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“Ups and downs in life are very important to keep
us going, because a straight line even in an ECG

means we are not alive” (Ratan Tata)



Abstract

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, responsible

for 45% of all deaths. Nevertheless, their mortality is decreasing in the last decade due to

better prevention, diagnosis, and treatment resources. An important medical instrument

for the latter processes is the Electrocardiogram (ECG).

The ECG is a versatile technique used worldwide for its ease of use, low cost, and

accessibility, having evolved from devices that filled up a room, to small patches or wrist-

worn devices. Such evolution allowed for more pervasive and near-continuous recordings.

The analysis of an ECG allows for studying the functioning of other physiological

systems of the body. One such is the Autonomic Nervous System (ANS), responsible for

controlling key bodily functions. The ANS can be studied by analyzing the characteristic

inter-beat variations, known as Heart Rate Variability (HRV). Leveraging this relation,

a pilot study was developed, where HRV was used to quantify the contribution of the

ANS in modulating cardioprotection offered by an experimental medical procedure called

Remote Ischemic Conditioning (RIC), offering a more objective perspective.

To record an ECG, electrodes are responsible for converting the ion-propagated action

potential to electrons, needed to record it. They are produced from different materials,

including metal, carbon-based, or polymers. Also, they can be divided into wet (if an elec-

trolyte gel is used) or dry (if no added electrolyte is used). Electrodes can be positioned

either inside the body (in-the-person), attached to the skin (on-the-body), or embedded in

daily life objects (off-the-person), with the latter allowing for more pervasive recordings.

To this effect, a novel mobile acquisition device for recording ECG rhythm strips was

developed, where polymer-based embedded electrodes are used to record ECG signals

similar to a medical-grade device.

One drawback of off-the-person solutions is the increased noise, mainly caused by

the intermittent contact with the recording surfaces. A new signal quality metric was

developed based on delayed phase mapping, a technique that maps time series to a

two-dimensional space, which is then used to classify a segment into good or noisy. Two

different approaches were developed, one using a popular image descriptor, the Hu image

moments; and the other using a Convolutional Neural Network, both with promising
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results for their usage as signal quality index classifiers.

Keywords: Electrocardiogram, Off-the-person, Signal Processing, Signal Quality, RIC,

ANS, Pervasive
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Resumo

As doenças cardiovasculares (DCVs) são a principal causa de morte no mundo, res-

ponsáveis por 45% de todas estas. No entanto, a sua mortalidade tem vindo a diminuir na

última década, devido a melhores recursos na prevenção, diagnóstico e tratamento. Um

instrumento médico importante para estes recursos é o Eletrocardiograma (ECG).

O ECG é uma técnica versátil utilizada em todo o mundo pela sua facilidade de uso,

baixo custo e acessibilidade, tendo evoluído de dispositivos que ocupavam uma sala

inteira para pequenos adesivos ou dispositivos de pulso. Tal evolução permitiu aquisições

mais pervasivas e quase contínuas.

A análise de um ECG permite estudar o funcionamento de outros sistemas fisiológi-

cos do corpo. Um deles é o Sistema Nervoso Autônomo (SNA), responsável por controlar

as principais funções corporais. O SNA pode ser estudado analisando as variações inter-

batidas, conhecidas como Variabilidade da Frequência Cardíaca (VFC). Aproveitando essa

relação, foi desenvolvido um estudo piloto, onde a VFC foi utilizada para quantificar a

contribuição do SNA na modulação da cardioproteção oferecida por um procedimento mé-

dico experimental, denominado Condicionamento Isquêmico Remoto (CIR), oferecendo

uma perspectiva mais objetiva.

Na aquisição de um ECG, os elétrodos são os responsáveis por converter o potencial

de ação propagado por iões em eletrões, necessários para a sua recolha. Estes podem

ser produzidos a partir de diferentes materiais, incluindo metal, à base de carbono ou

polímeros. Além disso, os elétrodos podem ser classificados em húmidos (se for usado um

gel eletrolítico) ou secos (se não for usado um eletrólito adicional). Os elétrodos podem

ser posicionados dentro do corpo (dentro-da-pessoa), colocados em contacto com a pele

(na-pessoa) ou embutidos em objetos da vida quotidiana (fora-da-pessoa), sendo que este

último permite gravações mais pervasivas . Para este efeito, foi desenvolvido um novo

dispositivo de aquisição móvel para gravar sinal de ECG, onde elétrodos embutidos à

base de polímeros são usados para recolher sinais de ECG semelhantes a um dispositivo

de grau médico.

Uma desvantagem das soluções onde os elétrodos estão embutidos é o aumento do

ruído, causado principalmente pelo contato intermitente com as superfícies de aquisição.
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Uma nova métrica de qualidade de sinal foi desenvolvida com base no mapeamento de

fase atrasada, uma técnica que mapeia séries temporais para um espaço bidimensional,

que é então usado para classificar um segmento em bom ou ruidoso. Duas abordagens

diferentes foram desenvolvidas, uma usando um popular descritor de imagem, e outra

utilizando uma Rede Neural Convolucional, com resultados promissores para o seu uso

como classificadores de qualidade de sinal.

Palavras-chave: ECG, Fora-da-pessoa, Qualidade de sinal, SNA, VFC, Pervasivo
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Introduction

Heart-related diseases are one of the leading causes of death in the world. Tools and

techniques have been and continue to be developed and perfectioned to prevent, manage,

or cure them. One such technique is remote sensing, where near-continuous measurement

allows for the assessment of the cardiovascular system. Throughout this chapter, this and

other topics are explored to explain and detail the motivation for this thesis.

1.1 Overview

The prevalence of Cardiovascular Disease (CVD) and other pathologies related to the

heart are increasing throughout the world. In Europe1 alone, CVDs account for 3.9 mil-

lion deaths every year [2]. Putting this number in perspective, CVDs are approximately

45% of all the deaths, making them by far the leading cause of death in Europe [2]. At the

same time, the number of new cases is also increasing, with 85 million people in Europe

suffering from CVDs. Between 1990 and 2015, there was a 34% increase in new male

cases and a 29% in females [2]. These high numbers have a significant economic impact,

with a 210,000e million Euros cost for the European Union, ranging from healthcare

costs, loss in productivity, and informal care [2].

Nonetheless, in the last decade, the number of deaths due to these pathologies has

been decreasing, as summarized in Figure 1.1. This is partially due to a better under-

standing of the underlying causes or habits that can trigger the appearance of these types

of diseases. These risk factors are, for example, high blood pressure, alcohol consump-

tion, smoking, obesity, physical activity, and diet. Another important element for the

decreasing number of deaths is the appearance of new diagnostic technologies and the

improvement of existing ones. The combination of all this knowledge contributes to the

big three causes for lower morbidity: prevention, diagnosis, and treatment [3]. To diag-

nose CVDs and related pathologies, clinicians nowadays have a plethora of tools, devices,

and techniques to help them in making their decisions faster and more accurately, with

some of these same tools used for prevention.

1The continent.
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Figure 1.1: Age-standardized CVD mortality rate globally. It is possible to observe a
steady decline in the mortality rate due to these diseases throughout the last decades; UI
is the uncertainty interval. Extracted from [4].

In conjunction with new technologies clinicians can use at point-of-care facilities, such

as hospitals or clinics, a new trend in the consumer market is also emerging, through the

self-monitoring and gamification of health monitoring in day-to-day life. More and more

products appear in this segment, in which a user can take their measurements and either

generate reports for self-assessment, or send these measurements to their clinicians. It can

even go a step forward and generate automated alerts for both parties. This enables an

almost continuous monitoring, predicting and anticipating future complications before

the need for urgent care. For example, if a user has an unusually high heart rate in a

period where no relevant physical activity (e.g. running or hiking) was performed, it may

be a sign of a cardiac complication and an alert may be generated. This inference can be

made by using an accelerometer, a heart rate monitor, and fusing both data sources [5, 6].

More mobile and patient/consumer-focused devices are starting to shape how patients

and doctors approach healthcare, with the sprawl of exciting fields such as Electronic

Health (eHealth) or Mobile Health (mHealth). These two concepts are relatively new,

with the introduction of more smartphone and wearable-based solutions for either the

transmission or the gathering of physiological data [6, 7]. eHealth is the umbrella term

for information and communication technologies used in health services, while mHealth

is the term applied when smart portable devices are used to deliver health services [8].

The usage of such systems gives an improvement in operational efficiency, higher quality

of care, and a positive return on investments [9]. In CVD monitoring and management,

these technologies (eHealth and mHealth) are starting to be adopted on a larger scale and

considered the new normal [10].
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1.1. OVERVIEW

(a) Number of PUBMED entries for ECG auto-
matic diagnostic.

(b) Number of PUBMED entries for ECG com-
mercial wearables.

Figure 1.2: Number of PUBMED entries for ECG automatic diagnostic (a) and commercial
wearables (b) between 2012 and 2021. The number of new entries for both terms increased
for this period, especially the number of publications referencing a commercial wearable.
The latter include devices used in clinical practice and research, such as smartwatches.

An important assessment method used in CVDs and that suffered a revolution in the

last decade is the Electrocardiogram (ECG), a medical exam based on the recording of the

electrical activity of the heart, allowing the clinicians to assess the resulting waveform and

quickly gauge parameters indicative of the status of the heart [5]. The heart is one of the

few muscles in the body with periodic activity produced by self-excitatory cells, resulting

in waveforms and patterns that allow clinicians to distinguish between normal and patho-

logical conditions. In the past decade, the number of commercial solutions for recording

and/or analyzing an ECG has increased, as well as the number of researchers applying

more and more complex techniques to make diagnosis [11–13]. Figure 1.2 include the

number of entries in PUBMED for two different search terms, ECG automatic diagnostic2

(Sub-Figure 1.2a) and ECG commercial wearables3 (Sub-Figure 1.2b), between 2012 and

2021. The latter search term was selected since it illustrates a niche segment of commer-

cial ECG devices, being actively explored by some of the largest producers of consumer

goods products, wanting to include this type of capabilities (i.e. health monitoring) in

their products, leading to a rapid increase in the yearly number of publications.

There are many different techniques to record an ECG (detailed in Chapter 2). The

simplest is measuring the difference between the right and left limb electrical potentials,

caused by the difference in dipole created by the heart’s activity throughout the cardiac

cycle. This simplicity allows companies to develop or even integrate ECG recording ca-

pabilities in their devices. One of the most widespread examples is the Apple Watch4,

which allows the user to record a 30-second (s) ECG segment by placing their finger on

the watch’s digital crown. Other similar smartwatches include the Fitbit Sense, Galaxy

2https://pubmed.ncbi.nlm.nih.gov/?term=ecg+automatic+diagnosis&filter=years.2012-2021
3https://pubmed.ncbi.nlm.nih.gov/?term=ecg+commercial+wearables&filter=years.2012-2021
4Starting from the fourth generation and only available in certain countries due to regulations.
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Figure 1.3: Two popular ECG-enabled smartwatches, namely the Apple Watch (left) and
the Fitbit Sense (right), capable of recording and processing 30 seconds rhythm strips.

Watch 3, or even specialized devices like AliveCor Kardia Mobile [11]. Figure 1.3 illus-

trates two of these devices, while Annex I presents an example of a report that can be

shared with a clinician of an ECG rhythm strip recorded using a Fitbit Sense.

Developing ECG-enabled pervasive mobile devices is an area of interest, in rapid

expansion in the last decade in both a clinical setting and in the consumer/end-user

space [11, 12]. These new solutions, capable of recording near-continuous, good-quality

signals, can improve quality of life and reduce mortality in heart-related diseases while

promoting a more conscious lifestyle.

1.2 Motivation

With an ECG rhythm strip, clinicians have the ability to assess the condition of the

heart by studying the morphology of the ECG wave. Building upon the study of the ECG,

another methodology to study the heart is through the inter-beat variability, known as

Heart Rate Variability (HRV), a concept explored in Chapter 2. Although the cardiac

cycle is periodic, it does not have a perfect rhythm. Therefore, studying the changes in

inter-beat intervals became a growing field of study, not only to assess the condition of

the heart, but also the pathways that control its activity. One of such pathways is the

Autonomic Nervous System (ANS), which can either increase or decrease the frequency

of the cardiac cycles. Hence, an ECG can be used to not only study the heart, but also to

study the systems that regulate it [14–16].

This was the basis for one of the motivations of this thesis, leveraging the inter-beat

variability and its connection to the ANS to study the cardioprotection offered in response

to an experimental medical procedure, known as Remote Ischemic Conditioning (RIC).

The main unknown surrounding this technique is how this protection is mediated, albeit

likely it is through humoral factors or the ANS. This motivation is the focus of Chap-

ter 3, where this technique is described in detail and the results of a small pilot test are

presented.
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To record an ECG, the conventional approach is to glue the electrodes directly on the

skin and use, in a mHealth context, small devices to either save or transmit the rhythm

strips. Although this approach allows for near-continuous remote ECG sensing, the place-

ment of these devices’ electrodes on the skin has to be done by an expert, challenging

their dissemination as simple-to-use devices by non-medical experts. To address their

dissemination and ease of use by non-medical experts, electrodes are starting to be em-

bedded in everyday use devices, such as smartwatches. By having them embedded in the

device itself, acquiring an ECG is greatly simplified [12].

Despite the benefits of having an ECG in a watch form factor to record the rhythm

strip, the user has to actively and consciously perform a specific action (Figure 1.4 is an

example of how to take an ECG using a Fitbit Sense). The problem with asking the user

to perform a voluntary action (closing the circuit) lies in human psychology, which after

the initial thrill of these new technologies eventually stops using them when the novelty

fades, not recognizing the added benefit of regularly taking those measurements. Another

problem is the need for regular charging since many of these devices are small and have

other functionalities than just recording ECG, sometimes leading to high abandonment

rates [6, 17].

Figure 1.4: Recording an ECG using a Fitbit Sense, by holding two opposite corners of
the watch for 30 seconds.

Due to the aforementioned, the ECG functionality of these devices is either used by

subjects hyper vigilant with their health, or as a method to provide further detail into

triggers made by other sensors/algorithms of the devices. If an ECG is performed only

when the user feels the need (e.g. has chest pain, a widely known symptom of a heart

attack, thus recording a rhythm strip) or when a smartwatch generates an alert (e.g. high

heart rate but low activity, an irregular circumstance), it can lead to cardiac events being

undetected [18].

5



CHAPTER 1. INTRODUCTION

Another approach is to embed the electrodes in other devices or surfaces, where the

natural interaction with them would allow a more regular and effortless recording. Han-

dles of gym equipment, a steering wheel, or a keyboard (or its wrist rest) [19, 20], exam-

ples of said devices, can be used to achieve coverage through the day without breaking rou-

tines or relying on alerts, reaching near-continuous monitoring. Using such approaches,

users can be monitored as an extension of their interaction with the device.

For CVDs monitoring (diagnosed or undiagnosed), it is important to record the full

ECG rhythm strip, since many of the indicators used in their assessment rely on the

morphology and timing between the different waves in a cardiac cycle [21]. Patients

suffering from CVDs are also from more senior demography, which requires an easy-to-

use device, equipped with an unintrusive method to record an ECG, whether it is the

material from which the electrodes is constructed from, their positioning in the device,

and the subject’s interaction with them. This is the motivation behind Chapter 4, the

development of a novel mobile ECG acquisition system, with a more naturalistic approach

to the recording of these signals and focusing on a more senior population.

There is, although, a significant drawback when using these kinds of methods to

record an ECG rhythm strip, namely pertaining to the quality of the signal recorded.

While the quality when there is suitable contact with the electrodes is typically good,

getting this good contact can sometimes be difficult. This difficulty in maintaining a good

and constant contact with the electrodes can generate noisy signals, which are not of in-

terest to be either saved, processed, transmitted, and/or analyzed. As will be described in

more detail in this thesis, the task of detecting what is and what is not a good signal can be

difficult, since some noise sources can mimic parts of the ECG morphology. Nevertheless,

there are many different methods to detect these outliers, either by using the statistical

properties of the signal, its morphology, frequency domain features, and/or a combina-

tion of all, which can then be used to classify the waveform or parts of it as good or bad.

With the advances in machine learning, there has been a shift to using more and more

complex techniques, while leveraging on simpler rules as a type of pre-processing stage,

to quickly and efficiently classify blatantly obvious outliers, leaving the more challenging

tasks to those more advanced and complex methods [22].

Since all the different contents of a cardiac cycle are required for an effective diag-

nosis or monitoring of CVDs, it is important to report good quality strips to clinicians.

Furthermore, having a pervasive and mobile device adds a new set of constraints, such

as storage, battery life, or transmission of the ECG strips. Only those with good qual-

ity should be stored and posteriorly sent for further analysis, thus saving said resources.

Chapter 5 tackle this problem, proposing a new approach to detecting and classifying

outlier segments.

The following sections of this chapter, the objectives (Section 1.3) and the structure

(Section 1.4), characterize in more detail said steps and how the work was segmented.
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1.3 Objectives

The main objectives for this thesis were:

• Review of the state of the art regarding the ECG physiology, acquisition methods,

and signal processing;

• Study of ECG signals to better understand the needs for the system (i.e. familiariza-

tion with ECG rhythm strips);

• Study the relation of the ECG and HRV with the ANS;

• Use the relation between the HRV and ANS to improve the state of art on an experi-

mental medical procedure, known as RIC;

• Develop a novel device for recording off-the-person ECG signals pervasively;

• Development and benchmarking of a new signal quality metric applicable to off-

the-person ECG;

• Publication of intermediate and final results in peer-reviewed international journals

and/or conferences;

Overall, this thesis aims to demonstrate the importance of the ECG as a vital tool in the

diagnosis, treatment, and management of various medical conditions. By understanding

its generation, how to record it, and how to assess if the signal has the sufficient quality

for its different applications, we can continue to advance the field of medical research

and improve patient outcomes.

1.4 Structure

This thesis is divided into the different aspects for achieving the above-mentioned

objectives and fulfilling the motivation set forth for this work. These include a journey

through the heart, its intricacies and functioning, and how can it be more pervasively

monitored, providing a good quality signal that can be used to study it and other systems

in the human body.

Chapter 1 A brief introduction to the problem at hand is presented as well as the moti-

vation for the development of this thesis. Afterward, the objectives set out for this work

are described.

Chapter 2 This chapter starts with a historical perspective of the ECG, both as a tech-

nique and concerning the measurement methods. At the end of this chapter, there is an

overview of how ECG is used as a diagnosis tool, either by using its morphology or by

exploring the HRV.
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Chapter 3 Overviews a pilot study developed in the context of this thesis, using ECG

and HRV to assess the ANS effect on the outcome of an experimental procedure, that can

offer a better protection to patients that suffered cardiac ischemia.

Chapter 4 Explores the concept of electrodes and their positioning in relation to the

body. Afterward, there is an overview of the development of a novel mobile device

enabling more pervasive and naturalistic ECG recordings, using embedded polymeric

electrodes in a custom back cover for a tablet.

Chapter 5 While acquiring data, many different interferences can occur that will lower

its quality. Therefore, some pre-processing and signal acceptance criteria need to be

ensured so that the signals can be used by either a clinician or an algorithm, and has the

best quality possible. In this chapter, the different sources of noise are presented and a

solution used to mitigate them is presented.

Chapter 6 Presents a brief overview of the different topics that were addressed during

the course of this work, followed by the contributions section, future work, contributions

that were made to other fields, and all the academic outputs.

The topics covered in this thesis, while diverse, are inherently interconnected, being

the ECG a common thread that ties everything together. It covers the evolution of ECG,

both as a technique and a technology, and its usefulness in modern medical practice.

Subsequent chapters will delve into how to acquire and process ECG signals, including

strategies for promoting more pervasive and continuous monitoring. Whether there is an

interest in CVD or using it as a proxy to study ANS, the quality of the ECG signal is of

utmost importance, and this thesis will provide insight into how to assess signal quality.

Furthermore, and taking into consideration that some of the work was developed

within a company, the research and solutions proposed were specifically designed to

meet real-world needs, with a focus on practicality and applicability in industry settings.
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2

Electrocardiography (ECG) Past and

Present

In this chapter, the rich history of the Electrocardiogram (ECG) is presented, from

ancient Greece to the modern day. Furthermore, there is an overview of both the evolution

of measurement methods and the technique itself.

At the end of the chapter, there is an introduction to a technique that uses the ECG

and the inter-beat intervals to study not only the heart but other systems in the body, such

has the Autonomic Nervous System (ANS).

2.1 The Different Ways to Sense the Heart

2.1.1 In the Beginning

The heart is one of the most important organs in our body, responsible for moving

blood to every crevice. It has been a subject of study throughout history, and from ancient

Greece to the modern world, its pulsating nature fascinates everybody. The Ebers papyrus

contained the first known essay on cardiology of humanity, written in 3000 B.C., in old

Mesopotamia (which nowadays comprises the territories of Syria and Iraq), where the

heart is described as being at the center of the body, both physically and spiritually. It

was regarded as having such an important role that it was the only organ that the ancient

Egyptians handled with special care when embalming corpses, while the Aztecs offered

it to their gods in sacrificial rituals [23, 24].

There are three major moments in the history of heart knowledge, corresponding to

three changes in the understanding about its purpose within the body. Starting with

the Greek philosopher Aristotle, which in the 4th century B.C. stated that the heart is

the most important organ, responsible for almost every function, from intelligence to

sensation [25].

Then, in the 2nd century A.D, the Greek physician Galen reaffirmed Aristotle’s convic-

tions that the heart has a strong correlation with the soul, but offered a different idea on

its importance. Instead of the heart being the most important organ, this role belonged to

9
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the liver, since it was the producer of the humors, while the heart helped by circulating

these spirits. This was the term for the different bodily juices responsible for regulating

the human behavior, which included the blood, created from food and drinks. Another

belief held by Galen was the purpose of the septum, believed to be porous, which allowed

some of the venous blood to be mixed with the arterial one, with each stream serving a

distinct and essential role [25].

This view, called Galeanism, remained as state-of-the-art until the 16th century (about

1400 years), when these views started to be questioned in favor of the modern circulatory

model. This includes the role of the septum, now a solid wall, dividing the systemic and

the pulmonary circulatory loops (which were first discovered by Ibn al-Nafis in the 13th

century), and cementing the role of the heart in the transmission and propulsion of the

blood. These new theories that spawn in the middle of the 16th century were published

by physician William Harvey in its book On the Circulation of the Blood, considered one

of the cornerstones of modern physiology, with theology starting to take a secondary role

to experimentation and empirical knowledge. This new model took nearly half a century

to replace the Galen model, culminating in its acceptance by the University of Paris [25].

The final major leap in understanding the functioning of the heart was the discovery

of bioelectricity and the role it played in the body. In the late 18th century, the first steps

in electrophysiology were taken. Two main sparks lighten this new field, with the first

spark coming literally from an electric eel in 1773, which was noticed by John Walsh in

his work with electric fish. Although his work helped advance the knowledge in both

physiology and the physics of the electric phenomena, he failed to publish his results,

and thus is largely dismissed [26].

For the other spark, we travel to 1786 Bologna, Italy, where Luigi Galvani, an anatomist,

noticed something that changed physiology forever. While working on the leg of a dis-

sected frog, the leg twitched when a metal scalpel touched the inner nerve. Galvani

called this discovery animal electricity, the force needed to activate the muscles, which

he published in a manuscript in 1791, De Viribus Electricitatis in Motu Musculari. This

new field of study was initially called Galvanism and is today known as electrophysiol-

ogy. His name also designates the instrument used to measure and record electricity, the

galvanometer, with the name coined by André-Marie Ampère in the early 1820s. Further-

more, in 1842, Carlo Matteucci makes an astonishing discovery, that each heartbeat of

a frog had a companion electric current. This was called an action potential by German

physiologist Emil DuBois-Reymond, the founder of electrophysiology, in the following

year, and thus the journey of the ECG begins [27, 28].

As with Jonh Walsh and the first reports of electricity in animals, the history of the

first recorded human ECG is controversial. It is believed that the first recording was done

by Alexander Muirhead in 1870, but was never published.
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Figure 2.1: The first human ECG, recorded by Augustus Waller of St. Mary’s Medical
School, with simultaneous electrometer and cardiograph tracings, showing an electrical
activity preceding every heartbeat. Extracted from [29].

Therefore, the first electrocardiogram is attributed to British physiologist Augustus

Waller, using a capillary electrometer1, a device invented in 1873 by Gabriel Lippmann,

with an electrode strapped to the front of the chest and another in the back (Figure 2.1).

Weller also discovered that the heart acts as a dipole, by moving the electrodes throughout

the thorax and recording the isopotential lines. Weller brought his discovery to the First

International Congress of Physiology, in Basel 1889, where in addition to showing his

recording, he brought an amusing experiment using his pet dog Jimmy with its feet inside

a glass jar of saline and recording the dog’s electrocardiogram [27–29].

In attendance at that conference was a Dutch physician and physiologist named

Willem Einthoven. Inspired by what he saw, he sets to improve the experimental ap-

paratus in order to create an easy-to-use machine for recording ECGs. It is Einthoven

himself who coins the term Electrocardiogram (more precisely Electrocardiogrammem),

in 1893, during a meeting of the Dutch Medical Association. Einthoven is considered

the father of the ECG, since he was the first to take into account the physical phenomena

that occur inside the electrometer capillaries. The capillary electrometer is filled with a

mixture of liquid mercury and sulfuric acid, that moves when a voltage is applied. Since

the liquid is trapped inside the capillary, it is subject to fluid mechanics such as inertia

and friction. Armed with this knowledge, in 1895 Einthoven developed a mathematical

correction for the signals recorded with these devices, characterizing the familiar PQRST

wave2 (Figure 2.2) [27, 30–32].

1John Burden Sanderson and Frederick Page were the first to use this instrument to study the action
potential of the heart and also the first to note two distinct phases.

2Since these waves were a derivation from the recorded signal, Einthoven followed the mathematical
convention at the time by using the second half of the alphabet to name the structures. The first available
character was the letter P.
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Figure 2.2: Two superimposed ECGs are shown. An uncorrected curve is labeled ABCD,
from a tracing made with the refined Lippmann capillary electrometer. The other curve
was a mathematically corrected version by Einthoven, to allow for inertia and friction in
the capillary tube. Extracted from [32].

This marks the start of the ECG as a field of study, both as a new and exciting research

opportunity but also with clinical applications. It took only twenty years from the first

recorded ECG by Waller until it would be used in a clinical setting, when Mt. Sinai

hospital in the United States of America used it to study arrhythias in 1909 [31]. But

before diving more into the rich history of the ECG, a brief overview is provided on how

these signals are generated in the first place.

2.1.2 Physiology of the Heart

The heart is a muscle, a type of fibrous tissue that has the ability to contract. There

are three different types of muscles, skeletal, smooth, and cardiac (Figure 2.3). In a

succinct explanation, the skeletal muscles are long, multi-nuclear cells, typically bundled

and linked in series forming strides that allow these bundles to slide over each other,

causing them to contract. On the other hand, smooth muscles are single nucleolus cells

that are non-striated, with their contractile mechanism being different from the latter.

To contract, inside each cell there are fibers connecting different anchor points in the

cell membrane, which are pulled towards the middle when there is a signal to contract.

Another big difference is in how they are recruited. Smooth muscles are completely

controlled unconsciously by the autonomic nervous system. On the other hand, skeletal

muscles are controlled by the peripheral central nervous system, which can be recruited

consciously. The heart muscle is a special type of fiber, borrowing characteristics from

the other two types. Its cells only have one nucleolus, much like smooth fibers, but they

are striated (similarly to skeletal muscles) to increase the muscle’s strength. Its operation

is also involuntary [33].
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Figure 2.3: The three different types of muscles, skeletal, smooth, and cardiac.
Adapted from [34].

The cells of a fiber typically have a negative potential, called the resting potential,

due to the concentration of different ions inside and outside the cell, such as Potassium

(K+), Sodium (Na+), and Chloride (Cl−). This potential is typically stable until the de-

polarization signal, which forces Sodium channels in the membrane to open and allows

those ions to flow inside. This exchange starts slowly, but it is sped up when a threshold

is crossed, causing a sudden increase in the number of channels open and the start of the

contraction. Finally, there is a plateau where the cellular potential is near 0V, followed

by the re-polarization, where there is again an ion exchange, causing the muscle to relax

(Figure 2.4.a). In skeletal muscles, the plateau is almost non-existent, leading to a short

duration contraction and with the cell being able to be recruited almost immediately

(Figure 2.4.b) [33].

Building upon this summary of how a muscle cell contracts, the heart muscles can be

further subdivided into conductive or contractile. Conductive fibers, as the name hints,

specialize in propagating the stimuli. This cell type is unique in that its resting potential is

not constant. There are channels within the membrane that are constantly open, allowing

for a slow re-polarization of the cell until the discharge threshold is crossed and a faster

depolarization occurs, creating a rhythmical event (Figure 2.5). On the other hand, the

contractile cells have a stable resting potential but a very low action potential threshold,

causing a very fast depolarization, but they are able to hold the plateau for a long time,

increasing the contraction time of the cell (Figure 2.4.b) [33].
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Figure 2.4: a) Action potential phases of a cardiac muscle cell, with an emphasis on the
long plateau due to the opening of Calcium channels within the cell membrane, absent
in other muscle cells. A long refractory period allows all the blood within the heart to
be pumped effectively, leading to a cardiac cycle between 250 and 300ms; b) Difference
between a skeletal and a cardiac muscle action potential and contraction periods. A
skeletal muscle has a very short refractory period, leading to a fast contraction. On the
contrary, the cardiac muscle contraction is spread throughout a larger period, pumping
all the blood before a new contraction begins. Adapted from [35].
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Figure 2.5: Conductive heart muscle fibers, which have a constant rhythmic depolariza-
tion. Adapted from [35].

The cardiac cycle (Figure 2.6) has four major phases, generation, delay, the start of

the contraction, and its spread. The action potential responsible for the heartbeat is

originated in the sinoatrial node, a group of conductive fibers located at the top of the

right atrium. When these cells suffer their self-re-polarization, an action potential is

generated, and the cardiac cycle starts. The next phase is when this potential arrives at

the atrioventricular node, where there is a slight delay in the conduction of the signal

by slowing down the progression of this wave, allowing the contraction of the atria (the

atrial systole) to be completed and the valves connecting it to the ventricles to close. The

wave is then routed through the His bundle, which are conductive fibers present in the

heart septum, reaching the Purkinje fibers, which spread the wave through the bottom

part of the ventricles. The walls of the ventricles are lined with contractile fibers, for

which the re-polarization wave leads to their contraction (ventricular systole), expelling

the blood from the heart [33].

To end this brief interlude and start a deeper journey into the history of the ECG, the

cardiac cycle can be correlated with the ECG wave. The small P wave, the first landmark

in a typical Lead I ECG, is correlated with the atrial depolarization, the auto-generation

of the depolarization wave. Afterward, there is the P-Q segment, the conduction of the

wave from the sinoatrial node to the atrioventricular node. In parallel, the atria are also

contracting, filling their corresponding ventricles. The QRS complex is the conduction of

the wave through the septum, ending in the S landmark that corresponds to the time in

which the signal is propagated through the ventricles, from the bottom to the top. With

the spread of the wave throughout the ventricles, they start to contract, corresponding to

the S-T segment, ending in the ventricular re-polarization, represented by the T wave [33].
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Figure 2.6: The cardiac cycle begins with the atrial systole and progresses to the ventricu-
lar systole, atrial diastole, and ventricular diastole. The corresponding ECG correlation
is highlighted. Adapted from [36].

2.2 A Deeper Journey Into the Past

2.2.1 Electrode Count

Einthoven not only developed a mathematical correction for a capillary electrometer,

but also a new device to record the ECG signal. Although he first tried to improve the

capillary electrometer, this device had a slow response time, thus limiting its frequency

response [30].

In 1901, and after spending 7 years working with a capillary electrometer, Einthoven

invented a more sensitive string galvanometer. This device has a string in the middle of

two strong electromagnets, which moves due to electrical currents recorded with elec-

trodes connected to the subject. The galvanometer was a very inconvenient device, weigh-

ing 275Kg and occupying two rooms. Like Walsh and his dog experiment, the first

galvanometer used buckets filled with electrolyte solution as electrodes (Figure 2.7) [27].

Through this machine, the usage of ECG as a diagnosis tool started to flourish, with

the first ECG recorded using this device occurring in the following year and the first trace

of atrial fibrillation being published in 1907.
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Figure 2.7: Early commercial ECG machine, built in 1911 by the Cambridge Scientific
Instrument Company. Adapted from [31].

The clinical use of Einthoven’s stationary equipment required trans-telephonic trans-

mission of the ECG from the physiology laboratory to the clinic at the Academic Hospital,

about a mile away, as documented in the 1906 paper on the "le télécardiogramme". For his

work on the ECG, Einthoven earned the Nobel Prize in Physiology in 1924 [27, 30].

In order for this technique to be adopted and recognized as a diagnostics tool, there

was a need to standardize the placement of the electrodes. This was yet another major

contribution made by Einthoven to the newly established field. Up until 1912, Einthoven

tried multiple combinations for limbs immersion and ended up with three established

leads, I, II, and III, forming a triangle with the heart at its center and both arms and

one of the legs3 as a vertices (the unused leg served as a ground electrode). [30, 31, 37].

