
1

Master Degree Program in

Data Science and Advanced Analytics

OPTIMIZING DIGITAL ARCHIVING: AN ARTIFICIAL INTELLIGENCE APPROACH FOR

OCR ERROR CORRECTION

Bruno Daniel Alho Fernandes

Dissertation

 Presented as partial requirement obtain the Master Degree Program in Data Science and Advanced Analytics

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

MDSAA

1

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

OPTIMIZING DIGITAL ARCHIVING: AN ARTIFICIAL INTELLIGENCE APPROACH FOR

OCR ERROR CORRECTION

by

Bruno Daniel Alho Fernandes

Dissertation presented as partial requirement to obtain the Master’s degree in Advanced Analytics,

with a Specialisation in Data Science / Business Analytics

Supervisor: Roberto Henriques

 February 2023

2

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading

to its elaboration. I further declare that I have fully acknowledge the Rules of Conduct and Code of

Honor from the NOVA Information Management School.

3

ABSTRACT

This thesis research scopes the knowledge gap for effective ways to address OCR errors and the

importance to have training datasets adequated size and quality, to promote digital documents OCR

recognition efficiency. The main goal is to examine the effects regarding the following dimensions of

sourcing data: input size vs performance vs time efficiency, and to propose a new design that includes

a machine translation model, to automate the errors correction caused by OCR scan. The study

implemented various LSTM, with different thresholds, to recover errors generated by OCR systems.

However, the results did not overcomed the performance of existing OCR systems, due to dataset size

limitations, a step further was achieved. A relationship between performance and input size was

established, providing meanful insights for future digital archiving systems optimisation. This

dissertation creates a new approach, to deal with OCR problems and implementation considerations,

that can be further followed, to optimise digital archive systems efficiency and results.

KEYWORDS

Optical Character Recognition; Machine Translation; Neural Networks;

4

INDEX

1. Introduction .. 1

2. Background ... 3

2.1. Optical Character Recognition... 3

2.2. Neural Network ... 3

2.2.1. Backpropagation... 6

2.2.2. Recurrent Neural Network ... 8

2.2.3. Truncated Back Propagation through Time ... 8

2.2.4. Teacher Forcing .. 9

2.3. Evaluation Metrics ... 10

3. Literature review .. 12

3.1. OCR Post-Correction .. 12

3.1.1. Crowdsourcing .. 12

3.1.2. Dictionary ... 13

3.1.3. Context ... 13

3.2. OCR Post-Correction using Machine Translation Systems 14

4. Methodology .. 17

4.1. Crowdsourcing Application ... 17

4.1.1. Data Collection ... 17

4.1.2. Artificial Intelligence Model Integration .. 19

4.2. Data ... 20

4.2.1. Data Analysis .. 21

4.2.2. Data Processing .. 22

4.3. Model ... 22

4.3.1. Model Instances ... 23

4.3.1.1. Hyperparameter Tunning .. 23

4.3.1.2. Input Threshold ... 23

4.3.2. Evaluation Methods ... 24

5. Results and discussion .. 25

5.1. Model Instances .. 25

5.1.1. Train and Validation Data Evaluation Metrics .. 25

5.1.2. Test Data ... 27

5.1.2.1. Evaluation Metrics ... 27

5.1.2.2. Most Common Instance Errors .. 27

5

5.2. Time Performance ... 30

6. Conclusion .. 32

7. Limitations and recommendations for future works ... 33

8. References .. 34

9. Appendix (optional) .. 38

10. Annexes (optional) ... 39

6

LIST OF FIGURES

Figure 1 - Artificial Neuron Function .. 4

Figure 2 - Neural Network Representation .. 4

Figure 3 – Heaviside Step Function .. 4

Figure 4 – Linear Decision Boundary Example ... 4

Figure 5 – Activation Function ... 5

Figure 6 – Activation Function Reorder ... 5

Figure 7 - Feedforward Neural Network Architecture ... 6

Figure 8 – Network Architecture Example ... 7

Figure 9 – Recurrent Neural Network Representation .. 8

Figure 10 – Truncated Back Propagation Through Time Process .. 9

Figure 11 – WER Function .. 10

Figure 12 – Accuracy Function ... 10

Figure 13 – Data Collection Process ... 17

Figure 14 – Uploaded Document ... 18

Figure 15 – Selecting the order of the Text .. 18

Figure 16 – Text processed by OCR .. 18

Figure 17 – Document Word Correction .. 19

Figure 18 – Digital Archive workflow with Artificial Model Integration 19

Figure 19 – Diário do Governo ... 20

Figure 20 – Length Distribution of Sentences .. 21

Figure 21 - Instance 1 Training and Validation Loss ... 25

Figure 22 -Instance 1 Training and Validation Accuracy .. 25

Figure 26 - Instance 3 Training and Validation Accuracy ... 26

Figure 23 - Instance 2 Training and Validation Loss ... 26

Figure 24 - Instance 2 Training and Validation Loss ... 26

Figure 27 - Instance 4 Training and Validation Loss ... 26

Figure 25 - Instance 3 Training and Validation Accuracy ... 26

Figure 28 - Instance 4 Training and Validation Accuracy ... 26

https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195766
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195768
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195771
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195772
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195773
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195774
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195777
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195778
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195779
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195780
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195781
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195782
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195783
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195784
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195785
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195786
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195787
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195788
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195789
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195790
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195791
https://streambow-my.sharepoint.com/personal/bruno_alho_streambow_com/Documents/Documents/m20200111_master_thesis.docx#_Toc136195792

7

LIST OF TABLES

Table 1 - Dataset Dictionary Characterization ... 20

Table 2 – Cognitive Services OCR Top Ten Errors .. 22

Table 3 – Set of parameters to search ... 23

Table 4 – Final Configurations .. 23

Table 5 – Instances Thresholds and Training Size .. 24

Table 6 – WER and CER Model Instances Results .. 27

Table 7 – Instance 1 Top Ten Errors ... 28

Table 8 – Instance 2 Top Ten Errors ... 28

Table 9 -Instance 3 Top Ten Errors ... 28

Table 10 – Instance 4 Top Ten Errors ... 29

Table 11 – Time to Predict 100 sentences ... 30

8

LIST OF ABBREVIATIONS AND ACRONYMS

OCR Optimal Character Recognition

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

BTT Backpropagation Through Time

BPTT Truncated Back Propagation Trough Time

GRU Gated Recurrent Units

SMT Statistical Machine Translation

NMT Neural Machine Translation

WER Word Error Rate

CER Character Error Rate

1

1. INTRODUCTION

In recent years, numerous collections of historical documents in paper form, such as books and

newspapers, have been transformed into digital formats using Optical Character Recognition (OCR)

technology. This technology converts a document image, such as a pdf, into text format. An example

of the use of OCR technology for digitisation is the Library of Congress

(https://chroniclingamerica.loc.gov/), which has a vast collection of digital historical materials. The

British Newspaper Archive (www.britishnewspaperarchive.co.uk/) is also noteworthy, as it uses

advanced discovery tools (Lansdall-Welfare et al., 2017) to maintain an extensive collection of digitised

newspapers. Both organisations have utilised OCR systems to convert paper documents into digital

formats, making them more easily accessible and preserving important historical information.

Therefore, the quality of the OCR technology is a crucial factor in the digitalisation process. However,

it is worth noting that OCR in historical texts often contains a high percentage of errors that can

negatively impact further analysis, search, and preservation efforts. This emphasises the importance

of using high-quality OCR systems and implementing thorough quality control measures to ensure the

accuracy of the digitalised documents.

Various approaches have been proposed to address this issue over the years (Afli et al., 2015; Ramirez-

Orta et al., 2022; Suissa et al., 2020). One approach that has gained significant attention is using

machine translation systems with neural networks (Amrhein & Clematide, 2018; Mokhtar et al., 2018).

This method uses artificial intelligence to improve the accuracy of OCR systems and reduce the number

of errors present in OCR-interpreted texts. By incorporating machine-learning techniques, improving

the quality of the digitised documents and facilitating effective analysis, search, and preservation

efforts are possible. However, to implement this technique, a large quantity of training data is

required, composed of the OCR output and its corresponding expected output (ground truth).

Unfortunately, there is a scarcity of such training datasets. To the best of our knowledge, there has

also been limited research on using machine translation systems to correct OCR mistakes in Portuguese

documents.

This research aims to propose a new design for digital archive systems that incorporates a machine

translation model to automate the correction of OCR-generated mistakes. In order to achieve this goal,

we analysed various models to assess the impact of variables such as the size of the model input on

performance and time efficiency. While the proposed methodology was tested only using historical

governmental Portuguese documents, this design can be generalised and adapted to work with any

language, depending on the specific context of the archive being created. The main research questions

are the following:

• What is the relationship between the length of the input model and the accuracy of OCR error

correction?

