanced genes in the E6.2 

polyclonal sample (p=0.10). The right panel shows the distribution of the | AIDNA - AIRNA 

| observed for the putative transcriptionally stable allelically imbalanced genes and a 

random sample of size 14 in E6.2, and E15.10, and 13 in E6.43. ................................... 92 

 

Figure 4. 19. Association of genes with persistent clone- and allele-specific autosomal 

transcriptional states with common molecular features related to replication fragile 

sites. Location of 14 genes across distributions of locus size of all protein-coding genes, 

open reading frame (ORF) size, and expression in LT-HSCs. Gene sizes were obtained 

from the gencode mouse genome downloaded GTF file 

(http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M27/gencode

.vM27.annotation.gtf.gz) with custom scripts. ORFs were generated from the 

downloaded genecode transcript sequences fasta file 

(https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M27/gencod

e.vM27.transcripts.fa.gz) using the orfipy tool (Singh and Wurtele, 2021) with the 

standard codon table and default parameters. The longest ORF for each gene was 

plotted for distribution. Expression in LT-HSC was obtained from the Immunological 

Genome Project (https://www.immgen.org/), GEO:GSE109125. Locus and expression 

plots were zoomed-in. The blue lines correspond to genes with stable allele-specific 

transcription through HSC differentiation and the red line corresponds to the gene Pkp3.

 ........................................................................................................................................ 93 



 

XIV 
 

Figure 4. 20. B clones expanded in vitro show more genes with clonal-specific AI than 

B cells differentiated from a single HSC in vivo. (A) Representative dot plots of pairwise 

comparison of AI between different Abelson-immortalized B-cell clones. Red circles 

signal the genes for which differential AI remained statistically significant after QCC 

correction on the binomial test. The total number of these genes per comparison is 

shown above each plot. The Pearson's coefficient correlation for all AI pairwise 

comparisons is also shown at each dot plot's upper left corner. Mean abundance levels 

(mean TMM-normalized counts) are continuous greyscale colors. (B) Correlogram with 

pairwise comparisons of Abelson-immortalized B-cell clones. Pearson's coefficient 

correlation of AI for all pairwise comparisons between samples. Pearson's coefficient is 

represented in the upper right corner within each square, and the number of genes with 

a significant differential AI in each pairwise comparison after applying QCC correction 

on the binomial test is also shown. (C) Two dot plots showing standard deviations (SD) 

of AIs for four monoclonal (x-axis) against four polyclonal (y-axis) HSC-derived B cell 

samples (left plot), and SD of AI for all four Abelson clones (x-axis) against the SD of AI 

for four polyclonal HSC-derived B cell samples (y-axis) (right plot). Whole-exome 

sequencing data were used to exclude transcripts with possible LOH. Dashed vertical 

and horizontal lines set arbitrarily at an AI SD of 0.15 represent the threshold above 

which genes were considered potentially intrinsically imbalanced. Mean abundance 

levels (mean TMM-normalized counts) are represented as binned greyscale colors. .. 95 

 

Figure 4. 21. The strategy for identification of X chromosome inactivation escapees. 

(A) and (B) Allelic imbalance of X-linked genes for B and T cells, respectively. As a 

convention, Xi allelic imbalance=1 means that the gene is 100% expressed from the 

inactive X-linked allele; Xi allelic imbalance=0 means that only the active X-linked allele 

was detected. Dots represent genes with expression higher than 10 TMM-normalized 

counts, and only genes that were statistically different from the sample-corrected 

threshold at least once are shown. Yellow dots represent monoclonal samples; violet 

stroke-surrounded yellow dots denote statistical significance for that sample. Red dots 

represent the median of the allelic imbalance observed for polyclonal and control 

samples (otherwise excluded from this top panel to compare Xi allelic imbalance of 
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monoclonal samples with the median of polyclonal and control samples). Xi means 

inactive X chromosome. Statistical significance was calculated by comparing the allelic 

imbalance with the sample-corrected threshold using binomial test and QCC correction. 

The threshold was calculated per sample as 0.1 (which is the value usually found in the 

literature) + the median value of allelic imbalance of all X-linked genes in the sample. (C) 

and (D) Abundance (TMM-normalized counts) of the same genes and same samples 

represented in (A), (B). In addition, individual polyclonal and control samples are shown. 

Violet dots represent the monoclonal samples in which the allelic imbalance significantly 

deviates from the sample-corrected threshold. Yellow dots represent the other 

monoclonal samples, blue dots represent the polyclonal samples, and black dots are the 

control samples. Genes in violet (x-axis) were identified as escapees using the three 

criteria described in Methods and Results. .................................................................... 97 

 

Figure 4. 22. Identification of murine X chromosome inactivation escapees. (A) 

Distribution of AI values of X-linked genes and identification of XCI escapee genes. Violin 

plots overlaying dot plots of X-linked genes allelic ratios. For grey dots, the opacity 

reflects the relative abundance in TMM-normalized counts. Genes significantly escaping 

XCI (green dots) were identified by comparing the allelic ratio of that gene with a 

sample-corrected threshold (10% of expression from inactivated X chromosome) and 

applying the binomial test with QCC correction (Mendelevich et al., 2021). (B) XCI 

escapee genes on B and T cells annotated along the X chromosome ideogram. The AI 

values of identified XCI escapee genes are denoted in pink (for B cell samples) and brown 
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Figure 4. 23. B and T cell type differences in allelic imbalance and gene expression. (A) 

Visualization of high-dimensional data of autosomal AI for B and cells in a low-

dimensional space using (t-SNE algorithm). (B) Volcano plot representing genes with 
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Figure 4. 24. Differences in the B and T cellular environment lead to drastic differences 

in AI. (A) Dot plots of pairwise comparison of AI between B and T cells within each 

sample of experiment 13. Red circles signal the genes for which differential AI remained 

statistically significant after QCC correction on the binomial test. The total number of 

these genes per comparison is shown above each plot. The Pearson's coefficient 

correlation for all AI pairwise comparisons is also shown at each dot plot's upper left 

corner. Mean abundance levels (mean TMM-normalized counts) are continuous 

greyscale colors. (B) A Manhattan-like plot represents enrichment analysis of genes with 

significant differential AI found between B and T cells. As a control, a set of genes with 

the same dimension (146) was randomly sampled from genes without differential AI 

between B and T cells. Only statistically significant results are shown (hypergeometric 

test with set counts and size default correction for multiple testing). The x-axis 

represents the functional terms with the number of overrepresented genes: GO:MF 

(Gene Ontology: Molecular Function), GO:CC (Gene Ontology: Cellular Component), 

GO:BP (Gene Ontology: Biological Process), KEGG (Kyoto Encyclopedia of Genes and 

Genomes), REAC (Reactome), TF (TRANSFAC), and WP (WikiPathways). The y-axis shows 
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Figure 5. 1. Models of RMAE. (A) For most autosomal genes under RME, the epigenetic 

states leading to allelic biases are established de novo during differentiation and shortly 

before the genes are expressed. This model of RMAE is characterized by documented 

(e.g., olfactory receptor and antigen receptor genes) or probable clonal stability due to 

the existence of locks that stabilize the allelic imbalance (reviewed in (Barreto et al., 

2021)). One notable lock is the negative feedback triggered by the protein expression of 

one allelic form that prevents further gene or allelic activation (or recombination, in the 

case of the antigen receptors). (B) A model of RMAE in which the allelic imbalance for 

each clone is meta-stable, i.e., it can change from one cell stage to the other within a 

certain range during extensive periods of proliferation and differentiation until reaching 
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Resumo 

Nos organismos eucarióticos diplóides, a maioria dos genes são expressos 

bialelicamente. No entanto, existem excepções em que, ao nível das células, a expressão 

ocorre num padrão monoalélico que resulta de uma transcrição diferencial dos alelos 

de base epigenética. Existem três classes de expressão monoalélica regulada por 

mecanismos epigenéticos: imprinting de origem parental, inactivação do cromossoma X 

(XCI*) e expressão aleatória monoalélica autossómica (RMAE). Populações enviesadas 

obtidas a partir de ensaios de transplante de uma única célula revelaram que o conjunto 

de células estaminais hematopoiéticas (HSCs) é heterogéneo, reflectindo as diferenças 

epigenéticas de células individuais. Segundo um modelo em que os padrões da 

expressão específica de alelos são estabelecidos durante a diferenciação de células 

estaminais embrionárias e são propagados depois de forma estável através de divisões 

celulares, as HSCs carregam genes (e alelos) com marcas epigenéticas estáveis. A análise 

a nível clonal dos estados epigenéticos das células estaminais é necessária para 

entender a sua heterogeneidade e diversidade. Nesta tese, avaliamos pela primeira vez 

a persistência de estados epigenéticos entre os alelos no sistema hematopoiético in vivo 

usando o desequilíbrio da expressão alélica como ferramenta de leitura. O trabalho 

baseou-se na criação de um sistema hematopoiético monoclonal em ratinho por 

transplante de uma única HSC e no subsequente estudo da progenia linfóide emergente 

por análise transcriptómica de todo o genoma.  

Nas células hematopoiéticas resultantes de uma única HSC, verificámos que a XCI é 

mantida de forma estável após extensa proliferação e diferenciação, enquanto a vasta 

maioria dos genes autossómicos não estão sob RMAE. Assim, os paralelismos 

recorrentes na literatura entre XCI e RMAE são enganosos, porque estes dois fenómenos 

não têm a mesma estabilidade e serão regulados por diferentes mecanismos. Além 

disso, demonstramos que esta abordagem clonal com base num sistema sem 

manipulação genética pode ser uma estratégia para estudar a XCI específica de tecidos 

in vivo. Por fim, um padrão de RMAE foi encontrado num número raro de genes (14 

genes, <0,2% do total) em células linfóides resultantes de uma única HSC, indicando que 

esses padrões já estavam presentes na HSC original usada no transplante. No entanto, 

o número de genes com RMAE em células que passaram por etapas de diferenciação é 
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muito menor do que o número relatado anteriormente em estudos usando linhagens 

celulares clonais in vitro sem diferenciação extensa (~2–15%). Para conciliar estas 

observações, propomos que a maioria dos padrões de RMAE são meta-estáveis, isto é, 

passíveis de eliminação e restauração em diferentes estados de diferenciação. 

* As abreviaturas na língua inglesa foram mantidas.  
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Abstract 

In diploid eukaryotic organisms, most genes are expressed biallelically. However, there 

are exceptions where the expression occurs in a monoallelic pattern that results from a 

differential allele-specific transcription based on the different epigenetic marking of the 

two alleles. At the level of cells, there are three classes of monoallelic expression 

regulated by epigenetic mechanisms: parent-of-origin imprinting, X chromosome 

inactivation (XCI), and random autosomal monoallelic expression (RMAE). Biased 

repopulations obtained from single-cell transplantation assays revealed that the pool of 

hematopoietic stem cells (HSCs) is heterogeneous, reflecting the epigenetic differences 

of individual cells. According to a model in which the allele-specific expression patterns 

are established during differentiation in embryonic stem cells and are stably propagated 

through cell divisions, it is assumed that HSCs carry genes (and alleles) with these stable 

epigenetic marks. Therefore, the analysis of epigenetic states in the stem cell population 

at the clonal level is necessary to understand its heterogeneity and diversity. Here we 

evaluated for the first time the persistence of allele-specific epigenetic states in the 

hematopoietic system in vivo using allelic imbalance as a readout. We created a 

monoclonal hematopoietic system in mice by single HSC transplantation and then 

analyzed the emerging lymphoid progeny using a genome-wide transcriptomics 

approach.  

We revealed that in the single-HSC derived hematopoietic cells, XCI is stably maintained 

through extensive proliferation and differentiation, whereas the vast majority of 

autosomal genes lack the stable clonal patterns of random monoallelic expression. This 

finding shows that the recurrent parallels between XCI and RMAE are misleading, 

suggesting that different mechanisms underlie these two classes of monoallelic 

expression. Additionally, we show that this in vivo clonal approach, which is free of 

genetic manipulation, can replace the artificial strategies that have been used to study 

tissue-specific XCI. Finally, stable allele-specific expression patterns were found in a rare 

number of genes (14 genes, <0.2%) in the progeny of a single HSC, indicating that these 

patterns were already present in the original HSC used for transplantation. However, 

the number of genes with stable monoallelic expression in cells that underwent 

differentiation steps is much lower than the numbers previously reported in studies 
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using clonal cell lines in vitro without extensive differentiation (~2–15%). To reconcile 

these observations, we propose that most allele-specific expression patterns in 

autosomal genes are metastable and can be erased and reestablished at different 

differentiation stages. 
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1.1. Monoallelic expression  

A diploid eukaryotic organism inherits one allele from each parent. In most cases, the 

two alleles of each autosomal gene are expressed simultaneously and at similar levels 

in cells. This pattern is called biallelic expression (Chess, 2016; Eckersley-Maslin and 

Spector, 2014; Gendrel et al., 2016). However, there are several exceptions to this rule 

in which one allele is transcriptionally downregulated or even silent and the other allele 

is upregulated or fully transcribed, leading to allelic imbalance (AI) or even monoallelic 

expression (Figure 1.1). This AI can be due to genetic polymorphisms in cis-regulatory 

elements that influence the efficiency at which a gene is transcribed and genetic 

modifications such as copy number variation of portions of the genome. Here we will 

focus on a different class of AI, which is not due to genetic differences in the sequences 

of the alleles but epigenetic mechanisms (Chess, 2016).  

The epigenetics-based AI comprises three classes of monoallelic expression. In Parent-

of-origin imprinting (Figure 1.1), monoallelic expression results from epigenetic 

imprints deposited during gametogenesis in the male and female germlines, leading to 

constitutive monoallelic expression from the same allele in the entire organism and 

more rarely in specific tissues (Reik and Walter, 2001). This monoallelic expression was 

discovered in 1984, when nuclear transplantation was used to generate embryos with 

two sets of chromosomes either from two maternal pronuclei or two paternal pronuclei. 

These embryos (and control embryos) were transplanted to pseudo-pregnant mice and 

it was shown that the presence of both maternal and paternal genomes is essential for 

normal development (Barton et al., 1984; McGrath and Solter, 1984; Surani et al., 1984). 

Approximately 100–180 imprinted genes were found in mice and 50–100 in humans 

(Babak et al., 2015; Baran et al., 2015; Barlow, 1995; Chess, 2016). Imprinting has 

relevance for development and diseases (Ferguson-Smith and Bourc’his, 2018). The 

abnormal inheritance of imprinted genes is associated with indistinguishable deletions 

in a cluster of imprinted genes present in the human chromosome 15, leading to the 

Prader-Willi syndrome (a developmental disease with defects in growth control and 

brain function), if the perturbation is in the paternal allele, or Angelman's syndrome (a 

disease associated with severe mental retardation), if the perturbation is in the maternal  
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Figure 1. 1. Schematic representation illustrating biallelic expression features and 
different types of random monoallelic expression. Monoallelic expression can be 
divided into cases based on a deterministic choice of allelic expression, including 
imprinting genes, and cases based on stochastic choice, including X-chromosome 
inactivation (XCI) and random monoallelic autosomal expression (RMAE). Xp, X 
chromosome of paternal origin; Xm, X chromosome of maternal origin; p, paternal 
autosome; m, maternal autosome. Adapted from our review (Barreto et al., 2021). 
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allele. For each impacted gene, the loss of one allele is not compensated by the 

expression of the other allele (Nicholls et al., 1998). Despite the risk of genetic diseases, 

as all mutations in the single active allele of imprinted gene will be dominant, the 

persistence of this phenomenon for over 125 million years of mammalian evolution 

suggests that imprinting must provide advantages (Renfree et al., 2009). The evolution 

of imprinting remains an open question and several competing theories for the origin of 

imprinting have been proposed, namely the two most prevalent ones: parental conflict 

and coadaptation. The first hypothesis affirms that there will be selection for a paternal 

allele that enhances transfer of nutrients to the fetus, regardless of the fitness of the 

mother (Haig and Westoby, 1989). The second hypothesis states that the selection of 

the maternal allele expression is favored when it increases the adaptative offspring and 

maternal traits, resulting in higher offspring fitness (Wolf and Hager, 2006). These two 

hypotheses are not mutually exclusive (Renfree et al., 2009). 

The other two broad classes are characterized by random monoallelic expression choice 

followed by stable mitotic transmission, so that different cells from the same organisms 

express mostly or exclusively the paternal or maternal alleles. These classes are X 

chromosome inactivation (XCI) (Lyon, 1961) and random monoallelic autosomal 

expression (RMAE) (Gimelbrant et al., 2007) (Figure 1.1). XCI, also named “Lyonisation,” 

was first described in 1961 by mouse geneticist Mary Lyon while studying coat-color 

variegation in mice. Lyon concluded that one of the two X chromosomes must be 

randomly silenced in each female cell, leading to monoallelic expression of the 

remaining active X chromosome genes. She hypothesized that XCI allows the XX female 

to keep the same expression level ratio of the X-linked versus autosomal genes found in 

the XY male. XCI occurs early in development, around the time of implantation, resulting 

in a mosaic expression of the paternal and maternal X chromosomes in female tissues. 

Failure to establish this random monoallelic expression is also associated with genetic 

disorders affecting the brain, bone, blood, ears, heart, liver, kidney, retina, skin, and 

teeth. Generally, in the presence of recessive mutations, males will be more affected 

than women and manifest more severe phenotypes, because males carry only one X 

chromosome and the presence of the mutant allele will lead to the manifestation of the 
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phenotype. In contrast, women heterozygous for the mutation in a X-linked gene will 

have a mosaic pattern of expression due to XCI, ensuring that half of the cells will express 

a normal allele (the other half will express the mutated allele), which prevents or 

attenuates the manifestation of the deleterious phenotype. It should be stressed that 

heterozygous females would probably not be as exposed to the mutated allele as 

hemizygous males even in the absence of XCI, since they carry two X chromosomes and 

the recessive mutant allele would be compensated by the wildtype allele (Migeon, 

2020). However, the escape from XCI, which is observed for some X-linked genes, 

increases the protein dosage (compared to XY cells) due to its expression from both X 

chromosomes. The extra dosage of proteins linked to immunity can be advantageous 

for females if it provides more protection against infectious diseases, but it also can 

make females more vulnerable to autoimmunity (Migeon, 2020; Mousavi et al., 2020). 

For example, it is known that the dosage of Toll-like receptor 7 (TLR7) is a key factor in 

systemic lupus erythematosus (SLE), an autoimmune disorder with a female bias. 

Additionally, a single-cell study of TLR7 revealed that it escapes  XCI in the B cell 

compartment, which leads to higher protein expression, IgG antibody production, and 

responsiveness to TLR7 ligands (Souyris et al., 2018). 

RMAE, the third class of monoallelic expression, shares some similar features with the 

X-linked genes under XCI. The choice of allelic expression in these two classes of 

monoallelic expression is stochastic, giving rise to mosaicism (with some cells expressing 

one allele and other cells expressing the opposite allele in the somatic tissues). On the 

other hand, genome-wide studies showed that RMAE occurs at the gene level across all 

chromosomes without preferential location or clustering, like genomic imprinting, 

rather than in the chromosome-specific manner that characterizes XCI. It is assumed 

that the choice of allelic activity is set during development and is stably kept through 

cell division. This expression can lead to differences in gene expression levels and, in the 

context of heterozygosity, can contribute to cell identity and cellular heterogeneity (also 

known as  phenotypic diversity at the cell level) (Gendrel et al., 2014; Gimelbrant et al., 

2007; Zwemer et al., 2012). Unlike parent-of-origin imprinting, which does not create 
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cellular diversity at the organismal level, allele-specific expression resulting from XCI or 

RMAE is observed at the single-cell or clonal cell line levels (Figure 1.1).  

1.1.1. Random Monoallelic Autosomal Expression 

In the 1960s, the first cases of autosomal genes under monoallelic expression were 

discovered, namely the antigen receptor genes (B cell (immunoglobulins) and T cell 

receptors (Pernis et al., 1965)). This phenomenon would subsequently be described as 

“allelic exclusion”, a term that became associated with the antigen receptor genes, 

which undergo a unique process of DNA rearrangement mediated by the RAG 

recombinases called V(D)J recombination (Hozumi and Tonegawa, 1976). The B and T 

cell receptor genes were for several decades the only known cases of RMAE. However, 

in 1994, a different gene family, unrelated to the immune system, the 1,296 murine 

odorant receptors expressed by sensory neurons, was found to be under RMAE (Chess 

et al., 1994; Zhang and Firestein, 2002). Furthermore, in the 2000s, RMAE was extended 

to the gene family of protocadherins, which are expressed in the central nervous system 

(Esumi et al., 2005; Tasic et al., 2002). This RMAE of large gene families of the nervous 

and the immune system generates individual cell identity and intercellular diversity. In 

addition to these gene families, other studies reported several individual autosomal 

genes with monoallelic expression affecting a wide range of functions and cell types. 

These studies are summarized in Table 1.1. 

Until 2007, RMAE was considered to apply only to a few genes encoding proteins 

involved in the immune and nervous systems. That view was changed by data from the 

first genome-wide identification of allele-specific transcription of genes, which was 

performed in clonal human B-lymphoblastoid cell lines. Using an SNP (single nucleotide 

polymorphism)-sensitive microarray (by hybridizing cDNAs to SNP arrays), ~5–10% of 

the assessed genes were found to be under RMAE. These genes encode proteins with a 

wide range of diverse functions but include a large fraction of genes encoding cell 

surface proteins. Reduced gene expression was associated with monoallelic expression. 

Genes subjected to monoallelic expression were more likely to be near presumed 

regulatory conserved sequences related to accelerated evolution. A conservative 

extrapolation of these data suggested that more than 1,000 human genes are subject to  
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Table 1. 1. List of autosomal genes under random monoallelic expression described in 
studies focused on single genes. The table shows the year of the study, the studied 
tissue or cell type, and the type of work (in vitro or in vivo). Adapted from our review 
(Barreto et al., 2021). 

Gene Cell type / tissue Species In vitro/ 

in vivo 

Year References 

immunoglobulin 

receptor genes 

B and T lymphocytes rabbit 

mouse 

in vivo 1965 

1976 

1985 

(Cebra and Goldstein, 

1965; Goverman et al., 

1985; Hozumi and 

Tonegawa, 1976; Pernis 

et al., 1965) 

olfactory 

receptors (OR) 

genes 

sensory neurons mouse in vivo 1994 (Chess et al., 1994) 

HUMARA (human 

androgen 

receptor) 

colonic crypts human in vivo 1995 (Endo et al., 1995) 

Ly49 receptor 

genes  

natural killer cells mouse in vivo 1995 (Held et al., 1995) 

interleukin genes 

(IL2, IL4, IL5, IL10, 

IL13) 

T cells mouse in vitro 1998,  

2000,  

2006 

(Bix and Locksley, 1998; 

Calado et al., 2006; 

Holländer et al., 1998; 

Kelly and Locksley, 

2000) 

Pax5 early progenitors and 

mature B cells 

mouse in vitro 1999 (Nutt et al., 1999a) 

VRi2 sensory neurons of 

the vomeronasal 

system  

mouse in vivo 1999 (Rodriguez et al., 1999) 

Nubp2, Igfals, 

and Jsap1 

bone marrow 

stromal cells and 

hepatocytes 

mouse in vitro 2001 (Sano et al., 2001) 

Variable 

lymphocyte 

receptors (VLRs) 

genes 

lymphocytes lamprey in vivo 2004 (Pamcer et al., 2004) 

Protocadherin 

genes 

Purkinje cells mouse 

human 

in vitro /  

in vivo 

2002 

2005 

2006 

(Esumi et al., 2005; 

Kaneko et al., 2006; 

Tasic et al., 2002; Wang 

et al., 2002)  

Tlr4 B cells mouse in vitro 2003 (Pereira et al., 2003) 

KIR genes natural killer cells human in vitro 2003 (Chan et al., 2003) 

Cd4 CD4+ lymphocytes mouse in vitro 2004 (Capparelli et al., 2004) 

p120 catenin pre-B clonal cell lines mouse in vitro 2005 (Gimelbrant et al., 2005) 

lymphoblastoid lines human 
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Gfap (glial 

fibrillary acidic 

protein) 

cortical astrocytes mouse in vitro 2008 (Takizawa et al., 2008) 

rDNA loci lymphoblasts human in vitro 2009 (Schlesinger et al., 2009) 

Krt12 limbal stem cells mouse in vivo 2010 (Hayashi et al., 2010) 

IGF2BP1 B cells human in vitro 2011 (Thomas et al., 2011) 

ASAR6 P175 cell line 

(derived from 

HTD114 

fibrosarcoma cell 

line) 

human in vitro 2011 (Stoffregen et al., 2011) 

Cubilin renal proximal 

tubules and small 

intestine 

mouse in vivo 2013 (Aseem et al., 2013) 

ASAR15 P268 cell line 

(derived from 

HTD114 

fibrosarcoma cell 

line) 

human in vitro 2015 (Donley et al., 2015) 

Gata3 hematopoietic stem  

cells and early T-cell 

progenitors 

mouse in vitro /  

in vivo 

2015 (Ku et al., 2015) 

FOXP2  B lymphoblastoid cell 

lines and clonal T-cell 

lines 

human in vitro /  

in vivo 

2015 (Adegbola et al., 2015) 

Bcl11b T cells mouse in vitro /  

in vivo 

2018 (Ng et al., 2018) 

 

 

random monoallelic expression (Gimelbrant et al., 2007). With the emergence of new 

technologies of transcriptome genome-wide analysis, other studies would confirm that 

the frequency of autosomal genes with random monoallelic expression is higher than 

what was previously believed (Table 1.2). In 2012, to test whether RMAE is also 

widespread in the mouse genome, like in humans, murine clonal B-lymphoblastoid cell 

lines derived from a hybrid F1 line were genome-wide analyzed by the SNP-sensitive 

microarray. 15.6% of autosomal genes were revealed to be under RMAE. It was 

demonstrated that genes under RMAE in the mouse display a wide distribution across 

the genome and diverse functions. Many of these genes are orthologous for human 

organisms, suggesting conservation for genes under RMAE between species.  RMAE  was  
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Table 1. 2. A summary of reports based on genome-wide transcriptomics analysis in 
different cell types. The table describes the type of experimental assay, studied species 
and genotype (if applicable), number of analyzed clones, and the observed percentage 
of genes under RMAE. Adapted from our review (Barreto et al., 2021). 