Figure 2.8 is the illustration provided by Einthoven for the electrode placement.

Lead I is obtained by subtracting the positive electrode connected to the left limb from

the negative electrode connected to the right one. Lead II is obtained by subtracting the

positive electrode connected to one of the legs from the one connected to the right limb,

a 60-degree angle from the previous lead. Finally, lead III is obtained by subtracting

the positive electrode connected to one of the legs from the negative electrode on the

left limb, a 120-degree angle from lead I, closing the triangle. These leads (and their

augmentations) constitute the limb leads [31].

With the standardization of electrode placement came the first clinical applications

of this brand new technique. It was initially used to study and assess cardiac arrhythmia,

an abnormal heart rhythm such as atrial fibrillation (when heartbeats are irregular and

3Although both legs can be used, typically the left leg provides a stronger signal.
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Figure 2.8: Einthoven triangle for electrode placement, where R is the right hand, L the
left hand, and F both feet. The H is the heart and the arrow is the direction of the potential
difference in the heart. Adapted from [37].

faster than normal), or bradycardia (when the heart beats more slowly). In fact, by the

1930s, with the parallel advances in other engineering fields, the machines became more

portable, which in turn made possible the dissemination of this promising technique

around the world. By then, a three lead ECG was useful to distinguish between cardiac

and non-cardiac events in patients with chest pain, a frequent symptom of heart-related

complications. To this day, the ECG is a key test performed in an emergency room (or by

first responders) when a patient reports chest pain, as a mean of triage [27, 31, 38].

In the 1910s, there was an explosion in the number of articles, publications, and

books using the ECG, with one of the forefathers being Sir Thomas Lewis, an English

physician. He used the ECG to study and summarize knowledge about arrhythmia, and

also introduced the basic principles and terms of a heartbeat, such as the "sinoauricular

node" or "pacemaker", crediting the usage of ECGs as the main reason for detection and

study of cardiac events, hence bringing credibility to this new technique as a clinical tool

and not just a lab instrument [28, 30].

This new interest in recording ECG traces lead to the development of smaller and more

portable machines. At the start of the 20th century, the first ECG machines occupied an

entire room and were usually located in special labs. Only ten years later, the first table

electrocardiograph started to be sold; by 1920, the first machines that could be used by

the bedside started to appear, and by the end of the 1920s these machines could be carried

instead of rolled in a cart [27, 28].

Although the three-lead ECG aids in detecting arrhythmia and other heart-related

pathologies, it was still hard to recognize a Myocardial Infarction (MI) using only the

Einthoven leads. A MI, or as it is more commonly known a heart attack, occurs when

regions of the heart muscle (myocardium) stop receiving blood, and thus start to die

(infarction) due to the lack of oxygen. There are some regions of the heart that are

invisible, or "silent areas" as they became known, to a three-lead ECG; and if a MI occurred

in any of those regions it would be missed. These silent areas appear since the limb

leads trace a vector in the frontal plane of the body, from the head (superior) to the foot

(inferior).
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To catch an infraction in the "silent areas", there is a need to trace a vector in the

horizontal plane, from the front (anterior) to the back (posterior) (Figure 2.9) [28, 31].

Figure 2.9: Anatomical planes. Adapted from [39].

This was the conclusion Dr. Frank Wilson arrived at in 1934. To explore the horizontal

plane, he combined the three limb electrodes, creating a negative lead within the heart.

This lead is known as Wilson Central Terminal and can be used to compare the potential

difference using a single exploratory electrode since the central terminal under ideal

circumstances should be zero. With an electrode inside the chest (the Wilson Central

Terminal), the horizontal plane can now be explored by placing one of these uni-polar

leads anteriorly on the chest wall. As with the Einthoven triangle, there was a need for

standardization of their placement, in order for them to be useful in a medical diagnosis.

The next standardized leads arrived in 1938 when the American Heart Association and

the Cardiac Society of Great Britain published the placement of the precordial leads

across the precordium, an anatomical region on the anterior chest wall over the heart,

comprised of six unipolar electrodes named V1 through V6 (Figure 2.10) [28, 31].

Figure 2.10: Wilson’s pre-cordial leads V1 through V6; WCT is the Wilson Central Termi-
nal. Adapted from [39].
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By the end of the 1930s, a typical ECG had nine leads, comprised of the Einthoven’s

limb and the precordial leads. With the introduction of unipolar leads (and the ability for

the recorders to perform more intricate electrical operations), Dr. Emanuel Goldberger

used them to further explore the frontal plane, augmenting the Einthoven leads. The

initial three leads were augmented by dividing the frontal plane in 30-degree increments

instead of 60, providing more information from 0 (right to the left side, lead I) to 120-

degrees (lead III). These new leads were constructed by using the electrodes placed

on one of the limbs as exploratory, while the other two are averaged and used as the

reference, creating three new ECG traces called augmented unipolar leads. Their name

adopts the following convention, a for augmented, V for voltage, and a letter for their

location, thus, aVR, aVL, and aVF, for the augmented voltage right arm, left arm, and

foot leads (Figure 2.11.a) [31].

Figure 2.11: Complete 12-lead placement, divided by their recording planes.
Adapted from [40].
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Lead I = LA−RA

Lead II = LL−RA

Lead III = LL−LA

aVR = RA− (LA+LL)/2

aV L = LA− (LL+RA)/2

aV F = LL− (LA+RA)/2

V 1 = V 1p − (LA+LL+RA)/3

V 2 = V 2p − (LA+LL+RA)/3

V 3 = V 3p − (LA+LL+RA)/3

V 4 = V 4p − (LA+LL+RA)/3

V 5 = V 5p − (LA+LL+RA)/3

V 6 = V 6p − (LA+LL+RA)/3

(2.1)

With these three new leads, the modern electrode placement came to fruition, i.e.

the 12-lead electrocardiogram, standardized in 1954 by the American Heart Association,

with 9 lead electrodes and a ground that are combined as shown by Equation 2.1 to form

the 12-lead, where RA, LA, and LL are the right arm, left arm, and left leg electrodes, and

V1p to V6p the unipolar leads on the chest [31, 41].

In summary, the first machines capable of recording an ECG appeared at the end of

the 19th century, using buckets of salt water as electrodes and a device that captured the

shadow of a mercury column that moved due to the electrical potentials, i.e. the capillary

electrometer. The next breakthrough was the development of a new method for recording

these electrical potentials at the beginning of the 20th century, the string galvanometer,

which allowed for better recordings and started the field of electrocardiography, earning

Einthoven (its inventor) the Nobel prize. However, the first iterations of this machine

were bulky and occupied an entire room due to the large electromagnets needed, which

in turn required the machine to be water cooled and have a staff of up to five people to

operate. In parallel, there was an effort for the standardization of the electrode placement,

a requirement if this technique was to be used in the clinical field. The number of leads

started small, with Einthoven three leads, but soon grew to the current number of 12,

with the initial three enhanced by the Wilson (precordial) and the Goldberg (augmented)

leads.
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2.2.2 Device Evolution

The original room filing machines were quickly improved, occupying a tabletop by

1911. A practical version of the string galvanometer was able to be commercially bought

instead of being just a lab instrument [28]. The "first portable" ECG machine was devel-

oped in 1928, when a tabletop galvanometer was converted to a wooden case, weighing

20Kg and using a car battery for power (Figure 2.12). Next came the introduction of vac-

uum tubes, which improved the signal amplification and further reduced the size. These

improvements led to the appearance of multi-channel portable devices. Another change

that aided in the miniaturization was the use of a mirror instead of a string galvanometer,

which traded sensitivity with ruggedness, in the middle 1930s [28].

(a) Cambridge Electrocardiograph from 1920.
Extracted from [42].

(b) Sanborn Viso 100 portable ECG machine
from 1935-1955. Extracted from [43].

Figure 2.12: Example of early ECG machines spun from the original Einthoven string
galvanometer.

Up to this point in history, all machines used film to record the trace, which needed to

be processed, decreasing the appeal of ECG recordings in small clinics or general practi-

tioner’s offices. This is where the next breakthrough really contributed to the proliferation

of the electrocardiograph as a diagnosis tool. In 1932, a Swiss company introduced the

first system with direct writing, using a pen to trace the ECG. Although this was a major

improvement, this technology was not broadly adopted until the 1950s, mainly due to

their fidelity in tracing the wave. Direct writing became ubiquitous with the development

of ink-jet printers [44].

At the same time, the introduction of Cathode-Ray Tube (CRT)s enabled real-time

monitoring of patients, especially during surgeries and in Intensive Care Unit (ICU)s.

Commercial machines equipped with CRTs started to appear in the early 1950s, with

some models referred to as oscilloscopes, since the only feature they provided was a signal
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output. CRT equipped machines had typically a worse frequency response than electro-

cardiographs (where the wave was traced on a rhythm strip), so their use proliferated first

in surgery rooms and afterward in ICUs, where real-time data is more important than

detailed information. Coupled with heart rate indicators, alarms for low or high heart

rates, and output connections for printouts, these machines became a presence in every

operating room or ICU ever since [45].

Advancements in semiconductor technology and later on solid-state electronics led

to the increase in processing power of the machines, enabling them to perform tasks

with increased complexity. From the 1970s, a range of new features started to become

standard in electrocardiographs. Examples include internal memory banks for storing

data for analysis, interfaces to connect external devices for processing ECG traces such as

arrhythmia detection done by specialized computers, numerical display for Heart Rate

(HR), and some devices started to offer isolated inputs for patient protection. The next

logical step was to bring arrhythmia analysis from a central processing location to the

bedside, which was a big improvement in the 1980s. Another big advance was modularity,

or the ability to increase a machine feature set by attaching modules to it. In addition, the

machines gained new and better screens. From the end of the 1980s and throughout the

1990s there was a race for mobility and connectivity, trying to make the machines smaller

and more flexible, combining both ECG and other physiological signals, especially when

monitoring critical patients or during surgery [45].

With improvements in battery and integrated circuits, smaller and more portable de-

vices started to appear in the twenty-first century. In the 2010s, with the prevalence of

smartphones throughout the population, new solutions for acquiring, transmitting, and

processing the ECG started to appear. The recorders started to leverage wireless commu-

nication technologies, such as Bluetooth or Wi-Fi, to transmit data from the recorder to

the physician. The quest for portability and remote transmission can be traced to 1947

when Norman "Jeff" Holter was able to transmit an electroencephalographic signal from

a moving test subject. After this experiment, he moved the electrodes to the chest and

the first "portable" wireless ECG machine was invented (although in the beginning it had

to be carried in a backpack and weighed 38Kg) [45, 46].

Due to the invention of the transistor, the need to transmit the traces became obsolete

(for the time), since all the components could now be placed in a small unit for local

recording and storage. From there onward, the number of leads recorded started to

increase, from 1 in the 1960s to 12 channels in the 1990s, and the recording medium went

from tape to solid state (RAM chips, to disk mediums such as CDs, to Flash Memory), and

the telemetry capabilities went from standard radio to cellular communications, enabling

external storage and transmission of data instead of just locally [45, 46].

Finally, in the last ten years, a new trend started to appear, involving self-monitoring

using wearable devices. By 2014, the incorporation of a Photoplethysmography (PPG)
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sensor became common in these devices, allowing users to track their HR throughout the

day and also to monitor their sleep patterns and quality. The next step was to evolve the

PPG sensor to a Oxygen saturation (SpO2) tracker, enabling not only HR measurements

but also blood oxygenation. The latest sensor to be included in commercial consumer

wearables was the ECG sensor, typically recording Lead I traces [5, 47].

A brief timeline of these consumer-grade portable devices can be drawn, starting in

2006 with the introduction of the Nike+ iPod kit, where a small pebble with an embedded

accelerometer could be inserted within the shoe insole and connected to an iPod, allowing

the user to track their pace and step count during a workout. Since this was a product

more focused on fitness, Fitbit introduced the Fitbit classic, the first commercially suc-

cessful pedometer, a small clip-on device worn at the waist and allowed its users to track

the number of steps taken during the day. The next big step was the introduction of the

Nike+ FuelBand in 2012, a wrist-worn activity band that displayed the amount of physi-

cal activity done by the user during the day. It displayed this metric using simple color

code, while also introducing a gamification4 element to day-to-day activities by creating

online communities and challenges users could participate.

From 2014 onward there has been a growth in both the number of wearable health

trackers and the number of parameters these track. The first physiological focus sensor

that was added to these devices in addition to the accelerometer/Inertial Measurement

Unit (IMU) was the PPG sensor, from which the extraction of heart rate was now possible

using commercial wrist-worn devices. This sensor extracts the heart rate by measuring

the amount of light that is absorbed by hemoglobin in the blood, which changes as a

function of the blood volume increase/decrease caused by the cardiac cycles [48]. Next,

the PPG sensor was upgraded to include an infrared sensor, allowing it to measure SpO2.

There are two main varieties of hemoglobin, oxygenated and deoxygenated, with different

absorptivity depending on the light source wavelength. Oxygenated hemoglobin absorbs

more infrared light. Deoxygenated hemoglobin allows more infrared light to pass through

and absorbs more red light. By using these two different wavelengths, a ratio between

oxygenated and deoxygenated hemoglobin can be calculated, and the oxygen saturation

measured [49]. With the growing adoption of commercial self-measuring devices by

the general population, more and more processing power and sensors were added, and

in 2019 the world best selling smartwatch, the Apple Watch, introduced an ECG sensor.

ECG measurements are taken by placing an electrode on the bottom of the watch case and

the other on the device’s digital crown (a small rotary button on the side of the device),

allowing their users to extract a 30-second Lead I ECG trace5. Soon all the big brands

in this field, e.g. Samsung and Fitbit, introduced products that include this feature. An

example report generated using a Fitbit Sense can be found in Annex I.

4Gamification is adding game mechanics into non-game environments.
5This smartwatch and its iterations have been clinically validated in two different multi-

centre clinical studies. An overview of these studies can be found in the following link
https://www.apple.com/ca/healthcare/docs/site/Apple_Watch_Arrhythmia_Detection.pdf.
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2.3. THE ECG AS A CARDIOVASCULAR DIAGNOSTIC TOOL

Although the consumer market for small and portable ECG recorders only started

to appear in the last couple of years, as a medical device there are many specialized

devices with the sole purpose of recording and processing ECG signals. In [5], the authors

tested at least 15 different devices, from handheld recorders to patches attached to the

chest, and using 1 to 3 lead recorders. All of these iterative improvements bring us

to the present, where we have devices on our wrists/chest that can detect changes in

our normal day-to-day HR, prompt us to perform a local ECG for further analysis, and

evaluate if these changes are potentially indicative of Cardiovascular Disease (CVD)s,

recommending a clinician appointment or even sending the traces to a clinician for real-

time analysis, which has been shown to help in lowering the number of fatalities due to

cardiac events [5].

2.3 The ECG as a Cardiovascular Diagnostic Tool

As previously described in this chapter, the miniaturization of ECG recorders and

the standardization of electrode placement enabled clinicians to use the ECG as a tool

for analysis of CVDs, becoming one of the most used diagnostic tools for heart disease.

An ECG can provide information about the electrical conduction system of the heart,

including the timing of depolarization and repolarization. This information is important

for diagnosing and monitoring certain conditions, such as conduction disorders and

prolonged QT syndrome, which can have serious clinical implications.

The usage of ECG in diagnosis is especially important for "silent" diseases. This type

of disorder produces mild symptoms, such as fatigue or mild chest pain, as opposed to

the classical tell signs of a major cardiac event, such as intense chest pain or numbness in

the arm. Nevertheless, these types of events ("silent") account for 45% of all heart attacks,

and one powerful and quick detection method is the ECG [18].

As a long-term monitoring tool, the ECG is also a very powerful exam. In [50], the

authors found that for CVD and Coronary Heart Disease (CHD), major changes to the

baseline ECG are only second to age in predicting mortality due to those disorders, per-

forming better than the traditional risk factors including hypertension, obesity, or sex.

Therefore, for example, long-term monitoring of patients using the ECG is very useful

for both disease management and prevention of sudden cardiac death.

Long-term studies [21, 51] revealed that even for people without a history of CVDs,

changes in the baseline ECG are associated with an increase of CHD later in life, therefore

being a good candidate exam for risk stratification of asymptomatic participants given its

low cost, wide availability, and safety [21].

As an example of what an ECG waveform looks before, during and after a CHD event,

Figure 2.13 presents an illustration of a ST-Segment Elevation Myocardial Infarction

(STEMI) (a class of MI), the most acute manifestation of coronary artery disease, and

associated with great morbidity and mortality [52].

25



CHAPTER 2. ELECTROCARDIOGRAPHY (ECG) PAST AND PRESENT

Figure 2.13 also illustrates that it is possible to observe changes in the ECG even

weeks after the event, which is important in "silent" diseases or if symptoms are unno-

ticed/ignored by the patient, leading to a quicker diagnosis.

Figure 2.13: ECG waveform before, during, and after a MI illustrating a STEMI. It gets its
name due to the elevated ST-segment right after the event (the second leftmost waveform).
It is also possible to see the evolution of the waveform, which remains altered even weeks
after the event, displaying a characteristic inverted T-wave. Adapted from [52].

As a result, the ECG is a powerful tool for analyzing the different stages of the cardiac

cycle, such as re-polarization, depolarization, and valve movements. By studying the

shape of the signal and the timings between fiducial points, such as the duration of

the QRS complex or the amplitude of the R-peak, specific information about the heart’s

functionality can be obtained and used to diagnose diseases such as MI, hypertensive

heart diseases, arrhythmia, or CHD [53]. Other examples include:

• Duration of QRS complex, QT interval, and TP down-slopping segment (Spodick’s

sign) in an ECG signal with ST-segment elevation can be used to detect acute peri-

carditis [54].

• Q, R, and S amplitudes and the Q-S duration in V2–V4 can be used to diagnose

anterior infarct [54].

• Sokolow-Lyon score [55], Romhilt-Estes score [56], or Cornell voltage [55], which

use amplitude and timing between different fiducial points, can be used to diagnose

left ventricular hypertrophy.

Physicians are thus trained to look and identify changes in ECG waveforms similar to

what has been illustrated in Figure 2.13. At the same time, an increasingly number of al-

gorithms and consumer-grade hardware are starting to appear and be cleared for medical

use by the US Food and Drug Administration (FDA)6 and its European counterpart, the

European Medicine Agency (EMA)7. These technologies aid the clinicians and patients

either by detecting potential life-threatening events and raising an alert, improving the

time taken in segmenting long ECG segments for further decision making, or making

ECGs easily available in day-to-day situations [57, 58].

6Responsible for regulating medical devices in the United States of America.
7Responsible for regulating medical devices in the European Union.
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VARIABILITY (HRV)

Nevertheless, the ECG contains information beyond what can be derived from its

morphology, in particular, arising from the ANS influence, which is reflected by the inter-

beat intervals. Therefore, another tool that can be used to study the heart is the Heart

Rate Variability (HRV), or the dynamics of the inter-beat intervals over time, especially

since a lower variability is usually associated with a bad outcome/prognosis for many

diseases [59].

A healthy heart is not a metronome [60].

2.4 Unlocking the Secrets of the Heart Through Heart Rate

Variability (HRV)

As previously mentioned, HRV is the temporal variation of consecutive Heartbeat

(HB)s, which are believed to be caused by the balance of the two antagonistically branches

of the ANS, the sympathetic and parasympathetic, and their influence on the cardiovas-

cular dynamics [61].

The ANS term was coined based on its functioning, operating without any voluntary

or conscious control, being also known as the involuntary nervous system. Another name

by which it is known is the visceral nervous system, since many of the inputs come from

the thoracic and abdominal viscera, via the vagus nerve. The ANS is responsible for many

important physiological processes, including HR and blood pressure control [62].

For example, blood pressure is controlled by the brain based on the measurement of

the number of impulses coming from baroreceptors, present in major systemic arteries

and responsible for monitoring said pressure. If there is a decrease in pressure, then

there are fewer impulses, and thus the ANS modulates the activity of the heart and blood

vessels in order to increase both the HR and vascular resistance, increasing the pressure

as a result [62].

The two branches, the sympathetic and parasympathetic, are anatomically and func-

tionally distinct divisions that maintain a continuous nervous input at all times (tonically

active), and increase or decrease their activity according to bodily needs. The sympa-

thetic system generates the response known as the "fight-or-flight", preparing the body

for physical activity, while on the other hand, the parasympathetic predominates in quiet

and resting conditions, conserving and storing energy (also known as "rest-and-digest")

[62]. Figure 2.14 offers an overview of sympathetic and parasympathetic innervation.

Looking at the HRV history, this starts with a familiar individual, the Greek physi-

cian Galen (131 - 200 A.D.), whose studies on pulse became the standard for sixteen

centuries. Galen attributes the discovery of the pulsating nature of arteries to Greek

physician Herophilos (335 - 280 B.C.), while the first writings that correlate this pulse to

the beating of the heart come from another Greek physician, Rufus (2nd century). Galen

used all this previous work, built upon it, and published many books and treatises on this
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Figure 2.14: Schematic overview of sympathetic and parasympathetic innervation.
Adapted from [63].

subject, some of which describing how to use the pulse in the diagnosis and prognosis of

diseases [59]. On other hand, Chinese and other Asian cultures also used the pulse as a

diagnosis tool, with Bian Que (500 B.C.) describing four diagnosis methods using tongue

and artery pulses [64].

Physicians had to wait until the 18th century to be able to start doing more advanced

studies around the HR. What allowed them this possibility was the ability to measure

time much more accurately, with English physician John Floyer inventing a portable clock

with a special stopwatch mechanism, an extra clock hand, and a graded dial called "The

Physician Pulse Watch" in 1701. Floyer was also an advocate of using the pulse to assess

diseases, and it is also due to this invention that the HB is presented in beats per minute,

since this watch reported the number of beats after 60 seconds [59]. This allowed the

analysis to jump from qualitative to quantitative [64].

Before the big boom in the HRV field of the 1960s and 1970s, three more major

events occurred. In 1733, English Rev. Stephen Hales reported that inter-beat intervals

and arterial pressure varied with the respiratory cycle. This phenomenon was further

developed by German physician Carl Ludwig, which showed that inspiration increases the

HR, while expiration decreases it. Finally, there was the invention of the ECG in the early

1900s. All these discoveries helped the recognition of the HRV as an important technique,

which became widely available with the invention of the 24-hour Holter device, modern

digital signal processing, and wearable devices [59].
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VARIABILITY (HRV)

The acceptance of the modulation of the HR by the ANS has its roots in the start of the

19th century, with the work of French physiologist Claude Bernard (1813–1878) and his

understanding of homeostasis, and later due to the work of American physiologist Walter

Cannon (1871–1945), stating that this homeostasis was maintained through the connec-

tion of several subsystems and controlled by what is now known as the ANS. British

physiologist John Langley (1852 - 1925) expanded these works by dividing the autonomic

control into the divisions used today, i.e. the sympathetic and parasympathetic [64].

At the start of the 20th century, the relation between breathing rates and HR was

already known, however, in 1910 German physiologist Karl Ewald Hering (1834 - 1918)

was the first to describe the relationship between these changes and the ANS via the

vagal tone8. Furthermore, his son Heinrich Ewald Hering (1866 - 1948) explored these

concepts, publishing several papers on the baroreceptor reflex [64].

In another interesting history crossover, at the time of Heinrich’s studies on the ANS,

Einthoven had just finished inventing his ECG recorder. Heinrich used it in 19089 to

record ECG traces. It is believed that Heinrich was one of the first to publish a trace

showing atrial fibrillation, where no supraventricular action (P-wave) is detected, while

many of his other studies were cited in Sir Thomas Lewis’s book "The Mechanism and

Graphic Registration of the Heart Beat", an early reference in ECG studies [65].

Austrian physicians Hans Eppinger (1879 - 1946) and Leo Hess (1879 - 1963) were

the first to suggest that HRV could be used to study diseases via changes in the autonomic

regulation (in 1915) [59], and in 1937 U.S. psychiatric Benjamin Maltzberg (1893–1975)

reported the relationship between major depression (at the time called “involution melan-

cholia”) and cardiac diseases [64]. However, only in the 1960s HRV started to be used in

clinical applications [59].

The first major study using HRV in a clinical setting came in 1965 from the U.S-based

physicians Edward H. Hon, MD (1917–2006)10 and Stanley T. Lee, with the analysis

of fetal ECGs, where the authors noticed that when the fetus was in distress, their ECG

manifested a lower HRV before any changes in the HR could be seen (e.g. a major depres-

sion in HR). This was such an important discovery that this principle is still used in the

present day [64].

Shifting the focus to cardiology from obstetrics, the first major study linking the ac-

tivity of the ANS and the HRV came in 1978, when an Australian team of physicians

managed to establish a relationship between sinus arrhythmia11 and mortality after an

8Hering in conjunction with is colleague physician Josef Breuer, discovered in 1868 that the lungs have
several baroreceptors that, when stretched, send inhibitory signals in order to prevent over-inflation. This is
known as the Hering-Breuer reflex.

9Einthoven initially commissioned Edelmann and Sons of Munich to manufacture said machine before
going with Cambridge Scientific Instrument.

10Dr. Hon was a pioneer in the usage of fetal ECG, publishing several papers in the field of fetal cardiac
monitoring and inventing the first commercially available fetal ECG monitor in the 1960’s [66].

11Normal occurring arrhythmia that, when present, typically indicates good cardiovascular health.
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acute myocardial infraction. This association was based on the value of the Standard

Deviation of Normal QRS Distances (SDNN), a metric that will be described later in

this chapter, in which patients that suffered an infraction but had a higher value for this

metric were more likely to survive [59, 64].

These studies are just two examples from the growing field at the time. The next big

step in the field was to establish methods to assess the individual contributions from each

of the two branches of the ANS in the modulation of the HR. One of those studies was

performed in 1975, where the authors established a relation between the parasympathetic

control of the heart and the breathing-induced arrhythmia in dogs, proposing using the

variations of the HR as a metric to study the parasympathetic system [64, 67]. Figure 2.15

is one of the charts the authors present in their paper [67] to demonstrate the effect of the

parasympathetic system in the HR in dogs, where during its suppression the inter-beat

interval remains much more stable, thus lowering the variability between them.

Figure 2.15: Effect of parasympathetic control on HR in dogs. The top chart is the inter-
beat interval, while the bottom chart is the respiratory cycle. The two arrows represent
the start and end of the cooling of the vagus nerve, which suppresses the activity of
the parasympathetic control in breathing, thus removing the arrhythmia caused by it.
Extracted from [67].

Another landmark study was performed by Solange Akselrod and her group in 1981,

where in [68], frequency domain analysis was used to distinguish between sympathetic

and parasympathetic activity. They did this by comparing the power spectrum of the

inter-beat variation in a dog under normal conditions (Figure 2.16.a)) with those when

sympathetic and, afterward, parasympathetic activity was blocked (Figure 2.16.b)), to

assess the contribution each branch. It was then possible to infer that the lower part

of the spectrum is likely the contribution of the sympathetic system while the higher

frequencies are more likely due to the parasympathetic, which the authors attributed to

a faster and more direct regulation mechanism by this system [64, 68].

By the end of the 1980s and early 1990s, HRV was an established technique, used for

both the study of the heart, diagnosis, and/or study of the ANS. However, there were

many different metrics used without any guidelines. These metrics were mostly derived
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VARIABILITY (HRV)

Figure 2.16: Normal and drug blocked inter-beat interval power spectrum of a dog. Sub-
figure a) represents the normal power spectrum of the inter-beat interval from a 5-minute
segment; Sub-figure b) is the power spectrum when drugs are given in order to suppress
the activity of each branch of the ANS. Extracted from [68].

from time and frequency domains, however, borrowing inspiration from chaos theory,

non-linear features also started to appear, when Ary Goldberger and his group argued

that HR was a conjunction of seemingly random sequences of events with an underlying

structure instead of being just a periodic oscillator [69].

All of this led to the development of a taskforce in 1996 that aggregated the different

metrics at the time, providing a standard that is still the base for much of the work in

the field today. This taskforce also described different use cases of HRV in both clinical

research and patient diagnosis, offering practical recommendations [16, 64].

As mentioned in Section 2.3, the ECG and the HRV can be used to assess sudden

cardiac death prognostic. But these can also be used as dynamic indicators of disease

progression/prognostic. Diabetes is a major research subject where HRV is widely used,

considering that this disease can cause dysfunction of the ANS. Several studies (starting

from the 1970s) were able to prove that diabetic patients suffering from neuropathy

due to the disease had lower HRV indices even before the clinical symptoms manifested,

very useful for prevention and early diagnosis. Another disease for which effects can be

monitored using HRV is chronic renal failure, which causes the inter-beat spectral power

to have lower amplitudes. This could be due to the higher blood pressure affecting the

baroreflex, leading to lower variability, since this is also found in patients suffering from

hypertension [15].
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Yet another field of study where HRV is also used is psychological research, where

higher levels of inter-beat variability are associated with better adaptivity to adversities

and stress [64], being an indicator of resiliency and flexibility to adapt the day-to-day

changes [15]. For example, distress disorders (e.g. Post Traumatic Stress Disorder), or cog-

nitive impairments, are typically reflected by a lower inter-beat variability (lower values

for some short-term HRV indices, such has Root Mean Square of Successive Difference

(RMSSD)) [69, 70]. On the other hand, individuals with higher inter-beat variability

usually get better results in tasks requiring sustained attention, memory, or cognitive

flexibility. In the end, for good emotional regulation, there has to be autonomic flexibility,

which can be monitored via different HRV indices [69].

2.5 HRV Features as Keys to the Cardiac Activity

Throughout its history, the HRV features grew from simple inter-beat variance to

non-linear methods. Currently, HRV features are commonly divided into their domain,

either time, frequency, or non-linear [16]. This is also the division that will be used in this

section, where an overview of the most used features will be given. Nevertheless, other

divisions have been proposed. For example, in [14] the authors aggregated 70+ features

and techniques for describing HRV and proposed a division into five groups, statistical,

geometric, energetic, information, and invariant.

These metrics are typically calculated either using a 24-hour or a 5-minute recording,

although shorter periods limit the usage of some of the metrics. Nevertheless, values cal-

culated with different time segments cannot be compared [16]. Table A.1 in Appendix A

summarizes all the features described below.

The previous section, Section 2.4, highlighted the increasing popularity of HRV analy-

sis as a tool for assessing ANS function in research and clinical settings. HRV analysis has

become widely recognized and utilized due to its ability to provide valuable insights into

the functioning of the ANS. However, the analysis results’ accuracy is heavily reliant on

the quality of the ECG recording and the precise extraction of inter-beat intervals. Several

HRV indices lack standardized definitions and inaccurate R-R intervals can significantly

skew the overall analysis. Therefore, it is imperative to ensure high-quality ECG record-

ings and meticulous inter-beat intervals extraction to produce reliable and meaningful

HRV results [71].

To ensure the accuracy and reliability of HRV analysis, it is crucial to eliminate all

nonsinus (ectopic) beats and other ECG artifacts that may occur. This can be achieved

through several methods, such as performing real-time validation and correction of the

R-R series [72], or having an expert conduct the analysis [73]. By removing these erro-

neous beats and artifacts, the resulting HRV metrics will be of higher quality and more

accurately reflect the functioning of the ANS.
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2.5.1 Time Domain

These methods are considered the simplest to both understand and compute, being

also the most reported. Time domain features can be either statistical if the features mea-

sure the variation of the intervals, or geometric (i.e. graphical) if they are extracted from

either plots or histograms [16, 69]. When dealing with HRV, typically only normal beats

are included in the sequence, and those that are abnormal (e.g. ventricular arrhythmia)

are excluded, originating the normal to normal interval (NN) [59], which can then be

used either directly or as the difference between consecutive NN intervals [16].

SDNN Standard deviation of normal beat intervals, typically reported in milliseconds.

Represents the total variance in the segment in study [69]. It is considered one of the most

used HRV parameters [64], and typically reflects the effect of both branches in the control

of the HR when using 24-hour segments [16]. In this time period, it is used for cardiac

risk stratification, where values for this metric below 50ms are considered unhealthy

[69, 74]. This feature can also be used in shorter 5-minute segments, which can then be

calculated over a period of 24 hours to form the Standard Deviation (SD) of the average

NN intervals (SDANN) [16].

RMSSD Root mean square of successive difference, typically reported in milliseconds.

This index uses the difference between successive NN intervals, which are then used

for correlation with short-term variations, being a proxy for high-frequency events and

thus of parasympathetic activity [16, 64, 69]. This metric is typically used in 24-hour or

5-minute windows, although 60, 30, and 10-second windows have also been used [74].

SDSD Standard deviation of the successive differences, typically reported in millisec-

onds, which also reflects short-term control [69].