• How does the length of the input model affect the time efficiency of the designed application?

• What optimisation strategies can be implemented as the archive grows and is composed of

more data?

For this study, 227 Portuguese Government Documents were corrected using the proposed

application.

2

The outcome of this thesis provides a detailed examination of the topics listed above:

• The Background section reviews the concepts that form the foundation of this research.

• The Related Work section examines the previously implemented techniques for correcting

errors in OCR output and offers a thorough review of existing systems.

• The Methodology section outlines the design of the digital archive, including the methods

used to collect data, the analysis of collected data, the integration of the model into the

system, and the evaluation of performance metrics.

• The Results and Discussion section presents and discusses the experiments conducted and

the outcomes achieved.

• The Conclusion section summarises the research scope and offers conclusions based on the

results.

• The Limitation and Recommendations for Future Work section examine the research’s

limitations and propose ideas for future development and investigation.

3

2. BACKGROUND

This section will explain the key concepts to understand the research and the mechanisms used in the

system implemented.

2.1. OPTICAL CHARACTER RECOGNITION

Rice et a., in their book (1999), define Optical Character Recognition (OCR) as converting any form of

analogic test, i.e. handwritten or the text contemplated in a pdf, into digital text. The first step of this

process consists of optical scanning, with the source object from where we are extracting the text to

generate a digital image that is converted into a gray scale. Once the digital image is created, we move

further to the following stage of segmentation. The second step separates the results into images, text

segments or words. The third step consists of the preprocessing step, which means that; the characters

are normalised and fixed and then digitalised using an extraction technique feature. Finally, the final

step, grouping, involves putting together characters that might have been wrongly detached.

Nevertheless, the fourth step is predisposed to mistakes. For instance, historical documents might

have lousy digitalisation due to the poor quality of the original document, leading to errors when

converting it into digital text. An additional step, post-OCR, is applied to attempt to correct these

mistakes.

Eikvil et al. (1993) stated that the origins of OCR can be recalled to 1870, the year that it was conceived

the retina scanner, an image transmission system. Twenty years later, Polish P. Nipkow created a

sequential scanner developing a revolution in television and reading machines for that era. However,

the first commercial OCR software only appeared in 1960, and its synthetic character forms

characterised the first generation of OCR. The first symbols generated were intended for machine

interpretation, which led to unusual symbols.

2.2. NEURAL NETWORK

The human brain can be compared to the computational processes applied by a machine in the sense

that it is capable of speaking, face recognition, control body movements and functions. It comprises

10 billion neurons, each representing a cell that receives, processes, and transmits information

through biochemical reactions. Neural networks are the conceptual designs of mathematical models

of the human brain, the neuron being its main component (Puri et al., 2016). The neuron receives a

signal and, depending on different conditions, produces its own signal, which is passed along the

network to other neurons whose signals are eventually interpreted as an output response to the input.

This behaviour is very similar to the one observed in the human brain. The dendrites receive signals

from other neurons, and then they are handled in the cell body, where after all the process, it is spread

by the axonal connections to dendrites (Sydenham & Thorn, 2005).

Accordingly to (Priddy & Keller, 2005), different inputs have different importance to the output. This

is achieved by weighing the inputs of the neuron. A typical artificial neuron has weighted inputs and a

matching transfer function, as demonstrated in figure 1

4

𝑧 = 𝑓(∑ 𝑤𝑖𝑥𝑖

3

𝑖=0

)

Figure 1 - Artificial Neuron Function

Various transfer functions exist to architect the design of a neurol network, whereas sigmoid or logistic

functions are the same examples. The functions mentioned are the most commonly used due to their

mathematical properties like continuousness, differentiability and monotonicity, which are very

important when training a neural network with gradient descent. A neuron is usually composed as a

unit that represents an activation function 𝑓, a set of weights w, and a bias b, as the figure below shows

(Figure 2).

Artificial neural networks create decision boundaries by separating the data into different classes. In

its simplest form, the activation function is the Heaviside step function:

𝐻(𝑥) = {
0, 𝑥 < 0
1, 𝑥 > 0

Figure 3 – Heaviside Step Function

With this example, the single neuron output can be seen as a binary classifier with a linear decision

boundary, where the slope of the hyperplane is decided by the neuron’s weights (Mehlig, 2019) , as

demonstrated in figure 4.

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑤0 + 𝑤1𝑓1

x

f2 Linear Classifier

X0

X1

X0

∑ | 𝑓 Z

In
p

u
ts

 Output

Bias Node

W0 = bias

Figure 2 - Neural Network Representation

Figure 4 – Linear Decision Boundary Example

5

The circle and oval shapes represent the different classes created in this case. For instance, the circle

could represent Males (M) and Females (F). When given an input, the neuron with the appliance of a

hard-limiter transfer function will determine the line that differentiates the two possible classes {M,F}.

The line created indicates the conceivable values for the set of weights connected to the neuron. For

instance, the equation below represents the activation for a given neuron:

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑤0 + 𝑤1𝑓1 + 𝑤2𝑓2

Figure 5 – Activation Function

Another way to look at this formula is:

𝑓2 =
𝑤1𝑓1

𝑤2
+

(𝑤0 − 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛)

𝑤2

Figure 6 – Activation Function Reorder

Basically, every boundary that respects the mathematical properties of the formula above is called a

linear classifier. However, it is not always possible to linearly separate the data.

To address the problem mentioned above, researchers started to combine neurons into layers (Figure

7), in order to resolve more difficult classification problems. A common way of modeling neural

networks is by using the feedforward neural network architecture. Essentially, the inputs are the first

layer, and they are connected to other neurons, the hidden layers. Then these are connected to the

last layers, the output layers. The inputs flow is sequential from the first to the last layer, thus the

name feedforward network. It is normal to have different activation functions in each layer since this

allows the creation of more complex decision boundaries. It exists a variety of methods to adjust the

weights of the network while it is training, but basically the learning is done by adjusting the weight

values between neurons that are connected.

6

2.2.1. Backpropagation

The authors (Rumelhart & Chauvin, 1995) describes backpropagation as one of the most known

algorithms to train neural networks. The innovation of this algorithm, when compared with its

ancestors, is that it can be applied to train nonlinear networks of random connectivity. This is

important since most real-world problem solutions are based on neural networks with such

characteristics. Additionally, its simplicity took a significant role in its rise. Essentially the idea is that

when defining an error function, we can use hill climbing or gradient descent depending on what we

are trying to achieve and, based on that, discover it is defined the best set of weights that will optimise

the network performance.

Initially is attributed to the weights of the network a random value, and then the algorithm is employed

to make the necessary changes. This process can be divided in the following steps:

1. Feed-Forward Pass,

2. Back propagation to the output layer,

3. Back propagation to the hidden layer,

4. Weight updates.

To have a better understating of this procedure let’s use (Cilimkovic & Jl, 2015) example, with the

following network architecture (Figure 8). It has two nodes in the input layer (N(0,0), N(0,1)), two nodes

in the hidden layer(N(1,0),N(1,1)), and one node in the output layer (N(2,0)). The weights that connects

the input layer with the hidden layer are W(0,1), W(0,2), W(0,3) and W(0,4), W(1,0), W(1,1) are the

Weight

Hidden Layer

Weight
Input Output

Figure 7 - Feedforward Neural Network Architecture

7

ones that connects the hidden layer to the output layer. The values of these weights will be always

changing until the back propagation processes reaches an end.

The first process is divided into two steps. Firstly, we use the values from the hidden layer and then

use those values to calculate the values of the output layer. The input values pass by the first layer of

nodes (N(0,0), N(0,1)) towards the nodes in the hidden layer (N(1,0), N(1,1)), where they are multiplied

with the weights that connect the layers mentioned using the error function chosen for the effect.

When the calculations are completed, the values are propagated to the output layer (N(2,0)), where

the process is repeated. After completing the calculations of the output layer, the first feedforward

process is completed, and the backpropagation to the output layer can start. The purpose of this step

is to calculate the error of the output layer node. The error is calculated using the following equation:

N(2,0) Error = N(2,0) * (1 – N(2,0)) *(N(2,0) Expected Output – N(2,0)). After having the error

calculated, it is then propagated to the hidden layer. The first step is to update the values of the

weights (W(1,0), W(1,1)); however, they can only be updated after knowing the change rate. This is

calculated by multiplying the learning rate, the error and the node value (in this case, the node N(1,0)):

∆W(1, 0) = β ∗ N(2, 0)Error ∗ N(1,0). Finally the weight W(1,0) can be updated, using the following

formula: W(1,0) new = W(1,0) + ∆W1, 0 + (α ∗ ∆(t − 1)). Note that the value of ∆(t − 1) is the previous

delta weight change. The following step is to propagate the error to the hidden layer. This process is

different from the previous one in the sense that in the previous one, the output value of the node

N(2,0) was known, but in this, the output values of the nodes N(1,0) and N(1,1) are not. The first step

will be to discover the N(1,0) error. This will be accomplished by multiplying the new W(1,0) value with

the error of the node N(2,0). The error of the node N(1,1) is calculated with the same reasoning. N(1,0)

Error = N(2,0) Error * W(1,0) new. Now that the error for the nodes in the hidden layers was been

identified, the weights that connects the input and the hidden layers can be update. Basically, the

process to update the weights is the same with the one in the output layer. The last step is the weight

updates. Note that the weights should only be updated after the errors have been calculated, if new

weights were used while discovering the errors the results would be invalid. The previous processes

will be repeated until an error value is small enough. In each iteration the value of the output layer

error, in this case N(2,0) error, will decrease.