Cell type Experimental 

assay 

Species Genotypes % of 

RMAE 

#analyzed 

clones 

References 

Lymphoblastoid 

cells (in vitro) 

SNP-sensitive 

microarrays 

human NA 5-10 12 (Gimelbrant 

et al., 2007) 

mouse 129S X CAST;  

Balb/c X C57BL/6J 

15.6 11 (Zwemer et 

al., 2012) 

Fibroblasts (in 

vitro) 

SNP-sensitive 

microarrays 

mouse 129S X CAST 2.1 2 (Zwemer et 

al., 2012) 

RNA-seq mouse CAST X 129S 0.52-

1.9 

6 (Pinter et al., 

2015) 

Neural stem 

cells (in vitro) 

SNP-sensitive 

microarrays 

human NA 1.4-

2.0 

9 (Jeffries et al., 

2012) 

RNA-seq mouse C57BL/6 X JF1 2.4 4 (Li et al., 

2012) 

SNP-sensitive 

microarrays 

human NA 0.63 3 (Jeffries et al., 

2016) 

RNA-seq mouse C57BL/6 X JF1 4.6 4 (Branciamore 

et al., 2018) 

Neural 

progenitor cells 

from 

embryonic 

stem cells (in 

vitro) 

RNA-seq mouse C57BL/6 X CAST 3.0 6 (Eckersley-

Maslin et al., 

2014) 

129S X CAST 2.5 8 (Gendrel et 

al., 2014) 

Embryonic 

stem cells (in 

vitro) 

RNA-seq mouse C57BL/6 X CAST 0.5 6 (Eckersley-

Maslin et al., 

2014) 

iPSC (in vitro) SNP-sensitive 

microarrays 

human NA 0.88 2 (Jeffries et al., 

2016) 

Neural stem 

cells from iPSC 

(in vitro) 

SNP-sensitive 

microarrays 

human NA 0.65-

0.84 

2 (Jeffries et al., 

2016) 

Astrocyte-like 

cells (in vitro) 

RNA-seq mouse C57BL/6 X JF1 6.4 4 (Branciamore 

et al., 2018) 
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also shown for 2.1% of genes in murine fibroblast clones (Zwemer et al., 2012). Another 

study also confirmed monoallelic expression, revealing 0.52–1.9% of genes with this 

expression pattern in mouse tail-tip fibroblasts. RNA-sequencing (RNA-seq) was 

performed from primary and clonal cell populations obtained from hybrid F1 mouse 

reciprocal crosses. This strategy enabled the identification of allelic imbalance due to 

genotype, imprinting, or RMAE. It was observed that genes under RMAE presented 

lower expression levels but longer transcripts and gene bodies than balanced genes, and 

enrichment for cell surface and adhesion terms (Pinter et al., 2015). 

Several studies were also performed using neural cell lines. In 2012, genome-wide allelic 

expression assessment using RNA-seq and hybrid F1 mouse line revealed that around 

2.4% of autosomal genes in clonal neural stem cells (NSCs) are subjected to RMAE with 

a portion of genes belonging to the glutathione superfamily. Additionally, it was 

observed that genes with monoallelic expression are 30–35% less expressed than those 

with biallelic expression. They maintain their monoallelic expression pattern when NSCs 

are differentiated into neurons and astrocytes. Some of these genes are potentially 

relevant for diseases (Li et al., 2012). Furthermore, in 2012 different clonal NSCs derived 

from the human cerebral cortex, striatum, and spinal cord were analyzed by SNP-

sensitive microarrays and revealed 1.4–2.0% of genes under RMAE. The identified 

monoallelic genes belong to transmembrane glycoproteins, neurodevelopmental 

proteins, and transcription factor binding sites. After differentiation of these clones into 

neurons and glia, the allelic expression status was maintained. The data of Gimelbrant 

et al. (2007) was also confirmed, showing that monoallelic genes have reduced gene 

expression and are more likely to be located close to accelerated evolutionary non-

coding sequences (Jeffries et al., 2012). The same group, in 2016, using the same 

strategy, investigated the time point in the development when the stochastic allelic 

choice is made. Allelic expression imbalances were profiled in human neural progenitor 

cells (NPCs) before (NSC line clones) and after (iPSC (induced pluripotent stem cells) 

epigenetic reprogramming and after neuralization of iPSCs back to a NSC state (rosette-

like neural stem cells). It was found that, in NSCs, the 0.63% of genes that are under 

RMAE generally switch to the biallelic state after reprogramming to iPSCs. In iPSCs, 
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0.88% of genes showed RMAE, and at least 34% of these genes were biallelically 

expressed before reprogramming. It was concluded that these genes are potentially de 

novo monoallelically expressed genes that emerged at the pluripotent state. After 

neuralization, 0.65% of expressed genes were characterized by RMAE, and many of 

them were not monoallelically expressed in the original neural stem cell line (Jeffries et 

al., 2016). Another study performed by RNA-seq of clonal lines of neural progenitor cells 

derived from F1 hybrid mouse embryonic stem cells (ESCs) revealed 2.5% of genes under 

RMAE. Most of these genes showed low expression levels, and when compared to 

biallelic clones, monoallelic clones showed lower abundance. The monoallelic genes in 

NPCs are known to be involved in cell adhesion and organ development. In contrast to 

the finding of Jeffries et al. (2016), in this study, it was observed that most 

monoallelically expressed genes in NPCs were biallelic or not expressed in original ESCs, 

suggesting that the monoallelic status is established during differentiation toward NPCs. 

Additionally, after 15 NPC clone passages, the monoallelic expression patterns of genes 

were maintained. The same observation was made when NPCs differentiated to 

astrocytes (Gendrel et al., 2014). Also, in 2014, another allele-specific RNA-seq screen 

was performed for RMAE during differentiation of F1 hybrid mouse ESCs to NPCs. A 5.6-

fold increase in monoallelic expression during differentiation was noticed, from 0.49% 

in embryonic cells to 3.0% in progenitor cells, with only 2.0% of monoallelically 

expressed genes overlapped between stem and progenitor cell lines, indicating that 

monoallelic expression is acquired upon lineage commitment early in development, 

similarly to what was found by Gendrel et al. (2014). 8% of genes in NPC monoallelic 

clones showed the same expression level as in biallelic clones, indicative of 

transcriptional compensation, and 15.4% showed lower levels (Eckersley-Maslin et al., 

2014). A more recent work, in which NSCs were differentiated in vitro into astrocyte-like 

cells and genome-wide transcriptome sequencing was performed, identified 4.6% of 

genes under RMAE in NSCs and 6.4% of in astrocyte-like cells. It was observed that 3.3% 

of genes with RMAE are common between two developmental stages, and 21.8% and 

26.0% of genes with RMAE are specific for NSCs and astrocyte-like cells, respectively. 

Genes under RMAE in undifferentiated cells are enriched for genes encoding proteins 

with cell division and DNA replication functions. In contrast, genes with RMAE in 
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differentiated cells include genes responsible for the differentiated activity of neural 

cells (ion channels, transporters, and cell surface components). 44% of genes with RMAE 

in astrocyte-like cells were not expressed in undifferentiated cells (Branciamore et al., 

2018). Several candidate genes under RMAE previously found to be under monoallelic 

expression were analyzed in 200 murine NPCs before and after differentiation from 

ESCs, and it was found that allele-specific expression is established during 

differentiation; however, only two genes in undifferentiated stem cells were analyzed 

(Marion-Poll et al., 2021). It was also confirmed that monoallelic expression for genes 

previously identified as RMAE (Gendrel et al., 2014) is stably maintained once 

stochastically established in five NPC clones that differentiated to astrocytes. 

Additionally, by analyzing two monoallelic candidates in all clones, it was observed that 

monoallelic expression is not always associated with low expression. In some cases, 

RMAE is associated with down-regulated protein levels and could have functional 

consequences (Marion-Poll et al., 2021). After comparing different studies, genes under 

RMAE within the same tissue have considerable overlap suggesting that different 

studies are consistent (Figure 1.2). 

RMAE is highly tissue-specific (Gendrel et al., 2016; Marion-Poll et al., 2021), an 

observation supporting the notion that monoallelic expression patterns are established 

during differentiation (Branciamore et al., 2018; Eckersley-Maslin et al., 2014; Gendrel 

et al., 2014). In studies that compared different cell types and different species such as 

humans and mice, it was observed that, although in different cell types different genes 

under RMAE were expressed, these genes were involved in the same type of activity 

(Nag et al., 2013); and genes under RMAE are highly conserved between human and 

mouse (Nag et al., 2015). The absence of overlap observed between different cell types 

could be explained by cell-type-specific gene expression, meaning that a gene, which is 

monoallelically expressed in one cell type, could even be not expressed in another one.  
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Figure 1. 2. Half-matrix showing all pairwise intersections of autosomal gene 
collections identified as random monoallelically expressed in the genome-wide 
studies described in Table 1.2. (except Jeffries et al., 2012, which is not publicly 
available). ASL, astrocyte-like cells; NSC, neural stem cells; NPC, neural progenitor cells; 
ESC, embryonic stem cells; SPC01, clonal neural stem cells (before epigenetic 
reprogramming); iPSC, induced pluripotent stem cells after epigenetic reprogramming 
of SPC01. Note that “NPC” in Jeffries et al., 2016 is derived from iPSCs. Colors represent 
instances where a different cell/tissue type was studied more than once. To obtain 
intersections, gene ids were briefly manually curated for inconsistencies (e.g., gene 
name-to-date conversions when the originally provided data were in Microsoft Excel 
format). All gene sets were then parsed with the gprofiler2 R package (Raudvere et al., 
2019) for gene id consistency, using transcript ids as query whenever possible and 
ENSEMBL gene ids as target (performed July 12th, 2021). Orthology conversion (from 
human to mouse) was performed with the same package for datasets involving human 
data. For Gimelbrant et al. (2007) and Zwemer et al. (2012) gene collections, MAE classes 
I, II, and III were used to retrieve genes with RMAE, and for Gendrel et al. (2014), the 
“NPC_random_catalog” classification was retrieved as RMAE. Adapted from our review 
(Barreto et al., 2021). 
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1.1.2. Clonal versus dynamic RMAE 

Deng and colleagues performed single-cell RNA-seq on 269 individual cells dissociated 

from in vivo F1 (CAST/EiJ x C57BL/6J) mouse preimplantation embryos (stages from 

oocyte to blastocyte). Abundant (12–24%) RMAE in the mammalian embryonic cells was 

reported, which was also confirmed in individual adult mouse liver cells and cultured 

mouse fibroblasts. However, by pooling cells from the same embryo, and considering 

that each embryo is a clone of cells, almost all monoallelic expression observed at the 

level of individual cells was removed. It was concluded that this abundant monoallelic 

expression is highly variable among newly divided cells from the same embryo and is not 

due to fixed monoallelic expression propagated through cell divisions. Instead, it is 

rather independent, dynamic, and consistent with transcriptional bursting models (Deng 

et al., 2014). Two other works using the same strategy on the human reference 

lymphoblastoid cell line GM12878 and human primary fibroblast cell line reported that 

most genes in single cells are monoallelically expressed from one or the other allele and 

a few genes display biallelic expression at a given time point. This dynamic allele 

expression, which changes from cell to cell, as if each corresponds to an independent 

snapshot, could be explained by transcriptional bursting. It was also observed that allele-

specific expression is correlated with the abundance of the transcript, i.e., a large 

portion of highly expressed genes were transcribed from both alleles, whereas genes 

expressed at low levels were monoallelically transcribed (Borel et al., 2015; Marinov et 

al., 2014). 

Most of the studies mentioned above were performed on single cells that are not 

clonally related (Borel et al., 2015; Marinov et al., 2014). In this approach, the calculation 

of clonal and dynamic fractions in monoallelic expression is impossible. Reinius and 

colleagues used single-cell RNA-seq on clonal primary F1 (CAST x B6) murine fibroblasts 

and freshly isolated CD8+ from a male human donor vaccinated with a yellow fever 

vaccine to explore the contribution of clonal and dynamic monoallelic expression. The 

percentage of genes under RMAE in primary fibroblasts and CD8 T cells was 13% and 

60–85%, respectively. However, 95% of this expression was dynamic, with fewer than 

1% of total genes showing clonal monoallelic expression, and most of these rare genes 
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had low expression levels (Reinius et al., 2016). In 2021, the same group proposed again 

that transcriptional bursting (the number of bursts in time units) can explain the 

monoallelic expression observed in single-cell RNA-seq data. (Larsson et al., 2021). 

The dynamic RMAE shows varied allelic expression patterns among cells from the same 

clone or the same embryo that is due to independent stochastic transcriptional bursting, 

meaning that at any specific time, RNA from only one allele is often transcribed and is 

detectable (Deng et al., 2014; Larsson et al., 2021; Reinius et al., 2016). The major 

difference between clonal and dynamic RMAE is the long-term and short-term 

persistence of monoallelic expression in the cell, respectively. Clonal RMAE is stably 

maintained and mitotically inherited once established (Gimelbrant et al., 2007; Zwemer 

et al., 2012). Dynamic RMAE is not conserved in daughter cells after divisions and is 

ephemeral, even during the lifespan of a cell, resulting from the intrinsic stochasticity of 

transcription (Deng et al., 2014; Larsson et al., 2021; Reinius et al., 2016).  

Although single-cell RNA-seq can be used to study cell heterogeneity, cell states, rare 

cell types, cells in early development, and cancer cells, the major handicap of this 

technique is the difficulty to distinguish biological variation from technical noise (Chen 

et al., 2019; Kim et al., 2015; Marinov et al., 2014). Compared to bulk RNA-seq, single-

cell RNA-seq uses low amounts of starting material, limiting the efficiency and 

uniformity of RNA transcription into cDNA and consequently restricting its 

representation in the library and capture, producing more noise and higher technical 

variations. In addition, single-cell RNA-seq data contain many missing values (the gene 

is expressed but not detected by RNA-seq (Kharchenko et al., 2014)) and dropouts (the 

gene is detected at an intermediate or high level in one cell but not detected in another 

cell (Kharchenko et al., 2014)), introducing many false positives in allelic expression 

profiles (Marinov et al., 2014). Because of these limitations, appropriate sequencing 

protocols, efficient quality control, and sophisticated and complex analytical tools are 

necessary to eliminate this noise. A major part of allele-specific expression defined as 

stochastic can be explained by technical noise since the used approaches have difficulty 

correctly distinguishing the true biological allelic bias expression from the technical 

variability present in RNA-seq data (Kim et al., 2015). Furthermore, single-cell RNA-seq 
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presents complex issues in sequencing protocols and data analysis. This technique is less 

suitable than bulk RNA-seq in allele-specific expression studies. A major feature of genes 

under RMAE is low expression levels (Eckersley-Maslin et al., 2014; Gendrel et al., 2014; 

Gimelbrant et al., 2007; Jeffries et al., 2012; Li et al., 2012; Reinius et al., 2016) and a 

low number of RNA molecules can introduce amplification bias. The current single-cell 

RNA-seq technology can detect extremely low RNA levels, on average <1 mRNA per cell 

at the population level. Taken these considerations together, it is currently unclear if 

dynamic RMAE is a true phenomenon or an artifact (Marinov et al., 2014). Additionally, 

multiple possible cell states, cell cycle or mRNA processing, and splicing can exist within 

a cell population, leading to cell-to-cell heterogeneity of gene expression (Chen et al., 

2019; Marinov et al., 2014).  

 

1.1.3. Mechanisms 

Not much is known about the RMAE regulating mechanisms. Parallels between RMAE 

and XCI were drawn to interpret better how RMAE is regulated (initiated, propagated, 

and maintained) since XCI is more well-defined and these two types of monoallelic 

expressions share some features, namely the randomness and clonal propagation 

through cell divisions (Chess, 2016; Gendrel et al., 2016; Goldmit and Bergman, 2004). 

However, there are many differences between these two types of monoallelic 

expression (Barreto et al., 2021). In contrast to XCI, in which only maternal or paternal 

chromosome is expressed in each cell, genes under RMAE in independent clonal 

populations originated from the same progenitor cell can be either monoallelically 

expressed from maternal/paternal allele or biallelically expressed, or even completely 

silent. It is known that XCI is established early in development, whereas for RMAE it is 

unclear when this pattern of monoallelic expression is established in development; it 

can occur early or late, when the gene starts to be expressed. In the case of olfactory 

receptor genes, the stochastic choice of monoallelic and monogenic expression of a 

unique allele from the pool of olfactory receptor (OR) gene family occurs in the maturing 

olfactory sensory neurons of the mouse olfactory epithelium (Magklara et al., 2011). For 

XCI, the initiation of inactivation starts with the stochastic transcription of the key 
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regulator non-coding RNA Xist from the chromosome, which will be inactivated. For 

RMAE, it is unclear how the maternal or paternal allele starts being stochastically 

expressed. In some cases, both alleles are in the default silent state before the 

expression of one of the alleles (ex. olfactory receptor genes, immunoglobulin genes, 

and Ly49 genes). In other cases, both alleles are initially expressed and then one allele 

is silenced (ex. KIR genes) (Anderson, 2014; Degl’Innocenti and D’Errico, 2017; 

Vettermann and Schlissel, 2010). Which epigenetic regulation is used to mitotically 

propagate and keep stable monoallelic expression through several cell expansion and 

differentiation is also not clear. The immunoglobulin and T cell receptor genes, which 

were the first cases of RMAE to be discovered and have been intensively investigated, 

are exceptional cases of monoallelic expression because of the process of V(D)J 

recombination that occurs in developing lymphocytes. The mitotic stability of the 

patterns of RMAE that antigen receptor genes display is partly due to somatic genetic 

alterations, a scenario that does not apply to all other genes under RMAE. Similarly, in 

olfactory sensory neurons, once the monoallelic expression of olfactory receptor genes 

is established, it is stably maintained. However,  these cells are terminally differentiated, 

which is not the case of the majority of examples of RMAE (Degl’Innocenti and D’Errico, 

2017). 

An enormous amount of work has been performed to understand the master regulation 

of RMAE (see below). These studies were based on clonal cell lines propagated in vitro 

and phenotypically stable as they do not undergo substantial differentiation programs. 

However, monoallelic expression is observable only in clonal cell populations because in 

non-clonal cells this expression is masked at the cell population level, i.e., it appears 

biallelic. For most tissues, in part because tracking monoclonal cell populations in vivo is 

challenging, the regulatory mechanism underlying remains unclear. 

 

Negative feedback 

The cases of allelic exclusion of the immunoglobulins, T cell receptors, and OR genes 

depend on a negative feedback: the expression of one allele leads to the inhibition of 
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recombination (antigen receptor genes) or expression (OR genes) of the other allele. For 

immunoglobulins, once the first allele is successfully rearranged by V(D)J recombination 

and the protein expressed by this allele is present at the cell surface, the rearrangement 

of the second allele is inhibited. However, if the rearrangement of the first allele was 

not successful, the second allele has a chance to recombine (Alt et al., 1984; Kitamura 

and Rajewsky, 1992). Each cell has a time window to rearrange the alleles. If the second 

allele is also unsuccessfully rearranged, the cell undergoes apoptosis (Chi et al., 2020; 

Vettermann and Schlissel, 2010). This feedback inhibition of V(D)J recombination 

ensures that each mature B cell expresses only one monospecific antigen receptor in the 

diverse repertoire of antigens. However, supposing the feedback mechanism is slow, 

after the rearrangement of the first allele the second allele has time to rearrange within 

a time window, producing cells expressing both alleles. In the same way, if the time 

window is limited, the second allele would not have time to recombine, and fewer cells 

with biallelic expression would be formed (Barreto et al., 2021). T cell receptors have a 

similar mechanism of negative feedback during V(D)J recombination (Aifantis et al., 

1997) (Figure 1.3). Similarly, the feedback mechanism of olfactory receptor genes leads 

to the monoallelic expression of a single allele of a single gene in each neuron from the 

large repertoire of the olfactory receptor gene family, which is present in clusters over 

several chromosomes, resulting in a functional olfactory system (Serizawa et al., 2003). 

In the olfactory epithelium, all OR alleles are initially repressed by constitutive 

heterochromatin. During neuronal differentiation, a single OR allele is selected in a 

stochastic manner for demethylation by lysine-specific demethylase-1 (LSD1), an 

enzyme that catalyzes demethylation of H3K9, (temporarily expressed at the time 

window of OR gene choice) and released from this transcriptional inhibition. After that, 

a feedback mechanism is activated that results in downregulation of LSD1 to avoid the 

activation of additional OR genes and maintain the stable expression of the chosen OR 

gene, promoting the maturation of olfactory neurons. If a non-functional OR gene was 

chosen, LSD1 retains its activity, and a new OR gene is selected for expression until a 

functional receptor is eventually chosen. (Degl’Innocenti and D’Errico, 2017; Nagai et al., 

2016) (Figure 1.3). A negative feedback mechanism has not been described for the other 

genes under random monoallelic expression. 
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Figure 1. 3. A schematic representation of mechanisms responsible for X-chromosome 
inactivation (XCI) and mechanisms possibly responsible for RMAE. The gray arrow 
represents a potential parallel between XCI and RMAE associated with LINE-1 elements 
(L1). Adapted from our review (Barreto et al., 2021). 

 

 

Nuclear organization 

The nuclear organization is relevant for XCI. The inactivated X chromosome is usually 

found at the nuclear periphery or within the perinucleolar region. These regions are 

associated with heterochromatin, which can help the silencing of the inactive X 

chromosome by exposing the chromosome to heterochromatin factors and limiting the 

access to transcription factors (Chow and Heard, 2010). The nuclear position is also 

implicated in immunoglobulin and OR gene RMAE. The nuclear organization of 

immunoglobulin is altered during B-cell differentiation. Both alleles are closely 

associated with the nuclear periphery in very early B progenitor cells and not with 
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heterochromatin. Moreover, the productive allele is repositioned at a more central part 

during B-cell differentiation, while the non-productive allele occupies the nuclear 

periphery (Kosak et al., 2002; Skok et al., 2001). Mature sensory olfactory neurons have 

a unique inverted nuclear architecture. In these cells, olfactory receptor genes from 

different chromosomes are concentrated in a small number of compact foci (large 

domains of constitutive heterochromatin aggregates) around a large constitutive 

heterochromatin block, whereas the active OR allele is localized outside of olfactory 

receptor foci close to the more plastic facultative heterochromatin (Armelin-Corre et al., 

2014; Clowney et al., 2012). 

The nuclear organization was investigated in other examples of monoallelically 

expressed genes. For example, the astrocyte-specific marker Gfap (glial fibrillary acidic 

protein), monoallelically expressed in cortical astrocytes, showed differential nuclear 

positioning for the active and inactive allele with the active allele positioned more 

internally (Takizawa et al., 2008). However, six monoallelically expressed genes in neural 

progenitor cells were analyzed, and the expression status did not correlate with 

differential nuclear positioning of active and inactive genes (Eckersley-Maslin et al., 

2014). Thus, aside from immunoglobulins, olfactory receptor genes, and the isolated 

example of Gfap, currently nuclear positioning does not seem to play a role in genes 

under RMAE, but this potential mechanism needs systematic investigation.  

 

Bidirectional promoter switches 

The class I MHC receptors expressed by natural killer cells are encoded by the Ly49 genes 

in mice and the KIR genes in humans, and both are monoallelically expressed. This 

stochastic monoallelic expression is achieved using cis probabilistic bidirectional 

promoter switches that produce sense and antisense transcripts, which in turn activate 

or silence gene expression, respectively. However, the gene silencing or activation 

mechanism is different for Ly49 and KIR genes. In the case of murine natural killer cells, 

the stochastic switch occurs at the distal bidirectional promoter. Thus, the Ly49 genes 

are inactive, until sense non-coding transcripts produced by the distal promoter (Pro1) 
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activate the downstream promoter (Pro2); the antisense non-coding transcripts keep 

the state inactive (Saleh et al., 2002, 2004). In contrast, in KIR genes the stochastic switch 

occurs at the proximal promoter in human cells. Thus, the KIR genes are initially in an 

active state. Antisense transcripts from the proximal bidirectional promoter switch 

produce a piRNA that promotes an inactive state. When sense transcripts are produced, 

they only preserve the active state of the allele (Davies et al., 2007). Thus, the murine 

Ly49 genes use sense transcripts to activate a state that is "off" by default, and KIR genes 

use antisense transcripts to inactivate a state that is “on" by default. No more examples 

of this type of regulation mechanism have been documented; it is unclear how frequent 

bidirectional promoters are associated with genes under RMAE (Figure 1.3).  

 

Asynchronous replication 

During asynchronous DNA replication, the active allele with open chromatin replicates 

early in the S phase, whereas the inactive allele with compact heterochromatin 

replicates in the late S phase. This is one of the features of XCI (Takagi, 1974). 

Asynchronous replication has also been associated with RMAE. For instance, it was 

shown that olfactory receptors genes in neurons undergo random asynchronous 

replication (Chess et al., 1994). Other examples of genes under RMAE were found to be 

asynchronously transcribed: Il-2 in mouse T cells (Holländer et al., 1998), p120 in mouse 

and human (Gimelbrant et al., 2005); and two human non-coding RNA genes, ASAR6 

(asynchronous replication and autosomal RNA on chromosome 6) (Donley et al., 2013; 

Stoffregen et al., 2011) and ASAR15 (asynchronous replication and autosomal RNA on 

chromosome 15) (Donley et al., 2015). These two former large intergenic non-coding 

RNA genes will be discussed below in more detail. Chromosome-wide coordination of 

asynchronous replication was observed in mice (Singh et al., 2003) and human 

autosomal chromosomes (Ensminger and Chess, 2004), but the choice of the allele to be 

expressed in RMAE is not coordinated at the chromosome level. Different genes under 

RMAE on the same chromosome can be expressed independently from the maternal, 

paternal, or both alleles (Gimelbrant et al., 2007). Similarly, no clear correlation between 

monoallelically expressed genes and asynchronous replication was found in neural 
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progenitor cells (Gendrel et al., 2014). Antigen receptor loci were also associated with 

this distinctive replication of XCI. It was found that similarly to XCI, the pattern of 

asynchronous replication is lost in the morula, re-established at the time of 

implantation, and then clonally maintained. It was proposed that this predetermined 

replication feature is introduced on the allele, which is the early replicating one and 

selected for V(D)J rearrangement, and then retained as the cell propagates and 

undergoes differentiation (Mostoslavsky et al., 2001). This parallel with XCI was broken 

in subsequent work performed by the same group. This study proposed that the 

epigenetic mark for asynchronous replication on the kappa light chain is established not 

early in development but about the time of lymphoid commitment (Farago et al., 2012). 

Another study demonstrated that allelic exclusion of immunoglobulin receptor loci is 

not predetermined until V(D)J recombination and thus stands apart from XCI. 

Additionally, this work showed that the immunoglobulin heavy chain alleles rearrange 

independently (Alves-Pereira et al., 2014). In this way, asynchronous replication does 

not seem to be the characteristic of RMAE or an useful feature for predicting genes 

under monoallelic expression. 

 

DNA methylation  

Another epigenetic mark associated with allele-specific expression in XCI is DNA 

methylation. After Xist has been upregulated on the X chromosome that will be 

inactivated, repression of the second Xist allele (from active X chromosome) is 

maintained through DNA methylation of its promoter (Sado et al., 2004). This epigenetic 

mark was extensively explored in genes under RMAE. A strong association between DNA 

methylation and monoallelically expressed loci in NSCs was observed. Increased DNA 

methylation levels at the CpG sites located in the proximal promoter regions of the 

transcript start sites were found when monoallelically expressed genes were compared 

with the biallelically expressed ones (Jeffries et al., 2012). The same association between 

RMAE and increased methylation at the gene promoter was observed in iPSC-derived 

NSC clones. Furthermore, decreased DNA methylation at the gene body in 

monoallelically expressed genes was detected (Jeffries et al., 2016). In NPCs, it was 
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observed that while some monoallelic genes displayed higher levels of DNA methylation 

at their promoters than biallelic genes, others did not show a correlation between 

methylation levels and monoallelic expression. When cells were treated with 5-

azacytidine (which inhibits DNA methyltransferases), leading to DNA demethylation, no 

significant reactivation of the inactive allele was observed (Gendrel et al., 2014). Similar 

results were also obtained in the same cell line and with treatment with 5-azacytidine 

(Eckersley-Maslin et al., 2014). Additionally, it was observed that DNA methylation is 

correlated with expression levels rather than directly with the allele-specific expression 

pattern, and that alleles which are initially unmethylated in ESCs become methylated 

only when the allele is silenced or show low expression after differentiation to NPCs. As 

CpG islands showed hypomethylation in clones with biallelic expression and ESCs, 

intermediate methylation was found in clones with monoallelic expression, and 

hypermethylation in clones where a gene was silenced or showed low expression levels. 