NNxx and pNNxx Number of successive NNs pairs than are larger than a given thresh-

old (NNxx) and its proportion to all NN intervals (pNNxx). This metric is constructed

by analyzing the difference between consecutive NN intervals, and counting those that

exceed a certain threshold [16]. The standard threshold is 50 milliseconds [16], although

other values can be used, such as 20 milliseconds [69], which in some cases can enhance

discrimination between a variety of normal and pathological conditions [75]. Since it uses

the difference of successive NN intervals, it is typically correlated with the activity of the

parasympathetic system [64].

HTI HRV triangular index. Similarly to SDNN, this index reflects global changes of the

HRV, and it is typically used with 24-hour segments, using 5-minute windows. However,

unlike the SDNN, it is not affected as much by irregular beats that can be present in the

recording [74]. On the other hand, to build a reliable metric, enough data points should

be used and therefore it is recommended that this indicator is computed for windows of
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at least 20 minutes [69]. This metric can be extracted by first building a histogram of all

NN intervals, with bin sizes of approximately 8 milliseconds [16]. Afterwards, the total

number of NN intervals is divided by the maximum value of this distribution (Y variable

in Figure A.1) [16].

TINN Triangular interpolation of NN histogram, typically reported in milliseconds,

represents the baseline width of a histogram displaying NN intervals, for the triangle

that has the maximum value of the distributions as its height. In Figure A.1, this metric

is obtained by subtracting the values M and N, the other two vertices of the triangle that

has Y as height [16]. Unlike the HTI, this metric can be influenced by outliers in the NN

intervals [74].

2.5.2 Frequency Domain

Another methodology to study HRV is analyzing the frequency domain, which pro-

vides the basic information on how power (variance) distributes as a function of frequency

[16]. The main advantage of using this domain is that it can provide a much more detailed

view of the contribution from each of the ANS branches, dividing it into the different

rhythms that comprise the inter-beat interval waveform [60]. These different rhythms are

then separated into ULF12, VLF, LF, and HF, the different frequency bands used when

analyzing the spectrum [74], where the area under the curve within each range can be

used to quantify their contribution [59].

To get the Power Spectral Density (PSD), two methods can be used, namely non-

parametric such as Fast Fourier Transformation (FFT) (assumes only deterministic com-

ponents in the time series [59]), or parametric such as autoregressive models (assumes

both deterministic and random components [59]) [16, 74]. The most used method is the

non-parametric FFT [64], since this uses a simpler algorithm leading to a lower processing

time [16].

When using non-parametric methods, an extra pre-processing step should be per-

formed. Since the RR intervals are not evenly sampled, it is necessary to resample them

using a frequency that can encompass the region of interest, which is up to 2Hz. Accord-

ingly, following the Nyquist principle, a minimum of 4Hz should be used to capture all

the oscillations [16, 64].

ULF Ultra-low frequencies, typically reported in milliseconds squared. This band rep-

resents frequencies that are lower than 0.003Hz, corresponding to segments that have a

minimum of 5.6 minutes (333 seconds) [60], thus only being possible to determine for

long-term recordings (24 hours) [64]. There is no exact physiological mechanism that can

be attributed to this frequency band due to its early abandonment in research, caused

12Only available for recordings of at least 24 hours.
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by not being included in the 1996 Task Force guidelines [60, 69]. However, some possible

contributions are core body temperature regulation, metabolism, and circadian oscilla-

tions [60].

VLF Very-low frequencies, typically reported in milliseconds squared. This band repre-

sents frequencies that are between 0.0033 and 0.04Hz [60], and hence can be computed

for short segments (5 minutes). This frequency band is said to be a method for evaluating

physical activity and is mediated via sympathetic activity, however, there are uncertain-

ties to this relation [64]. At the time of writing the guidelines, the 1996 task force was

not sure of the underlying physiological mechanism and thus gave small importance to

this region, leading to it being largely ignored [60]. Nevertheless, Dr. Andrew Armour

and his group proposed that this band is produced by the heart, with the amplitude and

frequency of these oscillations modulated by efferent sympathetic activity, being funda-

mental to health, since this band has a strong association with general mortality [60]. Low

power in this band has also been associated with arrhythmic death, post-traumatic stress

disorders, and high levels of inflammation [60].

LF Low frequencies, typically reported in milliseconds squared. This band represents

frequencies that are between 0.04 and 0.15Hz [60]. This spectrum was initially called

the baroreceptor range because in resting conditions it reflects their activity [74]. It was

also believed that this spectrum range was an index of sympathetic activity, which has

been challenged in the last decades, with the consensus being that is modulated by both

branches plus the baroreceptors [69]. In fact, the sympathetic branch does not appear to

produce rhythms above 0.1Hz, while the parasympathetic can produce them as low as

0.05Hz [74]. One possible explanation for the confusion is the usage of long and short-

term recordings. When using 24-hour (long-term) recordings, the sympathetic branch

will indeed have a larger influence due to its frequent activation in response to physical

or mental activities, which can be confused with the short-term changes caused by the

baroreflex [60].

HF High frequencies, typically reported in milliseconds squared. This band represents

frequencies that are between 0.15 and 0.4Hz. This power band is associated with parasym-

pathetic activity, while also being a known respiratory band due to the effect breathing

has in this spectrum. It is also associated with vagal activity, since, during inspiration,

the vagal nerve outflow is inhibited leading to an increase of HR, while expiration leads

to a restored outflow and a decrease in HR. The correlation with vagal activity also comes

from the total blockade of the vagal nerve, which leads to a significant reduction in HF

power (almost to zero), while also decreasing the LF power [60]. Finally, this metric is

highly correlated with pNN50 and RMSSD, and a decrease in this band can be caused

by stress, panic, anxiety, or worry, while on the other hand at rest (e.g. during the night)

there seems to be an increase in power [74].
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nuLF and nuHF Normalized units low and high frequencies. The last two metrics, LF

and HF, can be presented in their normalized form, by dividing each by the total power

allowing for a better comparison between studies [69]. Normally, the total power (TP) is

considered the sum between the LF and HF bands, excluding the VLF and ULF13 [59].

LF/HF ratio Low to high-frequency ratio. This metric is controversial, since when it

was first introduced it was thought that the LF was predominantly sympathetic activation

while HF was parasympathetic, and thus this ratio would be a metric to compare them

[74]. However, this has been contested in the last decades, since the LF is not driven solely

by the sympathetic branch, with the interaction between the two branches being not lin-

ear and not mutually excluded (i.e. both can be active at the same time); furthermore,

the breathing mechanism (e.g. baroreflex) can influence the power spectrum density of

the bands [74]. Nevertheless, if the proper context is taken into account (for example an

ambulatory condition for 24 hours would see a more pronounced activity in the sympa-

thetic branch reflected in the LF power band), then this metric can be used to describe

the relation between both systems [60].

2.5.3 Non-Linear Domain

Typically, HRV would be analyzed using the other two domains. However cardiovas-

cular regulation research in non-linear dynamics has been growing, capturing properties

that are unable to be analyzed by the other two domains [69]. Physicist Erwin Schrödinger

summarized this by expressing that life is aperiodic, operating between random and pe-

riodicity [74].

Unlike, for example, the frequency domain methods that work with the assumptions

of established patterns, non-linear metrics attempt to characterize the similarities in the

signal throughout the time interval [64]. Some of these approaches are based on chaos

theory, which states that there is order in a seemingly random sequence of events, thus

being aperiodic with just a hint of a regular pattern, that, although never repeating, is

bounded within a range of values. Otherwise, the system would be unstable, wandering

off into infinity [59].

Poincaré Plot Metrics S, SD1, SD2, and SD1/SD2. These metrics are obtained from

the Poicaré plot, which is drawn by plotting every NN interval against (typically) the

preceding interval, and then fitting an ellipse to the generated cloud of points [74]. The

area of the ellipse represents the total HRV and is denoted S. This metric correlates with

RMSSD, and both LF and HF power [74]. SD1 is the standard deviation of the points

perpendicular to the line y=x, being the ellipse width. This metric is equivalent to the

RMSSD and correlates with HF power, being an index for short-term variability while also

being associated with parasympathetic activation [64, 69, 74]. SD2 corresponds to the

13In longer recordings
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length of the ellipse, being the standard deviation of the points parallel to the line y = x.

This metric correlates with LF power, and SDNN, while also being an index for long-term

variability [64, 69, 74]. Finally, there is the ratio between these two metrics, SD1/SD2,

which is reflects the unpredictability of the RR intervals, and it is used to represent the

sympathovagal balance, much as the LF/HF ratio (with both metrics being correlated). In

the last few years, there has been the recommendation of using a larger delay between the

NN beats, using a five of six beat gap instead of one [69]. Figure A.2 is a representation

of the point cloud, a fitted ellipse, and the two major axes, SD1 and SD2.

Entropy Aproximate Entropy (ApEn), Sample Entropy (SampEn), Multiscale Entropy

(MSE). For entropy-based methods, there are three main metrics, ApEn, SampEn, MSE,

each an evolution of the previous. The basis of all of them is the same, being a measure

of complexity, or unpredictability, of a signal, quantifying the repetitions of patterns.

A larger value for these metrics typically implies higher randomness, complexity, and

unpredictability of the cardiac system [69]. The first of the three is ApEn, an influential

metric at the start of the 1990s, which returns a value between 0 and 1, with the latter

indicating fewer patterns and more complexity; healthy adults tend to have a value closer

to it [64]. This metric is typically calculated with shorter time sequences, with the shortest

being 20 minutes [64, 69]. SampEn was developed to overcome the tendency of ApEn to

overestimate the regularity of the signal, since every sequence is also matched with itself,

making it a biased estimator and producing a lack of internal consistency [64, 69]. This is

typically used with larger sequences (the entire time series for example) [69], although it

can be used with time series with 200 to 250 points [64]. Finally, MSE addresses another

concern, that not always higher irregularity is equivalent to higher complexity [69]. This

problem can be overcome by using SampEn with different time scales, which can then be

combined to produce a better relation between low HRV and cardiac abnormalities [69].

Fractal Measures Correlation Dimension (CD) and Detrended Fluctuation Analysis

(DFA). Fractals are shapes that are infinitely complex and self-similar at different time

scales, i.e., if the pattern was magnified, the same shape would eventually be displayed

over and over again. This concept can also be applied in HRV, where self-similarity across

different time scales would imply a less random nature, a more predictable pattern, and

a lower variability [69]. To study these fractals for HRV, there are two main techniques,

using CD and DFA. CD is used to measure the dimension of the fractal, an estimate of the

number of variables that are needed to reproduce the system dynamics, where a higher

CD leads to a larger number of variables, and thus greater complexity and variability [69,

74]. DFA is another widely used method, measuring the correlation between the intervals

at different timescales, outputting two different slopes which represent either short or

long-term modulation [69, 74].
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2.6 Summary

This chapter began with the history of ECG, from ancient Egypt and Greece, to

Galvani’s frog leg experiment, Weller’s first ECG, and Einthoven’s breakthroughs in both

mathematical and hardware domains. It followed with a description of the standardiza-

tion of the different leads, the first usage of an ECG as a means of diagnosis, the constant

evolution of the recording device’s abilities, and the increase in portability and miniatur-

ization of these. Finally, it culminated in the variety of devices that exist nowadays, from

medical grade portable monitors to small wrist based consumer devices.

Also in this chapter, an overview was provided on how the ECG can be used to study

the heart, either by using its morphology, or differences between the inter-beat interval.

The latter is called HRV, a technique used more frequently not only to study the heart but

also other systems such as the ANS. Several metrics can be extracted from the inter-beat

interval, divided into time, frequency, and non-linear domain, which can then be used to

study the workings of the heart or the ANS.
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3

Remote Ischemic Conditioning (RIC)

This chapter will focus on a simple, safe, and inexpensive procedure for cardiovascular

protection that, when performed, can have a significant positive result in an outcome

and life of a patient, called Remote Ischemic Conditioning (RIC). The main unknown

surrounding this technique is how this protection is mediated, albeit likely it is through

humoral factors or the Autonomic Nervous System (ANS).

As seen in Chapter 2, Heart Rate Variability (HRV) can be used to study not only the

heart but other systems as well, due to the effects they have on the inter-beat variability,

with one of such systems being the ANS. During the development of this work, there was

the opportunity of applying this technique in a pilot project (developed in conjunction

with researchers from CEDOC1, a medical research center from NOVA Medical School),

where the effects of ANS during the application of the RIC procedure were studied.

The results of this chapter were published in the paper entitled "Autonomic nervous

system response to remote ischemic conditioning: Heart rate variability assessment" [76].

3.1 What is RIC

3.1.1 Overview

RIC is a procedure where one of the limbs (arm or leg) goes through repeated cycles

of constriction and relaxation of blood vessels and tissue, in order to trigger protective

pathways in a distant organ, be it, for example, the kidney, heart, and/or the brain [77,

78]. The pressure generated by the constriction is thought to be responsible for triggering

the protection signal, which is then mediated either by humoral, neurogenic, immune

system, and/or blood-borne factors [77, 78]. This technique has gained some interest in

cerebrovascular disease management, due to its safety and feasibility, having, for example,

multiple ongoing clinical studies in the field of strokes [77, 78]. It is also one of the most

promising techniques in limiting the damage caused by reperfusion injuries after an acute

Myocardial Infarction (MI) [79].

1Centro de Estudos de Doenças Crónicas.
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This technique was first demonstrated in 1986, where 5-minute cycles of occlusion

and releasing of an artery in the myocardium2 of a dog led to a reduction in the size of

an infarct (area of dead tissue due to a prolonged lack of blood), which was caused by a

prolonged induced ischemic and subsequent re-perfusion in the myocardium. [77, 80].

Figure 3.1 adapted from [77] is an illustration of such reduction in infarct size. Then, in

1994, it was demonstrated that performing this conditioning in another organ’s artery

lead to the protection of other organs as well, and inter-organ RIC was discovered.

Figure 3.1: Effects of pre-conditioning on infarct size. It was shown that pre-conditioning
tends to reduce infarct size, thus minimizing the effects of a cardiac occlusion that can be
originated, for example, due to a MI. Extracted from [77].

This culminated with a case in 2002, where applying this protocol on a limb (in

this case an arm), lead to the protection against endothelial dysfunction in humans and

coronary ischemia in pigs [77]. Prior to this discovery, the techniques employed involved

applying the conditioning directly to either the heart or the organ/arteries promoting the

protection, requiring an invasive intervention [81]. There are other remote conditioning

stimuli that can be used, such as surgical trauma, where an abdominal incision will also

trigger protection mechanisms [77], while some disorders can also mimic the protection

conferred by RIC, e.g. an unstable angina3 tends to offer some protection when the

patient has a MI [81].

The usefulness of RIC in a clinical context has been highly debated in recent years,

with the conclusion of one major clinal study, the CONDI-2/ERIC-PPCI trial [82]. In this

trial, the effect of the procedure was assessed in the twelve months following its appli-

cation in patients that suffered a ST-Segment Elevation Myocardial Infarction (STEMI),

2Heart muscle.
3Condition characterized by the reduction in blood flow to the heart muscles, typically accompanied by

chest pain.
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but no improvement in the clinical outcome of the patients was observed, with no reduc-

tion in either cardiac deaths or hospitalizations [83]. This was not the expected outcome,

and subsequent studies and papers offer some possible explanations and criticism of the

trial. For example, the differences between animal models and the patients enrolled in

the study, or the applied limb protocol, which may have not been maximized for cardiac

protection and to take into account the limb in which the procedure was applied [84].

Perhaps the biggest criticism of that large study is the population enrolled, namely

patients that after STEMI had the gold standard in the treatment of this condition, either

by using newer drugs, access to advanced recovering centers, or coming from developed

countries in Europe [79, 84]. Another study performed in Mauritius, a sub-Saharan

African country with a multi-ethnic population, the ERIC-LYSIS trial, saw an improve-

ment in infarct size in the patients recruited in the study [84]. In these countries (low-

to-middle income countries), patients suffering an ischemic heart disease are typically

younger (<65 years), have a higher risk of dying from such diseases since there is a lack

of preventive and continuous care, and are typically treated with sub-optimal drugs and

procedures, resulting in larger infarcts [79, 84]. Figure 3.2 from [79] presents a summary

of these two studies.

Figure 3.2: Comparison between two RIC trials. The results from these two trials are very
different, where in the CONDI trial no short-term protection was found, , while in the
ERIC trial a reduction in infarct size was observed. Some of the possible explanations for
this difference could be due to the location and the therapy used. Extracted from [79].

A common outcome of both studies was the unanimous consensus that the procedure

is safe [79, 83, 84]. With this being a very simple and low-cost procedure, it could prove to

be an important technique in low to middle-income countries for improving the outcome

of patients that suffer a STEMI, reducing the size of infarcts that may be formed [79].
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3.1.2 RIC Protection Pathways

The regulation mechanisms of this process are not fully understood. These can be,

neural and/or humoral mechanisms, the activation of the immune system, and/or blood-

borne factors that are released into the bloodstream and transported to the different

organs [77]. The sequence of events seems to be the following: the generation of the

signal that will promote the protection (either on a remote organ/limb or directly on the

organ); the conduction of said signal to the target organ (e.g. the heart); and the activation

of the intra-organ mechanism that protects it [81]. Figure 3.3 represents the known and

unknown pathways that might be involved in cardioprotection mediated by RIC, with a

focus on neural and humoral pathways.

Figure 3.3: Neural and humoral mechanisms of RIC. Although there are probably other
pathways that mediate the protection conferred by this procedure (e.g. the immune
system response), these two mechanisms are thought to be the most important. This
figure illustrates the different interconnection between these two pathways, from the
generation of the RIC protection signal in the remote limb, to the conduction of the
signal, and finally the triggering of intra-organ protection pathways. Extracted from [80].

The humoral pathways are supported by different experiments in which blood from

one animal where the procedure was applied triggers the protection when transfused to

another animal. Thus, there is a presence and possible necessity for a factor (which might

be a protein) that is present in the blood when the procedure is applied [81]. Moreover,

some other substances were found to exist when the procedure is applied. For example,
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nitric oxide is released by the femoral artery endothelium when its subjected to stress,

which then is transported to the heart, and is thought to also be responsible for the

reduction of the infarct 30 minutes after a MI [80]. Another characterized substance

is the Glucagon-Like Peptide 1 (GLP-1), a hormone that was shown to be involved in

mediating cardioprotection by the activation of its receptor (GLP-1R), although the exact

mechanism that leads to the protection is not yet established. Other molecules that are

involved in the mediation and signaling of the protection could be opioids, bradykinin,

and adenosine [80].

Another similar pathway that could be involved in the protection of remote organs,

in particular the heart, is the immune system, the contributions of which remain even

more mysterious than the other two pathways. Some of the outcomes of MI include

endothelial dysfunction or cardiac failures, with one of the mechanisms that contribute

to those outcomes being acute inflammation, mainly due to the presence of proteins

and tissue that mark the infraction area as a danger zone. There are four different types

of programmed cell death triggered by an MI in the surrounding areas of the blockage,

apoptosis, necrosis, necroptosis, and pyroptosis. Apoptosis is a controlled death, without

the release of cellular content to the surrounding area, unlike necroptosis and pyroptosis,

which release cytokines (important proteins for cell communication). Some of these

proteins enhance inflammation, while in a MI they increase the size of the infarct, due to

the activation of the immune cells in the area to remove the damaged cells. RIC has been

shown to reduce the level of these pro-inflammation cytokines in animal models, while

in the majority of human trials it had an ambiguous effect on their release. However,

if the results from the two larger trials are used, they fall in line with those from the

animal model in showing that there is a reduction in cytokine levels [83], exerting some

protection via an immune system pathway.

Finally, there is the neural hypothesis, that argued in favor of the involvement of the

nervous system in mediating the protection. Its role has been studied by mainly observing

the changes in outcome when this system is not present, either by reversible procedures

such as drugs (e.g. drugs blocking its influence), irreversible procedures (e.g. cutting

nerves, direct stimulation of nerves), or by natural causes (e.g. neuropathy or nephropa-

thy) [80, 81]. One of the nervous system divisions that appears to be directly involved

is the parasympathetic system, where blockage of brain areas that mediate its activity or

cutting nerves used by this system resulted in larger infarcts, while direct stimulation of

the vagal nerves resulted in smaller infarcts [80]. While the direct contribution of the sym-

pathetic nervous system is not clear [80], when there is a blockage of its ganglia (which is

also controlled by the parasympathetic system) there is a reduction in the protection [81].

To further establish the neural pathway as a mediator, some studies have determined that

if the femoral nerve is transected, then the RIC procedure performed in that leg does

not provide any protection. Other studies were able to observe an increase in afferent

nerve activity in the kidney when its artery was occluded. Finally, direct stimulation of a

remote organ’s nerve mimicked the protection provided by the RIC procedure [81].
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Nevertheless, the consensus is that a complex mixture of the nervous and humoral

pathways, combined with others such as the immune system, are responsible for the

activation and mediation of the protection provided by the RIC procedure. When the

vagal nerves are directly stimulated, there is the release of many protective factors into

the bloodstream, be it, for example, the unnamed protective factor, or the release of nitric

oxide. There are still many doubts in this articulation, especially about the source of the

protection factor (which can come from the visceral organs), and what system is triggered

first, namely if the neural system elicits a response from the humoral pathways or the

other way around [80, 81].

Another unknown, and one that is going to be only briefly addressed, is the different

nomenclature for RIC procedures, or to that effect, the different ischemic conditioning,

with respect to when it is applied. This procedure can be applied either prior to an

intervention that will lead to a prolonged ischemic event, which is then called remote

ischemic pre-conditioning. If the protocol is applied during the ischemic event, then it is

called remote ischemic per-conditioning. Finally, if it is applied after the ischemic event,

then it is called remote ischemic post-conditioning [85].

3.2 Methodology for Studying RIC Using HRV

Since the ANS is one of the mechanisms that could be involved in this protection, it

is important to study its behavior before, during, and after the RIC protocol. This can

be done by recording an Electrocardiogram (ECG) signal before, throughout, and after

the procedure, and afterward, use HRV to peek into the ANS. In Chapter 2, Sub-Sections

2.4 and 2.5, the relation between the ANS, more specifically the contributions of each of

its branches, and HRV was described. There are several metrics that can be used either

to reveal a change in the activation of the ANS as a whole or the contribution of its

branches. For example, if there are significant changes in the RMSSD metric (root mean

square of successive difference) before and after the procedure, then it is possible that the

parasympathetic branch suffered a change in its activation, since this metric can be used

as a proxy of that system activation. Thus, by using HRV, a more thorough insight can be

obtained into the neural pathways that can be part of the RIC mediated protection.

The RIC protocol chosen for this work consisted of four cycles of 5 minutes of ischemia

/ 5 minutes of non-occlusion. Figure 3.4 is a representation of the procedure timeline.

To ensure that the limb was ischemic, a manual blood pressure cuff placed on an arm

was either inflated to above 220mmHg or 20mmHg above the maximum systolic pressure

of the subject. Furthermore, and to ensure that the same experimental conditions were

present, the subjects were asked to do their normal life (i.e. take medication and eat

breakfast), the procedure was performed between 9 and 10 AM, and done in a quiet and

isolated room.
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Figure 3.4: Occlusion and non-occlusion protocol timeline. Data starts to be recorded
5 minutes before the baseline 5-minute window in order for the patient to get used to
the experimental conditions and settle in. After the last occlusion, there is the final non-
ischemic interval of the procedure, after which the last baseline is taken to be compared
with the initial one. Extracted from [76].

Data was recorded using a PLUX biosignalsplux data acquisition module, using a sam-

pling rate of 1000Hz, with 16-bit resolution, which was streamed to a computer nearby

using Bluetooth4. Connected to this device were two sensors, a 1-lead bipolar differential

ECG sensor5, used to record the ECG waveform from which the R-peak locations needed

for HRV are derived, and a Blood Volume Pulse (BVP) sensor6, used to ensure that the

cuffed arm was indeed occluded, and thus no blood pulse wave should be detected by the

sensor during the ischemic portion of the protocol. Also, the data acquisition unit ensures

that both data sources are synchronized, facilitating post-processing tasks such as the seg-

mentation of the signal. The ECG sensor used Ag/AgCl wet electrodes connected to the

chest following the Einthoven Lead I and positioned by trained clinicians. Figure 3.5 is

an illustration of the data acquisition setup.

In this pilot, 20 subjects were enrolled (11 Females), divided into two subgroups ac-

cording to their age: senior (n=10) and young (n=10). The senior subjects were part of the

São Fransisco Xavier hospital volunteer group7, and the young subjects were recruited

from NOVA Medical School. The following exclusion criteria were applied: any previous

neurological disease or neurosurgical procedure, severe heart failure (NYHA class III or

higher [86]), peripheral artery disease, skin ulcers or other severe dermatological disease.

Subjects were also excluded per investigator judgment if they had any unstable/severe

disease. Subjects were screened for vascular risk factors (e.g. arterial hypertension, dia-

betes, dyslipidemia, smoking, obesity, coronary artery disease, or atrial fibrillation) [76].

The inclusion of both senior and younger subjects was motivated by the differences in

basal HRV values for these two populations, since with age the ability of the body to

respond to external stimuli and adapt to new conditions deteriorates, leading to lower

levels of HRV and different responses of the ANS to the RIC procedure [87].

4The biosignalsplux hub datasheet can be found at https://support.pluxbiosignals.com/wp-
content/uploads/2021/10/biosignalsplux-8-Channel-Hub-Datasheet.pdf.

5The ECG sensor datasheet can be found at https://support.pluxbiosignals.com/wp-
content/uploads/2021/10/biosignalsplux-Electrocardiography-ECG-Datasheet.pdf.

6The BVP sensor datasheet can be found at https://support.pluxbiosignals.com/wp-
content/uploads/2021/11/Blood_Volume_Pulse_BVP_Datasheet.pdf.

7Liga dos Amigos do Hospital São Francisco Xavier.
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Figure 3.5: Illustration of the sensors and cuff positioning. The electrodes were positioned
according to the Einthoven Lead I. The BVP sensor was placed on the index finger of
both the limbs (for simplicity, only one is shown). Both the ECG and BVP sensors were
connected to a PLUX biosignalsplux data acquisition unit, ensuring that both data sources
were synchronized. The data was then streamed to a nearby computer (not depicted) via
Bluetooth.

Each subset had initially ten participants. However, two of the senior subjects had

to be excluded due to the ECG being very noisy to perform a reliable QRS complex

detection. Furthermore, an extra senior subject had to be partially removed (only part of

the comparison was made) due to an error in the protocol application, where the baseline

before the procedure was not recorded. Table B.1 contains a more detailed overview of

the population, including vascular risk factors and medication at the time of the study.

As mentioned before, HRV analysis is typically done in either 24-hour (long term) or

5-minute (short term) segments. Since the RIC protocol chosen has 5 minutes windows

of occlusion / non-occlusion intervals, short term HRV metrics were chosen. The signal

from the BVP sensor was used to segment the ECG signal into the different stages of the

procedure, and then a QRS complex detection algorithm was used to get the R-peaks

needed for the HRV analysis (Pan-Tompkins algorithm [88]). The detected peaks were

afterward manually confirmed, with missed or miss-classified R-peaks corrected. This

is an important step, since some of the metrics used (especially in the time domain) are

sensitive to gaps in the inter-beat intervals. Figure 3.6 is an example of an acquisition

made, in which in Sub-Figure 3.6a it is possible to observe from the BVP signal each of

the phases of the procedure.
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(a) Raw BVP signal for the full protocol.

(b) Raw ECG and BVP signals in the non-occlusion to occlusion transition.

(c) Raw ECG and BVP signal in the occlusion to non-occlusion transition.

Figure 3.6: Example of an acquisition made during RIC. In Sub-Figure (a) the full protocol
is depicted, where the green and red dashed lines de-limit an occlusion period. Sub-
Figure (b) and (c) are the start and end (respectively) of said period. In Sub-Figure (b),
the BVP of the occluded arm (orange line) flattens when the cuff is inflated, starting the
ischemic period. In Sub-Figure (c) the opposite occurs, with a big rush of blood when the
cuff is deflated, leading to a large amplitude wave to be recorded.
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The selected metrics for this pilot were as follows: mean R-R intervals in milliseconds

(ms); median R-R intervals (ms); percentage of intervals falling outside a 50ms difference,

pNN50 (%); root mean square of successive differences of the R-R interval values per

event, RMSSD (ms); normalized low-frequency power spectrum density, nuLF PSD (%);

normalized high-frequency power spectrum density, nuHF PSD (%); LF and HF normal-

ized power spectrum density ratio, LF/HF; SD1 axis of the Poincaré plot, SD1 axis (ms);

SD2 axis of the Poincaré plot, SD2 axis (ms) and SD1/SD2 per event. These are the typi-

cal features used in HRV analysis [16], with a representation from all three domains. A

detailed explanation of each of these metrics can be found in Chapter 2, Sub-Section 2.5.

One of the metrics excluded for this pilot was the SDNN, which is sometimes con-

sidered the most used HRV feature, since it is more suitable for analyzing long-term

recordings (such as 24h-hour ECG traces) rather than 5-minute segments [64]. , RMSSD,

pNN50, nuHF, and SD1 were chosen since they are referred to in the literature as proxies

for parasympathetic activity. nuHF and SD2 were selected for their relation with sympa-

thetic activation (contested, since there is also influence of the parasympathetic system

in these metrics [74]). The LF/HF and SD1/SD2 represent the balance between both

branches of the ANS (also contested due to the latter point) [64, 69, 74]. The mean and

median intervals are only used for statistical representation of Heart Rate (HR) on the

intervals in analysis. Table 3.1 depicts a summary of the metrics used in this pilot.

Table 3.1: HRV metrics were used in the pilot to assess the neural influence in mediating
cardioprotection provided by the RIC procedure and their relation with the ANS. The
statistical features were used as a statistical representation of the HR during the time
window in analysis.

Parasympathetic nervous system proxies

RMSSD
pNN50
nuHF
SD1

Sympathetic nervous system proxies
nuLF
SD2

Ratio between branches
LF/HF
SD1/SD2

Statistical features
Mean R-R interval
Median R-R interval

To obtain the frequency domain features, the non-parametric Welch method was used

to compute the frequency Power Spectral Density (PSD) (using a 256 sample Hanning

window). When using non-parametric methods, it is recommended that RR intervals

be interpolated, since it is not a perfectly uniform sampled interval. Therefore, the RR

interval was re-sampled to 10Hz using a cubic spline interpolation. Furthermore, the

mean value was subtracted to remove the DC component of the signal.
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To get the two axis of the elipsis when using the Poicaré plot, Equations 3.1 and 3.2

were used [89]. In Equation 3.1, σ2 represents the variance.

SD12 =
1
2
σ2(RRn −RRn+1) =

1
2
SDSD2 (3.1)

SD22 = 2SDRR2 − 1
2
SDSD2 (3.2)

To compare if any changes were detected in the ANS due to the RIC procedure, six

different analyses were performed. First, the metrics from occlusion and non-occlusion

segments were compared. Then, the 10 minutes before and after the procedure were

also compared. Finally, both these two analyses were performed separately for the young

and the senior subjects, thus resulting in six different analyses. For all these analyses,

the non-parametric Wilcoxon signed-rank test was used to assess if there were any sig-

nificant differences between the before and after, with the significance level set at 0.05,

where p-values below that level indicate a statistical difference. This test was selected

since it was designed to assess repeated measures from the same subject under different

conditions [90].

3.3 Results and Discussion

The results for the mean value for each metric (Table 3.1) for each of the six analyses

can be found using Table 3.2. The significant differences found in the HRV analyses

are compiled in Table 3.3. Additional Figures can be found in the published version of

this study [76]. These figures contain the boxplots for each metric in analysis (Table 3.1)

before and after the procedure, per dataset (global, senior, young).

Table 3.2: Location for each of the mean values of the HRV metrics used, divided by each
subset. For each subset, the occlusion vs non-occlusion and the first vs last 10 minutes
comparison was made, resulting in six different analyses condensed in three tables. The
global dataset incorporates all the volunteers.

Occlusion vs Non-occlusion First vs Last 10 minutes

Global Dataset (n=18) Table B.2

Senior Subset (n=8) Table B.3

Young Subset (n=10) Table B.4
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Table 3.3: Significant differences found in the HRV analyses for each of the dataset divi-
sions. In the young population, no significant differences were found. A difference was
considered significant if the p-value was below 0.05.

Global population Feature variation p-value

SD2 axis (ms) Last 10 minutes higher 0.044
RMSSD (ms) Non-occlusion higher 0.044

SD1 axis (ms) Non-occlusion higher 0.044

Senior population

SD2 axis (ms) Last 10 minutes higher 0.018

Young population

No significant differences

The first comparison analyzed was between the 10 minutes before and after the pro-

cedure was applied. Out of the 10 metrics assessed, only SD2 had a p-value lower than

0.05 in the global dataset when comparing the before and after values. This statistical

difference was also found in the senior subset, while in the young subset it was higher

than 0.05. This metric has a higher value after the RIC procedure is performed (being the

difference larger in the senior subset), which can be an indication of a change in the ANS,

since both the parasympathetic (via fast vagal response) and sympathetic systems (via

the baroreceptors) contribute to this metric. For the remaining metrics, all the p-value

were higher than 0.05 in all subsets, thus no statistically significant changes were found.