B = Learning Rate

α = Momentum term

N(2,0)

N(1,0) N(1,1)

N(0,0) N(0,1)

w
(0

,0
) w

(0
,3

)

Figure 8 – Network Architecture Example

8

2.2.2. Recurrent Neural Network

Accordingly, to (Edem & Tarwani, 2017), a Recurrent Neural Networks (RNN) is a neural network that

use recurrence. In fact, they use the previous information and pass it over the network, thus all RNN

can be labelled as having a recurrence association. RNN is mostly known to resolve problems where

predictions needs to be performed in a certain sequence. Therefore, they have gained success in areas

like speech recognition, nature language processing and machine translation. The figure 9 establishes

how a RNN works.

Training a network that employs feedback into its architecture can be demanding for the learning

process. To address this problem, it is used Backpropagation Through Time (BTT) (Werbos, 1990).

Instead of using the feedback connections, the BTT will make a copy of the network using each chunk

of the input sequence, which will lead to the creation of connections to the next copy of the network

as a replacement of the feedback loops (Mehlig, 2019).

One of the drawbacks of RNN, that is the vanishing and exploding gradients. When computing the

gradients on to the unfolded RNN, their values can drop to a value tending to zero. In the same way,

they can increase to a very high value, thus having in hands the exploding gradient problem. This makes

it very difficult to train the RNN. Normally, this problem is the result of unsuited values for the network

parameters. To resolve this behavior, it was designed Long Short-Term Memory (LSTM) (Hochreiter &

Urgen Schmidhuber, 1997), another type of recurrent neural network architecture. This design has a

better capacity to deal with noisy data, as well as a better capturing of long-term dependencies. LSTM

have gates that assist the functions in order to remember long-term dependencies. While in RNN the

previous hidden state is the only storage in memory, in LSTM is not only the former hidden state is

known is also known the cell state. The fundamental in this architecture are the cell states and gates,

they contain numerous processes, like sigmoid or tanh activation functions, multiplication and addition

operations. These processes are used by the cell state and gates to train the network, in order to

understand if it should overlook or spread the information, to the network. The cell states will associate

the information through the network, therefore remembering the long dependencies of sequences.

2.2.3. Truncated Back Propagation through Time

RNN have difficulty to deal with input sequences with more than 30 stages, since they start having

difficulty to remember the past data of the input sequence. To address this issue, it can be used the

truncated back propagation trough time (BPTT) (Varma & Das, 2018) As it shows in figure 10, the idea

V

U
x

h

y

w h(..)

V

U

h(t-1)

y(t-1)

x(t-1)

V

U

h(t)

y(t)

x(t)

V

U

h(Ⴀ)

y(Ⴀ)

x(Ⴀ)

h(..)
w w w

Figure 9 – Recurrent Neural Network Representation

9

is that the input sequence can be divided into smaller sequences chunks, and then the algorithm will

run in each chunk at a time. As it is descripted in the figure, we have an input sequence that was divided

in three segments. The process 1 corresponds to the appliance of BPTT in the first chunk. The next

process 2 and 3 correspond to the appliance of the BPTT in the second and third chunk, respectively.

Nevertheless, the final Hidden State vector V from chunk n, must be used as the initial value, for the

hidden state vector in chunk n +1, in order to associate consecutive chunks. This method has

demonstrated great results in noticing correlation between inputs that are situated in more than a

chunk-size away from each other.

2.2.4. Teacher Forcing

As described in section 2.2.2, while the RNN its training, the fed-forward mechanism will use the

outputs received and reuse them as inputs for the subsequent steps. However, a problem occurs if the

network predicts a wrong character, that impacts the next predictions, even though the network

should correct these mistakes while training, it can delay convergence.

Loss

Process 1

Loss

Process 2

Loss

Process 3

Figure 10 – Truncated Back Propagation Through Time Process

10

Teacher forcing is an algorithm that tries to resolve this issue. This methodology is used for rapidly and

efficiently training RNN models, that make use of the growth truth from the previous time step,

allowing each time step to generate outputs as if the prior outputs were correct, even if that might not

have been the case (Goyal et al., 2016). Although this method can improve the time it takes to

converge, it can produce a problem known as exposure bias (Ranzato et al., 2015). Exposure bias

happens because it was only trained with correct characters, which cannot be assured during test

stage, thus leading to a bad performance in case of receiving a wrong character. Nevertheless, this

problem can be improved by not constantly use teacher forcing throughout training, where it can be

performed randomly sampling from the model prior output or the expected previous output (Bengio

et al., 2015).

2.3. EVALUATION METRICS

To evaluate the performance of the model the dataset is spitted into three parts, the training data, the
validation data, and the test data. During the model training, only the train dataset is used to train the
network with the backpropagation. The validation set is then applied to evaluate the model in its
training performance on unseen data, especially when choosing hyperparameters. Finally, the test
data is used to evaluate the performance of the final model. Since the model being developed is going
to predict words, it was decided to use the word error rate (WER) and character error rate (CER) as the
metrics to evaluate the model. This metrics had been already used in a variety of models similar to the
one being built, namely (Suissa et al., 2022), (Volk et al., 2011), (Afli et al., 2016), (Ramirez-Orta et al.,
2022), (Mokhtar et al., 2018).

Word error rate (WER) is a measure of how many words have been inserted, deleted, or substituted

in the text, and it can be described as:

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
=

𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 + 𝐶

Figure 11 – WER Function

Where S represents the number of substitutions, D the number of deletions, I the number of insertions,

C the number of correct words, and N the total number of words in text (N = S + D + C).

Character error rate (CER) is a measure of how many characters have been inserted, deleted, or

substituted in the generated text. This metric is calculated in the same way of WER, however in this

case, I is the number of incorrectly inserted characters, D the missing characters, S the number of

characters that have been substituted, and N is the total number of characters in the text.

Furthermore, as it is explained in section 4.3.1, accuracy was the metric selected to perform the grid

search. Accuracy refers to the closeness of a measured value to a standard or known value (Metz,

1978). Essentially, it is the number of correct predictions (TP and TN) amongst the total predictions. It

is described by the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Figure 12 – Accuracy Function

11

TP = True positive; FP = False Positive; TN = True Negative; FN = False Negative

12

3. LITERATURE REVIEW

3.1. OCR POST-CORRECTION

As mentioned in the background, post-correction is the last stage in the OCR performance. After the

image has been completely scanned, this step is applied to identify and correct errors.

(Volk et al., 2011) explores various ways to tackle the problem through the increase of the lexicon of

the OCR system in order to bring more diversity of words. This strategy brought a negligible impact on

the final results since, through the investigation of different OCR software’s has come to the conclusion

that teach of them makes different mistakes. Therefore, it was given a focus to post-processing the

output text. The last method has gained a lot of traction along the years, since it does not involve

repeating the OCR process from the beginning.

(Nguyen et al., 2019) studied the types of errors that were generated by OCR systems and compared

them to human misspellings. It was observed that misspellings and OCR errors have similar traits, such

as single characters errors, and few of them are first character errors. Nevertheless, most misspellings

are composed of words that do not exist, while most OCR errors formulate real words. The type and

incidence of these errors will depend on the language, the document’s quality, and other text

characteristics.

