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Título

Em direção a um entendimento normativo da actividade cerebral de ordem supe-
rior

Resumo

A capacidade de adaptar o comportamento é uma das principais marcas da in-
teligência animal e as áreas do cérebro de ordem superior, tais como o córtex pré-
frontal, são consideradas como tendo um papel crucial na mesma: estão particular-
mente bem ligados ao resto do cérebro, estão desproporcionadamente bem desenvolvi-
dos em primatas superiores, e demonstraram estar envolvidos nas funções executivas
que se pensa permitirem esta flexibilidade, tais como a tomada de decisões, memória
de trabalho, planeamento, e atenção. Com o advento de novas técnicas de medição,
estamos a ganhar uma visão cada vez mais completa da actividade cerebral de or-
dem superior, enquanto os animais executam tarefas comportamentais. Utilizando
estes dados, podemos agora tentar acrescentar à compreensão conceptual das funções
cerebrais de ordem superior que já temos, elucidando a sua base neural.

Uma abordagem para o fazer é desenvolver modelos computacionais que repro-
duzam a actividade neural registada. Uma abordagem popular deste tipo é baseada
em redes neurais recorrentes que são simplesmente treinadas para executar a mesma
tarefa que o animal. Embora reproduzam a actividade notavelmente bem, fazem
apenas um uso limitado da compreensão conceptual das funções cerebrais de ordem
superior que já temos. No entanto, esta abordagem mostra-nos que a actividade cere-
bral de ordem superior parece ser largamente determinada pela tarefa, uma vez que
os modelos de redes neurais recorrentes, por exemplo, apenas fazem referência limi-
tada à natureza biológica subjacente da área cerebral modelada. Consequentemente,
a actividade neural de ordem superior pode ser compreendida em grande medida pelo
estudo da representação teórica das tarefas.

Nesta tese, começamos por rever e analisar os registos neurais de várias áreas
cerebrais de ordem superior em vários organismos modelo, para obter uma imagem
clara dos fenómenos neurais que pretendemos reproduzir. Estudamos então as rep-
resentações de tarefas e salientamos que diferentes representações servem diferentes
propósitos. Isto permite-nos ligar os nossos modelos ao conhecimento conceptual que
já temos. Por exemplo, uma representação serve o propósito de planeamento. Em
seguida, procuramos as representações de tarefas correspondentes que servem estes

vi



diferentes propósitos, que depois podemos comparar com as representações neurais
correspondentes.

Esta abordagem é, contudo, tal como a abordagem das redes neurais recorrentes,
mal definida porque cada propósito pode ser cumprido por muitas representações
diferentes. Resta-nos assim a escolha de qual a representação que se pode comparar
com os dados. Por conseguinte, adoptamos uma abordagem normativa. Especifica-
mente, seguimos a hipótese de codificação eficiente que afirma que os sistemas neurais
devem eliminar toda a informação redundante e irrelevante. Esta teoria já foi bem
sucedida na explicação de fenómenos neurais antes, particularmente em áreas visuais,
e generalizamo-la a áreas cerebrais de ordem superior com a pergunta: Qual é a
representação de tarefas mais eficiente para um determinado propósito?

Finalmente, aplicamos a nossa abordagem normativa e representativa a quatro
tarefas em dois organismos-modelo: macacos e ratos. Consideramos dois propósitos
hipotéticos: Um é o propósito de servir um comportamento baseado em modelos, ou
seja, planeamento, e o outro é servir um comportamento habitual, ou seja, tomada
de decisões sem planeamento, e formalizamos ambos os propósitos no quadro de uma
aprendizagem de reforço parcialmente observável (partially observable reinforcement
learning). Em macacos, como esperado, verificamos que o córtex pré-frontal parece
utilizar uma estratégia baseada no planeamento, enquanto que nos ratos, a actividade
numa área motora de ordem superior é bem explicada por uma estratégia habitual
mais directa. Nesta tese, apresentamos assim uma abordagem normativa, orientada
por hipóteses, que fornece potencial conhecimento sobre a função e o objectivo das
representações cerebrais de ordem superior, e abre a possibilidade de fazer o mesmo
para outras áreas cerebrais.
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Abstract

The ability to flexibly navigate complex environments is a major hallmark of
animal intelligence and higher-order brain areas such as the prefrontal cortex are
thought to play a crucial role in it: They are particularly well connected to the rest of
the brain, they are disproportionately well developed in higher primates, and they have
been shown to be involved in the executive functions that are thought to enable this
flexibility, such as decision making, working memory, planning, and attention. With
the advent of novel recording techniques, we are gaining an increasingly complete view
of higher-order brain activity while animals perform behavioural tasks. Using these
data, we can now try to add to the conceptual understanding of higher-order brain
areas, such as their involvement in working memory and planning, by elucidating the
neural basis of their functions.

One approach to do so is to develop computational models that try to reproduce
recorded neural activity. A popular such approach is based on recurrent neural net-
works which are simply trained to perform the same task as the animal. While they
can reproduce activity remarkably well, they only make limited use of the conceptual
understanding of higher-order brain function that we already have. For example, they
often ignore that tasks can be solved in many different ways in the first place. Nev-
ertheless, this approach shows us that higher-order brain activity seems to be largely
determined by the task at hand, as the recurrent neural network models for example
only make limited reference to the underlying biological nature of the modelled brain
area. Accordingly, higher-order neural activity might be understood to quite an extent
by simply studying the ways in which tasks can be represented in principle.

In this thesis we first review and analyse neural recordings from various higher-
order brain areas in various model organisms in order to get a clear picture of the
neural phenomena that we aim to reproduce. We then study task representations and
point out that different representations serve different purposes. For example, one
task representation might serve the specification of the correct responses in a particu-
lar task, while another might serve the specification of the rules of a given task. This
allows us to connect our models to the conceptual knowledge of higher-order brain
function, such as their involvement in planning, and accordingly, one representation
will serve the purpose of planning. We then search for the corresponding task rep-
resentations that serve these different purposes, which we can then compare to the
corresponding neural representations.
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This approach is, however, as is the recurrent neural network approach, ill-defined
because every purpose can be fulfilled by many different representations. The decision
of which representation to compare to the data is thus left up to the user. We therefore
take a normative approach. Specifically, we follow the efficient coding hypothesis that
states that neural systems should eliminate all redundant and irrelevant information.
This theory has been successful in explaining neural phenomena before, particularly
in sensory areas, and we generalize it to higher-order brain areas by asking: What is
the most efficient task representation for a given purpose?

We finally apply our normative, representational approach to three tasks in two
model-organisms, namely monkeys and mice. We consider two hypothetical purposes:
One is the purpose of serving a model-based behaviour, i.e. planning, and the other is
to serve a habitual behaviour, i.e. decision making without planning, and we formalize
both purposes within the framework of partially observable reinforcement learning.
We find that prefrontal cortex in monkeys, as expected, seems to use a planning-
based strategy, while activity in a higher-order motor area in mice is well explained
by a more direct habitual strategy. In this thesis, we thus present a hypothesis-driven,
normative approach that provides potential insights into the function and the purpose
of higher-order brain representations, and it opens up the possibility to do the same
for brain areas beyond.
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Chapter 1

Introduction

Our human experience shows us that we are capable of doing incredible things.
From performing simple everyday tasks such as navigating a busy street or chatting
with a neighbour, to building collaborative ventures like the global economy. We can
set our minds to acquiring complex skills, such as playing the piano or mastering the
art of cooking, or even spending several years thinking about a narrow topic in order
to write a doctoral thesis. We can do all of this thanks to our ability to perceive and
remember our surroundings, make plans and goals, and make decisions that we can
implement through actions.

Of course, many of these abilities are not unique to humans, but common to many
animals, as we all participate in this cycle from perception to action. Arguably, it is
this cycle that impelled animals to develop brains, and the brain is in turn crucial to its
control (Kandel et al., 2000). Indeed, the areas of the brain may be roughly grouped
according to their involvement in this cycle: Sensory areas are mainly concerned with
the inputs (perception), motor areas mainly with the outputs (action), and the rest
with the processing that links the two.

In recent decades, neuroscientists have made progress in determining more pre-
cisely how each of these different areas is involved in generating behaviours such as
those described above. Lesion studies, in which a specific area is removed from an
animal’s brain and then the resulting behavioural deficits are examined, have been a
fruitful approach (Damasio and Damasio, 1989; Wiegert et al., 2017; Szczepanski and
Knight, 2014). This is even more true when an animal is first trained to perform a
task specifically designed to test a particular skill. Conversely, which brain regions
are involved in the execution of a task depends on the specifics of the particular task:
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What sensory modalities, e.g., vision, hearing, or smell, are stimulated, and what
movements, e.g., walking, grasping, or licking, are required? For example, does the
animal need to remember certain aspects of the task in order to evaluate different
options?

One striking discovery was that the higher-order areas of the frontal cortical lobe
— to which we will refer simply as higher-order brain areas in this thesis — are cru-
cial when a task requires more complex cognitive abilities, such as planning, working
memory, or decision making (Goldman-Rakic, 1987; Funahashi et al., 1993; Passing-
ham, 1985; Szczepanski and Knight, 2014; Guo et al., 2014). The most prominent
such area is likely the prefrontal cortex (PFC), which has been studied extensively
in monkeys (Fuster, 2015). The PFC is heavily connected to the rest of the brain,
making it well positioned to be a major part of the connection between perception and
action. The PFC is also particularly well developed in humans, making it likely to
be a crucial structure for enabling complex human abilities. Thus, higher-order brain
areas appear to be at the heart of the complex cognitive abilities that allow animals
to flexibly navigate environments and problems (Miller and Cohen, 2001). Naturally,
it has been of great interest to gain a better understanding of how these brain areas
work, not only from a neuroscientific perspective, but even from the perspective of
artificial intelligence (AI), as today’s AI systems, despite enormous recent progress,
are often vastly inferior in this regard (Russin et al., 2020; Lake et al., 2017).

Over the years, neuroscientists have made great strides in advancing this under-
standing — we will review some of this work in the next section 1.1 — in particular
by using the approach of developing behavioural tasks, observing the animal’s be-
haviour and neural activity, and possibly even causally manipulating neural activity
by for example using optogenetics (Lima and Miesenböck, 2005; Boyden et al., 2005).
Many different tasks have been developed, often specifically tailored to test the core
cognitive functions, sometimes also called executive functions, of working memory,
planning, attention, and decision making (Fuster, 2015). Different sensory modalities
have been used, be it visual, auditory, or somatosensory, and also different model
organisms, mainly monkeys, but also e.g. rats and mice. The resulting behaviour and
neural recordings have been analysed in various ways resulting in concise descriptions
of what is happening on a neural level.

However, these concise descriptions are often not straightforward to interpret,
especially if one compares them across tasks. We will review them more closely in
chapter 2. For example, the neural population activities usually depend on multiple
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task variables, such as stimulus, reward, and decision, at the same time, often in an
intermingled fashion (Kobak et al., 2016; Rigotti et al., 2013). Their dynamics are
sometimes slowly varying (Constantinidis et al., 2018; Funahashi et al., 1989; Romo
et al., 1999; Inagaki et al., 2019) and at other times they move fast and in complicated
ways (Fujisawa et al., 2008; Inagaki et al., 2019; Harvey et al., 2012; Sreenivasan and
D’Esposito, 2019). It is thus challenging to develop models that reproduce these
activity features, even though they are the result of simple neuroscience tasks which
are vastly less complex than real life environments. At the same time, the above
hypotheses about higher-order brain function, such as the involvement in the executive
functions, suggest that we should be able to explain some of their observed activities.
In the remainder of the introduction, we first give a brief summary of previous work
attempting to explain and model higher-order brain activity and function. We then
go on to introduce our main contributions.

1.1 The current understanding of higher-order brain ar-
eas

1.1.1 Methodology

Tasks, behaviour and neural activity

As introduced above, higher-order brain areas are crucial for flexible task solv-
ing. This insight has been demonstrated in recent decades by, among other things,
simultaneously recording animals’ behaviour and brain activity while they perform
behavioural tasks.

There are many different types of tasks, but essentially they are all quite simple.
Some involve navigation, e.g. a rat must find a food source in a maze (Tolman, 1948);
others require memory, e.g. a monkey must remember the location of a stimulus and
then respond to it after a delay (Funahashi et al., 1989); or they test an animal’s per-
ceptual abilities, e.g. by asking an animal to report the direction of a noisy stimulus
(Shadlen and Newsome, 2001). Although each of these tasks requires slightly differ-
ent skills, all are fundamentally about decision making and reporting those decisions
through behaviour.

The resulting behaviour is thus recorded in various degrees of detail (Machado
et al., 2015; Pardo-Vazquez et al., 2019; Wiltschko et al., 2015; Mathis et al., 2018).
Crucially, choice behaviour is usually recorded, i.e. how often the animal takes the
correct decision, how often the animal takes the opposite decision, and how often it
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does something completely unrelated. If trials in a task vary in difficulty, one can
also draw a psychometric curve that measures the animal’s decision performance as
a function of difficulty. Furthermore, all these measurements can be taken over the
course of learning, or even before and after learning a second task or a change in
task conditions. Analysing such measurements can give insight into how an animal
is making decisions, without even looking into the brain (see e.g. Tolman (1948);
Krakauer et al. (2017)).

However, if we are interested in how the brain produces these behaviours, we
need to look inside the brain. There are several ways to do this, each with different
advantages. Essentially, however, the different recording methods trade-off three as-
pects: How much they damage the brain and affect the animal’s abilities, i.e., their
invasiveness; how well or directly they record the activity of a particular neuron, i.e.,
their recording resolution; and how many neurons of the brain they record. On the
one hand, there are methods such as functional magnetic resonance imaging that are
noninvasive and record the activity of the entire brain simultaneously, but their mea-
surement of neuronal activity is very indirect and the resolution is low. On the other
hand, there are methods such as patch-clamping, which record the activity of a neu-
ron directly and with high temporal resolution, but are highly invasive. In between
are methods such as extracellular electrophysiological recordings and imaging. These
methods can record many neurons simultaneously with reasonable resolution and in-
vasiveness. Since the focus of this thesis is to understand higher-order brain activities,
we discuss their analysis in more detail in the next section.

Neural data analysis

In order to establish a direct link between a higher-order brain area’s activity and
its function, it is crucial to capture the main characteristics of a data set of recorded
neural activity. Broadly speaking there are two ways of analysing the activity of
recorded neurons: The first is to analyse single neurons separately, one at a time, and
the second is to analyse the whole population of recorded neurons together. Many of
the classical discoveries about the function of neural areas is based on single neuron
analysis. For example, Fuster and Alexander (1971) were the first to show that monkey
PFC was active at an elevated rate during the delay period of a delayed response task,
hence suggesting a neural substrate of working memory, and this discovery was made
by investigating the firing rates of single neurons.

More recently, though, the field has increasingly moved to population analyses
where a population of neurons is analysed jointly. This is mainly due to two problems:
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First, making sense of the single neuron responses of a large collection of neurons is not
straightforward as individual neurons might have quite distinct responses. In this case
it will be hard to succinctly summarize and pinpoint the main insights gained from
the recordings. Second, neurons do not work in isolation and the correlation between
neurons might carry important information. Even if no single neuron is significantly
tuned to a certain stimulus, the population as a whole might be.

The main workhorse of analysing population data are linear dimensionality reduc-
tion techniques (Cunningham and Yu, 2014; Humphries, 2020). The most commonly
used such method is principal component analysis (PCA). Briefly, PCA tries to find
activity patterns, or components, that are shared between neurons. The most widely
shared pattern is the first principal component (PC), the second most widely shared
pattern is the second principal component, and so forth. If there are N neurons in
the population, there will be N PCs, yet crucially, often the first few, say M ≪ N ,
PCs will describe the bulk of the data. If this is the case, a single neuron’s activity
can be fully reconstructed — except for some noise — using M PCs, only. PCA
thus addresses the first problem outlined above. Similarly, PCA addresses the second
problem, as it can pick up a pattern that is weak in single neurons, but if it is shared
among many neurons, strong on the population level. Due to these benefits, PCA-
type methods have enabled great insights into how populations work (Cunningham
and Yu, 2014).

If the population data was recorded during a task, it often makes sense to not only
find shared activity patterns overall, but shared activity patterns that are specifically
due to a certain task variable (Brendel et al., 2011; Mante et al., 2013; Kobak et al.,
2016; Aoi et al., 2020). For example, a task stimulus might excite the population
as a whole which will result in a shared activity pattern due to that task stimulus.
Similarly, a decision that is formed and then executed might also leave a trace in the
population activity. Two methods that pick out such task variable dependencies are
targeted dimensionality reduction (Mante et al., 2013; Aoi et al., 2020), and demixed
principal component analysis, or dPCA (Brendel et al., 2011; Kobak et al., 2016).
These ‘targeted’ or ‘demixed’ components often paint a clearer picture of what exactly
is happening on a population level during a task.

5



1.1.2 Theories and models

Theories of behaviour

From a purely behavioural perspective, it has long been debated about how an-
imals solve tasks. One school of thought, known as behaviourism (Skinner, 1938),
held that an animal’s behaviour can be described as a sequence of stimulus-response
associations, known as habits. The other school argued that a decision or action is
the result of reasoning that animals do based on a mental model of the world, which
is often called goal-directed or model-based behaviour (Tolman, 1948). Nowadays,
it is generally accepted that animals are capable of both these behavioural strategies
(Dolan and Dayan, 2013; Wassum et al., 2009). From a computational perspective, the
two strategies each offer different advantages: While model-based behaviour is flexible
and computationally intensive, habitual behaviour is rigid but cheap. As such, the
two strategies are not mutually exclusive, and animals are likely to be able to arbi-
trate between them depending on what better suits their current needs (Dolan and
Dayan, 2013; Lengyel and Dayan, 2008; Wassum et al., 2009). Yet whether, at a given
time and a given task, an agent is using one strategy or the other is often challenging
to disambiguate, even when using tasks specifically designed for that purpose (Akam
et al., 2015). One way to address this problem might be to go beyond pure behavioural
analysis and also look at neural activity (Akam et al., 2015).

From a neural perspective, mainly two brain areas have been associated with ha-
bitual and model-based behaviour (Dolan and Dayan, 2013; Balleine and O’Doherty,
2009). First, the PFC, which is primarily thought to carry a model (Behrens et al.,
2018), but in rats another part of it has also been shown to mediate habitual be-
haviour (Killcross and Coutureau, 2003; Coutureau and Killcross, 2003), and second,
the striatum, which is again involved in model-based and habitual control via separate
subregions. These roles are usually demonstrated by inactivation and lesion exper-
iments, by simple decoding studies (Behrens et al., 2018), or by indirect evidence
of how each strategy affects dopamine responses (Motiwala et al., 2022; Daw et al.,
2011), but often a direct link between function and neural representations is missing.
As the focus of this thesis is on higher-order brain areas, such as the PFC, we will not
address striatal representations any further.

Concepts and theories of higher-order brain function

In this and the next sections, we review models of higher-order brain areas that
we broadly categorize according to their focus. Here, we first review concepts and
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theories of higher-order brain function, i.e. models that focus on capturing the main
principles underlying higher-order brain function, and PFC function in specific. They
are less focused on a specific mathematical formalism and they are less aimed at
reproducing particular neural representations. In contrast, the models reviewed in
the next section are more mathematically explicit, and they are principally concerned
with reproducing neural activities.

In the classical textbook of prefrontal cortex (Fuster, 2015), the core function of
PFC is summarized as the representation and execution of goal-directed behaviour.
The executive functions that Fuster (2015) attributes to PFC — namely planning,
decision-making, working memory, and attention — all serve this core function. In
goal-directed behaviour, in contrast with habitual behaviour, the goal comes first,
and decisions are made and actions are taken to achieve that goal. In order to know
which action will achieve the goal, planning is needed, which ultimately includes some
internal model about how actions affect the external environment. Lastly, working
memory and attentive mechanisms are paramount for implementing the core function.
Working memory will keep relevant information online, including the goal, whereas
attentive mechanisms, together with working memory, influence other brain regions
in a top-down manner in order to achieve the goal.