Comparing the occlusion with non-occlusion segments, significant differences were

only found in the global dataset (all volunteers), specifically the SD1 and RMSSD

(although in the young subset it was close to the significant threshold). These features

were higher in non-occlusion than occlusion segments. SD1 and RMSSD are typically

associated with short-term HRV, which might indicate a decrease in parasympathetic

activity in occlusion segments.

As mentioned before, the increase of the SD2 metric seems to be higher in the senior

population when comparing the before and after the procedure 10-minute window, which

could mean that the RIC leads to higher activation of the ANS in this population. Age

typically leads to a loss in the adaptability and responsiveness of the ANS, with the basal

levels of the HRV metrics being lower in older subjects [87]. This was also observed not

only in the SD2 metric (≈44ms for younger subjects vs ≈86ms for older), but also in other

metrics such as pNN50, RMSSD, and nuLF. Another byproduct of the higher value of

SD2 due to the RIC procedure is a higher variability of the inter-beat interval, which is

associated with a better prognostic outcome in many diseases, especially Cardiovascular

Disease (CVD)s8 [64, 91].

8Also, no difference in HRV was found whenever gender is considered (data not shown).
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A more significant difference was expected in the HRV metrics between occlusion and

non-occlusion segments, considering the disturbance caused by the procedure. Neverthe-

less, parameters associated with parasympathetic activity seemed to be elevated in non-

occlusion segments when analyzing the global subset. As seen in the Sub-Section 3.1.1,

the activation of the parasympathetic system seems to be a crucial influencing factor, con-

sidering that when there is a supression in its activity, no protective effect tends to be seen.

This activation could then come during the non-occlusion intervals of the procedure.

Some limitations will be discussed in Chapter 6, but even so, using HRV metrics

extracted from an ECG, it was possible to see some changes in features associated with

the ANS during and after the RIC procedure was performed. Such evidence further

consolidates the influence of neural pathways in mediating cardiac protection and thera-

peutic effects that are observed when the procedure is applied.

3.4 Summary

This chapter focused on RIC, a procedure that consists of intermittent cycles of occlu-

sion and non-occlusion of a limb, where the blood flow is stopped during the occlusion

intervals. This procedure has shown promising results in promoting protection in certain

vital organs in animal models and certain clinical trials, such as the reduction of infarct

size after a MI. This is especially true for low to medium-income countries, where med-

ical standards are still sub-optimal and a low-cost, safe, and simple procedure like the

one herein proposed can make a difference.

One of the many unknowns of RIC is how the protection is mediated, with some of the

leading candidates being humoral factors, due to the protection effects observed when

blood is transfused from a subject where the RIC procedure was performed to another

where this procedure was not. Neural pathways are another candidate, since no cardiac

protection is present when a complete and functional nervous system is not present, while

protection is offered when there is direct stimulation of some of its parts.

Since one of the mechanisms mediating this protection seems to be neural, more

specifically, the ANS, one technique that can be used to assess this influence in a more

quantitative manner is HRV, which can be correlated with the general activity of this

system or the activity of each branch. To that effect, a small pilot study was devised, in

which the RIC procedure was to be applied while simultaneously an ECG was recorded

for HRV analysis.

This pilot was applied to 18 subjects, where the four cycles of occlusion and non-

occlusion were performed, while also recording the 10 minutes before and after the

procedure. The main outcome of this pilot was a statistically significant increase of the

non-linear parameter SD2 after the RIC protocol, suggesting that ANS involvement could

be one of the mechanisms for RIC therapeutic effectiveness. This parameter is typically a

proxy for both branches of the ANS (although initially it was attributed to the sympathetic

branch, this is been a topic of controversy throughout the latest studies).
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A Mobile ECG Acquisition System

This chapter tackles one of the motivations for this thesis, the development of a more

pervasive and naturalistic Electrocardiogram (ECG) monitoring device. A custom back

cover for a tablet device was developed, having the electrodes embedded in it. With the

electrodes on the back cover, the acquisitions can be made without a conscious action by

the tablet’s user, recording the ECG strip when the user holds said device.

Due to the importance of the interface with the body, the chapter starts with an

introduction to what an electrode is, the different materials from which they can be

constructed, and how to classify them according to their placement.

The results presented in this chapter were published as a book chapter [92]. Addition-

ally, a open-source library for reading and parsing the GE MUSE proprietary XML file

was also made publicly available.

4.1 What is an Electrode?

The machines by themselves and all the different lead positioning are just a piece in

the workflow required for recording an ECG. In reality, a key element is the electrode, an

electrically conductive material that is used as interface with the body to record the activ-

ity of the heart (in this case). The electrical activity of the heart, and all the other organs,

is propagated inside the body by ions present in the different body fluids and tissues [41].

These changes in ion concentration need to be tracked and converted to electric currents

in order to enable a measurement [93]. This conversion occurs at the electrode-body inter-

face, also known as the electrode-electrolyte interface, with the underlying mechanism

called charge transference [41].

4.1.1 Electrical Modeling

In this interface, reduction and oxidation reactions are occurring constantly. Oxida-

tion leads to a current flow from the electrode towards the electrolyte, due to the atoms

in the electrode losing an electron and causing it to be negatively charged. On the other

hand, there is also reduction reaction occurring, where electrons combine with the ions
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in the electrolyte and the new atoms are deposited in the electrode [93]. These reactions

occur at the same rate under equilibrium, however, there is an increased concentration of

electrolyte ions near the contact point of the electron, establishing what is called the half-

cell potential. These should be the same in both electrodes on a differential measurement,

otherwise they can be an extra source of noise [94].

Shifting to the electric characteristics of an electrode, this can be approximated by

a battery representing the half-cell potential, then a resistance and capacitor in parallel

modeling the electrode-electrolyte interface, and finally a resistance in series correspond-

ing to the effects of the electrolyte between the electrode and the skin [93, 95]. Figure 4.1

illustrates an electrode electrical equivalent. The capacitor and resistance modeling the

interface are needed since this transduction can be either polarizable or non-polarizable.

For polarizable electrodes, there is no current flow, thus the electrode behaves like a

capacitor, while on the other hand, non-polarizable electrodes allow for direct current

flow, behaving like a resistor. However, most electrodes behave in the middle of these

two extremes [96].

Figure 4.1: Electrode electrical equivalent. Ehc is the half-cell potential, Rd and Cd are
the electrode-electrolyte interface modeling, and Rg the electrolyte resistance between
the skin and the electrode.

The skin can also be described by its electric characteristic. As an organ, the skin has

multiple layers, consisting primarily of the epidermis, dermis, and subcutaneous tissues,

with the latter two containing the structures responsible for the transport of ions [96,

97]. The epidermis is the outermost layer out of those and can be modeled as a capacitor

and a resistance in parallel. The topmost layer, the stratum corneum, consists of dead

cells, making it electrically insulating [97], although in some areas it is semipermeable

to ions (e.g. sweat); differences in the ionic concentration in this layer result in a voltage

potential [96]. Figure 4.2 is the electrode equivalent including the different skin layers.
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Figure 4.2: Electrode electrical equivalent including the different skin layers. Ese is the
potential due to the ionic differential off the stratum corneum, Re and Ce are the epidermis
electrical modeling, and Ru the resistance of the lower skin layers from the dermis down.

4.1.2 Wet or Dry?

Electrodes can be divided into two main groups, wet or dry. Wet electrodes have an

electrolytic gel between the skin and the electrode surface in order to reduce the skin-

electrode impedance, which is high for low-frequency signals such as an ECG [94]. The

weakly polarizing Ag/AgCl gel electrode is the standard electrode used for recording

signals. However, for long-term usage, there are some disadvantages associated with the

use of an electrolyte solution, which can dehydrate and require reapplication of the gel,

a time-consuming procedure. Also, sometimes these gels are not suitable for long-term

usage and can cause skin irritation [94, 98].

The second group, dry electrodes, do not use any electrolytic gel, using instead direct

contact with the skin and leveraging the subject’s own moisture from natural transepider-

mal water loss and/or sweating as an electrolyte [97]. Despite having a higher impedance,

they are more suitable for a wearable recording device since the user does not have to

apply any gels prior to its use [94, 98]. There are three main types of dry electrodes:

surface, penetrating, and capacitive.

For surface electrodes, there is a mixture of capacitive and resistive coupling. Due to

the rough surface of the skin, there are air pockets between the skin and the electrode,

acting as a dielectric layer. On the other hand, if sweat or natural humidity is present,

there is a decrease in resistance between the electrode and skin as well as a half-cell

potential [95, 96]. Penetrating electrodes, as the name implies, pierce into the surface of

the skin, minimizing the effects of the dielectric layer and interfacing directly with the
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body ions [96]. Finally, the last type of dry electrodes are capacitive, which do not re-

quire direct contact with the skin, working either through an insulating layer, air, and/or

clothing [95, 96].

As mentioned before, wet electrodes require the attachment of an electrode to the

human skin. Furthermore, for better results, the skin has to be prepared, normally by the

abrasion of the selected location to remove any dead cells or other debris (such as hair

follicles). If these electrodes do not have pre-applied gel and require its application , the

amount of electrolyte used can be another obstacle, while also introducing the need for the

electrode and the skin to be cleaned after a recording. Finally, with time, the electrolyte

dries, deteriorating the quality of the signal with the increase of the impedance [99]. Dry

electrodes are therefore a more suitable candidate to be used in personal monitoring

comparatively to a wet electrodes, and out of the three categories, surface electrodes are

the more practical choice to be embedded in an everyday use device.

To establish high-quality and stable signals, electrodes should meet the three condi-

tions: low impedance in order to have a high signal-to-noise ratio, stable contact with

the skin to attenuate motion artifacts, and the materials needed to take into account

the impact on human health and avoid harm to the human body [100]. There are three

main materials from which a contact surface electrode can be constructed, metallic-based,

carbon-based, or polymer-based materials [95, 96].

Regarding metallic dry electrodes, these seem an obvious choice due to their good

electric conductivity. Some of the metals considered ideal for the preparation of dry

electrodes are silver and silver nanowires (Ag, AgNW), and titanium nitride (TiN). Car-

bon materials are also good candidates due to their conductivity, stability, mechanical

strength, and low cost when mass-produced, and are often used together with metals

or polymeric materials. Examples of these materials are carbon, graphene, carbon nan-

otubes, and carbon nanofibers [96, 100]. Finally, the other class of materials used to make

dry electrodes is polymers. These materials have worse conductive properties than the

last two, but they are superior in biocompatibility and stability, being typically divided

into two categories: intrinsically conductive polymers (ICPs) or extrinsically conductive

polymers (ECPs), depending on the need for the addition of conductive materials [96,

100].

Dry electrodes also open the door for less intrusive measurement devices. Recalling

Weller and Einthoven recordings, the first electrodes used were buckets of water filled

with an electrolytic solution, not the most practical solution for recording an ECG. With

time, both machines and electrodes shrunk, going from an entire room and buckets to

small portable machines, implanted devices, or embedded into everyday objects.
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4.1.3 Classification According to Placement

There is an inverse relationship between a device’s intrusiveness and its potential

outreach, which can be divided into three levels: in-, on- and off-the-person devices.

The first category, in-the-person, are devices where the electrodes are located inside

the body, typically surgically implanted. These are very intrusive devices, only used

in extreme scenarios, such as Implantable Loop Recorders (ILRs) or Insertable Cardiac

Monitors (ICM), used when there are infrequent arrhythmias or in the cases where other

ambulatory devices are indeterminate, hence these have a very limited outreach [101].

The second category, on-the-person, is where the vast majority of medical and well-

being devices fall, in which the electrodes are attached to the surface of the body. The

intrusiveness and outreach of these devices depend on the number of leads they require

and if the placement of the electrodes is pre-defined (e.g. cardiac patches1, devices where

the electrode position is pre-defined and the user just has to apply them to the chest).

Another classic example is the Holter monitor, which are devices that record an ECG for

periods of up to 48 hours worn by patients with suspected, frequent palpitations having

slow, fast or uneven heartbeat [101].

Finally, there are off-the-person devices, in which the electrodes are embedded in

the day-to-day devices, enabling a more pervasive measurement. These are the least

intrusive devices, with some being able to record signals without a voluntary action by

the user [101]. Such devices can be embedded for example in the rim of a steering wheel

[102], or even bathtubs [103]. However, not all devices that have embedded electrodes

are considered off-the-person. Some wearables that have their electrodes embedded, such

as clothing [104] or smartwatches [105], are considered on-the-person ECG devices due

to their intrusiveness, with the user having to take a conscious interaction with them

instead of a natural one (which will be explored in Section 4.2).

Figure 4.3 is an illustration of device intrusiveness vs potential outreach.

4.2 Novel Mobile ECG Acquisition System

This section describes the work accomplished in developing a tablet capable of per-

forming naturalistic ECG data acquisitions, aiming to increase senior citizens’ daily life

autonomy and give peace of mind to their caregivers. This project, called Senior Inclu-

sive (shortened to SiosLIFE), was executed in collaboration with other research institutes

and companies in the scope of Portugal 2020 (P2020) grant2, reference NORTE-01-0247-

FEDER-017967, promoted by HidePixel.

1https://www.vivalink.com/wearable-ecg-monitor.
2PLUX, the co-sponsor of this PhD, was the partner responsible for the development of a pervasive ECG

measuring solution.
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Figure 4.3: Device intrusiveness vs potential outreach, where devices with a lower intru-
siveness have a larger number of people that can use them. Adapted from [101].

4.2.1 Motivation

As mentioned in Chapter 1, Sub-Section 1.1, Cardiovascular Disease (CVD)s are the

leading cause of death in the world, and the ECG is one tool that clinicians and caretakers

can use in (near) continuous monitoring of some physiological parameters to assess their

patients. With the advent of the Internet, the growing evolution and adoption of infor-

mation and communication technologies, and the surge in mobile technologies (smart-

phones, tablets, watches, glasses), there is also increasing adoption of these innovations

by healthcare providers and patients, paving the way for more pervasive solutions [6].

With these adoptions, two new concepts appeared in the last decade, Electronic Health

(eHealth) and Mobile Health (mHealth), becoming prominent components of healthcare.

Their adoption by the patients can improve the flexibility and accessibility to health care

services, facilitate day-to-day health management, and promote healthy behaviors. It is

especially true in elderly populations, where such a system can be used effectively to

prevent or manage chronic diseases, support lifestyle modifications, enhance patients’

knowledge about their illnesses, self-management capacities, and quality of life [17, 106].

In parallel, there has been a growth of consumer-grade products for self-monitoring.

Similarly to mHealth devices, these give their users the ability to get a picture of their

health and to develop new habits, such as being more active or improving their sleep

quality [107, 108]. Although these are small, portable, and non-intrusive, making them

great mobile monitoring devices, there are some drawbacks to the implementation of
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these devices, one being the need for constant charging. Since their primary function

is not working as an ECG monitoring device, other functions such as displays or com-

munication radios, take a toll on battery life, having an autonomy of around 1 to 5 days

typically. With the need for regular charging, some users tend to either switch to devices

with fewer features but more battery life, disable health tracking features, or simply stop

wearing the device. Another obstacle is the novelty fade, where some features such as

ECG recording are used once or twice when the device is new and abandoned after a

(short) period, especially if such feature requires user interaction (e.g placing the finger

from the opposite hand on the digital crown to record an ECG segment). Lastly, some

users simply lose interest in these devices and stop using them. These obstacles led to

questions on the long-term adoption of the technology, as 20% of consumers stop us-

ing their wearable devices after three months, with <50% continuing to use them after

one and half years. Nevertheless, there is a silver lining, since there is a higher adoption

rate of smartwatch technology among the elderly due to the more health-related

features [105, 109].

To take advantage of the growing adoption of mHealth devices and dry electrodes

for mobile off-the-person ECG acquisition systems, a novel system was developed. This

system consists of a tablet capable of ECG monitoring based on naturalistic interaction,

having the recording electrodes embedded in its back cover. An off-the-person ECG ap-

proach was selected since it is the most pervasive approach to record ECG traces. There-

fore, the electrodes have to be embedded in the device instead of being attached to the

end user’s body. Moreover, by having the electrodes at the back of the tablet, the ECG

rhythm strips can be recorded much more effortlessly just by holding the device.

As mentioned earlier, dry electrodes are a good candidate for long-term monitoring,

and the materials from which they can be made also facilitate this task. One of the

consortium partners, PIEP3, is an innovation center for polymer engineering. As such it

was decided that a polymeric dry electrode was the best solution for this approach, which

could be directly embedded during the manufacturing of a custom back cover for the

tablet, lowering the manufacturing costs. Another factor in the choice of polymers to be

used as electrodes was their good bio-compatibility, where prolonged direct contact with

the material does not produce an adverse skin reaction [96, 100]. During the first stages

of the project, a short list of five materials was selected by PIEP based on their theoretical

properties, which will be discussed in the following subsections.

In summary, the Senior Inclusive project aimed to develop a tablet that can effort-

lessly acquire good quality ECG signals, which can be utilized by trained professionals

for remote monitoring purposes. The primary objective was to ensure that the device

enables user-friendly monitoring, and the quality of ECG recordings is comparable to

those produced by clinical-grade ECG machines.

3Pólo de Inovação em Engenharia de Polímeros.
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The device was specifically designed for elderly people to use at home or in assisted

living homes, but it has the potential for other applications as well. The successful

development of such a device could greatly enhance the diagnosis and management of

cardiac conditions, especially among vulnerable populations who may face challenges

accessing traditional medical care, or live isolated.

Thus, one of the critical aspects was selecting the appropriate materials that could

meet the project’s goals while remaining cost-effective and user-friendly. The goal was

then to assess which of the materials enabled the project team to achieve the aforemen-

tioned goals, with a particular emphasis on identifying the material that could record

a waveform similar to one recorded from a clinical-grade device. This was necessary to

ensure that the resulting ECG signals were accurate and could be effectively used for

diagnostic and monitoring purposes.

4.2.2 Polymers Short List

There are already some devices on the market offering off-the-person ECG, focusing

on embedding the electrodes on smartphone cases, building some wireless accessories, or

telehealth systems, such as the Docobo’s Careportal (Sub-Figure 4.4a), a tablet marketed

for elderly people that can record 30s segments of ECG, or AliveCor’s Kardia Mobile (Sub-

Figure 4.4b), a small bar with two electrodes that can record and send to a smartphone

30s segments of ECG. However, these devices rely on Stainless Steel (SS) electrodes or are

an add-on solution instead of being part of the device (e.g. AliveCor’s Kardia Mobile).

(a) Docobo’s Careportal. (b) AliveCor’s Kardia Mobile.

Figure 4.4: Examples of commercial available off-the-person ECG devices.

SS is a widely used material to construct dry electrodes [110–112]. Many studies used

SS because of its availability, price, and good electrical performance [113], being the most

common polarizable electrode in wireless biosensing applications [111]. However, elec-

trodes made from metals are not ideal for recording applications since they are typically

polarizable, which can lead to a high impedance mismatch on the interface between the
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electrode and the skin and also higher susceptibility to motion artifacts [110]. Neverthe-

less, due to the high adoption of these electrodes by industry and researchers alike, they

were also added to this study (Figure 4.5f) as a baseline electrode to compare with the

polymeric electrode candidates.

By being an add-on, these devices face the same problems facing smartwatches or

ECG patches regarding their usage. For example, there are battery-life, practicality, or

easy-of-use concerns, that can lead to poor user adoption and retentions. In the instance

of devices similar to AliveCor’s Kardia Mobile, the measurements have to be actively

started by the user.

As mentioned before, the initial material selection was performed by PIEP and the

following were selected due to their theoretical characteristics. Table 4.1 contains the

values for some these characteristics:

• PolyOne’s OnForce LFT LF6600-5023 (PO), a polyamide with high elastic modulus

and material strength (Figure 4.5a);

• Vectra’s 840i LCP (LDS), a liquid crystal polymer modified to be used in printed

circuit boards (Figure 4.5b);

• LUVOCOM’s 1850-8023 PTB (LV) , a polybutylene terephthalate polymer rein-

forced with carbon fiber designed to be electrically conductive (Figure 4.5c);

• SAATI’s CC202 ET445 (CF), a carbon fiber prepeg using an carbon fibers (Torayca

T300 fibers) in an epoxy matrix (ET445) (Figure 4.5d);

• RTP’s 199 X 137556 E (RTPE), a polypropylene reinforced with carbon and stainless

steel fibers designed for electrical conductive solutions (Figure 4.5e).

(a) FT LF6600-5023 (PO). (b) 840i LCP (LDS). (c) 1850-8023 PTB (LV).

(d) CC202 ET445 (CF). (e) 199 X 137556 E (RTPE). (f) Stainless Steel (SS).

Figure 4.5: Dry electrodes samples used to test their signal quality.
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Table 4.1: Dry electrodes samples characteristics. For two of the materials, PO and LDS,
no value for the surface resistance was found, either on the provided datasheets or online.
MPa - Megapascal

Material
Tensile Flexural Surface

Strength (MPa) Strength (MPa) Resistance (Ohm)
PolyOne’s OnForce

165 260 -
FT LF6600-5023

Vectra’s 840i LCP 102 109 2E16

LUVOCOM’s
105 155 ≤ 100

1850- 8023 PTB
SAATI’s

734 968 -
CC202 ET445

RTP’s
82 138 100

199 X 137556 E

4.2.3 Preliminary Tests

Before the development of the data acquisition unit and subsequently choosing the

polymer to be used in the prototypes of the final device, a preliminary test was devised.

This test had the purpose of finding if any of the materials were good enough to record

an ECG signal even in a non-ideal setting (i.e. electrodes connected to the acquisition

system using alligator clips, with a setup similar to Figure 4.6).

Figure 4.6: Preliminary test setup using alligator clips. In this figure is possible to see the
biosignalsplux data acquisition hub (1), the BITalino (r)evolution ECG sensor (2), and the
alligator clips interfacing with the electrode material in study (3), which in this figure
is SS.
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Each material was tested using a placeholder data acquisition unit (PLUX’s biosig-

nalsplux4), employing a BITalino (r)evolution ECG sensor5 as the electronic front-end

between the acquisition unit and the polymer, and connecting each material using an

alligator clip (Figure 4.5). The BITalino sensor was selected because it can record an ECG

signal using only two electrodes (having a virtual ground) while recording signals that

are very similar to clinical recording devices [101].

To gauge the performance of each polymer in these preliminary tests, a reference

signal was recorded in parallel. These recordings used the same biosignalsplux hub, with

pre-gelled Ag/AgCl wet electrodes placed on each wrist. The signals were recorded at

1000Hz and 16bits, using a biosignalsplux and a 1-lead differential ECG sensor6.

Sub-Figure 4.7a is an illustration of the preliminary test setup, and Sub-Figure 4.7b

is an example of the overlap between a signal using the reference wet-electrodes placed

at each wrist (red line) and signals recorded holding a PO disk (Sub-Figure 4.5a) in each

hand (blue line).

The initial trials test results were promising, with PO and LDS having ECG waves

very similar (e.g. Sub-Figure 4.7b), visually, to those recorded by the reference wet-

electrodes. Furthermore, it is possible to identify the different morphological wave of an

Einthoven’s Triangle Lead-I signal (P-wave, QRS complex, and T-wave) in the signal from

these materials using the aforementioned test setup (Figure 4.8).

These results were only visually assessed since the intent of these tests was to gauge

the feasibility of recording signals with this polymer shortlist. In addition, the device

and electronic front-end used were only a placeholder for the final acquisition system.

Thus, the next step was to compare the intended novel ECG system (new device plus

the polymeric electrodes) performance with a clinical grade system, using more objective

metrics to this end.

4.2.4 SiosLIFE Monitoring Device

The device developed to serve as the data acquisition unit that will be embedded in

the back of the tablet is a combination between the biosignalsplux hub and the BITalino

ECG sensor front-end. This device boasts a system on a chip and Bluetooth transceiver

from the biosignalsplux hub, which allows the device to stream 16-bit data at 1000Hz

to the tablet. Since the only analog signal needed to be transmitted from this device is

the ECG signal from the electrodes, the BITalino ECG sensor front-end was embedded into

4The biosignalsplux hub datasheet can be found at https://support.pluxbiosignals.com/wp-
content/uploads/2021/10/biosignalsplux-8-Channel-Hub-Datasheet.pdf.

5The BITalino (r)evolution ECG hub datasheet can be found at https://support.pluxbiosignals.com/wp-
content/uploads/2021/11/revolution-ecg-sensor-datasheet-revb-1.pdf.

6The 1-lead differential ECG sensor datasheet can be found at https://support.pluxbiosignals.com/wp-
content/uploads/2021/10/biosignalsplux-Electrocardiography-ECG-Datasheet.pdf.
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(a) Electrode placement for the initial trials to gauge the possibility of acquiring ECG signals using
the dry electrode samples. The red line is the connection to the reference wet-electrodes, while
the blue line represents the connection to the polymer in study. The green box represents the
BITalino (r)evolution ECG sensor. RA is the Right Arm; LA is the Left Arm; Signals recorded
following the Einthoven’s Triangle Lead-I configuration.

(b) Example of a signal using the PO dry electrodes (blue line), overlapping the signal recorded
with the reference wet-electrodes (red line). A 25ms rolling average was used to smooth the signal.
The raw overlap can be found at Annex C, Figure C.1.

Figure 4.7: Experimental setup and signal example obtained during preliminary testing
of the polymer shortlist.

Figure 4.8: Example of a full cardiac cycle in the preliminary test. It is possible to identify
the different morphological wave of a Einthoven’s Triangle Lead-I signal, the P-wave, QRS
complex, and T-wave.
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the same PCB. The result is a very small, affordable, and easily embedded acquisition unit

(Figure 4.9), having a footprint of 2.5 x 2.8 centimeters (cm) instead of the 8 x 5cm of a

biosignalsplux hub (without the ECG front-end). In the prototype depicted in Figure 4.9,

the device is powered via a USB cable and has a wire for each of the alligator clips in order

to interface with the polymer samples. Using this approach, the same device can be used

to easily test the different materials. For simplicity, this device will be called SiosLIFE

throughout the rest of this section.

Figure 4.9: Prototype of the data acquisition unit to be embedded in the tablet. The green
and yellow wires are alligator clips soldered to the ECG front-end and used to connect
the dry electrode samples. The device’s PCB footprint is a 2.5 x 2.8cm rectangle.

4.3 SiosLIFE Experimental Evaluation

4.3.1 Data Acquisition Protocol

After visually gauging if the different materials were suitable for recording an ECG

rhythm strip, a more objective analysis followed. For that purpose, signals recorded with

the various materials using the SiosLIFE data acquisition unit were compared to those

recorded using a medical-grade ECG system.

By using a medical-grade system as the gold standard, the morphology of the recorded

ECG strips using the SiosLIFE device can be compared to those used by clinicians, pro-

viding a reference for the quality of the signal acquired by this novel device. If signals

recorded with the proposed device and material combination are similar to those recorded

with the gold standard, then the combination can be considered a good candidate to be

implemented in the tablet.

For this purpose, a GE© MAC 800 ECG machine, a certified medical-grade ECG,

was used as a gold standard. This system is capable of recording a 12-lead ECG with a

sampling rate of 500Hz. Crucially for this analysis, the recorded signals can be exported,

with the machine outputting a 10-second segment in digital format (as XML files).

An experimental protocol was devised for acquiring and comparing data recorded

using the previously described materials and methods. The first step consists of placing

the electrodes of the reference ECG recorder on the test subject. To compare the signal

from both sources, only Lead-I of the Einthoven triangle was used out of the 12 leads that

are possible to be recorded with the GE MAC 800. This was accomplished by connecting
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Figure 4.10: Experimental setup used for comparing the performance of the polymeric
materials being studied, using a medical grade ECG recorder (green wires) and the dry
electrode samples using the SiosLIFE data acquisition module (red wires, represented by
a biosignalsplux). RA is the Right Arm; LA is the Left Arm; G is the Ground Electrode;
Signals recorded following the Einthoven’s Triangle Lead-I configuration.

the right arm electrode on the right wrist (RA in Figure 4.10), the left arm electrode on

the left wrist (RF in Figure 4.10), and connecting the ground electrode in the right leg

(G in Figure 4.10). Figure 4.10 provides a representation of the electrode placement.

After the electrodes were placed, a visual analysis of the signal was performed to

confirm if there was a valid ECG signal present (i.e. a recognizable morphology similar

to the one in Figure 4.8). Using this experimental setup, it was frequent for the alligator

clips to loosen from the polymer, leading to a loss of signal. Moreover, contact with the

sample sometimes was difficult, primarily due to the size of the disk samples, leading to

motion artifacts being present in the signal (e.g. signal saturation or going from bottom

to top of the scale)7.

The second step consisted of asking the volunteer to hold a mockup tablet that had

the dry polymeric electrode in study glued to its back, thus simulating a more realistic

test. The way in which the fingers were placed over the electrodes was also visually

monitored, to ensure correct contact with each of them. With the user grabbing the tablet,

the acquisition was started. This acquisition was made using OpenSignals8, an easy-to-

use and versatile software suite for real-time biosignals visualization. If the signal of both

data sources is stable (when possible), then a 10-second window is recorded from the GE

MAC 800.

7The different noise sources present in an ECG are explored in Chapter 5.
8Available at https://biosignalsplux.com/products/software/opensignals.html.
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Figure 4.11: Distances used to asses their influence in signal quality, drawn over a sample
disk of PO.

The preceding steps are performed at three different distances from the point of

contact of the closest finger and the alligator clip, 1, 2, and 3cm (Figure 4.11). This was

conducted to determine if there was a considerable difference between having the fingers

close to the alligator. The distances were chosen due to the size of the disk samples, which

have an approximate diameter of 5cm.

In summary:

• Place the reference electrodes on the user and check signal quality;

• Ask the user to hold the mockup tablet at 1cm from the alligator clips and start the

signal acquisition;

• Wait for the signal stability (if possible) and record a 10-seconds window on the

reference system;

• Repeat for the last two points for the remaining distances;

• Extract the data from the reference machine and change the material in study;

This protocol was used on 4 different test subjects, all of them males and with no

reported cardiac pathology. Their mean age was 24.5 years with a 2.6 years standard

deviation.

4.3.2 Data Synchronization and Analysis Methodology

The data recorded by the reference system can be digitally exported as a XML file,

organized in a proprietary format (GE MUSE). To read this file, parse it, and extract

the relevant data, a Python script was developed. This Python script, which can either

be imported as a module or run as a command line tool, loads the file and returns two

outputs, a JavaScript Object Notation (JSON) file with the header information, such as the
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patient, device, and acquisition info, and the ECG signal in one of the following outputs:

Comma Separated Value (CSV), Microsoft Excel workbook, JSON file, or a NumPy object.

This library was published as an open-source tool and made publicly available on a

GitHub repository9. For the signals recorded using the SiosLIFE device, the first step was

to downsample them to match the sampling rate of the reference signal. Furthermore,

both signals were filtered using a digital notch filter with a cutoff frequency of 50Hz to

reduce the power-line interference.

Since the signals were recorded using different devices, these need to be synchronized.

For this purpose, a method based on the inter-beat intervals was developed, since this

interval will be the same in both devices. To ensure correct synchronization, the R-peak

locations were manually annotated in both rhythm strips, and their inter-beat interval

was calculated. The method developed to synchronize both signals is summarized in

Algorithm 1, in pseudo-code format.

With the GE MAC 800 rhythm strips being smaller than those recorded with the

SiosLIFE system, the number of extracted R-Peak intervals, and consequently inter-beat

intervals, is lower. Thus, this shorter inter-beat sequence (Marker 2 in Algorithm 1) was

sled across the one obtained using the SiosLIFE system (Marker 1 in Algorithm 1).

Starting at the first inter-beat interval from the SiosLIFE system (Marker 1 in Algo-

rithm 1), the absolute difference between the inter-beat intervals of both sources was

calculated and added to the iteration difference variable (Marker 3 in Algorithm 1). Each

window has a width equal to the number of inter-beat intervals found in the GE MAC

800 rhythm strip (Marker 2 in Algorithm 1). When all the differences for a window are

added, the resulting sum is saved in a differences array (Marker 4 in Algorithm 1), and

the window is sled over one inter-beat to the right (i.e. in the second iteration, the window

would start at the second inter-beat interval from the SiosLIFE).

The GE MAC 800 inter-beat interval sequence is then sledded across all intervals from

the SiosLIFE system until an upper bound (Marker 1 in Algorithm 1). This upper bound

is the difference between the number of inter-beat intervals extracted in the SiosLIFE

strip and those found in the GE MAC 800 strip. With all the differences saved in an

array, the next step is finding the index of the minimum value for this array (Marker 5 in

Algorithm 1).

At this stage the signals are almost synchronized, with the index of the first common

R-Peak for both sources discovered. Since the first point in the GE MAC 800 rhythm strip

may not be the R-Peak, the position of this peak is used to adjust the synchronization

index. By subtracting the location of the first R-Peak from the GE MAC 800 system to

the latter index (Marker 6 in Algorithm 1), a 10s window can be segmented from the

SiosLIFE rhythm strip, synchronized with the one recorded by the GE MAC 800 system.