 (Kukich, 1992) examines several automated approaches to discover and fix errors produced by the

OCR, namely, n-gram or dictionary-based techniques. Accordingly, the paper mentions two types of

errors: non-words and the real word. A non-word error is when the OCR software generates a word

that does not exist in the lexicon, whereas a real word error is a produced word that exists in the

lexicon; however, it does not frame in the context of that phrase. Furthermore, the errors generated

can be divided in three categories: remove, addition and swap. The removal error happens when at

least one character disappears from the original word, the addition error occurs when it is introduced

one or more characters to the original word, and finally, we have the swap error that appears when

one or more characters are replaced from the original word. The main reason causing the OCR systems

to make faulty results are the conditions of the documents from where the text is extracted. To address

this problem, it has been investigated countless studies and methodologies leading to three different

kinds of concepts, such as:

3.1.1. Crowdsourcing

Crowdsourcing involves allocating specific assignments. Therefore, this particular case involves

correcting, manually, mistakes generated by the OCR software, to groups of untrained paid freelancers

or by the work of volunteers. For instance, Zooniverse (www.zooniverse.org/) and Crowd4U

(https://crowd4u.org) are two of many examples of platforms that rely exclusively on volunteer work

(Suissa et al., 2020). Nevertheless, this approach is still prone to mistakes since humans may

accidentally miss mistakes. Usually, it is necessary to buy a lot of equipment and hire many specialised

labourers. To overcome the problem of lack of focus and to reduce the error rate produced by human

errors, as well as the costs of hiring specialised persons for the task, (Chrons et al., 2011) created the

Digitalkoot platform. The idea was to create an archive of Finnish newspapers from the 19th century;

since the budget was limited, they had to use their creativity to gather volunteers. They did it by

transforming the mundane task of correcting texts into games. This strategy provided 31,816 visitors

13

and 4,768 people to try on the games. That translated into 2740 hours of effective game time and 2.5

million tasks completed. (Clematide et al., 2016) utilised a similar approach of gamification on it is

Kokos platform. The purpose was to increase the quality of Swiss documents from the 19th century.

To guarantee that volunteers were motivated and well engaged with the task it was created a ranking

system that showed, per user, the number of corrections that were applied. This form of gamification

was demonstrated to be enough to retain volunteers attracted to resolve this task. After 7 months,

they could correct more than 180000 characters, achieving overall 99.7 accuracy.

(Von Ahn et al., 2008) used a different approach from gamification nonetheless, it showed to be

effective. It took advantage of CAPTCHA (Completely Automated Public Turing test to tell Computers

and Humans Apart) measures on web applications that prevent automatic software’s taking advantage

of online services. These tasks usually require the user to decipher distorted characters to differentiate

a human from a computer program. To make this validation meaningful, they asked users to decipher

words from documents that the OCR software failed to recognise. This approach achieved an accuracy

of 99%; the same accuracy reached with a team of specialised workers.

3.1.2. Dictionary

As the name suggests, this technique employs a dictionary of words that generally are misspelt. For

each word that the OCR output is passed the dictionary, and if the word is wrongly written, then it is

replaced with the corresponding match for a similar word presented in the dictionary (Bokser, 1992).

Even though this technique has shown exciting results, it still has a problem when dealing with nearby

contexts, leaving space for improvement.

3.1.3. Context

As mentioned before, dictionary approaches can produce good results, however, they have difficulty

dealing with real word problems. In that sense, the context method urges since it corrects grammatical

and semantical errors, resulting in better performance when dealing with real-world problems.

One of the most known approaches to this methodology was presented by (Bassil & Alwani, 2012). The

solution proposes the usage of the google feature “did you mean”. Phrases are given as input, and

each phrase is split into words. Then each word passes by the google engine; if the engine suggests a

different word, then the word is swapped for the google suggestion. Using this methodology, the

authors improved the correction ratio of English texts by 690% and by 403% for Arabic texts.

(Pal & Mustafi, 2020) presents a methodology that mixes dictionary and context approaches that only

correct errors that generate non-words. Firstly, it is collected a dictionary containing 470000 Hindi

words. Afterwards, an open-source chatbot was selected to identify if the text processed is a date, a

number, an email, a phone number, a geographical location, etc. Using these capacities, it is defined if

a word is misspelt based on the following criteria: A space is not a word, it cannot contain numbers,

and it cannot be in the dictionary. The next step was to use the BERT model (Devlin et al., 2018) in

order to retain information about the context of the words. The BERT, Bidirectional Encoder

Representations from Transformers, is a model that joins the context from left and right layers, thus,

gaining context about its surroundings. Typically, it is used on tasks related to natural language

processing. After the model was employed, it was possible to define the context of the misspelt words,

being generated a list with its probable values.

14

3.2. OCR POST-CORRECTION USING MACHINE TRANSLATION SYSTEMS

Several deep-learning techniques have been used in recent years to deal with different problems.

Regarding OCR, the post-correction problem resolution specific layer has gained much attention,

known as Long Short-Term Memory (LSTM) (Hochreiter & Urgen Schmidhuber, 1997). The success of

this layer is mainly due to the memory it retains of the previous object. In this case, a character when

dealing with a sequence of objects, for instance, a sentence.

A more recent subarea that has grown an increasing interest is Gated Recurrent Units (GRU) (Chung et

al., 2014). It has a similar architecture to LSTM with a forget gate; however, it has fewer parameters,

and it does not use an output gate (Gers et al., 1999).

 (Gruber & Jockisch, 2020) discovered that GRU cells usually demonstrate increased specificity since

they do not have their memory; consequently, they tend to understand an exclusive belief better.

Meanwhile, LSTM cells revealed an increased sensitivity since they embrace their data, being long

sequences where the context is important to maintain, an exception.

 (Suissa et al., 2022) explores how two different neural networks, one with an LSTM layer and the other

with a GRU layer, behave while making post-OCR corrections in Hebrew texts. The authors propose a

generation of an artificial dataset to deal with the modifications suffered by Hebrew language along

time. Consequently, OCR mistakes are inserted into ground truth sentences, where it can be a generic

error that is period agnostic or a period-specific mistake. The LSTM network proves to bring better

results when compared with the GRU, where the artificially generated dataset improved both

networks accuracy while reducing the need to correct the data manually. Nonetheless, when tested in

old texts, such as the bible or in modern documents, both networks had a disappointing performance,

which can be explained by the large modifications made in the Hebrew language, therefore proving

context of the era is an important factor in achieving good performance in post-OCR tasks.

This type of methodology, where applying sequence context is required, is known as sequence-to-

sequence models (Sutskever et al., 2014). Usually, this technique applies an encoder-decoder

architecture (Cho et al., 2014). The idea behind it is to have a design that allows encoding a sequence,

for instance, a phrase, into a fixed-sized vector, represented by numbers, that will then be used by

decoder to predict the correct format of the sequence given as input. Usually, the encoder and decoder

are shaped by multiple RNNs. However, the model had to encapsulate the entire input sequence into

a fixed-length vector, known as the bottleneck effect, thus making it challenging to process long

sentences. To address this issue (Chorowski et al., 2015), proposed a mechanism known as Attention,

whereas the idea behind it is to enable the decoder to make use of the most important elements of

the input sequence in an adaptable way, by a weighted combination of the encoded inputs, with the

most relevant being assigned the greater weight value.

Moreover, processing entire documents is a challenge in the real world since documents are sequences

of thousands of characters, which leads to the usage of unreachable computational power. (Ramirez-

Orta et al., 2022) suggests an approach that can be divided into three stages, where the first step is to

split the document into phrases of a limited length that will then be corrected in parallel by a sequence-

to-sequence model. After the corrections are all made, they are all merged, forming the original

document format. This technique proved to be resource-efficient while improving outcomes in the

papers that were diversified in terms of size and complexity.

15

Over time, diverse machine translation techniques started to appear to resolve the problem of text

normalisation since it is a way to convert texts from one language to another. Statistical Machine

Translation (SMT) has been adopted to perform such a task. It is a technique where translations are

created based on statistical patterns whose parameters are obtained from the evaluation of language

resources, characterised by a huge and structured collection of texts (Lopez, 2008) . (Afli et al., 2016)

applies an SMT world-level model to correct the errors generated in OCR from French texts from the

17th century, with training data from the 18th and 19th centuries. In addition, it compares its

performance with the internal ABBYY evaluation model that can spot questionable characters in the

text and suggest a few possibilities along with a model that uses the language modelling theory.

Language modelling is a method that can estimate the probability of a word by analysing the text data,

one of the first applications of this technique was by (Mays et al., 1991).

The SMT model was able to outperform by 13% the baseline OCR system, whereas the other two

models did not increase the baseline performance because some words from the 17th century were

modified in the 18th and 19th centuries. With the modernisation of these procedures, other solutions

started to be developed to tackle natural language processing tasks, such as Neural Machine

Translation (NMT), an approach that translates a language using neural networks to forecast a

sequence of texts (Koehn, 2017). (Hämäläinen & Hengchen, 2019) presented a character-level NMT

model to conduct OCR error correction using the Open-NMT (Klein et al., 2017) with its default

parameters. Open-NMT is an open-source library to help in machine translation, where it prioritises

effectiveness, modularity, and extensibility to help in NMT research. Although the model brought

better results than the baseline OCR, one limitation observed was that it cannot perform word

segmentation in cases where words have been combined as a consequence of the OCR procedure.

Nevertheless, it was found that one way to boost the performance, while not a requisite, was to collect

supplementary information about word frequencies from OCR error-free texts.