In the same work, it was shown that the silent allele of the monoallelically expressed 

Bag3 gene was derepressed using decitabine (DNA methyltransferase inhibitor), 

suggesting that DNA methylation maintains the monoallelic expression of this gene 

(Marion-Poll et al., 2021). In another recent work, a screening-by-sequencing approach 

for reactivation of silenced alleles across 23 loci of mouse genome was performed. In 

this study, 43 drugs were tested in four monoclonal lines of pro-B cells. The small 

molecules studied are known to be involved in introducing or eliminating methylation 

and acetylation marks on histones and DNA. It was reported that 5-azacytidine and 5-

aza-2’-deoxycytidine could reactivate the silenced allele in many loci, but this was not, 

however, dependent on the level of DNA methylation. It was suggested that DNA 

methylation plays a key role as a fine-tuning mechanism of RMAE, which regulates allele-

specific transcription as a rheostat regulation rather than an on-and-off switch control. 

And for some loci, other mechanisms in addition to or instead of DNA methylation are 

responsible for RMAE maintenance (Gupta et al., 2021). In these two more recent works, 

especially in the study of screen, it was revealed that DNA methylation is one of the key 

mechanisms of RMAE maintenance. However, until now, it is not known how and when 

this mark is established. 
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Histone modifications 

Chromatin signature is another epigenetic signal associated with maintaining 

monoallelic expression after its initiation. Specific histone modifications are correlated 

with active (H3K4me3 and H3K36me) and silent (H3K9me3 and H3K27me3) chromatin 

states. Genes subject to XCI retain silent chromatin marks associated with 

heterochromatin (H3K9me3, H4K20me3, and H3K27me3). On the other hand, genes 

escaping XCI are enriched in active histone marks (H3K4me3, H3K9ac, and H3K9me1) 

(Goto and Kimura, 2009). In clonal NSCs, this correlation was also observed; 

monoallelically expressed genes showed enrichment in repressive marks (H3K27me3), 

whereas biallelically expressed genes showed enrichment in active marks (H3K4me3 and 

H3K9ac) (Jeffries et al., 2012). Similarly, a correlation between chromatin marks and 

monoallelic expression was also shown in NPCs. Biallelic clones showed an increase for 

active (H3K4me2/3 and H3K36me3) and a decrease for inactive marks (H3K9me3 and 

H3K27me3) when compared with monoallelic clones (Eckersley-Maslin et al., 2014; 

Gendrel et al., 2014). In recent work, the treatment of cells with histone deacetylase 

inhibitors (dacionostat and CUDC-101) increased the expression of the silent allele of 

the monoallelically expressed Bag3 gene (Marion-Poll et al., 2021). Additionally, the 

presence of dual chromatin marks for active (H3K36me3) and inactive transcription 

(H3K27me3) on the gene body was proposed to be a signature of genes under RMAE 

(discussed in more detail later) (Nag et al., 2013). Despite different histone modifications 

being sufficient to distinguish active and inactive alleles, it is unclear if these chromatin 

marks are responsible for maintaining monoallelic expression through mitotic divisions 

and how these marks are introduced.  

 

Long interspersed nuclear element-1 

The long interspersed nuclear element-1 (LINE-1) transposon family, a DNA sequence 

frequent in X chromosomes, is associated with X chromosome inactivation. It was 

proposed that LINE-1 acts as booster elements promoting the spread of Xist, a key player 

in cis-acting in XCI, and gene silencing the X chromosome to be inactive (Lyon, 1998). It 
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is now known that Xist long non-coding RNA (lncRNA) does not interact directly with 

LINE-1 but rather exploits the three-dimensional conformation of the X chromosome. 

By high-resolution mapping, an anti-correlation between Xist enrichment and LINE-1 

sequences was found. Xist, transcribed from the X-inactivation center, contacts first with 

sites proximal by their spatial conformation to the Xist transcription locus. After that, it 

follows a two-step mechanism, initially spreading to gene-rich regions depleted in LINE-

1 sequences and then targeting gene-rich regions, which are known to be enriched for 

LINE-1 (Engreitz et al., 2013; Leung and Panning, 2014; Simon et al., 2013). Although it 

is unlikely that LINE-1 acts as way stations for Xist, these sequences could participate in 

the XCI differently. An RNA-FISH study revealed two classes of LINE-1, which participate 

in X chromosome silencing at different levels. Old LINE-1 (truncated) sequences are 

inactive before XCI, and they facilitate efficient gene silencing by assembling 

heterochromatic nuclear compartments induced by Xist into which the genes to be 

silenced become recruited. Young LINE-1 elements are expressed from both X 

chromosomes before XCI. After differentiation and XCI establishment, these sequences 

are expressed from the inactive X chromosome and silenced on the active X 

chromosome. These active elements participate in the spreading of silencing in regions 

that would otherwise be prone to escape (Chow et al., 2010) (Figure 1.3). Additionally, 

a strong positive association between local susceptibility to XCI and LINE-1 density was 

observed in studies using X-autosome translocations and Xist-transgene inducible 

systems (Loda et al., 2017; Tannan et al., 2014). 

The involvement of LINE-1 elements in XCI raises the possibility that genes under RMAE 

may also show high levels of repetitive sequences. It was found that monoallelic 

autosomal genes are flanked by significantly higher densities of LINE-1 sequences, fewer 

CpG islands, and fewer SINE elements in their flanking regions than genes expressed 

biallelically. These LINE-1 sequences are less truncated and evolutionary more recent 

than those found in biallelically expressed genes (Allen et al., 2003). The olfactory 

receptor genes of the main nose and the vomeronasal type-1 and type-2 receptor genes 

of the vomeronasal organ are also embedded in LINE-dense regions (Kambere and Lane, 

2009). In NSCs, a minimal increased length of LINE-1 was observed in monoallelically 
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expressed genes. But this difference was not significant compared to biallelically 

expressed genes. However, a significant decrease in the amounts of SINE repeats and an 

increase in amounts of long terminal repeats across the length of the transcript were 

observed (Jeffries et al., 2012). Additionally, in NPCs, monoallelic genes tend to be 

enriched in regions increased in LINE-1 and reduced in SINE (Gendrel et al., 2014).  

Interestingly, the human autosomal genes ASAR6 and ASAR15 share many features with 

Xist. For example, these genes express large non-coding RNAs, display random 

monoallelic expression and replicate asynchronously in coordination with other linked 

monoallelic genes. Like Xist, ASAR6 and ASAR15 are transcribed from the later 

replicating allele. Deletion of either gene results in a late replication phenotype and 

structural instability of the respective chromosomes in cis. Additionally, disruption of 

either gene leads to the activation of the previously silent allele of the nearby 

monoallelic genes. Another similarity with Xist is the delayed replication timing of 

chromosomes upon ectopic integration of cloned genomic DNA containing ASAR6 or 

ASAR15. All three large non-coding RNAs contain a high density of LINE-1 in the 

transcribed sequence. Also, ASAR15 forms a chromosome-sized cloud, similarly to Xist, 

but in contrast, ASAR6 does not coat the chromosome entirely (Donley et al., 2013, 

2015; Stoffregen et al., 2011). Other differences exist between the X chromosome and 

autosomal non-coding RNAs. More recently, it was shown that the LINE-1 element 

present in ASAR6 in antisense orientation controls the replicating timing of 

chromosomes (Platt et al., 2018). However, it is not known how frequently this type of 

gene silencing occurs in autosomes, and, in contrast to Xist, ASAR6 is not expressed in 

all adult tissues (Stoffregen et al., 2011) and ASAR15 in some cells shows biallelic 

expression (Platt et al., 2018). 

LINE-1 has also been observed to be related with the nuclear organization. It is known 

that monoallelic expression of olfactory receptor genes is associated with a unique 

inverted nuclear architecture (silenced genes are localized close to the nucleic center in 

a constitutive heterochromatin block, in contrast to usual localization in the periphery 

of silenced genes) and these genes are enriched in LINE-1 sequences. A recent study 

reported that LINE-1 is transcribed in the olfactory epithelium, and LINE-1 
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retrotransposons establish aggregates around the central constitutive heterochromatin 

blocks and partially colocalize with the facultative heterochromatin only in olfactory 

neurons. It was suggested that LINE-1 retrotransposons participate in organizing the 

specific nuclear architecture of olfactory neurons (Ormundo et al., 2020). This 

observation also draws parallels with XCI since LINE-1 is associated with the organization 

of heterochromatic nuclear compartments in the X chromosome to be inactivated 

(Chow et al., 2010). The LINE-1 enrichment is probably the strongest parallel between 

XCI and random monoallelic expression (Figure 1.3).  

 

Bivalent domains 

Repressive (H3K27me3) and active (H3K4me3) chromatin marks were for years 

considered to be mutually exclusive. However, a novel chromatin modification pattern 

where repressive and active marks are simultaneously present in embryonic stem cells 

was discovered (Azuara et al., 2006; Bernstein et al., 2006). These bivalent domains are 

more enriched in ESCs than in differentiated cells. And they are associated with 

transcription factor genes expressed at low levels with functions in embryonic 

development and lineage differentiation. These bivalent domains tend to acquire either 

an active or a repressive mark during embryonic stem cell differentiation. It was 

proposed that bivalent domains silence developmental genes in ESCs, which are then 

activated during differentiation (Bernstein et al., 2006). 

Interestingly, H3K27me3 (silent mark) and H3K36me3 (active mark) present along the 

gene body but physically segregated in different alleles, were shown to account for most 

of the distinction between autosomal monoallelic and biallelic genes (Figure 1.3). This 

chromatin signature was found in up to 20% of the ubiquitously expressed genes and 

over 30% of tissue-specific genes, and was suggested to be a general feature of RMAE. 

Interestingly, more than 80% of genes under RMAE in differentiated cells were marked 

by bivalent promoters (with the silent and active marks physically linked to the same 

sequence) and in progenitor cells. These genes, drivers of differentiation, play a crucial 

role in determining cell fate during development. By drawing parallels with embryonic 
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stem cells, it was speculated that bivalent genes with poised chromatin, which are silent 

upon reaching a point of lineage commitment, can turn into an active or inactive state 

independently for the two alleles, resulting in monoallelic expression. In this case, one 

of the alleles can become stably silent (and enriched with gene body repressive mark), 

while the other becomes stably active (and enriched with gene body active mark). There 

is also some probability that both alleles become active, resulting in a biallelic state. 

After this resolution, the state is locked (Nag et al., 2013). This feature was proposed to 

be used as a proxy to predict genes under RMAE. A classifier based on these bivalent 

chromatin marks was developed and validated for different human and mouse cell types 

(Nag et al., 2013, 2015). Bivalent domains were also observed in promoters of allelically 

skewed genes enriched for development and cell differentiation players in mouse 

embryonic fibroblast lines (Savol et al., 2017).  

 

1.1.4. Consequences  

The obvious biological consequence of RMAE for the organism is phenotypic diversity at 

the cellular level (Figure 1.1). A textbook example of the functional importance of RMAE 

is the DNA rearrangement mechanism that generates a diverse repertoire of cells, each 

with a single and unique antigen receptor, which is necessary for proper functionating 

of the immune system because it avoids dual specificities (Chi et al., 2020). Another 

example of this type of functional importance is the RMAE of odorant receptors, which 

results in the production of different sensory olfactory neurons, each with only one 

expressed receptor (Chess et al., 1994), a feature necessary for odor detection and 

guiding the axons to the proper glomeruli (Wang et al., 1998). This role of RMAE in the 

formation of a precise topographic map was revealed by genetic experiments. When a 

deletion or non-sense mutation was introduced in the Op2 olfactory receptor gene fused 

to lacZ in mouse (to trace the cells), the convergence of the axons into the glomeruli was 

altered. They wandered instead of acquiring a specific location. Additionally, a set of 

substitution experiments was performed where a given odorant receptor sequence was 

replaced by the sequence of another receptor, similarly fused to lacZ. Axons were 
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projected to locations different from the original odorant receptor glomeruli (Wang et 

al., 1998).  

RMAE also contributes to phenotypic diversity for other genes. Even if such diversity for 

a given gene is not as complex as that associated to the antigen and olfactory receptor 

families, the potential for diversity of the combination of genes under RMAE is 

considerable. In the presence of heterozygosity, the biallelic expression will produce 

phenotypically identical cells, whereas RMAE will produce three types of cells: maternal 

monoallelic expression, paternal monoallelic expression, or biallelic expression. When 

we consider more than one heterozygous gene with monoallelic expression, the number 

of combinations of different expression patterns in a single cell will speedily grow in the 

order of 3n (where n is the number of RMAE genes with polymorphic alleles) (Figure 1.1). 

Additionally, a group of human RMAE genes based on chromatin signature (Nag et al., 

2013) showed a higher nucleotide diversity than biallelically expressed genes. This 

increased genetic diversity is mediated by increased mutation and recombination rates 

and balancing selection, indicating that RMAE has an advantage and evolved to boost 

phenotypic diversity at the cellular level (Savova et al., 2016). Many genes recently 

uncovered to be under RMAE are overrepresented in cell surface proteins, indicating 

their role in providing unique cellular identity (Gendrel et al., 2014; Gimelbrant et al., 

2007; Pinter et al., 2015). Furthermore, monoallelic genes tend to be cell type-specific 

and their frequency increases upon cell differentiation, suggesting their significance in 

controlling regulatory pathways of lineage commitment and development (Branciamore 

et al., 2018; Eckersley-Maslin et al., 2014; Gendrel et al., 2014; Jeffries et al., 2012).  

Monoallelically expressed genes usually have lower gene expression when compared to 

the biallelically expressed ones (Eckersley-Maslin et al., 2014), so even in the absence of 

heterozygosity, monoallelic expression can lead to cellular diversity resulting from 

differential gene expression and consequent differential protein dosage (Chess, 2013). 

Furthermore, this differential expression of genes expressed from one and two alleles 

has potential in fine-tune gene dosage, which can be important for cell development or 

response to stimulus (Gendrel et al., 2014; Marion-Poll et al., 2021). 
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Despite the advantages of cellular phenotypic diversity, random monoallelic expression 

can present disadvantages. In the presence of heterozygosity, monoallelic gene 

expression exposes an organism to the risks associated with the unmasking of recessive 

mutations, contributing to disease. Examples of such genes under monoallelic 

expression were found in several studies. In experiments performed by Gendrel et al. 

(2014) in NPCs, several genes involved in human autosomal-dominant disorders were 

found to be under RMAE, such as Eya1 and Six1, Eya4, Bag3, SNCA, and Cal9a3, which 

are implicated in branchio-oto renal (BOR) syndrome and deafness (Kumar et al., 1998; 

Ruf et al., 2004), deafness syndrome (Wayne et al., 2001), childhood muscular dystrophy 

(Selcen et al., 2009), Parkinson's disease (Polymeropoulos et al., 1997), and multiple 

epiphyseal dysplasias (Bönnemann et al., 2000), respectively. The RMAE of these genes 

is mitotically stable in clonal neural progenitor cells. RNA-FISH was performed in the 

kidney and eye, and it was shown that Eya1 and Eye4 tend to be monoallelically 

expressed in vivo during the development of organs known to be affected in these 

disorders (Gendrel et al., 2014).  

In NPCs, the Dfna5 gene, implicated in deafness (Van Laer et al., 1998), and the Bag3 

gene, associated with muscular dystrophy (Selcen et al., 2009), were shown to be 

monoallelically expressed (Eckersley-Maslin et al., 2014). Another gene, MYO6, 

associated with deafness (Melchionda et al., 2001), is also monoallelically transcribed 

(Gimelbrant et al., 2007). In addition, genes associated with muscular dystrophy Hsp8 

(Ghaoui et al., 2016) and TTN (Gerull et al., 2002) were found to be under monoallelic 

expression (Gendrel et al., 2014; Jeffries et al., 2012). Additional examples of genes such 

as FOXP2 (Adegbola et al., 2015) implicated in speech and language disorder (Lai et al., 

2001), OTX2 (Jeffries et al., 2012) in dystrophia of retinal pigment epithelium (Vincent 

et al., 2014), Gja1 (Li et al., 2012) in oculodentodigital dysplasia (Paznekas et al., 2009) 

and Gli2 (Zwemer et al., 2012) in hypopituitarism (Arnhold et al., 2015), RBFOX1 (Jeffries 

et al., 2016) in autism (Sebat et al., 2007), Agc1 (Wang et al., 2007) in arrested 

psychomotor development, hypotonia, and seizures (Wibom et al., 2009), Tbx5 gene 

(Gui et al., 2017) in Holt-Oram syndrome (Basson et al., 1994, 1997) and HoxB genes 
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(Savol et al., 2017) in cancer (Li et al., 2019) were also revealed to be under random 

monoallelic expression. 

Correct gene dosage of random monoallelic genes can have important implications. 

There are two genes under random monoallelic expression associated with 

neurodegenerative diseases. APP, which was identified as monoallelically expressed in 

the first genome-wide study of RMAE in B cells (Gimelbrant et al., 2007), is associated 

with Alzheimer's disease (Mullan et al., 1992). Moreover, SNCA, which was identified as 

monoallelically expressed in different studies in neural progenitor cells (Eckersley-

Maslin et al., 2014; Gendrel et al., 2014) and B cells (Gimelbrant et al., 2007), is 

associated with Parkinson's disease. In Alzheimer's disease, excess of APP results in the 

formation of amyloid plaques (Rovelet-Lecrux et al., 2006). In contrast, in Parkinson's 

disease, the increase of SNCA leads to the formation of Lewy bodies (Singleton et al., 

2003). It has not been explored if these genes are monoallelically expressed in relevant 

brain regions in vivo. However, if this is true, the dysregulation of monoallelic expression 

of these genes with aging could lead to the manifestation of the disease (Gendrel et al., 

2016). Thus, random monoallelic expression can cause pathological conditions either 

through the dosage difference between one or two expressed alleles or by expressing 

one out of two functionally different alleles. However, without a comprehensive 

statistical analysis, it is important to stress that it is unclear if the association of RMAE 

to disease is real or spurious. 

Jeffries et al. (2013) have found an overrepresentation between genes under RMAE 

previously identified in clonal NSCs (Jeffries et al., 2012) and candidate risk genes from 

association studies for schizophrenia, which were taken from the Genetic Association 

Database (Becker et al., 2004). Genetic association studies are used to correlate 

candidate genes with disease or genetic variation. Furthermore, a higher number than 

predicted of monoallelically expressed genes in this cell type was found at the copy 

number variation datasets associated with autism and schizophrenia (Jeffries et al., 

2013). 
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A more recent study investigated 200 newly derived NPC clones from mouse ESCs, 

before and after differentiation, revealing the expression of 12 genes previously 

identified to be under RMAE (Gendrel et al., 2014; Gimelbrant et al., 2007) that are 

involved in development and associated with diseases. This set of genes includes App, 

which was previously found to be monoallelically expressed in NPC and B-

lymphoblastoid clones, but in hippocampal mouse neurons showed biallelic expression 

when analysed in vitro by RT-PCR or in vivo by pyrosequencing. However, highly variable 

patterns and degrees of allelic imbalance were observed between clones (Marion-Poll 

et al., 2021).  

The importance and implications of random monoallelic expression in vivo have not 

been addressed yet. Most works that studied the correlation of RMAE with disease show 

that monoallelic expression has a particular role in brain function and development, but 

probably because most experiments were performed in clonal neural cells, such as 

neural progenitor cells differentiated from embryonic stem cells (Eckersley-Maslin et al., 

2014; Gendrel et al., 2014; Marion-Poll et al., 2021) and neural stem cells (Jeffries et al., 

2012, 2016; Li et al., 2012; Wang et al., 2007). 

 

1.2. Hematopoietic stem cells 

Hematopoietic stem cells (HSCs) were first identified in 1961 by showing that the 

injection of bone marrow cells into lethally irradiated mice leads to the development of 

hematopoietic colonies in the spleens of recipient mice (Till and McCulloch, 1961). Since 

then, HSCs have been extensively explored. An enormous effort has been made to 

isolate pure HSCs and identify their function, key molecular pathways, and regulation 

mechanisms. Different approaches based on fluorescence-activated cell sorting (FACS) 

and characteristic cell surface markers, including signalling lymphocyte activation 

molecules (SLAM) and/or vital dye staining, have been developed to improve HSC 

enrichment and their progenitors (Adolfsson et al., 2001; Akashi et al., 2000; Goodell et 

al., 1996; Kiel et al., 2005; Kondo et al., 1997; Okada et al., 1992; Osawa et al., 1996).  
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HSCs inhabit the bone marrow. They have the unique self-renewal capacity to maintain 

the pool of stem cells. They can progressively give rise to all functional hematopoietic 

cells through extensive proliferation and differentiation (Cheng et al., 2020; Mayle et al., 

2013). They sustain the hematopoietic system in the right cell type and cell number by 

producing all the blood cells, i.e., the lymphoid blood cells (B cells, T cells, natural killer 

(NK) cells, and dendritic cells) and myeloid blood cells, which encompass platelets, 

erythrocytes, basophils, neutrophils, eosinophils, macrophages, and monocyte-derived 

dendritic cells. In contrast to other multipotent progenitor cells, only HSC can self-renew 

for long enough to maintain the hematopoietic system for a lifetime (Cheng et al., 2020; 

Dick, 2003; Mayle et al., 2013; Reya, 2003; Schroeder, 2010). They are a very rare cell 

population; only 1 in 12,500–25,000 adult mouse bone marrow cells is an HSC (Kiel et 

al., 2005; Uchida et al., 2003; Yang et al., 2005).  

Using cell isolation protocols that define the expression of cell surface markers and 

transplantation and colony assays, which characterize the functional and differentiation 

ability of the HSCs, a classic model of hematopoietic tree based on immunophenotyping 

was developed around the year 2000. This model was proposed to explain better the 

relationship of HSCs with progenitor cells and their differentiation steps (Akashi et al., 

2000; Kiel et al., 2005; Kondo et al., 1997; Manz et al., 2002; Morrison et al., 1997; Yang 

et al., 2005). In this linear branching model (Figure 1.4), HSCs occupy the top of a 

hierarchy. Multipotent long-term HSCs (LT-HSCs) can originate the same daughter cell 

or differentiate into discrete multipotent, oligopotent, and subsequently unipotent 

progenitor cell stages in a stepwise manner by several subsequent binary branching 

decisions. It is assumed that LT-HSCs are a homogenous cell population. LT-HSCs have a 

long-term reconstitution capacity (>3 months) with the production of all blood cells with 

the initial differentiation into short-term HSCs (ST-HSCs). These cells have short-term 

reconstitution potential (<1 month) due to the reduced self-renewal capacity and 

subsequently differentiate into multipotent progenitors (MPPs). After this, the first 

bifurcation originates oligopotent common lymphoid progenitors (CLPs) and common 

myeloid progenitors (CMPs). CLPs have lymphoid potential and give rise to B, T, and NK 

cells. On the other hand, CPMs undergo a second bifurcation and originate granulocyte- 
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Figure 1. 4.Hematopoiesis models. The classical model assumes that HSCs are a 
homogeneous population of cells. All blood cells come from the HSC pool through a 
differentiation process (lineage commitment) that is characterized by discrete 
intermediate progenitors, each with reduced self-renewal ability. The HSC sits at the top 
of the hierarchy, and the binary branching represents the cell fate decisions during 
lineage commitment direction. The first step of lineage commitment is the separation 
of MPPs into CMPs and CLPs. CLPs give rise to lymphocytes, whereas CMPs differentiate 
into MEPs and GMPs. MEPs are progenitors of megakaryocytes/platelets and red blood 
cells. GMPs produce granulocytes, macrophages, and dendritic cells. With the 
improvement of HSC isolation, new cell surface markers, and a large collection of works 
based on single-cell or limiting dilution cell transplantation, new findings on HSC were 
revealed. This led to a revised version of the classical model. This model includes a new 
branching decision, the first lineage separation that produces CMPs and LMPPs. CMPs 
give rise to MEPs and GMPs. LMPPs produce CLPs and also GMPs. Additionally, a direct 
shortcut into the megakaryocytic lineage was suggested (dashed lines). As these two 
models cannot explain the heterogeneity of the HSC compartment, a new model was 
proposed. In this model, it is assumed that HSC is a heterogeneous pool of cells and this 
heterogeneous behavior of HSC is an intrinsic feature epigenetically established early in 
development. Hematopoiesis is defined as a continuous flow of differentiation and 
emergence of lineage trajectories independent of each other without obvious 
hierarchical boundaries. The classical Waddington landscape is used to visualize this 
model. HSC, hematopoietic stem cell; MPP, multipotent progenitor; CMP, common 
myeloid progenitor; CLP, common lymphoid progenitor; LMPP, lymphoid-primed 
multipotent progenitor; MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-
macrophage progenitor; MgK, megakaryocytes; RBC, red blood cells; Mac, macrophage; 
Gr, granulocyte; DC, dendritic cell; NK, natural killer cell.  
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macrophage progenitors (GMPs) and megakaryocyte-erythrocyte progenitors (MEPs). 

GMPs produce granulocytes (basophils, neutrophils, and eosinophils) and monocytes 

(macrophages and monocyte-derived dendritic cells), and MEPs produce 

megakaryocytes that give rise to platelets, erythrocytes, or red blood cells.  

 

1.2.1. Heterogeneity of HSCs 

The classical model of hematopoiesis oversimplifies the complexity of hematopoietic 

stem and progenitor cells, and advances in technologies led to a new interpretation of 

hematopoiesis (Cheng et al., 2020; Schroeder, 2010). Studies on single HSCs found that 

these cells form a heterogeneous pool, as individual HSC can produce different ratios of 

mature blood cells, i.e., individual HSCs show distinct biases toward the myeloid or the 

lymphoid lineages differentiation (Benveniste et al., 2010; Dykstra et al., 2007; Muller-

Sieburg et al., 2002, 2004; Sieburg et al., 2006).  

Muller-Sieburg et al. followed the behavior of individual clonally derived HSCs using a 

long-term serial repopulation assay. Different HSC clones showed clearly distinguishable 

repopulation patterns. Although the reconstitutions were long-term, the extent and 

kinetics of hematopoietic repopulation were heterogeneous. Daughter HSCs from 

multiclonal grafts showed biased lineage contributions. However, daughter cells derived 

from individual clones had a homogeneous behavior, they were remarkably equivalent 

to each other in the extent and kinetics of repopulation, contributing similarly to the 

myeloid or lymphoid lineages. This homogenous pattern is inheritable, because it is still 

observed in secondary reconstitutions. It was suggested that, although the daughter 

HSCs within each clone behaved similarly, the pool of HSCs in adult bone marrow is 

heterogeneous. This heterogeneity is not generated continuously but early in 

development, and it is largely predetermined (Muller-Sieburg et al., 2002). Later, the 

same group studied the myeloid biased HSCs, which produce normal levels of myeloid 

precursors but reduced precursors for the T- and B- lymphocyte lineages. The lymphoid 

progeny of these cells expresses lower interleukin-7 (IL-7) receptor levels and fails to 

respond to IL-7 in vitro. This reduced response of the lymphoid progeny is epigenetically 
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programmed at the level of the HSCs and acts as a regulatory mechanism to decrease 

lymphopoiesis, thus affecting the number, composition, and function of the mature 

progeny (Muller-Sieburg et al., 2004). Further studies using systematic analysis of HSC 

heterogeneity assessed by clonal long-term repopulation patterns from transplantation 

assays of many individual HSCs confirmed that the HSC pool behaves in a way consistent 

with the idea of heterogeneous subpopulations of HSCs and that this heterogeneity is 

predetermined. It was found that the HSC compartment comprises a limited number of 

subpopulations of HSCs with predictable behaviors. This observation is inconsistent with 

a model in which HSCs are seen as a homogenous population of cells that produce a 

heterogeneous pattern by responding to different stimuli, because if so, each HSC clone 

should recreate the heterogeneity seen in the HSC compartment, and a continuous 

spectrum of clonal kinetic and self-renewal patterns would be observed. Together with 

previous data, it was concluded that the HSC pool comprises a limited number of 

different HSC types, each of them with predetermined and epigenetically fixed 

repopulation and self-renewal patterns (Sieburg et al., 2006).  