Figure 4.12a is an visual representation of the synchronization process, while Figure 4.12b

is an example of the result of this process, the two synced 10s ECG rhythm.

9https://github.com/DFNOsorio/GEMuseXMLReader.
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Algorithm 1: ECGs sources signal synchronization.
Data: SiosLife ECG rhythm strip (SiosECG)
Data: SiosLIFE R-Peak location array RSios
Data: GE MAC 800 first peak R-Peak (FirstRMac800)
Data: SiosLife inter-beat interval array (RRSios)
Data: GE MAC 800 inter-beat interval array (RRMac800)
Result: A 10s (size of the GE MAC 800 rhythm strip) sub-array from SiosECG,

syncronized with the reference system

begin
/* Sliding window upper bound */
UpperBound←− lenght(RRSios)− lenght(RRMac800)
/* Array where the differences will be saved */
Dif f erences←− Emptyarray
/* Sliding windows (size of RRMac800 array) over all the (bounded)

SiosLife inter-beat intervals */
1 for i = 0 to UpperBound do

/* Local variable to save the iteration’s difference value */
Dif f erence←− 0

/* Compare each point of both inter-beat array */
2 for j = 0 to lenght(RRMac800) do

/* Get the two inter-beat interval for each source and save the
absolute value between their difference */

RRMac800V alue←− RRMac800[j]
RRSiosV alue←− RRSios[i + j]

3 Dif f erence←− abs(RRMac800V alue −RRSiosV alue)
4 Append the local Dif f erence value to the Dif f erences array

5 MinSequenceInd←− Get the index of the minimum value of Dif f erences
SiosLIFESyncedIndex←− RSios[MinSequenceInd]

/* Adjust the sync index by subtrating the location of the first GE
MAC 800 R-Peak */

SiosSyncedIndex←− SiosSyncedIndex −RMac800[0]

6 return A 10s sub-array of SiosECG starting at SiosSyncedIndex
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(a) Illustration of the synchronization process using synthetic data. Syncing of the two signals
starts by sliding the shorter MAC 800 signal until the interbeat intervals match with those of the
longer recording using the SiosLIFE data acquisition unit. When the inter-beat interval between
recordings of the two devices matches, then the signals are considered to be synchronized.

(b) Overlay of the standardized ECG signals recorded using the clinical system and one of the
dry electrode samples (PO). From each source, the mean value is subtracted and then divided by
the standard deviation, thus standardizing the source, and making it easier to compare different
sources.

Figure 4.12: Illustration of the synchronization process between the data collected using
the SiosLIFE device and one of experimental electrode materials (PO) and the reference
system.

After the signals were extracted and synchronized, they are compared for their sim-

ilarity. Three different metrics were chosen to perform this assessment, namely cosine

similarity, Root Mean Square Error (RMSE), and Spearman correlation coefficient.

The cosine similarity measures the cosine of the angle between two non-zero vectors

of an inner product space. This similarity measurement is particularly concerned with

orientation, rather than magnitude. In short, two vectors that are aligned in the same

orientation will have a similarity measurement of 1, whereas two vectors aligned perpen-

dicularly will have a similarity of 0. This value is calculated using Equation 4.1, with

x and y being the two signals in study, and N their size.

Dcos(x,y) =
∑N
i=1 xiyi√∑N

i=1 x
2
i

√∑N
i=1 y

2
i

(4.1)
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Unlike the cosine similarity, the RMSE is amplitude-dependent, reason for which the

signals were normalized between 0 and 1 in order to assess their morphological similarity

and not the difference in output scale (thus also minimizing any amplitude attenuation

caused by higher impedance materials). This metric is the square root of the mean of all

the errors, which in this case is the difference between the two normalized signals, the

Normalized Root Mean Square Error (NRMSE). In Equation 4.2, xnorm and ynorm are

the two (normalized) signals in study, and N their size.

NRMSE(xnorm,ynorm) =

√∑N
i=1(xnormi − ynormi)2

N
(4.2)

xnorm (and ynorm) was obtained by concatenating each of the normalized cardiac

cycles within the ECG rhythm strip. For example, in Figure 4.12b, the cardiac cycles for

each of the systems are overlayed in the top two charts, while the bottom chart is the

concatenated wave, which is constructed from all of the normalized cycles. The cycles

were normalized using Equation 4.3, where x is the signal to be normalized, µ the signal

average, and σ its standard deviation.

Norm(x) =
x −µ
σ

(4.3)

Finally, the correlation was used to assess the linear relation between them in addi-

tion to their morphological similarity, with the range of values spanning from 1 (perfectly

positive correlated), 0 (no correlation), to -1 (perfectly negative correlation). The rank

function is built in the correlation function from the Python SciPy library (Equation 4.4,

where xnorm and ynorm are the two (normalized) signals in study, and rank the observa-

tion rank).

rs(xnorm,ynorm) = 1−
6
∑N
i=1(rank(xnormi)− rank(ynormi))2

N (N2 − 1)
(4.4)

4.3.3 Results and Discussion

For reference, SS refers to Stainless Steel, PO is PolyOne’s OnForce FT LF6600-5023,

LV is LUVOCOM 1850-8023 PTB, LDS is Vectra’s 840i, CF is SAATI’s CC202 ET445, and

RTPE is RTP’s 199 X 137556 E.

Regarding the cosine similarity, the results for each material can be seen in the box-

plots of Figure 4.13a and Table 4.2a, while Figure C.2 is the boxplot per material and

per distance. Going through the cosine similarity results, three materials have a good

performance when using this metric, while the remaining three have worse to almost no

similarity. SS, PO, and LDS have very high similarity values, with PO standing out for

best performer. Poly-amides are regularly used in textile-based electrodes, as a dipping

coating to some textile patches [114], while liquid crystal polymers usage can also be

found [115]. Perhaps the most surprising is the RTPE and CF results, since carbon-based
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Table 4.2: Average and standard deviation for the different metrics that were adopted.
Results reported for each material by distance and global average. The best average result
is in bold.

Distance SS PO LDS LV CF RTPE

Cosine Similarity
1cm 0.88±0.06 0.89±0.02 0.84±0.07 0.66±0.30 0.31±0.34 0.16±0.18
2cm 0.89±0.02 0.89±0.03 0.87±0.02 0.65±0.17 0.38±0.26 0.13±0.10
3cm 0.80±0.08 0.88±0.03 0.67±0.39 0.79±0.12 0.36±0.27 0.10±0.06

Mean 0.86±0.07 0.89±0.03 0.79±0.24 0.70±0.22 0.35±0.29 0.13±0.13

(a) Cosine similarity, where values near 1 represent more similar signals.

NRMSE
1cm 0.12±0.02 0.11±0.01 0.14±0.02 0.20±0.09 0.33±0.09 0.45±0.06
2cm 0.11±0.01 0.12±0.01 0.13±0.01 0.24±0.09 0.35±0.08 0.48±0.04
3cm 0.17±0.08 0.12±0.00 0.09±0.05 0.15±0.03 0.34±0.13 0.47±0.02

Mean 0.13±0.05 0.12±0.01 0.12±0.04 0.19±0.08 0.34±0.11 0.46±0.05

(b) NRMSE values, where values near 0 represent higher similarity between signals.

Spearman Correlation
1cm 0.71±0.10 0.73±0.10 0.67±0.13 0.50±0.17 0.19±0.24 0.15±0.08
2cm 0.71±0.08 0.73±0.13 0.67±0.16 0.48±0.08 0.29±0.18 0.13±0.09
3cm 0.64±0.09 0.70±0.13 0.47±0.30 0.54±0.05 0.23±0.18 0.08±0.05

Mean 0.69±0.09 0.72±0.12 0.61±0.23 0.51±0.12 0.23±0.21 0.12±0.08

(c) Spearman correlation, where values near 1 represent more similar signals.

solutions are widely used in the manufacturing of dry electrodes [100]. Distance also

seems to not play a big role in signal similarity for SS, PO, and LDS, while being more

relevant in the remaining materials. This can be seen more evidently seen in Figure 4.13a,

where the boxplots for LV, CF, and RTPE are substantially wider than the first three

materials.

Tables 4.2b and 4.2c and Figures 4.13b and 4.13c (Figures C.3 and C.4 contain the

boxplots for their metrics per material and per distance) confirm the results obtained

using cosine similarity, where SS, PO, and LDS have a lower normalized root mean square

error and better correlation coefficients. For CF and RTPE, the correlation coefficient is

very close to zero, meaning there is almost no correlation between the signals recorded

using the reference system and those using these two materials.

As a visual example of the performance of one of the materials that did not per-

form satisfactorily as an electrode to record ECG using the SiosLIFE data acquisition

unit, Figure 4.14 is the comparison using a clinical system and one of the dry electrode

samples, CF, recorded at 1 (Sub-Figure 4.14a) and 2cm (Sub-Figure 4.14b) from the alli-

gator clips. None of the signals is morphologically similar to their reference, the rhythm

strip recorded using the GE MAC 800, confirmed by the values for the computed metrics.
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(a) Boxplot with the cosine similarity per material. This figure contains the aggregate results,
while the per distance boxplot can be found in Annex C, Figure C.2.

(b) Boxplot with the NRMSE per material, using normalized units. This figure contains the
aggregate results, while the per distance boxplot can be found in Annex C, Figure C.3.

(c) Boxplot with the Spearman correlation per material. This figure contains the aggregate results,
while the per distance boxplot can be found in Annex C, Figure C.4.

Figure 4.13: Boxplots of the aggregate results (all distances) for the different analytical
metrics.
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(a) Example recorded at the 1cm mark. The co-
sine similarity was ≈ 0.45, the NRMSE ≈ 0.38,
and the Spearman correlation ≈ 0.41.

(b) Example recorded at the 2cm mark. The co-
sine similarity was ≈ 0.32, the NRMSE ≈ 0.32,
and the Spearman correlation ≈ 0.15.

Figure 4.14: Overlay of the standardized ECG signals recorded using the clinical system
and one of the dry electrode samples (CF), recorded at 1 (a) and 2cm (b).

Nevertheless, the strip recorded at 1cm has a more similar morphology to its reference

compared to the strip recorded at 2cm, reflected by the better results of the analytical

metrics, and also being more similar visually.

Pressure Influence on Signal Quality

As a final test, a brief study using pressure sensors was performed to check if higher

pressure exerted on the electrodes changes the results, which in these cases led to higher

cosine similarity and lower NRMSE. For these tests, three membrane force-sensing resis-

tor were placed behind each PO electrode10, at the top, middle, and bottom regions of the

electrode. Afterward, three different grip pressures were exerted on the electrodes, low

(the result of the sum of the force-sensing resistors lower than 30% of maximum recorded

pressure), medium (30% to 70%), and high (>70%). The result of this test can be found

in Table 4.3.

Table 4.3: Pressure influence tests using SS and PO electrodes. CS referrers to cosine
similarity.

SS PO
Run 1 Run 2 Run 1 Run 2

CS RMSE CS RMSE CS RMSE CS RMSE
Low Force 0.65 0.88 0.71 0.91 0.32 0.88 0.61 0.92
Medium Force 0.48 0.88 0.68 0.92 0.63 0.89 0.68 0.92
High Force 0.70 0.89 0.68 0.91 0.59 0.90 0.75 0.92

10Force-sensing resistor’s datasheet can be found in https://support.pluxbiosignals.com/wp-
content/uploads/2021/11/Pressure_FSR_Datasheet.pdf
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Although there is a slight improvement in the cosine similarity with higher pressure

(which could be due to better contact in the skin-electrode interface and the reduction of

the air pockets that could be present [96]), the NRMSE remained practically the same.

4.4 Summary

Electrodes are responsible for converting the signal propagation carried out by ions

inside our body to electrons, which are responsible for signal conduction outside the body.

There are two main types of electrodes, dry and wet. Wet electrodes use an electrolytic

gel to help reduce the impedance, thus aiding the signal conversion. However, this gel

has drawbacks when used for long periods of time, motivating the development of dry

electrodes, suitable for longer periods of time, while also being able to be easily reused

in multiple acquisitions. These can be penetrating, capacitive, or surface electrodes, with

the latter being the most common and possible to be produced using metals, carbon

materials, or polymers.

They can also be divided into three categories, considering their placement in relation

to the person in which they will be used. An electrode can be placed in-, on-, or off-the-

person, with decreasing levels of intrusiveness while increasing their potential outreach.

Some commercially available wearable devices, such as smartwatches, fall into the on-

the-person category, despite their electrodes being embedded in the device instead of

attached to the body. This is due to their intrusiveness, with the user having to make a

conscious action to record a rhythm strip. Therefore, the combination of an off-the-person

solution and dry electrodes can be an effective solution for pervasive monitoring of CVDs,

having a more naturalist method to record an ECG rhythm strip.

To this effect, a new solution based on a custom back cover for a tablet was presented.

This cover will have dry electrodes embedded into it, which will be made out of a poly-

meric material that was selected due to its characteristics and signal similarity compara-

tively to a clinical device. Of all identified candidate materials, PolyOne’s OnForce LFT

LF6600-5023 (PO), a polyamide with high elastic modulus and material strength had the

best results in all three metrics used, cosine similarity, RMSE, and Spearman correlation.

The present study was then able to identify a practical solution for one of the project’s

objectives, the pervasive and continuous monitoring of ECG signals, producing high-

quality signals. Figure 4.15 shows a pre-production unit of the final product, although

still without the electrodes embedded (a conceptual position for them is marked in the

image).
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Figure 4.15: Pre-production unit of the final design for the tablet. This unit featured a
custom back cover without the electrodes embedded, serving as a visual aid. Thorough
tests will be done for optimal electrode placement in the back cover to ensure long-term
comfort while using the tablet and recording ECG. In green, a conceptual position for
the electrodes.
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5

Outlier Detection

One major problem with acquiring data using devices that have embedded electrodes,

e.g. using a wearables device such as a smartwatch, or using an off-the-person device

such as a tablet with electrodes embedded in the back cover, is the quality of the signals

recorded, more specifically, the amount of noise that could be present in the recordings

or even the lack of signal due to loss of contact with the electrodes. This problem is

even more troublesome if the aim of the device is pervasive acquisitions, where there is

a constant flux of data that needs to be either saved or transmitted. In the event of an

outlier segment, there is no need to handle such a section, thus saving computational,

cellular data, and/or device storage resources by discarding it.

This section focuses on Electrocardiogram (ECG) outlier detection, the typical sources,

the state-of-art signal quality features and indices, and proposing a new approach to

detecting and classifying outlier segments.

5.1 What are Outliers in an ECG?

There have been major advances from the 1960s to 2020s in automated electrocardio-

graphy analysis, with the first major work in this field by Dr. Hubert V. Pipberger in 1957

using three simultaneously recorded orthogonal leads [116, 117], in which those were

digitized and automatically recognized by a computer. One such task that can be auto-

mated is outlier detection, i.e the discovery of segments that are not suitable for further

analysis. There are different scales of suitability, but these can be aggregated into two

major classes [22]:

• Basic quality, where the R-peaks are clearly identifiable. In this case, reliable Heart

Rate (HR) and Heart Rate Variability (HRV) information can be extracted, as well

as some types of arrhythmia;

• Diagnostic quality: P (if present), QRS, and T waveforms are clearly identifiable.

In this case, the signal can also be used for the clinical diagnosis of more subtle

conditions such as myocardial ischemia and coronary heart disease.
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These classes are the result of not only ample knowledge of the ECG signal properties

but also the ones from noise [118]. However, this is not a trivial task. Even in 1984, thirty

years from the first steps in automated ECG analysis, Skordalakis in "Recognition of noisy

peaks in ECG waveforms" wrote that "this goal is very hard to achieve because in general,

it is difficult to distinguishing noisy from real peaks." [119]. Furthermore, even in a clean

ECG, analyzing and identifying the different waves is challenging, since the morphology

of the signal is unique to each individual, and influenced by differences introduced by

electrode type or placement. Additionally, some disorders can also deform the ECG wave.

As examples, atrial fibrillation1 is typically diagnosed due to the absence of the P-wave,

which is generated by the depolarization of the atria [120, 121], or myocardial ischemia2,

which is associated with abnormalities of the T wave [122].

Pan and Tompkins [88], known for their R-peak detector, described the types of noise

more commonly found in the ECG and which can influence the robustness of QRS detec-

tion. These are “muscle noise, artifacts due to electrode motion, power-line interference,

baseline wander, and T-waves with high-frequency characteristics similar to QRS com-

plexes”. These sources not only affect the wave’s morphology, but also influence the

frequency domain. For diagnostic-quality ECG, signals typically require a bandwidth

of 0.05–100Hz, whereas monitor-quality ECG may be limited to 0.5–40Hz [123]. As an

example of spectrum interception, muscles have an electrical activity that has a frequency

bandwidth of 20 to 400-500Hz [124], while power lines introduce a frequency component

at 50/60Hz (depending on the region of the world) [123]. The following is a list of the

principal noise sources that effects an ECG, described in greater detail throughout this

subsection:

• Baseline wander;

• Respiratory Sinus Arrhythmia (RSA);

• Motion artifacts;

• Muscle activity;

• Power-line interference;

• Electrode misplacement;

• Electromagnetic Interference (EMI);

• Poor or inexistent contact (off-the-person).

1A form of heart arrhythmia, which is a rapid and irregular beating of the atria.
2Reduction or absence of blood flow to the heart muscles.
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Figure 5.1: Normalized ECG power spectrum of the P wave, QRS complex, and T wave.
The diagram serves primarily as a rough guide to where the spectral components are
located; large variations exist between beats of different leads, origin, and subjects.
Extracted from [118].

These different types of noises can be considered either non-physiologic or physio-

logic. A non-physiologic artifact is usually caused by poor electrode contact, electromag-

netic interference, or defective ECG equipment. A physiologic artifact can be produced

by muscle activity (electromyographic potentials) or the skin contact condition [125].

A typical (normalized) ECG Power Spectral Density (PSD) distribution of each wave (P, T,

and QRS complex) can be seen in Figure 5.1.

A visual example of different ECG traces affected by noise can be found in Figure 5.2.

The different types of noises can be also distinguished by the amount of distortion

they introduce to the ECG morphology. Some, like high amplitude motion artifacts

(Figure 5.2 a)) and muscle activity (Figure 5.2 c)) can make the recovering of those seg-

ments, either by filtering or other techniques, a very hard if not impossible task, thus

making that segment non-analyzable. On the other hand, there are sources such as base-

line wander (Figure 5.2 b)) or power-line interference (Figure 5.2 d)) that have a more

subtle effect on the signal trace, preserving the underlying morphology or being easy to

"remove", allowing for the extraction of basic features such as HR (basic quality) or even

the complete reconstruction of a noise-free ECG [22].

Baseline Wander

Baseline wander noise is considered to be a low-frequency modulation of the ECG

signal, typically non-distorting, and is often exercise-induced (due to perspiration, res-

piration, body movements, and poor electrode contact). Its spectral content is usually

within an interval below 1Hz and can be easily filtered out. This type of noise becomes

a problem if the oscillations cause the signal to partially saturate, leading to irreversible

losses [118].
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Figure 5.2: Example of most common noise sources and also different morphology de-
pending on electrode placement. a) Motion artifact; b) Baseline wander; c) Muscle
activity; d) Power-line interference. Extracted from [126].

RSA

Respiratory activity influences ECG measurements not only through the variation of

the HR but also beat morphology. The HR modulation is known as RSA, which manifests

itself through the number of Heartbeat (HB)s in a breath changing according to the res-

piration cycle, increasing during inspiration and decreasing during expiration [127], as

demonstrated in Figure 5.3 d). Such beat-to-beat variations in morphology are caused by

chest movements, changes in the position of the heart, and changes in lung conductivity,

which can lead to variations in QRS amplitude (Figure 5.3 c)) or a baseline wander like

modulation (Figure 5.3 b)).

Motion Artifacts

Electrode motion artifacts are mainly caused by skin stretching (especially when

these are attached to the skin), which alters the impedance of the skin around the elec-

trode [128]. This is also problematic when using dry, off-the-person electrodes, as there

is no non-physiological electrolyte, skin preparation, or constant contact with the elec-

trodes [118]. Friction between the electrode against the skin, which is mainly caused

by motion, can also change the local electrical charges, inducing a triboelectric current,

further corrupting the signal [129]. This type of noise is characterized by large amplitude

swings, which can sometimes be mistaken for QRS complexes, leading to falsely detected

heartbeats. Their frequency range also overlaps this complex, typically spanning from

1 to 10Hz [118].
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Figure 5.3: Respiratory modulation on ECG. a) Non modulated; b) Baseline wander
modulation; c) Amplitude modulation; and d) HR modulation.

Muscle Activity

Muscle activity (especially skeletal muscles) also causes distorting events on a ECG

trace. The effect of this noise is more pronounced in body regions where there are a large

number of superficial muscles contracting, for example, electrodes applied on the chest

while exercising. As with motion artifacts, both the morphology and the spectral content

of an ECG are corrupted by this type of noise, since it produces high magnitude in the

rhythm strip and frequency amplitude swings, which also have an overlap between the

ECG spectral content [118].

Power-line Interference

Power-line interference (50/60Hz) is commonly caused by the improper grounding of

the ECG recording devices and/or interference from nearby equipment. Although this

interference is characterized by morphological distortion and its frequency falling in the

higher bound of the ECG spectrum, the constant frequency of this noise makes it very

simple to filter out, usually by applying a notch filter [118].

Electrode Misplacement

Limb electrode reversal is most commonly due to temporary confusion as to sided-

ness (confusion between left and right side), or reversal of the arm and leg electrodes

by the technician. In certain leads, this causes predictable changes in the major QRS

vectors or QRS complex morphology. For example, in Lead I if there is an electrode re-

versal, the QRS complex will be inverted, with a large depolarization followed by a large

repolarization [130].
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EMI

EMI is not well recognized during ECG interpretation and is frequently misdiagnosed

as other serious conditions, which can lead to preventable medical errors [131]. This

interference typically originates from energy radiation by other electrical devices, and af-

fects the ECG via broken or poorly shielded leads [132]. For example, in [133] the authors

present a case study of an EMI artifact caused by an improperly isolated microdebrider3

which resembled a Ventricular Tachycardia (VT). To confirm if the patient was under a

VT, doctors checked the pulse and the pulse oximeter, only to find the readings obtained

by those to be inconsistent with a VT, thus classifying it as an artifact. Figure 5.4a is the

trace published in [133] while Figure 5.4b is a typical ECG during a VT.

(a) VT like EMI artifact on an ECG rythm strip. Extracted from [133].

(b) Typical ECG rythm strip during a VT event. Extracted from [134].

Figure 5.4: Example of how an EMI artifact can be perceived as a life-threatening event,
where the ECG recorded during the use of inadequately shielded electrical equipment
mimicked a ventricular tachycardia.

Poor or Inexistent Contact

Focusing more on off-the-person devices, not only there is the problem of lead inver-

sion but also the problem of poor to inexistent contact at all with one of the leads. This

can cause abnormal events, such as a saturation (Figure 5.5) or a flat line in the segment,

with irreversible losses of parts of an ECG waveform. Furthermore, motion artifacts can

be amplified since a constant and stable contact with the skin is not ensured when the

electrodes are embedded in the device [100].

3A surgical tool that has a very small rotating blade with a hole in the middle allowing for removed
material to be extracted by vaccum.
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Figure 5.5: Lead off event on an ECG, where is possible to see the loss of signal caused by
poor contact or even no contact with one of the leads. Adapted from [129].

In summary, distinguishing what is a clean ECG is not a task as trivial as saying this

segment is indeed corrupted or clean, since a corrupted segment can be in fact a clinical

event or, on the other hand, a clinical relevant segment can be confused with an artifact.

Artifacts on the ECG may sometimes be obvious, but they may also be similar to clinical

pathology [130], as seen in Figure 5.4. Although the potential for ECG artifacts is widely

recognized, it is still difficult even for a specialist to distinguish artifacts from real clinical

findings. In [125], the authors comment on a study (with 766 participants) where only 6%

of internists, 42% of cardiologists, and 62% of cardiac electrophysiologists recognized the

ECG abnormality present on the ECG in study. They further comment on how artifacts

are such a common occurrence that formal training simply neglects its teaching, with the

major textbooks offering no discussion on the topic.

5.2 How to Handle an ECG Outlier

There are many different approaches to try to answer the question "Is this a good/viable

ECG segment?". These approaches rely typically on time and frequency domain features

to try and find some connection between these and the noise seen in the signal. Time

domain algorithms focus on the morphology of the ECG waveform and use it to devise

heuristics or other statistical indices to assess the segment in study, e.g. detecting un-

usually large stationary segments or saturated regions. Frequency domain algorithms

on the other hand use the spectral information of the signal, where different parts of the

spectrum are usually compared to assess the quality of the signal, e.g. the relative power

of the baseline wander power band (<1Hz) and the monitor quality power band (<40Hz)

can be used to assess the influence of baseline wander in the signal [135].

Typically these features are combined and mixed in different rules, having also many

stages in the decision-making process. These start simple, with some initial checks such as

flat-line or saturation detectors, and increase in complexity and sophistication, regularly

involving some sort of machine learning or complex rules [22].
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Before taking a more in-depth look into different examples, a brief note is made con-

cerning single and multi-lead features, and the area of focus of most algorithms. Starting

with the latter, these are typically designed to be employed in situations where basic

quality detection (i.e. segments with quality enough for HB detection) is good enough

rather than full diagnostic quality. The last-mentioned are more arduous to classify, re-

quiring a more knowledgeable database capable of distinguishing segments acceptable

for diagnosis from those with just noise, and all the variations within these two extremes.

Furthermore, the new trend of wearable devices focuses more on HB detection rather

than diagnosis-grade signals (although the introduction of US Food and Drug Adminis-

tration (FDA)-approved Atrial Fibrillation detection algorithms in smartwatches can start

shift the focus from basic to diagnosis quality) [22].

Regarding the number of leads used, the big difference between single and multi-lead

channel approaches is the presence of multiple data sources to test the level of agreement

between their features and estimations, while single-lead have to rely only on one ECG

rhythm strips and some sort of heuristic [22].

5.2.1 Time-domain Techniques

For most time-domain techniques, the first step consists of applying a beat detector

to the ECG. For that, robust beat detection algorithms are needed. Two of the most

popular are the Pan-Tompkins algorithm [136] and the one proposed by Zong in [137],

both available as open-source on PhysioNet [138]. The detected beats will then be used as

part of feasibility checks, either by being the reference for the segmentation of the signal,

used for example to create templates, or used to assess the physiological viability of the

segment in respect of HB/HR [22].

These feasibility checks are simple rules, which are designed to quickly discard

ECG segments without complex techniques, and are typically applied in succession [22].

Below is a summary of some of these simple feasibility checks.

Flat line detection As seen in Chapter 5, the ECG waveform has a distinctive morphol-

ogy, with very few isoelectric regions within a cardiac cycle (e.g. the segment between

the end of the P wave and the start of the QRS segment is one of such regions). A signal

(or its derivative) where there is a constant value for long periods (0.2 to 1s) cannot be an

ECG waveform [22, 139, 140].

Amplitude limits and variations Another common technique consists of checking

the number of times a signal reaches the acquisition device maximum (saturation) or

the minimum range limits. The peak-to-peak amplitude (maximum-minimum) or the

amount of time a certain signal is above/below a threshold is also another technique used

to quickly classify signals into noisy or usable [22, 139, 141].
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Noise-Power measurements Using standard noise-power ratios by selecting certain

features and baselines can create metrics, prone to quickly exclude certain segments.

Some of these measurements are as follows [22, 142]:

• Root Mean Square (RMS) power in the isoelectric region, where the potential should

be zero. These regions are, e.g., the segment between the end of the P-wave and the

QRS complex;

• Ratio between the R-peak amplitude and the noise amplitude in the isoelectric

region;

• Ratio between the peak value of a signal and its RMS value.

Physiological viability Using the output of the beat detector, some simple physiolog-

ical viability tests can be performed, such as the average HR or the minimum/maximum

R-R intervals. These values can then be compared to the normal ranges and used to eval-

uate the segments, such as the normal HR range of 40-180 Beats Per Minute (BPM) [143]

or changes of R-R intervals within a time frame (although pathological cases may also be

manifested as irregular R-R intervals) [22].

Using these simple checks it is already possible to classify the more blatant noise

segments, but other techniques can be applied. More examples of algorithms using a

combination of these simple metrics are as follows:

• In [144], the authors use the area under the ECG curve, more specifically the area

of each QRS segment, and its difference between two successive beats to assess the

quality of the segment. In a noise-free signal, the difference between areas should

be small, and when a noisy segment is encountered the difference in areas increases

(or becomes highly variable), thus indicating the presence of noise [135, 144];

• In [145], a multi-stage algorithm is proposed: (a) basic ECG, quality properties

such as amplitude, spike features, and constant portions; (b) number of crossing

points4 between different leads; and (c) a comparison between QRS and non-QRS

amplitude [135, 145, 146];

• In Moody [139], the author uses time-domain features to develop three criteria to

assess if the segment contains any outlier. These features include the amount of

time a segment has a low range amplitude, the correlation between different leads,

or if a signal is stationary for a relatively long period of time [135, 139].

4When dealing with a 12 lead ECG, one common way of displaying the signals is plotting each lead
underneath the previous. When one lead drifts, it can cross to the other lead plot, overlapping it.
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5.2.2 Frequency-domain Techniques

Frequency-domain methods are based on the analysis of the spectral features of the

ECG signal in order to identify its noise content [135]. The reasoning behind this is that

noise manifests itself on the spectrum of the ECG as increased power in frequencies out-

side the physiologically known limits of the ECG, or as a change in the distribution of

power [22]. Since most physiologically relevant information in the ECG is contained in

frequencies below 40Hz (monitor quality top bandwidth limit, as shown in Figure 5.1)),

unusually high spectral density outside this bandwidth will likely correspond to the

presence of noise [22].

Noise-Power measurements As with time-domain techniques, noise-power ratios can

be formed using spectral information [22]:

• Ratio between in-band (5–40Hz) and out-of-band spectral power;

• Power in the residual after a filtering process.

In the work of Allen et. al [147], the spectrum was divided into six different power

bands from 0.05 to 100Hz, with two of the six power bands, ECG1 - [0.25–10Hz] and

ECG2 - [10–20Hz], corresponding to the ECG components and the remaining four to

noise. To these six features, a seventh was added, corresponding to the number of times

the signal exceeds the ±4 mV range (Out-of-Range Events - ORE) in order to account for

high-intensity electrode movement [22, 135].

Another example of the usage of different spectral bands is the work of Zaunseder [148],

where an algorithm based on an ensemble of decision trees was proposed. In this, the

monitor quality spectrum (0.5-40Hz) is compared with the low-frequency noise band

(<0.5 Hz) and high-frequency noise band (45–250Hz) in order to assess the quality of the

signal. Some of these metrics include the median, maximum, and minimum values of

these power bands, afterward used to build decision trees [135, 148].

Finally, and continuing the work by Allen, the study by Li et al. [149] uses the PSD

of the 5–14Hz frequency band and the 5–50Hz frequency band to produce the so-called

spectral distribution ratio (SDR) of the ECG, by comparing the value of these two

ranges [22, 149].

Spectral analysis of the HRV signal Another candidate for a noise quality indicator is

the spectral analysis of the HRV. The basis of HRV is the distance between two consecutive

HBs, therefore relying on accurate beat detection, which in the presence of noise will be

distorted. A warped HRV signal would also have a different spectral distribution, since

there would be energy in the non-physiologically-relevant bands, e.g., in frequencies

greater than 0.4Hz5 [22, 143].
5In the HRV spectrum all physiological relevant data is contained bellow 0.4Hz, the upper limit of the

high-frequency power band. For more information about HRV, refer to Chapter 2, Sub-Sections 2.4 and 2.5.
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5.2.3 Trend-based Approaches

As mentioned abundantly, the ECG waveform, especially the QRS complex, is quasi-

periodic and has a very stationary morphology, with the amplitudes and the distance

between each component of a cardiac cycle being relatively constant [22]. These charac-

teristics can be useful to find irregular patterns.

High Order Statistics (HOS) Some statistical features can be used to assess the mor-

phology of the segments. Two examples are the skewness, which is a metric to evaluate

the symmetry of the distribution, and kurtosis, which measures the distribution’s peak

sharpness. A normal ECG will have a high value for both the skewness and kurtosis since

the values will be very symmetrical and have a sharp peak (if a histogram for the values

was plotted, a normal ECG would resemble a normal distribution). As a result, skewness

and kurtosis have been proposed as indices of the presence of outliers in an ECG segment

(e.g. a 10-second waveform), since their existence will typically broaden the distribution,

lowering the kurtosis, and can also cause asymmetries, decreasing the skewness [22].

Template Matching Last but not least, the morphology of the beat can be used to

make a short-term template (e.g., using a 10-second window) and then compare each beat

to a known quality template, e.g., using the Pearson’s correlation coefficient. The template

produced can then be used to assess if the segments have a good or bad correlation with it.

If there is a good average correlation, then the signal is probably good. On the other hand,

if the average correlation value is low, then the segment is probably a noisy one [22].