This last process, which is sometimes also called cognitive control, is the main
focus of an influential theory by Miller and Cohen (2001). Their theory, though in
essence similar to the one by Fuster (2015), focuses slightly more on mechanism and
neural implementation. They argue that the function of PFC is to represent goals and
rules as patterns of activity, which in turn control the processing in other parts of the
brain by top down signaling. They reason that the brain works in a default setting —
think simple habitual stimulus-response relationships — and top-down control adjusts
this default setting in order to achieve the goal.

The same set of ideas has been cast in the framework of active inference (Pez-
zulo, 2012; Friston et al., 2016). There, goals correspond to priors that are encoded
in higher-order brain areas, and actions are chosen such that these goals are fulfilled
by minimizing variational free energy. Signatures of such goal codes have been found
in recordings of PFC neurons of monkeys that were solving a set of tasks with vari-
ous goals (Stoianov et al., 2016). The authors further showed that these goal codes
correspond to a compact categorisation or clustering of task parameters, preserving
their relation to goals and rewards. They note that this an efficient way of coding
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tasks that also enables transfer learning over a range of task variations. This idea of
efficiency will also be a main pillar of our own work, as we will see in the next section.

Clustering and categorisation of sensory inputs itself has also been proposed as a
principal function of PFC (Seger and Miller, 2010). Animals arguably act within an
environment of infinite complexity, i.e. our world. No two situations that an animal
might encounter are identical, and in order to learn anything about the world, and in
order to take action that improves an animal’s own case, these specific situations have
to be grouped. PFC particularly groups them according to their relation to goals and
the actions to achieve them, and not their physical properties (Freedman et al., 2001;
Stoianov et al., 2016).

Apart from these rather general theories, various models have been proposed that
address more specific aspects of PFC function. For example, recently, Wang et al.
(2018) put forward a model that casts PFC as a meta-learning system. There, the
focus is more on how PFC’s function contributes to learning and how it is embedded
within the reinforcement learning theory of the brain that is based on dopamine signals
from midbrain neurons that signal reward prediction errors (Schultz et al., 1997).
Using these dopamine error signals, PFC is picking up regularities in the structure of
a series of tasks as well as how they are learnt, thus learning to implement a learning
algorithm itself. They show that this assumption reproduces several experimentally
observed characteristics associated with PFC. One such characteristic is how behaviour
is adapted in a volatile environment (Behrens et al., 2007). If volatility is high,
adaptation is fast, yet if volatility is low, so is adaptation. Activities in human anterior
cingulate cortex, a subarea of PFC, seem to track this volatility which potentially
relies on Bayesian inference (Behrens et al., 2007). Donoso et al. (2014) also propose
that such inferences are an important part of PFC function. They propose that PFC
constantly infers whether one of a set of alternative behaviours is most suited to
achieve a goal, or whether new behaviors have to be learned.

Finally, another line of research focuses specifically on the function of working
memory (Baddeley, 2003). For example, classically it was thought that working mem-
ory consists of a fixed set of about seven slots (Miller, 1956). More recently, the idea
was brought forward that working memory is a resource allocable based on task de-
mands (Ma et al., 2014). According to this account, if a task requires more to be
kept in memory, the quality of that memory will decrease. Naturally, as the working
memory resource is quite limited, it appears to be of central importance that working
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memory represents task information in an appropriate form. This possibly links back
to the theories about clustering and categorisation reviewed above.

In summary, while there are various ideas and concepts about the function of
PFC, most of them can be understood in the light of goal-directed behaviour. For
example, as environments are complex and stochastic, categorisation, probabilistic
inference, and working memory are likely crucial to achieve a goal. Goal-directed
behaviour relies on an internal model of the environment, that potentially operates
on a suitable categorisation of environmental states, that are potentially constructed
over time using working memory. We will pick up these ideas to define the models in
this thesis.

Models of higher-order brain activity

The general theories introduced above are not aimed at explaining the exact
dynamics of population activity during a given task. This is usually left to models
with a more mechanistic view. A first set of such models is concerned less with
overall function of higher-order brain area, but rather how specific observed activity
features are implemented in the first place. For example, how can a dynamical system
remain active without any external stimulation in order to reproduce the persistent
activity observed in working memory tasks? For this, different types of artificial neural
networks or dynamical systems have been proposed. Some rely on slowly passing
activity from neurons to neurons in a feedforward manner (Goldman, 2009; Ganguli
et al., 2008), and others rely on recurrent activity that is fed back yielding so called
attractors (Ben-Yishai et al., 1995; Seung, 1996; Compte et al., 2000).

A second generation of models then used such mechanisms in order to design
dynamical systems or neural networks that are capable of solving specific behavioural
tasks (Wang, 2002; Machens et al., 2005). Building on this, a third generation then
replaced the hand-designing by learning algorithms that directly adjust the connection
weights between neurons in order to solve a certain task (Barak et al., 2013; Mante
et al., 2013; Sussillo et al., 2015; Song et al., 2016, 2017; Yang et al., 2019; Orhan
and Ma, 2019; Sohn et al., 2019; Cueva et al., 2020; Flesch et al., 2022). This latter
approach of training artificial recurrent neural networks (RNNs) has turned out to
be remarkably apt at reproducing neural activities. Given that RNNs are also fully
amenable for analysis, a lot of research has focused on analysing them in attempt to
reverse engineer the mechanisms that the actual recorded neural population might
use. This makes RNNs the currently main method of modelling and analysing higher-
order brain activity. For example, Sohn et al. (2019) showed that RNNs reproduce
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signatures of Bayesian inference observed in PFC, which allowed them to propose a
mechanism of how this inference is implemented in PFC. Yet while in principle fully
amenable to analysis, in practice it is hard to readily explain their behaviour and
mechanism. This has spawned interesting research in how to analyse RNNs in terms
of dynamical motifs (Sussillo and Barak, 2013; Maheswaranathan et al., 2019; Vyas
et al., 2020).

1.2 Our contribution

We position our work at the intersection between the two types of models in-
troduced above: Our principal aim is to reproduce recorded population dynamics
during tasks, yet our models are fully determined by the assumed conceptual model
or function of the modelled brain area. More specifically, we follow a normative rep-
resentational framework and ask how should a task be represented given what we
assume about the function of the brain area. We now introduce the main three pillars
of our work.

1.2.1 Pillar 1: What makes a good representation?

We start by assuming that an observed neural representation is in some form a
representation of the task at hand. It is then natural to ask what a good representation
of a task would be, or, more generally, what makes a good representation. We start
with a simple fact: Whether the representation of something is good depends on
what the representation will be used for. Consider for example the representation
of numbers. If one is concerned with adding numbers together, then an addition
algorithm might work better using the decimal representation of numbers than using
the Roman numeral system. On the other hand, if one is concerned with counting
up to three, the Roman system might be more straightforward. Therefore, first and
foremost, it will be the purpose that determines what a good representation is and
what is not. Or, in other words, before we can answer what a good representation is,
we have to be clear about its purpose.

Once we have completely established what the purpose is, we can in principle look
for the corresponding representation that optimally achieves it. This is usually done
by setting up an objective function that measures how well a given representation
fulfils the purpose, and then changing said representation in a way that improves
the objective function. In neuroscience one can use this approach to build normative
models of neural phenomena. If the optimal representation for a given purpose has
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some characteristic features that can also be found in the brain, then we have evidence
that the brain might actually be concerned with achieving that purpose. One of
the more successful stories of theoretical neuroscience is built on this approach: the
explanation of receptive field properties of neurons in the primary visual cortex (V1,
Olshausen and Field (1996); Bell and Sejnowski (1997); Simoncelli and Olshausen
(2001)). If one assumes that the purpose of early visual areas is to faithfully represent
natural images as sparsely as possible, the edge-detector-like receptive fields observed
in visual cortex of monkeys and cats are to be expected. Similarly, this approach
was used to explain the activity of neurons in primary motor cortex (M1) of monkeys
(Sussillo et al., 2015). If one assumes that the purpose of late motor areas is to drive
muscle activity in a simple way, then the rotational dynamics in M1 are to be expected.

Can we transfer this approach to normatively explain high-order brain activity?
What could be the purpose there that defines the representation of a given task?
Before introducing an answer to this question in the next section, we first note the
complicating fact that for higher-order brain areas we do not have a natural external
frame of reference. This is different to the two cases introduced above: For V1, it is
sensible to relate its properties to the visual world that animals see, as it is to relate
M1 activity to an animal’s movements. The space of visual inputs and the space
of movement outputs are natural frames of reference for the two areas. Higher-order
brain areas are neither purely sensory nor purely motor, but rather they are thought to
be at the centre of converting sensory inputs into sensible motor outputs. Therefore,
the information, and thus the activities, that we can find there are likely influenced
by both sensory and motor information. In this thesis we will propose a theoretical
framework to formalize such a frame of reference and define tasks within it.

1.2.2 Pillar 2: The purpose of higher-order brain areas

We assume that a higher-order brain area’s purpose is in some sense related to
the solution of tasks. Yet tasks can be solved in many different ways, as we saw
above. In order to introduce some of these ways we here quickly introduce the three
main ingredients making up a task: the type of sensory stimuli that are presented to
the animal, the type of responses or actions from the animal, and the task rules that
determine how those stimuli and actions lead to rewards.

The first, and arguably the simplest way, is the habitual behaviour. Here, an
agent has to only remember to take the correct action given any situation. This
habitual type of purpose is the one that is usually, albeit implicitly, assumed in RNN
models, e.g. (Barak et al., 2013; Mante et al., 2013). In order to achieve this habitual
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purpose, an agent, and thus the corresponding representation, needs to remember
everything that is predictive of these correct actions, but beyond that, no further
information is needed. This makes the habitual behaviour inflexible in that it will be
hard to adapt to slight task changes, especially if these changes require information
that was not needed to produce the correct actions previously. On the other hand, a
representation serving the habitual purpose will potentially be cheap to store.

To enable more flexibility, an agent needs richer representations that capture more
information about the environment. Apriori, it is unknown how tasks might change,
and accordingly, it is unknown what additional information should be remembered
about the environment. One possibility is to not only predict the correct actions
but to predict how actions in general lead to rewards. Rewards, by definition, are
of interest to an agent and so might be the ability to predict them. This second,
reward-predictive, way to solve a task thus requires a representation that keeps all
information that is predictive of rewards. As such a representation is rich enough
to capture how actions lead to rewards, it will also be rich enough to predict the
actions that will maximize these rewards, i.e. the correct actions. Therefore, the
representation required by the reward-predictive purpose must be at least as rich as
the one required by the habitual purpose.

A third way is to also predict the sensory inputs that are predictive of rewards,
so called reward cues. Such a representation will allow to plan for correct behaviour,
even without ever having experienced a task. Lastly, an agent can try to predict
everything within the task environment, i.e. to build a model of the environment.
This model-based way will require the richest representation and it will allow for
quick relearning of a wide range of changes to the task.

Beforehand, we will not know which of these purposes will apply, but they will
all require representations of different complexities that address different fundamental
requirements of how tasks may be solved. For example, all these purposes will pose
different requirements on what an agent has to remember. At the same time, they
will leave open what an agent can forget. As a result, there will be infinitely many
representations that can fulfil each of these purposes. For example, the rich model-
based representation will be sufficient to fulfil the habitual purpose, also. Thus, even
given a task and an assumed purpose, we still do not know which of the resulting
representations we should choose in order to compare it to neural data. Besides the
contribution of clearly defining different purposes, we will next introduce the rationale
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for our proposal of how to find the one purpose-sufficient representation that should
be compared to data.

1.2.3 Pillar 3: Efficiency, compression, and making well defined rep-
resentations

Suppose we want to test whether a particular neural representation recorded dur-
ing a directional categorization task serves a habitual purpose. In this task, a mark
is presented at one of eight locations on a screen, and an agent must decide whether
that mark is to the right or left of the screen’s center. To specify the correct action, as
required by the habitual purpose, a binary representation that specifies whether the
mark stimulus is on the left or right is sufficient. However, a second representation
specifying the exact position of the mark would also work. Or even a representation
that includes an arbitrary variable in the environment, such as the temperature in the
room. So which of these different representations should we compare to the neural
recordings?

Apriori, all of these representations are valid. However, the latter two repre-
sentations contain information that is not needed for the habitual purpose, so it is
arbitrary which of these two representations we choose. Given the habitual purpose,
we can only be sure that the binary information of left versus right has to be repre-
sented, anything else is indeterminate. Accordingly, our approach here is to choose
the representation that includes all purpose-relevant information, but otherwise ex-
cludes irrelevant information. In other words, we are looking for the simplest or least
complex representation sufficient for a purpose.

More specifically, we measure the complexity of a representation using the infor-
mation theoretic concept of entropy (Shannon, 1948). Briefly, entropy is a feature of
a random variable and it measures how surprised we are when observing its outcomes.
If the outcome is always the same, entropy is minimal, yet if outcomes tend to be
different, then entropy is high. In the case of a task representation, the representation
of a particular trial is the outcome, and if all trials are represented the same, then
the entropy is minimal. In the first example representation of our above task, trials
corresponding to marks on the right-hand side will have identical representations, and
so will the trials with marks on the left. The resulting overall representation will thus
be of low entropy as it is localized around two points of the representation space only.
The faithful representation of the marks’ locations, on the other hand, would result
in a representation that is localized around eight points, and thus corresponds to a
higher entropy representation.
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In practice, we will show that finding this simplest, or lowest entropy, representa-
tion corresponds to compressing the initial task space, the external frame of reference
introduced above, as much as possible, while preserving all task-relevant information.
This corresponds to the information bottleneck principle (Tishby et al., 2000). Ad-
ditionally, we assume that the task-relevant information must be available as a linear
readout from the representation. Linear readouts have proven useful in both analysing
(Machens et al., 2010; Mante et al., 2013; Cunningham and Yu, 2014) neural activity
as well as in models of neural activity, as for example in the recurrent neural networks
discussed above.

We call the result an efficient task representation for a given purpose and
they provide normative predictions of how task representations should look like given
an assumed purpose. These efficient task representations generalize the theory of
efficient coding, which states that neural systems shall eliminate all irrelevant or re-
dundant information (Attneave, 1954; Barlow, 1961; Simoncelli and Olshausen, 2001),
to higher-order brain areas. We can then finally compare these efficient representa-
tions to the neural recordings, and we will do this comparison by applying dPCA on
both the neural recordings as well as the normative predictions. If the neural rep-
resentation shows any feature that goes beyond, for example, the efficient habitual
representation, then our habitual assumption is too narrow and we have to reassess
and modify it. If an efficient representation matches the recordings well, on the other
hand, we have evidence that the brain area might be serving the assumed purpose in
an efficient manner.

Besides the justification from a statistical perspective, considering efficient, or
compressed, representations has several other advantages. First, the resulting com-
pressed representation will be fully determined by the task as well as the purpose.
For example, if the resulting representation has a transient fluctuation in its dynam-
ics that is also seen in the recorded neural representation, then this fluctuation has
an explanation in either the requirements of the purpose, or the specifics of the task.
This will make it more straightforward to interpret the resulting model representation.
Second, from a computational perspective, compressed representations are cheaper to
store (MacKay et al., 2003), and they may generalize better over task variations that
only concern task irrelevant information.

Our contributions are thus the following: From a conceptual viewpoint, we intro-
duce a novel normative perspective to analyse higher-order brain activity. We define a
frame of reference for higher-order brain areas and formalize tasks and purposes within
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it. We lastly propose a method of how to find the corresponding efficient represen-
tations. We will use this approach to propose novel interpretations and explanations
of the neural representations in three example tasks (Romo et al., 1999; Mante et al.,
2013; Inagaki et al., 2019). As a result, we provide a novel perspective and explanation
of working memory contents and dynamics, and the purposes of higher-order brain
areas.

1.3 General outline of the chapters

We start out, in chapter two, by exploring and highlighting commonalities and
differences between neural representations recorded by various labs in higher-order
brain areas during various tasks. We then present the main results of our work in the
third chapter, by introducing the methodology and the results from its application
to three data sets. In chapter four we add an earlier, published, version of the work
(Berger and Machens, 2020). Author contributions to each chapter are presented at
the beginning of each chapter, followed by a brief summary of the chapter’s contents.
Finally, we discuss the work of the thesis, the main conclusions, and open problems.
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Chapter 2

Task representations in
higher-order brain areas

2.1 Contributions

All the analyses were done by Severin Berger under the supervision of Christian
Machens.

2.2 Summary

In order to explain higher-order brain activity, we must first agree upon what ex-
actly needs explaining. We thus analyse three data sets with recordings from higher-
order brain areas. The first two were recorded in monkey PFC during a somatosen-
sory working memory task and a context-dependent perceptual decision making task,
respectively (Romo et al., 1999; Mante et al., 2013). The third set of recordings orig-
inates from mouse ALM during a delayed licking task (Inagaki et al., 2019). Using a
standardized analysis across data sets, we point out common and distinctive features
from the three data sets. First, all data sets analysed show relatively low-dimensional
activity, as pointed out before. Second, all neural activities show a clear represen-
tation of the variables relevant during the task. At the same time, we find that not
only task relevant variables are presented. Similarly, and thirdly, we find interesting
dynamics that do not obviously follow from the task structure. Lastly, we find that
the neural representations seem to be directly influenced by the precise structure of
the task.
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2.3 Introduction

We here set out to highlight both common and distinctive features of higher-
order brain representations in order to clarify what exactly we are trying to explain
with the models that we will develop in the following chapters. In general, a model
that captures the inner workings of a given brain area should reproduce that area’s
activity across various tasks. Thus, it is important to also analyse and describe the
neural recordings during various tasks in a standardized way.

In order to do so, we here re-analyse published data in a standardized way. We
choose three data sets: The first consists of neural recordings from monkey PFC
during a somatosensory working memory task (Romo et al., 1999). This data is a
classical example of persistent delay activity in monkey PFC and has been the subject
to a lot of modelling and analysis work (for example see Machens et al. (2005); Barak
et al. (2010, 2013); Song et al. (2016); Machens et al. (2010); Kobak et al. (2016)).
The second data set is again from monkey PFC, recorded during a context-dependent
decision making task (Mante et al., 2013). Having two data sets from the PFC of
monkeys, even though from different sub-areas, lets us investigate and scrutinize how
the neural representations change when the task also changes. Lastly, we analyse
data from mouse ALM during a delayed licking task (Inagaki et al., 2019). This
task was selected in order to compare data across species and across brain areas.
The ALM is hypothesized to correspond to the premotor cortex in monkeys, a brain
area immediately downstream to the PFC. Furthermore, the data set by Inagaki
et al. (2019) is special in that it includes recordings from two variations of the same
delayed licking task that only varies in the specifics of the delay period timing. By
investigating how this minor change in task structure affects the corresponding neural
representation, we can constrain our models more strongly.

The choice of our analysis method is based on two criteria. First, and most
importantly, the method should generate a summary of the neural recordings that
captures most of the variance in the data. As we apriori can not know what in the
neural recordings is important, our analysis should aim to leave as little as possible
ignored. Second, the analysis results should be interpretable both in the way they
relate to the actual neural recordings and also in how they relate to the task at hand.

The most commonly used method to analyse neural recordings, i.e. PCA, fulfils
the first criterion as it is designed to succinctly capture as much variance in the data
as possible. It also fulfils the criterion of relating to the neural recordings in an inter-
pretable way, as PCA does this linearly. Yet, it fails to clearly carve out how the neural
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representation depends on the task at hand, as it is an unsupervised method. There
are a few methods that relax this unsupervised assumption and specialize in carv-
ing out those task dependencies, such as ‘targeted dimensionality reduction’ (Mante
et al., 2013; Aoi et al., 2020), and demixed PCA (dPCA, Kobak et al. (2016)). Here
we focus on the latter. In dPCA, one can specify the conditions under which the data
was recorded, which it will then use to find linear projections that capture as much
variance as possible, as in PCA, but also specifically separate the different conditions.

By applying dPCA on the above three tasks, we show that, first, all data sets
are relatively low-dimensional. This has been noted before and it seems to be a
main feature of higher-order brain representations (see e.g. Humphries (2020) for a
recent discussion). Second, all neural representations show a clear dependency on
the variables relevant during the task. At the same time, we find that variables are
represented that go beyond the apparently relevant variables. Third and last, we
highlight interesting dynamical features in all recordings. These dynamics are not
readily explained from the structure of the task at hand, yet the dynamics do seem
to be immediately affected by that structure.