Through a large-scale serial transplantation assay at the clonal level, Dykstra et al. found 

that the multipotent HSCs can be divided into four functionally different subpopulations 

(α, β, γ, and δ) with long-term reconstitutions but distinct self-renewal capacity and 

skewed ratios of myeloid and lymphoid generated populations. β cells display features 

conventionally associated with LT-HSCs, with long-term multipotentiality and self-

renewal activity. γ and δ subpopulations show gradually less durable myeloid 

contributions and lack extensive self-renewal capacity, suggesting that these cells are 

developmentally downstream of α and β cells. α cells are myeloid biased subpopulations 

with self-renewal activity and can convert to β cells with lymphopoiesis capacity. β, γ, 

and δ cells can be accommodated into a classical model of hierarchical relationships. 

However, α cells are distinct and do not fit into this model. α and β subsets were 

associated with extensive self-renewal of the original cell transplanted and stable 

propagation of the original repopulating pattern to their progeny, with daughter cells 

from the same clone showing a high degree of similarity. This means that epigenetic 
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mechanisms in the cells intrinsically predetermine this HSC lineage bias before 

transplantation, possibly early in development (Dykstra et al., 2007). 

Further insight about the molecular properties of HSC subpopulations was shown using 

the combination of the “side population” (made of cells with the capacity to exclude 

Hoechst dye by high multi-drug-resistance (MDR)-type transporters) and the CD150 

marker. A very clear gradient of HSCs with distinct phenotypic, functional, and molecular 

characteristics was identified. This gradient describes populations of HSCs with high self-

renewal capacity and myeloid bias or decreased self-renewal capacity and lymphoid bias 

phenotypes. Different responsiveness in vivo and in vitro to TGF-β1 was observed in 

myeloid-biased and lymphoid-biased subpopulations, enforcing their specific features 

and presenting a possible mechanism for the differential regulation of HSC subtype 

activation. The myeloid-biased HSCs exhibited the highest engraftment rate per mouse 

with single-cell reconstitutions and the highest overall contribution to peripheral blood 

generation. Results of secondary transplantation also demonstrated that myeloid-

biased HSCs have a higher self-renewal capacity (Challen et al., 2010). Another group 

confirmed these results and identified different cell populations within the HSC pool 

based on CD150 expression. With extensive single-cell reconstitution assay, the cell 

population with high expression of CD150 was enriched in cells with long-term 

reconstitution capacity, great self-renewal potential, and multilineage potential. These 

cells have latent and hardly detectable myeloid contribution in primary recipients but 

progressive and multilineage reconstitution in secondary recipient mice. Other subsets 

of cells were identified with long-term reconstitutions but limited self-renewal potential 

and lymphoid bias. It was concluded that these differences in reconstitution activity are 

caused by intrinsic differences among HSCs (Morita et al., 2010). 

Differences in self-renewal capacity with multilineage potential of long-term HSCs were 

also observed by the Iscove's group (Benveniste et al., 2003, 2010). Using the CD1149b 

marker and single-cell reconstitutions, intermediate-term HSCs (IT-HSCs) that self-

renew longer than ST-HSCs but shorter than LT-HSCs were identified with erythroid and 

lymphoid lineage capacity. These IT-HSCs are numerically dominant over LT-HSCs and 

separable from LT and ST-HSCs. Because LT- and IT-HSCs are both quiescent, both 
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multipotent for erythro-lymphomyelopoiesis, and both present sufficient self-renewal 

capacity to produce detectable systemic grafts from a single cell, the key difference 

being the ability to sustain self-renewal in to the long-term, it was suggested that the 

first step in stem cell differentiation is not the loss of the mechanism that executes self-

renewal but the loss of the mechanism that sustains self-renewal capacity in LT-HSCs. 

This heterogenous self-renewal capacity was attributed to inherent cellular 

characteristics rather than stochastic decisions made after transplantation (Benveniste 

et al., 2010).  

More recently, heterogeneity in lineage output was confirmed by in situ using barcoding 

methods to clonally trace progenitors and stem cells, suggesting that this heterogeneity 

is not only associated with the emergency of hematopoiesis in transplantation assays 

but also characterizes the unmanipulated hematopoiesis (Rodriguez-Fraticelli et al., 

2018; Yu et al., 2016). Yu et al. created a multi-fluorescent mouse model that enables 

molecular profiling and functional tracking of live cells in vivo. It was found that the 

endogenous HSC pool is composed of highly heterogenous multipotent clones with very 

different cell kinetics, where some HSC clones persist for long intervals while others are 

transient. It was also observed that most hematopoietic populations are mainly 

maintained by a few major HSC clones that are dominant over clones with smaller sizes. 

Furthermore, the stereotypical intraclonal behavior of HSCs was confirmed, i.e., 

daughter cells retain the characteristics of progenitor cells, such as lineage bias and 

proliferative potency. It was also shown that the sensitivity to the stress of inflammation 

or radiation is also a clone-specific feature. This result suggests again that the 

heterogeneous behavioral features of individual HSCs are established early in 

development and are maintained under different circumstances. In this work, gene 

expression and epigenetic features were linked to functional characteristics at a clonal 

level in vivo. It was found that epigenetic features, like DNA methylation and chromatin 

accessibility, dictate how HSC will behave in proliferation and lineage differentiation. In 

contrast, expression levels of lineage-specific genes were not associated with the HSC 

commitment behavior. This epigenetic memory is fixed before the experiment and 

persistent under homeostatic and stress conditions (Yu et al., 2016). 
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Studies at the clonal level using single-cell transplantation and a barcoding assay 

identified in the HSC compartment cells with long-term repopulating activity and self-

renewal capacity but lineage commitment to megakaryocytes (Rodriguez-Fraticelli et al., 

2018; Yamamoto et al., 2013, 2018). Interestingly, paired daughter cell assays combined 

with transplantation suggested that HSCs can differentiate directly to these 

megakaryocyte-restricted cells without passing lineage commitment, i.e., in a non-

stepwise manner (Yamamoto et al., 2013).  

With the additional introduction of other surface markers, a revised model of a classical 

hematopoietic tree emerged, including a direct shortcut into the megakaryocytic lineage 

(Haas et al., 2018; Wilkinson et al., 2020) (Figure 1.4). However, this hierarchical tree-

like model assumes that all mature cells from peripheral blood are originated from a 

single HSC, which can self-renew and originate a pool of homogenous HSC or undergo 

lineage differentiation, producing distinct progenitor populations in a stepwise manner. 

And it cannot explain why the HSC pool consists of multiple HSC subtypes with the 

distinct molecular and functional features previously found. Therefore, a new model 

based om the famous Waddington's epigenetic landscape was proposed for 

hematopoiesis (Karamitros et al., 2018; Rodriguez-Fraticelli et al., 2018; Velten et al., 

2017). Velten et al. integrated transcriptomics, flow cytometric, and functional data at 

the single-cell level to reveal that acquiring lineage-specific biases is a continuous 

process. During this process, each HSC gradually acquires transcriptomic lineage priming 

in a combination of multiple directions without passing through distinct hierarchically 

organized multi- and bi-potent progenitor populations. Thus, unilinear-restricted cells 

emerge directly from a continuum of low-primed undifferentiated hematopoietic stem 

and progenitor cells. This continuum contains multipotent progenitors and 

multilymphoid progenitors, constituting transitory states and not discrete progenitor 

cells. According to this model, in the Waddington's landscape HSCs reside in a flat valley 

at the top and the barriers that represent the acquisition of lineage biases, resulting 

from the distinct gene expression patterns that separate individual lineages, rise early, 

and expand gradually. Lineage commitment is established when barriers become 

insuperable (Velten et al., 2017) (Figure 1.4). This model more appropriately reflects 
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that transcriptional lineage programs are affected by the epigenetic landscape already 

present in the HSC compartment and are associated with the functional lineage biases 

of HSCs (Haas et al., 2018; Yokota, 2019). Interestingly, differentiation through the 

commitment barriers can be changed in very specific conditions. It was shown that the 

deletion of Pax5 leads committed B cells (pre- / pro-B cells) to dedifferentiate back into 

uncommitted hematopoietic progenitors cells and then follow other differentiation 

paths and produce various myeloid and lymphoid in vivo and in vitro (Cobaleda et al., 

2007; Mikkola et al., 2002; Nutt et al., 1999b; Rolink et al., 1999; Schaniel et al., 2002). 
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2. Objectives 
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Clonal monoallelic expression of autosomal genes has been well documented in studies 

performed in collections of clones expanded in vitro without undergoing differentiation or 

under limited differentiation. But its prevalence in vivo is controversial due to a lack of 

studies that reflects the technical challenge of tracking and isolating clonal cell 

populations in vivo. The murine hematopoietic system offers a unique opportunity to 

approach this biological question. In this system, it is possible to create clonal 

populations emerging from a single HSC and produce different lineages that undergo 

distinct specific genetic programs. In addition, there are numerous tools to label and 

then easily isolate by FACS different hematopoietic populations present in the bone 

marrow, secondary lymphoid organs, and blood. Moreover, it is known that the HSC 

compartment is heterogeneous. This heterogeneity is possibly the result of intrinsic 

epigenetic features established early in development that are clonally propagated to 

daughter cells, and may be responsible for lineage biases. Through single-HSC 

transplantation in mice, the main objective of this study is to perform for the first time 

a genome-wide transcriptome analysis of different lymphocyte populations emerging 

from a single HSC in vivo. This approach will evaluate whether genes with specific-allele 

expression patterns in the autosomes, which are established early in development, are 

clonally maintained through extensive cell division and differentiation. We will focus on 

the comparison of the same differentiated cell population (such as B and T populations) 

collected from different animals reconstituted with a single HSC (monoclonal mice) or 

several HSCs (the polyclonal controls). The cell population will be the constant in this 

setting, and the original HSC will be the variable.  

As the entire project is based on the efficiency of mouse reconstitutions and the 

production of a truly monoclonal hematopoietic system, optimization and internal 

controls are essential. These are described in the first part of this work, which is divided 

in three parts. In 1). optimization of single-HSC reconstitutions, the different cell sorting 

protocols are described and evaluated. In 2). multilineage and long-term of 

reconstitutions, the mice reconstituted with single or multiple HSCs are characterized. 

And in 3). evaluating the quality of the collected samples the monoclonality and purity 

of the samples are addressed. The second part is focused on the analysis of the genome-
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wide transcriptome data. In 4). quality of RNA-seq and samples, the quality of the 

transcriptome data and the samples are evaluated. In 5). identification of autosomal 

allele-specific expression, the persistence of stable RMAE marks in HSC-derived 

lymphocytes through extensive cell proliferation and differentiation in vivo is addressed, 

RMAE is compared to XCI in terms of clonal stability, and the frequencies of RMAE in 

clones undergoing extensive differentiation in vivo and clones expanding in vitro without 

differentiation are compared. In 6). identification of XCI escapees, a new method to 

study XCI and XCI escapees in genetically unmanipulated system in vivo is presented. 

Finally, in 7). identification of genes with differential AI between B and T cells, it is 

shown that these differences have a genetic basis.  
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3. Materials and methods 
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3.1. Animal breeding 

All mice were bred and maintained at the specific pathogen-free animal facilities of the 

Instituto Gulbenkian de Ciência (IGC, Oeiras, Portugal). C57BL/6J-Ly5.1 (C57BL/6J strain 

carrying the pan-leukocyte marker Ly5.1), C57BL/6J-Ly5.2 (C57BL/6J strain carrying the 

pan-leukocyte marker Ly5.2), C57BL/6J-Ly5.2/ β-actin-GFP (C57BL/6J strain carrying the 

pan-leukocyte marker Ly5.2, and with GFP under the control of a chicken beta-actin 

promoter) and CAST/EiJ were originally received from The Jackson Laboratory (Bar 

Harbor, ME, USA). Animals used in reconstitution experiments were bred at our animal 

facility to generate female heterozygous F1 donor (CAST/EiJ x C57BL/6J-Ly5.2) and 

recipient (CAST/EiJ x C57BL/6J-Ly5.1) animals. Donor animals used in cell transfer 

experiments were <5 weeks old, and recipient animals were 5—16 weeks old. This 

research project was reviewed and approved by Órgão Responsável pelo Bem-Estar dos 

Animais (ORBEA) of IGC (PTDC/BEX-BCM/5900/2014 reference) that regulates the use 

of laboratory animals. 

 

3.2. HSC isolation 

The bone marrow was flushed out from the tibia and femur using a syringe and single-

cell-suspended in FACS buffer (1x PBS, 2% FBS). The erythrocytes were lysed with red 

blood cell lysis buffer (RBC lysis buffer) (155 mM NH4Cl, 10 mM NaHCO3, 0.1 mM EDTA, 

pH 7.3) for 5 min and immediately rinsed and washed with FACS buffer. The cells were 

blocked with FcBlock (anti-CD16/32) at 4°C and washed. Enrichment for negative lineage 

cells was performed by incubating cell suspension with a cocktail of biotin-conjugated 

antibodies for surface markers of lineage-committed cells (Table 3.1) and, subsequently, 

lineage-marked cells were depleted using MACS Streptavidin MicroBeads (Miltenyi 

Biotec) for negative selection of lineage-positive cells by immunomagnetic separation 

using a MACS column (Miltenyi Biotec). Cells were further stained with PI and 

fluorophore-conjugated antibodies to isolate LT-HSCs (Table 3.1). During all washing 

steps, centrifugations were performed at 300 x g and 4°C. All staining incubations were 

carried out for 20 min at 4°C, except FITC-CD34, which was done for 90 min. LT-HSCs 
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were sorted on a FACSAriaII using the single-cell deposition unit into the individual wells 

of Terasaki plates (no. 452256, MicroWell 60-well MiniTray, Nunc Brand, Thermo Fisher 

Scientific Inc.) preloaded with 15 µL of FACS buffer. Each well was examined in a 4°C 

room using an inverted microscope, and only the wells with a single cell were used in 

the reconstitutions. Cells from wells were transferred to an individual 1.5 mL tube 

performing the washing of the wells. The 50—200 HSCs used to reconstitute polyclonal 

donor animals were sorted directly to the tube. To avoid cellular death, the cell 

suspension was always kept at 4°C starting from tibia and femur isolation until injection 

into recipient animals. 

 

Table 3. 1. Antibodies used for staining lineage-committed cells and long-term 
hematopoietic stem cells according to the different protocols tested in this work. 

Staining Anti- Conjugation  

Lineage-committed cells CD45R/B220 Biotin  

anti-CD19 

CD11b/Mac1 

Ly-76/Ter119 

Ly6G/Gr1 

CD3 

LT-HSCs protocol 1 CD34 FITC 

CD135 PE 

LT-HSCs protocol 2 CD48 BV421 

CD150 PE 

LT-HSCs protocol 3 CD34 A700 

CD135 PE 

CD49b BV711 

 

3.3. Animal reconstitutions 

Recipient females (5–16 week-old) received sublethal whole-body g-irradiation with 600 

cGy (Gammacell 2000 Mølsgaard Medical), 2–6 h before an intravenous retro-orbital 

injection with single-HSC or 50–200 HSCs. Recipient animals were analyzed routinely 

four weeks after injection and every two weeks for up to 12 weeks for chimeric cells in 

the peripheral blood. Blood samples were collected from the submandibular vein in 

EDTA. Erythrocytes were lysed using RBC lysis buffer for 5 min and immediately rinsed 

and washed with FACS buffer. Cells were further stained with PE-conjugated anti-Ly5.1 
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and FITC-conjugated anti-Ly5.2 antibodies washed and analyzed by FACSCanto or 

FACScan. 

 

3.4. Processing of animal samples 

Animals selected for subsequent analysis showing chimeric cells 12 weeks post-

reconstitution were sacrificed and processed by removing thymi, spleens, and bone 

marrows. Single-cell suspensions from bone marrow were obtained as described above 

using a syringe and a 70-µm nylon mesh for the spleen and thymus. Erythrocytes were 

lysed with RBC lysis buffer for 5 min and immediately rinsed and washed with FACS 

buffer. Around 30% of cell suspension from bone marrow was saved for reconstitution 

of sublethally irradiated secondary recipient female mice, injected by intravenous retro-

orbital administration, and analyzed for chimerism four weeks post-injection as 

described above. Different stainings with labeled antibodies were used to analyze and 

sort lymphoid populations in the spleen and thymus and myeloid population in bone 

marrow or spleen with FACSAriaII, after cell blocking with FcBlock (anti-CD16/32) and 

washing. Different antibodies (Table 3.2) were combined with PI in each single-cell 

reconstitution experiment. All FACS data were analyzed using the FlowJo program.   

 
Table 3. 2. The different combinations of antibodies used in 16 single-cell 
reconstitution experiments. 

Experiments Anti- Conjugation  Tissue 

1-7 Ly5.1 APC-Cy7 Common  

Ly5.2 PE 

CD19 PE-Cy7 Spleen  

IgM APC 

Mac1 BV786 

CD4 PE-Cy7 Thymus 

CD8 BV605 

B220 PE-Cy5 Bone marrow 

IgM APC 

8-16 Ly5.1 FITC Common 

Ly5.2 PE 

CD19 PE-Cy7 Spleen 

IgM APC 

CD4 PE-Cy7 Thymus 

CD8 BV605 

Mac1 BV786 Bone marrow 
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3.5. RNA and DNA extraction 

After cell sorting, pellets were harvested by centrifugation and resuspended in 0.25 mL 

of cold TRIzol Reagent or 0.1 mL of Absolutely RNA Nanoprep Kit (Agilent #400753) lysis 

buffer. The suspension was homogenized by pipetting up and down several times to lyse 

the cells. Homogenized samples were stored at -80°C until isolation. RNA isolation with 

Absolutely RNA Nanoprep Kit was performed according to the manufacturer's protocols. 

Isolation with TRIzol followed the next steps. After incubation for 5 min for complete 

dissociation of the nucleoproteins complex, 0.1 mL of chloroform was added to the 

suspension, which was left 3 min for incubation and then centrifuged for 15 min at 

12,000 x g at 4°C to separate the sample into a lower red phenol-chloroform, and 

interphase, and a colorless upper aqueous phase. The lower phase and interphase were 

saved for DNA extraction. The aqueous phase containing RNA was incubated with 10 μg 

of RNase-free glycogen for co-precipitation with RNA and 0.3 mL of isopropanol for 10 

min at 4°C. The sample was centrifugated at 12,000 x g for 10 min at 4°C to recover the 

pellet, which was then resuspended in 0.7 mL of 75% ethanol, centrifugated at 7,500 x 

g for 5 min at 4°C and air-dried after discarding the supernatant. RNA was resuspended 

in 20 μL of RNase-free water and stored at -80ºC until processing.  

0.2 mL of 100% ethanol was added to the lower phase and interphase for DNA 

extraction. The sample was incubated for 3 min and centrifugated at 2,000 x g at 4°C for 

5 min to recover the pellet. This was resuspended in 0.5 mL of 0.1 M sodium citrate in 

10% ethanol (pH 8.5), incubated for 30 min, and centrifugated at 2,000 x g at 4°C for 

washing. Next, the washed pellet was resuspended in 1 mL of 75% ethanol, incubated 

for 20 min, and centrifugated at 2,000 x g at 4°C. Finally, the supernatant was discarded, 

the pellet was air-dried, resuspended in 20 μL of H2O, and stored at -20°C until 

sequencing. 

 

3.6. Monoclonality screening 

RNA was isolated from the same repopulated animals using sorted cell populations 

other than the sequenced ones to test for monoclonality before sequencing. According 
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to the manufacturer's recommendations, cDNA was prepared using SuperScript IV 

(ThermoFisher #18090050). The Xist locus was amplified in two individual reactions 

using two sets of primers to produce amplicons with two different SNPs: Fw1 

5’agacgctttcctgaacccag with R1 5’aagatgctgcagtcaggc; and Fw2 

5’ggagtgaagagtgctggagag with R2 5’gtcagtgccactattgcagc. PCR mix was performed with 

0.75 units of GoTaq DNA polymerase (Promega #M3005), 1 x GoTaq reaction buffer, 0.2 

mM of each dNTPs, 1.5 mM of MgCl2, 1 μM of each primer, and 10—50 ng of RNA in a 

final volume of 10 μL. Amplicons were amplified using the following program: 5 min at 

95°C, 45 cycles of 30 s at 95°C, 30 s at 60°C, and 25 s at 72°C, and a final elongation of 7 

min at 72°C. The amplicons were separated in a 1.5 % agarose gel, purified with columns, 

and sequenced by Sanger sequencing with Fw1 or R2 primers. 

 

3.7. cDNA library preparation and whole-transcriptome sequencing 

Omega Bioservices, USA, performed cDNA library preparation and whole-transcriptome 

sequencing. According to the manufacturer's protocol, 2-3 RNA-sequencing libraries per 

RNA sample were prepared using SMART-Seq v4 Ultra Low Input RNA Kit (Clontech). 

Technical replicates of 10 ng of RNA were used as input. The RNA was primed by an 

oligo(dT) primer (3’ SMART-Seq CDS Primer II A), and first-strand cDNA synthesis was 

performed at 42°C for 90 min and 70°C for ten min. The resulting cDNA was then 

amplified via PCR using the following program: 1 min at 95°C, eight cycles of 10 sec at 

98°C, 30 s at 65°C, and 3 min at 68°C, and a final elongation of 10 min at 72°C. 15–200 

pg full-length cDNA was tagged and fragmented by the Nextera XT transposome 

(Illumina) and amplified by PCR: 30 s at 95 °C, 12 cycles of 10 s at 95 °C, 30 s at 55 °C, 

and 30 s at 72 °C, then 5 min at 72 °C. Mag-Bind RxnPure Plus magnetic beads (Omega 

Bio-tek) were used to purify the library and provide a size-selection step. The libraries 

were then pooled in equimolar concentrations and sequenced on Illumina HiSeq 2500 

machine (150 bp, paired-end). 
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3.8. DNA library preparation and whole-exome sequencing 

DNA samples (E6.2-B220+IgM+ from bone marrow, E6.43-CD4+CD8- from the thymus, 

and E15.10-CD4+CD8- from thymus) were used for whole-exome sequencing (WES). 

Novogene, UK, performed DNA library preparation and whole-exome sequencing using 

Agilent SureSelect Mouse All ExonV6 kit (Agilent Technologies) following the 

manufacturer's recommendations, and x index codes were added to attribute 

sequences to each sample. The genomic DNA samples were randomly fragmented by 

sonication (Covaris) to the size of 180–280 bp fragments. The remaining overhangs were 

converted into blunt ends via exonuclease/polymerase activities. Adapter 

oligonucleotides were ligated after adenylation of 3’ ends of DNA fragments. DNA 

fragments with ligated adapter molecules on both ends were selectively enriched in a 

PCR reaction. The libraries were hybridized with biotin-labeled probes, and magnetic 

beads with streptomycin were used to capture the exons. After washing beads and 

digesting the probes, the captured libraries were enriched in a PCR reaction to add index 

tags. The products were purified with the AMPure XP system (Beckman Coulter). DNA 

libraries were sequenced on an Illumina platform (150 bp, paired-end). Read alignment 

and allele counts were based on the ASEReadCounter* pipeline. Genes with total allelic 

counts of <10 and genes with nominal AI >0.75 or <0.25 were excluded. 

 

3.9. VDJ clonotypes 

Immunoglobulin rearrangements were detected by aligning RNA-seq raw data with 

reference germline V, D, J, and C gene sequences, and assembled into clonotypes with 

MiXCR-3.0.12 15 (Bolotin et al., 2015, 2017). 

 

3.10. Allele-specific gene expression analysis from RNA-seq 

RNA-seq data analysis for allelic imbalance estimation followed the ASEReadCounter* 

tool adapted from the GATK pipeline (Castel et al., 2015) for the pre-processing read 

alignment steps up to allele counts, and the statistical R package Qllelic.v0.3.2 for 
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calculation of the QCC (quality control correction for technical replicates) and estimation 

of confidence intervals for differential allelic imbalance analysis (Mendelevich et al., 

2021). RNA-seq reads were trimmed from nextera adapters with cutadapt.v.1.14 using 

the wrapper trim_galore. Sequencing reads were aligned with the reference 

pseudogenome (maternal) and imputed (paternal) with the STAR aligner v.2.5.4a, with 

default filtering parameters and accepting only uniquely aligned reads. Samtools 

mpileup (v.1.3.1) was used to estimate allele-specific coverage over SNPs. Point 

estimates of allelic imbalance for a gene were obtained as the ratio of maternal allele 

counts over total allelic gene counts, excluding genes with <10 counts. Pairwise 

comparison of differential AI was performed using the binomial test a with QCC 

correction. Gene abundance counts were obtained with featureCounts from the same 

bam files generated with the ASEReadCounter* alignment pipeline, and abundance was 

estimated as TMM (trimmed mean of M) - normalized counts with edgeR (Robinson and 

Oshlack, 2010). Differential gene expression for B and T samples was performed with 

the same edgeR tool. 

 

3.11. t-distributed stochastic neighbor embedding (t-SNE) analysis 

t-SNE analysis of AI values was performed with the tsen function from the M3C 

algorithm (John et al., 2020).  

 

3.12. Abelson clones 

The v-Abl pro-B clonal cell lines Abl.1, Abl.2, Abl.3, and Abl.4 were derived previously 

from 129S1/SvImJ x Cast/EiJ F1 female mice by expansion of FACS-sorted single cells 

after immortalization (Zwemer et al., 2012). Immortalized B-cell clonal lines were 

cultured in Roswell Park Memorial Institute (RPMI) medium (Gibco), containing 15% FBS 

(Sigma), 1x L-Glutamine (Gibco), 1x Penicillin/Streptomycin (Gibco), and 0.1% β-

mercaptoethanol (Sigma). The culture medium also contained 1% DMSO (because these 

cells were the control set in an experiment using a drug dissolved in DMSO). On day 2 of 
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the culture, 5x106 live cells were collected after sucrose gradient centrifugation 

(Histopaque-1077, Sigma, Cat 10771). RNA was extracted from 2x105 cells using a 

magnetic field bead-based protocol using Sera-Mag SpeedBeadsTM (GE Healthcare). 

According to manufacturers ' instructions, two libraries were prepared per clone using 

the SMARTseqv4 kit (Clontech), starting with 10 ng input RNA for each library. The Abl.1 

clone was sequenced on an Illumina NextSeq 500 machine (75 bp, single-end); clones 

Abl.2, Abl.3, and Abl.4 were sequenced on an Illumina HiSeq 4000 machine (150 bp, 

paired-end). RNA-seq data analysis followed the same pipeline as for HSC-derived clones 

in vivo, except the maternal reference genome, which was 129S1. These data were 

originally generated for the work described in Gupta et al. (Gupta et al., 2021). 

After sucrose gradient collection, the remaining cells were washed with 1x PBS and 

frozen on dry ice for genomic DNA extraction by GenElute Kit (Sigma, #G1N10-1KT). LC 

Sciences (TX, USA) performed library preparation, QC, and whole-exome sequencing 

(50x). SureSelect (Agilent Technologies) was used for exome capture following the 

manufacturer's recommendations. A Hiseq X Ten sequencing instrument (Illumina) (150 

bp, paired-end) generated reads. Read alignment and allele counts were based on the 

pipeline as RNA-seq of Abelson clones, genes with total allelic counts of <10, and those 

with nominal AI >0.7 or <0.3 were excluded (Gupta et al., 2021).  