These approaches can be divided into two different ways to tackle the problem, a character-level

machine translation, which means that the translation model will be trained to translate character by

character, or it can be used a word-level machine translation, where it will learn to translate word by

word. (Afli et al., 2015) explores the differences between implementing SMT character-level systems

and SMT word-level models in correcting post-OCR errors in French texts, leveraging WER and BLEU as

metrics for performance evaluation. BLEU (bilingual evaluation understudy) is a metric that evaluates

the quality of the text that was translated using a machine translation system. In contrast, quality is

defined by the similarity that the machine’s translation outputted when compared to a human

translation (Papineni et al., 2002). The results showed that the SMT word level brought the best

improvements, where it demonstrated great performance in correcting words very similar to the real

words, although it could not accomplish the same when dealing with unknown words. Since the SMT

character level proved to be more effective in that kind of situation, a complementary model is

proposed where the SMT character corrects the post-OCR output, whereas the SMT word model will

correct the outcome produced by the SMT character. Although this technique improved the BLEU

score, it also demonstrated a decrease in WER score. (Mokhtar et al., 2018) follows the same line of

thought but for NMT systems. It is demonstrated that NMT word-level systems can absorb the correct

relations among words, thus creating accurately grammatically accurate phrases, along with the

capacity to identify and associate common errors with their respective correction. Nevertheless, it

cannot correct words that were not contained in the training data, being incapable of correcting a

specific character, thus having to correct the entire word. Therefore, it is necessary to gather an

16

enormous amount of data to build it since it cannot deal with unseen words. On the other hand, NMT

character-level models resolve most of the complications in word-level systems. Instead of correcting

the entire word, it can only modify a determined character, which is especially important when dealing

with OCR post-correction problems since most errors occur in specific characters. Furthermore, it can

correct unseen words, which leads to requiring fewer data to train compared to word-level

approaches. However, sometimes this type of model returns words that do not exist since it can

propose a wrong rectification to a character.

Accordingly to (Amrhein & Clematide, 2018) SMT models are more suited to deal with error correction

tasks, whereas NMT systems perform better in detecting errors. Furthermore, it was shown that a

dataset with a wide variety of distinct kinds of errors does not improve the post-correction system,

although when the training instances are labelled accordingly to their error characteristics, NMT

systems tend to improve their performance, particularly in terms of error correction tasks.

17

4. METHODOLOGY

This section explains the solution proposed to create a digital archive, leveraging artificial intelligence

and using the concepts and work referred to in sections 2 and 3. The core of the solution is based on

an application that, in the first phase, will be used to perform OCR on the documents and allow manual

mistakes correction,generated by the OCR system to collect data that will, later on, be used to train

the model. In the second phase, after the model reaches autonomy, it will be integrated into the model

within the application. The application also allows the user to organise the text as it sees fit.

4.1. CROWDSOURCING APPLICATION

To be able to build a model to improve the performance corrections employed by the OCR software,

it is necessary to train it in a large dataset that has as input the text processed by the OCR, thus text

with errors, and as a target, the manual correction of the text. Since we are dealing with a specific

paper’s language, it is difficult to gather data to resolve the problem in our hands. In that sense, it has

proposed the following application, divided into two phases.

4.1.1. Data Collection

To collect data, we built an application that allows the OCR system to manually correct the processed

text like the one described in (Suissa et al., 2020). The document is uploaded to the application, and

when the text is ready to be processed, the application communicates with its API, passing the text by

the OCR engine and returning the output to the application. The following scheme sums up the

procedure.

OCR API

D
o

cu
m

en
t

Application

O
u

tp
u

t

Figure 13 – Data Collection Process

18

More profoundly, the process is divided into three steps. The first consists of uploading the document

into the application (figure 14).

The second step involves defining in what order the text should be displayed, which is done by drawing

text boxes in the document. The order by which the box is drawn will dictate the order of the text

displayed. After finalising this procedure, the text is processed.

Figure 15 – Selecting the order of the Text

Figure 16 – Text processed by OCR

Figure 14 – Uploaded Document

19

Finally, the last step is to manually overview the text outputted and correct the mistakes generated by

the OCR system. To have visual assistance when correcting the document, it has displayed a yellow

box around the word that is being corrected on the document, like the feature implemented in the

application developed by (Clematide et al., 2016).

4.1.2. Artificial Intelligence Model Integration

After the data collection is finalised, which implies that the model is achieving an acceptable

performance, it can be integrated into the application. The procedure will be like the one described in

the data collection; however, instead of the OCR engine returning the processed text directed to the

application, it will send it to the artificial intelligence model API, which will predict all the text. In the

end, if the user considers it required, it can be performed an overview of the predicted text, and if a

mistake is encountered, it can be corrected. In that way, it is possible to improve data quality

continuously, and use that same data to retrain the model, thus increasing the model performance as

the data collected increases. The following scheme summarises the entire process mentioned before.

OCR API

D
o

cu
m

en
t

Application

O
u

tp
u

t

Artificial

Intelligence

Model API

Figure 17 – Document Word Correction

Figure 18 – Digital Archive workflow with Artificial Model Integration

20

4.2. DATA

In order to build the model, it is required to have training data. Thus, this project used a set of OCR-

produced texts along with its corresponding ground truth ,correcting the mistakes generated by the

OCR, (table 1). The OCR-produced texts resulted from the OCR scanning process of different “Diário do

Governo” (figure 19). The “Diário do Governo” are the Portuguese Republic’s official journal; in

addition, these papers have open access; hence everyone can access them. We processed 227

documents between 1930 and 1960, with a total of 77497 lines, from which three distinct datasets

were constructed: a training, a validation, and a test with 60%, 20%, and 20% of the total data available

respectively.

Additionally, during this period, a change in the Portuguese lexicon was performed. For instance, until

1945 Portuguese government was written as “Govêrno”; however, after that period, it changed to

“Governo”. The OCR engine used to handle the files was the Cognitive Services by Microsoft (Microsoft,

2022). Note that different engines produce different errors; consequently, the model trained will not

necessarily have a good performance correcting errors produced by other OCR systems.

Column Column Type

OCR Output String

Ground Truth String

Table 1 - Dataset Dictionary Characterization

Figure 19 – Diário do Governo

21

4.2.1. Data Analysis

We conducted a brief analysis of the data. Surprisingly, the Computer Vision OCR engine showed an

impressive performance, even though it was scanning historical documents, reaching an impressive

9.7% word error rate along with a 7.2% of character error rate.

Figure 20 shows the length distribution of the outputted lines by the OCR, where the x-axis represents

the number of characters per line, and the y-axis corresponds to the number of line occurrences with

a certain length. As it is possible to observe, the top five of most occurrences reside between the length

of 51 and 55 characters representing 36% of the size of all lines.

To better understand what kind of errors were generated by the OCR, a table was made with the top

10 mistakes generated (table 2). It is possible to conclude that most of the generated errors were

caused by accents that were not recognised or by characters that were added, although it was

supposed to be a white space.

OCR Output Ground Truth Error occurrence

E ê 8.99 %

A á 7.12 %

E é 4.26 %

O e 4.11 %

I í 3.32 %

O ô 2.97 %

. 2.60 %

Figure 20 – Length Distribution of Sentences

22

O ó 2.52 %

5 $ 2.42 %

O 1.69 %

Table 2 – Cognitive Services OCR Top Ten Errors

4.2.2. Data Processing

To enable the model’s information retention, it was necessary to employ preprocessing steps for the

data. Therefore, the first step to be applied was to decide the threshold size of the input that would

later be provided to the model since all input values need to have the same size. Usually, to decide the

threshold value, we use as a baseline the length of the longest phrase (Keras, 2020). However, in this

case, we used the same technique presented by (Ramirez-Orta et al., 2022). Various thresholds were

defined to evaluate how different values impact the model, and the values used will be shown later in

the next chapter.

The next step was to add tags to identify the beginning and end of a phrase, like (Lundberg &

Torstensson, 2021) described in their work. The tags “\t” and “\n” represented the start and end of an

input text, respectively. Additionally, a third tag” \r” was created, symbolising an input text that had

not reached the end. To have a better understanding, use the following example. The threshold is

defined as 10, and the input is “Diário do Governo”. The result would be “\tDiário do \r”

“t\Governo\n”. Hence, the model would continue to predict the entire input and aggregate it at the

end instead of stopping the prediction at “\tDiário do \r”.

Afterwards, the split inputs were encoded, which means that each unique character was assigned to

an integer value; hence each sequence of characters was encoded as a sequence of integers. To enable

this encoded process, we created a dictionary that mapped each unique character to an integer value.

After all the sequences had been encoded, one hot encoding was applied to every character in a

sentence. This means that each character turned into a vector with size equal to the vocabulary (the

dictionary length) and a flag of 1 for the corresponding character. This way, it is possible to give the

network a clear goal for prediction.