2.4 Results

2.4.1 Monkey-PFC representation in a somatosensory working mem-
ory task

The somatosensory working memory task study by Romo et al. (1999) is a classical
demonstration of persistent working memory activity in the lateral PFC of monkeys.
In this task, a monkey is asked to discriminate the frequency of two vibrotactile
stimuli, F1 and F2, that are presented one after the other and separated by a fixed
delay period. Depending on which frequency is higher, the monkey has to report its
choice by pushing one of two buttons (Fig.2.1a).

Two monkeys were trained on this task and spikes were recorded from their PFC,
resulting in a total of 1354 units. The persistent activity during this task has first
been shown using single neuron analysis (Romo et al., 1999; Brody et al., 2003), and
we here reviews some of these results (Fig.2.1b). Persistently active neurons, such
as the example neuron 1 (Fig.2.1b,top), show clear selectivity to the frequency of the
presented first vibrotactile stimulus F1, starting from its presentation and lasting until
the end of the trial. While the activity moves faster during stimulus presentation, it
is more or less stationary during the delay period. Other neurons, such as example
neuron 2 (Fig.2.1b,bottom), are also selective to F1, yet their dynamics are distinctly
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Figure 2.1: PFC representation of somatosensory working memory task in monkeys (Romo
et al., 1999). a) In the task, monkeys receive a vibratory stimulus (F1) on their fingertips
for half a second, followed by a three second delay period after which a second stimulus (F2)
is presented, again for half a second. The monkey has to discern whether F1 or F2 was of
greater frequency and respond accordingly by pushing a button. The color code of the trial
types used in the rest of this figure is depicted at the bottom. F1 is sampled from six possible
frequencies, indicated by the colored lines. The two decisions are indicated by solid and dashed
lines, respectively. b) Peri-stimulus time histograms of two example PFC neurons. Stimulus
presentation periods are indicated by vertical bars. c) Demixed PCA of the population of
the 785 selected units recorded in PFC. The first row corresponds to the first three condition
independent components, the middle row to the first three stimulus components, and the last
row to the first three decision components. How much variance each component explains is
indicated as a percentage. Only correct trials were analysed, and again stimulus presentation
periods are indicated by vertical bars. Monkey figure in a) adapted from (Romo and Salinas,
2003)
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different. Example neuron 2 is mostly inactive during stimulus presentation, but
then becomes transiently active during the delay period. In fact, the population as
a whole shows a multitude of firing patterns (Romo et al., 1999; Brody et al., 2003;
Machens et al., 2010). Furthermore, neurons are also selective to the animal’s decision
(Fig.2.1b,top).

To get a concise summary of both the dynamics as well as the dependence of the
representation on stimulus and decision, we ran dPCA on the population (Fig.2.1c),
following (Kobak et al., 2016) and reproducing the results of Kobak et al. (2016). As
a result we get three sets of components: First, we have the condition-independent
components which capture the variance in the data that is common to all conditions
(Fig.2.1c,top row). Thus, these components are due to neural activity that is not
selective to the stimuli presented nor the decisions made by the animal. The first
three of them capture more than half of the variance in the data. Second, we have
the stimulus components which capture the variance in the data that is due to the
different F1 values presented (Fig.2.1c, middle row). These components clearly show
that the population as a whole encodes the frequency stimulus. In particular, it does
so to a similar extent both during the stimulus presentation period as well as during
the delay period, as already indicated by the single neuron analysis. At the same time,
the stimulus components explain much less variance than the condition-independent
ones. Lastly, we have the decision components which capture the change in neural
activity due to the animal choosing one option versus the other (Fig.2.1c, bottom
row). Of course, these components only show decision related activity once F2 is
presented, as before no decision could have been made. These component explain a
similar amount of variance as the stimulus components.

All together, the demixed principal components paint a picture of the neural
representation that seems comprehensive, yet also raises some questions. As PFC is
considered crucial for working memory and the solution of tasks in general, the encod-
ing of the stimulus information throughout the delay period makes sense, and also the
decision component. However, the stimulus components also show that the stimulus
information is moving around throughout the trial. These dynamics go beyond what
one might expect from a simple stimulus short term memory.

Similarly, the condition-independent components also show non-trivial dynamics.
Furthermore, they capture the majority of the variance in the data. As they are
not encoding the stimulus nor the decision, the question poses itself: what are they
doing? One possibility is that they encode something that is completely unrelated to
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the task. This seems unlikely, though, as the condition-independent activity is clearly
locked to the timing of the task. Another possibility is that this activity corresponds
to some other function, such as for example the animal’s attention, that is locked
to the task, but uncontrolled by the experimenter. A third possibility is that this
condition-independent activity simply keeps track of the passage of time in a trial, so
that the animal knows how far in the trial they are. From the recordings alone it is
hard to discern between these different possibilities.

2.4.2 Monkey-PFC representation in a context-dependent percep-
tual decision making task

The study of Mante et al. (2013) was influential in a number of ways. It addressed
the question of how flexible context-dependent behaviour is enabled by PFC. They
trained monkeys on a task that required them to integrate noisy visual information
towards one of two choices (Fig.2.2a). Crucially, which of the two choices is the correct
one depended on the context that was provided at the beginning of each trial. In the
first context, the motion context, the direction of motion in the visual stimulus was
determining which choice was correct. In the second context, the color context, it was
the color of the visual stimulus that determined which choice was correct. The animal
thus had to flexibly switch between two contexts.

Mante et al. (2013) then recorded neural activity in the PFC, and the frontal eye
fields in specific, of two monkeys while they performed this rather complex task. Using
a novel type of population level analysis they could paint a clear picture of how the
neural population was treating the two types of information: Both motion and color
information were available in the PFC population activity, irrespective of the context.
They finally proposed an explanation for this surprising finding using an artificial RNN
model that was trained on the same task. In particular, they proposed a mechanism
for how a particular decision is formed: Both motion and color information enters
PFC, yet only one of them is integrated towards a decision, depending on the context.

For standardization purposes, we here re-analyse the PFC activity during the
stimulus presentation period using dPCA (see Materials and Methods and Fig.2.2b).
We are demixing motion information in both the motion and color context trials,
and find motion information in both (Fig.2.2b top row). Similarly, we demix color
information in both contexts, and find color information in both (Fig.2.2b middle
row). This reproduces Mante et al. (2013)’s findings. Lastly, we project trials from
both contexts onto the first two motion axes and find that in both contexts, motion
information is represented similarly (Fig.2.2b bottom left). The same is true for color
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Figure 2.2: PFC representation of context-dependent perceptual decision making task in
monkeys (Mante et al., 2013). a) In this task, the monkey has to make a decision based on
a random dot stimulus that varies in two ways, the direction (left, right) in which the dots
move, and their coloring (red, green). Depending on the context, the monkey has to make a
decision either based on motion or on color. Throughout each trial, the context (motion or
color) is cued by the shape of the fixation cue (yellow rectangle versus blue cross). After the
random dot stimulus and a delay period of random length, the removal of the fixation cue
signals the start of the window in which the monkey has to respond by saccading towards one
of the targets (green, red). The colors used to code the trial types for the rest of the figure are
depicted at the bottom. b) Demixed principal component analyses of PFC recordings. Only
data during the stimulus presentation period, i.e. during the random dots, are analysed. In
the left column, motion information is demixed, and in the right column, color information.
The first two rows correspond to the two contexts. For example, the top left plot shows the
first decision component on the horizontal axis, and the first motion component on the vertical
axis, from motion context trials plotted against each other. The lines show trial-averages of
the six motion coherence categories, and are colored according to the motion coherence. The
fractions of explained variance for both components are indicated in the inset. The top right
plot shows the first decision component on the horizontal axis, and the first color component
on the vertical axis, from the motion context trials. The lines are here colored by the out-of-
context color coherence. Solid and dashed lines correspond to the two responses, respectively.
The middle row is analogous. The last row depicts the motion and color subspaces. The left
plot shows the first two motion components, and the right plot the first two color components.
In the last row, the two contexts, motion and color, are coded by solid and dashed lines,
respectively. In each panel, horizontal and vertical axes have the same scale. Monkey figure
in a) adapted from (Romo and Salinas, 2003)
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information (Fig.2.2b bottom right), further reproducing the findings of Mante et al.
(2013). In each of the contexts, the first decision component explains around 15% of
the variance in the trial-averaged data.

A striking question that these data pose is about the reason why both types
of information are present. Is it for a mechanistic reason, as proposed by Mante
et al. (2013), or is there a deeper reason why both types of information are present?
This type of question points to an important feature that has to be addressed when
explaining higher-order brain activity, namely which variables are represented in the
first place.

2.4.3 Mouse-ALM representation in a delayed licking task

The study by Inagaki et al. (2019) is uniquely positioned to constrain models
of higher-order brain activity. They study the neural responses in ALM of mice in
a simple delayed licking task (Fig.2.3a). In this task a mouse is presented, during
a sample period, with an auditory instruction stimulus that can take two possible
frequencies. After a delay period, a go cue is presented which signals the mouse to
report a decision by licking one of two water delivery ports. Which of the two ports is
rewarded will depend on the initial instruction cue. Interestingly, they trained mice on
two different versions of the task: The first consists of a delay period of fixed length,
while the second version consists of a delay period of randomized length. This subtle
change in the structure of the task lets us scrutinize the precise dependence of neural
representations on such changes. Accordingly, it lets us constrain our models.

Here, we run dPCA on the population recordings from ALM (Fig.2.3b). For both
tasks, we see that the first three condition-independent components explain well above
half of the variance in the data. Furthermore, the overall profile of these components
is quite similar during both tasks: Slow activity up until the go cue, after which
activity moves fast. Similarly, the stimulus components also move slow before the go
cue, followed by fast dynamics, and again, their profile is quite similar during both
tasks.

Apart from all these similarities between the neural representations of the two
tasks, there is one striking difference. The dynamics during the delay period are
almost stationary during the random delay task, while they are slowly ramping during
the fixed delay task. This dynamical switch was already pointed out by the authors
on the basis of single neuron responses (Inagaki et al., 2019). Here, we now show that
the phenomenon also exists on a population level. It is both visible in the condition-
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Figure 2.3: ALM representation of two delayed licking tasks in mice Inagaki et al. (2019).
a) In this task, a mouse is first presented with one of two possible tones, here color coded by
red and blue, during a sample period. After a following delay period, a go cue signals the
mouse to respond and report its decision based on the initial tone. There are two versions
of the task, depicted on the right. The first has a delay period of fixed length (top), and the
second a delay period of random length (bottom). b) Demixed principal component analysis
of 755 ALM neurons in the fixed delay task (left) and 1000 ALM neurons in the random delay
task (right). Only correct trials are analysed. The top row shows the first three condition-
independent components of each task, and the second row the first three stimulus components.
As only correct trials are analysed, stimulus and decision coincide. The stimulus components
thus include decision information. In the random delay task panel, only trials with a two
second delay period are analysed. In each sub-panel, the sample period is indicated by the
first two vertical bars and the go cue by the third vertical bar. Left panel of a) from (Inagaki
et al., 2019).
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independent components, as well as in the stimulus components. For example, consider
the first stimulus components. In both tasks, activity is ramping up during the sample
period, and while it keeps on ramping up in the following delay period during the fixed
delay task, the activity is quite abruptly slowing down in the random delay task.

This dynamical switch based on a slight change in the time structure of the
task first shows us that neural representations, at least in ALM, are quite directly
influenced by the specifics of the task. Furthermore, it raises the questions of what
the ramping dynamics in the fixed delay task mean. In this task, the mice are able to
predict when they will be able to respond. This would allow them to anticipate their
response in order to then quickly respond once the go cue was presented. Ramping
dynamics could thus correspond to preparatory activity. Similarly, the ramping could
correspond to a prediction of when the go cue is going to occur.

2.5 Discussion

We have analysed population recordings from three studies, two model organisms
and two higher-order brain areas, using dPCA. We saw that all data sets were quite
low-dimensional, meaning that only a few dimensions in the high-dimensional neural
space actually varied. This might not be surprising, given the low complexity of the
tasks studied and a possible constraint on the time scale with which neural systems
can vary (see e.g. Gao et al. (2017)). At the same time, there is no reason to believe
that neural populations underlie such mechanistic constraints and in principle they
should be able to explore all their available dimensions even in the simplest of tasks.
This raises the question of why higher-order representations are low-dimensional.

A second overall theme that we observed was that all neural activities showed a
clear dependence on the relevant task variables, the reason why we call these activities
neural task representations. At the same time, in the task by Mante et al. (2013), we
saw the representation of a task variable that was not strictly relevant. Furthermore,
how the representation of these task variables, be they relevant or irrelevant, changed
over time, i.e. their dynamics, was quite complex, and it is not obvious why we see
them.

Such representational dynamics have received quite a lot of attention, especially
during delay periods, such as seen in the tasks by Romo et al. (1999) and Inagaki et al.
(2019), as this activity might correspond to short-term memory or working memory.
When this kind of activity — often called persistent activity — was first observed
(Fuster and Alexander, 1971), not much attention was laid on their dynamics. More
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recently, researchers have found a variety of different dynamics, from slow, almost
stationary dynamics, to faster dynamics, such as ramping. Dynamics where activity
is passed from one neuron to the next, so called sequential activity, have also been
observed, see e.g. (Fujisawa et al., 2008; Harvey et al., 2012). This has caused a
discussion about the nature of working memory (Sreenivasan and D’Esposito, 2019).
Mechanistic arguments have dominated this discussion, such as whether working mem-
ory is implemented by attractor or by feedforward dynamics (Goldman, 2009; Ganguli
et al., 2008). The study by Inagaki et al. (2019) shows, though, that task structure
has an immediate impact on the delay dynamics. This raises the question of what the
underlying reason for such dynamics is.

Lastly, we saw that condition-independent activity contributed heavily to the
overall neural variance. As it is locked to the trial structure, it probably has also a
role to play in the way the respective brain areas are functioning. What this role is,
is another open question.

2.6 Materials and Methods

All demixed principal component analyses (dPCA, Kobak et al. (2016)) were done
with the python (Van Rossum and Drake Jr, 1995) module from (Kobak et al., 2016).
The analysis was regularized to prevent overfitting, and the value of the regularization
parameter was determined by cross-validation.

2.6.1 Somatosensory working memory task

Extracellular recordings from two monkeys were available under https://crcns.

org/data-sets/pfc/pfc-4/about-pfc-2 (Romo et al., 1999; Brody et al., 2003;
Romo et al., 2016), with a total of 1354 units. We excluded all error trials and
all units with less than 5 trials per condition from further analysis. This yielded 785
units. For pre-processing, we binned spikes in 10 milliseconds bins and then convolved
them with a Gaussian kernel with a standard deviation of 50 milliseconds. We then
ran dPCA as described in (Kobak et al., 2016).

2.6.2 Context-dependent perceptual decision making task

We downloaded the data referred to in Mante et al. (2013), that includes PFC
activity of two monkeys, A and F, under https://www.ini.uzh.ch/en/research/

groups/mante/data.html. Data is available from 100ms after stimulus onset until
100ms after dots offset. Here, we analysed data from monkey A only (as in Fig. 2 of
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Mante et al. (2013)). This yielded a total of 762 units. We then binned spike trains in
40ms windows. For monkey A, average motion coherences were 0.05, 0.15, and 0.50,
in both directions, and average color coherences were 0.06, 0.18, and 0.50, in both
directions. We used these averages as categories and every specific trial was assigned
to the closest category. All together we thus have 36 stimulus categories. Together
with the two contexts, we have 72 categories or trial types. We call this data set D.

Our goal is to demix context, motion, color, and decision information in this
data set. Unfortunately, for many of the 72 trial types we do not have any data. For
example, for easy trials, e.g. high motion coherence, there will be very few, if any, error
trials. As a result, for such a trial type, we won’t be able to demix decision from motion
coherence. In order to allow dPCA to demix the numerous parameters in this task,
we therefore ran a linear regression, following Mante et al. (2013), and used the result
to interpolate the missing trial categories. The activity of each unit i in trial k was
modelled as a linear function of the trial parameters, i.e. the context ek ∈ {−1, 1} for
motion and color contest respectively, the normalized motion coherence −1 ≤ mk ≤ 1,
the normalized color coherence −1 ≤ ck ≤ 1, the decision dk ∈ {−1, 1} and all their
products with the context:

rk
i (t) = βe

i (t)ek + βm
i (t)mk + βc

i (t)ck + βd
i (t)dk + βem

i (t)ekem

+ βec
i (t)ekec + βed

i (t)eked + βi(t)

Here, βj
i (t) corresponds to the linear coefficient, which is a function of time, of unit

i and task variable j, and βi(t) is an offset, or condition-independent, term. The
coefficients were fit by linear regression, which we then used to reconstruct the unit
activities. Furthermore, we used the coefficients to generate, or interpolate, data for
the missing trial types. In particular, as this linear regression only models the average
response per trial type, we added independent Gaussian noise with standard deviation
0.1 to the trial parameters, and generated the corresponding interpolated rates. By
repeating this process ten times, we ended up with ten interpolated trials for every
trial type. We call the resulting data set DLR. We then have two data sets, the
interpolated data set DLR and the original data set D.

We then ran dPCA on DLR, demixing context, motion coherence, color coherence,
decision, and time. The regularization weight was optimized by cross-validation on
the interpolated trial data. This analysis gave us the principal axes in neural state
space that demix context, motion coherence, color coherence, decision, and time. We
then used the original data set D, and projected the trial averages from D, which we
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further smoothed by a Gaussian kernel with a standard deviation of 120ms, onto these
principal axes. First, we selected all trials from the motion context, sorted them by
motion coherence, and projected them onto the first decision axis and the first motion
axis (Fig.2.2b top left). The fraction of explained variance indicated in the panel was
calculated using the motion context trials only. Second, we sorted the trials by color
coherence, i.e. by the irrelevant stimulus, and projected them onto the first decision
axis and the first color axis (Fig.2.2b top right). The middle row of figure 2.2b shows
the analogous projections for the color context trials. Lastly, we projected both the
motion context trials as well as the color context trials onto the first two motion axes
(Fig.2.2b bottom left), and the first two color axes (Fig.2.2b bottom right).

2.6.3 Delayed licking task

We downloaded the data referred to in Inagaki et al. (2019) under https:

//figshare.com/articles/dataset/Discrete_attractor_dynamics_underlies_

persistent_activity_in_the_frontal_cortex/7489253, that includes silicone
probe recordings from both the fixed delay task and the random delay task. We
only analysed correct trials without any perturbations. The fixed delay task data
was recorded from six mice in a total of 20 sessions. We pooled all recordings which
yielded a total of 755 units. In the random delay task recordings were taken from
nine mice in a total of 34 sessions, which resulted in 1307 units.

In both tasks, we only kept trials with a delay period of 2 seconds. We then
binned spikes in non-overlapping windows of 10 milliseconds, the results of which we
then further convolved with a Gaussian with a standard deviation of 50 milliseconds.
We then aligned all trials to the sample period onset, and analysed data from one
second before the sample period onset up through 1.5 seconds after the go cue for the
fixed delay task, and up through 1 second after to go cue for the random delay task.

We then ran dPCA by demixing stimulus information and condition-independent
information. For plotting, we further smoothed the data by convolution with a Gaus-
sian with a standard deviation of 100 milliseconds.
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Chapter 3

Efficient representations for
habitual and model-based
behaviours

3.1 Contributions

Conceptualization and method development by Severin Berger and Christian
Machens. Simulations were done by Severin Berger.