 

3.13. XCI escapees 

X- linked genes were considered XCI escapees if significant expression from the inactive 

X chromosome was identified in each single-HSC derived sample by comparing the allelic 

ratio value for a given gene with a threshold value calculated for each sample as the 

median of the allelic imbalance distribution for all genes on that sample (to account for 

potential contamination from recipient cells) ± 0.1. The comparisons were performed 

by applying the binomial test with quality control correction for technical replicates 

(QCC) (Mendelevich et al., 2021). To consider a gene as an escapee, we defined three 

criteria: 1) only samples with expression higher than 10 TMM-normalized counts 

(Robinson and Oshlack, 2010) were considered; 2) the median of AI in the control 
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samples (polyclonal and unmanipulated samples) was balanced (0.5±0.2); 3) and AI was 

above the monoclonal sample threshold in at least two samples from the same tissue (B 

or T cells) or above in at least one B cell sample and at least one T cell sample (Figure 

4.21). 

 

3.14. Annotation of XCI escapees along the X chromosome  

Annotation of XCI escapees along the X chromosome was carried out with the 

karyoploteR package (Gel and Serra, 2017). 

 

3.15. Enrichment analysis 

Statistical enrichment analysis of genes with differential AI between B and T cells was 

performed with g: Profiler (Peterson et al., 2020; Raudvere et al., 2019) against all known 

genes in the mouse genome, using a hypergeometric test with the default correction for 

multiple testing (set counts and size). As a control group with the same dimension (146 

genes), a set of randomly selected genes without differential AI between B and T cells 

was used. 

 

3.16. Statistical analysis 

The difference between the AI point estimates of two clones, or the difference of point 

estimate and a threshold for XCI escapees, was accepted as significant after accounting 

for the experiment-specific overdispersion of 2-3 technical replicates with QCC using the 

R package Qllelic.v0.3.2 (Mendelevich et al., 2021). All QCC corrected values incorporate 

Bonferroni correction to account for multiple hypothesis testing. Statistical analyses in 

the study were conducted in R. 
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3.17. Data availability  

The entire set of HSC next-generation sequencing (NGS) raw data (RNA-seq and whole-

exome sequencing) and processed counts files have been deposited to the NCBI’s Gene 

Expression Omnibus database with the series accession number [GEO: GSE174040]. 

Abelson clones RNA-seq (Gupta et al., 2021) data have been deposited with the series 

accession number [GEO: GSE144007]. 
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4. Results 
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4.1. Hematopoietic stem cell reconstitutions 

Vasco M. Barreto contributed to the single-cell reconstitution experiments, data 

analysis, and graphical visualization. 

 

4.1.1. Introduction 

We took advantage of HSCs, which have been studied for a long time and in an 

exhaustive way. They are more well-characterized than other types of adult mammalian 

stem cells. Another convenience of HSCs is that it is much easier to transplant them than 

other stem cells. It is possible to remove HSCs from their niches in a donor mouse and 

inject them into a recipient animal's circulatory blood system, which was previously 

preconditioned to lack a functional endogenous hematopoietic system. These 

transplanted cells can survive, find their way back to their niches, and retain HSC 

potential, thus repopulating the bone marrow and producing all hematopoietic lineages. 

The single-cell transplantation assay has been used as a gold standard to define the 

functional capacity of HSCs, which are characterized by multipotency and sustained self-

renewal (Cheng et al., 2020; Mayle et al., 2013; Schroeder, 2010). Multipotency is 

described by the capacity of HSCs to reproduce the entire hematopoietic system, which 

consists of differentiation into myeloid and lymphoid cell populations. The self-renewal 

capacity is evaluated by the reconstitution kinetics. Initially established multilineage 

populations from an injected single HSC should be stable and persist at least four months 

after transplantation. Additionally, serial transplantation, in which donor cells are 

collected from primary recipients and injected into secondary recipients, is used to 

demonstrate that the original donor HSC can reconstitute the primary recipient system 

and its progeny can successfully reconstitute the secondary recipient, indicating that 

HSC has long-term potent self-renewal capacity (Dykstra et al., 2007; Kiel et al., 2005; 

Wilkinson et al., 2020). In contrast, short-term HSCs can reconstitute primary recipients 

for four months, but they lack potent self-renewal capacity and cannot reconstitute 

secondary recipients (Wilkinson et al., 2020). Another advantage of the single-cell 

transplantation assay is that all progeny detected at any time can be assigned to the 
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same original donor HSC and enable the study of hematopoietic cell populations at the 

clonal level in vivo (Dykstra et al., 2007). 

The produced clonal hematopoietic populations will be analyzed through whole-

transcriptome sequencing to study their allele-specific expression. This analysis is 

necessary to distinguish between the expression of maternal and paternal alleles in cells. 

For this purpose, two murine strains (Cast/Ei (CAST) and C57BL/6 (B6)) that are 

genetically very distant were crossed to obtain a highly heterozygous F1 progeny (Frazer 

et al., 2007). These mice have a high SNP frequency and, consequently, around 83% of  

the genes can be evaluated by the transcriptome analysis (Eckersley-Maslin et al., 2014). 

Additionally, to evaluate the chimerism level in blood or primary and secondary 

hematopoietic organs, we used congenic B6 strains that carry different alleles of Ptprc. 

This gene encodes for two different isoforms of the pan-leukocyte surface marker Ly5, 

known as Ly5.1 and Ly5.2. As the name indicates, this marker is expressed on the surface 

of leukocytes (including myeloid and lymphoid populations). Using monoclonal 

antibodies for the two isoforms and flow cytometry, it is possible to distinguish cells 

derived from the single donor cell and recipient cells in a simple and consistent way 

(Wilkinson et al., 2020).  

As the success of this project depends on the establishment of the monoclonal 

hematopoietic system, we used only female animals for reconstitutions. This choice 

allows us to take advantage of XCI and evaluate a posteriori if recipient animals were 

reconstituted with one or very few cells as opposed to many HSCs. To guarantee dosage 

compensation of X-linked genes between XX females and XY males, one of the X 

chromosomes is randomly inactivated early in the development of the female 

mammalian embryo. The expression of Xist induces the inactivation of the X 

chromosome from which this non-coding RNA is stochastically transcribed (Maduro et 

al., 2016). This choice is clonally propagated and leads to mosaicism. One-half of the 

cells have inactivated the paternal X chromosome, and the other half have inactivated 

the maternal X chromosome. By injecting a single HSC from a female that has previously 

inactivated one of the two X chromosomes, we should observe the emerging 

hematopoietic cells all with the same inactivated X chromosome. On the other hand, if 
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more than one HSC is injected to reconstitute the recipient animal, in most cases we 

should detect a mixture of cells with the paternal and maternal inactivate X 

chromosomes (Figure 1.1). Given the high density of SNPs present in heterozygous F1 

hybrid mice, allele-specific expression of Xist by Sanger sequencing and later of X-linked 

genes by whole-transcriptome sequencing will be applied to confirm the monoclonality 

of the collected samples.  

 

4.1.2. Optimization of single-HSC reconstitutions 

To study stable allele-specific transcriptional states, we introduced a single HSC from a 

donor female mouse into a sub-lethally irradiated recipient female animal. 

Heterozygous F1 hybrid donor mice were produced by crossing CAST x B6Ly5.1/Ly5.1. In 

parallel, F1 hybrid recipient mice were obtained by crossing CAST x B6Ly5.2/Ly5.2. As 

mentioned before, the pan-leukocyte surface markers Ly5.1 and Ly5.2 are labeled by 

two different antibodies (which do not label the leukocytes from CAST; Figure 4.1 A). 

The injected single cell was left to expand and differentiate inside the donor for at least 

12 weeks to produce clonal multilineage hematopoietic cell populations (monoclonal 

animals). Additionally, 50–200 HSCs were also transplanted per animal to generate 

oligoclonal or polyclonal control populations (oligoclonal or polyclonal animals). At the 

end of 12 weeks after injection, animals with chimerism levels in the peripheral 

hematopoietic system higher than 1% (monitored by blood flow cytometric analysis) 

were used to collect different cell populations from different organs, and bone marrow 

cells were used for secondary transplantation to confirm the self-renewal potential of 

injected HSCs (Figure 4.1 B). 

The first implemented step in this work was the optimization of protocols for the 

isolation of highly pure HSCs. The HSC population is highly heterogeneous, with different 

subpopulations belonging to LT-HSC, ST-HSC, and even IT-HSC (Benveniste et al., 2010). 

There is no single marker to discriminate LT-HSCs from other hematopoietic cells in the 

bone marrow. Several protocols based on multiparameter flow cytometry were 

developed to isolate highly pure HSCs. The conventional strategy to obtain  HSCs  starts  
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Figure 4. 1. Strategy to produce the monoclonal hematopoietic system in vivo. (A) 
Ly5.1 and Ly5.2 pan-leukocytic markers distinguish recipient from donor cells in 
reconstituted animals, respectively. Ly5.1 and Ly5.2 do not label the CAST progenitor 
line. When CAST is crossed with B6Ly5.1/Ly5.1 and B6Ly5.2/Ly5.2 to produce the recipient and 
donor F1 animals, respectively, the recipient and donor cells are distinguishable using 
these two markers. Blood samples of progenitor and descendants (F1) were lysed for 
red cells, stained with FITC-conjugated anti-Ly5.2 and PE-conjugated anti-Ly5.1, and 
analyzed using FACSCanto. (B) Schematic representation of monoclonal and polyclonal 
hematopoietic system establishment in vivo. A single hematopoietic stem cell (HSC) or 
50–200 HSCs were injected into sub-lethally irradiated recipient mice to generate a 
monoclonal or polyclonal hematopoietic system. Different donor mice were used in 
each experiment. Secondary reconstitutions and isolation of B/T cell populations were 
performed after 12 weeks of cell differentiation in vivo.  
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with enrichment of the bone marrow population with stem cells. A cocktail with a 

combination of different markers against differentiated cells is used to deplete lineage-

positive blood cells, thus selecting the negative lineage population (Lin-). In addition, 

positive selection for Sca-1 and cKit markers, known to be expressed on the surface of 

HSCs, is used to obtain the LSK (Lin-Sca-1+cKit+) population, which contains LT-HSCs but 

still has ST-HSCs and MPPs (together known as hematopoietic stem and progenitor cells 

(HSPCs)). Several additional selection strategies using specific surface markers are 

applied to isolate pure LT-HSCs (Mayle et al., 2013). We tested three different protocols 

for HSC isolation and two approaches for single-cell reconstitution (Figure 4.2 A). All 

three protocols were based on the first gating to select the LSK population for HSC 

enrichment and then for LT-HSCs: 1). CD34-CD135- (Adolfsson et al., 2001); 2). CD48-

CD150+ (Kiel et al., 2005); and 3). CD34-CD135-CD49b- (Benveniste et al., 2010). We also 

tested two approaches with protocol 2 (CD48-CD150+) based on SLAM family markers. 

In the second approach (protocol 2.2), we injected 2 HSCs in the same donor animal to 

improve the percentage of reconstituted animals, expecting to double the chance of 

reconstitutions. However, since we need to study clonally expanded blood cells, and to 

distinguish between 2 injected HSCs, we used one HSC from donor F1 hybrid mouse 

derived from crossing CAST x B6 Ly5.2/Ly5.2 / β-actin-GFP/ β-actin-GFP. These mice present 

widespread GFP fluorescence, enabling the discrimination from the second injected HSC 

without fluorescence (Figure 4.2 A). The HSCs were single-cell sorted by flow cytometry 

into Terasaki plates, and each well was confirmed to contain only one cell under a 

microscope inside a cold room to avoid cell death (Figure 4.2 B). After that, cells were 

introduced intravenously by retro-orbital injection into sublethally irradiated recipient 

mice and allowed to expand in vivo. A different donor was used for each experiment. 

The contribution of the donor and recipient HSCs to the peripheral hematopoietic 

system was analyzed by staining leukocytes for the donor cells using the Ly5.2 antibody. 

The evaluation of chimerism was performed starting from week four post-injection, as 

a single HSC needs several self-renewal and differentiation steps to produce mature 

progeny and become detectable in the blood (Muller-Sieburg et al., 2002). Donor cell 

estimation was performed every 14 days for eight weeks. In total, 16 experiments were  
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Figure 4. 2. Isolation of pure long-term HSC (LT-HSC) population. (A) The different 
protocols used to separate LT-HSC from short-term HSC and progenitor cells. All 
protocols included the first step of lineage-marked cells depletion using MACS 
Streptavidin MicroBeads. For this, the bone marrow cells of an F1 CASTLy5/Ly5 x B6Ly5.2/Ly5.2 
(protocols 1,2.1, 2.2 and 3) or B6 Ly5.2/Ly5.2 / β-actin-GFP/ β-actin-GFP (protocol 2.2) mouse were 
stained with a cocktail of biotin-conjugated antibodies for surface markers of lineage-
committed cells (anti-B220, anti-CD19, anti-Mac1, anti-Ter119, anti-Gr1, and anti-CD3). 
After depletion, cells were stained with fluorophore-conjugated antibodies according to 
each protocol. Protocol 1: APC-conjugated anti-c-Kit, PE-Cy7-conjugated anti-Sca-1, PE-
conjugated anti-CD34, FITC-conjugated anti-CD135, Streptavidin/Pacific-blue (SAV/PB), 
and PI, and sorted on a FACSAria. The cells were gated for PI- / SAV- to exclude dead cells 
and any remaining lineage-positive cells, then for c-Kit+/Sca-1+ to obtain Lin-Sca+c-Kit+ 
(LSK) cells, and finally gated for CD34-/CD135- to obtain LT-HSCs. Protocol 2.1: APC-
conjugated anti-c-Kit, FITC-conjugated anti-Sca-1, BV421-conjugated anti-CD48, PE-
conjugated anti-CD150, Streptavidin/APC-Cy7 (SAV/APC-Cy7), and PI, and sorted on a 
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FACSAria. The cells were gated for PI- / SAV- to exclude dead cells and any remaining 
lineage-positive cells, then for c-Kit+/Sca-1+ to obtain Lin-Sca+c-Kit+ (LSK) cells, and finally 
gated for CD48-/CD150+ to obtain LT-HSCs. Protocol 2.2: APC-conjugated anti-c-Kit, PE-
Cy7-conjugated anti-Sca-1, BV421-conjugated anti-CD48, PE-conjugated anti-CD150, 
Streptavidin/APC-Cy7 (SAV/APC-Cy7), and PI, and sorted on a FACSAria. The cells were 
gated for PI- / SAV- to exclude dead cells and any remaining lineage-positive cells, then 
for c-Kit+/Sca-1+ to obtain Lin-Sca+c-Kit+ (LSK) cells, and finally gated for CD48-/CD150+ to 
obtain LT-HSCs. GFP+ and GFP- donor bone marrow cells were stained separately with 
the same antibodies for this approach. Then each cell population was individually single-
cell sorted. Protocol 3: APC-conjugated anti-c-Kit, PE-Cy7-conjugated anti-Sca-1, A700-
conjugated anti-CD34, PE-conjugated anti-CD135, Streptavidin/Pacific-blue (SAV/PB), 
and PI, and sorted on a FACSAria. The cells were gated for PI- / SAV- to exclude dead cells 
and any remaining lineage-positive cells, then for c-Kit+/Sca-1+ to obtain Lin-Sca+c-Kit+ 
(LSK) cells, and finally gated for CD34-/CD135- and CD49b- to obtain LT-HSCs. (B) After 
single-cell sorting into Terasaki pates, each well was confirmed under the microscope to 
contain only one HSC.  
 

 

carried out. In each experiment, different HSCs were injected (Table 4.1). Experiments 

were executed as long as recipient animals of the appropriate age were available 

(without waiting for the accomplishment of the previous experiment). These mice 

eventually became unavailable because we were never able to breed the CAST line 

(CAST x CAST) and we eventually ran out of fertile CAST mice to breed with B6 animals. 

From the 16 performed experiments (Table 4.1), in the groups of animals injected a with 

a single and 50–200 cells the average percentages of reconstituted animals were 7.7% 

(35/453) and 76.9% (30/39), respectively. The level of chimerism in the blood of the 

monoclonal animals (reconstituted with single-cell) ranged from 1% to 44%, whereas 

the levels of polyclonal animals (reconstituted with 50–200 cells) varied from 2% to 88% 

(Figure 4.3). This result is expected, as animals reconstituted with more cells have a 

higher probability of developing donor hematopoietic systems since more cells are likely 

to survive, find the way back to niche, expand, and develop multilineage populations.  

The first four experiments showed that HSCs isolated with protocol 2.1 (LSK CD48-

CD150+) produced more reconstituted animals, probably because this protocol is less 

time-consuming, and more HSCs can survive. From experiment 5, we applied the second 

strategy for protocol 2 (protocol 2.2), but with the introduction of two HSCs (GFP+ and 
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GFP-), we did not observe higher numbers of animals with chimerism. Protocol 3 

(experiment 7) also did not produce more reconstituted animals. We, therefore, 

observed that protocol 2.1 seems to be more robust, and from experiment 8 onwards, 

we used only protocol 2.1. In experiments 10–12, we used older animals which could 

have negatively influenced the reconstitutions, even when a pool of HSCs was used - the 

case of polyclonal animals in experiments 11 and 12. We did not use animals from 

experiments where polyclonal recipient animals were not reconstituted (experiments 2, 

11, and 12). Only animals (monoclonal and polyclonal) with levels of Ly5.2+ donor cells 

in the blood higher than 1% and able to reconstitute secondary recipients were 

considered.  

 

Table 4. 1. Percentages of reconstituted animals at 12 weeks post-injection and the 
protocol used for the 16 experiments. Exp., experiment; reconst., reconstituted; recip., 
recipient.  

   Monoclonal (1 HSC) Polyclonal (50–200 HSCs) 

Exp. Protocol 
# injected 
animals 

# reconst. 1st 
recip. 

% of reconst. 
animals 

# injected 
animals 

# reconst. 1st 
recip. 

% of reconst. 
animals 

1 2.1 29 2 7 4 4 100 

2 1 28 1 4 2 0 0 

3 2.1 26 4 15 2 2 100 

4 1 21 2 10 2 2 100 

5 2.2 54 3 6 3 2 66 

6 2.1 58 11 19 4 4 100 

7 3 21 1 5 4 4 100 

8 2.1 18 1 6 2 1 50 

9 2.1 26 1 4 2 1 50 

10 2.1 15 0 0 2 2 100 

11 2.1 15 0 0 2 0 0 

12 2.1 16 0 0 2 0 0 

13 2.1 34 2 6 2 2 100 

14 2.1 36 0 0 2 2 100 

15 2.1 26 4 15 2 2 100 

16 2.1 30 3 10 2 2 100 

mean    7.7   76.9 
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Figure 4. 3. Levels of chimerism for the different experiments. Percentages of 
chimerism identified in the blood of reconstituted animals for 16 experiments at 12 
weeks post-injection (orange dots, monoclonal animals; blue dots, polyclonal animals; 
fraction, number of animals with chimerism/number of injected animals; asterisk, 
experiments used for further RNA-seq analysis). An animal was considered reconstituted 
if the chimerism percentage was above 1%. 

 

4.1.3. Multilineage and long-term reconstitutions 

The classical criteria to evaluate the purity of HSC is through long-term reconstitution. 

Three parameters analyzed the quality of these reconstitutions. First, we studied the 

ongoing production of leukocytes in the peripheral hematopoietic system for 12 weeks 

(Figure 4.4 A), showing that the initial HSC can differentiate and feed the hematopoietic 

system for at least 12 weeks. After this time, monoclonal and polyclonal animals with 

chimerism higher than 1% in the blood were sacrificed and used to isolate different HSC-

derived donor cell populations (including IgM+CD19+, CD4+CD8+, and Mac1+). The 

presence of lymphoid and myeloid cell populations in the primary (bone marrow and 

thymus) or secondary (spleen) hematopoietic organs (Figure 4.4 B and Table 4.2) 

confirms that the original HSC can differentiate into different hematopoietic cells, 

producing multilineages. The potential of the donor HSC self-renewal was confirmed by 

secondary recipient reconstitutions produced by injection of bone marrow cells from 

primary recipient animals (Figure 4.4 C and Table 4.2), which indicates that injected HSC 

was able to expand and produce more daughter HSCs. Thus, the HSCs used for single-

cell injections and reconstitutions meet the definition of LT-HSCs (Dykstra et al., 2007; 

Kiel et al., 2005; Wilkinson et al., 2020).  
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Figure 4. 4. A single HSC gives rise to myeloid and lymphoid cells in the blood with 
long-term reconstitution. (A) Evolution of donor-derived cell population percentages 
over time in the peripheral blood of the recipient animals. After blood collection, red 
cells were lysed, stained for Ly5.2 cells, and analyzed in a FACSCanto or FACScan 
instrument. (B) A single donor HSC differentiates into lymphoid and myeloid 
hematopoietic populations in vivo. Cells from different hematopoietic organs of 
recipient animals were isolated, stained, and gated on PI-, FITC anti-Ly5.1+, PE anti-Ly5.2- 
and PE-Cy7 anti-CD19+ (spleen), PE-Cy7 anti-CD4+ (thymus), or BV786 anti-Mac1+ (bone 
marrow). (C) A single donor HSC repopulates secondary recipients. Plots of secondary 
reconstitutions four weeks post-reconstitution with bone marrow cells isolated from 
polyclonal and monoclonal primary reconstituted animals are represented. Blood 
samples of secondary reconstituted mice were lysed for red cells, stained with FITC-
conjugated anti-Ly5.2 for donor cells, and PE-conjugated anti-Ly5.1 for recipient cells 
and analyzed using FACSCanto. Representative plots are shown. 
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Table 4. 2. A summary of the reconstituted animals used for whole-transcriptome 
sequencing. Only animals that could produce long-term multilineage reconstitutions 
reconstitute 2nd recipients and originate samples that passed the monoclonality and 
purity assays were used for whole-transcriptome analysis. 
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6 Polyclonal E6.1 y Both Ly5.2 IgM CD19 30.8 96.6 9.9 y 

CD4 CD8 3.0 97.5 0.0 n 

Mac1 14.5 97.8 Na n 

E6.2 y Both Ly5.2 IgM CD19 9.7 92.9 8.0 y 

CD4 CD8 4.1 99.3 Na n 

Mac1 3.5 94.2 Na n 

Monoclonal E6.42 y B6 Ly5.2 IgM CD19 21.2 96.8 9.9 y 

CD4 CD8 16.9 99.6 0.0 n 

Mac1 3.2 94.9 Na n 

E6.43 y B6 Ly5.2 IgM CD19 23.9 94.2 6.6 y 

CD4 CD8 72.8 99.4 Na n 

Mac1 35.0 95.7 Na n 

13 Polyclonal E13.1 y Both Ly5.2 IgM CD19 21.0 96.8 10.0 y 

CD4 CD8 26.0 100.0 8.3 y 

Mac1 16.5 99.4 Na n 

E13.2 y Both Ly5.2 IgM CD19 6.9 98.0 9.7 y 

CD4 CD8 19.4 99.3 10.0 y 

Mac1 9.2 96.2 Na n 

Monoclonal E13.24 y CAST Ly5.2 IgM CD19 2.5 96.4 6.9 y 

CD4 CD8 2.3 99.0 9.8 y 

Mac1 1.9 92.6 Na n 

E13.29 y CAST Ly5.2 IgM CD19 2.5 99.2 9.5 y 

CD4 CD8 7.5 97.1 10.0 y 

Mac1 2.2 96.4 Na n 

15 Polyclonal E15.2 y Both Ly5.2 IgM CD19 18.1 98.6 9.9 y 

CD4 CD8 15.3 100.0 0.0 n 

Mac1 21.1 99.0 Na n 

Monoclonal E15.10 y CAST Ly5.2 IgM CD19 10.6 99.2 9.2 y 

CD4 CD8 36.0 98.9 9.9 n 

Mac1 14.2 96.6 Na n 

Na Non clonal Control Na Na Na IgM CD19 Na Na 10.0 y 

Na Na Na CD4 CD8 Na Na 9.6 y 
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4.1.4. Evaluating the quality of the collected samples 

As mentioned before, this project's goal depends on producing monoclonal 

hematopoietic systems. Therefore, one of the first important steps for the quality of the 

collected samples is the isolation of pure donor cell populations grown in the recipient 

system. After sorting by FACS of hematopoietic cells, samples were checked for purity 

by re-running the same cells again through the FACS machine to calculate the 

percentage of cells that falls in the same gating Ly5.2-donor cell population used for 

isolation (Figure 4.5 and Table 4.2). Usually, the frequency of post-sorted cells is lower 

than 100%. This can be due to some loss of cell viability or fluorescence of cell surface 

markers. Therefore, we used cell samples with purity higher than 92% for further whole-

transcriptome sequencing.  

 

Figure 4. 5. Representative plots of pre-sorted and post-sorted B and T-cell populations 
of an animal reconstituted with a single HSC. Cells from the spleen and thymus of the 
recipient animal were isolated, stained for B-cell markers with PE anti-Ly5.2, FITC anti-
Ly5.1, and PE-Cy7 anti-CD19 and APC anti-IgM (splenocytes), or T-cell markers with PE-
Cy7 anti-CD4 and BV605 anti-CD8 (thymocytes), and sorted on a FACSAria. The cells 
were gated for PI- to exclude dead cells and CD19+/IgM+ to select B-cells or for 
CD4+/CD8+ to select T-cells Ly5.2+/Ly5.1- to obtain pure donor cells. The purity of sorted 
cells was assessed by analyzing 150–250 sorted cells. 
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The purity of the sorted donor cells was also studied by Sanger sequencing of Ly5 cDNA 

from isolated RNA (Figure 4.6 and Table 4.2). We identified 3 SNPs present in the Ly5 

transcript that differ from Ly5.1 (B6 recipient) and Ly5.2 (B6 donor) isoforms. At the 

same time, these SNPs are identical for Ly5.2 and Ly5 (CAST) isoforms, making possible 

the distinction between donor and recipient cells. All analyzed samples (polyclonal and 

monoclonal) showed only SNPs corresponding to Ly5.2 and Ly5 (CAST) isoforms, which 

means that the collected samples were not heavily contaminated with recipient cells. 

However, this technique is not quantitative, and subsequently the percentage of 

contamination with recipient cells was calculated from RNA-seq data (see below).  

 

 

Figure 4. 6. Estimation of donor population contamination with recipient cells using 
Sanger sequencing. Identification and cDNA Sanger sequencing focus on three different 
SNPs for the Ly5 gene, distinguishing two pan-leukocytic markers, Ly5.1 and Ly5.2, and 
recipient and donor animals. CAST Ly5 and B6 Ly5.2 loci have the same SNPs, which are 
different from B6 Ly5.1, allowing the estimation of the level of recipient cell 
contamination in the donor cell populations. 
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Additionally, a monoclonality assay was performed by studying the expression of Xist to 

confirm that monoclonal animals were injected with a single cell. Two different SNPs in 

the Xist transcript were identified to distinguish transcription from CAST and B6 X 

chromosomes (Figure 4.7 and Table 4.2). Sanger sequencing was performed on Xist 

cDNA synthesized from extracted RNA, focusing on two strain-specific SNPs. As was 

foreseeable, polyclonal animals displayed two overlapping peaks in the chromatograms, 

whereas samples from single-HSC reconstituted animals gave rise to only one peak, 

corresponding either to the CAST or B6 X chromosome., suggesting that the putative 

monoclonal animals had indeed been reconstituted with a single cell. As for the purity 

assay, whole-transcriptome sequencing data was used to confirm the monoclonality of 

samples in vivo (see below). Only samples with good quality were used for further 

analysis. 
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Figure 4. 7. Monoclonality assay that confirms the reconstitution of the recipient 
system with a single HSC. The cDNA Sanger sequencing chromatograms cover a region 
with two SNPs in the Xist locus that assigns the Xist transcript to the CAST or B6 X 
chromosome. Due to XCI, when a single cell is used for the reconstitution, a single peak 
is expected in the position of the SNP; when multiple cells were used for reconstitutions, 
two peaks should be observed in each of the SNP positions. 
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4.2. Transcriptome analysis 

Clara F. Alves-Pereira, Alexander Gimelbrant, and Vasco M. Barreto contributed to the 

data analysis and graphical visualization. 