4.3. MODEL

The model was developed using a character natural machine translation methodology with a

sequence-to-sequence architecture built on a recurrent neural network with long short-term memory

layers. The decision to use a character methodology was because most of the OCR-produced errors

occur on a character level (Lundberg & Torstensson, 2021)instead of a word level. In addition, a

character approach performs better when dealing with small datasets, since it is less likely to

encounter unknown characters (Mokhtar et al., 2018). To create the model, we used Python (Python

Software Foundation, 1991) as the language and Keras framework (Keras, 2015). Since it (Microsoft,

2010)needed a lot of computation power, the Microsoft Azure (Microsoft, 2010) platform was used to

access more GPU power to train the deep learning approach.

23

4.3.1. Model Instances

We implemented four models, all of which had the same configuration, only changing their input text

threshold. The design was based on Keras’s documentation (Keras, 2020), consisting of two LTSM

layers, an encoder and a decoder. The job of the encoder layer was to turn input sequences into two

state vectors, where only the last LSTM state was kept. Consecutively, the decoder LSTM was trained

to transform input sequences into the same sequence, offsetting it by one timestamp in the future, a

method known as Teacher Forcing (section 2.2.4). Essentially, the decoder discovers how to generate

targets[t+1] given targets[t]. In the decoder layer, the softmax activation function was used to

guarantee that the output had the properties of a probability distribution.

4.3.1.1. Hyperparameter Tunning

Hyperparameter tuning selects the best set of parameters for a learning algorithm (Feurer & Hutter,

2019). As such, we experimented with the following three configuration parameters, namely:

• Batch size - the number of training examples used in one interaction,

• Epochs - the number of times that the learning algorithm will work through the entire

training dataset,

• Hidden Layers - The number of features of the hidden state of the LSTM.

One known method to perform hyperparameter tunning is grid search, which is simply an exhaustive

search across a manually chosen set of configurations. To perform grid search, it was necessary to have

an evaluation metric chosen accuracy (section 4.3.2). Although this was not the final evaluation metric,

it was chosen since the Keras framework does not support word error rate or a character error rate

while compiling the model, making it impossible to apply grid search. Additionally, it was the metric

displayed in the documentation (Keras, 2020) on which the model was based. The following

parameters to search were the following ones (table 3).

Batch Size 16 32 64 128
Epochs 40 60 80 100

Hidden Layers 50 75 100 125

Table 3 – Set of parameters to search

The set of parameters that yielded the best results were the ones described in the table below (table

4), thus being those values the final configurations to the baseline model architecture.

Batch Size Epochs Hidden Layers
128 100 75

Table 4 – Final Configurations

4.3.1.2. Input Threshold

Since the input text threshold changed between instances, the size of its training set for each instance

changed. As explained in section 4.2.2, the input texts were divided by a defined threshold. The

24

thresholds explored and their corresponding training size after data preprocessing are described in the

table below (table 5).

 INSTANCE 1 INSTANCE 2 INSTANCE 3 INSTANCE 4

INPUT THRESHOLD 10 30 50 70

TRAINING DATA SIZE 292998 111144 91617 62125

Table 5 – Instances Thresholds and Training Size

4.3.2. Evaluation Methods

The evaluation of the solution was divided into two parts. The first part focused on the various model

instances’ performance. While the model instances were trained, the progress of the loss function and

its accuracy were monitored, where the loss function represents a method that computes the distance

between the current output and the expected output. Essentially, it is a technique that evaluates how

well the algorithm models the dataset, in which the closer to zero, the better. In this way, it was

possible to rapidly understand if it was something wrong with the different models. After the training

was finalised, an analysis on the test data was conducted to evaluate how well it performed using

accuracy, WER and CER as the evaluation metrics, along with comparing it to the different experiments

made.

The second part was more centred on the performance of the entire digital archive solution. An

important factor considered was the time the application would take to process an entire document,

which would directly impact the user experience. Hence, it was used as an evaluation metric for the

time it would take for the model to predict hundred sentences. The purpose was to understand how

the different thresholds impacted the time performance of the various model instances.

25

5. RESULTS AND DISCUSSION

In this chapter, the results of the multiple instances of the proposed model are presented and

analysed. These results are compared to draw conclusions about the performance of the different

instances and to identify trends and patterns that may be useful in improving the model’s performance

in the future. The results and conclusions presented in this chapter provide valuable insights into the

strengths and limitations of the proposed model.

5.1. MODEL INSTANCES

This analysis will focus mainly on the performance of the different model instances. The analyses will

be divided into two distinct stages: the training and validation stages and the test phase. The purpose

of examining the performance of the instances at each stage is to understand the behaviour better

and identify any patterns or trends that may appear.

5.1.1. Train and Validation Data Evaluation Metrics

The following graphs illustrate the accuracy and loss of the different model instances on the training

and validation datasets. These graphs visually represent the instance’s performance, allowing a more

comprehensive understanding of their strengths and weaknesses.

Figure 22 -Instance 1 Training and Validation
Accuracy

Figure 21 - Instance 1 Training and
Validation Loss

26

Figure 27 - Instance 3 Training and
Validation Accuracy

Figure 24 - Instance 2 Training and
Validation Loss

Figure 26 - Instance 3 Training and
Validation Accuracy

Figure 23 - Instance 2 Training and
Validation Loss

Figure 28 - Instance 4 Training and
Validation Accuracy

Figure 27 - Instance 4 Training and
Validation Loss

27

Upon results examination, it was established that instance 1 was the most successful in terms of

performance during the training process. This instance achieved a high level of accuracy, with a

tendency towards a perfect score of 1, within a relatively short amount of time, requiring fewer than

20 epochs to reach this level of accuracy. In addition, there were no indications of overfitting present

in this instance. Furthermore, the loss, which is a measure of the error made by the model, tended

towards zero for both the training and testing datasets, indicating a high level of accuracy and

effectiveness. Moreover, the results suggest a strong correlation between the size of the threshold

and the training performance. As the threshold is increased, the performance appears to decrease.

This relationship can be clearly observed by comparing the results of instances one and 4. When

examining the results for these two instances, it is possible to see a significant difference in their

performance. For instance 1, the accuracy tended towards 0, while the accuracy for instance 4 tended

towards 0.8. Similarly, the loss for instance 1 tended towards 0, while the loss for instance 4 tended

towards 0.4. These differences highlight the impact that the threshold size has on the model’s training

performance.

5.1.2. Test Data

In this phase, two types of evaluation were conducted. First, each instance’s word error rate and

character rate were evaluated. In the second phase, each instance’s ten most common errors, at a

character level, were analysed.

5.1.2.1. Evaluation Metrics

The following table (table 6) shows the results of the word error rate (WER) and character error rate

(CER) metrics for each model instance. These results provide a quantitative assessment of the different

instances’ performance and allow for a more precise comparison between them.

 INSTANCE 1 INSTANCE 2 INSTANCE 3 INSTANCE 4

WER 13.4% 44.4% 79.6% 89.1%
CER 9.5% 27.5% 57.4% 59.7%

Table 6 – WER and CER Model Instances Results

5.1.2.2. Most Common Instance Errors

The tables below present the ten most common errors made by each model instances.

28

Instance 1
Output

Ground Truth Error occurrence

 3 9.38 %

 . 6.28 %

 ; 6.25 %

- 6.25 %

 0 6.21 %

A 3.17 %

Ú 3.13 %

u a 3.13 %

o 3.12 %

a á 3.10 %

Table 7 – Instance 1 Top Ten Errors

Instance 2
Output

Ground Truth Error occurrence

 o 1.61 %

 e 1.53 %

a 1.52 %

 a 1.52 %

o 1.42 %

e 1.36 %

 s 1.23 %

s 1.15 %

d 1.05 %

 d 0.83 %

Table 8 – Instance 2 Top Ten Errors

Instance 3
Output

Ground Truth Error occurrence

o 1.60 %

 e 1.58 %

 a 1.46 %

e 1.44 %

 o 1.41 %

a 1.38 %

s 1.07 %

 s 1.06 %

o e 1.03 %

r 0.97 %

Table 9 -Instance 3 Top Ten Errors

29

Instance 4
Output

Ground Truth Error occurrence

e 2.14 %

 e 1.75 %

 a 1.53 %

s 1.29 %

 o 1.26 %

e a 1.26 %

o 1.22 %

e o 1.20 %

 s 1.17 %

d 1.06 %

Table 10 – Instance 4 Top Ten Errors

The results showed that instance 1 was the clear outperformer, with a word error rate (WER) of 13.4%

and a character error rate (CER) of 9.5%. In contrast, the other instances did not fare as well. Instance

2 achieved a WER of 44.4% and a CER of 27.5%, while instance 3 had a WER of 79.6% and a CER of

57.4%. The worst performing instance was instance 4, with a WER of 89.1% and a CER of 59.7%. A clear

trend was evident: the instances’ performance decreased as the threshold increased. The difference

in performance between instance 1 and the other instances was quite significant, with instance 1

performing roughly three times better than the next best instance. This tendency was also reflected in

the most common errors made by each instance. For instance 1, the top 10 mistakes (table 7)

accounted for approximately 47% of all the mistakes. This suggests that instance 1 created a pattern

of mistakes, allowing for targeted improvement efforts. In contrast, none of the other instances was

able to create a similar pattern, with their top 10 mistakes accounting for only about 13% of mistakes

made (tables 8,9, and 10).