5.2.4 Decision Rules

All the previous metrics and examples presented can be combined to produce better

results, with varying order and complexity of the metrics applied. Some approaches

apply multiple rules at the same time, while others choose to use them in stages. In the

latter, one of the approaches is the "black box" model, where the interconnection and

relation between features are very complex to understand and therefore only the input

and output are known to the user.

Thresholds and Combinations of Rules The various metrics used have some type of

limit, enabling the definition of a threshold from which normal and abnormal values can

be separated. In [22], the authors described two different techniques to set these, namely:

• Signal characteristics determined heuristically - Some thresholds are found by trial

and error, based on the experience of what the signal should look like. These lead to

most works proposing decision rules based on expected signal characteristics and do

not contain detailed justifications of the thresholds set, often seeming arbitrary [22].
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• Empirical based - Opposed to the last point, thresholds can also be "learned". For

example, different thresholds can be used to classify the data and their performance

tracked in the Receiver Operating Characteristics (ROC) curve plot in order to select

the best out of them. The ROC curve plots the 1-specificity (horizontal axis) against

the sensitivity (vertical axis), with the optimal point being (0, 1). Therefore, their

performance can be assessed in order to select the best one programmatically [22].

A final note on combining different rules to assess the quality of a segment is the

order they appear. Simpler rules, such as flat line detection or signal saturation, should

be applied first in order to optimize computation resources if the algorithm is to run on a

mobile device.

Machine Learning Models Opposed to rule-based algorithms, those using machine

learning can be modeled without having to know beforehand what the features should

appear like in order to classify the segments as acceptable or unacceptable. In other

words, these algorithms need only to know the quality of the segment to map the features

to it, learning how to replicate the labeling process without the need for understanding

it [22].

More advanced types of this approach, such as Artificial Neural Network (ANN),

operate in such a way that the relation between the input and the output result is very

complex, and sometimes even not understandable. These types of models are called

"black boxes" due to their obscure mapping, "showing" the user only their output. This

complexity allows them to find multidimensional and non-linear relations for the labeling

process, which for the task at hand (outlier detection) is an advantage rather than a

drawback [22]. Some examples of usage of machine learning models in signal quality

assessment are as follow:

• In [150], the authors compared the performance of three different machine learning

algorithms using signals from a wearable device. One of those was a Support Vector

Machine (SVM). From the waveform a set of non-morphological features were

extracted, e.g. kurtosis, and used to train these classifiers [150];

• In [151], an ANN (see Sub-Section 5.3.3) was trained using seven morphological,

spectral and statistical features from a multichannel ECG, resulting in 84 feature

inputs [151];

• In [152], a Deep Neural Network (DNN) (see Sub-Section 5.3.3) was trained using

as input both a 10-second ECG segment and its spectral information directly to

classify the segment in good or bad. In this example, no features are selected, using

the time series and the frequency content directly as inputs in order to label the

segments [152].
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5.2.5 Discussion

Outlier detection is not a trivial task, since some of the anomalies are due to phys-

iological sources, such as arrhythmias. This leads to increasingly complex algorithms,

which tend to be computationally expensive tasks. [22, 135]

A drawback of these methods that is intrinsic to their development and performance,

is the need for great amounts of data in order to generate models with good performances.

This adds an extra step to the task of finding artifacts, i.e. the discovery of training

datasets. As with finding the artifact, this is not an easy task. Most datasets are either

focused on arrhythmia discovery or are highly unbalanced (many more examples of good

segments compared to those that are noisy). An example of a dataset more focused

on noise detection is the Physionet Challenge of 2011, entitled "The development of

an algorithm for assessing the quality of 12-lead ECG recordings collected via a mobile

phone in real-time" [153], where more than 40 different institutions submitted a proposed

algorithm for the challenge [145].

5.3 Proposed Approach

As seen in the last section (Section 5.2), a large number of outlier detection algorithms

rely on a good detection of the QRS complex. There are many techniques and research

in this field, with the goal of developing accurate and fast algorithms [154]. One such

technique, which was developed to be implemented in small microcontrollers, is the

usage of phase portraits, a method derived from chaos physics [154].

Phase portraits is a technique to geometrically represent the trajectory of a dynamical

system in the phase plane instead of the time plane. This portrait can be obtained by

transforming the signal from a one-dimensional time series to a two-dimensional phase

domain using lag-coordinate mapping. This is a widely used method to reconstruct and

analyze non-linear systems’ dynamics from a time series source, which in the case of the

cardiac system, a two-dimension phase portrait of an ECG is good enough to reconstruct

its dynamical behavior [154, 155].

In other words, by plotting the original ECG wave (x-axis) against a delayed version

of itself (y-axis), that signal is mapped from the time domain to a two dimension phase

domain, and a phase portrait is constructed. Figure 5.6 illustrates this transformation.

As it can be seen in Figures 5.6.b), .c), and .d), the phase portrait has a distinct mor-

phology and a specific trajectory. These trajectories are delay specific, with different time

delays producing a unique shape. While analyzing this technique, a new idea came to

fruition, using these plots to detect outliers rather than finding the QRS complex.

Signal morphology is a common technique used to distinguish between clean and

noisy sources, however, this is done almost exclusively in the time domain (e.g. template

matching of QRS complex). However, time-domain methods also have the limitation

of relying on a specific signal segmentation methods, such as beat detection to find the
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Figure 5.6: Phase portrait reconstruction using lag-coordinate mapping, transforming a
one-dimension time domain wave (a) to a two-dimension phase domain representation
of the wave using an 8ms (b), 20ms (c), and 40ms (d) time delay. Extracted from [154].

QRS complex, in order to create segments to compare. Therefore, these techniques are

conditioned to the performance of such segmentation steps. By constructing the phase

portrait, the need for a segmentation algorithm is eliminated.

To distinguish usable from outlier segments, three different methodologies were se-

lected and will be described in the following sections:

• Area - Calculate the area of the shape and compare it to the overall area;

• Image descriptors - Use a common image descriptor to extract features from the

shape;

• Image as input to a ANN - Use the image directly to build a classifier.

A brief overview of all these methodologies, as well as a description of the estimators

used for each of them, will be presented in the following sub-section, but before diving

into them, a short introduction to chaos analysis in ECG.

The three main properties of a chaotic system, namely aperiodicity, determinism,

and confinement, in conjunction with sensitive dependence on initial conditions, play a

crucial role in defining and understanding such systems [156]. Due to slight variations

in anatomy and other properties, it cannot be universally claimed that every moment of

every human heart’s function conforms to a non-linear and deterministic system [157].
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This assumption generally holds true, although some hearts, typically those with low

heart rate variability, may exhibit linear and deterministic behavior. Furthermore, the

human heart displays a chaotic pattern, with the time between beats varying depending

on factors such as physical activity. By extension, it can be inferred that ECGs are most

regular when the heart is static, as evidenced by the completely flat ECG record observed

in the heart after death [156, 157].

An attractor of the phase trajectory of the system, the set of boundary points in the

phase space, can be constructed as one of the visual methods to assess the chaotic behav-

ior of a system, which has been applied to observe ECG dynamical rhythms due to its

being a good choice for analyzing such non-linear and non-deterministic/deterministic

signals [158, 159].

To visualize the attractor and its characteristics, the most frequently embedding

method is the time delay embedding. It uses delayed values of the time series and

embedding dimension to obtain the reconstructed vectors, which are then plotted on

the phase space and used to characterize the dynamics of system state trajectories on the

phase space attractor [159, 160]. Therefore, embedding dimension and time delay play an

important role during the reconstruction of the phase space of a dynamical system [161].

The embedding dimension is usually determined using either the method of false

nearest neighbours, while the time delay is usually determined using either the first

minimum of the average mutual information function (AMIF) [161].

With the attractor defined, different features can then be extracted to study the

systems, such as correlation dimension, spatial filling index, central tendency

measure, fractal dimension, approximate entropy and sample entropy, or Lyapunov

exponent [156, 159].

This work aimed to investigate the potential of using image-based features instead

of conventional ones, and to this end, only one embedded dimension was utilized with

multiple time delays.

5.3.1 Area

The first method used to label a segment, is based on the calculation of the area inside

the polygon versus the total area, using the ratio between these two features to assess the

signal quality. Since the output is an image, the outline of the shape produced has to be

determined, which can be done using for example an edge detector or the convex hull

algorithm.

One very popular edge detector is the Canny algorithm, which works by applying a

Gaussian filter to reduce noise, then computing the intensity gradient in four directions

by tracking the pixel-to-pixel changes, and afterward applying thresholds. This creates a

point cloud, the most relevant of which are then connected to form an edge [162].
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The convex hull algorithm works by finding the smallest polygon that can encapsulate

all the data points [163]. Figure 5.7 is a representation of a convex hull.

Figure 5.7: Convex hull representation. (a) The point cloud; (b) The resulting convex hull.
Adapted from [163].

After the edges are detected, the next step is to calculate the area. Since not all the

different heartbeats are aligned (i.e. in Figure 5.6 phase portraits it is possible to see

this misalignment) and the shape itself is complex, this tends to cause the edge detection

to produce many different small areas. The easier method to calculate the area of such

shapes is to use the Jordan Curve Theorem.

To assess if a point is inside a polygon, the Jordan Curve Theorem states that a point

is said to be inside it if any ray emerging from that point crosses the polygon’s edges an

odd number of times [164]. Figure 5.8 illustrates the principle.

Figure 5.8: Example of the Jordan Curve Theorem, where a point is considered inside the
polygon if a ray traced from it crosses its edges an odd number. As an example, multiple
rays are cast from a point inside the polygon to show that independently of its direction,
a ray from this point crosses the polygon’s edges (gray crosses) an odd number of times.
Based from [164].

With these two steps, it is then possible to calculate the ratio between the number

of points inside and outside the shape produced, and then train a classifier to label the

segments.
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5.3.2 Image Descriptors

Another method to extract features from an image is to use descriptors, capable of

(as the name implies) describing what is represented by the image using different fea-

tures. For example, some edge detection algorithms use image gradients, i.e. direction

changes in image intensity obtained by comparing the intensity of neighboring pixels,

thus describing how the intensity of a picture changes using a feature.

Other popular image descriptors are image moments, typically used in shape recog-

nition. These can be calculated using weighted averages of pixel intensity; and in the-

ory, two very similar shapes will have approximately the same image moment [165].

Figure 5.9 is an example of how an image moment can be used to distinguish between

different shapes.

Figure 5.9: Example of Hu image moments for different shapes and transformations.
There is a difference between the letter K and the letter S. However, when different
transformations are applied, i.e. rotation, translation, scaling, etc., the moment’s values
stay very similar. Extracted from [166].

There are many different image moments, however, one popularized for pattern recog-

nition is the Hu image moments [167], a set of seven different features that together allow

for matching shapes that are invariant to translation, scaling, and rotation. Using these

seven moments (included in Appendix D), an image classifier can be built to distinguish

between a normal and an outlier segment.

These classifiers can range from methods based on simple distance metrics to ad-

vanced algorithms such as SVM. The following is a list with the classifiers used:
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• k-Nearest Neighbors (k-NN) - algorithm uses the proximity between neighbor points

to classify a new one, using the principle that similar data will be grouped to-

gether [168];

• Random Forests - classifier composed of an N amount of decision trees (hierarchical

structures) [169];

• K-Means - algorithm that groups the data into different clusters without the need

for a classification label [170];

• SVM - builds a classifier by finding a hyperplane that is able to separate the different

classes [171];

5.3.3 Images as Input to an Artificial Neural Network

As opposed to the previous section (Sub-Section 5.3.2), where seven different features

are extracted from the phase plot, in this approach, the resulting shape is used directly to

train an ANN, more specifically a DNN. The use of DNN as the classifier results from it

becoming the state-of-the-art for image classification, especially when compared to more

traditional methods using the shape and color to extract features [172].

An ANN is a machine learning technique that is inspired by and resembles the human

nervous system and the structure of the brain. It consists of processing units organized in

input, hidden, and output layers. There are many different types of neural networks, but

the common element is the perceptron, the computational analog to the human neuron.

This unit takes the different inputs, attributes weights to them, sums, and then finally

takes the result and applies an activation function, much like the physiological working

of a neuron [173]. Figure 5.10 is a comparison between a human neuron and a perceptron.

Figure 5.10: Comparison between the basic unit in the human nervous system and that
of an ANN, a neuron versus a perceptron. A signal enters a neuron via the dendrites, or
inputs in an ANN, which are weighted by the number of synapses that occur in a dendrite,
or input weights in an ANN. Afterward, the input signal is processed in the nucleus of
the neuron, or by the combination of a linear function and an activation function in a
ANN, and finally, the stimulus is outputted. Extracted from [174].
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DNNs are a family of networks that, as the name implies, have a higher (deeper)

number of perceptron layers, which in turn allow for more complex and non-linear rela-

tions to be established between the input features and the output, without any manual

design [173].

There are two major challenges when training a ANN. The first one is premature

convergence, where the network can become "stuck" in a local minimum during its train-

ing, finding a good solution but not the best. The other is overfitting, where the network

becomes a replicator of the input data, reporting very good results but has a low general-

ization ability, essentially learning the mapping between the input and output data and

not the relation between them [173].

For image processing, one type of network that is the frequently used is Convolutional

Neural Network (CNN), especially in computer vision and image recognition. These net-

works take cues from the human visual cortex, by employing different layers for different

tasks, similar to the different regions of the visual cortex. A series of convolutions, sub-

sampling, and normalizations are employed to simulate the image processing performed

by the human cortex. For example, edge detection can be performed by using a Sobel

Kernel and performing a convolution with it [173]. Figure 5.11 is an example of a CNN

for image classification, in this case character recognition.

Figure 5.11: Example of a CNN for character recognition. It is possible to observe the
different basic build blocks of a CNN in action, with multiple convolution layers to de-
tect features, pooling layers to reduce the image size, and the output stage. Extracted
from [175].

Although there is no standard network for noise detection using a phase portrait

in ECG, this can be seen as a challenge similar to a character recognition task. There-

fore, a simple architecture based on networks used in the MNIST (and also similar to

Figure 5.11)6 problem was deployed.

6Widely used database for handwritten number recognition
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The model starts with two convolution layers, then applies a max polling layer, before

dropping out 25% of the nodes. Finally, it passes through a fully connected layer, before

dropping out 50% of the nodes and outputting the probability of the two classes using a

softmax activation function.

The convolution layers are the basis of a CNN, acting as a filter to highlight and au-

tomatically extract/create features. The max polling layer helps in reducing the overall

size of the images resulting from the convolutions since it takes (in this case) the maxi-

mum value of a 2x2 grid. Finally, the dropout layer help avoids overfitting, by randomly

selecting nodes to be turned off before the next training passage. Figure 5.12 is the

graph representation of such network, taking a 320x320 pixel phase plot as the input and

outputting if the plot corresponds to a clean signal or a noisy one.

Figure 5.12: CNN model graph. At the input the network takes a 320x320 plot, and
applies the two convolution layers before passing the features to a fully connected ANN.
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5.4 Results of each technique

This section is divided into 4 subsections, starting with the database used to train the

different machine algorithms, then the results for each of the techniques used. A general

discussion about the results obtained using the different methods is presented in the next

section.

5.4.1 Database

The database selected to train and test the performance of each technique was the

one provided for the 2017 PhysioNet Challenge "AF Classification from a Short Single

Lead ECG Recording: The PhysioNet/Computing in Cardiology Challenge 2017" [176].

This database contains 8528 recordings of single lead ECG, sampled at 300Hz, with their

length ranging from 9 to 60 seconds.

From all the recordings, only the ones classified as Normal and Noisy were used, in

order to assess the performance in the best possible conditions. Therefore, 5076 records

classified as good and 279 as noise can be used7. Since this database was not intended

primarily for noise vs. normal distinction, there is a significant class unbalance. However,

it is very difficult to find a publicly and widely used database for that purpose.

Of the 5355 records, the majority of them have a duration of approximately 30 seconds

(Figure 5.13), a long period when assessing the signal’s quality of the whole segment, i.e.

mapping the complete segment to a phase portrait. For example, Sub-Figure 5.14a is a

30-second ECG rhythm strip labeled as Normal in the database. However, there is a

big noise event at the beginning of the ECG rhythm strip (first 5 seconds of the record-

ing), which in turn completely distorts the phase portrait. By comparison, the 12-second

strip presented in Sub-Figure 5.14b is labeled as Noisy. Visually comparing both phase

portraits, they appear to be very similar, which may affect the suggested approach perfor-

mance. Sub-Figure 5.14c is a 30-second rhythm strip labeled as Normal, with a similar

(albeit inverted) phase portrait to those reported in Figure 5.6.(c).

Figure 5.13: Histogram of segments’ duration, with the majority of segments having
approximately 30 seconds.

7Using the REFERENCE-v3.csv file present in the challenge web page [176].
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(a) Incorrectly labeled Noise ECG rhythm strip. In the first seconds of the recording, there is
a noisy segment that completely distorts the phase portrait. However, since it is a large time
window, the creators of this database labeled this segment as Normal.

(b) ECG rhythm strip labeled as Noisy in the database.

(c) ECG rhythm strip labeled as Normal in the database. Notice the inverted QRS complex,which
indicates lead reversal (or bad lead placement) but no indication is given regarding this situation.

Figure 5.14: Example of different signals from the database and the effect of segment
duration and noise in ECG strip classification.
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To avoid some of the problems associated with having longer period rhythm strips,

only segments with a duration of 15 seconds or less were chosen, resulting in 247 ECG

strips. Of those, 173 are labeled as Normal, while the remaining 74 are labeled as Noise.

Another benefit of using segments with a shorter period is lowering the class unbalance,

going from 5% to 30% of the data being labeled as Noise.

Another database that could have been used was the 2011 Physionet Challenge

"Improving the Quality of ECGs Collected using Mobile Phones" [153], however, this

is a multi-lead database with a single reference, in other words, the labeling process re-

flects the signal quality as a whole, without discriminating the per channel classification,

falling outside of the scope for this thesis.

5.4.2 Area

The usage of the area as a feature for detecting the presence of outlier passed through

three different stages, namely finding the best method for calculating the area, followed

by an initial test of classifier performance, and finally abandonment. Although no real

results were obtained, i.e. no public available dataset was tested using this approach,

the approaches and challenges encountered when implementing this method are worth

discussing.

Regarding outline detection, two different techniques were used: the convex hull and

the Canny edge detection algorithm. Figure 5.15 shows the delay plot using a test ECG

signal, and thus the polygon these algorithms will try to outline.

Figure 5.15: Example of a phase portrait using a 20 milliseconds delay.

Starting with the convex hull approach, this was the simplest of the two since the

resulting polygon has a more simple shape (e.g when comparing the convex hull shape

in Figure 5.16 with the shape resulting from edge detection, represented in Figure 5.18),

being easier to calculate the number of internal points. Furthermore, at this stage, the

idea was to develop a template of what a normal signal should look like in order to count

the number of points that fall within the said template (presented in 5.16).
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Figure 5.16: Convex hull template using a 20 milliseconds delay.

Figure 5.17: Example of a noisy segment using the convex hull template.

The idea was then to use this template to count the number of points that were inside

the convex hull and assess if the number was higher than a threshold, e.g. 70% for

medium quality signals and 90% for good quality signals8. Figure 5.17 depicts a signal

segment classified as noisy when using a 70% threshold for the minimum number of

points within the convex hull.

One major drawback with using the convex hull in this approach is that the shape of

the polygon formed by this algorithm is too broad, encompassing many different areas of

the phase plot where the signal should not be expected in normal conditions. To try and

solve this problem, an edge detection algorithm was thus employed to better outline the

polygon drawn by the delayed phase plot.

To detect the edges, the Canny algorithm was used9 with a sigma of 25. This edge

detector is one of the most used, and the threshold value was selected by empirical exper-

imentation, being chosen the value that resulted in a better outline detection.

8These thresholds were defined by empirical experimentation during the initial tests.
9The algorithm was not implemented. A Python library with the implementation was used by calling

the canny function from the skimage library.
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Afterward, the ratio between the points inside and outside the shape can be done by

performing a Monte-Carlo simulation, placing random points on the plot, and checking

if the point is within the polygon using the Jordan Curve Theorem. Figure 5.18 illustrates

such simulation.

Figure 5.18: Result of edge detection and Monte-Carlo simulation, where points are
placed randomly in the image and their position is assessed to be inside or outside the
polygon. The two different shapes correspond to all waveforms except the QRS complex
(left), and the QRS complex (right).

There are two major drawbacks to this approach, the difficulty in consistently finding

the edges of the image, and also calculating the area within the polygon. The task of

calculating the area within was also very computationally demanding, since the polygon

formed by this approach is not a simple shape, requiring many edge crossing detections,

which in turn leads to an increase in complexity.

Another major problem of this approach is scale, since the shape is very dependent

on the amplitude of the input signal, more specifically the ratio between the device range

of measurement and the amplitude of the QRS signal. Smaller amplitudes will produce

a smaller polygon, which in turn will have a smaller area. This makes the change of

area dependent not only on the noise and its effect on the final shape, but also on the

original amplitude of the QRS signal compared to the device measuring range or the

type of electrodes used. To tackle this problem, normalization of the segment could

help, however, spurious spikes could interfere with said process, thus resulting in small

polygons nevertheless.

Although no tangible results were presented in this section, some major challenges

were identified, such as signal scale, which influenced the choices of the next techniques

used to solve the problem at hand, the search for outlier segments in the ECG waveform.
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5.4.3 Hu Image Moments

This subsection will first provide a summary of how the data was prepared and af-

terwards used by each of the classifiers, with their results presented. In the end, a brief

comparison between different delays closes this subsection.

Data Preparation and Estimator Parameter Tuning

For each file, a delayed phase portrait was created by plotting on the x-axis all the

value except the last n samples (0 to length-delay), with delay being the delay, and in the

y-axis all the values starting at the index delay (delay to length). With the data plotted, the

grayscale image was obtained and saved. Afterward, for each of the delayed phase plots,

their Hu moments were obtained10 and saved in order to build the different classifiers.

Algorithm 2 presents a more visual interpretation, where ECG is the waveform in

study, n is the last sample, and the delay is the millisecond delay converted to an index.

The square brackets represent a subset of the data.

Algorithm 2: Building a delayed phase portrait.
Input: ECG rhythm strip
Result: The delayed phase portrait

begin
n←− ECG length
delay←− Delay converted to an array index
/* E.g. for a signal sampled at 250Hz and a delay of 20ms, delay will

be 5 samples */

x axis←− ECG[0 : n− delay]
y axis←− ECG[delay : n]

Draw image and save it

The Normal and Noise segments were then all joined in one array to be divided into a

train (60%), test (20%), and validation (20%) subsets11, in order to ensure that each of the

classifiers uses did not suffer from overfitting. This splits were done with a fixed random

state in order to replicate the results between techniques.

Also, when possible, the parameters used for each of the estimators were optimized

using an automatic function that runs through all these different parameters12. For

example, in the k-NN classifier, the number of neighbors, the distance metric, and the

weights used in the prediction can be optimized using this technique.

10Using the Open CV HuMoments function.
11Using the train_test_split function from the Python package sklearn, with the stratify option set as true.

This option ensures that both classes appear in all three data splits, by maintaining the same ratio between
classes in each of the splits.

12Using the GridSearchCV function from the Python package sklearn.
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Table 5.1: Example of the output of a grid-search optimization using a k-NN classifier and
the following parameter to be optimized: the number of neighbors, the distance metric,
and the weights. The mean test score is the average from the 10-fold cross validation
accuracy (based on a scoring metric, such as F1-score) used to find the best combination
of parameters.

Rank
Distance Number of

Weights
Mean Test Score

Metric Neighbors (Standard Deviation)
1 Cosine 13 Uniform 0.69 (0.09)
2 Cosine 15 Uniform 0.69 (0.10)
3 Cosine 9 Uniform 0.68 (0.10)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
142 Euclidean 7 Distance 0.50 (0.15)
143 Minkowski 7 Distance 0.50 (0.15)

All of these combinations will be used to make a table similar to Table 5.1, where a

total of 143 combinations were analyzed.

For each combination of parameters, the models are evaluated using cross-validation

(in this case, using 10 folds), and their performance is calculated using one of the follow-

ing scoring metrics: accuracy, F1-score, or the F1-score macro average. The F1-score is

typically used for binary classifications, combining the precision and recall of a classifier

into a single metric, being a good method for comparing classifiers. The macro average

is similar to the latter but does not take into account any class unbalances, being an

unweighted average of the scores.

Finally, for the Random Forest13 and SVM14 classifiers, the functions used to build

these estimators had the option to set a weight for each class in the dataset. This option,

class weight, was set to "balanced", which will automatically adjust each class’s weights in-

versely proportional to their frequencies, helping to counter the unbalance of the dataset

used.

Results

Table 5.2 contains the results for the test and validation sets using the different estima-

tors trained employing the Hu image moments, using a 30-millisecond delay to construct

the phase portraits. These represent the best models found using the automatic param-

eter optimizer15, producing three sets of results16, one for each scoring metric used in

assessing the model performance by the optimizer. Table E.31 contains the results using

two other delays (20 and 40 milliseconds).

13Using the RandomForestClassifier function from the Python package sklearn.
14Using the SVC function from the Python package sklearn.
15Trained on 60% of the data and using 10-fold cross-validation to discover the best model.
16Except for the K-Means.
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Table 5.2: Hu image moment’s estimators results, using a 30 millisecond delay. For each
dataset (Test and Validation), the best model’s (found using the parameter optimizer)
F1-score average and macro average (averaging the unweighted mean per label) are
reported.

Optimizer Test set Validation set
Scoring Metric F1 Accuracy F1 Macro

Average
F1 Accuracy F1 Macro

Average
k-NN

Accuracy 0.74 0.70 0.84 0.82
F1 0.74 0.70 0.84 0.82

F1 Macro Average 0.74 0.70 0.84 0.82
Random Forest

Accuracy 0.72 0.65 0.88 0.84
F1 0.72 0.65 0.86 0.81

F1 Macro Average 0.72 0.65 0.84 0.79
SVM

Accuracy 0.70 0.64 0.72 0.62
F1 0.70 0.64 0.72 0.62

F1 Macro Average 0.70 0.64 0.72 0.62
K-Means

0.62 0.46 0.66 0.52

Starting with the k-NN, this was one of the best estimators, getting the highest

F1-score accuracies and macro averages for the Test set (20% of the data that was not

used in training), with a score of 0.74 and 0.70 respectively. From the F1-score of each

class17 (0.81 for the Normal class and 0.58 for the Noise, in Table E.4b) and the confusion

matrix (Table E.4a), there is a high percentage of Noise labeled segments that are con-

sidered Normal. At the same time, there is also a substantial number of Normal labeled

segments that are misclassified. Though, when tested with the Validation set (the remain-

ing 20%), these results improve, increasing the F1-score accuracy and macro average to

0.84 and 0.82. This is due to higher class F1-score (0.88 and 0.75, Table E.4b), with more

segments correctly classified in both classes, an effect also visible in the confusion matrix

(Table E.4a).

The best results out of all the estimators come from the Random Forest classifier,

achieving 0.88 and 0.84 for the F1-score accuracy and macro average (respectively, and

using accuracy as the optimizer scoring metric) using the Validation set. These results18

are due to a very high F1-score in the Normal class (0.92, Table E.13b) and a relatively

good one for the Noise class (0.77, Table E.13b). For the Test set, the results are similar to

those obtained with the k-NN estimator, with the F1-score accuracy and macro averages

being lower (0.72 and 0.65) using the Random Forest classifier.

17When using a 30 millisecond delay and accuracy for the optimizer’s scoring metric.
18When using a 30 millisecond delay and accuracy for the optimizer’s scoring metric.
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The SVM classifier had the most consistent results between the Test and the Validation

set, being almost identical. However, their performance was mediocre compared to the

other two techniques, achieving a maximum F1-score accuracy and macro averages of

0.72 (Validation set) and 0.64 (Test set), lower than those obtained with the other two

techniques. Analyzing one of the confusion matrices19, it is possible to observe a very

high rate of misclassified noise segments in both sets (Table E.22a), leading to a low

F1-score for this class (lower than 0.5, table Table E.22a).

Out of all 4 estimators, K-Means had the worst results, with a F1-score accuracy and

macro averages of 0.62 and 0.46 for the Test set, and 0.66 and 0.52 for the Validation set.

Looking at the Confusion Matrices20 (Table E.29a), it becomes apparent the reason for

such low scores, with almost no Noise segments being labeled as such, with 2 out of 15

for the Test set and 3 out of 15 for the Validation (Table E.29a), leading to Noise class

F1-scores of 0.17 and 0.26 (Table E.29b). On the other hand, the F1-scores for the Normal

class (0.75 and 0.78) are on par with those obtained using the other estimators.

The amount of time used as the delay tends to have some effect on the results

(Table E.31). For the k-NN classifier, the best results for the Test set are obtained when

using a 20 ms delay, while 30 ms is the best for the Validation set. Nevertheless,

the results are very similar, with the metrics differing by 6% at most. Using the ran-

dom forest classifier, the 20ms delay has the worst Test set F1-scores macro averages,

being around 10-15% lower for some optimizers. On the other hand, using a 40ms delay

leads to lower performance in the Validation set.

The results from the SVM classifier are very similar for all the different delays, with

the results using the 40ms delay being slightly better than those using a 30ms. Finally,

there is the K-Means clustering, the best results are obtained when using a 40ms delay.

Nevertheless, these better results still place this method as the worst.

From all three delays, 30ms is a tradeoff between having either better results in the

Test set (40ms) or the Validation set (20 ms). Table 5.3 are the different F1-scores for

the Noise class in the two best classifiers, the k-NN and Random Forest, using the three

different parameter optimizer’s scoring metrics (Accuracy, F1-score, and F1 Macro Score).

Table 5.3: F1-Scores for the Noise Class using k-NN and Random Forests classifiers. This
results include the different delays and using the three different parameter optimizer’s
scoring metrics (Accuracy, F1-score, and F1 Macro Score).

Test (20 %) optimizer scoring metrics Validation (20 %) optimizer scoring metrics

Delay Accuracy F1-score
F1 Macro

Mean Accuracy F1-score
F1 Macro

Mean
Score Score

k-NN
20ms 0.38 0.62 0.62 0.54 ± 0.11 0.50 0.75 0.75 0.67 ± 0.12

30ms 0.58 0.58 0.58 0.58 ± 0.00 0.75 0.75 0.75 0.75 ± 0.00

40ms 0.53 0.57 0.57 0.56 ± 0.02 0.62 0.65 0.65 0.64 ± 0.01

Random
Forest

20ms 0.36 0.30 0.37 0.34 ± 0.03 0.71 0.69 0.69 0.70 ± 0.01

30ms 0.50 0.50 0.50 0.50 ± 0.00 0.77 0.72 0.69 0.73 ± 0.03

40ms 0.58 0.53 0.53 0.55 ± 0.02 0.62 0.62 0.60 0.61 ± 0.01

19Using a 30 millisecond delay and accuracy for the optimizer’s scoring metric.
20When using a 30 millisecond delay
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5.4.4 Image as Input to an Artificial Neural Network

Data Preparation

As previously mentioned, there is a class unbalance between the two labels of the

dataset. To even the number of elements in each label, the least represented class, Noise,

was oversampled. This technique was chosen instead of undersampling for two reasons:

the number of Noise labeled samples, and the difference in the number of elements

between the two (a difference of 100 elements in a total of 247, almost a 2:1 ratio). Thus,

this class was resampled to have the same amount of samples as the Normal class. Another

step in preparing the data before being used to train the CNN models was reshaping the

saved phase portraits from a single row image (1 x 102400 pixels) to a squared one

(320 x 320 pixels).

Due to the amount of data, the network was trained in batches of 32 images. To

train the models, the network previously shown in Figure 5.12 (and based in character

recognition CNNs) was implemented using the Python library Keras. and fitted with the

following parameters:

• Loss function - Cross-entropy21;

• Optimizer - Adadelta22, with the following parameters: learningrate = 0.001,

rho = 0.95, epsilon = 1e − 7;

Results

Table 5.4 contains the results for the test and validation sets using three different

delays for the model depicted in Figure 5.12.

Table 5.4: CNN estimators results for different delay. For each dataset (Test and Valida-
tion), the best model’s F1-score average and macro average (averaging the unweighted
mean per label) are reported.

Delay Test set Validation set
Used F1 Accuracy F1 Macro

Average
F1 Accuracy F1 Macro

Average
CNN

20ms 0.68 0.60 0.74 0.67
30ms 0.72 0.65 0.72 0.64
40ms 0.70 0.68 0.84 0.82

21Using the CategoricalCrossentropy function from the Python package Keras.
22Using the Adadelta function from the Python package Keras.
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The results obtained by this network are similar to those obtained using the Hu image

moment estimators, with an F1-score accuracy of around 0.70 and an F1-Score Macro

Average of 0.65. Furthermore, the effect delay has on these results seems to be the same

as with the Hu image moment estimators, having small variations between them (around

2-5%), with the 30-millisecond delay being a tradeoff between both the results of the Test

set and the Validation set.