3.2 Summary

We set out to develop normative models for neural representations in higher-order
brain areas. While such neural representations often show a clear dependence on the
task at hand — and indeed, models with recurrent neural networks (RNNs) trained
for the same task often reproduce the representations well — it is often unclear why
they look the way they do. To answer this ‘why’ question, we first define a clear
hypothesis about the purpose of a particular observed representation, and then make
a normative prediction about what a neural task representation should look like based
on the hypothesised purpose. Specifically, we examine two purposes, the purpose of
supporting habitual behaviour and the purpose of supporting model-based behaviour,
and we formalise the two in a generalised framework of partially observable reinforce-
ment learning. To make a normative prediction, we must then choose a representation
or state space of reinforcement learning that is sufficient to satisfy the purpose, but
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there are infinitely many from which to choose. Thus, we invoke the information
bottleneck principle to find a representation that is as compact as possible but still
purpose-sufficient, and we call such a representation efficient. Efficient habitual and
efficient model-based representations can then be compared to neural recordings, and
we do this for various tasks and neural recordings in both monkeys and rodents. Not
surprisingly, for two datasets of monkey PFC (prefrontal cortex) recordings, we find
that the efficient model-based representations match better than the efficient habitual
ones. At the same time, however, this is surprising because the RNNs used in previous
models generally follow the habitual hypothesis. In the mouse ALM (anterior lateral
motor cortex), we find better agreement with the habitual hypothesis.

3.3 Introduction

Higher-order brain areas, such as the PFC, are thought to be crucial for enabling
complex animal behaviours (Fuster, 2015). Understanding how these brain areas work
is thus of interest not only from a neuroscientific perspective, but from an engineering
perspective as well, as today’s artificial intelligence systems often lack the versatility
and flexibility of animal intelligence (Lake et al., 2017; Russin et al., 2020). Scrutiniz-
ing higher-order brain areas has thus a long history, and for example for PFC, over
the years, a consensus about their function has crystallised: it is involved in the exec-
utive functions of planning, decision making, working memory, and cognitive control
(Fuster, 2015). However, the neural basis of these functions is often unclear.

When looking at higher-order brain representations, they often vary in compli-
cated ways across stimuli (Rigotti et al., 2013), tasks (Inagaki et al., 2019), and time.
How neural activities vary over time has specifically raised interest in tasks that re-
quire to keep a memory of certain task variables. In such working memory (WM)
tasks, neurons sometimes fire with slowly varying rates (Fuster and Alexander, 1971;
Funahashi et al., 1989; Inagaki et al., 2019), and in other tasks, they fire more dy-
namically (Romo et al., 1999; Brody et al., 2003), or even in sequence (Fujisawa et al.,
2008; Harvey et al., 2012). Indeed, dynamic WM activity is rather the rule than the
exception (Sreenivasan and D’Esposito, 2019). Yet why such dynamics are present
has remained unclear.

Higher-order brain activities, such as for example during WM tasks, have so far
mainly been modelled from a mechanistic, network perspective. Earlier work has
focused on how a network of neurons can store memory over time (Goldman, 2009;
Ganguli et al., 2008; Compte et al., 2000; Ben-Yishai et al., 1995). A next iteration of
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network models adopted a perspective that is more oriented towards the function of
higher-order brain areas (Wang, 2002; Machens et al., 2005). Nowadays, mostly RNNs
are used that have been trained on the same task as the animal. Such RNN models
ask how higher-order brain areas may implement task solutions, and they have often
been quite successful at reproducing task representations in higher-order brain areas
(Barak et al., 2013; Mante et al., 2013; Song et al., 2016; Inagaki et al., 2019). However,
the training of RNNs is usually an ill-posed problem, in the sense that, at least in
principle, multiple solutions exist for any particular task (Maheswaranathan et al.,
2019). Accordingly, a specific match of a trained RNN to data can be serendipitous,
providing only limited insight into the reasons underlying the similarity.

At the same time, none of the RNN solutions may match the neural data in the
first place. In such cases, the training targets, and thus the underlying assumption
about the modelled neural representation’s purpose, may be adapted until a match
is found, for example by requiring an RNN to produce its output in a different form
or by requiring it to output additional variables (Cueva et al., 2020). However, this
raises the question whether a given match of a model to neural data is due to the
particular choice of the training targets or rather due to the ill-position of the training
objective.

Here we take a normative approach by first stating the purpose of an agent’s in-
ternal task representation, and thus, the purpose of a modelled neural representation.
We distinguish two purposes: First, the purpose of a ‘habitual agent’ is to take the cor-
rect actions. This is the purpose usually assumed in the RNN approach. Second, the
purpose of a ‘model-based agent’ is to predict all ethologically relevant observations,
such as task stimuli and rewards. We define these two behavioural strategies within
the framework of partially observable reinforcement learning. Each strategy imposes
different constraints on the representation of task variables and its dynamics. We then
follow the efficient coding hypothesis which states that neural circuits should eliminate
all redundant or irrelevant information (Attneave, 1954; Barlow, 1961; Simoncelli and
Olshausen, 2001). Specifically, we search, among all representations consistent with
the assumed purpose, the one that eliminates all irrelevant and redundant information,
and we call such task representations efficient.

We follow the efficient coding hypothesis for several reasons: First, it has already
proven useful in explaining the tuning properties of neurons in several sensory areas,
namely in the primary visual cortex (Bell and Sejnowski, 1997; Olshausen and Field,
1996; Simoncelli and Olshausen, 2001), in the retina (Atick and Redlich, 1992), and
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in the cochlea (Lewicki, 2002). It is therefore attractive to test the efficient coding
hypothesis for higher-order brain areas as well. Second, from a modelling perspective,
given a task and a purpose, one should always use the simplest explanation, accord-
ing to the principle of parsimony (MacKay et al., 2003). Third, all features in an
efficient representation must either follow from the particular task, or the assumed
purpose. This leaves the interpretation of the resulting model representation more
straightforward. Lastly, efficiency is beneficial from a computational perspective as
well: efficient representations are cheaper to store as they include only relevant in-
formation (MacKay et al., 2003), and they may generalize better over task variations
that concern irrelevant information.

We showcase our approach on three tasks: A classical WM task in monkeys with
PFC recordings (Romo et al., 1999), a context-dependent perceptual decision making
task, also in monkeys with PFC recordings (Mante et al., 2013), and a delayed licking
task in mice with ALM recordings (Inagaki et al., 2019). Formally, we parameterize
the habitual and model-based representations with switching linear dynamical systems
(SLDS, Barber (2006); Linderman et al. (2017); Petreska et al. (2011)) regularized by
an information bottleneck (Tishby et al., 2000), which squeezes out all the information
in the representation that is not needed to achieve the behavioural purpose. We then
compare the resulting efficient representations to the recorded neural representations
by a population level analysis (Kobak et al., 2016).

For both of the tasks with PFC recordings, we find that the efficient habitual
representations are missing key features. In particular, the characteristic population
dynamics recorded by Romo et al. (1999) are not reproduced, and neither is the char-
acteristic representation of out-of-context information as observed by Mante et al.
(2013). In contrast, the efficient model-based representations reproduce these key fea-
tures, and further provide a close match on the population level in general. For the
task with ALM recordings, we find the opposite: the rich efficient model-based rep-
resentation shows little similarity, while the efficient habitual representation matches
quite well overall, but misses the key feature of how the ALM dynamics change over
task variations. As the modelled representational features are directly interpretable
in terms of the purpose they serve, we are able to identify an explanation for how the
habitual purpose is insufficient. We then make the corresponding adjustment to the
habitual purpose and finally find good agreement between the resulting efficient rep-
resentation and the ALM recordings. Our approach thus provides potential insights
into the goals underlying higher-order brain representations.
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Figure 3.1: A normative framework for modelling neural representations. a) Our goal is to
model neural task representations. Our model first depends on the structure of the task at
hand, and second, it depends on the purpose that we assume the representation is serving.
The purposes correspond to different strategies of solving a task, and they may correspond
to predicting the correct actions or decisions (H1), or the sensory inputs (H2), among others.
The resulting model representation is compared to the neural representation using popula-
tion analyses. b) Every purpose may be fulfilled by many representations. The full circle
corresponds to the set of all possible representations, and the shading corresponds to the
complexity of a representation. Each purpose can be achieved by a subset. We then look for
the representation within each subset that is of least complexity, and we call them efficient
representations. c) We can find such efficient representations for each purpose, and compare
them to the neural representation of a certain brain area or data set (black points).

3.4 Results

3.4.1 A normative framework for modelling neural representations

A neural representation, or any other representation for that matter, is always a
representation of something as well as a representation for something. Thus, the core
assumption in this work is that every neural representation serves a purpose. Apriori,
we of course can not be sure about what the purpose is, yet if we knew it, we could
directly investigate how the recorded neural representation is serving it, which would
open up many different avenues of research and therapy. Until then, we have to assume
what the purpose could be, in other words, we have to make hypotheses. Given a hy-
pothesized purpose, we can generate the corresponding representation and then gather
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evidence for it if the representation compares well to neural data (Fig.3.1a). While
this is a straightforward approach, there are two immediate problems in practice.

First, what is a sensible set of hypotheses to test? Preferably, this depends on
the prior knowledge we have about the brain area from which the neural recordings
originate. Our prior knowledge may tell us about the type of information an area is
concerned with. For example, if we are interested in explaining the recordings of a
visual area, then our hypotheses will probably have to be concerned with the visual
world the animal is experiencing. Similarly, for recordings in motor areas, a good first
guess is to consider hypotheses that deal with the movements of an animal. Next, our
prior knowledge may inform us about what an area is doing with this information,
i.e. its purpose. To continue with the example, if we are interested in an early visual
area like the primary visual cortex, a faithful representation of the visual world might
be a good guess (Olshausen and Field, 1996; Bell and Sejnowski, 1997; Simoncelli
and Olshausen, 2001), whereas a late motor area like the primary motor cortex might
directly drive muscle activity (Sussillo et al., 2015). Higher-order brain areas have
been implicated in the control of tasks, hence we assume that their purpose is related
to the representation of task information in order to facilitate the control of tasks. In
particular, the task space will include both sensory as well as motor information, and
the purposes will correspond to different strategies of solving tasks (Fig.3.1a).

The second problem is that a given purpose may be fulfilled by many different
representations (Fig.3.1b). Because of this, there are various possible model repre-
sentations of which some might reproduce the data and some others do not. This
makes the approach ill-defined. We therefore follow a normative approach and ask
how a representation could best serve a purpose in principle. Specifically, we follow
the principle of efficient coding which states that a neural representation shall elim-
inate all redundant and irrelevant information (Attneave, 1954; Barlow, 1961). This
corresponds to finding the representation, among the ones sufficient for the purpose,
that is the simplest, or the most compressed. We call such representations efficient.
Besides rendering the problem well-defined, efficient representations will also be well-
interpretable as any representational feature must result from the assumed purpose as
applied to the task structure. Furthermore, efficient representations are also beneficial
from a biological or computational perspective as they use less resources and should
be robust against changes orthogonal to task and purpose.

Finally, the efficient representation of a given task-purpose pair presents a norma-
tive prediction. Given a task and a set of neural recordings, one can generate efficient

34



Figure 3.2: The history representation. a) A trial in a task consists of the observations
ot ∈ O that are presented to the animal, the actions at ∈ A that the animal is required to
take, and the temporal ordering of both. Observations may include task relevant stimuli, e.g.
a tone, irrelevant noise stimuli, as well as rewards, e.g. a sip of water. b) A trial of length
T thus results in a sequence of actions and observations which we call an action-observation
history hT . This history is a point (in black) in a big space that has an axis for the observations
and actions at any time step, and we call it the history space. A task can then be defined as a
distribution over histories, e.g. P1, and different tasks, or trial types, correspond to different
distributions P2, P3, etc. c) The final history hT is made up of sub-histories. Each of these
sub-histories contains all the information that the animal can in principle have about the trial
at a given time. As such, they must be sufficient for any purpose, including the prediction of
what is coming next in the trial, i.e. actions or observations. d) Histories thus form a valid
state space for reinforcement learning with a transition function P (h′|h, a, o′), an observation
function P (o′|h, a), and a policy P (a|h).

representations for all hypothesized purposes and compare them against the neural
recordings (Fig. 3.1c).

3.4.2 The history representation of tasks

Our goal is to find efficient representations of a task for a purpose. We achieve
this by first defining a task representation that we know is sufficient for the purpose,
and then compressing it. In order to do so, imagine the following: In a particular
trial of a task, an animal is confronted with different observations — for example a
relevant stimulus for solving the task, a rewarding food pellet, or any other random
occurrences — and it has to respond with the required actions. A trial can thus be
defined by the resulting sequence of observations o ∈ O and actions a ∈ A, and we
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call such a sequence an action-observation history hT = (o0, a0, o1, a1, . . . , aT −1, oT )
of length T (Fig.3.2a).

As a task is nothing more than a collection of trials, we can define a task as a
collection of such histories, or alternatively, as a probability distribution in the history
space P (hT ) (Fig.3.2b). The history space is a space that includes an axis for every
possible observation at every possible time step. It is therefore a prohibitively large
space and it will be hard to define P (hT ) directly. Yet it is also a useful concept, as we
can for example define different tasks all in the same space. Our higher-order brain
area models are then concerned with this history space.

Histories may further be split into sub-histories, i.e a history ht for every time step
t. A next history ht+1 is then simply the current history, plus the action taken and
the resulting observation made, i.e. ht+1 = (ht, at, ot+1) (Fig.3.2c). The sub-histories
thus form a Markov chain, given the corresponding action and observation, which is
useful to link this task representation to reinforcement learning and Markov decision
processes (MDPs, Sutton and Barto (2018)). Specifically, we can define a task as a
tuple ⟨H, O, A, P (h′|h, a, o′), P (o′|h, a)⟩, which is a MDP equipped with observations,
and we call it an observation MDP, or OMDP (Fig.3.2d). H corresponds to the
state space of histories. The behaviour in the task is described by a policy P (a|h)
which gives the probability of choosing an action a given a history h. The policy that
maximizes the collected rewards is the optimal policy, which we assume from here on.
The OMDP is a generalization of the partially observable MDP (see Methods).

The OMDP also simplifies the definition of our task distribution P (hT ), making
use of its Markov property (see Methods, Eq.3.2). In general though, we could define a
task by an OMDP which is not based on history states — any state space allowing for
the Markov properties of Fig.3.2c would suffice. Yet, as noted above, the history state
contains all information about the task that the agent can know. As such, the history
state is a sufficient representation not only for representing a task, but for any purpose
that is achievable in principle. To make the history-dependence of our OMDP explicit,
we call it a history-OMDP. At the same time, the history is an abstract theoretical
object and in practice not realizable, as it for example grows in time without bounds.
It is a useful starting point for us, though, as we can now compress it as much as
possible while retaining the information that is needed to achieve a certain purpose.
One such purpose will be the representation of the task itself, thereby replacing the
history-OMDP with an efficient OMDP, as we will see in the next section.
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Figure 3.3: A family of behavioural strategies, and the associated purposes. a) The outer
orange circle depicts the history space or the set of all histories, and the red circle the tasks
or task within it, i.e. the environment. This is equivalent to Fig.3.2b. Note that we are
not yet assuming that a task is solved, thus the histories in the environment are the result
of any arbitrary actions. Blue circle: Not everything within the environment is predictable
(think a random occurrence within the lab such as a person walking in or an earthquake
happening). The most a behaving agent can thus do is to use, or model, the predictable
subset of the environment, which is the first, most complex, possible behavioural strategy,
called model-based. Next, not everything predictable might be relevant to the agent. We
follow the reinforcement learning framework and call the variables of interest rewards. Then
an agent might only include the prediction of these rewards in its model, as well as any other
variables that help predicting future rewards, i.e. reward cues. A simpler strategy still is then
to only predict rewards. Finally, the simplest strategy is to fix the actions to the correct actions
and only predict these correct actions. This is the habitual strategy. The last strategy has a
special standing, as we assume that the correct actions are given. It is the simplest because all
the previous strategies require representations rich enough to also predict the correct actions.
b) The habitual purpose is to predict the correct actions given a history, i.e. P (at|ht). As
histories ht are not given to an agent, but only observations ot, the habitual purpose includes
— see also Materials and Methods — the transition P (ht|ht−1, at−1, ot). c) The model based
purpose is to predict observations given a history and an action, i.e. P (ot+1|ht, at). This again
includes the transitions P (ht|ht−1, at−1, ot).

3.4.3 The habitual and model-based purposes

If an animal is able to give the correct response in any task situation, one can
say the animal has solved the task. Yet, there are many different strategies of how
the animal might come up with the correct responses. The two main such strategies
are called habitual and model-based (Dolan and Dayan, 2013; Lengyel and Dayan,
2008; Sutton and Barto, 2018; Tolman, 1948; Skinner, 1938). The former is based
on stimulus-response associations, i.e. given any situation in a task, the animal just
learns the correct corresponding response. The latter, often also called goal-directed,
is based on learning the rules of the task and in particular how an animal’s actions will
affect the task, and whether they will lead to the goal or not. The animal can then
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infer what the correct responses would be, and then simply execute them (Sutton and
Barto, 2018; Dolan and Dayan, 2013).

The fundamental difference between the two strategies is how much information
the agent learns, or represents, about the task or the environment it is in (Fig.3.3a).
While the result is apparently the same — a sequence of correct actions and a solved
task — the situation can change if the task is modified. As a brief example, assume a
simple devaluation task (Balleine and Dickinson, 1998) where a water-deprived animal
has to choose among two options, a water-rewarded option A or a sugar-rewarded
option B. The animal would thus have to choose option A. Now, if the animal, e.g.
while resting over night, drinks a lot of water, water will be devalued. Using a model-
based strategy, the animal can then infer that option A is now undesirable, as it would
lead to water, and immediately choose option B instead. This is different to a habitual
agent that would first have to unlearn that A is desirable and then learn that B is.

How much information an agent has about the environment thus directly influ-
ences how well it can adapt to changes. Besides the habitual and the model-based
strategies, a number of intermediate strategies exist that use intermediate levels of
information (Fig.3.3a). For example, instead of trying to remember all the inner
workings of the environment, an agent might only keep information about how it can
achieve the rewards of a particular task (see also caption of Fig.3.3a). Such a repre-
sentation still allows for inferring the optimal behaviour given the simple changes in
the example task above, yet maybe not for more drastic changes.

As keeping more information is also more costly, which strategy to use will depend
on how certain an agent can be that the environment or task will not change. In
particular at the early stages of exploring an environment, the agent cannot be certain
and might choose a rich model-based representation. If the agent knows the task and
is sure it doesn’t change, it should switch, perhaps gradually, to a habitual behaviour.
As such, the different strategies are not mutually exclusive and animals might be able
to arbitrate between them based on which better fits their current needs (Dolan and
Dayan, 2013; Lengyel and Dayan, 2008; Wassum et al., 2009). Yet whether, at a given
time and a given task, an agent is using one strategy or the other is often challenging
to disambiguate, even when using tasks that were specifically designed to this end
(Akam et al., 2015).

Here we are interested in the neural bases of the two classical strategies. Following
our approach, we hence formalize two purposes: the habitual purpose and the model-
based purpose. The habitual purpose is to be able to respond with the correct action
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given any task situation. Within a history-OMDP, which is a sufficient representation
for any purpose, situations are represented by histories and responses correspond
to actions. Any representation that is sufficient for the habitual purpose therefore
must have the same amount of information about actions as the history-OMDP. More
specifically, a full trial hT is associated with a sequence of actions āT = (a0, a1, . . . , aT )
with probability P (āT |hT ), and a sufficient representation needs to preserve these
probabilities (Fig.3.3b).

The model-based purpose, on the other hand, is to be able to predict what is going
to happen, i.e. what are the outcomes, in a trial given any situation and any taken
action. Again, in the history-OMDP situations correspond to histories and outcomes
to observations (which subsume rewards). A full trial hT is then associated with
a sequence of observations ōT = (o0, o1, . . . , oT ) with probability P (ōT |hT ) and any
sufficient representation needs to preserve these probabilities (Fig.3.3c). The model-
based representation then has all the information necessary to plan for and represent
the correct actions (see Materials and Methods and Sutton and Barto (2018)).

3.4.4 Efficient task representation for a purpose

Given the definitions of tasks and purposes within the history-OMDP framework,
we can now find the associated representations. As mentioned initially, each purpose
can be fulfilled by many representations. For example, the history representation
fulfills all of them, and a model-based representation can also be used for habitual
behaviour.