 

4.2.1. Introduction 

Whole-transcriptome sequencing or RNA sequencing (bulk RNA-seq or single-cell RNA-

seq) is a popular technology used to study not only gene expression levels under 

different biological conditions but also novel transcripts, SNPs, insertions/deletions, 

alternative splicing, and splice junctions, and to understand genome function (Castel et 

al., 2015; Kratz and Carninci, 2014; Li, 2019). After RNA extraction, their conversion to a 

library of cDNA fragments and sequencing by high-throughput platforms, the obtained 

short sequences/reads of cDNA are mapped to a reference genome or transcriptome to 

calculate read counts, which are then analyzed by statistical or machine learning 

methods to estimate gene expression levels (Conesa et al., 2016; Li, 2019). Quality 

control checks should be performed at different stages of analysis to guarantee the 

reproducibility and reliability of results. The first quality control test starts with the 

analysis of produced raw reads and includes the study of sequence quality, GC content, 

adaptors, k-mers overrepresentation, and duplicated reads. The read alignment quality 

is checked by the percentage of mapped reads. This feature points to the overall 

sequencing accuracy and contamination with genomic DNA. Accumulation of reads at 

the 3' end of transcripts in samples selected for poly(A) may reveal the poor quality of 

starting RNA. The GC content is an indicator of PCR biases. The reproducibility among 

replicates should be checked for possible batch effects by using principal component 

analysis (PCA) (Conesa et al., 2016).  

Gene expression is calculated based on read counts, i.e., the number of reads mapped 

to each transcript sequence. However, these raw reads alone are insufficient to compare 

the gene expression levels between samples. They are influenced by transcript length, 

the total number of reads, and sequencing biases, and need to be normalized. 

Normalizations such as RPKM (reads per kilobase of exon model per million reads) 
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(Mortazavi et al., 2008) for single-end and FPKM (fragments per kilobase of exon model 

per million mapped reads) (Trapnell et al., 2010) for pair-end RNA-seq remove the 

feature-length and library size effects, and they are suitable for within-sample 

comparisons. TPM (transcripts per million) (Li and Dewey, 2011; Wagner et al., 2012) is 

similar to RPKM and FPKM, but the order of operations is different for its calculation 

(first the gene length and then the sequencing depth are normalized). Due to this 

difference, TPM may be used for within- and between-sample comparisons for the same 

sample group but not for the differential expression analysis. The TMM (trimmed mean 

of M values) method (Robinson and Oshlack, 2010), in addition to the gene length and 

the sequencing depth, also takes into account biases such as heterogeneous transcript 

distribution; it assumes that the majority of genes are not differentially expressed and 

uses a weighted trimmed mean of the log expression ratios. With this normalization, it 

is possible to perform within- and between-sample comparisons and differential 

expression analysis (Conesa et al., 2016). 

RNA-seq is used to study differential gene expression between two samples and 

differential allele expressions, also called allele-specific expression or AI. Strategies using 

samples highly enriched for sites with heterozygous SNPs are applied to distinguish 

expression levels and quantify variations between a diploid individual's two parental 

alleles/haplotypes. This allele-specific expression level is obtained first by retrieving 

allele counts from RNA-seq data over a list of heterozygous sites and then calculating 

the allelic ratio between reference read counts and total reads counts (Castel et al., 

2015). For example, the value of 0.5 means that both maternal and paternal alleles are 

equally expressed, and the values of 0 or 1 correspond to expression either of only 

maternal or paternal allele.  

RNA-seq data contain two types of variations, i.e., the technical variation introduced by 

protocols and machines and the biological variation caused by biological sample 

differences. The main challenge in RNA-seq analysis is distinguishing between real 

biological differences and technical noise. Different distributional assumptions to 

approximate the patterns of differential gene expression have been used with statistical 

tests to overcome this challenge. Statistical methods include parametric (Anders and 
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Huber, 2010; Bullard et al., 2010), nonparametric (Li and Tibshirani, 2013; Tarazona et 

al., 2015) and hybrid approaches (Farooqi et al., 2021). Parametric models are based on 

discrete distributional assumptions. First, the data are mapped to a particular 

distribution, and parameters are estimated for the model. After that, the future data 

value is predicted based on the estimated parameters. The model works properly only 

if the assumptions are correct, otherwise the false positive rate is highly increased. 

Furthermore, some of these models are influenced by outliers. This is the case when a 

gene is expressed in one condition but not other condition(s). Nonparametric models 

make fewer assumptions than parametric and use a flexible number of parameters, 

which increases as the model learns from more data. These models are computationally 

slower than the parametric models but can detect subtle data distribution features 

(Conesa et al., 2016; Costa-Silva et al., 2017; Farooqi et al., 2019; Huang et al., 2015). 

Parametric models are preferred to nonparametric models as they increase the 

detection power. Hybrid models, both parametric and nonparametric models, have 

been developed to improve the accuracy of analysis of differentially expressed genes 

(Farooqi et al., 2019). 

Although RNA-seq becomes the tool of choice for transcriptome studies, and many 

software and pipelines were developed, a consensus about the best practices for RNA-

seq and analysis of these types of data to obtain reproducible results has not been 

achieved (Koch et al., 2018; Kratz and Carninci, 2014). The first study comparing 

replicate runs from the same instrument of the same sample across different sequencing 

laboratories was performed by Li and colleagues (Li et al., 2014). It was observed that 

the principal source of differentially expressed genes biases was introduced by library 

preparation, including sample RNA isolation. It was also found that different tools for 

RNA-seq analysis could not remove these false positives completely. Additionally, in a 

more recent study where multiple replicate libraries were produced from the same RNA, 

varying library construction methods and the amount of sample input, it was confirmed 

that the principal source of overdispersion is the library preparation (Mendelevich et al., 

2021). This stresses the need for appropriate experimental design and methods that can 

post-process and distinguish technical noise from biological differences. The majority of 
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studies on allele-specific expression apply the binomial test with correction for multiple 

hypotheses, using only one technical replicate of library preparation (Branciamore et al., 

2018; Buil et al., 2015; Degner et al., 2009; Eckersley-Maslin and Spector, 2014; GTEx 

Consortium, 2017; Li et al., 2012; Pinter et al., 2015). However, it was demonstrated that 

a single replicate is insufficient to quantify the 

contribution of technical noise to the observed 

allele-specific expression unless very restrictive 

assumptions are taken. To overcome this challenge, 

a sensitive computational approach, Qllelic 

(https://github.com/gimelbrantlab/Qllelic), was 

developed to precisely calculate this technical noise 

by using two or more RNA-seq library replicates, 

decreasing the false-positive rate in AI study while 

conserving proper signal and increasing the 

accuracy and reproducibility of results. A quality 

correction coefficient (QCC) is calculated from 

comparing technical replicates. QCC reflects the 

concordance between replicates and is the measure 

of data quality. This correction effectively decreases 

the number of AI calls discordant between the pairs 

of library replicates, the number of genes identified 

as allelically imbalanced, and false positive rates 

(Mendelevich et al., 2021).  

The approach mentioned before, Qllelic, was used in 

this study (Figure 4.8). RNA samples were 

sequenced using 2-3 library replicates, and a set of R 

tools was applied to obtain the AI values. Pre-

processing read alignment steps to retrieve allele 

counts followed the ASEReadCounter* tool adapted 

from the GATK pipeline (Castel et al., 2015). To avoid 

Figure 4. 8. Overview of allele-
specific expression analysis. 
Adapted from 
https://github.com/gimelbrantla
b/Qllelic/wiki. 



 

80 

 

bias towards the reference genome, each library replicate was aligned to two synthetic 

parental pseudogenomes with SNP substitutions. A read with an alternative allele 

contains at least one mismatch, leading to a lower probability of correct alignment than 

a reference read. After alignment and assignment of reads to the alleles, all replicated 

samples were randomly sampled to the same depth, defined by the replicate with the 

lowest number of reads. Finally, a table with allelic counts per gene summarizing 

information from SNPs separately for each replicate was computed, which then was 

used as input for further analysis with the Qllelic tool. QCC was calculated relying on the 

technical replicates and was used to correct the AI overdispersion by dividing allelic 

counts by QCC2. Point estimates of AI for a gene are represented as the ratio of maternal 

allele counts over total allelic gene counts. The value of 1 represents the expression from 

the maternal-reference allele (B6 allele) and the value of 0 from paternal-alternative 

expression (CAST allele). 

 

4.2.2. Quality of RNA-seq and samples 

RNA samples that passed the quality test for RIN, RNA amount, monoclonality, and 

purity tests were 150 bp pair-end sequenced using at least two technical replicates. Raw 

read data were analyzed for quality with FastQC (Anders, 2010), Salmon (Patro et al., 

2017), STAR (Dobin et al., 2013) and Qualimap (García-Alcalde et al., 2012) tools. The 

FastQC tool provides results for several features: per base sequence quality (the 

distribution of quality scores at each position in the read across all reads and the 

information whether there were any problems during sequencing), per sequence quality 

scores (should show that the majority of reads have high average quality scores), per 

base sequence content (always gives a fail for RNA-seq because of the random hexamer 

priming during library construction), per sequence GC content (can inform about 

overrepresented sequences or contamination with another organism), sequence length 

distribution (should present a uniform length distribution around at 150 bp, unless poor 

quality reads or adapter sequences were removed), sequence duplication level (relates 

to the complexity of the library), overrepresented sequences (can identify 

contamination, for example with adapter sequences), and adapter content. In general, 
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almost all samples passed FastQC tests, except for the test for the adapter content. 

However, all samples presented overrepresentation for NextEra adapters (Figure 4.9), 

 

Figure 4. 9. Adapter content before and after trimming. Results were produced with 
the FastQC tool (Anders, 2010) and images created with MultiQC (Ewels et al., 2016) for 
samples control_B, control_T, E13.1_T, E13.24_B. Note that the scale of plots is 
different.  
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and even though the STAR tool (Dobin et al., 2013) used for further read alignment can 

account for adapter contamination and low-quality bases at the end of reads, we 

decided to trim these adapters, which in most cases improved the quality of the reads. 

Another three tools give information about the number of aligned reads to the genome, 

uniquely mapped reads, mapped to multiple locations, and reads aligned to exonic, 

intronic, and intergenic regions. These metrics were consistent across the majority of 

RNA samples. The identified outliers were resequenced or removed from the analysis.  

The overall B cells that expanded in recipient animals reconstituted with multiple or 

single HSCs were sequenced from three independent experiments (E6, E13, and E15). 

Each of them had different donor animals, which were used for reconstitutions. From 

experiment 13, T cells were also sequenced. As non-clonal controls, B and T cell 

populations from an unmanipulated donor animal were used for analysis. In total, seven 

polyclonal, seven monoclonal, and two non-clonal samples contributed to the final RNA-

seq study (Figure 4.10).  

As was mentioned above, we deepened the analysis of monoclonality using RNA-seq 

data to calculate the allele-specific expression of the X-linked genes (Figure 4.10, see 

also Figure 4.22 A) and contamination of sorted donor cell populations with recipient 

cells (Figure 4.11). Allele-specific expression is represented by AI values, which are 

calculated as a ratio between the maternal allele reads and total allele reads (i.e., AI = 

maternal allele reads / (maternal + paternal allele reads)). Thus, as mentioned before, 

AI values vary between 0 and 1, with AI=1 for absolute expression from the maternal 

allele, AI=0 for paternal allele, and AI=0.5 for equivalent expression from both alleles. As 

expected, the median AI values of the X-linked genes for unmanipulated and polyclonal 

samples are balanced (0.5±0.2). In contrast, the median AI values obtained from animals 

reconstituted with a single HSC are extreme. The animals that inactivated the maternal 

X chromosome (B6), namely E6.42 and E6.43, present AI values slightly above zero 

(0.02±0.01), and mice that inactivated the paternal X chromosome (CAST), E13.24, 

E13.29, and E15.10, have AI values close to one (0.96±0.03). However, the AI values of 

B cells from E13.24 and E13.29 animals seem to deviate from the expected value of one 

and express the paternal X chromosome in low amounts. The scenario in  which  two  or  
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Figure 4. 10. Overview of single and multiple HSC reconstitutions that originated the 
samples used for RNA-sequencing (experiments E6, E13, and E15). In each experiment, 
HSC cells isolated from one donor mouse F1(CASTLy5/Ly5 x B6Ly5.2/Ly5.2) were injected in 
multiple sub-lethally irradiated recipient animals F1(CASTLy5/Ly5 x B6Ly5.2/Ly5.1). Different 
donors were used for each experiment. All animals showed long-term reconstitutions, 
and both monoclonal and polyclonal cells from primary repopulated animals 
reconstituted a secondary recipient. The density plots represent the allelic ratios of X 
chromosome-linked genes for each sample, as measured by RNA-Seq. 



 

84 

 

 

Figure 4. 11. Estimation of donor population contamination with recipient cells using 
RNA-seq. Percentages obtained from next-generation sequencing of recipient cells in 
the sorted donor cell populations focusing on three different SNPs for the Ly5 gene that 
distinguish two pan-leukocytic markers, Ly5.1 and Ly5.2, that allow us to identify 
recipient and donor cells, respectively. The nucleotide bases for Ly5.1 and Ly5.2 were 
counted for each SNP, considering that CAST and Ly5.2 have the same SNPs, and the 
average percentage of Ly5.1-recipient cell contamination was calculated. The dashed 
line (0.5%) represents the percentage of artifactual SNPs due to errors introduced by 
sequencing, which was estimated by the sequencing results of the unmanipulated donor 
mouse. 

 

more HSCs were injected in these recipient animals is excluded because T cell samples 

from the same animals do not have this leakage (the AI value for E13.24_T is 0.99 and 

for E13.29_T is 1.00). The most likely explanation is the contamination of the sorted 

samples with recipient Ly5.1 cells, a polyclonal population of cells. To test this 

hypothesis, Ly5.1 and Ly5.2 SNPs were quantified in the RNA-seq data (Figure 4.11). By 

calculating the presence of Ly5.1 recipient SNPs in the unmanipulated control donor 

animals, it was estimated that sequencing errors only contributed to around 0.5% of 

SNPs. Six samples have around 1% of contaminating recipient cells (E6.1_B, E13.1_T, 

E13.2_T, E13.24_T, E13.29_T, E15.2_B), six samples have between 2.5% and 5% (E6.2_B, 

E6.42_B, E6.43_B, E13.1_B, E13.2_B, E15.10_B), and the E13.24_B and E13.29_B 

samples have the highest percentages of contaminating cells, i.e., 6.3% and 9.6%, 

respectively. This means that samples have low and, in two cases, relatively high 
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recipient cell contamination, but in any case, this contamination, as well as possible 

genomic DNA contamination, will never overestimate cases of allelic-specific expression 

and lead to erroneous conclusions. Instead, if anything, it will lead to a slight 

underestimation of RMAE. Since the contamination of the samples correlates with the 

deviation from the expected AI values in the monoclonal animals (Figure 4. 11), we can 

conclude that the monoclonal samples were expanded in vivo from a single HSC. This 

conclusion is also supported by the observation that the frequencies of single-HSC 

reconstitution are low (Table 4.1), which makes extremely low the probability of having 

two HSCs introduced by mistake in the same recipient.  

Additionally, to check the expansion dynamics of produced lymphoid lineage samples 

from HSC, a study of antigen receptor V(D)J rearrangement clonotypes was performed 

using RNA-seq data (Figure 4.12). Similar rearrangements are observed in samples 

expanded from single and multiple HSC reconstitutions, and also unmanipulated control 

samples. This means that all samples are equivalently complex in terms of the V(D)J 

repertoire. Furthermore, there was an abundant cellular proliferation of single-HSC 

derived lymphoid cell populations before V(D)J rearrangement, which starts in pro-B and 

pro-T cells.  

 

 

Figure 4. 12. The complexity of the VDJ repertoire in sequenced B and T samples. VDJ 
clonotypes in different populations of donor B and T cells expanded in vivo and the 
control animal. The number of VDJ rearrangements identified with the MiXCR tool 
(Bolotin et al., 2015, 2017) on each sample (x-axis) were plotted against the number of 
sequenced reads (y-axis). 
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4.2.3. Identification of autosomal allele-specific expression 

After reading alignment and estimation of allelic expression, a total of 27,510 genes 

were detected. From this list, we removed genes with substantially low expression (<10 

TMM-normalized counts), loss of heterozygosity (LOH), obtained from whole-exome 

sequencing data, and genetic biases, which can be due to different mouse strain genetics 

or parental imprinting (i.e., genes with extreme expression from the same allele in all 

samples: monoclonal, polyclonal and control samples). Finally, 8,441 genes in B cells and 

8,377 in T cells were detected; 7,486 genes are common to both tissues, 955 genes are 

B cell-specific, and 891 are T cell-specific (Figure 4.13).  

 

Figure 4. 13. Venn diagram representing the overlap between the initially identified 
genes and genes used in the allele-specific expression analysis. Genes with no 
expression, loss of heterozygosity, and genetic biases were removed to avoid an 
overestimation of allelic imbalance.  

 

Instead of simply classifying genes into discrete categories such as balanced or 

imbalanced, a differential AI analysis was performed to address a more quantitative and 

interesting question. This analysis estimates how a gene is expressed differently from a 

specific allele between two samples. It is expected that the AI in polyclonal samples is 

more balanced and that the AI in monoclonal samples may deviate from the AI in 

polyclonal samples, particularly in the case of RMAE. Thus, a pairwise AI comparison was 

produced between all samples: polyclonal against monoclonal, polyclonal against 

polyclonal, and monoclonal against monoclonal (Figure 4.14 A and Supplementary 

Figure 7.1). Samples with equal AI values should align all genes over the diagonal and 

produce  a  Pearson's  coefficient  correlation  (r2)  close  to  1.  In  contrast, samples with  
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Figure 4. 14. Comparison analysis of samples to search for genes that maintain allelic 
imbalance during hematopoietic differentiation. (A) Representative dot plots of 
pairwise comparisons of AI between monoclonal vs. polyclonal samples, polyclonal vs. 
polyclonal samples, and monoclonal vs. monoclonal samples. The red circles signal the 
genes for which differential AI remained statistically significant after QCC correction on 
the binomial test. The total number of these genes per comparison is shown above each 
plot. The Pearson's coefficient correlation for all AI pairwise comparisons is also shown 
at each dot plot's upper left corner. A greyscale coloring the dots represents the mean 
expression between the two samples, calculated from each sample's TMM-normalized 
counts. (B) Correlograms for B and T samples. Pearson's coefficient correlation of AI for 
all pairwise comparisons between samples. Pearson's coefficient is represented in the 
upper right corner within each square, and the number of genes with a significant 
differential AI in each pairwise comparison after applying QCC correction on the 
binomial test is also shown. 
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differential AI should present more genes that deviate from the diagonal and produce 

lower r2 values. To test this hypothesis, a correlogram with r2 and the number of genes 

with significant differential AI in each comparison for B and T samples after applying QCC 

correction on the binomial test was created (Figure 4.14 B). It is observed that 

comparisons involving at least one monoclonal sample are similar to other comparisons, 

meaning that most autosomal genes with AI present in hematopoietic stem states are 

not maintained after extensive abundant cellular expansion and differentiation.  

To confirm that monoclonal samples are identical with polyclonal or control samples, a 

t-distributed stochastic neighbor embedding (t-SNE) analysis, which is used to visualize 

high-dimensional data in a low-dimensional space (Van Der Maaten and Hinton, 2008), 

was conducted (Figure 4.15). In terms of AI in autosomal genes, this analysis did not 

cluster polyclonal and control samples, which should be similar. Furthermore, it did not 

display the expected scattered distribution of monoclonal samples if each clonal cell line 

kept distinct allele-specific expression. Thus, we conclude that all samples are very 

similar and if some differences are present, t-SNE analysis is not able to reveal them.  

 

Figure 4. 15. Visualization of high-dimensional data of autosomal allelic imbalance in 
a low-dimensional space using the t-SNE algorithm to compare the dispersion of 
polyclonal and monoclonal samples.  

 

An alternative analysis to dissect differences between monoclonal and polyclonal 

samples is an exploration of AI dispersion (e.g., standard deviation). It is expected that, 

in the group of polyclonal samples, any given gene will tend to show balanced allele-
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specific expression and therefore a low dispersion of AI, whereas the AI of a gene under 

RMAE in the group of monoclonal samples will have a higher dispersion. The B cell 

samples, which are more abundant than the T samples, were used to calculate the ratio 

of standard deviation from the polyclonal and monoclonal groups, expressing it as a 

ratio of standard deviations. By performing a one-sided Wilcoxon test, it is possible to 

conclude that the standard deviation of AI in the monoclonal group is greater than in 

the polyclonal group for a small set of genes (p < 2.7 x 10-6; Figure 4.16 A). X-linked genes 

were also plotted as a control to confirm that this plot visualization can identify genes 

with variable AI. The 14 genes that show the highest monoclonal and polyclonal AI 

standard deviation ratio were highlighted (arbitrarily set at an AI SD of 0.15). To 

investigate the behavior of these 14 genes over all samples (Figure 4.16 B), the individual 

AI values of all polyclonal and monoclonal samples were plotted over those of the 

control unmanipulated animal (green circles), and it is clear that the dispersion of AI 

values in monoclonal samples is higher than in polyclonal samples. The Pkp3 transcript 

is an interesting and the most solid example of this high dispersion. In some monoclonal 

samples, this transcript is predominantly expressed from maternal alleles, in others from 

the paternal allele, and in one case it also has balanced expression from both alleles. 

This means that Pkp3 carries random allele-specific expression preserved over extensive 

differentiation steps already present in the original HSC. B and T cells share the same 

lineage way of differentiation until the CLP stage and then split into two independent 

bifurcations. Thus, if these allele-specific states present in the identified 14 genes were 

already established during the hematopoietic stem state and then remained stable 

during lineage commitment, the AI values for T and B cells from the same animal should 

be positively correlated. A pairwise comparison between the same animal but different 

cell types was performed (i.e., E13.24_B against E13.24_T and E13.29_B against 

E13.29_T). It is clear that the AI values from different cell types derived from the same 

HSC are similar, as most genes are plotted along the diagonal (R=0.85, p<0.001). (Figure 

4.16 C). Pairwise control analysis of AI values from different cell types derived from 

different HSCs was performed and shows that allele-specific states are very different 

(R=0.33, p=0.147). This is consistent with the above notion of clonally stable allele-

specific states.  
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Figure 4. 16. Allele-specific states for some genes are stable and persistent over 
extensive cell expansion and differentiation from the hematopoietic stem state. (A) 
Dot plot showing standard deviations (SD) of AIs for five B-cell monoclonal samples (x-
axis) against the SD of AIs for five polyclonal samples (y-axis). Dashed vertical and 
horizontal lines - arbitrarily set at an AI SD of 0.15 - represent the threshold above which 
genes were considered potentially intrinsically imbalanced. Pink-circled dots represent 
the autosomal genes, and uncircled dots represent the X-linked genes (control). Only 
genes for which differential AI remained statistically significant after QCC correction in 
at least one pairwise comparison (i.e., the red dots in Figure 14) within monoclonal B 
samples or polyclonal B samples and with expression in all B-cell samples are shown. 
Abundance values are TMM-normalized counts. (B) Comparison of putative 
transcriptionally stable allelically imbalanced genes between all samples and non-clonal 
control B. Grey dots are AIs of the unmanipulated animal control sample, and empty 
circles are AIs of monoclonal or polyclonal samples. Red circles represent comparisons 
for which AI differences remained statistically significant after QCC correction for control 
B comparison. The diameter of dots/circles is proportional to the abundance (in TMM-
normalized counts). (C) Dot plots show the AI of putative transcriptionally stable 
allelically imbalanced genes in B cells (x-axis) against those in T cells (y-axis). Pairwise 
comparisons for two monoclonal animals are shown. In the left plot, each animal's B and 
T cell data are paired (within animal comparison). In contrast, the right plot is an artificial 
control in which the B and T cell data from different animals are paired (comparison 
between animals). Each plot shows the Pearson's coefficient correlation considering the 
combined animal datasets; the Pearson's coefficient correlations for each animal 
dataset are R=0.33 (p=0.147) and R=0.85 (p<0.001). 
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Another explanation for these stable allele-specific variations is that, instead of RMAE, 

these genes underwent a LOH genetic modification such as a deletion, already carried 

by the original HSC and then perpetuated throughout differentiation. To confirm that 

the identified genes with AI present both CAST and B6 exons, exome analysis was carried 

out for three animals for which exome-sequencing data were produced. The AI 

calculated from RNA-seq data was plotted against AI from exome-seq data for each 

animal, and it is observed that AI from DNA data is balanced and, once more, AI values 

from RNA data of monoclonal animals (E6.43 and E15.10) show high dispersion than the 

polyclonal animal (E6.2). This means that the CAST and B6 sets of exons are present in 

the genome. Thus, the observed AI variation at the transcript level is unlikely to result 

from genomic deletions (Figure 4.17).  

 

Figure 4. 17. Loss of heterozygosity analysis of putative transcriptionally stable 
allelically imbalanced genes. AI from RNA-seq data plotted against AI from whole-
exome sequencing data for the same animals (polyclonal sample E6.2, and monoclonal 
samples E6.43 and E15.10). Only genes with abundance>10 TMM-normalized counts are 
represented. For the DNA axis (x-axis), all of these genes fall in the vicinity of the dotted 
vertical lines highlighting the 0.4–0.6 AI balanced range. 

 

Given the importance of excluding LOH as an explanation for the rare cases of RMAE, 

we performed a bootstrapping analysis (100,000 replicates per distribution) to 

complement the previous exome sequencing analysis. Essentially, we evaluated the 

likelihood of randomly finding a group of genes with the mean difference between the 

AIs in DNA and RNA data (AIDNA - AIRNA) as high as the mean value for the rare 14 genes 

(Figure 4.17) in the set of monoclonal animals (Figure 4.18). If the highly variable AI 

values of RNA have epigenetic bases and are not the result of LOH, the mean difference 
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between AI values obtained from transcriptomics and exome sequencing data should 

be notably high. In contrast, if the somatic rearrangement events leading to LOH are the 

explanation for the RMAE patterns we observed, at the level of DNA the data will mimic 

the transcriptomics data and, therefore, the AIDNA - AIRNA difference will be low. The 

bootstrapping revealed that, for E6.43 and E15.10, random sampling is unlikely to 

produce a group of genes with higher AIDNA - AIRNA mean differences than the ones 

we found (p=0.0003 and p=0.0002, respectively).  