However, upon a closer inspection of the confusion matrices and classification reports

(Tables E.32, E.33, and E.34), the results using the 40-millisecond delay appear to produce

better results. The F1-score for the Noise class is higher using this delay compared to the

others (Table E.34b), which is mainly due to higher precision and recall scores when using

this delay. The results for the F1-scores of the Noise class are summarized in Table 5.5.

Table 5.5: F1-Scores for the Noise Class using CNN model.

Delay Test (20 %) Validation (20 %)

CNN
20ms 0.43 0.47
30ms 0.50 0.46
40ms 0.59 0.75

5.5 Discussion

The results obtained using delay phase plots to detect outliers, namely noise, are posi-

tive and promising, although some work still needs to be done to improve its performance.

Between the two approaches that were explored in more detail, the Hu image moments

and an image as input to a CNN, the results show that using the Hu image moments

coupled with a k-NN produces the best results.

Regarding the models’ Normal class labeling performance, all the estimators (regard-

less of using the Hu image moments or the CNN model, and for all the delays used) got

reasonable F1-Scores, of around 0.80. For the Noise class labeling performance, the best

F1-Scores when using the Hu image moments were obtained when using a 30-millisecond

delay (Table 5.3), while the CNN model produces better results using a 40-millisecond

delay (Table 5.5). The CNN model got very poor results when using the other two delays

(<0.50). However, when using a 40-millisecond delay, the results become very similar

to those when using a k-NN or a Random Forests classifier with the Hu image moments.

These results were around 0.60 for the CNN and the k-NN classifiers in the Test set, and

0.70-0.75 in the Validation set.

The F1-scores of each label led to reasonable F1-score and F1 Macro Averages for the

trained models. The Random Forest classifier achieved the highest score of 0.72 and 0.86

in the Test and Validation sets, respectively, using a 30-millisecond delay (Table 5.2). For

the k-NN classifier, it scored a 0.74 and 0.84 in the Test and Validation sets, respectively,

using a 30ms delay (Table 5.2). Finally, the CNN model scored a 0.70 and 0.84 using

40ms delay, Table 5.4.
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Table 5.6: Example of models trained using the same (complete) database.

Authors Features Classifier
F1-Score F1-Score

Normal label Noise label

Goodwin et al. [177]
Morphology, templates Ensemble

0.91 0.66
and HRV features classifier

Xiong et al. [178] ECG waveform CNN 0.90 0.60

Yazdani et. al [179]
Morphology, statistical, Ensemble

0.82 0.57
and HRV features classifier

Zabihi et. al [180]
491 features, Random

0.90 0.61
reduced to 150 forest

Behar et. al [181]
Morphology, HRV,

SVM 0.90 0.65
and others

These results are acceptable when compared to other models which used the same

database (Table 5.6). The target of those works was not exclusively to distinguish between

Normal and Noise labeled segments, but rather to train models capable of classifying

segments showing signs of Atrial Fibrillation. Furthermore, these models were trained

using the entire database, while the models and results presented in this work were only

trained using segments shorter than 15 seconds that were labeled as either Normal or

Noise. Therefore, the results should not be used as a direct comparison, but rather serve

as an indication of the future potential of this methodology.

The results presented in these examples are very similar between themselves and to

the results obtained by the proposed methodology, where the Normal segments have a

slightly better performance than the proposed models, with a Normal class F1-score of

around 0.90 vs the 0.80 of the proposed models. In the Noise class scores, the results

obtained by the proposed model are very similar, with the examples presented in Table 5.6

having an F1-score of 0.60 and the ones from the proposed methodology scoring similar

results.

In [177] and [179], the authors use a multitude of morphological references, templates,

and HRV features to train an ensemble classifier and make their predictions. A similar

approach was used by Behar et. al [181], where these features were used to develop a

3-stage classifier (using a SVM for each of the stages), to first distinguish between Normal

segments and the rest of the labels (Atrial Fibrillation, Other, and Noise), followed by

Atrial Fibrillation vs the remaining two, and in the end, Other vs Noise. In [180], the

authors hand-crafted 491 features, with the best 150 selected to train a random forest

classifier. All of these previous works use a much higher number of features to classify

the segments than the proposed approaches, while the F1-score of the Noise label for each

of these works is similar to the results obtained. However, these works used the whole

database in training their models and also had to distinguish between the other 2 classes,

so the comparison has to be done with this in mind. The only approach in the examples

that is similar to one of the proposed approaches, is the work done by Xiong et al. [178],

where the ECG rhythm strip is fed directly in a CNN model to be classified. Nevertheless,

the results obtained by this approach had similar results to those previously discussed.
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One of the reasons that might help to explain the mediocre results obtained when

trying to distinguish the Noise label from the other might be the dataset itself. One of the

authors of the examples in Table 5.6 stated that the highly unbalanced (even with label

modification) and the imperfect labeling might explain why the Noise label F1-score was

not included in the final scoring system of the challenge [179], indicating some problems

with the dataset itself. Even when using only segments that were shorter than 15 seconds,

the Noise class represented only 30% of the subset of data, which even after the balancing

methodologies applied in the different classifiers, might not be enough percentage to

thoroughly distinguish between the two classes.

Furthermore, the incorrect labeling also influences the results. This was also one of

the reasons to adopt 15 seconds threshold for each segment, previously mentioned in

Sub-Section 5.4.1. As an example of own an incorrect label influences the performance of

the proposed methodology, Figure 5.19 contains a raw ECG example that is a true positive

(TP), a fake positive (FP), a fake negative (FN), and a true negative (TN), using a k-NN

classifier with a 30-millisecond delay. Figure 5.20 are their phase portraits.

Figure 5.19: Example of correct and incorrectly classified rhythm strips, using an k-NN
classifier and a 30 millisecond delay. TP: True positive; FP: fake positive; FN: fake
negative; TN: true negative.

Starting with the fake negative, the artifact present in the last second of the segment

leads to the phase portrait being completely altered. This rhythm strip was labeled as

Normal in the dataset, however, due to the distortion of the phase plot, it was classified

by the model as a noisy signal. Without the last 2s of data, this signal would be labeled

as Normal.
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Figure 5.20: Phase portraits of the rhythm strips in Figure 5.19. TP: True positive;
FP: fake positive; FN: fake negative; TN: true negative.

On the other hand, the distortion present in the fake positive example was not enough

to completely distort the phase plot, which led it to be classified as a Normal signal.

However, except for a 2-second window in the middle of the signal, the ECG rhythm

strip is indeed a clean one, leading to inconsistent labeling of the signals. This is further

confirmed when looking at the true positive signals, exhibiting a similar artifact with the

same approximate duration (albeit with a less pronounced amplitude swing), but unlike

the fake positive trace, this was labeled as Normal.

Nevertheless, the results obtained show that this approach might be useful in artifact

detection for small duration segments (<15 seconds), requiring either only 7 features to

describe the segment when using the Hu image moments, or using the segment itself as

an input to a CNN model. However, a major drawback of this approach is when it is used

in larger segments, being very sensitive to large amplitude swings, labeling the entire

segment as Noise.

5.6 Summary

Throughout this chapter, the problem that is noise and how to identify it in an ECG

trace was explored. This is a non-trivial problem, since some forms of noise are similar

to the signal itself, especially in the case of physiological events, while others can mimic

valid signals.
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There are four major noise sources in an ECG, namely: motion artifact, baseline

wander, muscle activity, and power-line interference. To assess the quality of the signal,

the first step is typically based on a QRS complex detector, from which other metrics

can then be constructed. These techniques can be divided into four major groups, time-

domain, frequency-domain, trend-based, and decision rules, with the latter normally

being a combination of the first three.

A new approach was presented in this chapter based on the phase portrait of the ECG,

which can be obtained by using delay mapping, plotting the signal against a delayed

version of itself. To develop this technique, a publicly available database was used, how-

ever, the number of Noise samples was highly unbalanced compared to those labeled as

Normal, while also having different duration (between 9 and 60s). To this effect, only

segments shorter than 15 seconds were used in the development of this technique.

Furthermore, the different sizes of the samples lead to some being labeled as Normal

even though there was a clear noise event within the sample.

Different approaches were tried using the phase portrait, with one of them being

abandoned fairly early in the development, based on the total area of the point contained

by the polygon drawn by the phase portrait.

The second approach was based on the Hu image moments, a widely used image

descriptor in shape recognition. With this approach, different estimators were tried, with

varying degrees of success, with their performance being promising, in line with some of

the state-of-art models (albeit in dissimilar experimental conditions). These estimators

were able to classify the Normal segments with a high F1-score (approximately 0.90) but

had lower results for the Noise class F1-score (approximately 0.60-0.70).

The final approach was using the phase portrait as an image input of a CNN, leverag-

ing the power of this type of networks in computer vision problems to label the segments.

Since no standard network exists for this problem, inspiration was drawn from networks

used in character recognition. The approach had results very similar to those obtained by

the Hu image moments.

To assess if the delay value was a major influence on the results obtained by these

estimators, this approach was tried using 20, 30, and 40 milliseconds delays. The delay

had an effect in Noise class F1-Score, with the Hu image moment estimators performing

best when using a 30 millisecond delay, and the CNN models with a 40-millisecond one.

A better database needs to be found to properly assess the performance of this ap-

proach since the results obtained do not allow for a clear decision if this technique does or

does not yield any potential as a robust noise estimator. Nevertheless, the results obtained

were similar to those obtained by the others using the same database (although with some

differences in experimental conditions).
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Conclusion

Being the last chapter in this thesis, there is a reflection on the work developed

throughout, starting with an overview of each chapter, then an outline of the main contri-

butions in the different fields, future work, and a summary of work done in other fields.

6.1 Overview

In Chapter 1, the main motivation for this thesis was laid-out. Mortality caused

by Cardiovascular Disease (CVD)s, the major leading cause of death worldwide, can be

reduced by investing in better prevention and diagnosis techniques and devices. An exam

widely used to this effect is Electrocardiogram (ECG), and its incorporation in mobile

devices allows its use more pervasively. With more pervasive devices, the opportunities

for early detection of potentially life-changing or even life-treating disorders are increased

and thus could have a positive effect on the mortality numbers of these types of diseases.

On the other hand, the ECG can be used not only to study the heart but also the inner

working of other systems in the body through their effects on the Autonomic Nervous

System (ANS) and subsequently on the inter-beat intervals. These solutions, pervasive

and focused on continuous monitoring, can reach a broader audience if designed using

electrodes embedded in a daily use device rather than being attached directly to the body.

However, off-the-person solutions have a major drawback, the increased sensitivity to

noise, mainly due to the difficulty in maintaining constant contact with the electrodes.

In Chapter 2, an overview of the rich story of the ECG is presented. The ECG is a

technique that started with a machine that occupied an entire room, needing five people

to operate it, and used buckets full of electrolytic solution as electrodes. It has evolved

throughout the last century to devices worn on the patient’s wrists or small patches

attached to the chest, capable of recording an ECG trace with very high quality and

reliability. This technique is very useful for clinicians to either analyze and make a

decision in the present, or study what happened in the past, based on the characteristic

morphology of a normal ECG. Nowadays, the ECG is one of the key tools in emergency

rooms for fast triage, or in clinicians’ offices to detect cardiac disorders.

111



CHAPTER 6. CONCLUSION

Another tool that can be used by clinicians is Heart Rate Variability (HRV), espe-

cially in analyzing long-term changes in the cardiac function. This technique focuses on

changes in the inter-beats intervals, establishing a relation between those and the ANS

that regulates them. With this relation, clinicians are able to predict the evolution of some

disorders, or at least have a more probable outcome, with risk stratification grouping as

an example of a practical application of this technique, by using metrics extracted from

the study of these variations. The ability to correlate changes in the Heart Rate (HR) and

the ANS activity also opens new doors for researchers wanting to study it, allowing them

to use a relatively cheap, easy-to-use, and reliable technique. At the end of Chapter 2,

there is a brief overview of the history of this technique, the HRV, its relation with the

ANS, and how some metrics can be correlated with the two branches that make up the

ANS.

In Chapter 3 this relation is leveraged, using the ECG and HRV to study changes

in the ANS due to an experimental medical procedure. This procedure, designated as

Remote Ischemic Conditioning (RIC), comprises alternating cycles of ischemia and non-

ischemia to a limb, in order to trigger a proceeding effect in a vital organ, such as reducing

infarct size after a MI. All the mechanisms that regulate this protection are still not fully

established, which can be either humoral, neural, immune system-mediated, and/or a

mixture of all the latter. In order to advance the knowledge in this field, a pilot trial was

designed and applied, recording an ECG signal at the same time the RIC was performed,

with the objective of finding if there are some differences in ANS activity as expressed

by the HRV and therefore provide more evidence of the neural pathways influences in

mediating the protection offered by the procedure.

To record an ECG, an interface is needed to convert the potentials transmitted through

the body to potentials that can be recorded by electronic devices. In the human body,

these are transmitted due to changes in ions concentration, while outside the body, elec-

trons are used. These interfaces are called electrodes, and throughout time these too

suffered an evolution. Electrodes can be classified by the usage of electrolyte gel or by

their position in relation to the body. Concerning the first topic, electrodes can be wet

if they use an electrolytic gel to aid in the recording of the signal, or dry if no extra

gel is used, only the body’s natural excreted electrolytes. Regarding the positioning of

electrodes relatively to the body, these can be positioned inside the subject’s body (in-

the-person), attached onto the skin (on-the-person), and finally embedded in day-to-day

devices (off-the-person). All these concepts were discussed in Chapter 4.

One of the materials from which dry electrodes can be constructed is a polymer. These

have generally good biocompatibility, a favorable cost-to-signal-quality ratio, and are a

good solution for being embedded into mass-produced solutions. Dry electrodes, in

general, are more suitable for long acquisition sessions or when there is a frequent hands-

on/hands-off cycle, making them the better solution for the development of pervasive

ECG recording solutions, one of the main objectives of this thesis. Building an easy-to-

use solution, where the user does not have to consciously close the ECG circuit (as with
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smartwatches, for example), capable of monitoring the user while using the device, could

bring an increased value to both the prevention and diagnostic field. The development

of such a novel device for this purpose was the focus in Chapter 4.

Nevertheless, these approaches have some drawbacks, out of which noise is perhaps

the more concerning in a mobile context. Long recordings of ECG signals can generate a

large amount of data in devices that are storage constraint, have to transmit this data to

central repositories or process the data locally, and have a limited supply of power before

they need to be charged again. Therefore there is the need to identify noisy portions

of the signal and remove them to save resources and discard erroneous results. When

using an off-the-person approach for recording ECG, the principal sources of noise are

motion artifacts and poor or non-existent contact, leading to ECG distortion and loss of

its morphological features.

Although at first glance this problem could be seen as a trivial task, it is far from it,

with the morphology of the waveform sometimes being mistaken for noise and vice versa.

There are three main approaches for classifying a segment as outlier (or not), namely, the

usage of time-domain metrics and rules, frequency domain ones, and combination of both.

Furthermore, in the last decades, the usage of machine learning has also increased in this

field, which was typically dominated by the combination of different rules. Chapter 5

proposes a new method for outlier detection based on machine learning techniques.

6.2 Contributions

A pilot study was designed and implemented to observe if any changes occurred in

the most used metrics extracted from HRV to identify the contributions of the neural

pathways, more specifically those from the ANS, in modulating the protection provided

by the RIC procedure. It was possible to observe a statistically significant change in

the before and after periods of applying the procedure, with the non-linear metric SD2

increase. This metric is typically associated with an increase of long-term changes in the

HRV, with an increase in activity of both ANS branches.

These results offer a different outlook on the role of the ANS system in the mediation

of the protection, since most of the state-of-the-art studies infer its mediation due to the

lack of cardioprotection when these systems are suppressed, while by using HRV it was

possible to observe a more direct contribution of the neural pathways.

In Chapter 4 the development of a tablet for monitoring health and aiding elderly peo-

ple while also giving their caregivers peace of mind was described. This work was done

in partnership with other laboratories and industry partners, with the goal of bringing

to market a suite of solutions with a handheld tablet at its core. Among other features,

it has the ability to monitor heart activity using a pervasive ECG recording solution,

developed using an off-the-person approach, with dry polymeric electrodes embedded in

a custom-designed back cover.
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The final polymeric material was selected from a short list of five possible candidates,

pre-selected due to their properties. To assess which material would be the best, the

signal similarity between recordings using a clinical-grade ECG machine with Ag/AgCl

electrodes glued to the wrists and those using a PLUX biosignalsplux acquisition unit

connected to the materials in study were compared. Of all materials, PolyOne’s OnForce

LFT LF6600-5023 (PO), a polyamide with high elastic modulus and material strength

had the best results in all three metrics used: cosine similarity, root mean square error,

and Spearman correlation.

By using a polymer as a dry electrode, it made it simpler for the acquisition of the

ECG signal to be extracted more seamless, with the electrodes embedded directly in the

back of the tablet, making contact with both hands when the user holds the tablet in

portrait mode. This approach enables more periodic monitoring by the tablet, since the

user does not have to place their hand consciously on the electrodes or can be taught very

easily the best way to interact with the tablet.

The combination of all these characteristics allows this novel device to be a more

pervasive method for recording and monitoring heart activity. The proposed device

differs from what is commercially available by implementing an acquisition system that

enables a more naturalistic recording of ECG rhythm strips, as opposed to the current

approach of embedding the electrodes on wearable devices that require a conscious action

by its user. Another distinguishable point of this device is the material from which the

electrodes are made off, using a polymer instead of a metal, enabling a more customizable

integration with the device’s chassis/back cover.

Finally, there was the work done in the field of ECG signal quality assessment, through

the development of a new approach to detect outlier segments. To accomplish this goal, a

technique used to detect the QRS complex in microcontrollers was repurposed to the task

of detecting outliers using two different methodologies. Phase portraits, a method derived

from chaos physics, were used to geometrically represent the trajectory of a dynamical

system in the phase plane instead of the time plane, creating a distinct shape. This shape

is then used to distinguish between a good segment or an outlier one.

The two approaches used to detect outliers in the ECG were either based on image

descriptors or the image itself. The first approach applied a commonly used image de-

scriptor in image recognition, the Hu image moments. By using these, a set of seven

features describes the image, which are scale, rotation, and translation invariant. The

other approach uses the image as an input to a deep neural network, trained to distinguish

between good and outlier segments.

The results obtained when using these two approaches are in line with the state-of-

art of works that used the database used to train and verify these approaches, albeit

with some differences in the segments used1. Although both techniques are able to

1The target of these works was to train models capable of classifying segments where Atrial Fibrillation
occurred. Furthermore, these used the whole database. This comparison is more of an indication that this
technique could be used for the task at hand.
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correctly classify the normal segments as such, when classifying outliers it has slightly

worse performance. In general, the trained models were able to correctly classify the

Noise labeled segments with an F1-score of 0.6-0.7 (depending if it is on the Test or

Validation set). With such a distinctive shape, it should have been possible to have a

better distinction between the two types of segments. In Chapter 5, there is a more in-

depth explanation of why there was a lack of performance, with the overall conclusion

being that the database used played a major role in this.

The main difference between the proposed approach and the state-of-art, especially

the works that used this database, is the type and number of the features used to train the

models. These typically use a very large number of morphological, HRV, time-domain,

frequency-domain, and templates to train complex models. In the proposed approaches,

a segment can be either described by seven features or be fed directly into a Convolutional

Neural Network (CNN) model, simplifying the classification process.

6.3 Future work

There are some limitations to the pilot designed for assessing the influences of neural

pathways in the protection offered by the RIC procedure using HRV. These include the

small sample size, having only a one-time window to compare the effects of the RIC (for

example, recording a 5-minute segment after 2 or 24 hours of the procedure), and only

performing one full RIC cycle. Future studies should address these limitations to confirm

the results obtained in this pilot trial.

For the development of the tablet, the first major task to accomplish is performing

real-world testing (e.g. in an assisted living facility). These trials will be very helpful in

finding any shortfalls with the current design, providing insights for future revisions of

the electrode positioning and interaction with them. For the tablet to be accepted and

used by the target populations, which sometimes can be resistant to changes, taking their

feedback and examining their interactions with the product is essential. At the same

time, these tests will also provide feedback if any changes are required to the acquisition

frontend, to be more performant with the target population (e.g. age-related changes in

skin impedance [182]), or if any unaccounted EMI exists between the acquisition unit and

the tablet. In addition to the recording and comparison of ECG signals, it would also be

beneficial to perform a clinical assessment of the signals to determine if a trained expert

can accurately identify the specific landmarks in the ECG waveform. Another interesting

study that should be performed is to record ECG strips of patients with known CVDs, to

find if those recordings can be used by a clinician or trained expert to find the markers

used in the diagnosis and monitoring of such disorders.

Another important aspect that needs to be evaluated is the durability of the polymer

chosen for the electrodes. With time, some materials start to break down and lose some

qualities, either by mechanical or chemical wear down. Long-term monitoring of the

electrode surfaces should then be performed, to evaluate if/how the quality of the signal
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being recorded does not suffer any significant loss. Other materials could also be tested

and compared to the performance of the chosen polymer. For example, graphene is in-

creasingly used as a material to produce electrodes, and it could be interesting to compare

its performance, or the usage of bendable electrodes, studying their application in the

back of the tablet to improve the contact with the fingers.

Finally, there is the signal quality index. To better assess the performance of the

algorithm at least two major improvements should be made. The first one is to find

better annotated datasets to replicate the results obtained and build better estimators.

It is crucial to validate and create a better outlier labeling model, especially since the

techniques used scale with the amount of data that is used to train them. Furthermore,

the dataset should be more balanced, with a more equal number of normal and outlier

labeled data.

Another major improvement is the architecture of the developed Artificial Neural

Network (ANN). Works in other computer vision fields can be applied to this problem,

from more optimized layer architecture, with different activation functions or different

types of layers, to completely different networks. One of these different architectures

that could be used for this problem is Long Short Term Memory networks [183], a type of

network that can leverage past knowledge to assess current information, thus introducing

a time element to the classification. The CNNs employed in this work were based on

existing character recognition focus networks, leaving space to improve on this complex

field that is ANN.

Another potential application for the phase plots is the diagnosis/classification of

CVDs, which could generate different patterns in the delay map. By using these maps

to classify the rhythm strips, their usefulness in mobile ECG devices can further be

increased, even flagging the segment for review by an expert. These patterns could also

be used, in theory, to track the evolution of a patient’s CVD.

6.4 Other Contributions

During the development of this thesis, there were research, work, and knowledge

gathering in other fields.

Starting with the support to master students during their work, where four master stu-

dents were supported. Two of the thesis focused on posturography studies ("Development

of a normative base in pathologies of the rheumatologic forum based on posturography

and electromyography"2 and "Development of a normative base for neurological patholo-

gies based on posturography and electromyography"3), using a force platform and four

pairs of muscles to build normative databases. Working on another electrophysiological

field of study, electromyography, allowed for the development of a better understand-

ing of signal processing, how noise affects other signals, and in particular how the ECG

2http://hdl.handle.net/10362/61560.
3http://hdl.handle.net/10362/61560.
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and the Electromyography (EMG) interact. Furthermore, these works also involved the

recruitment of test subjects and the management of large amounts of data, offering an

opportunity to develop skills in these fields. From these works, a conference paper was

published as part of the conference proceedings as a book chapter (winning the best paper

award) [184].

A third thesis focused on the study of the ANS using HRV and electrodermal activity

(measure in changes of electrical current due to sweat). Using a wearable device, these

two techniques recorded the subject’s response to a mental arithmetic stress test and used

to create a classifier to predict the subject’s response ("Autonoumous Nervous System

biosignal processing via EDA and HRV from a wearable device"4). This work was another

example where HRV can be used to study the ANS, this time to correlate changes in

another electrophysiological technique with changes in the ANS, applying the knowledge

learned in Chapter 2 and 3 to aid in this thesis. These results were also presented at a

conference and published in its proceedings as a book chapter [185].

The last thesis focused on the use of off-the-shelf radars in vital signs monitoring,

with the development of an equivalent processing pipeline for two different radar tech-

nologies. With this pipeline, breathing rate was easily detected, while in some cases it

was possible to extract the Heartbeat (HB) ("Bio-Radar applications for remote vital signs

monitoring"5). Here a more extreme off-the-person monitoring tool was explored, the

use of radar to achieve near-continuous extraction of the respiration rate and in some

conditions the heart rate, comparatively to using more traditional methods (microphone

and an ECG sensor) to validate these results. These results were published in a paper

[186].

Another contribution was the work done for a data collection tool in the context of web

navigation, the Latent project, where the aim was to study human behavior while using

the internet. To this effect, the skeleton of a web extension and a data collection server

were developed. This framework can also be embedded directly on a website, which, for

example, could be used as a further monitoring tool for elderly patients. A special website

could be developed to analyze their behavior and cognitive functions while at the same

time recording their ECG, and in the end, combining both data sources to get a better

understanding of the subject’s health. There were further developments in the tool, with

the final product published in a paper [187]. As a final published research contribution,

there was the opportunity to help in the development of a genetic algorithm used for

job rotation scheduling, by contributing with ideas on how genetic algorithms could be

helpful in this field [188, 189].

In parallel with all these activities, there were some direct contributions to the work

developed by this thesis co-sponsor, PLUX. As mentioned in Chapter 4, PLUX was one of

the partners in the consortium responsible for the development of the tablet, with project

management tasks performed in addition to research work.

4http://hdl.handle.net/10362/59608.
5http://hdl.handle.net/10362/118695.
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6.5 Published Scientifc Contributions

The following is a list of the published scientific contributions, divided into core

publications (first author and part of a chapter in this thesis) and support publications

(not the first author or not part of a chapter in this thesis).

• Core publications

– D. N. Osório et al. “Comparison of different polymeric materials for mobile off-

the-person ECG”. In: 5th EAI International Conference on IoT Technologies

for HealthCare. Springer International Publishing, 2019-12, pp. 15–22. doi:

10.1007/978-3-030-30335-8_2;

– D. N. Osório et al. “Autonomic nervous system response to remote ischemic

conditioning: Heart rate variability assessment”. In: BMC Cardiovascular

Disorders 19.1 (2019-09). doi: 10.1186/s12872-019-1181-5.

• Support publications

– R. Lima, D. Osório, and H. Gamboa. “Heart rate variability and electroder-

mal activity biosignal processing: Predicting the autonomous nervous system

response in mental stress”. In: Biomedical Engineering Systems and Technolo-

gies. Springer International Publishing, 2020, pp. 328–351. doi: 10.1007/978-

3-030-46970-2_16;

– C. Cepeda et al. “Latent: A flexible data collection tool to research human

behavior in the context of web navigation”. In: IEEE Access 7 (2019), pp.

77659– 77673. doi: 10.1109/access.2019.2916996;

– D. N. Osório et al. “Development and validation of an experimental protocol

to evaluate posture control”. In: IFIP Advances in Information and Communi-

cation Technology. Springer International Publishing, 2020, pp. 387–394. doi:

10.1007/978-3-030-45124-0_37 (Won best paper award);

– J. Rodrigues et al. “A genetic algorithm to design job rotation schedules

with low risk exposure”. In: IFIP Advances in Information and Communi-

cation Technology. Springer International Publishing, 2020, pp. 395–402. doi:

10.1007/978- 3-030-45124-0_38;

– A. Lopes et al. “Equivalent pipeline processing for IR-UWB and FMCW radar

comparison in vital signs monitoring applications”. In: IEEE Sensors Journal

22.12 (2022-06), pp. 12028–12035. doi: 10.1109/jsen.2022.3173218;

– A. Assunção et al. “A genetic algorithm approach to design job rotation sched-

ules ensuring homogeneity and diversity of exposure in the automotive indus-

try”. In: Heliyon 8.5 (2022-05), e09396. doi: 10.1016/j.heliyon.2022.e09396.
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A

Typical HRV Features

Figure A.1: Sample density distribution of the RR intervals. The letter Y is the maximum
of this distribution, having a normal RR interval bin X. N and M are used to get the TINN,
the width of the triangle. Extracted from [16].

Figure A.2: Example of a Poincaré plot. It is possible to see the two main axes of
the ellipsis, SD1 corresponding to its width, and SD2 corresponding to its height.
Extracted from [190].
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Table A.1: Principal metrics used in HRV [16, 64, 74].

Time domain features

SDNN Standard deviation of normal beat intervals (ms)

RMSSD Root mean square of successive difference (ms)

SDSD Standard deviation of the successive difference (ms)

NNxx Number successive NNs pairs larger than a given threshold

pNNxx Percentage of number successive NNs pairs larger than a given threshold (%)

HTI HRV triangular index

TINN Triangular interpolation of NN histogram (ms)

Frequency domain features

ULF (<0.003Hz) Ultra low frequencies (ms2)

VLF (0.003 - 0.04Hz) Very low frequencies (ms2)

LF (0.04 - 0.15Hz) Low frequencies (ms2)

HF (0.15 - 0.40Hz) High frequencies (ms2)

TP (0.04 - 0.40Hz) Total Power (ms2)

nuLF (0.04- 0.15Hz) Normalized units low frequencies (LF/TP)

nuHF (0.15 - 0.40Hz) Normalized units high frequencies (LF/TP)

LF/HF ratio Low to high frequency ratio

Non-linear domain features

S Total area of the Poincaré plot ellipsis

SD1 Width of the Poincaré plot ellipsis

SD2 Length of the Poincaré plot ellipsis

SD1/SD2 Ratio between the width and the length

ApEn Aproximate entropy

SampEn Sample entropy

MSE Multiscale entropy

DFA Detrended fluctuation analysis

CD Correlation dimension
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B

Remote Ischemic Conditioning

Table B.1: Overview of pre pilot subjects condition. This table is divided into demograph-
ics and current medication for the all the individuals and the two sub sets, senior and
young. Two senior individuals were fully excluded from the data analysis due to missing
data.

Included subjects Senior subjects Young subjects

Demographics (n=18) (n=8) (n=10)

Age, years 47.0 ± 21.9 69.6 ± 7.6 28.9 ± 6.3

Female sex 11 (61.1%) 6 (75.0%) 5 (50%)

Cardiovascular risk factors

Arterial Hypertension 5 (27.8%) 5 (62.5%) 0 (0.0%)

Diabetes 2 (11.1%) 2 (25.0%) 0 (0.0%)

Dyslipidemia 6 (33.3%) 6 (75.0%) 0 (0.0%)

Smoking 3 (16.7%) 2 (25.0%) 1 (10.0%)

Obesity 1 (5.6%) 1 (12.5%) 0 (0.0%)

Coronary artery disease 0 (0.0%) 0 (0.0%) 0 (0.0%)

Atrial fibrillation 0 (0.0%) 0 (0.0%) 0 (0.0%)

Current medication

Beta-blocker 1 (5.6%) 1 (12.5%) 0 (0.0%)

Alfa-blocker 1 (5.6%) 1 (12.5%) 0 (0.0%)

Calcium channel blockers 1 (5.6%) 1 (12.5%) 0 (0.0%)

138



Table B.2: Global population analysis for the first and last 10 minutes and occlusion and non-occlusion intervals. Statistically significant
values are in bold.

Global population First 10 minutes Last 10 minutes
First vs Last

Wilcoxon signed-rank test

mean mean p-value: Before - After pairs

Time Features

Mean R-R Interval (ms) 819.069 834.266 Last higher 0.076

Median R-R Interval (ms) 821.868 837.588 Last higher 0.107

pNN50 (%) 11.351 11.670 Last higher 0.619

RMSSD (ms) 32.430 34.152 Last higher 0.435

Frequency Features

nuLF PSD (%) 40.971 44.029 Last higher 0.193

nuHF PSD (%) 36.176 32.912 First higher 0.107

nuLF/nuHF ratio 1.424 1.644 Last higher 0.149

Non linear Features

SD1 axis (ms) 22.931 24.148 Last higher 0.435

SD2 axis (ms) 69.039 78.627 Last higher 0.044

SD1/SD2 ratio 0.352 0.316 First higher 0.149
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Global population (continuation) Non-occlusion Occlusion Non-Occlusion Wilcoxon signed-rank test

intervals mean intervals mean vs Occlusion p-value: non-occlusion - occlusion

Time Features

Mean R-R Interval (ms) 827.052 823.577 Non-occlusion higher 0.210

Median R-R Interval (ms) 829.437 825.779 Non-occlusion higher 0.177

pNN50 (%) 11.541 11.112 Non-occlusion higher 0.084

RMSSD (ms) 33.639 32.572 Non-occlusion higher 0.044

Frequency Features

nuLF PSD (%) 42.690 43.588 Occlusion higher 0.586

nuHF PSD (%) 33.872 33.824 Non-occlusion higher 0.868

nuLF/nuHF ratio 1.583 1.706 Occlusion higher 0.723

Non linear Features

SD1 axis (ms) 23.785 23.031 Non-occlusion higher 0.044

SD2 axis (ms) 74.078 71.451 Non-occlusion higher 0.084

SD1/SD2 ratio 0.335 0.327 Non-occlusion higher 0.332
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Table B.3: Senior population analysis for the first and last 10 minutes and occlusion and non-occlusion intervals. Statistically significant
values are in bold.