Based on the findings of this study, it is clear that instance 1 outperformed the other model instances.

There are two main reasons for this superiority. First, the smaller size of the input for instance 1 meant

that it required less context for the neural network to make predictions accurately, resulting in better

performance. This also means that instance 1 required fewer data to achieve the same level of

performance compared to instances 1 with more significant thresholds. Second, the smaller threshold

for instance 1 resulted in a more significant number of training instances, as can be seen in Section

4.3.2.1, namely table 5. The training sample size for instance 1 was more than double that of instance

2 and almost five times larger than instance 3 and instance 4. These factors likely contributed to the

superior performance of instance 1 compared to the other instances. In summary, the results suggest

that the input size is a key factor that influences the number of training samples needed for a neural

network to achieve a certain level of performance. This is an important consideration when designing

and optimising a neural network.

Despite the superior performance of instance 1 compared to the other instances, it still did not achieve

results as good as those produced by the OCR engine. This is likely linked to the fact that the training

dataset, which consisted of only 217 documents and 77497 sentences, was relatively small. This may

have contributed to the observed result, as only 60% of the dataset was used for training. In tasks like

this one, which require the context of previous characters to make accurate predictions about the next

character, a larger dataset is often needed to capture the complexity and diversity of the language

30

fully. Therefore, it is possible that the OCR engine, which had access to a more extensive and diverse

dataset, could achieve better results due to its ability to learn from a broader range of examples. This

highlights the importance of having enough high-quality training data when developing a neural

network for a specific task.

Nevertheless, the results were still relatively close, with a difference of only 3.7% in the WER metric

and 2.3% in the CER metric. This suggests that the neural network model developed in this study has

the potential to achieve a performance similar to or superior using a more extensive and diverse

dataset. Therefore, there is room for future work to improve the model by gathering more data and

optimising the model’s design and parameters. One possible way to collect more data for the model

would be to use the digital archive system proposed. In that way, it would be possible to continually

add more data to the model as it is being used, enabling it to continue learning and improving over

time. This would create an incremental system that would produce better and better results as more

data is collected. In this way, the model would be able to adapt and improve as new information

becomes available, potentially leading to even better performance in the future.

5.2. TIME PERFORMANCE

This evaluation will focus on the time each model instance takes to predict 100 sentences. By

evaluating the time taken by each instance to complete this task, it is possible to gain information on

their performance and efficiency and identify any potential areas of improvement.

The table below displays the results obtained. These results provide a quantitative assessment of the

time performance of the different instances, enabling a more accurate comparison between them.

 INSTANCE 1 INSTANCE 2 INSTANCE 3 INSTANCE 4

TIME TO PREDICT
100 SENTENCES

4 min 52 s 4 min 37s 4 min 14 s 4 min 04s

Table 11 – Time to Predict 100 sentences

The results indicate that instance 1 took 4 minutes and 52 seconds to predict 100 sentences, instance

2 took 4 minutes and 37 seconds, instance 3 took 4 minutes and 14 seconds, and instance 4 took 4

minutes and 4 seconds. It makes sense that the time it takes to make predictions would decrease as

the threshold size increases since larger threshold sizes would result in fewer input examples being

processed. As mentioned in section 4.2.2, if a sentence has a length of 70 characters and the threshold

size is set to a lower value, the sentence would need to be divided into smaller chunks and processed

separately, which would require more operations. On the other hand, if the threshold size is set to a

higher value, the entire sentence could be processed as a single input, which would require fewer

operations. It’s also worth noting that the relationship between threshold size and prediction time may

not always be linear, and other factors such as the complexity of the model, the efficiency of the

algorithms being used, and the hardware configuration of the system can all play a role in determining

the overall performance of the model. There may be specific threshold sizes at which the model’s

performance starts to degrade. The time difference between instances 2 and 3 is the most significant

when comparing the other instances. This is because a large percentage of the input data has less than

31

or equal to 50 characters. When designing a machine learning system, it’s important to carefully

consider the trade-offs between input size, model complexity and prediction time. It may be necessary

to experiment with different configurations and input sizes to find the optimal balance between these

factors for a particular application. In this case, instance 4 was the best-performing instance in terms

of time prediction, which make it the best choice in terms of user experience.

To conclude, when designing the digital archive proposed for a specific user, it is essential to consider

the model that will be used to process and organise the documents. Initially, using a model with a low

threshold may be most effective, as this has been shown to produce the best results. However, as the

size of the archive grows over time, it may be necessary to reevaluate the model and potentially switch

to a new one with a higher threshold if it performs well enough. By continually evaluating and

improving the model in this way, the archive will not only see improvements in metrics such as CER

and WER, but it will also enhance the user experience by reducing the time it takes to process

documents. Ultimately, the aim is to achieve an optimal balance of user experience and word

correction as the archive expands.

32

6. CONCLUSION

In this research it has been proposed a new design for a digital archiving system that utilised a neural

machine translation system to address errors generated by the OCR system and to investigate the

following research questions:

• How does the length of the input model influence the accuracy of OCR error correction?;

• What is the impact of the input model’s length on the time efficiency of the designed

application?; and

• What optimisation techniques can be implemented as the archive grows and is composed of

more data?

The investigation results revealed that the best model proposed in the study could not outperform

the OCR system, which could be due to a lack of data. This underscores the importance of having

sufficient training data to build effective machine translation systems for OCR error correction.

Furthermore, as the threshold of the model size increased, the WER and CER metrics worsened,

but the time efficiency of the model improved. This suggests that there is a trade-off between

accuracy and efficiency when designing the digital archive, especially when the archive size is not

large enough. As the archive grows and more data becomes available, it may be possible to

reevaluate the thresholds for the model size and potentially increase them to improve time

efficiency. With a larger volume of data, machine translation models may be better able to sustain

higher thresholds without sacrificing accuracy. However, it will be essential to carefully consider

the trade-off between accuracy and efficiency and ensure that the digital archiving system’s

performance remains optimal as the archive size increases.

To summarise, the main contribution of this research was the development of a digital archiving

system that enables the improvement of OCR correction over time. This system not only allows for

automated correction but also enables manual correction by users. Additionally, the system can be

adapted for use in various business contexts, with the main limitation being the initial effort required

to collect sufficient data for training the machine translation model. Overall, this research has

advanced the understanding of digital archiving systems and has provided valuable insights into the

design and optimisation of such systems.

33

7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

One of this study’s main limitations was the dataset’s size. While the dataset used was sufficient for

this Master’s thesis, a larger dataset could have provided additional insights and more robust results.

Another limitation was the data quality, as it was corrected by the researcher rather than by individuals

who work with these documents daily. This may have introduced some bias and could have affected

the accuracy of the results.

In terms of recommendations for future work, one possibility would be to expand the size of the

dataset to gain a more comprehensive understanding of the topic. One way could be to leverage

machine learning techniques to generate additional data based on the existing data. Additionally, it

would be beneficial to have the data corrected by individuals with expertise in the specific field to

improve the quality and accuracy of the results. Overall, many potential approaches for further

investigation and improvement in this area exist.

34

8. REFERENCES

Afli, H., Qiu, Z., Way, A., & Sheridan, P. (2016). Using SMT for OCR Error Correction of Historical

Texts. http://www.abbyy.com/

Afli, H., Schwenk, H., & Barrault, L. (2015). OCR Error Correction Using Statistical Machine

Translation Ensemble event driven Stock Market Prediction View project OCR Error

Correction Using Statistical Machine Translation.

https://www.researchgate.net/publication/277007272

Amrhein, C. ;, & Clematide, S. (2018). Supervised OCR Error Detection and Correction Using

Statistical and Neural Machine Translation Methods. https://doi.org/10.5167/uzh-162394

Bassil, Y., & Alwani, M. (2012). OCR POST-PROCESSING ERROR CORRECTION ALGORITHM USING

GOOGLE’S ONLINE SPELLING SUGGESTION. In Journal of Emerging Trends in Computing

and Information Sciences (Vol. 3, Issue 1).

http://www.cisjournal.org/journalofcomputing/archive/vol3no1/vol3no1_7.pdf

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled Sampling for Sequence

Prediction with Recurrent Neural Networks.