 
Figure 4. 18. Bootstrapping analysis of difference between the AIs in DNA data and 
RNA data (AIDNA - AIRNA) in two monoclonal samples for the genes with persistent 
clone- and allele-specific autosomal transcriptional states (highlighted in 4.16 B). In 
the left panel, the histogram represents the distributions of the means of the difference 
for 13 or 14 randomly sampled genes generated by bootstrapping the transcriptomics 
data (100,000 replicates per distribution). The dashed lines show the observed AIDNA - 
AIRNA means for the 13 and 14 of the 14 putative transcriptionally stable allelically 
imbalanced genes detected in the monoclonal samples E6.43 and E15.10, respectively, 
which are statistically different from the mean of a random sample considering the 
respective distributions (p=0.0003 and p=0.0002, respectively), unlike the AIDNA - AIRNA 

mean for the 14 putative transcriptionally stable allelically imbalanced genes in the E6.2 
polyclonal sample (p=0.10). The right panel shows the distribution of the | AIDNA - AIRNA 
| observed for the putative transcriptionally stable allelically imbalanced genes and a 
random sample of size 14 in E6.2, and E15.10, and 13 in E6.43. 

 

Genetic variations are also associated with replication fragile sites. It is known that these 

regions have common molecular features such as high expression levels and large size 

(Barlow et al., 2013; Helmrich et al., 2006). Our analysis of the locus size, open reading 

frame (ORF) size, and expression levels in LT-HSCs (publicly available data) suggests that 

the genes with persistent clone- and allele-specific autosomal transcriptional states 

across), are not associated with the features of replication fragile sites (Figure 4.19).  
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Figure 4. 19. Association of genes with persistent clone- and allele-specific autosomal 
transcriptional states with common molecular features related to replication fragile 
sites. Location of 14 genes across distributions of locus size of all protein-coding genes, 
open reading frame (ORF) size, and expression in LT-HSCs. Gene sizes were obtained 
from the gencode mouse genome downloaded GTF file 
(http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M27/gencode
.vM27.annotation.gtf.gz) with custom scripts. ORFs were generated from the 
downloaded genecode transcript sequences fasta file 
(https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M27/gencod
e.vM27.transcripts.fa.gz) using the orfipy tool (Singh and Wurtele, 2021) with the 
standard codon table and default parameters. The longest ORF for each gene was 
plotted for distribution. Expression in LT-HSC was obtained from the Immunological 
Genome Project (https://www.immgen.org/), GEO:GSE109125. Locus and expression 
plots were zoomed-in. The blue lines correspond to genes with stable allele-specific 
transcription through HSC differentiation and the red line corresponds to the gene Pkp3. 

https://www.immgen.org/
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We then compared the frequencies of genes under RMAE in clones that underwent 

extensive differentiation (this study) and clones that underwent cellular proliferation 

without extensive differentiation (Table 1.2) (Branciamore et al., 2018; Eckersley-Maslin 

et al., 2014; Gendrel et al., 2014; Gimelbrant et al., 2007; Jeffries et al., 2012, 2016; Li et 

al., 2012; Pinter et al., 2015; Zwemer et al., 2012). This discrepancy could be due to the 

different experimental and statistical approaches used in this study. To eliminate this 

source of variation, the same RNA-seq pipeline analysis was applied in data produced 

from clonal cells without undergoing differentiation. v-Abl pro-B clonal cell lines Abl.1, 

Abl.2, Abl.3, and Abl.4 were derived previously from 129S1/SvImJ x CAST/EiJ F1 female 

mice by expansion of FACS-sorted single cells after immortalization (Zwemer et al., 

2012). These clones were sequenced using two technical replicates of the cDNA library 

per sample (Gupta et al., 2021) and analyzed using the same QCC correction on a 

binomial test to exclude false positives (Mendelevich et al., 2021). LOH obtained from 

whole-exome sequencing (Gupta et al., 2021) was excluded as well as genes with no 

expression (<10 TMM-normalized counts) and genetic biases. Pairwise analysis of 

differential AI values was performed the same way as for HSC-derived clones (Figure 

4.20 A, B and Supplementary Figure 7.2), and it was found that the clones that 

expanded without differentiation show at least four times more genes with significant 

differential AI in each comparison than HSC-derived clones with extensive 

differentiation (Figure 4.14). Additionally, to perform a similar AI dispersion analysis, the 

AI standard deviation of four Abelson clones was plotted against the AI standard 

deviation of four polyclonal HSC-derived cells (since the standard deviation depends on 

sample size, the comparison has to be four against four (Figure 4.20 C)). It is clear that 

the Abelson clones show more genes with variable AI than the monoclonal HSC-derived 

clones. These results suggest that clones undergoing extensive differentiation lose 

allele-specific states, unlike the clones that are kept in vitro without differentiation. 
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Figure 4. 20. B clones expanded in vitro show more genes with clonal-specific AI than 
B cells differentiated from a single HSC in vivo. (A) Representative dot plots of pairwise 
comparison of AI between different Abelson-immortalized B-cell clones. Red circles 
signal the genes for which differential AI remained statistically significant after QCC 
correction on the binomial test. The total number of these genes per comparison is 
shown above each plot. The Pearson's coefficient correlation for all AI pairwise 
comparisons is also shown at each dot plot's upper left corner. Mean abundance levels 
(mean TMM-normalized counts) are continuous greyscale colors. (B) Correlogram with 
pairwise comparisons of Abelson-immortalized B-cell clones. Pearson's coefficient 
correlation of AI for all pairwise comparisons between samples. Pearson's coefficient is 
represented in the upper right corner within each square, and the number of genes with 
a significant differential AI in each pairwise comparison after applying QCC correction 
on the binomial test is also shown. (C) Two dot plots showing standard deviations (SD) 
of AIs for four monoclonal (x-axis) against four polyclonal (y-axis) HSC-derived B cell 
samples (left plot), and SD of AI for all four Abelson clones (x-axis) against the SD of AI 
for four polyclonal HSC-derived B cell samples (y-axis) (right plot). Whole-exome 
sequencing data were used to exclude transcripts with possible LOH. Dashed vertical 
and horizontal lines set arbitrarily at an AI SD of 0.15 represent the threshold above 
which genes were considered potentially intrinsically imbalanced. Mean abundance 
levels (mean TMM-normalized counts) are represented as binned greyscale colors. 
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4.2.4. Identification of XCI escapees 

Finally, the strategy used in this work to identify genes under RMAE could be suitable to 

study genes that are expressed from both active and inactive X chromosomes, which are 

known as XCI escapees. A correction with QCC, calculated from two or more technical 

replicates, was applied to the RNA-seq data from clonal samples produced in vivo to 

identify murine hematopoietic lineage-specific XCI escapees. For this strategy (Figure 

4.21), we converted AI values of X-linked genes relatively to inactive X chromosome (i.e., 

AI = inactive X chromosome-linked allele reads / (inactive + active allele reads), 

corresponding to 0 as no expression and 1 to the expression of the inactive X 

chromosome). We then identified genes with expression from the inactive X 

chromosome of at least 10% of total expression (Carrel and Willard, 2005). For instance, 

sample E13.24_T has an AI value of 0.99 for the X-linked genes, which means that the 

maternal X chromosome is active. To convert this value to search for the genes that have 

expression from inactive X chromosome above 10% of the total expression level, the 

expression of each gene from this sample was compared with a sample-corrected 

threshold of 0.11 calculated as: 0.01 (i.e., 1 - 0.99 to obtain the AI median value of X-

linked genes from the inactive X chromosome in this sample and include a fraction of AI 

corresponding to sequencing errors, and recipient cell contamination) + 0.1 (i.e., 10% of 

the inactive X chromosome). For samples with an active paternal X chromosome, the 

conversion of AI values for the inactive X chromosome is unnecessary, as values of 0 

correspond to the inactive X chromosome. After that, the binomial test and QCC 

correction were applied to classify a gene as significantly different from this threshold 

in the sample. A gene was categorized as XCI escapee if it met three criteria: 1) only 

samples with abundance higher than 10 TMM-normalized counts were considered; 2) 

the median of AI in the control samples (polyclonal and control samples) was balanced 

(0.5±0.2); and 3) the AI of the gene is statistically different from the threshold in at least 

two samples, irrespective of the tissue. 
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Figure 4. 21. The strategy for identification of X chromosome inactivation escapees. 
(A) and (B) Allelic imbalance of X-linked genes for B and T cells, respectively. As a 
convention, Xi allelic imbalance=1 means that the gene is 100% expressed from the 
inactive X-linked allele; Xi allelic imbalance=0 means that only the active X-linked allele 
was detected. Dots represent genes with expression higher than 10 TMM-normalized 
counts, and only genes that were statistically different from the sample-corrected 
threshold at least once are shown. Yellow dots represent monoclonal samples; violet 
stroke-surrounded yellow dots denote statistical significance for that sample. Red dots 
represent the median of the allelic imbalance observed for polyclonal and control 
samples (otherwise excluded from this top panel to compare Xi allelic imbalance of 
monoclonal samples with the median of polyclonal and control samples). Xi means 
inactive X chromosome. Statistical significance was calculated by comparing the allelic 
imbalance with the sample-corrected threshold using binomial test and QCC correction. 
The threshold was calculated per sample as 0.1 (which is the value usually found in the 
literature) + the median value of allelic imbalance of all X-linked genes in the sample. (C) 
and (D) Abundance (TMM-normalized counts) of the same genes and same samples 
represented in (A), (B). In addition, individual polyclonal and control samples are shown. 
Violet dots represent the monoclonal samples in which the allelic imbalance significantly 
deviates from the sample-corrected threshold. Yellow dots represent the other 
monoclonal samples, blue dots represent the polyclonal samples, and black dots are the 
control samples. Genes in violet (x-axis) were identified as escapees using the three 
criteria described in Methods and Results.  
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Eight XCI escapees were identified in both lymphoid tissues taking into account the used 

criteria: 5530601H04Rik, Eif2s3x, Gm8822, Kdm5c, Kdm6a, Pbdc1, Utp14a, and Xist 

(Figure 4.22 A). These escapees were plotted along the X chromosome (Figure 4.22 B), 

and it was confirmed that these genes are not clustered (Li et al., 2012). Furthermore, 

escapees from this study were compared with 117 genes identified as escaping XCI in 

several studies in different mouse cell lines (Berletch et al., 2015; Li et al., 2012; Wu et 

al., 2014; Yang et al., 2010) (Supplementary Table 7.1). Thirty-six of these escapees were 

 

Figure 4. 22. Identification of murine X chromosome inactivation escapees. (A) 
Distribution of AI values of X-linked genes and identification of XCI escapee genes. Violin 
plots overlaying dot plots of X-linked genes allelic ratios. For grey dots, the opacity 
reflects the relative abundance in TMM-normalized counts. Genes significantly escaping 
XCI (green dots) were identified by comparing the allelic ratio of that gene with a 
sample-corrected threshold (10% of expression from inactivated X chromosome) and 
applying the binomial test with QCC correction (Mendelevich et al., 2021). (B) XCI 
escapee genes on B and T cells annotated along the X chromosome ideogram. The AI 
values of identified XCI escapee genes are denoted in pink (for B cell samples) and brown 
(for T cell samples). 
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excluded from our analysis for lack of expression, two genes by lack of SNPs necessary 

by default to measure the AI value, and one gene was not found in the annotation 

reference list used in this work. Of the remaining 78 known escapee genes, 71 genes 

were not identified as escapees in this study of B and T cells. However, seven of the eight 

genes identified here belong to this group of known escapees, except for Gm8822, a 

pseudogene that was not detected or reported in the published.  

Usually, XCI escapees are identified by one of three systems: 1) single-cell RNA-seq 

(Borensztein et al., 2017; Chen et al., 2016); 2) heterozygous female mice knockout for 

specific X-linked genes (Berletch et al., 2015; Yang et al., 2010) or for an X-linked genes 

fused to a reporter (Wu et al., 2014); 3) and clonal female F1 hybrid cell lines (Calabrese 

et al., 2012; Li et al., 2012; Splinter et al., 2011). Overall, we conclude that our single-

HSC reconstitution approach is a valid new approach to identify XCI escapees in vivo in 

any hematopoietic cell lineage. 

 

4.2.5. Identification of genes with differential AI between B and T cells 

As RNA-seq data were produced for the B and T lymphoid lineages, it was interesting to 

analyze differences between these cells, which have a common lymphoid progenitor but 

then engage in different development programs. Visualization of AI in a low-dimensional 

space with the t-SNE algorithm produced two independent clusters for B and T cells 

based on their differences in allele-specific expression (Figure 4.23 A). By analyzing 

differences in gene expression independently of AI, 5,289 downregulated genes and 

4,775 upregulated genes in T cells compared to B cells were found (Figure 4.23 B). These 

differences in tissue-specific gene expression are expected.  

A comparison of AI ratios was then carried out between available B and T cells from the 

same animal (E13.1_B against E13.1_T, E13.2_B against E13.2_T, E13.24_B against 

E13.24_T, and E13.29_B against E13.29_T) to evaluate if each of the alleles responds 

uniquely in a different cell type-specific nuclear environment (Figure 4.24 A). A high 

number of genes with significant differential AI was found in each of the four 

comparisons, defining a group of 146 common genes with a significant differential allele- 
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Figure 4. 23. B and T cell type differences in allelic imbalance and gene expression. (A) 
Visualization of high-dimensional data of autosomal AI for B and cells in a low-
dimensional space using (t-SNE algorithm). (B) Volcano plot representing genes with 
differential expression (upregulated or downregulated) between B and T cells.  

 

 

specific expression between B and T cells. Since the same genes with different AI values 

between B and T cells are found in the polyclonal and monoclonal animals, the 

underlying mechanism is genetic. Statistical enrichment analysis of this group of genes 

was performed with g: Profiler (Peterson et al., 2020; Raudvere et al., 2019) against all 

known genes in the mouse genome using a hypergeometric test with correction for 

multiple testing. As a control, a set of genes with the same dimension but without 

differential AI between B and T cells was used (Figure 4.24 B). Over-representation of 

genes was found for different functional terms for both set of genes, suggesting that 

tissue-differential AI is not associated with any particular function.  



 

101 

 

 
Figure 4. 24. Differences in the B and T cellular environment lead to drastic differences 
in AI. (A) Dot plots of pairwise comparison of AI between B and T cells within each 
sample of experiment 13. Red circles signal the genes for which differential AI remained 
statistically significant after QCC correction on the binomial test. The total number of 
these genes per comparison is shown above each plot. The Pearson's coefficient 
correlation for all AI pairwise comparisons is also shown at each dot plot's upper left 
corner. Mean abundance levels (mean TMM-normalized counts) are continuous 
greyscale colors. (B) A Manhattan-like plot represents enrichment analysis of genes with 
significant differential AI found between B and T cells. As a control, a set of genes with 
the same dimension (146) was randomly sampled from genes without differential AI 
between B and T cells. Only statistically significant results are shown (hypergeometric 
test with set counts and size default correction for multiple testing). The x-axis 
represents the functional terms with the number of overrepresented genes: GO:MF 
(Gene Ontology: Molecular Function), GO:CC (Gene Ontology: Cellular Component), 
GO:BP (Gene Ontology: Biological Process), KEGG (Kyoto Encyclopedia of Genes and 
Genomes), REAC (Reactome), TF (TRANSFAC), and WP (WikiPathways). The y-axis shows 
the adjusted p-values on the negative log10 scale. Every circle is one term, and the circle 
size corresponds to the term size (number of genes associated to the term). 
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5. Discussion and conclusions 
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Mammalian genomes are diploid, and it is usually assumed that both alleles are equally 

expressed; differential gene expression between cell types or conditions receives much 

more attention than the expression differences between the alleles of a given gene. 

Fifteen years ago, it was demonstrated that RMAE is widespread in mammalian 

genomes (Gimelbrant et al., 2007) but the prevalence of RMAE in vivo and its stability in 

clones remain controversial (Reinius and Sandberg, 2018; Rv et al., 2021; Vigneau et al., 

2018). Furthermore, the parallels between RMAE and XCI seem to be under a vague 

consensus and have not been challenged until recently (Barreto et al., 2021). RMAE has 

been well studied in vitro, in the human and murine cell lines (Branciamore et al., 2018; 

Eckersley-Maslin et al., 2014; Gendrel et al., 2014; Gimelbrant et al., 2007; Jeffries et al., 

2012, 2016; Pinter et al., 2015; Zwemer et al., 2012). However, the frequency of this 

phenomenon in vivo is an open question because at the tissue level the contribution 

from each different clone averages out, and the identification or production of clonal 

cell populations in vivo is technically challenging. It has been argued that chromosomal 

instability in cell lines with prolonged expansion in culture could contribute to the 

overestimation of RMAE (Reinius and Sandberg, 2015), but for some genes the RMAE 

patterns detected in vitro were validated in vivo (Gendrel et al., 2014; Gimelbrant et al., 

2007; Marion-Poll et al., 2021). Additionally, although single-cell RNA-seq analysis could 

be an excellent alternative to study RMAE in vivo, the high noise associated to this 

approach restricts the detection of allele-specific expression to the genes with the 

highest expression levels and extreme allelic bias (Kim et al., 2015), which is a limitation 

because the genes under RMAE tend to be expressed at low levels (Eckersley-Maslin et 

al., 2014; Gendrel et al., 2014; Gimelbrant et al., 2007; Jeffries et al., 2012; Li et al., 2012; 

Reinius et al., 2016). To answer the question of whether RMAE is present in vivo and is 

clonally stable, we performed a transcriptome-wide analysis of lymphoid cells derived 

from a single HSC injected into a mouse. In this study, we included technical replicates 

for RNA-seq libraries of bulk experiments to estimate overdispersion and measured the 

differential allelic imbalance between clonal populations with high precision 

(Mendelevich et al., 2021). 
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Single HSC reconstitutions 

The HSC population is highly heterogenous and constitutes a minuscule fraction of bone 

marrow cells (0.004–0.007%) (Kiel et al., 2007; Uchida et al., 2003; Yang et al., 2005). 

Even the most refined HSC purification protocols can isolate HSCs at only 40%–50% 

purity, which means that most of  these cells are not authentic LT-HSCs that repopulate 

an irradiated mouse at a single cell level with long-term and multilineage reconstitution 

(Wilson et al., 2015). We used three different protocols for HSCs isolation (and one of 

the protocols with two different approaches), and we ended up selecting protocol 2.1 

(LSK CD48- CD150+ (Kiel et al., 2005)), which provided the highest frequency of 

reconstituted animals, namely in experiment 6 (19%). The average of all reconstitutions 

was 7.7%, which is close to the 18-22% range described in different studies (Boyer et al., 

2019; Osawa et al., 1996; Wagers et al., 2002). The low reconstitution efficiency could 

be explained by several reasons. First, the fraction of isolated HSCs with developed 

protocols is not completely pure. Second, only some of the injected real HSCs 

successfully migrate through the blood flow and engraft the right niches of the bone 

marrow. Third, even if the engraftment happens, a single injected cell needs to produce 

at least 109 mature cells to be detectable in the recipient mouse system, such as the 

hematopoietic organs and blood (Benveniste et al., 2010). Moreover, the long period 

the cells remain outside the animal, the sorting procedures, and additional handling 

manipulations could decrease the transplantation efficiency.  

The key factor for the success of this work is monoclonality. Female animals and XCI 

were used to produce an internal control that could confirm the monoclonality. Early in 

development, a female cell randomly inactivates one of two X chromosomes, and this 

choice is clonally propagated through cell division and differentiation. By injecting one 

HSC that has already decided on the choice of XCI, the derived clonal cell population will 

have an extremely biased AI of X-linked genes because all cells will express the same X 

chromosome. This is a necessary condition to claim that the hematopoietic system is 

monoclonal, but it is not a sufficient one because the recipient animal may have received 

two HSCs that inactivated the same X chromosome. However, given the single cell-

sorting protocol, the inspection of the Terasaki plate wells under the microscope, and 
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the extreme care during the single-cell injections, which were always performed by two 

individuals and moving the injected mouse to a different cage to avoid injecting the 

same animal twice, the probability of having animals with two donor HSCs is low. 

Moreover, the low frequency of animals reconstituted with a single cell reinforces the 

conclusion that the five animals we studied had a monoclonal hematopoietic system 

(donor cells) because, even if two cells were introduced, the probability of both 

surviving, home to the hematopoietic niches, self-renew, and differentiate to produce a 

long-term multilineage population should be extremely low. This was directly observed 

in experiment 5, in which two cells were purposedly injected in the same recipient 

animal (GFP+ and GFP- cells), because no reconstituted animal was found with 

contributions in the blood from two donor HSCs. In a worst-case scenario where the five 

animals assumed to be monoclonal were in fact reconstituted with two HSCs, the 

frequency of genes under RMAE would be underestimated only by 50% (similar to XCI, 

the probability of receiving two cells with opposite skewness), which would not affect 

our conclusions that RMAE in vivo in highly expanded and differentiated hematopoietic 

cells is a rare event. Genetic labeling of original HSCs with different barcodes is 

potentially a powerful tool to analyze the monoclonality of samples, but this would 

involve additional manipulation of the HSCs before transplantation, which could raise 

several concerns, such as the HSC activation during gene transfers and alteration of its 

function (Verovskaya et al., 2014).  

The deviation from the 1:1 XCI ratio observed in our polyclonal samples and even in 

unmanipulated animals could be explained by the tissue-specific XCI skewing observed 

in lymphoblastoid cell lines and whole-blood samples and multiple hematopoietic cell 

types from two homozygotic twins, while skin and fat tissues showed more balanced 

skewing (Zito et al., 2019). 

It is assumed that choosing which X chromosome to be inactivated during XCI is random; 

however, this inactivation in F1 hybrid mouse in crosses between classical inbred strains 

has been described as skewed. The Xce (X-controlling element) locus genetically 

described more than 50 years ago by Cattanach interferes in this process (Cattanach, 

1970). In mice homozygous for Xce, the probability of either parental X chromosome 
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being inactivated is equal, while in animals heterozygous for Xce one parental X 

chromosome is preferentially inactivated. Different Xce alleles have been identified in 

several inbred mouse strains, including Xcea (CBA/H, C3H/HeH, and BALB/cH), Xceb 

(C57BL/6H and DBA/2H), and Xcec-like (CAST/Ei), which have different relative strength 

(Xcea < Xceb < Xcec), i.e., the X carrying the stronger allele has the highest probability of 

being activated (Cattanach and Rasberry, 1994; Cattanach and Williams, 1972; 

Cattanach et al., 1969; Johnston and Cattanach, 1981; West and Chapman, 1978). 

Interestingly, we did not observe this AI skewing of X-linked genes to the strongest Xcec 

allele carried by the CAST mouse. In polyclonal and unmanipulated animals, the AI values 

are not biased toward zero (CAST, paternal allele). If the animals were injected with two 

cells, there are three possibilities of reconstitutions: Xceb + Xceb or Xcec + Xcec or Xceb + 

Xcec. This means that we should observe more examples with active X chromosome from 

CAST, but we observe three of five animals with maternal B6 X chromosome, the one 

that is more often silenced during XCI, which is one more observation consistent with 

the conclusion that the probability of having non-monoclonal animals in the group of 

putative monoclonal animals is low. The two possible explanations for the absence of X 

chromosome skewness toward CAST X chromosome in our F1 hybrid mice are tissue-

specific XCI skewness (Zito et al., 2019), and a noncanonical mechanism for XCI 

maintenance in lymphocytes (see below) (Sierra and Anguera, 2019).    

Regarding the composition of the monoclonal samples, we only used for RNA-seq cells 

derived from a single HSC that gave rise to long-term reconstitutions, with multilineage 

(production of myeloid and lymphoid lineages) and self-renewal capacities 

(reconstitution of secondary recipient animals). 

Additionally, an analysis of the V(D)J repertoire was performed to quantitatively address 

the complexity of the B cell populations in the monoclonal samples. V(D)J 

rearrangements occur early, in pro-B and pro-T cells, which means that to generate a 

complex repertoire of clonotypes, a single HSC should significantly expand, producing 

enough cells before V(D)J recombination is activated during lineage commitment. It was 

confirmed that monoclonal samples generated a repertoire of V(D)J clonotypes similar 

to those of the polyclonal and unmanipulated control animals. We conclude that cells 
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used in single-cell reconstitutions meet the definition of LT-HSC (Dykstra et al., 2007; 

Kiel et al., 2005; Wilkinson et al., 2020) and that the clonal complexity of B and T cell 

populations that emerged from single HSC is equivalent to the clonal complexity found 

in unmanipulated and polyclonal hematopoietic systems.  

 

Identification of autosomal allele-specific expression 

Pairwise comparison of differential AI between all samples did not reveal genes under 

RMAE. This analysis is more suitable to distinguish between samples with many and few 

genes with AI. However, the study of AI dispersion in B cells between monoclonal and 

polyclonal sets of animals unmasked 14 genes, which are more allelically imbalanced in 

the set of monoclonal samples than in the polyclonal samples. This means that the B 

cells from the different monoclonal animals expanded in a clonal way from an individual 

HSC and, although they underwent the same differentiation program, each clone 

revealed unique allele-specific stable transcriptional states. Additionally, by exploring T 

cells originating from the same HSC, we confirmed that this observation is biologically 

meaningful and not the result of statistical flukes due to the many comparisons (number 

of genes) we explored. The AI values of 14 genes with RMAE are highly correlated in B 

and T cells, meaning that allele-specific expression patterns established prior to CLP 

state and already present in HSC are independently propagated in the B and T cell 

lineages.  

In our collection of 14 genes, the most solid example of RMAE is Pkp3 (plakophilin 3, 

participates in linking cadherins to intermediate filaments in the cytoskeleton), which 

can be expressed from paternal or maternal or from both alleles randomly. This gene is 

more skewed for the CAST allele-specific expression in two monoclonal samples and the 

B6 in two other monoclonal samples, and shows balanced expression from both alleles 

in one sample. For different reasons, another curious example is the Igkv6-25 gene. 

V(D)J rearrangement occurs in pre-B cells. Before this stage, cells expand vigorously and 

then each undergoes random recombination in one of the two antigen receptor alleles. 

It has been shown that there are no epigenetic marks in the HSCs pre-determining which 



 

110 

 

allele undergoes rearrangement first (Alves-Pereira et al., 2014; Farago et al., 2012), and 

it is unlikely that such mark is present in the CLP (Alves-Pereira et al., 2014). The 

appearance of the Igkv6-25 gene in our study could be due to the low frequency of 

recombination (<1%)  found in this gene (Aoki-Ota et al., 2012). If only one or some cells 

recombined the same allele, the emerging subclone(s) could produce a “RMAE” pattern. 

Many immunoglobulin genes exist like this one, but the STAR tool used is not the most 

suitable to detect rearranged immunoglobulins. As these genes are recombined, and 

sections need to be aligned, this analysis is not tailored for the immunoglobulin genes. 

However, the fact that only one gene out of the dozens of immunoglobulin genes is 

identified as having a “RMAE” pattern corroborates prior findings indicating that the 

immunoglobulin genes are not predetermined at the HSC to rearrange one allele before 

the other (Alves-Pereira et al., 2014; Farago et al., 2012). 

One important question, perhaps the crucial one, is whether the rare stable 

transcriptional patterns we identified are due to epigenetic marks or somatic genetic 

variations. The data revealed no obvious LOH events in the lineage differentiation from 

the HSCs to the CLP for any genes involved. Additionally, bootstrapping analysis of the 

transcriptomics and exome sequencing data was performed to test how unique are the 

14 genes identified with stable allele-specific expression in terms of the difference 

between AI from RNA and DNA data. If the RMAE data reflects epigenetic biases and not 

LOH events, the mean difference between DNA (exome sequencing data) and RNA AI 

values should be higher for these genes than for most random groups of 14 genes 

randomly sampled from our data, which was the case. Moreover, a whole-genome 

sequencing study was recently performed using in vitro small clones (~500 cells) derived 

from the HSC of an 8-month-old B6 mouse and cultured for up to 14 days. In this study, 

about 110 single nucleotide variants and 26 insertions or deletions were uncovered per 

HSC. The distribution of these mutations was mostly intergenic, with more than 98.5% 

not falling in exons, and most are not expected to result in transcription changes (Druce, 

2021). Back of the envelope calculations based on these frequencies of genetic 

alterations strongly suggest that the RMAE pattern observed for Pkp3 could not result 

from somatic SNPs, insertions or deletions (data not shown) and the authors of the HSC 
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whole-genome sequencing study have not found mutations in any of the 14 genes we 

identified as having a RMAE pattern (Michael Milson, personal communication). In 

addition, these 14 genes are not associated with known common replication fragile sites 

(Durkin and Glover, 2007; Ma et al., 2012) and do not present molecular features usually 

associated with these regions, such as high expression levels and large size (Barlow et 

al., 2013; Helmrich et al., 2006). Taken these results and observations together, somatic 

genetic variations are unlikely to produce the stable allele-specific expression we report. 