We follow here the efficient coding hypothesis and aim to find the most efficient
representation for a given purpose. This means, for any given purpose, the relevant
variables must be remembered, and the irrelevant ones must be forgotten. We achieve
this by compressing the history space H into a new representation space Z̄, while
preserving all information about the purpose. Formally, we are looking for an encoder
P (z̄|h) that maps any history h of length T , sampled from the task distribution P (h),
into a sequence of states z̄ = (z0, z1, . . . , zT ), as illustrated in Fig.3.4a. At the same
time, using the same sample h, we get, as introduced above, a sample from the purpose,
which corresponds to a sequence of actions ā sampled from P (ā|h) in the habitual case
and a sequence of observations ō sampled from P (ō|h) in the model-based case. For
ease of exposition, we denote here both ā and ō by ȳ, with corresponding distribution
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Figure 3.4: Relationships between components determine the entropy of the representation
as a whole. a) Any history h, or the corresponding discrete trial type k, is encoded into a
distribution or component in space Z̄. Here we draw three such components, color-coded
in blue, yellow, and red. The representation P (z̄) is then a mixture distribution with one
component P (z̄|k) per trial type k. For each component, we also draw its mean as a slightly
darker line. Given a trial type, different trial instances, or histories, will result in representation
trajectories that lie within the shaded region (drawn as dotted lines in different shades of grey
for the red trial type). b) We assume that each component P (z̄|k) can be described by a
fixed-variance Gaussian. The representation is then a Gaussian mixture model that we can
depict more simply: We draw an axis corresponding to space Z for every time step and each
component is a Gaussian in this new space, depicted as colored circles. We here only draw
the axes Z1 and Z2 for the first two time steps. The mean-trajectories of a) are then single
red, yellow, and red dots in b), and so are the trial instances in shades of grey. The mixture
distribution P (z̄) is depicted as a grey shading. c,d) Given fixed-variance components, the
entropy of H(Z̄) is c) maximal if all components are non-overlapping, and d) minimal if all
components are completely overlapping. d-g) Entropy is invariant under addition of constants
ā, i.e. H(Z̄ + ā) = H(Z̄). Thus, the entropy H(Z̄) is independent of its overall mean. I.e.
d) and e), where the mean was translated by ā, are equivalent in terms of entropy. Yet, the
addition of ā will affect the entropy of the marginal distribution P (z). We draw in d) and e)
the time marginals P (z1) and P (z2) in grey on the corresponding axes, and the combination
of the two marginals is depicted on the bottom panels. If P (z1) and P (z2) are overlapping, as
in e), then the entropy of P (z) is minimal. f,g) The corresponding trajectory views of d) and
e), respectively.
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P (ȳ|h). Our objective is then to maximize the following:

max
P (z̄|h)

I(Ȳ ; Z̄)− λH(Z̄) (3.1)

This corresponds to the information bottleneck principle (Tishby et al., 2000; Strouse
and Schwab, 2017). The term I(Ȳ ; Z̄) is the mutual information between the repre-
sentation z̄ and the purpose ȳ, and it has to be maximized.1 At its maximum, we
know that our representation has as much information about the purpose as possible,
which will ensure purpose-sufficiency. H(Z̄) is the entropy of the new representation,
and it should be minimal. Entropy is an information theoretic measure of how sur-
prising any particular instance z̄ ∼ P (z̄) of a representation P (z̄) = EP (h)[P (z̄|h)] is.
If every history h leads to the same representation z̄, then the entropy is minimal.
The parameter λ trades off the two terms, and we choose the largest value such that
the purpose information I(Ȳ ; Z̄) is still at its maximum.

Unfortunately, the objective of Eq.3.1 is difficult to optimize, as both terms
are often intractable to compute. For example, to compute the entropy H(Z̄) =
EP (z)[− log P (z̄)] of a representation, we need to compute P (z̄), which involves an
intractable expectation over all histories. Luckily, it is possible to make variational
approximations to both terms in Eq.3.1, which allows us to formulate a lower bound
on the objective that we can maximize instead (see Materials and Methods and Chalk
et al. (2016); Alemi et al. (2016)). Again for the case of the entropy, we can replace the
intractable P (z̄) by a variational distribution Q(z̄), where EP (z)[− log Q(z̄)] ≥ H(Z̄)
yields an upper bound on the true entropy. At the same time, this requires us to
choose particular variational distributions, such as Q(z̄), that in turn potentially in-
fluence the results. Since we are interested in compressed representations, a good
choice for the variational approximation to the entropy term is especially important,
as inappropriate variational distributions Q(z̄) might lead to a strong overestimation
of the true entropy. This would leave the representations poorly constrained, and as a
result, the representations may contain a lot of irrelevant information. To ensure that
our choice of Q(z̄) yields an effective, or close, upper bound, we next discuss what
kind of distributions P (z̄) we can expect in the first place and what it means for such
distributions to be of low entropy.

For this, assume we have a finite number of histories, trial types, or even tasks, k

where each is approximated by a Gaussian distribution of fixed variance in Z̄ space.
The distribution of our interest P (z̄) is then a Gaussian mixture model (Fig.3.4a,b). In

1Here, capital letters denote random variables.
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such a case we know what maximizes its entropy and what minimizes it (see Materials
and Methods). If all Gaussians are well-separated, it is maximal, which means that
each trial results in a very distinct representation (Fig.3.4c). On the other hand, if
all Gaussians overlap, the entropy is minimal, which means that all trials result in
the same distribution (Fig.3.4d). Furthermore, a similar argument can be made for
how the components vary over time. If the sub-components, i.e. components sliced in
time, overlap over time, entropy will be further minimized (Fig.3.4d-g). The entropy
of a representation will thus be mainly influenced by how the representation changes
upon changing the trial, e.g. the specific stimuli in a trial, as well as changing time,
e.g. how far in the trial we are. A representation that does neither change over time
nor over the different trials has low entropy, and is as simple as possible also from
an intuitive perspective. We thus define a variational distribution Q(z̄) that captures
these component relationships (see Materials and Methods for more details).

Our objective of Eq.3.1 is finally optimized with respect to the encoder P (z̄|h).
Hence, we need to define the encoder’s parameterization. We do this by using a type
of switching linear dynamical system (SLDS, see e.g. Barber (2006); Linderman et al.
(2017)). Briefly, the SLDS can be understood as a collection of linear dynamical
systems and a corresponding partitioning of its state space Z. As observations are
made and actions are taken, the state z is moving through Z according to the linear
dynamical system of the current partition. As a result, the encodings z̄ can be flexible
nonlinear functions of the histories h, yet the dynamics in Z are locally linear (Ma-
terials and Methods). As both terms in the objective rely on expectations over the
encoder — e.g. the entropy H(Z̄) ≤ E[− log Q(z̄)] = −

∫
dh dz̄ P (h)P (z̄|h) log Q(z̄)

— we can simplify the optimization by reparameterizing the encoder, thereby mak-
ing the expectation independent of it (see Materials and Methods, and Kingma and
Welling (2014)). Finally, the optimization is done by gradient ascent.

3.4.5 Applications of the approach

We now analyse the neural recordings of three tasks, each with its own distinct
features. The first by Romo et al. (1999) is a working memory task with monkey-
PFC recordings that has been subject to a lot of analysis and modeling over the years
(for example see Machens et al. (2005); Barak et al. (2010, 2013); Song et al. (2016);
Machens et al. (2010); Kobak et al. (2016)). The second by Mante et al. (2013) is
a context-dependent perceptual decision making task, also with recordings from the
PFC of monkeys. Having two data sets from PFC lets us test the consistency of our
results. Lastly, we test data from a different model organism. The task by Inagaki
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et al. (2019) is a delayed response task with recordings in mouse anterior later motor
cortex (ALM). The ALM, which is a possible homologue of the monkey premotor
cortex, is downstream of the PFC and we thus possibly expect a different purpose for
this area.

The analysis is done the following way: We generate both the efficient habit-
ual as well as the efficient model-based representations for each task. These efficient
representations are normative predictions of neural representations given the assumed
purpose. We then analyse both the neural and the efficient representations on the pop-
ulation level using dimensionality reduction techniques (demixed principal component
analysis, dPCA, Kobak et al. (2016)). We may encounter three possible scenarios: If
both efficient representations match the neural one, then the task is not rich enough
to disambiguate between the two hypotheses. We can then conceive of possible task
alterations which would disambiguate between the different purposes. If one of the
two matches, then we have some evidence that the matching purpose might actually
be the purpose of the analysed area, and also that the non-matching one is missing
something about the neural activity. Similarly, if none match, then we have to update
our hypotheses.

Monkey-PFC in a somatosensory working memory task: Working memory
dynamics can be understood as a sequence through a cognitive model.

The somatosensory working memory task by Romo et al. (1999) is a classical study
that demonstrated persistent working memory activity in lateral PFC of monkeys. In
their task, the authors asked a monkey to discriminate the frequency of two vibrotactile
stimuli, F1 and F2, that are presented one after the other and separated by a fixed
delay period. In a particular trial, the monkeys had to choose and push one of two
buttons, depending on whether the difference between F1 and F2 was positive or
negative (Fig.3.5a). Interestingly, many of the recorded units encoded frequency by
adjusting their firing rates proportionally to it, even so during the delay period which
occurred after the stimulus presentation, a feature expected of a memory trace. Some
of these neurons fired this way starting from F1 presentation up until the decision, yet
others were inactive during presentation, but became active and F1-encoding during
the delay period (see Fig.2.1b). In fact, the recorded population as a whole showed a
multitude of firing patterns, suggesting that the working memory activity was more
complex than what is probably expected from a simple stimulus short term memory
(Brody et al., 2003; Machens et al., 2010). The zoo of firing patterns throughout
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Figure 3.5: Modelling results of the somatosensory working memory task. a) Task illustration
(for detailed description see Fig.2.1) and color code used in following panels. b) Demixed PCA
of efficient habitual representation. The first row corresponds to the first three condition-
independent components, the second row to the first three stimulus components, and the
last row to the first three decision components. c) Demixed PCA of efficient model-based
representation. The organisation of this panel is the same as panel b). In both panels only
correct trials were analysed.
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the population can also be succinctly summarized by dPCA (Kobak et al. (2016),
Fig.2.1c).

What is this activity then representing, or asked differently, what purpose is this
activity serving? To investigate this question, we generated the efficient habitual and
efficient model-based representations for this task (see Materials and Methods). For
both representations, the optimizations converged towards an optimum (supplemen-
tary Figs.3.1-3.4). We then analysed the resulting efficient representations using dPCA
(Fig.3.5b,c). In some respects, the efficient habitual and the efficient model-based
representations share similarities, and in other respects, they differ. As necessitated
by the working memory task, both representations encode F1 stimulus information
throughout the trial (Fig.3.5b,c middle rows). While in the habitual representation
this F1 memory is used to predict the correct action, in the model-based represen-
tation the memory is used to predict rewards or punishments that are contingent on
the difference between F1 and F2, as well as on the action taken. Furthermore, both
representations have a decision component that separates trials of opposite decision
just after all information is available to make a decision, i.e. after presentation of F2
(Fig.3.5b,c bottom rows).

In terms of the dynamics, the two representations look very different, however.
This is best seen in the stimulus components (Fig.3.5b,c middle rows). While the
efficient habitual representation is almost stationary throughout the delay period,
the efficient model-based representation shows different kinds of ramping dynamics.
These kind of dynamics are characteristic of the recorded neural representation also
(Fig.2.1b). To predict the correct action, a habitual representation only needs to re-
member the value of F1 in order to compare it to F2. As any delay dynamics are
therefore unnecessary, our efficiency criterion compresses them away. This is different
to a model-based representation that is required to preserve all information that is
predictive of when F1 and F2 are presented. This requirement leads to fast dynamics
during both presentation periods, as well as to dynamics during the delay period.
The dynamical picture that we can see in the stimulus components is largely reflected
in the condition-independent components as well (Fig.3.5b,c top rows). Surprisingly,
however, the condition-independent components of the efficient habitual representa-
tion are not stationary, but show ramping dynamics, a feature probably explained by
the underlying switching dynamics of the SLDS (see supplementary Fig.3.1 for more
details).
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Compared to the dPCA analysis of the neural representation (Fig.2.1b), the over-
all picture of the efficient model-based representation matches much better than that
of the efficient habitual representation. This suggests an interpretation of the activity
in this task in terms of a model-based representation. As we are here looking at a
working memory task, this interpretation also taps into the debate about how PFC
delay activity encodes working memory information. There are various reports of
delay period activity being more stationary, and other more dynamic (Sreenivasan
and D’Esposito, 2019). In our view these different dynamics are all a result of the
requirements set by the task as well as the purpose of the brain area recorded. Here,
we can understand the working memory dynamics as a sequence through a model that
the monkey has made of the task. In this interpretation, the delay dynamics indeed
correspond to an encoding of time, as proposed by Brody et al. (2003). However,
we additionally propose an interpretation for why time is encoded, namely to predict
when the observations are occurring. Furthermore, this time-encoding also provides
an interpretation for the condition-independent neural activity which is largely cap-
tured by the model-based representation as well (compare Fig.2.1b, top row, with
Fig.3.5c, top row).

Monkey-PFC in a context-dependent perceptual decision making task:
Out-of-context information suggests a model-based representation

The study by Mante et al. (2013) investigated the neural basis of a typical fea-
ture of intelligent animal behaviour, namely the ability to flexibly adapt behaviour
to a change of context. Given an identical sensory experience animals can change
their behaviour based on internal goals or previous instructions. In their task, Mante
et al. (2013) trained monkeys to integrate noisy visual information towards one of
two possible choices. The visual information consisted of a random dot display whose
dots varied in two ways: they moved either to the left or to the right with a certain
coherence, and they were randomly colored either in red or in green with a probability
termed the color coherence. During a trial, the monkey was instructed whether they
had to attend to the motion coherence or to the color coherence, and then had to
respond with a saccade to one of two visual targets depending on whether the overall
motion was to the left or to the right, or whether more of the dots were colored in red
or in green, respectively (Fig.3.6a).

Performing this context-dependent decision making task relies on flexibly adapting
behaviour based on a changing context. The animal thus had to keep track of which
stimulus-response contingencies, or task rules, had to be followed at a particular trial.

46



Figure 3.6: Modelling results of the context-dependent perceptual decision making task. a)
Task illustration (for detailed description see Fig.2.2) and color code used in following panels.
b) Demixed PCA of the efficient habitual representation, and c) demixed PCA of efficient
model-based representation. The organisation of these panels is the same as described in
Fig.2.2b, except that in the last row we have time on the horizontal, and the first motion
component, or the first color component, on the vertical, respectively. We did not plot against
the second motion or color components as they did not explain any variance in our models.
Again, only correct trials are shown. In each panel, horizontal and vertical axes have the same
scale (except for the last row).
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Rule representation is a putative function of PFC (Fuster, 2015). Furthermore, the
task possibly depends on cognitive control, i.e. the ability to choose a mode of action
that goes against the immediate, possibly default, response, a function that is also
thought to rely on PFC (Miller and Cohen, 2001). Accordingly, while monkeys were
performing the above described task, Mante et al. (2013) recorded activity in their
PFC, namely in the frontal eye fields (FEF) that is involved in the control of saccades
(Bruce and Goldberg, 1985; Schall, 2002). In order to interpret the resulting PFC
activity, as summarized in section 2.4.2 and Fig.2.2b, we again generated the effi-
cient representations of this task, for both the habitual and the model-based purposes
(Fig.3.6b,c).

For both representations, the optimizations converged towards an optimum (sup-
plementary Figs.3.5-3.8). Both representations are similar in how they separate trials
according to the decision. For example, the top left panel of Fig.3.6b shows how the
efficient habitual representation separates trial-averages of positive motion coherences
(red shades) from trial-averages corresponding to negative motion coherences (darker
shades) on the decision axis, and so does the efficient model-based representation
(Fig.3.6c, top left). The same separation can be seen in the rest of the panels of
Fig.3.6b,c. However, when looking at relevant information more closely, i.e. motion
information in motion context and color information in color context (Fig.3.6b,c, top
left and middle right), we can see that the efficient habitual representation barely
separates the different trial-averages by the strength of motion/color coherence (i.e.
by different shades of red/blue), while the model-based pendant does. As the evidence
towards a decision and the relevant coherence coincide, the habitual purpose, which
only requires the specification of the correct decision, leads to linear trajectories. Be-
sides integrating evidence towards a decision, the model-based purpose additionally
requires to predict when the random dots stimulus is ending, thus explaining the more
curved trajectories seen in the top left and middle right panels of Fig.3.6c.

In terms of the ‘irrelevant’ — or maybe more appropriately out-of-context — in-
formation, i.e. motion information in color context and color information in motion
context (Fig.3.6b,c, top right and middle left), the two representations again look
quite different. As expected, the efficient habitual representation does not keep track
of this out-of-context information (note the overlapping trajectories for opposite mo-
tion coherences in the color context, and overlapping trajectories for opposite color
coherences in the motion context, in Fig.3.6b top right and middle left, respectively).
The efficient model-based representation, on the other hand, is representing this in-
formation, as it is learning a model of the environment where this out-of-context
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information is locked to the trial structure (note that all trajectories in Fig.3.6b top
right and middle left are non-overlapping, and thus both types of information are
preserved).

Compared to the neural recordings, that we reviewed in section 2.4.2 and Fig.2.2b,
the model-based representation provides a better match. Both the data and the
model-based representation show out-of-context information and a curved represen-
tation of within-context, or relevant, information. Furthermore, motion as well as
color information is represented similarly during both contexts, both in the neural
recordings as well as in the model-based representation (compare Fig.2.2b, bottom
row, and Fig.3.6c, bottom row, where trajectories corresponding to different contexts
are overlapping). Our results thus suggest that the reason why we see out-of-context
information in the PFC recordings, is that the recorded brain area, i.e. the FEF, is
serving a purpose that goes beyond the simple habitual purpose. The model-based
purpose is such a purpose, and it reproduces the neural representation during the
random dots period quite well.

Furthermore, as the FEF is known to be involved in the control of saccades, one
would also expect that the recorded FEF activity actually generates the saccades in the
task. The model-based purpose has no notion of action generation, though. However,
Mante et al. (2013) proposed a mechanism for how the recorded neural activity is
integrating noisy information towards a saccade. Specifically, both within-context as
well as out-of-context information is represented in FEF, yet only the within-context
information is integrated. As the model-based purpose requires the representation
of out-of-context information, our results may suggest why PFC uses the specific
mechanism proposed by Mante et al. (2013).

Mouse-ALM in a delayed licking task: Habitual representation with antic-
ipation

Lastly, we consider a study in mice with recordings from ALM (Inagaki et al.,
2019). In this study, mice were trained to perform a delayed licking task, where an
instruction tone of two possible frequencies was followed by a delay period. The end
of this delay period was marked by a go tone after which the mice were allowed to
lick one of two ports that contained a water reward based on the initially presented
instruction cue (Fig.3.7a). Interestingly, two separate sets of mice were trained on
two different versions of the same delayed licking task. The first consisted of a delay
period of fixed length and the second of a delay period of randomized length. Thus,
this study is uniquely positioned to constrain a model of ALM function. Furthermore,
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Figure 3.7: Modelling results of the delayed licking task task. a) Task illustration (for
detailed description see Fig.2.3) and color code used in following panels. b) Demixed PCA
of efficient habitual representation. The first row corresponds to the first three condition-
independent components, the second row to the first three stimulus components, and the
last row to the first three decision components. c) Demixed PCA of efficient model-based
representation. d) Demixed PCA of efficient representation for habitual purpose with go-cue
prediction. The organisation of panels c) and d) is the same as panel b).

due to its delayed response structure, this task has a memory component similar to
the somatosensory working memory task considered above.

The resulting ALM activities during both tasks were summarized and discussed in
section 2.4.3 and Fig.2.3, with the most notable, and almost only, difference between
the neural representations being the dynamics during the delay period. While in the
fixed delay task ramping population dynamics were observed during the delay period,
they were stationary in the random delay task. In order to interpret these findings
we again generated the efficient habitual and the efficient model-based representations
and analysed them with dPCA (Fig.3.7b,c).