Bokser, M. (1992). Omnidocument Technologies.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,

Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical

Machine Translation.

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. (2015). Attention-Based

Models for Speech Recognition. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, & R.

Garnett (Eds.), Advances in Neural Information Processing Systems (Vol. 28). Curran

Associates, Inc.

https://proceedings.neurips.cc/paper/2015/file/1068c6e4c8051cfd4e9ea8072e3189e2-

Paper.pdf

Chrons, O., Sundell, S., & Bulevardi, M. (2011). Digitalkoot: Making Old Archives Accessible

Using Crowdsourcing. http://www.nationallibrary.fi

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent

Neural Networks on Sequence Modeling. http://arxiv.org/abs/1412.3555

Cilimkovic, M., & Jl, M. (2015). Back Propagation Algorithm Neural Networks and Back

Propagation Algorithm.

Clematide, S., Furrer, L., & Volk, M. (2016). Crowdsourcing an OCR Gold Standard for a German

and French Heritage Corpus. European Language Resources Association (ELRA, 975–982.

https://doi.org/10.5167/uzh-124786

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. http://arxiv.org/abs/1810.04805

35

Edem, S., & Tarwani, K. M. (2017). Survey on Recurrent Neural Network in Natural Language

Processing. International Journal of Engineering Trends and Technology, 48.

https://doi.org/10.14445/22315381/IJETT-V48P253

Feurer, M., & Hutter, F. (2019). Hyperparameter Optimization (pp. 3–33).

https://doi.org/10.1007/978-3-030-05318-5_1

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning t o Forget: Continual Prediction

with LSTM. http://m.idsia.ch/

Goyal, A., Lamb, A., Zhang, Y., Zhang, S., Courville, A., & Bengio, Y. (2016). Professor Forcing: A

New Algorithm for Training Recurrent Networks.

Gruber, N., & Jockisch, A. (2020). Are GRU Cells More Specific and LSTM Cells More Sensitive in

Motive Classification of Text? Frontiers in Artificial Intelligence, 3.

https://doi.org/10.3389/frai.2020.00040

Hämäläinen, M., & Hengchen, S. (2019). From the Paft to the Fiiture: a Fully Automatic NMT and

Word Embeddings Method for OCR Post-Correction. https://doi.org/10.26615/978-954-

452-056-4_051

Hochreiter, S., & Urgen Schmidhuber, J. ¨. (1997). Long Short-Term Memory.

Keras. (2015, March 27). Keras: The Python deep learning API . https://keras.io/

Keras. (2020, April 16). Character-level recurrent sequence-to-sequence model.

https://keras.io/examples/nlp/lstm_seq2seq/

Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A. M. (2017). OpenNMT: Open-source toolkit

for neural machine translation. ACL 2017 - 55th Annual Meeting of the Association for

Computational Linguistics, Proceedings of System Demonstrations, 67–72.

https://doi.org/10.18653/v1/P17-4012

Koehn, P. (2017). Neural Machine Translation. http://arxiv.org/abs/1709.07809

Kukich, K. (1992). Techniques for Automatically Correcting Words in Text.

Lansdall-Welfare, T., Sudhahar, S., Thompson, J., Lewis, J., Cristianini, N., Gregor, A., Low, B.,

Atkin-Wright, T., Dobson, M., & Callison, R. (2017). Content analysis of 150 years of British

periodicals. Proceedings of the National Academy of Sciences of the United States of

America, 114(4), E457–E465. https://doi.org/10.1073/pnas.1606380114

Lopez, A. (2008). Statistical machine translation. ACM Computing Surveys, 40(3).

https://doi.org/10.1145/1380584.1380586

Lundberg, A., & Torstensson, M. (2021). Deep learning for post-OCR error cor-rection on

Swedish texts Deep learning for post-OCR error correction on Swedish texts.

Mays, E., Damerau, F. J., & Mercer, R. L. (1991). CONTEXT BASED SPELLING CORRECTION.

36

Mehlig, B. (2019). Machine learning with neural networks.

https://doi.org/10.1017/9781108860604

Metz, C. E. (1978). Basic Principles of ROC Analysis.

Microsoft. (2010, February 1). Microsoft Azure. https://portal.azure.com/

Microsoft. (2022, March 11). OCR - Optical Character Recognition.

https://learn.microsoft.com/en-us/azure/cognitive-services/computer-vision/overview-

ocr

Mokhtar, K., Bukhari, S. S., & Dengel, A. (2018). OCR error correction: State-of-The-Art vs an

NMT-based Approach. Proceedings - 13th IAPR International Workshop on Document

Analysis Systems, DAS 2018, 429–434. https://doi.org/10.1109/DAS.2018.63

Nguyen, T. T. H., Jatowt, A., Coustaty, M., Nguyen, N. van, & Doucet, A. (2019). Deep statistical

analysis of OCR errors for effective post-OCR processing. Proceedings of the ACM/IEEE

Joint Conference on Digital Libraries, 2019-June, 29–38.

https://doi.org/10.1109/JCDL.2019.00015

Pal, A., & Mustafi, A. (2020). Vartani Spellcheck-Automatic Context-Sensitive Spelling Correction

of OCR-generated Hindi Text Using BERT and Levenshtein Distance.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: a Method for Automatic Evaluation

of Machine Translation.

Priddy, K., & Keller, P. (2005). Artificial Neural Networks An Introduction.

Puri, M., Solanki, A., Padawer, T., Tipparaju, S. M., Moreno, W. A., & Pathak, Y. (2016).

Introduction to Artificial Neural Network (ANN) as a Predictive Tool for Drug Design,

Discovery, Delivery, and Disposition: Basic Concepts and Modeling. Basic Concepts and

Modeling. In Artificial Neural Network for Drug Design, Delivery and Disposition (pp. 3–13).

Elsevier Inc. https://doi.org/10.1016/B978-0-12-801559-9.00001-6

Python Software Foundation. (1991). Python. https://www.python.org/

Ramirez-Orta, J., Xamena, E., Maguitman, A., Milios, E., & Soto, A. J. (2022). Post-OCR Document

Correction with Large Ensembles of Character Sequence-to-Sequence Models.

https://github.com/jarobyte91/post

Ranzato, M., Chopra, S., Auli, M., & Zaremba, W. (2015). Sequence Level Training with Recurrent

Neural Networks. http://arxiv.org/abs/1511.06732

Rice, S., Nagy, G., & Nartker, T. (1999). OPTICAL CHARACTER RECOGNITION: An Illustrated Guide

to the Frontier.

Rumelhart, D., & Chauvin, Y. (1995). BACKPROPAGATION Theory, Architectures, and

Applications.

37

Suissa, O., Elmalech, A., & Zhitomirsky-Geffet, M. (2020). Toward the optimized crowdsourcing

strategy for OCR post-correction. Aslib Journal of Information Management, 72(2), 179–

197. https://doi.org/10.1108/AJIM-07-2019-0189

Suissa, O., Zhitomirsky-Geffet, M., & Elmalech, A. (2022). Toward a Period-specific Optimized

Neural Network for OCR Error Correction of Historical Hebrew Texts. Journal on

Computing and Cultural Heritage, 15(2). https://doi.org/10.1145/3479159

Sutskever, I., Vinyals, O., & Le, Q. v. (2014). Sequence to Sequence Learning with Neural

Networks. http://arxiv.org/abs/1409.3215

Sydenham, P. H., & Thorn, R. (2005). Handbook of measuring system design. Wiley.

Varma, S., & Das, S. (2018). Introduction to Deep Learning.

Volk, M., Furrer, L., & Sennrich, R. (2011). Strategies for Reducing and Correcting OCR Errors. In

Language Technology for Cultural Heritage (pp. 3–22). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-20227-8_1

von Ahn, L., Maurer, B., Mcmillen, C., Abraham, D., & Blum, M. (2008). reCAPTCHA: Human-

Based Character Recognition via Web Security Measures. www.sciencemag.org

Werbos, P. J. (1990). Backpropagation Through Time: What It Does and How to Do It.

38

9. APPENDIX (OPTIONAL)

[An annex can stand alone. If you are attaching additional documents to the end of your research paper

but they would make complete sense and provide important information even outside the context of

your paper, you can categorise them as annexes.

An appendix tends to be more closely connected than an annex to the main body of the paper. An

appendix would not be as informative or valuable outside the context of your paper. While an appendix

enhances or expands upon your research paper by adding details like illustrations or case studies, it is

never presented to readers by itself.

Retrieved from https://www.enago.com/academy/annex-vs-appendix-do-you-know-the-difference/]

https://www.enago.com/academy/annex-vs-appendix-do-you-know-the-difference/

39

10. ANNEXES (OPTIONAL)

1

		2023-05-28T19:57:33+0100
	Bruno Daniel Alho Fernandes