Senior population First 10 minutes Last 10 minutes
First vs Last

Wilcoxon signed-rank test

Mean Mean p-value: Before - After pairs

Time Features

Mean R-R Interval (ms) 834.475 854.718 Last higher 0.128

Median R-R Interval (ms) 836.929 859.607 Last higher 0.176

pNN50 (%) 4.655 4.298 First higher 0.866

RMSSD (ms) 24.387 26.096 Last higher 0.866

Frequency Features

nuLF PSD (%) 32.571 38.143 Last higher 0.310

nuHF PSD (%) 45.429 40.714 First higher 0.310

nuLF/nuHF ratio 0.900 1.158 Last higher 0.398

Non linear Features

SD1 axis (ms) 17.244 18.452 Last higher 0.866

SD2 axis (ms) 44.309 59.366 Last higher 0.018

SD1/SD2 ratio 0.416 0.329 First higher 0.128
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Senior population (continuation) Non-occlusion Occlusion Non-Occlusion Wilcoxon signed-rank test

intervals mean intervals mean vs Occlusion p-value: non-occlusion - occlusion

Time Features

Mean R-R Interval (ms) 842.691 833.762 Non-occlusion higher 0.176

Median R-R Interval (ms) 845.401 835.339 Non-occlusion higher 0.176

pNN50 (%) 4.310 4.069 Non-occlusion higher 0.237

RMSSD (ms) 25.637 24.216 Non-occlusion higher 0.310

Frequency Features

nuLF PSD (%) 35.629 36.143 Occlusion higher 0.612

nuHF PSD (%) 42.058 41.000 Non-occlusion higher 0.612

nuLF/nuHF ratio 1.096 1.191 Occlusion higher 0.866

Non linear Features

SD1 axis (ms) 18.128 17.123 Non-occlusion higher 0.310

SD2 axis (ms) 51.500 48.099 Non-occlusion higher 0.176

SD1/SD2 ratio 0.371 0.353 Non-occlusion higher 0.237
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Table B.4: Young population analysis for the first and last 10 minutes and occlusion and non-occlusion intervals. Statistically significant
values are in bold.

Young population First 10 minutes Last 10 minutes
First vs Last

Wilcoxon signed-rank test

Mean Mean p-value: Before - After pairs

Time Features

Mean R-R Interval (ms) 808.285 819.949 Last higher 0.285

Median R-R Interval (ms) 811.325 822.175 Last higher 0.359

pNN50 (%) 16.039 16.830 Last higher 0.508

RMSSD (ms) 38.061 39.792 Last higher 0.445

Frequency Features

nuLF PSD (%) 46.850 48.150 Last higher 0.444

nuHF PSD (%) 29.700 27.450 First higher 0.102

nuLF/nuHF ratio 1.791 1.985 Last higher 0.241

Non linear Features

SD1 axis (ms) 26.912 28.136 Last higher 0.445

SD2 axis (ms) 86.350 92.111 Last higher 0.508

SD1/SD2 ratio 0.308 0.307 First higher 0.878
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Young population (continuation) Non-occlusion Occlusion Non-Occlusion Wilcoxon signed-rank test

intervals mean intervals mean vs Occlusion p-value: non-occlusion - occlusion

Time Features

Mean R-R Interval (ms) 816.104 816.448 Occlusion higher 0.959

Median R-R Interval (ms) 818.261 819.087 Occlusion higher 0.878

pNN50 (%) 16.602 16.042 Non-occlusion higher 0.241

RMSSD (ms) 39.240 38.422 Non-occlusion higher 0.093

Frequency Features

nuLF PSD (%) 47.632 48.800 Occlusion higher 0.575

nuHF PSD (%) 28.142 28.800 Occlusion higher 0.878

nuLF/nuHF ratio 1.924 2.066 Occlusion higher 0.799

Non linear Features

SD1 axis (ms) 27.746 27.168 Non-occlusion higher 0.093

SD2 axis (ms) 89.882 87.798 Non-occlusion higher 0.333

SD1/SD2 ratio 0.310 0.308 Non-occlusion higher 0.721
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C

Proposed Mobile ECG Acquisition

System

Figure C.1: Example of the raw signal using the PolyOne’s OnForce LFT LF6600-5023 dry
electrodes (blue line), overlapping the signal recorded with the reference wet-electrodes
(red line).
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APPENDIX C. PROPOSED MOBILE ECG ACQUISITION SYSTEM

Figure C.2: Boxplot with the cosine similarity per material and per distance.

Figure C.3: Boxplot with the NRMSE per material and per distance.
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Figure C.4: Boxplot with the Spearman correlation per material and per distance.
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D

Hu Image Moments

The regular moment of a shape (for a binary image) can be obtained using the follow-

ing equation (Equation D.1):

Mij =
∑
x

∑
y

xiyjI(x,y) (D.1)

, where I(x,y) is the pixel intensity at the x and y coordinates, while i and j are integers

denoting the moment order. This calculation is based on the intensity of all the pixels, and

not their position. The image centroid can then be used to obtain translation invariance.

The centroid can be calculated using the following equations (Equations D.2 and D.3):

x̄ =
M10

M00
(D.2)

ȳ =
M01

M00
(D.3)

, where x̄ and ȳ are the coordinates of the image centroid. With these coordinates, the

central moments can be calculated, which are obtained by subtracting the centroids from

the x and y coordinate, and thus becoming invariant to translation, nullifying the effect

of the location of the shape (Equation D.4).

µij =
∑
x

∑
y

(x − x̄)i(y − ȳ)jI(x,y) (D.4)

To convert the already translation invariant moments to also scale invariant, these can

be normalized using the following equation (Equation D.5):

ηij =
µij

µ
(i+j)

2 +1
00

(D.5)
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Using these normalized moments, the Hu image moments can be constructed. The 7

moments are invariant to translation, scale, rotation, and reflection. The moments are as

follow:

h0 = η20 + η02

h1 = (η20 − η02)2 + 4η2
11

h2 = (η30 − 3η12)2 + (3η21 − η03)2

h3 = (η30 + η12)2 + (η21 + η03)2

h4 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (3η21 − η03)[3(η30 + η12)2 − (η21 + η03)2]

h5 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2 + 4η11(η30 + η12)(η21 + η03)]

h6 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+ (η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 + η03)2]

(D.6)
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E

Signal Quality Index Table Appendix

E.1 Hu Image Moments

E.1.1 k-NN

For this classifier, the KNeighborsClassifier function from the Python package sklearn was used. For

each of the estimators (3 in total, each using a different metric to assess the performance of the grid search

optimizer), the following parameters were evaluated:

• Number of neighbors: between 1 and 25;

• Weight: uniform or by distance (closer points have more weight);

• Distance metric: Euclidean, Cosine, or Minkowski;

Table E.1: k-NN classifier results for a 20ms delay and using the accuracy score metric for
the optimizer. Parameters after optimization: Number of neighbors - 6; Distance metric -
euclidean; Weights - uniform.

Test set Validation set

Normal Noise 20ms Delay Normal Noise

29 6 Normal 32 3

10 5 Noise 9 6

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.74 0.83 0.78 35 Normal 0.78 0.91 0.84 35

0.45 0.33 0.38 15 Noisy 0.67 0.40 0.50 15

0.68 50 Accuracy 0.76 50

0.60 0.58 0.58 50 Macro avg 0.72 0.66 0.67 50

0.66 0.68 0.66 50 Weighted avg 0.75 0.76 0.74 50

(b) k-NN classification reports.
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E.1. HU IMAGE MOMENTS

Table E.2: k-NN classifier results for a 20ms delay and using the F1-Score score metric for
the optimizer. Parameters after optimization: Number of neighbors - 11; Distance metric
- cosine; Weights - uniform.

Test set Validation set

Normal Noise 20ms Delay Normal Noise

30 5 Normal 30 5

6 9 Noise 3 12

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.83 0.86 0.85 35 Normal 0.91 0.86 0.88 35

0.64 0.60 0.62 15 Noisy 0.71 0.80 0.75 15

0.78 50 Accuracy 0.84 50

0.74 0.73 0.73 50 Macro avg 0.81 0.83 0.82 50

0.78 0.78 0.78 50 Weighted avg 0.85 0.84 0.84 50

(b) k-NN classification reports.

Table E.3: k-NN classifier results for a 20ms delay and using the F1 Macro Average score
metric for the optimizer. Parameters after optimization: Number of neighbors - 11; Dis-
tance metric - cosine; Weights - uniform.

Test set Validation set

Normal Noise 20ms Delay Normal Noise

30 5 Normal 30 5

6 9 Noise 3 12

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.83 0.86 0.85 35 Normal 0.91 0.86 0.88 35

0.64 0.60 0.62 15 Noisy 0.71 0.80 0.75 15

0.78 50 Accuracy 0.84 50

0.74 0.73 0.73 50 Macro avg 0.81 0.83 0.82 50

0.78 0.78 0.78 50 Weighted avg 0.85 0.84 0.84 50

(b) k-NN classification reports.
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Table E.4: k-NN classifier results for a 30ms delay and using the accuracy score metric for
the optimizer. Parameters after optimization: Number of neighbors - 6; Distance metric -
euclidean; Weights - uniform.

Test set Validation set

Normal Noise 30ms Delay Normal Noise

28 7 Normal 30 5

6 9 Noise 3 12

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.82 0.80 0.81 35 Normal 0.91 0.86 0.88 35

0.56 0.60 0.58 15 Noisy 0.71 0.80 0.75 15

0.74 50 Accuracy 0.84 50

0.69 0.70 0.70 50 Macro avg 0.81 0.83 0.82 50

0.75 0.74 0.74 50 Weighted avg 0.85 0.84 0.84 50

(b) k-NN classification reports.

Table E.5: k-NN classifier results for a 30ms delay and using the F1-Score score metric for
the optimizer. Parameters after optimization: Number of neighbors - 13; Distance metric
- cosine; Weights - uniform.

Test set Validation set

Normal Noise 30ms Delay Normal Noise

28 7 Normal 30 5

6 9 Noise 3 12

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.82 0.80 0.81 35 Normal 0.91 0.86 0.88 35

0.56 0.60 0.58 15 Noisy 0.71 0.80 0.75 15

0.74 50 Accuracy 0.84 50

0.69 0.70 0.70 50 Macro avg 0.81 0.83 0.82 50

0.75 0.74 0.74 50 Weighted avg 0.85 0.84 0.84 50

(b) k-NN classification reports.
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Table E.6: k-NN classifier results for a 30ms delay and using the F1 Macro Average score
metric for the optimizer. Parameters after optimization: Number of neighbors - 13; Dis-
tance metric - cosine; Weights - uniform.

Test set Validation set

Normal Noise 30ms Delay Normal Noise

28 7 Normal 30 5

6 9 Noise 3 12

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.82 0.80 0.81 35 Normal 0.91 0.86 0.88 35

0.56 0.60 0.58 15 Noisy 0.71 0.80 0.75 15

0.74 50 Accuracy 0.84 50

0.69 0.70 0.70 50 Macro avg 0.81 0.83 0.82 50

0.75 0.74 0.74 50 Weighted avg 0.85 0.84 0.84 50

(b) k-NN classification reports.

Table E.7: k-NN classifier results for a 40ms delay and using the accuracy score metric for
the optimizer. Parameters after optimization: Number of neighbors - 19; Distance metric
- cosine; Weights - uniform.

Test set Validation set

Normal Noise 40ms Delay Normal Noise

28 7 Normal 28 7

7 8 Noise 5 10

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.80 0.80 0.80 35 Normal 0.85 0.80 0.82 35

0.53 0.53 0.53 15 Noisy 0.59 0.67 0.62 15

0.72 50 Accuracy 0.76 50

0.67 0.67 0.67 50 Macro avg 0.72 0.73 0.72 50

0.72 0.72 0.72 50 Weighted avg 0.77 0.76 0.76 50

(b) k-NN classification reports.
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Table E.8: k-NN classifier results for a 40ms delay and using the F1-Score score metric for
the optimizer. Parameters after optimization: Number of neighbors - 17; Distance metric
- cosine; Weights - uniform.

Test set Validation set

Normal Noise 40ms Delay Normal Noise

30 5 Normal 29 6

7 8 Noise 5 10

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.81 0.86 0.83 35 Normal 0.85 0.83 0.84 35

0.62 0.53 0.57 15 Noisy 0.62 0.67 0.65 15

0.76 50 Accuracy 0.78 50

0.71 0.70 0.70 50 Macro avg 0.74 0.75 0.74 50

0.75 0.76 0.75 50 Weighted avg 0.78 0.78 0.78 50

(b) k-NN classification reports.

Table E.9: k-NN classifier results for a 40ms delay and using the F1 Macro Average score
metric for the optimizer. Parameters after optimization: Number of neighbors - 17; Dis-
tance metric - cosine; Weights - uniform.

Test set Validation set

Normal Noise 40ms Delay Normal Noise

30 5 Normal 29 6

7 8 Noise 5 10

(a) k-NN classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.81 0.86 0.83 35 Normal 0.85 0.83 0.84 35

0.62 0.53 0.57 15 Noisy 0.62 0.67 0.65 15

0.76 50 Accuracy 0.78 50

0.71 0.70 0.70 50 Macro avg 0.74 0.75 0.74 50

0.75 0.76 0.75 50 Weighted avg 0.78 0.78 0.78 50

(b) k-NN classification reports.

E.1.2 Random Forest

For this classifier, the RandomForestClassifier function from the Python package sklearn was used. For

each of the estimators, the following parameters were tried to be optimized:

• Number of estimators (size of the forest): between 70 and 100;

• Max depth: between 5 and 25;

• Split quality metric: Gini, Entropy, or Log loss;

Furthermore, the class weight was set as balanced due to the large class unbalance of the data set.
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Table E.10: Random forest classifier results for a 20ms delay and using the accuracy score
metric for the optimizer. Parameters after optimization: Number of estimators - 72; Max
Depth - 19; Split quality metric - Log Loss.

Test set Validation set

Normal Noise 20ms Delay Normal Noise

27 8 Normal 32 3

10 5 Noise 5 10

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.73 0.77 0.75 35 Normal 0.86 0.91 0.89 35

0.38 0.33 0.36 15 Noisy 0.77 0.67 0.71 15

0.64 50 Accuracy 0.84 50

0.56 0.55 0.55 50 Macro avg 0.82 0.79 0.80 50

0.63 0.64 0.63 50 Weighted avg 0.84 0.84 0.84 50

(b) Random forest classifier classification reports.

Table E.11: Random forest classifier results for a 20ms delay and using the F1-Score score
metric for the optimizer. Parameters after optimization: Number of estimators - 84; Max
Depth - 21; Split quality metric - Log Loss.

Test set Validation set

Normal Noise 20ms Delay Normal Noise

27 8 Normal 33 2

11 4 Noise 6 9

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.71 0.77 0.74 35 Normal 0.85 0.94 0.89 35

0.33 0.27 0.30 15 Noisy 0.82 0.60 0.69 15

0.62 50 Accuracy 0.84 50

0.52 0.52 0.52 50 Macro avg 0.83 0.77 0.79 50

0.60 0.62 0.61 50 Weighted avg 0.84 0.84 0.83 50

(b) Random forest classifier classification reports.

155



APPENDIX E. SIGNAL QUALITY INDEX TABLE APPENDIX

Table E.12: Random forest classifier results for a 20ms delay and using the F1 Macro Aver-
age score metric for the optimizer. Parameters after optimization: Number of estimators -
70; Max Depth - 20; Split quality metric - Entropy.

Test set Validation set

Normal Noise 20ms Delay Normal Noise

28 7 Normal 33 2

10 5 Noise 6 9

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.74 0.80 0.77 35 Normal 0.85 0.94 0.89 35

0.42 0.33 0.37 15 Noisy 0.82 0.60 0.69 15

0.66 50 Accuracy 0.84 50

0.58 0.57 0.57 50 Macro avg 0.83 0.77 0.79 50

0.64 0.66 0.65 50 Weighted avg 0.84 0.84 0.83 50

(b) Random forest classifier classification reports.

Table E.13: Random forest results for a 30ms delay and using the accuracy score metric
for the optimizer. Parameters after optimization: Number of estimators - 92; Max Depth
- 20; Split quality metric - Gini.

Test set Validation set

Normal Noise 30ms Delay Normal Noise

29 6 Normal 34 1

8 7 Noise 5 10

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.83 0.81 35 Normal 0.87 0.97 0.92 35

0.54 0.47 0.50 15 Noisy 0.91 0.67 0.77 15

0.72 50 Accuracy 0.88 50

0.66 0.65 0.65 50 Macro avg 0.89 0.82 0.84 50

0.71 0.72 0.71 50 Weighted avg 0.88 0.88 0.87 50

(b) Random forest classifier classification reports.
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Table E.14: Random forest classifier results for a 30ms delay and using the F1-Score score
metric for the optimizer. Parameters after optimization: Number of estimators - 93; Max
Depth - 17; Split quality metric - Gini.

Test set Validation set

Normal Noise 30ms Delay Normal Noise

29 6 Normal 34 1

8 7 Noise 6 9

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.83 0.81 35 Normal 0.85 0.97 0.91 35

0.54 0.47 0.50 15 Noisy 0.90 0.60 0.72 15

0.72 50 Accuracy 0.86 50

0.66 0.65 0.65 50 Macro avg 0.88 0.79 0.81 50

0.71 0.72 0.71 50 Weighted avg 0.88 0.86 0.85 50

(b) Random forest classifier classification reports.

Table E.15: Random forest classifier results for a 30ms delay and using the F1 Macro Aver-
age score metric for the optimizer. Parameters after optimization: Number of estimators -
71; Max Depth - 21; Split quality metric - Gini.

Test set Validation set

Normal Noise 30ms Delay Normal Noise

29 6 Normal 33 2

8 7 Noise 6 9

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.83 0.81 35 Normal 0.85 0.94 0.89 35

0.54 0.47 0.50 15 Noisy 0.82 0.60 0.69 15

0.72 50 Accuracy 0.84 50

0.66 0.65 0.65 50 Macro avg 0.83 0.77 0.79 50

0.71 0.72 0.71 50 Weighted avg 0.84 0.84 0.83 50

(b) Random forest classifier classification reports.
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Table E.16: Random forest classifier results for a 40ms delay and using the accuracy score
metric for the optimizer. Parameters after optimization: Number of estimators - 75; Max
Depth - 22; Split quality metric - Gini.

Test set Validation set

Normal Noise 40ms Delay Normal Noise

28 7 Normal 30 5

6 9 Noise 6 9

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.82 0.80 0.81 35 Normal 0.83 0.86 0.85 35

0.56 0.60 0.58 15 Noisy 0.64 0.60 0.62 15

0.74 50 Accuracy 0.78 50

0.69 0.70 0.70 50 Macro avg 0.74 0.73 0.73 50

0.75 0.74 0.74 50 Weighted avg 0.78 0.78 0.78 50

(b) Random forest classifier classification reports.

Table E.17: Random forest classifier results for a 40ms delay and using the F1-Score score
metric for the optimizer. Parameters after optimization: Number of estimators - 76; Max
Depth - 16; Split quality metric - Log Loss.

Test set Validation set

Normal Noise 40ms Delay Normal Noise

28 7 Normal 30 5

7 8 Noise 6 9

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.80 0.80 0.80 35 Normal 0.83 0.86 0.85 35

0.53 0.53 0.53 15 Noisy 0.64 0.60 0.62 15

0.72 50 Accuracy 0.84 50

0.67 0.67 0.67 50 Macro avg 0.74 0.73 0.73 50

0.72 0.72 0.72 50 Weighted avg 0.78 0.78 0.78 50

(b) Random forest classifier classification reports.
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Table E.18: Random forest classifier results for a 40ms delay and using the F1 Macro Aver-
age score metric for the optimizer. Parameters after optimization: Number of estimators -
94; Max Depth - 24; Split quality metric - Gini.

Test set Validation set

Normal Noise 40ms Delay Normal Noise

26 9 Normal 29 6

6 9 Noise 6 9

(a) Random forest classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.81 0.74 0.78 35 Normal 0.83 0.83 0.83 35

0.50 0.60 0.55 15 Noisy 0.60 0.60 0.60 15

0.70 50 Accuracy 0.76 50

0.66 0.67 0.66 50 Macro avg 0.71 0.71 0.71 50

0.72 0.70 0.71 50 Weighted avg 0.76 0.76 0.76 50

(b) Random forest classifier classification reports.

E.1.3 SVM

For this classifier, the SVC function from the Python package sklearn was used. For each of the estimators,

the following parameters were tried to be optimized:

• Kernel: Radial Basis Function (RBF), liner, Polynomial (poly);

Furthermore, the class weight was set as balanced due to the large class unbalance of the data set.

Table E.19: SVM classifier results for a 20ms delay and using the accuracy score metric
for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 20ms Delay Normal Noise

28 7 Normal 31 4

8 7 Noise 11 4

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.80 0.79 35 Normal 0.74 0.89 0.81 35

0.50 0.47 0.48 15 Noisy 0.50 0.27 0.35 15

0.70 50 Accuracy 0.70 50

0.64 0.63 0.64 50 Macro avg 0.62 0.58 0.58 50

0.69 0.70 0.70 50 Weighted avg 0.67 0.70 0.67 50

(b) SVM classifier classification reports.
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Table E.20: SVM classifier results for a 20ms delay and using the F1-Score score metric
for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 20ms Delay Normal Noise

27 8 Normal 25 10

6 9 Noise 10 5

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.82 0.77 0.79 35 Normal 0.71 0.71 0.71 35

0.53 0.60 0.56 15 Noisy 0.33 0.33 0.33 15

0.72 50 Accuracy 0.60 50

0.67 0.69 0.68 50 Macro avg 0.52 0.52 0.52 50

0.73 0.72 0.72 50 Weighted avg 0.60 0.60 0.60 50

(b) SVM classifier classification reports.

Table E.21: SVM classifier results for a 20ms delay and using the F1 Macro Average score
metric for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 20ms Delay Normal Noise

28 7 Normal 31 4

8 7 Noise 11 4

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.80 0.79 35 Normal 0.74 0.89 0.81 35

0.50 0.47 0.48 15 Noisy 0.50 0.27 0.35 15

0.70 50 Accuracy 0.70 50

0.64 0.63 0.64 50 Macro avg 0.62 0.58 0.58 50

0.69 0.70 0.70 50 Weighted avg 0.67 0.70 0.67 50

(b) SVM classifier classification reports.
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Table E.22: SVM classifier results for a 30ms delay and using the accuracy score metric
for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 30ms Delay Normal Noise

28 7 Normal 31 4

8 7 Noise 10 5

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.80 0.79 35 Normal 0.76 0.89 0.82 35

0.50 0.47 0.48 15 Noisy 0.56 0.33 0.42 15

0.70 50 Accuracy 0.72 50

0.64 0.63 0.64 50 Macro avg 0.66 0.61 0.62 50

0.69 0.70 0.70 50 Weighted avg 0.70 0.72 0.70 50

(b) SVM classifier classification reports.

Table E.23: SVM classifier results for a 30ms delay and using the F1-Score score metric
for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 30ms Delay Normal Noise

28 7 Normal 31 4

8 7 Noise 10 5

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.80 0.79 35 Normal 0.76 0.89 0.82 35

0.50 0.47 0.48 15 Noisy 0.56 0.33 0.42 15

0.70 50 Accuracy 0.72 50

0.64 0.63 0.64 50 Macro avg 0.66 0.61 0.62 50

0.69 0.70 0.70 50 Weighted avg 0.70 0.72 0.70 50

(b) SVM classifier classification reports.
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Table E.24: SVM classifier results for a 30ms delay and using the F1 Macro Average score
metric for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 30ms Delay Normal Noise

28 7 Normal 31 4

8 7 Noise 10 5

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.80 0.79 35 Normal 0.76 0.89 0.82 35

0.50 0.47 0.48 15 Noisy 0.56 0.33 0.42 15

0.70 50 Accuracy 0.72 50

0.64 0.63 0.64 50 Macro avg 0.66 0.61 0.62 50

0.69 0.70 0.70 50 Weighted avg 0.70 0.72 0.70 50

(b) SVM classifier classification reports.

Table E.25: SVM classifier results for a 40ms delay and using the accuracy score metric
for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 40ms Delay Normal Noise

28 7 Normal 32 3

8 7 Noise 10 5

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.80 0.79 35 Normal 0.76 0.91 0.83 35

0.50 0.47 0.48 15 Noisy 0.62 0.33 0.43 15

0.70 50 Accuracy 0.74 50

0.64 0.63 0.64 50 Macro avg 0.69 0.62 0.63 50

0.69 0.70 0.70 50 Weighted avg 0.72 0.74 0.71 50

(b) SVM classifier classification reports.
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Table E.26: SVM classifier results for a 40ms delay and using the F1-Score score metric
for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 40ms Delay Normal Noise

28 7 Normal 32 3

8 7 Noise 10 5

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.82 0.77 0.79 35 Normal 0.76 0.91 0.83 35

0.53 0.60 0.56 15 Noisy 0.62 0.33 0.43 15

0.72 50 Accuracy 0.74 50

0.67 0.69 0.68 50 Macro avg 0.69 0.62 0.63 50

0.73 0.72 0.72 50 Weighted avg 0.72 0.74 0.71 50

(b) SVM classifier classification reports.

Table E.27: SVM classifier results for a 40ms delay and using the F1 Macro Average score
metric for the optimizer. Parameters after optimization: Kernel - RBF

Test set Validation set

Normal Noise 40ms Delay Normal Noise

28 7 Normal 32 3

8 7 Noise 10 5

(a) SVM classifier confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.82 0.77 0.79 35 Normal 0.76 0.91 0.83 35

0.53 0.60 0.56 15 Noisy 0.62 0.33 0.43 15

0.72 50 Accuracy 0.74 50

0.67 0.69 0.68 50 Macro avg 0.69 0.62 0.63 50

0.73 0.72 0.72 50 Weighted avg 0.72 0.74 0.71 50

(b) SVM classifier classification reports.

163



APPENDIX E. SIGNAL QUALITY INDEX TABLE APPENDIX

E.1.4 K-Means

For this estimator, the KMeans function from the Python package sklearn was used to build two clusters

and afterwards place each sample into one of them. Since there is a big class unbalance, the cluster with a

larger number of members is assumed to be the one for Normal segments.

Table E.28: K-Means clustering results for a 20ms delay.

Test set Validation set

Normal Noise 20ms Delay Normal Noise

34 1 Normal 34 1

14 1 Noise 14 1

(a) K-Means clustering confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.71 0.97 0.82 35 Normal 0.71 0.97 0.82 35

0.50 0.07 0.12 15 Noisy 0.50 0.07 0.12 15

0.70 50 Accuracy 0.70 50

0.60 0.52 0.47 50 Macro avg 0.60 0.52 0.47 50

0.65 0.70 0.61 50 Weighted avg 0.65 0.70 0.61 50

(b) K-Means clustering classification reports.

Table E.29: K-Means clustering results for a 30ms delay.

Test set Validation set

Normal Noise 30ms Delay Normal Noise

29 6 Normal 30 5

13 2 Noise 12 3

(a) K-Means clustering confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.69 0.83 0.75 35 Normal 0.71 0.86 0.78 35

0.25 0.13 0.17 15 Noisy 0.38 0.20 0.26 15

0.62 50 Accuracy 0.66 50

0.47 0.48 0.46 50 Macro avg 0.54 0.53 0.52 50

0.56 0.62 0.58 50 Weighted avg 0.61 0.66 0.62 50

(b) K-Means clustering classification reports.
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Table E.30: K-Means clustering results for a 40ms delay.

Test set Validation set

Normal Noise 40ms Delay Normal Noise

30 5 Normal 31 4

10 5 Noise 11 4

(a) K-Means clustering confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.75 0.86 0.80 35 Normal 0.74 0.89 0.81 35

0.50 0.33 0.40 15 Noisy 0.50 0.27 0.35 15

0.70 50 Accuracy 0.70 50

0.62 0.60 0.60 50 Macro avg 0.62 0.58 0.58 50

0.68 0.70 0.68 50 Weighted avg 0.67 0.70 0.67 50

(b) K-Means clustering classification reports.
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E.1.5 Comparison

Table E.31: Hu image moment’s estimators results, for each delay (20, 30, and 40 mil-
lisecond (ms)). For each dataset (Test and Validation), the best model’s (found using the
parameter optimizer) F1-score average and macro average (averaging the unweighted
mean per label) are reported.

Optimizer Test set Validation set

Scoring Metric F1 Accuracy F1 Macro Average F1 Accuracy F1 Macro Average

k-NN

Accuracy 0.68 0.58 0.76 0.67

20ms F1 0.78 0.73 0.84 0.82

F1 Macro Average 0.78 0.73 0.84 0.82

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 0.74 0.70 0.84 0.82

30ms F1 0.74 0.70 0.84 0.82

F1 Macro Average 0.74 0.70 0.84 0.82

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 0.72 0.67 0.76 0.72

40ms F1 0.76 0.70 0.78 0.74

F1 Macro Average 0.76 0.70 0.78 0.74

Random Forest

Accuracy 0.64 0.55 0.84 0.80

20ms F1 0.62 0.52 0.84 0.79

F1 Macro Average 0.66 0.57 0.84 0.79

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 0.72 0.65 0.88 0.84

30ms F1 0.72 0.65 0.86 0.81

F1 Macro Average 0.72 0.65 0.84 0.79

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 0.74 0.70 0.78 0.73

40ms F1 0.72 0.67 0.78 0.73

F1 Macro Average 0.70 0.66 0.76 0.71

SVM

Accuracy 0.70 0.64 0.70 0.58

20ms F1 0.72 0.68 0.60 0.52

F1 Macro Average 0.70 0.64 0.70 0.58

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 0.70 0.64 0.72 0.62

30ms F1 0.70 0.64 0.72 0.62

F1 Macro Average 0.70 0.64 0.72 0.62

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Accuracy 0.70 0.64 0.74 0.63

40ms F1 0.70 0.64 0.74 0.63

F1 Macro Average 0.70 0.64 0.74 0.63

K-Means

20ms 0.70 0.47 0.70 0.47

30ms 0.62 0.46 0.66 0.52

40ms 0.70 0.60 0.70 0.58
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E.2 Image as Input to an Artificial Neural Network

Table E.32: CNN model results for a 20ms delay.

Test set Validation set

Normal Noise 20ms Delay Normal Noise

28 7 Normal 30 5

9 6 Noise 8 7

(a) CNN model confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.76 0.80 0.78 35 Normal 0.79 0.86 0.82 35

0.46 0.40 0.43 15 Noisy 0.58 0.47 0.52 15

0.68 50 Accuracy 0.74 50

0.61 0.60 0.60 50 Macro avg 0.69 0.66 0.67 50

0.67 0.68 0.67 50 Weighted avg 0.73 0.74 0.73 50

(b) CNN model classification reports.

Table E.33: CNN model results for a 30ms delay.

Test set Validation set

Normal Noise 30ms Delay Normal Noise

29 6 Normal 30 5

8 7 Noise 9 6

(a) CNN model confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.78 0.83 0.81 35 Normal 0.77 0.86 0.81 35

0.54 0.47 0.50 15 Noisy 0.55 0.40 0.46 15

0.72 50 Accuracy 0.72 50

0.66 0.65 0.65 50 Macro avg 0.66 0.63 0.64 50

0.71 0.72 0.71 50 Weighted avg 0.70 0.72 0.71 50

(b) CNN model classification reports.

Table E.34: CNN model results for a 40ms delay.

Test set Validation set

Normal Noise 40ms Delay Normal Noise

24 11 Normal 30 5

4 11 Noise 3 12

(a) CNN model confusion matrices.
Test set Validation set

Precision Recall F1-score Support Precision Recall F1-score Support

0.86 0.69 0.76 35 Normal 0.91 0.86 0.88 35

0.50 0.73 0.59 15 Noisy 0.71 0.80 0.75 15

0.70 50 Accuracy 0.84 50

0.68 0.71 0.68 50 Macro avg 0.81 0.83 0.82 50

0.75 0.70 0.71 50 Weighted avg 0.85 0.84 0.84 50

(b) CNN model classification reports.
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I

Fitbit ECG Report Example

Heart Rhythm Assessment Daniel Osório
Recorded on Jul 2, 2022 5:31 PM 30 yr (May 18, 1992)  •  Male

Normal Sinus Rhythm
Your heart rhythm appears normal.

Average
73 bpm

[ 25mm/s, 10mm/mV, 250 Hz ] : [ Qualitatively similar to a Lead I ECG ]

About Fitbit's Heart Rhythm Assessment

How it works Purpose & Performance

We analyze data collected by the electrical sensors on

your Fitbit device to determine if you have a normal sinus

rhythm, an irregular heart rhythm suggestive of atrial

fibrillation (AFib) or an inconclusive result.

A convenient way to detect AFib. (This is not a diagnosis.)

Our proprietary algorithm has been tested in a clinical

study. (98.7% sensitivity, 100% specificity)

Feature Version: [2.5.0-2.9-2.10] Hardware: [Sense] Firmware Version: [128.5.49]
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