As opposed to the two previous cases, none of the efficient representations match
the neural data: The efficient model-based representations seem too rich, with strong
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transient dynamics during the sample period in both tasks (Fig.3.7c). The efficient
habitual representations resemble the data well on first sight, yet, in the fixed delay
task, is missing the ramping component during the delay period (Fig.3.7b). Ramping
possibly corresponds to an anticipation of the response period, yet the habitual agent
can perform the optimal behaviour without such an anticipation, as the go cue informs
the agent when to act. It is conceivable, though, that anticipating when to act is still
beneficial. For example, if it takes some fixed amount of time to start an action, such
as getting ready to lick the water delivery port, this start can take place before the
go cue, but only in the fixed delay task when the go cue is predictable. Alternatively,
a lick might follow from a state of ‘readiness’, such as a state of increased muscle
tension. If it is energetically costly to be in and move to such a state, being able to
predict when to act, an agent can slowly move to that state and stay there for as little
time as possible.

We thus conjectured that a habitual representation with an additional anticipa-
tion of the response period might reproduce the data (Fig.3.7d, supplementary Figs.3.9
and 3.10). As in the habitual case, the random delay task is modelled well. As there
the time of the go cue is unpredictable anyway, and hence can not be anticipated,
the representation is expected to be the same for the habitual purpose and the habit-
ual purpose with anticipation. However, in the fixed delay task we now see ramping
dynamics during the delay period, similar to the neural representation. Overall, the ef-
ficient representation for the habitual purpose with anticipation reproduces the neural
recordings well on both tasks.

Our interpretation of the neural data is thus similar to the one by the authors
Inagaki et al. (2019). They model the data as a decision process, where the two deci-
sions, corresponding to a left and a right lick, are instantiated as discrete attractors.
The ramping in the fixed delay task is then modeled as a slow drift towards one of
the attractors. They hypothesize, though, that the ramping probably is not generated
through recurrent dynamics internal to ALM, but rather fed in from a second area.
In this work, we are agnostic towards the mechanism, yet we show that the require-
ment to specify the correct actions, together with the requirement for anticipation,
is sufficient to reproduce the data in both tasks. We thus propose a purpose for the
ALM, as it was studied by Inagaki et al. (2019), that is consistent with the mechanism
proposed by Inagaki et al. (2019).
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3.5 Discussion

Higher-order brain areas are thought to be critical for enabling the flexibility
and versatility of natural animal intelligence (Fuster and Alexander, 1971). Large
population recordings from these areas during various behavioural paradigms give
us a view into their involvement in these abilities, as reviewed in chapter 2. The
activities can be understood as neural task representations, as all task variables are
being represented. Yet what exactly these representations mean is often unclear.

Here, we proposed a normative approach to understand higher-order brain ac-
tivity. There are two core problems addressed by our approach: First, we point out
that every representation serves a different purpose and this purpose has to be clearly
stated when modelling the brain area. In this respect, our work differs from previous
models of higher-order brain activity, where the purpose is often neither stated ex-
plicitly nor compared to alternative hypotheses (e.g. Song et al. (2016); Yang et al.
(2019); Barak et al. (2013)). More precisely, as RNNs are usually trained to simply
solve a task, the habitual purpose is implicitly assumed. Second, we point out that
every purpose may be fulfilled by many different representations. Accordingly, when
proposing a purpose for a particular data set, it is apriori unclear which of the many
possible purpose-sufficient representations should be compared to neural data.

For the first part, we develop two purposes that correspond to the main ways
the field has thought about behaviour (Dolan and Dayan, 2013; Skinner, 1938; Tol-
man, 1948): Habitual behaviour, in which an agent acts by simple stimulus-response
relationships, and model-based, or goal-directed, behaviour, in which an agent acts
by planning based on a mental model. We formalized both within the reinforcement
learning framework. For the second part, we assumed the efficient coding hypothesis
(Attneave, 1954; Barlow, 1961) that selects the one representation among all purpose-
sufficient representations that is the most compact or simplest. We called the resulting
representations efficient, and such efficient representations provide normative predic-
tions of how a representation should look like given a purpose.

We then applied our approach to three tasks and found that two data sets (Romo
et al., 1999; Mante et al., 2013) recorded in two distinct areas of PFC were better
explained by the model-based assumption. This is perhaps unsurprising in that PFC
is thought to represent the rules of a task (Fuster, 2015; Miller and Cohen, 2001).
Nevertheless, in previous models of both tasks (e.g. Barak et al. (2013); Song et al.
(2016) and Mante et al. (2013)) the habitual purpose was usually assumed, as these
models were trained to produce the correct decision. In the third data set (Inagaki
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et al., 2019), we found that the recordings from mouse-ALM are inconsistent with both
the habitual and model-based purposes, but consistent with a habitual purpose that
additionally anticipates when to respond. On the one hand, this points to a strength of
our approach, as we could exclude hypotheses that one might have assumed initially,
and simultaneously propose a new hypothesis. On the other hand, the proposed
habitual purpose with anticipation does not directly follow from the reinforcement
learning framework, but is rather motivated using an additional constraint. In other
words, the purpose is a free variable in our approach, and while the habitual and the
model-based purposes are well motivated, it is apriori unclear what a good motivation
for a purpose might be.

Our work gives a new perspective on some previous studies that have found com-
pressed representations. For example, Sussillo et al. (2015) regularized their RNNs
using a very similar loss function to ours, thus implicitly optimizing for compactness
and low entropy. In our view, their results of reproducing primary motor cortical ac-
tivity is thus not surprising under the assumption that this area is serving the purpose
of producing muscle activity. Similarly, Schuessler et al. (2020) show that gradient
descent optimization induces low dimensional structure in RNNs trained on simple
tasks. Thus, by using this training procedure, activities will be low-dimensional as
well (Mastrogiuseppe and Ostojic, 2018; Dubreuil et al., 2021), which, given the often
good match that RNNs trained this way provide to neural data, potentially provides
further evidence that low-dimensional, compressed, representations are actually opti-
mized for by the brain.

Furthermore, our work helps to contextualize discussions of purposeful repre-
sentations in previous studies. For example, the study by Cueva et al. (2020) also
investigated how a different readout, or purpose, affects the resulting model represen-
tations, and they point out that the habitual representation is not sufficient to explain
the data of (Romo et al., 1999). Furthermore, Song et al. (2017) considered RNNs
under an actor-critic objective, comparing both the activites of the actor and the critic
networks to neural data. Similarly, Yang et al. (2019) considered RNNs trained to
multiple tasks, which can also be understood as imposing a purpose that is richer
than the habitual purpose. Lastly, Russo et al. (2018) also considered RNN solution
under constraints, namely to prevent entanglement of dynamical trajectories. Flesch
et al. (2022) analysed the learning regime of higher-order representations and found
rich representations in PFC (data of Mante et al. (2013)), that are highly adapted to
the task at hand. Thus, they also investigated the goal or purpose of a higher-order
brain representation.
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Our work also leaves some questions unanswered. For example, representations
in PFC have been shown to preferentially cluster stimuli based on their relevance for
informing correct responses, but less by their sensory properties (see e.g. Freedman
et al. (2001)). This might go against our model-based proposal where the precise
stimulus is being predicted. However, as both tasks with PFC recordings that we
studied only used very simple stimuli, there was no conflict between a stimulus’ rel-
evance for informing the correct decision and its sensory similarity to other stimuli.
For example, in the task by Mante et al. (2013), distances between relevant motion
coherences coincide with the information that a particular motion coherence provides
about the decision. Nevertheless, while both within-context and out-of-context in-
formation need to be predicted in the model-based purpose, only the within-context
stimulus is relevant for predicting the reward at the end of the trial. Thus, after
the stimulus presentation period, also the model-based purpose should cluster stimuli
by their relevance for the decision, and get rid of out-of-context information all al-
together. However, we have not investigated this here, as we did not have access to
neural recordings beyond the stimulus period for the study by Mante et al. (2013).

Next, here we did not address two important topics, namely mechanism and
learning. The SLDS models that we used are in principle very easy to analyse and are
thus a good choice to study the underlying mechanism of, for example, how a decision
is formed in the habitual representation. In fact, the nonlinear dynamics of RNNs
are often partitioned into separate linear regimes to simplify their analysis, effectively
yielding SLDSs (Sussillo and Barak, 2013; Vyas et al., 2020; Maheswaranathan et al.,
2019). Yet, we left this analysis of mechanism for future work.

Likewise, we have not studied learning. Our habitual and model-based purposes
really present two ‘extremes’, where the habitual one only cares about generating the
correct actions and the model-based one attempts to predict everything that is locked
to the trial structure. As the efficient habitual representation serves the optimal
policy, it clearly does not address how this optimal policy was learned in the first
place. As apriori it can not be known what information is relevant for the optimal
policy, it is also initially unknown what to compress away. Furthermore, information
that is needed for learning might not be needed to represent the optimal policy (see
e.g. McCallum (1996)). A model-based representation would thus make sense for
learning a new task, as all available information is considered relevant. In fact, it
has been suggested that animals transition from model-based to habitual behaviour
throughout learning (Dickinson et al., 1983; Dickinson, 1985). However, our model-
based representation is not generating any actions. Model-based approaches usually
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Figure 3.8: Gaphical models of a) the OMDP and b) the MDP, both based on the history
state.

use the model to plan for the optimal policy, and it would be interesting to study how
planning could be integrated into the model-based purpose.

Lastly, a limitation of the current work is that, even though in theory an efficient
representation is only a function of the task and the purpose, our choice of parameter-
izing the variational distributions as well as the encoder will have an impact. Although
the SLDSs we selected for the encoder are quite flexible, they may still place some lim-
itations on the solutions. For example, the condition-independent ramping component
in the habitual representation of the somatosensory working memory task is probably
an artefact of the SLDS parameterization (Fig.3.5b, supplementary Fig.3.1). For fu-
ture work, it would thus be valuable to investigate whether our results are reproduced
by alternative encoder parameterizations, such as for example by using RNNs.

3.6 Materials and Methods

3.6.1 Definition of a task, a behaviour, and the history state

Our aim is to build normative models of brain activity by finding efficient repre-
sentations of a given task and purpose. For this, we first need to define what a task is.
A task can be completely defined by the observations o ∈ O that the agent receives,
the actions a ∈ A that the agent is required to take, and the temporal ordering of it
all. To formalize, let us assume that any trial that we might observe in such a task, i.e.
any sequence, or history, of observations and actions hT = (o0, a0, o1, a1, . . . , aT −1, oT )
of length T , is distributed according to P (hT ). To make the sequential structure of
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hT explicit, we factorize:

P (hT ) = P (o0, a0, o1, a1, . . . , aT −1, oT )

= P (o0)P (a0|o0)P (o1|o0, a0)P (a1|o0, a0, o1) . . . P (oT |o0, a0, . . . , aT −2, oT −1)

= P (h0)P (a0|h0)P (o1|h0, a0)P (a1|h1) . . . P (oT |hT −1, aT −1)

= P (h0)
T −1∏
t=0

P (at|ht)P (ot+1|ht, at)

In the last two lines we renamed sub-histories, such as e.g. h0 = o0 and h1 =
(o0, a0, o1). The relationship between two adjacent sub-histories h and h′ can be
described by a transition function, here the append-function:

P (h′|h, a, o′) =

1 if h′ = (h, a, o′)

0 otherwise

Using this transition function, we finally have:

P (hT ) = P (h0)
∑

h1,...,hT −1

T −1∏
t=0

P (at|ht)P (ot+1|ht, at)P (ht+1|ht, at, ot+1) (3.2)

This factorization reveals the structure of a Markov-model, more precisely, a Markov
decision process equipped with observations (see Fig.3.8a). We call this process
an observation Markov decision process, or OMDP, and it is defined by the tuple
⟨H, O, A, P (o′|h, a), P (h′|h, a, o′)⟩. H is the state space, O is the observation space
which includes rewards, A is the action space, P (o′|h, a) is the observation function,
and P (h′|h, a, o′) is the transition function. The distribution P (a|h) is the agent’s
behavioural policy. One may recover a standard MDP from an OMDP (Fig.3.8b).
A MDP is defined by the tuple ⟨H, R, A, P (r′|h, a), P (h′|h, a)⟩, where R ⊂ O is
the space of rewards, P (r′|h, a) =

∑
o′∈O\R P (o′|h, a) is the reward function, and

P (h′|h, a) =
∑

o′ P (o′|h, a)P (h′|h, a, o′) is the transition function. The OMDP also
generalizes the partially observable MDP (POMDP, see section 4.4.1). For ease of
exposition we have assumed here that all spaces are discrete, an assumption that we
will relax when indicated.

In general, we could define a task by an OMDP which is not based on history
states, any state space allowing for the Markov properties of Fig.3.8a would do. Note,
though, that the history state contains the entirety of information that the agent
can in principle know about a task. As such, the history state must be a sufficient
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representation not only for representing a task, but for any purpose that is in principle
achievable. To make the history-dependence of our OMDP explicit, we call it a history-
OMDP. At the same time, the history is an abstract theoretical object and in practice
not realizable, as it for example grows in time without bounds. It is a useful starting
point for us, though, as we can now compress it as much as possible while retaining
the information that is needed to achieve a certain purpose. One such purpose will
be the representation of the task itself, thereby replacing the history-OMDP with an
efficient OMDP, as we will see in the next section.

Structured task definition

The simple neuroscience tasks that we are studying in this work are often defined
by a finite number of task parameters of which each is varied over a finite number
of instances. For example, one such task parameter could be the orientation of a
visual stimulus, and in each trial this orientation can either be up-, down-, left-, or
rightwards. In such cases we can enumerate the finite number K of trial types k, and,
when appropriate, we will use the following structured task description:

P (hT ) =
K∑

k=1
P (hT |k)P (k)

Here, every trial type k produces histories according to P (hT |k), where experimentally
controlled parameters are given. The resulting distribution P (hT ) is then a mixture
model, and we assume the probability P (k) to observe a specific trial type k to be
uniform.

3.6.2 Definition of a purpose, the habitual and the model-based pur-
pose

Now that we have formalized tasks by history-OMDPs, we next have to define
what a purpose is. Formally, for a given trial hT of length T , a purpose is defined as a
sequence of variables ȳT = (y0, y1, . . . , yT ) that is distributed according to P (ȳT |hT ).2

A task-purpose pair is thus defined by P (hT ) — the history-OMDP defining the task
— and P (ȳT |hT ) =

∏T
t=0 P (yt|ht).

In this work we are specifically interested in two purposes that naturally follow
from the graphical model in Fig. 3.8a and Eq. 3.2. The first purpose is to represent
the animal’s behavior or policy, which translates into a sequence of, usually discrete,

2We decorate variables denoting sequences with a bar.

57



actions ȳT = āT = (a0, a1, . . . , aT ) distributed according to P (āT |hT ) =
∏T

t=0 P (at|ht)
(Fig.3.3b). We call this the habitual purpose and usually assume the optimal policy.
An efficient representation of the habitual purpose is reactive in nature and is useful in
situations where an optimal policy has already been obtained, i.e. in the over-trained
regime. In fact, an efficient habitual representation is neither suited for learning nor
for planning. Nevertheless, the habitual purpose is usually assumed when modelling
neural activity e.g. in PFC (Barak et al., 2013; Song et al., 2016).

A representation suited for planning and learning needs to contain at least
some information about the environment. For planning specifically, a representation
needs to be sufficient to predict future observations provided by the environ-
ment in response to the actions taken by the agent. We call this second purpose
the model-based purpose, which translates into a sequence of, usually continu-
ous, observations ȳT = ōT = (o0, o1, . . . , oT ) that are distributed according to
P (ōT |hT ) = P (o0)

∏T −1
t=0 P (ot+1|ht, at) (Fig.3.3c). On top of a model-based represen-

tation, different reinforcement learning algorithms or dynamic programming can be
used to plan for an optimal policy. Therefore an efficient model-based representation
will always be sufficient to also represent a policy, yet this must not be true the
other way around (see e.g. McCallum (1996)). Consequently, for a given task, an
efficient model-based representation can not be more compressed than an efficient
habitual representation. Indeed, the habitual and the model-based purposes delimit
a spectrum of possible purposes, each requiring an efficient representation of different
complexity (Fig.3.3a).

3.6.3 Task representation and the memory constraint

Given the definitions of task and purpose, we now formalize the representation
of a task. Since our initial task representation based on histories is, as described
above, sufficient for any purpose, our approach is to find an encoder P (z̄|hT ), mapping
histories hT to a new representation z̄ = (z0, z1, . . . , zT ) with z̄ ∈ Z̄ and z ∈ Z.
To represent a task thus means to find an encoder P (z̄|hT ), such that the resulting
representation is efficient and purpose-sufficient. The optimization procedure ensuring
these two constraints will be with respect to the parameters θ of the encoder, and we
write Pθ(z̄|h), where, for simplicity, we have also dropped the time index of hT .

In principle, our encoder should be as flexible as possible, because the efficient
representation of a given purpose might be a complicated function of the histories.
Yet, since our goal is to model activities of a specific brain region, we have to constrain
the encoder’s structure. Specifically, we assume that the modelled neural activities
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are the result of a population of neurons that is in some sense autonomous, meaning
that its activity is only influenced by itself, and not by a second or third population
of which we do not have any recordings from. We call this restrictive assumption on
the encoder a memory constraint as it requires our representations to be autonomous
in terms of memory.

To formalize this constraint, imagine that we have two consecutive histories ht

and ht+1 that are mapped to two corresponding states z̄t and z̄t+1. Then z̄t+1 shall
not carry more information about ht than z̄t does. Formally, we require:

I(Z̄t; Ht) ≥ I(Z̄t+1, Ht)

This is equivalent to stating that z̄t+1 is independent of ht given z̄t, or P (z̄t+1|z̄t, ht) =
P (z̄t+1|z̄t). Since z̄t+1 = (zt+1, z̄t), P (z̄t+1|z̄t) = P (zt+1|z̄t). Consequently, zt will also
only depend on z̄t−1, and so on, and we have P (zt+1|z̄t) = P (zt+1|zt). Therefore, the
encoder needs to follow a Markov property:

P (z̄t+1|ht+1) = P (z̄t+1|ht, at, ot+1)

= P (z̄t+1|z̄t, at, ot+1)P (z̄t|ht)

= P (zt+1|zt, at, ot+1)P (z̄t|ht)

Thus, the encoder P (z|h) factorizes according to P (z′|z, a, o′), a transition distribution
for our new state space or representation Z. Together with an initial state distribution
P (z0), we have:

Pθ(z̄t|ht) = Pθ(z0)
t∏

i=1
Pθ(zi|zi−1, ai−1, oi)

The parameters θ of our encoder are thus the parameters of the transition and initial
state distributions.

3.6.4 Finding efficient, purpose-sufficient representations

We now describe our encoding objective, i.e. to find a representation such that it
is purpose-sufficient but otherwise as compressed as possible. As a result, the encoder
should get rid of any information that is irrelevant to the purpose. A natural measure
of complexity and thus compression is entropy, which is minimal if the representation
consists of a single state. Purpose-sufficiency can be confirmed if the new representa-
tion carries as much information about the purpose as the history representation does.
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We thus follow a version of the information bottleneck principle (Tishby et al., 2000;
Strouse and Schwab, 2017) with objective function L(θ) which is to be maximized
with respect to our encoder Pθ(z̄|h):

L(θ) = Iθ(Ȳ ; Z̄)− λHθ(Z̄) (3.3)

Here I(Ȳ ; Z̄) corresponds to the mutual information between representation and pur-
pose, and H(Z̄) corresponds to the entropy of our representation. The parameter λ

determines the trade-off between the the two terms and we are here specifically con-
sidering the case where the information about the purpose is at its maximum. Since
the maximally achievable value of I(Ȳ ; Z̄) is bound by I(Ȳ ; H), i.e. the mutual infor-
mation between the purpose and the history representation, we can confirm that our
encoder P (z̄|h) produces a purpose-sufficient representation.

In this work we are considering representation space Z and observation space O

to be continuous, while the nature of the space Y will depend on the purpose, as seen
in the previous section. While mutual information is in general intractable to com-
pute in continuous spaces, entropy is neither tractable nor well defined. Differential
entropy, as entropy of continuous random variables is called, does not have identical
properties to the entropy of discrete random variables. Crucially, among others, dif-
ferential entropy is not bounded from below. This lack of a lower bound can result in
pathologies such as the following: Since entropy H(Z̄|H) in the encoder P (z̄|h) can
only increase H(Z̄), the encoder that minimizes H(Z̄) will be deterministic, the reason
why the objective in eq.3.3 is sometimes called the deterministic information bottle-
neck (Strouse and Schwab, 2017). In a continuous space Z̄ and with a deterministic
encoder, the variation in Z̄ can be scaled down arbitrarily, lowering the differential
entropy arbitrarily. Therefore, the minimization of H(Z̄) with respect to our encoder
does not have a well defined minimum.