However, in the case of genes for which the RMAE relies mostly on one monoclonal 

sample, somatic gene alterations remain a strong possibility. Only future work with 

epidrugs that interfere with epigenetic marks will allow us to produce conclusive data 

about these rare putative epigenetic marks.  

To uncover if the low number of genes with allele-specific expression patterns identified 

in HSC clones that underwent extensive proliferation and differentiation steps in vivo is 

due to the conservative methodology we used (Mendelevich et al., 2021) and to produce 

the most valid comparison possible between in vivo and in vitro data, the same analysis 

pipeline was applied to data from Abelson clones. Even after controlling for the 

methodology, we identified a significantly higher number of genes with allele-specific 

expression in clones expanded in vitro without differentiation. To explain this 

discrepancy in numbers between cells expanding and differentiating in vivo and cells 

expanding and not differentiating in vitro, including Abelson clones and other cells 

studied in different works (Eckersley-Maslin et al., 2014; Gendrel et al., 2014; 

Gimelbrant et al., 2007; Zwemer et al., 2012), we propose a model in which the 

evolutionary selection pressure that promotes phenotypic diversity at the cellular level 

by regulating RMAE does not always require the absolute clonal stability of allelic biases 

through the cellular lifespan (Figure 5.1). This clonal stability is found in the two most 

known examples of RMAE necessary to create phenotypic diversity within initially 

isogenic cell populations: antigen receptor and OR genes. Stable phenotypic diversity is 

crucial for these cells. In the case of antigen receptor genes, a negative feedback stops 

V(D)J recombination if the first recombination event involving one of the alleles was 

successful, preventing the expression of both antigen receptors. After this lock, the  cell  
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Figure 5. 1. Models of RMAE. (A) For most autosomal genes under RME, the epigenetic 
states leading to allelic biases are established de novo during differentiation and shortly 
before the genes are expressed. This model of RMAE is characterized by documented 
(e.g., olfactory receptor and antigen receptor genes) or probable clonal stability due to 
the existence of locks that stabilize the allelic imbalance (reviewed in (Barreto et al., 
2021)). One notable lock is the negative feedback triggered by the protein expression of 
one allelic form that prevents further gene or allelic activation (or recombination, in the 
case of the antigen receptors). (B) A model of RMAE in which the allelic imbalance for 
each clone is meta-stable, i.e., it can change from one cell stage to the other within a 
certain range during extensive periods of proliferation and differentiation until reaching 
a new clonal meta-stability. Because of these shifts, the allelic imbalance becomes 
intraclonally undetectable but is stable within each cell stage and ensures phenotypic 
diversity. Assuming that HSCs have an initial percentage of genes under RME close to 
that estimated for cells from collections of developmentally frozen clones grown in vitro, 
our data are compatible with a meta-stable model of RMAE.  
 

 

cannot rearrange and reinvent its antigen receptor (except in the cases of the receptor 

editing of the light chain genes and somatic hypermutation during the germinal center 

reaction). The monoallelic expression of olfactory genes in odorant cells is also stable 

throughout life and regulated by a negative feedback preventing the expression of more 

than one allele/gene, which is necessary to preserve the olfactory topographic map. 

Antigen and olfactory receptors are two compelling but exceptional cases of monoallelic 
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expression that may not be particularly relevant for other genes under RMAE (Figure 5. 

A). Instead of propagating allelic biases established early throughout many cell divisions, 

the epigenetic marks could simply emerge before the developmental stage where allele-

specific expression is relevant for the cell population phenotype. Cells could change 

allelic biases in a stochastic way from one stage of differentiation, thus ensuring 

phenotypic diversity at any developmental stage even if clones are not stable (Figure 5. 

B). We propose that in clones undergoing differentiation, allele-specific patterns are 

meta-stable, and there is erasure and intraclonal reestablishment of these patterns.  

 

Future work 

In the future, to confirm this hypothesis, we plan to compare in vivo clones extensively 

expanded and differentiated from HSC with the same cell-type clones but that did not 

undergo differentiation. This can be done by sorting cells from the same animals and 

shortly expand them ex vivo without major differentiation to freeze allele-specific 

marks. Ideally, the experiment would include clones of B cells and clones of HSCs shortly 

expanded ex vivo. We expect to see more allelic biases in these ex vivo clones than in 

our collection of monoclonal B cells that emerged from single HSCs. These ex vivo clones 

should reveal allelic biases present in a specific developmental stage, which would be 

masked in our in vivo experiment because of ongoing differentiation. It would also be 

interesting to study the change of allelic biases and lineage development and connect 

these changes to phenotypic diversity.  

 

X chromosome inactivation  

One of the most extreme examples of monoallelic expression is XCI. This feature is 

traditionally used to identify clonally derived cells. At the cellular level, the normal 50:50 

ratio of the cells expressing the maternal or paternal X chromosome found in polyclonal 

populations is drastically skewed in clonal and oligoclonal samples. However, XCI is 

limited to one sex, it is skewed in female hematopoietic cells, and it quickly becomes 

uninformative as the number of stem cells increases. In addition, this skewing increases 
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with age, leading to low resolution in clonal assays (Ayachi et al., 2020). Identifying 

autosomal regions by focusing on polymorphisms with stable epigenetic allele-specific 

patterns in hematopoietic lineages could be used to develop assays that estimate the 

clonal structure of the hematopoietic system. Moreover, these assays based on 

autosomal epigenetic patterns could also be applied to male cells. 

One of the X chromosomes in female cells is inactive due to XCI. However, genes can 

escape from this mechanism. In mice, XCI escapees have been studied using three 

systems: 1) single-cell RNA-seq (Borensztein et al., 2017; Chen et al., 2016); 2) 

heterozygous female mice knockout for specific X-linked genes, such as Xist or Hprt 

(Berletch et al., 2015; Yang et al., 2010) or heterozygous female mice for an X-linked 

gene linked to a reporter (Wu et al., 2014); 3) and clonal female F1 hybrid cell lines 

(Calabrese et al., 2012; Li et al., 2012; Splinter et al., 2011). In the first method, technical 

noise leads to a high number of false positives (Kim et al., 2015). The second method is 

performed on an animal model and involves a genetically engineered Xist locus; in the 

case of knockout mice, the activation of one allele is imposed by the deletion of Xist. The 

third method is based on in vitro systems. In short, all three systems have shortcomings. 

Here we propose an approach to study lineage-specific XCI in vivo using genetically 

unmanipulated cells. We identified seven (5530601H04Rik, Eif2s3x, Kdm5c, Kdm6a, 

Pbdc1, Utp14a, and Xist) XCI escapees in B and T cells previously found in different 

tissues (Berletch et al., 2015; Li et al., 2012; Wu et al., 2014; Yang et al., 2010). A set of 

known escapees were not identified in this study, which could be due to the tissue-

specificity of X escapees (Berletch et al., 2015) or the restrictive criteria used in this work. 

Overall, we show that single HSC reconstitution is an effective method to study lineage-

specific XCI in blood.  

Traditionally, the mechanism for XCI maintenance is thought to be the same across all 

somatic cells. However, this model was drawn based on studies performed with 

immortalized or primary fibroblasts, cancer cell lines, differentiated stem cells, and 

neural precursor cells (Sierra and Anguera, 2019). In 2006, a study on murine 

lymphocytes reported that XCI maintenance could be noncanonical in hematopoietic 

cells. The inactive X chromosome was characterized by Xist RNA FISH and H3K27me3 
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staining from sorted female mouse hematopoietic cells in this study. Unexpectedly, it 

was found that Xist RNA clusters and H3K27me3 foci are present in LSKs and lymphoid 

progenitors, but the H3K27me3 signal was lost in committed cells downstream of the 

lymphoid progenitors. The Xist RNA cluster was detected in pro-B and pro-T cells, and 

then it was significantly decreased in pre-B and pre-T cells and detected again in a 

significant fraction of mature B and T cells. Allele-specific RT-PCR analysis of Xist and 

four X-linked genes in pre-B and pre-T, and mature B and T cells indicated that these 

genes were not reactivated from the inactive X chromosome, suggesting that dosage 

compensation was still preserved (Savarese et al., 2006). Subsequently, a series of 

publications by Anguera et al. revealed that the mechanism of hematopoietic XCI 

maintenance in lymphocytes is dynamic and differs from that of other somatic cells. By 

analyzing mature naïve B and T cells isolated from mice and humans, it was found that 

these lymphocytes lack typical heterochromatin marks and the Xist RNA cloud. In vitro 

activation of both lymphocytes triggered the return of Xist RNA signal and some 

chromatin marks to the inactive X chromosome, but with kinetic differences between B 

and T cells. Xist was continuously expressed from naïve and activated lymphocytes 

(Wang et al., 2016). Next, the dynamics of XCI maintenance of B and T cells during 

differentiation was studied in more detail. In HSCs and CLPs, Xist RNA clouds and the 

H3K27me3 mark were canonical and similar to those of fibroblasts. Then, in B cell 

development, Xist RNA disappears from the inactive X chromosome in pro-B, pre-B, and 

immature cells, whereas heterochromatin marks are still present in pro-B cells and 

progressively decrease during development (Syrett et al., 2017). In the T cell lineage, Xist 

RNA disappears in the DN1 stage, re-localizes in the DN2 and DN3 stages, and then 

disappears again from the inactive X chromosome in the DN4 stage, with a high 

correlation to the presence of the H3K27me3 mark (Syrett et al., 2019). The functional 

importance for dynamic localization of Xist RNA at inactive X chromosome it still 

unknown. Moreover, the CXCR3, CD40L, and TLR7 genes, which are immune-related X-

linked genes, were found to be biallelically expressed in lymphocytes of females (XX) 

and males with Klinefelter Syndrome (XXY, with one inactive X chromosome resulting 

from XCI), both prone to develop SLE, an autoimmune disease. B cell lines of patients 

with SLE also displayed more cells with biallelic expression of these genes than control 
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cell lines (Souyris et al., 2018; Wang et al., 2016). The escape from XCI of immune-related 

X-linked genes and its connection to autoimmune disease and how other X-linked genes 

escape from dynamic XCI the during different lymphocyte differentiation stages are 

topics worthy of further investigation. The clonally derived hematopoietic system in vivo 

used in this work could be applied to tackle these questions, as well as tissue-specific 

XCI skewing. Additionally, immunodeficient mice could be single-cell reconstituted with 

human HSCs to evaluate XCI in the human hematopoietic system (Beyer and Muench, 

2017).  

 

Autosomal versus XCI parallels 

The precise mechanism or mechanisms underlying RMAE is until now unknown. Due to 

the common features between XCI and RMAE, namely the randomness and clonal 

propagation, parallels between these two classes of monoallelic expression are typically 

drawn when discussing RMAE (Chess, 2016; Gendrel et al., 2016; Goldmit and Bergman, 

2004; Mostoslavsky et al., 2001; Pereira et al., 2003). At least one gene, Smchd1, was 

suggested to regulate XCI of X-linked genes (completion or maintenance) and genes with 

RMAE. It was found that dramatically reduced expression of the this gene alters the 

expression of the clustered protocadherins in the brain (Mould et al., 2013) and killer 

cell lectin-like receptors subfamily A (also known as Ly49) in transformed mouse 

embryonic fibroblasts and tumors (Leong et al., 2013); both genes are monoallelically 

expressed (Esumi et al., 2005; Held et al., 1995). LINE-1 participate in XCI by spreading 

the silencing regions (Chow et al., 2010). Similarly, these elements were also found to 

flank genes under RMAE with high density, leading to the proposal that LINE-1 could also 

participate in the monoallelic expression of these genes (Allen et al., 2003). Finally, two 

human non-coding RNA autosomal genes, ASAR6 and ASAR15, share some 

characteristics with Xist. Briefly, they are randomly and monoallelically expressed from 

the later replicating allele, replicate asynchronously in coordination with other linked 

monoallelic genes, remain associated with the chromosome from which they are 

expressed, contain a high density of LINE-1, and their deletion results in late replication 

and activation of the previously silent alleles of nearby genes (Donley et al., 2013, 2015; 
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Stoffregen et al., 2011). Despite these similarities, here we observed that, after 

extensive proliferation and differentiation in vivo, the regions in the autosomal 

chromosomes behaving like the X chromosomes in terms of the stable transcriptional 

states may not exist or represent only an extremely small fraction of the genome. We 

suggest that RMAE lacks the stability seen in XCI, which depends on a multilayered 

process of silencing (Dossin and Heard, 2021). It is probable that a XCI-like stability 

applied to the autosomes would compromise the dynamics necessary for the different 

programs of hematopoietic development.  

 

Identification of genes with differential AI between B and T cells  

Monoallelic expression can result from epigenetic or genetic mechanisms. Allele-specific 

expression due to genetic features depends on the underlying DNA sequence around 

gene regulatory regions. On the other hand, in gene expression resulting from 

epigenetic features, the alleles can have identical DNA sequences, be present in the 

same cell, and undergo the same trans-acting environment, and still present differences 

in chromatin composition, bound transcription factors, and expression status (Gibney 

and Nolan, 2010). The differences found in allele-specific expression between B and T 

cells are surprising. However, given that the differences are present in the monoclonal 

and polyclonal samples, they have mainly a genetic component, with the B6 and CAST 

alleles responding differently to the distinct nuclear environment of B and T cells. 

Therefore, it would be interesting to investigate how the early evolution of gene-

regulatory sequences (C57BL/6J and Cast/EiJ diverged about 1 million years ago (Wade 

et al., 2002)) impacts the allelic biases observed in the different cell types from the same 

animal. We did not reveal any relevant function associated to genes with differential AI 

between B and T cells; for instance, the high enrichment in transcription factor binding 

sites was equally found for a control set of genes without allelic biases. The genes with 

alleles that respond differently to the B and T cell environment probably carry different 

mutations in the regulatory regions of these alleles, but the work of mapping these 

mutations needs to be done.    
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Conclusion  

This is the first report of an allele-specific genome-wide transcriptome analysis of 

lymphoid cell populations derived from a single HSC in vivo after extensive 

differentiation. It is here assumed that RMAE patterns are established during the 

differentiation of embryonic stem cells (Eckersley-Maslin et al., 2014; Gendrel et al., 

2014; Marion-Poll et al., 2021) and we tested whether these patterns, once established 

in HSCs,  are stably maintained across subsequent differentiation steps (Gendrel et al., 

2014; Marion-Poll et al., 2021).  

Heterogeneous repopulation phenotypes revealed by single HSC transplantation assays 

suggest that they are caused by epigenetic mechanisms present in HSCs (Benveniste et 

al., 2010; Dykstra et al., 2007; Morita et al., 2010; Sieburg et al., 2006; Yu et al., 2016). 

Despite being “stem cells”, HSCs are certainly more differentiated than embryonic stem 

cells, which are known to display RMAE patterns (Eckersley-Maslin et al., 2014) and this 

cell is less developed than the HSC. Thus, it is reasonable to postulate that HSCs also 

have genes under RMAE. Indeed, in our designed approach, where we studied clonally 

differentiated lymphoid cells from a single HSC, we found genes that maintain these 

allelic biases, meaning that these marks should already be present in the original HSC. 

However, we found that the percentage of genes with RMAE in the monoclonal 

hematopoietic system in which cells suffered prolonged and extensive cell expansion 

and differentiation is much lower (<0.2%) than the estimates obtained from frozen cell 

clones in vitro without undergoing extensive development, suggesting that these stable 

allele-specific transcriptional patterns are metastable and could be erased and 

reestablished during lineage commitment. This means that RMAE is not stably 

propagated during differentiation, unlike XCI.   

Additionally, we tested the approach used here to identify XCI escapees. We showed 

that the single HSC reconstitution is an alternative approach with several advantages 

over the systems that have been used. Our approach allows the study of XCI in vivo 

without genetic manipulations and using bulk RNA-seq instead of the noisy single-cell 

RNA-seq.    
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Supplementary Figure 7. 1. Pairwise comparisons of allelic imbalance between animals 
for B and T cells, with values of Pearson’s coefficient correlation and the number of 
genes with a significant differential AI after applying QCC correction on the binomial 
tests. Abundance values are TMM-normalized counts. 
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Supplementary Figure 7. 2. Pairwise comparisons of allelic imbalance between 
Abelson-immortalized B-cell clones, with values of Pearson’s coefficient correlation 
and the number of genes with a significant differential AI after applying QCC correction 
on the binomial tests. Abundance values are TMM-normalized counts. 
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Supplementary Table 7. 1. XCI escapees identified by other studies and our study 
showing values of allelic imbalance and expression in HSC-derived lymphocytes in vivo 
from our NGS data. Genes in bold are escapees identified in our study. Genes in red 
were not expressed in our samples and therefore were excluded from our study. Genes 
in blue were not included in our study due to lack of SNPs to estimate allelic imbalance. 
Read abundance corresponds to mean abundance in TMM-normalized counts. 

 Allelic imbalance   

 T cells B cells   

gene E13.2 E13.29 E13.24 E13.29 E15.10 E6.42 E6.43 
Mean 

abundance 
Xi expression 

1810030O07Rik 1.00 1.00 0.98 0.96 0.98 0.01 0.03 62.94  

5530601H04Rik 0.73 0.74 0.73 0.74 0.78 0.16 0.17 29.65 yes 

5730416F02Rik - - - - - - - 0.23  

Abcb7 0.99 1.00 0.99 0.97 0.99 0.00 0.01 36.13  

Alg13 0.95 0.97 0.81 0.93 0.99 0.09 0.10 14.65  

Amot 0.42 - 0.77 - - 0.32 0.28 1.93  

Ap1s2 0.97 1.00 0.93 0.90 0.96 0.01 0.01 30.45  

Atp7a 0.95 0.99 0.82 0.93 0.99 0.04 0.10 47.07  

AU015836 - - - - - - - 0.49  

AU022751 - - - 0.00 - - - 0.21  

BC022960 0.98 0.94 1.00 0.89 0.96 - - 0.86  

Bcor 1.00 1.00 0.93 0.95 0.97 0.01 0.01 71.23  

Bgn - - - - - - - 0.19  

Bhlhb9 0.99 1.00 0.97 0.92 0.97 0.02 0.01 53.61  

Bmp15 - - - - - - - 0.22  

Car5b 0.48 0.77 0.28 0.45 0.59 0.44 0.35 1.18  

Cfp 0.89 NA 0.96 0.96 0.99 0.12 0.01 28.36  

Col4a5 - - - - - - - 1.81  

Cstf2 0.99 1.00 0.94 0.95 0.97 0.00 0.01 118.51  

Ctps2 0.99 1.00 0.96 0.95 0.98 0.01 0.01 113.44  

Cybb 0.30 0.54 0.93 0.84 0.93 0.00 0.01 291.67  

Ddx3x 0.79 0.99 0.73 0.91 0.72 0.02 0.02 299.47  

Dlg3 0.97 0.99 0.94 0.91 0.98 0.01 0.08 16.77  

Dynlt3 - - - - - - - 54.06  

Ebp 1.00 1.00 0.91 0.90 0.97 0.01 0.01 44.00  

Eif2s3x 0.49 0.52 0.53 0.56 0.53 0.25 0.19 46.76 yes 

Ercc6l 1.00 1.00 0.90 0.89 0.98 0.01 0.10 21.35  

F8 0.88 1.00 - 0.76 1.00 - 0.33 3.55  

Fam199x 0.99 1.00 0.98 0.97 0.94 0.06 0.05 21.38  

Fam3a 0.99 1.00 0.94 0.96 0.97 0.01 0.01 27.94  

Fam50a 0.98 0.99 0.97 0.90 0.96 0.00 0.00 48.07  

Firre 0.93 0.93 - - - 0.00 - 8.42  
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Flna 1.00 0.99 0.96 0.94 0.96 0.01 0.01 811.48  

Fmr1 0.99 1.00 0.93 0.94 0.98 0.10 0.03 93.35  

Ftx 0.91 0.91 0.96 0.92 0.95 0.35 0.21 25.17  

Fundc2 1.00 1.00 0.97 0.92 0.98 0.01 0.00 29.13  

G530011O06Rik 0.20 0.13 0.57 0.71 0.48 0.61 0.44 1.66  

G6pdx 0.99 1.00 0.96 0.95 0.97 0.01 0.01 73.63  

Gdi1 0.99 0.98 0.93 0.94 0.95 0.01 0.01 463.40  

Gla 0.97 1.00 - 0.84 1.00 - - 5.44  

Gnl3l 0.99 0.99 0.95 0.92 0.94 0.03 0.03 64.96  

Gpm6b 0.58 - 0.93 0.79 0.95 0.23 0.24 3.03  

Gprasp1 0.98 0.99 0.93 0.90 0.94 0.01 0.01 51.27  

Gripap1 0.99 0.99 0.96 0.95 0.97 0.01 0.02 104.11  

Gk 0.95 0.99 0.97 0.89 0.99 0.01 0.10 15.92  

Hdac6 0.94 0.98 0.95 0.92 0.95 0.05 0.12 23.25  

Hs6st2 - - - - - - - 1.11  

Htatsf1 0.99 1.00 0.95 0.96 0.96 0.01 0.00 75.27  

Huwe1 0.98 0.99 0.92 0.93 0.95 0.02 0.03 100.25  

Idh3g 1.00 1.00 0.95 0.94 0.97 0.01 0.00 221.82  

Ids 1.00 0.99 0.97 0.92 0.96 0.01 0.02 47.79  

Ikbkg 0.99 1.00 0.96 0.95 0.97 0.01 0.01 85.87  

Il13ra1 - - - - - - - 1.32  

Iqsec2 - - - 0.58 - - - 1.14  

Irak1 0.99 0.99 0.95 0.94 0.97 0.01 0.01 144.37  

Itm2a 0.99 0.99 0.92 0.92 0.97 0.05 0.04 43.54  

Jpx - - - - - - - #DIV/0!  

Kdm5c 0.60 0.63 0.62 0.59 0.61 0.29 0.28 175.94 yes 

Kdm6a 0.55 0.55 0.66 0.58 0.58 0.40 0.39 145.05 yes 

Kif4 0.99 0.99 0.86 0.88 0.98 0.14 0.17 33.39  

Lamp2 0.98 1.00 0.93 0.95 0.94 0.01 0.02 105.10  

Maged1 0.96 1.00 0.98 0.95 0.96 - 0.00 4.83  

Magt1 0.99 0.99 0.94 0.94 0.97 0.01 0.01 70.50  

Mecp2 0.99 0.99 0.95 0.95 0.95 0.01 0.04 44.26  

Mid1 0.45 0.40 0.62 0.68 0.65 0.08 0.06 6.87  

Mid2 - - - - - - - 0.68  

Mmgt1 0.99 1.00 0.93 0.91 0.98 0.04 0.05 43.28  

Msn 0.99 1.00 0.94 0.94 0.97 0.01 0.01 1347.44  

Mtcp1 0.96 0.99 0.91 0.91 0.90 0.00 0.06 14.88  

Nkap 0.99 0.99 0.94 0.94 0.97 0.01 0.02 38.00  

Nudt11 - - - - - - - 0.08  

Ofd1 0.97 0.99 0.94 0.94 0.96 0.02 0.06 19.34  

Ogt 1.00 1.00 0.96 0.94 0.96 0.01 0.01 556.30  

Otud5 0.99 1.00 0.93 0.94 0.96 0.03 0.04 227.57  

Pbdc1 0.65 0.77 0.75 0.71 0.80 0.30 0.23 53.17 yes 
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Pcdh19 - - - - - - - 0.84  

Pdha1 1.00 1.00 0.93 0.96 0.96 0.01 0.02 107.61  

Pim2 0.99 0.99 0.83 0.88 0.95 0.01 0.01 55.97  

Plp1 1.00 0.97 0.89 0.92 0.99 0.23 0.12 2.59  

Pls3 - - - 1.00 - - - 2.18  

Pqbp1 0.99 0.99 0.95 0.90 0.96 0.01 0.01 104.39  

Rbbp7 - - - - - - - 192.46  

Rlim 0.98 1.00 0.93 0.96 0.96 0.01 0.01 84.62  

Rnf128 - - - - - - - 0.53  

Rps4x 0.99 1.00 0.95 0.94 0.96 0.01 0.01 196.71  

Sh3bgrl 0.99 0.99 0.93 0.94 0.96 0.01 0.04 134.77  

Shroom4 - - - - - 0.65 - 1.07  

Siah1b 0.89 0.98 0.95 0.90 0.97 0.02 0.00 7.53  

Slc16a2 - - - - - - - 0.50  

Slc35a2 0.99 1.00 0.96 0.96 0.97 0.02 0.02 36.33  

Slc6a8 - - - - - - - 0.66  

Snx12 0.99 0.99 0.98 0.95 0.97 0.23 0.19 42.85  

Ssxb3 - - - - - - - 0.15  

Suv39h1 0.99 1.00 0.88 0.93 0.97 0.05 0.14 62.48  

Syap1 0.99 1.00 0.99 0.96 0.97 0.01 0.00 35.80  

Syp - - - - - - - 1.33  

Tab3 0.98 0.99 0.95 0.90 0.97 0.02 0.07 20.34  

Taf1 0.98 1.00 0.86 0.90 0.94 0.05 0.03 64.98  

5430427O19Rik 0.63 0.93 0.96 0.92 0.98 0.02 0.03 40.30  

Tmem164 0.99 1.00 0.88 0.90 0.96 0.01 0.02 88.06  

Tmem29 0.83 0.83 0.86 0.89 0.83 0.25 0.29 3.81  

Tmem47 - - - 0.20 - - - 0.74  

Tmsb15l - 1.00 1.00 0.74 1.00 - - 0.28  

Tmsb4x 1.00 1.00 0.96 0.96 0.97 0.00 0.00 2015.50  

Uba1 1.00 0.99 0.95 0.93 0.96 0.00 0.00 326.39  

Ubl4a 1.00 0.99 0.95 0.90 0.95 0.01 0.00 69.97  

Usp9x 0.94 0.99 0.95 0.92 0.95 0.05 0.04 80.36  

Utp14a 0.99 0.62 0.94 0.77 0.77 0.03 0.22 26.22 yes 

Vbp1 1.00 1.00 0.95 0.96 0.98 0.01 0.03 121.16  

Vsig4 - - - - - - - 0.27  

Wdr13 0.99 1.00 0.95 0.95 0.96 0.03 0.00 43.80  

Xist 0.01 0.01 0.10 0.09 0.07 0.96 0.99 162.43 yes 

Yipf6 0.99 0.99 0.96 0.97 0.97 0.05 0.08 43.46  

Zbtb33 1.00 - - - - - - 5.64  

Zfp280c 0.96 0.99 0.90 0.92 0.94 0.03 0.06 26.07  

Zmym3 0.99 1.00 0.93 0.93 0.96 0.02 0.04 37.85  

Zrsr2 0.98 1.00 0.92 0.93 0.95 0.01 0.01 33.89  

Gm8822 0.38 0.35 0.44 0.35 0.38 0.39 0.30 19.69 yes 
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