A simple way of countering this is to make the encoder stochastic by adding
independent noise η to our potentially deterministic encoder P (z̄|h). This is a natural
modification supported by the fact that neural systems are unlikely to be free of noise
in the first place. The noise introduces then a lower bound on H(Z̄), making the
its minimum well defined. To show this, we write z̄ = z̄′ + η̄, where z̄′ ∼ P (z̄′|h),
and then compute the encoder entropy H(Z̄|H) = H(Z̄ ′ + η̄|H) ≥ H(η). Since
H(Z̄)−H(Z̄|H) = I(Z̄; H) ≥ 0, the encoder entropy lower bounds H(Z̄) and we have
H(Z̄) ≥ H(Z̄|H) ≥ H(η̄) (Kirsch et al., 2021). By introducing this lower bound, at
the optimum of L, the encoder will have a fixed entropy H(Z̄|H) = H(η̄). Note that
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our objective of eq.3.3 is thus equivalent to the standard information bottleneck with
a fixed entropy encoder. The standard information bottleneck as defined by (Tishby
et al., 2000), replaces the entropy term in eq.3.3 with another mutual information
term:

LIB = Iθ(Ȳ ; Z̄)− λIθ(Z̄; H)

= Iθ(Ȳ ; Z̄)− λ(Hθ(Z̄)−H(Z̄|H))

Even though we now have a well defined objective, mutual information and en-
tropy are still intractable to compute and we next introduce variational approxima-
tions for both (Chalk et al., 2016; Alemi et al., 2016). We discuss the treatment of
the two terms I(Z̄, Ȳ ) and H(Z̄) in turn.

Estimating information about the purpose Iθ(Z; Y )

We first note that we can rewrite Iθ(Z̄; Ȳ ) = H(Ȳ ) − Hθ(Ȳ |Z̄). H(Ȳ ) is inde-
pendent of our encoder due to the Markov chain Y ←− H −→ Z, i.e. ȳ is given by
P (ȳ|h)P (h). We can therefore ignore it and focus on minimizing Hθ(Ȳ |Z̄):

Hθ(Ȳ |Z̄) = −
∫

dȳ dz̄ dh Pθ(ȳ|z̄)Pθ(z̄|h)P (h) log Pθ(ȳ|z̄)

While P (ȳ|z̄) could in principle be computed using Bayes’ theorem, it is intractable
in practice due to expectations over P (h). Instead we use a variational approxima-
tion Qθ(ȳ|z̄) to P (ȳ|z̄). Since the Kullback-Leibler divergence DKL[P (ȳ|z̄)∥Q(ȳ|z̄)] =∫

dȳ P (ȳ|z̄) log P (ȳ|z̄)/Q(ȳ|z̄) ≥ 0, we have:∫
dȳ Pθ(ȳ|z̄) log Pθ(ȳ|z̄) ≥

∫
dy Pθ(ȳ|z̄) log Qθ(ȳ|z̄)

And we get therefore an upper bound on our objective to be minimized:

Hθ(Ȳ |Z̄) = −
∫

dȳ dz̄ dh Pθ(ȳ|z̄)Pθ(z̄|h)P (h) log Pθ(ȳ|z̄)

≤ −
∫

dȳ dz̄ dh Pθ(ȳ|z̄)Pθ(z̄|h)P (h) log Qθ(ȳ|z̄)

= −Eθ[log Qθ(ȳ|z̄)]

(3.4)

The resulting expectation can be estimated using samples from P (ȳ|h)P (z̄|h)P (h),
where we again used the Markov condition Y ←− H −→ Z to replace P (ȳ|z̄) by P (ȳ|h),
thereby avoiding computing any integral. For the parameterization of the variational
distribution Qθ(ȳ|z̄) we assume conditional independence of yt given zt, thus Qθ(ȳ|z̄) =
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∏T
t=0 Qθ(yt|zt). We then parameterize Qθ(yt|zt) by a generalized linear model (GLM):

Q(y|z) = GLM(Gz + g)

Here, G is a matrix parameterizing the linear predictor and g is an offset term. The
form of the GLM will depend on the nature of y: if y is discrete, the GLM models a
categorical distribution, and if y is continuous, the GLM models a normal distribu-
tion. We deliberately keep Q(y|z) linear and time-independent in order to make the
interpretation of the representation in terms of an assumed purpose more transparent.
Such linear readouts have also proven very useful in analysing activities of neural pop-
ulations, which make them a natural choice (Kobak et al., 2016). Furthermore, one
can argue that the complexity of a representation is also determined by the complexity
of the readout it requires. A time-independent linear readout Q(y|z) is arguably of
low complexity.3

Estimating the entropy Hθ(Z̄) of a representation

As previously, Hθ(Z̄) =
∫

dh Pθ(z̄|h)P (h) involves an intractable integral to com-
pute the expectation over histories which requires us to introduce a variational ap-
proximation Qθ(z̄). Again, since the Kullback-Leibler divergence DKL[P (z̄)∥Q(z̄)] =∫

dz̄ P (z̄) log P (z̄)/Q(z̄) ≥ 0, we have:

Hθ(Z̄) ≤ Hθ(P (z̄)∥Q(z̄))

= −
∫

dz̄ dh Pθ(z̄|h)P (h) log Qθ(z̄)

= −Eθ

[
log Qθ(z̄)

] (3.5)

Here H(P (z̄)∥Q(z̄)) denotes the cross-entropy between P (z̄) and Q(z̄) and it presents
an upper bound on H(Z̄). The resulting expectation can again be estimated by sam-
pling from P (z̄|h)P (h), i.e. by sampling from our task and encoder. The bound
is tight when P (z̄) = Q(z̄) and otherwise we have H(P (z̄)∥Q(z̄)) = H(P (z̄)) +
DKL[P (z̄)∥Q(z̄)].

Variational approximation

While the parametrization of the variational distribution Q(y|z) was straightfor-
ward, this is not the case for Q(z̄), as we expect P (z̄) to be a potentially complicated

3It could also be argued that the encoder has to be of low complexity. However, while we think of
the readout as the connection weights to a next area, the encoder can be implemented by the whole
sensory system, and is thus potentially less constrained.
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Figure 3.9: Since component relationships are the determining factor of a representation’s
entropy, our variational distribution should focus on these relationships. In order to do this,
instead of directly parameterizing the variational distribution Q in a space Z̄ × K, i.e. the
space of our mixture model, we parameterize it in the much bigger joint space Ẑ = Z̄1 ×
Z̄2 × · · · × Z̄K . A point ẑ ∈ Ẑ will then correspond to K trajectories simultaneously, i.e.
ẑ = (z̄1, z̄2, . . . , z̄K). a) We can represent a mixture model with components P (z̄|k) as in e.g.
Fig.3.4b) equivalently in Ẑ: First, every colored component k gets its own set of axes. Second,
we define a distribution, drawn as a green ball, P (ẑ) =

∏K
k=1 P (z̄k|k), where we have made the

dependence of z̄ on k explicit. We can then simply recover a component’s distribution P (z̄|k) as
the marginal of P (ẑ) = P (z̄1, z̄2, . . . , z̄K) over all variables but z̄k, visualized as a projection
for the blue component. b) The same space as in a). Our variational distribution Q(ẑ)
assigns high probability to the diagonal, representations with highly overlapping components
and marginals (as in Fig.3.4d,e)). For visualization reasons, again only 2 dimensions are
considered. c) The undirected graphical model used for our variational approximation. Rows
correspond to different trial types, columns to different time steps. Connections between rows
pull trial types together, while connections between columns prioritize smooth solutions.
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multimodal distribution. If we are not able to approximate such a distribution well,
i.e. DKL[P (z̄)∥Q(z̄)] ≫ 0, it will be hard to discern between representations and to
find the efficient representation. In order to find an effective variational distribution
that enforces efficient solutions, we first try to illustrate the kind of P (z̄) we are ex-
pecting to encounter. For this, we use the structured task description with K trial
types that we introduced above:

Pθ(z̄) =
K∑

k=1

∫
dh Pθ(z̄|h)P (h|k)P (k)

=
K∑

k=1
Pθ(z̄|k)P (k)

In this formulation, P (z̄) takes the form of a mixture distribution with components
P (z̄|k), i.e. a component, or representation, for every trial type k (Fig.3.4a,b). The
entropy H(Z̄) will then primarily be a function of the relationship between the compo-
nents, but not a function of each component’s shape, i.e. each component’s mean, itself
(Fig.3.4c-g). Specifically, if all components are separated, then the entropy H(Z̄) will
be at its maximum. Yet if all components are identical, then H(Z̄) will be minimal.

To see this, we can set up lower and upper bounds on the true entropy: H(Z̄|K) ≤
H(Z̄) ≤ H(K|Z̄) + H(Z̄). The upper bound is given since H(K|Z̄) is a discrete en-
tropy, which is non-negative. The upper bound is attained if H(K|Z̄) = 0, i.e. if every
sequence z̄ is clearly assigned to a component k. This means that components are
non-overlapping. The lower bound is given due to the non-negativity of mutual infor-
mation I(; ), I(Z̄; K) = H(Z̄)−H(Z̄|K) ≥ 0. Thus, H(Z̄|K) is a lower bound that is
attained when all components have the same distribution, i.e. P (z̄) = P (z̄|k) ∀k. Of
course, entropy can be further minimized by minimizing the per-component entropy
H(Z̄|k), but we assume it to be fixed in this work.

Intuitively speaking, even if the entropy of two mixture distributions is identical
due to identical component relationships, their complexity still seems different. Com-
pare for example Fig.3.4 panels f) and g). Their entropy is identical, yet one is varying
with time and the other is not. This apparent mismatch is due to the invariance of
entropy under the addition of constants ā, i.e. H(Z̄ + ā) = H(Z̄). Thus, the entropy
H(Z̄) of our representation is independent of its mean, and this mean might vary
in complicated ways (Fig.3.4d,e). However, the addition of ā will affect the entropy
of the marginal distribution. Assume we are at the optimum where all components
are overlapping, as in Fig.3.4d-g. The marginal is formally P (z) = 1/T

∑T
t=0 P (zt)
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with P (zt) = 1/K
∑

k

∫
dz−t P (z̄|k), where

∫
dz−t denotes an integral over all zi ̸=t. If

P (z1) and P (z2) are overlapping, as in Fig.3.4e, then the entropy of P (z) is minimal.
We thus focus on solutions with flat offset ā, where ai = aj ∀i, j. We thus look for
representations with overlapping trials and flat or smooth trajectories.

We now use these facts about the entropy of mixture distributions to design a
variational distribution that specifically captures these relationships. The variational
distribution can then be understood as a prior that assigns high probability to low
entropy solutions. In order to do so, we firstly do not work with P (z̄) directly, but with
the mixture distribution P (z̄|k)P (k), and accordingly we minimize the joint entropy
H(Z̄, K). The joint entropy upper bounds the entropy of our interest:

H(Z̄, K) = H(Z̄) + H(K|Z̄) ≥ H(Z̄) (3.6)

The upper bound, as above, is due to the non-negativity of the discrete entropy
H(K|Z̄). While this is a step away from our original objective, we content ourselves
with this upper bound as the joint mixture distribution gives us access to the com-
ponents of several trial types before they are marginalized out. At the same time, a
sample k, z̄ from this mixture distribution will only give us a single trajectory from
a single trial type, again forbidding us to make any statement about the relation-
ship between the components of several trial types. We thus secondly change the
representation of the joint P (z̄|k)P (k) as illustrated and described in Fig.3.9a):

P (ẑ) = P (z̄1, z̄2, . . . , z̄K |1, . . . , K) =
K∏

k=1
P (z̄k|k)

Here we made the dependence of z̄k on k explicit using superscipts, and we intro-
duced a new space Ẑ = Z̄1 × Z̄1 × · · · × Z̄K . As there is only one combination of
indices 1, . . . , K, we have omitted the conditioning of P (ẑ). The space Ẑ includes
all components jointly, hence a variational distribution in Ẑ is able to address their
relationships. Note that this change of representation is leaving our components, and
thus our mixture, unchanged: As we took the product of all components, and all of
them are conditionally independent of each other, we can simply marginalize out the
appropriate components to get back a specific P (z̄k|k):

P (z̄k|k) =
∫

dz̄1 . . . dz̄k−1dz̄k+1 . . . dz̄KP (z̄1, z̄2, . . . , z̄K |1, . . . , K)

= P (z̄k|1, . . . , K)
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The last equality holds because z̄k only depends on k. Unsurprisingly, this change of
representation does then also not affect the joint entropy of the mixture:

H(Ẑ) =
∫

dẑ P (ẑ|1, . . . , K)P (1, . . . , K) log P (ẑ|1, . . . , K)P (1, . . . , K)

=
∫

dẑ P (ẑ|1, . . . , K)P (1, . . . , K) log
K∏

k=1
P (z̄k|k)P (k)

=
K∑

k=1

∫
dz̄1 . . . dz̄K P (z̄1, z̄2, . . . , z̄K |1, . . . , K)P (1, . . . , K) log P (z̄k|k)P (k)

=
K∑

k=1

∫
dz̄k P (z̄k|k)P (k) log P (z̄k|k)P (k)

= H(Z̄, K)

Here we have used the joint of all indices P (1, . . . , K) which has one entry only.
We can therefore define our variational distribution in Ẑ, and we define it such that
representations with slowly-varying overlapping components are preferred (Fig.3.4c-g,
Fig.3.9b). Specifically, the variational distribution factorizes according to the following
undirected graphical model (Fig.3.9c):

Qθ(ẑ) = Qθ(z̄1, z̄2, . . . , z̄K |1, . . . , K) = 1
c

K∏
k=1

ϕθ(zk
0 )

T∏
t=1

ϕ(zk
t , zk

t−1)
∏
j>k

ϕ(zk
t , zj

t )

Here ϕ(zk
0 ) = ϕ(z0) = N(µ0, σ2I) ∀k, ϕ(x, y) = exp(−∥y−x∥2

σ2 ), and c is the partition
sum taking care of the normalization. The mean µ0 of ϕ(z0) is the only variational
parameter. Crucially, factors ϕ(x, y) enforce closeness between x and y. On the one
hand, factors of the type ϕ(zk

t , zk
t−1) enforce closeness between two consecutive states

of a given trial, thus enforcing low marginal entropy (Fig.3.4d-g). Factors of the type
ϕ(zk

t , zj
t ), on the other hand, enforce closeness between the representations of two

different trial types k and j, thus enforcing low entropy solutions (Fig.3.4). Since such
pairwise relations are undirected, the third product only runs over j > k in order to
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avoid counting some pairs twice. Using equations 3.5 and 3.6, we then get:

Hθ(Z̄) ≤ Hθ(Z̄, K) = Hθ(Ẑ)

≤ −Eθ

[
log Qθ(ẑ)

]
= −Eθ

[
log

(1
c

K∏
k=1

ϕθ(zk
0 )

T∏
t=1

ϕ(zk
t , zk

t−1)
∏
j>k

ϕ(zk
t , zj

t )
)]

= −Eθ

[ K∑
k=1

log ϕθ(zk
0 ) +

T∑
t=1

log ϕ(zk
t , zk

t−1) +
∑
j>k

log ϕ(zk
t , zj

t )
]

+ c′

= 1
σ2 Eθ

[ K∑
k=1
∥zk

0 − µ0∥2 +
T∑

t=1
∥zk

t − zk
t−1)∥2 +

K∑
j=k+1

∥zk
t − zj

t ∥2
]

+ c′

(3.7)

We have absorbed all constant terms into c′. The expectation can then again be
estimated by sampling from P (z̄|h)P (h|k)P (k). We can now see that a sample Q(ẑ)
will have high probability if distances between ‘neighbouring’ states are low. The
lowest entropy solution will thus be a representation that does not change over time
nor trial type. This is the same intuition underlying the concept of Fisher information;
if a random variable X is invariant to a change about y, then X has low Fisher
information about y. The view that our variational distribution is rather a prior than
an approximation relates to the idea of default dynamics in control theory, where a
deviation from the default dynamics incurs control costs (see e.g. Todorov (2009);
Tishby and Polani (2011)).

Finally combining the two bounds in eq.3.4 and eq.3.7 into eq.3.3, we get:

L ≥ L̂

= Eθ

[
log Qθ(ȳ|z̄)

]
+ λEθ

[
log Qθ(ẑ)

]
= Eθ

[
log Qθ(ȳ|z̄)

]
− λ

σ2 Eθ

[ K∑
k=1
∥zk

0 − µ0∥2 +
T∑

t=1
∥zk

t − zk
t−1∥2 +

K∑
j=k+1

∥zk
t − zj

t ∥2
]

(3.8)

In the last line we dropped the constant c′. The resulting objective is thus simple
maximum likelihood estimation under a smoothing constraint. In practice, minimizing
the terms of the form ∥z − z′∥2 = ∥z∥2 + ∥z′∥2 − 2z⊤z′ will simultaneously minimize
the norms of z and z′, as well as maximize the overlap between z and z′ as per the dot
product. This will often lead to the trivial solution of z = 0 ∀z, making it hard for the
optimization procedure to pick up purpose information. We thus normalize the terms
as in ∥z− z′∥2/(∥z∥2 +∥z′∥2) and simultaneously minimize the norms ∥z∥2 for z at all
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Figure 3.10: The partitioning of Z by the roSLDS. Consider for example the switching
variable s1. For any state z, s1 is expected to be active if both Ds1z > Ds2z and Ds1z > Ds3z
(the yellow area). The center of the partitioning is determined by the offset e, and can be
translated by the current observation and action through matrices F and E, respectively.

time steps and for all trial types, to avoid increasing the norm of the representation
indefinitely.

The resulting objective is optimized with respect to the parameters θ that are
the parameters of our two variational approximations Q(y|z) and Q(ẑ), as well as
the parameters of our encoder P (z|h). We next discuss the parameterization of the
encoder.

3.6.5 Parameterization of encoder P (z̄|h) by a switching linear dy-
namical system

We can now turn to the parameterizaton of our encoder. Due to the memory
constraint we have the following factorization:

P (z̄t|ht) = P (z0)
t∏

i=1
P (zt|zt−1, at−1, ot+1)

We thus need to parameterize the initial condition P (z0) as well as the transition
distribution P (z′|z, a, o′). The initial condition P (z0) = N(µ0, σ2I) is parameterized
by a Gaussian of fixed variance σ2I and mean µ0 that is shared with ϕ(z0) of the vari-
ational approximation. For the transition distribution, we add, as discussed above,
to enforce a lower bound on the differential entropy, noise η to an otherwise deter-
ministic transition function f(z, a, o′). For simplicity, we assume centered Gaussian
noise η ∼ P (η) = N(0, σ2I) with isotropic variance σ2I, where I denotes the identity
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matrix. We thus have:

P (z′|z, a, o′) = N
(
f(z, a, o′), σ2I

)
For f we make a choice based on the trade-off between two considerations: The
resulting encoder shall be easy to understand, yet it shall be flexible enough so that it
is likely that the efficient representation can actually be encoded. If, for example, f is
a linear function, then we have good interpretability, but the resulting representation
will likely be heavily influenced by the rigidity of the linear mapping, and hence it
is unlikely that we can encode the efficient representation. If, on the other hand,
f is a very flexible function, such as a deep neural network, then encoding will be
good, but interpretation less straightforward. A choice that nicely balances these
two considerations is the switching linear dynamical system (SLDS, Barber (2006);
Linderman et al. (2017)). An SLDS uses linear dynamics, but the linear dynamics
can change based on where in the space Z we are. Specifically, we have have a set of
S different linear dynamical systems indexed by the switching variable s:

P (z′|z, a, o′, s′) = N
(
fs′(z, a, o′), σ2I

)
fs′(z, a, o′) = As′z + Bs′a + Cs′o′ + bs′

Here, As′ ∈ RN×N is the transition matrix of switch s′ that maps a current state
z ∈ RN one step forward. Bs′ ∈ RN×L and Cs′ ∈ RN×M are the input weights of
switch s′ for actions a ∈ RL and observations o ∈ RM , respectively, and bs′ ∈ RN is a
constant offset. The switching variable s′ is determined by the switching distribution
which is also a function of z, a, and o′:

P (s′|z, a, o′) = Cat(softmax(Dz + Ea + Fo′ + e))

This corresponds to another GLM with the linear predictor consisting of the matrices
D ∈ RS×N , E ∈ RS×L, and F ∈ RS×M , as well as the constant offset vector e ∈
RS . The switching distribution partitions our state space Z into S linearly separable
regions. Given a state z, switch s will, on average, be active if (Ds−Ds′)z > 0 ∀s′ ̸= s,
where Ds denotes the s’th row of D (Fig.3.10). Apart from this, the partition may be
translated based on the input from actions and observations through weights E and
F , respectively.

Note that this is a special version of the SLDS, sometimes called the recurrent-only
SLDS (roSLDS, Linderman et al. (2017)). In a standard SLDS, s′ does not depend
on the current state z through a recurrent connection D, making it less flexible.
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At the same time, we drop the standard dependence of s′ on the previous switch
s, therefore being recurrent-only. While dropping this dependence does render the
roSLDS simpler, the reason for dropping it is another: If we allow this dependence,
information can flow through a sequence of switches s, s′, s′ outside of the space Z,
thereby making the representation in Z alone potentially insufficient. This would
defeat the purpose of our approach.

Finally, we can recover our transition distribution:

P (z′|z, a, o′) =
S∑

s′=1
P (z′|z, a, o′, s′)P (s′|z, a, o′)

3.6.6 Optimization

We are now ready to maximize our lower bounded objective L̂IB of eq.3.8 with
respect to θ = (A1, . . . , AS , B1, . . . , BS , C1, . . . , CS , b1, . . . , bS , D, E, F, e, G, g, µ0), our
parameters. All parameters indexed by s parameterize the dynamics of the SLDS,
(D, E, F, e) parameterize the switching distribution, G, g parameterize the variational
distribution for the purpose, and µ0 parametrizes the variational distribution for the
representation entropy. To present our optimization strategy, we first focus on the
purpose-related term of L̂:

Eθ

[
log Qθ(ȳ|z̄)

]
= E

[ ∫
dz̄ Pθ(z̄|h) log Qθ(ȳ|z̄)

]
As mentioned before, the expectation value can be approximated by sample averages,
yet the sampling distribution also depends on θ through the encoder, making it difficult
to optimize for the expected log-likelihood. One straightforward way of avoiding this
complication is to reparameterize the encoder Kingma and Welling (2014). Instead of
sampling from Pθ(z̄|h) directly, we can sample from a θ-independent distribution ϵ̄ ∼
P (ϵ̄) and then plug this sample into an appropriate θ-dependent, differentiable, and
deterministic function z̄ = gθ(h, ϵ), such that the resulting samples z̄ are distributed
according to Pθ(z̄|h). To highlight the dependency of these samples on θ and the
histories h, we write z̄(θ, h). Since Pθ(z̄|h)dz̄ = P (ϵ̄)dϵ, as required to define a valid
density, the expectation above becomes θ-independent:

E
[ ∫

dz̄ Pθ(z̄|h) log Qθ(ȳ|z̄)
]

= E
[ ∫

dϵ̄ P (ϵ̄) log Qθ(ȳ|z̄(θ, h))
]
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In our case, the roSLDS parameterizing the encoder consists of a Gaussian tran-
sition distribution and a categorical switching distribution, and both have to be repa-
rameterized. For the Gaussian P (z′|z, a, o′, s′) = N(fθ

s′(z, a, o′), σ2I) as defined above,
we can naturally sample the noise from a zero-mean Gaussian η ∼ N(0, σ2I) and
then add this sample to the determinisitic mean function to get gθ(z, a, o′, s′, η) =
fθ

s′(z, a, o′) + η. While reparameterizing a Categorical distribution is less straightfor-
ward, it can also be, approximately, done using the so called Gumbel-softmax trick
(Maddison et al., 2016; Jang et al., 2016).

To finally calculate the expectation, we can take M samples hm from our task,
the corresponding samples ȳm from our purpose, as well as a sample z̄m from our
reparameterized encoder:

Eθ

[
log Qθ(ȳ|z̄)

]
≈ 1

M

M∑
m=1

log Qθ(ȳm|z̄m(θ, hm))

= 1
M

M∑
m=1

T∑
t=0

log Qθ(ym
t |zm

t (θ, hm))

We can then compute the gradient of this sample average with respect to the param-
eters θ, in order to maximize our objective by gradient ascent:

d

dθ

1
M

M∑
m=1

T∑
t=0

log Qθ(ym
t |zm

t (θ, hm)) = 1
M

M∑
m=1

T∑
t=0

d

dθ
log Qθ(ym

t |zm
t (θ, hm))

The term log Qθ(ym
t |zm

t (θ) will tell us how well our model is currently able to explain
ym

t . The corresponding error can then be minimized in two ways: Firstly, by changing
the parameters G of the variational distribution, and secondly, by changing zm

t , i.e.
the encoder, itself. How changing the encoder will affect the error is determined by
dzm

t (θ, hm)/dθ, and since zm
t (θ, hm) is a deterministic function of zm

t−1 and of sm
t , and

zm
t−1, sm

t are deterministic functions of previous variables likewise, the derivative has to
be computed all the way back through the SLDS. In order to compute those gradients,
we use the auto-gradient function of the pytorch library (Paszke et al., 2019). Gradient
steps are taken using the Adam optimizer (Kingma and Ba, 2015).

The second term of the objective L̂ can be optimized equivalently.

3.6.7 Task modeling

In general, we tried to stick as closely as possible to the definitions of the tasks
as found in the respective publications (Romo et al., 1999; Brody et al., 2003; Mante
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et al., 2013; Inagaki et al., 2019). Special care was taken to respect the time structure
of the tasks, as we knew that minor timing changes can have a big impact on the
resulting neural representations (Inagaki et al., 2019).

All parameters θ are initialized by sampling from a normal distribution with a
standard deviation of 0.1. The hyperparameters of the model are the SLDS’s state
dimension N , its transition noise σ, the number of switching variables S, and the
standard deviation of the noise σobs added to the observations.

For the habitual models, we set Bs = 0 for all switches, i.e the actions produced
by the model could not directly influence the SLDS’s future dynamics. We did so in
order to simplify optimization, as we did not expect such a dependence to be necessary
to implement the optimal policy for any of the tasks.

The variational distribution Q(y|z) for the purpose are different for the habitual
and the model-based cases. In the habitual case, Q(y|z) = Q(a|z) is a categorical
GLM with parameters G ∈ RL×N and g ∈ RL, with L being the number of actions.
In the model-based case, Q(y|z) = Q(o′|z) is a normal GLM, or simply a linear model,
with parameters G ∈ RM×N and g ∈ RM , with M being the dimensionality of the
observations.

Somatosensory working memory task

For the habitual model, we chose the hyperparameters N = 20, σ = 0.05, and
S = 3. The habitual purpose is to produce the correct action sequences given a
sequence of observations. The number of actions L was set to 3, for the actions
‘hold’, ‘push left button’, and ‘push right button’. The observation dimensionality M

was set to 2, where both dimensions receive frequency information F1 and F2, but
inversely tuned. This inverse tuning is inspired by the actual frequency tuning of the
secondary somatosensory cortex S2 in this task (Salinas et al., 2000; Romo et al.,
2002; Machens et al., 2005), an earlier stage of somatosensory processing. Specifically,
for a given frequency fmin ≥ f ≥ fmax , the positively scaled observation is equal
to 0.4 + f − fmin, and the negatively scaled observation is equal to 0.4 + fmax − f ,
following the implementation of (Song et al., 2016).

A trial consisted of T = 25 time steps, and F1 was presented at time steps 1,
2, and 3, and F2 was presented at time steps 19, 20, and 21. The (F1,F2) pairs
presented were (2,1), (2,3), (4,3), (4,5), (6,5), (6,7), (8,7), and (8,9), all positively
and negatively scaled as described above, with additional normal observation noise
of standard deviation σobs = 0.1. The optimal policy was to hold until the first F2
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presentation, then to produce the correct action during the F2 presentation period,
after which any action was equally probable.

For the model-based model, we chose the hyperparameters N = 30, σ = 0.05,
and S = 4. The model-based purpose is to predict the observations (that include
rewards) given a sequence of actions. The number of actions L = 3 was unchanged.
The dimensionality of the observations was set to M = 3, where the first dimension
carried the positively tuned frequencies, and the second dimension the negatively
tuned frequencies, identical to the habitual case above. The third dimension carried
the rewards or punishments.

A trial again consisted of T = 25 time steps, and F1 and F2 presentations were
identical to the habitual case. In the model-based case actions are not an output of the
SLDS model, but rather provided as an input. We provide both correct and incorrect
action sequences, in order for the model to learn about the reward contingencies of
the task. As the number of all possible action sequences grows exponentially with
the number of time steps T , we only presented action sequences that were taking
the correct action ‘hold’ up until the onset of F2 presentation, after which either the
correct or the incorrect ‘decision’ actions ‘left’ or ‘right’ were presented. Resulting
rewards (10) or punishments (-10) were to be predicted during the time of decision.

Context-dependent decision making task

In this task, a trial consisted of T = 25 time steps. In the habitual case, observa-
tion dimensionality was set to M = 4. The first two dimensions carried the context
cue, with [1, 0] for the motion context and [0, 1] for the colour context. The context
cue was presented from trial start up until the start of the decision period. The stimuli
were presented during time steps 2 to 14, in dimension 3 for motion and 4 for color.
Each stimulus was presented as Gaussian noise N(d, σobs), where d corresponds to the
coherence of either motion or color, and σobs to the stimulus noise. The coherence
d was selected from 6 possible values, 3 negative, and 3 positive. The magnitude of
d was chosen such that the signal to noise ratio for the most difficult conditions, i.e.
the ones closest to 0, was 2, for the medium conditions was 4, and for the easiest con-
ditions was 6. For example for the most difficult positive condition, as the stimulus
presentation consisted of 12 time steps, we have d = 2σobs/

√
12 ≈ 0.0577. Each rele-

vant coherence was paired with a randomly chosen irrelevant coherence. The stimulus
presentation was followed by a delay period of a random length, ranging from 3 to
7 time steps. The end of the delay period and the start of the decision period was
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signaled by removing the context cue, after which the decision had to be made for two
time steps.

The number of actions was again L = 3, for ‘hold’, ‘left saccade’, and ‘right
saccade’. The optimal policy was to hold from trial start until the decision period,
after which the correct saccade action was to be taken depending on stimulus and
context. After the decision period all actions were equally probable. For the habitual
model we chose the hyperparameters N = 20, σ = 0.01, and S = 3.

For the model-based case, the trial structure was identical, except for an additional
observation dimension for the rewards, thus M = 5. The rewards were delivered at
decision time. As in the somatosensory working memory task, we presented both
correct and incorrect action sequences. For correct trials the reward was 10, and
for incorrect trials the punishment was -10. We increased the signal to noise ratio
of the motion and color stimuli by five times, compared to the habitual case, as
otherwise the model-based model had trouble picking up this information. We chose
the hyperparameters N = 20, σ = 0.01, and S = 4.

To generate the dPCA plots of both agents, we had to generate error trials in order
to demix motion and color information from decision information. For example, in the
habitual case, since we represent for the optimal policy, we only had very few error
trials. Similarly, in the model-based case, we only had error trials because we provided
incorrect action sequences from the exterior. To generate error trials, we increased
σobs by four times in the habitual case, and by twenty times in the model-based case.

Delayed licking tasks

Both the fixed and the random delay tasks consisted of T = 23 time steps. In
the habitual case, the observation dimensionality was M = 1, a single dimension
for the instruction stimulus, presented between time steps 2 and 6, as well as the
go-cue stimulus. In the fixed delay task, the go-cue was presented at time step 17.
In the random delay task, the time of the go-cue did not occur before time step 8,
and otherwise selected from an exponential distribution with rate 0.2. The values of
the two instruction tones were 3 and 12, and the value of the go cue was 6. There
were L = 3 actions, ‘hold’, ‘lick left’, and ‘lick right’. The optimal policy was to
hold, and then to respond after the go cue. For the habitual model, we chose the
hyperparameters N = 20, σ = 0.05, and S = 3 in both the fixed delay task and the
random delay task.
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In the model-based case, the observation dimension was increased by one, i.e.
M = 2, with the reward (10) and punishment (-5) being delivered in the second
dimension during the response period. Again, we presented correct as well as incorrect
action sequences. We chose the hyperparameters N = 20, σ = 0.05, and S = 4 for
both tasks.

Lastly, the habitual purpose with anticipation is identical to the habitual purpose,
only the go-cue is omitted in the fixed delay task.
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3.7 Supplementary figures
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Supplementary Figure 3.1: Optimization progress and switching behaviour of the ef-
ficient habitual representation of the somatosensory working memory task. a)
The four panels show four different measures as they develop over the optimization epochs.
The likelihood of the purpose (top left) corresponds here to the likelihood of the optimal ac-
tions. As discussed in the Materials and Methods, our choice of the variational approximation
Q(z̄) of the distribution over representation trajectories P (z̄) enforces two types of smooth-
ness, namely smoothness over time (top right) and smoothness over trial types (bottom left).
Specifically, given zi and zj , where i, j correspond to two adjacent time steps in the same trial
type (top right) or to two trial types at the same time step (bottom left), the two panels show
1− cos(zi, zj) averaged over time steps and trial types, and time steps and pairs of trial types,
respectively. We choose the cosine-based measure to get a smoothness measure independent
of the norm of the representation of a given trial type. The bottom right plot shows an upper
bound on the entropy of the marginal representation P (z) = 1/T

∑T
t=0 P (zt). Specifically,

the vertical axis shows the sum of the log-eigenvalues of the covariance matrix in Z-space,
which is proportional to the differential entropy of a Gaussian variational approximation. b)
The switching variables selected over a trial. In this case, we have S = 3 switching variables
(on the vertical axis), and a trial consists of 25 time steps. The plot shows an average over
all possible trial types. The times of F1 and F2 presentation are indicated by black bars at
the top of the plot. Different switching variables are active during the presentation of F1 and
F2. As the same switching variable is active before the presentation of both F1 and F2, this
difference can only result from a different continuous state Z. This might explain why we
see the ramping in the first condition independent components in Fig.3.5b and supplentary
Fig.3.2.
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Supplementary Figure 3.2: Development of the efficient habitual representation of
the somatosensory working memory task over the course of optimization. Each panel
shows a dPCA analysis as in Fig.3.5b, but for an intermediate result at a given optimization
epoch. The epoch number is indicated at the top of each panel, and the corresponding opti-
mization progress can be found in supplementary Fig.3.1.
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Supplementary Figure 3.3: Optimization progress and switching behaviour of the efficient
model-based representation of the somatosensory working memory task. a,b) are
equivalent to supplementary Fig.3.1.
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Supplementary Figure 3.4: Development of the efficient model-based representation
of the somatosensory working memory task over the course of optimization. Panels are
equivalent to supplementary Fig.3.2.
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Supplementary Figure 3.5: Optimization progress and switching behaviour of the efficient
habitual representation of the context-dependent perceptual decision making task.
a,b) are equivalent to supplementary Fig.3.1. In b), the black bars on top of each panel denote
the random dots period. The left and right panels correspond to the switching behaviour in
the motion context and the color context, respectively, averaged over all trial types.
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Supplementary Figure 3.6: Development of the efficient habitual representation of
the context-dependent perceptual decision making task over the course of optimiza-
tion. Each panels shows the dPCA of an intermediate result during optimization. The opti-
mization epoch is indicated on top of each panel. Panels are organized as described in Fig.3.6b.
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Supplementary Figure 3.7: Optimization progress and switching behaviour of the efficient
model-based representation of the context-dependent perceptual decision making
task. a,b) are equivalent to supplementary Fig.3.1. In b), the black bars on top of each
panel denote the random dots period. The left and right panels correspond to the switching
behaviour in the motion context and the color context, respectively, averaged over all trial
types.
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Supplementary Figure 3.8: Development of the efficient model-based representation
of the context-dependent perceptual decision making task over the course of opti-
mization. Each panels shows the dPCA of an intermediate result during optimization. The
optimization epoch is indicated on top of each panel. Panels are organized as described in
Fig.3.6b.
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Supplementary Figure 3.9: Optimization progress and switching behaviour of the effi-
cient anticipatory-habitual representation of the fixed delayed licking task. a,b)
are equivalent to supplementary Fig.3.1. In b), the black bars on top of each panel denote the
sample period and the time of the go cue of the trials analysed in Fig.3.7 and supplementary
Fig.3.10. The left and right panels correspond to the switching behaviour for the two instruc-
tion cues.
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Supplementary Figure 3.10: Development of the efficient anticipatory-habitual rep-
resentation of the fixed delayed licking task over the course of optimization. Each panels
shows the dPCA of an intermediate result during optimization. The optimization epoch is
indicated on top of each panel. In each panel, the top row shows the first three condition-
independent components, and the bottom row shows the first three stimulus components.
Otherwise, panels are organized as described in Fig.3.7.
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Supplementary Figure 3.11: Optimization progress and switching behaviour of the effi-
cient anticipatory-habitual representation of the randomly delayed licking task.
a,b) are equivalent to supplementary Fig.3.1. In b), the black bars on top of each panel denote
the sample period and the time of the go cue of the trials analysed in Fig.3.7 and supplemen-
tary Fig.3.12. The left and right panels correspond to the switching behaviour for the two
instruction cues.
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Supplementary Figure 3.12: Development of the efficient anticipatory-habitual rep-
resentation of the randomly delayed licking task over the course of optimization. Each
panels shows the dPCA of an intermediate result during optimization. The optimization epoch
is indicated on top of each panel. In each panel, the top row shows the first three condition-
independent components, and the bottom row shows the first three stimulus components.
Otherwise, panels are organized as described in Fig.3.7.
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Chapter 4

Compact task representations as
a normative model for
higher-order brain activity

This chapter presents an older, published, version of the work presented in chapter
3. Here, we use non-parametric, or discrete, models instead of the switching linear
dynamical systems of the third chapter.

4.1 Contributions

Conceptualization and method development by Severin Berger and Christian
Machens. Simulations were done by Severin Berger.

The work presented in this chapter was peer-reviewed and published at the thirty-
fourth Conference on Neural Information Processing Systems (NeurIPS) in 2020.
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4.2 Summary

Higher-order brain areas such as the frontal cortices are considered essential for
the flexible solution of tasks. However, the precise computational role of these areas is
still debated. Indeed, even for the simplest of tasks, we cannot really explain how the
measured brain activity, which evolves over time in complicated ways, relates to the
task structure. Here, we follow a normative approach, based on integrating the princi-
ple of efficient coding with the framework of Markov decision processes (MDP). More
specifically, we focus on MDPs whose state is based on action-observation histories,
and we show how to compress the state space such that unnecessary redundancy is
eliminated, while task-relevant information is preserved. We show that the efficiency
of a state space representation depends on the (long-term) behavioural goal of the
agent, and we distinguish between model-based and habitual agents. We apply our
approach to simple tasks that require short-term memory, and we show that the ef-
ficient state space representations reproduce the key dynamical features of recorded
neural activity in frontal areas (such as ramping, sequentiality, persistence). If we ad-
ditionally assume that neural systems are subject to cost-accuracy tradeoffs, we find
a surprising match to neural data on a population level.

4.3 Introduction

Arguably one of the most striking differences between biological and artificial
agents is the ease with which the former navigate and control complex environments
(Lake et al., 2017). Core functions enabling such behaviours, including working mem-
ory and planning, are typically attributed to higher-order brain areas such as the
prefrontal cortex (PFC) (Miller and Cohen, 2001; Fuster, 2015), and exactly these
functions are thought to be lacking in today’s machine learning systems (Russin et al.,
2020). Yet, it remains unclear how higher-order brain areas generate these complex
behaviours, or even the simple behaviours that are often studied experimentally in
rodents and primates. Specifically, both behavioural strategies and neural activities
depend in complex ways on the task at hand, and these dependencies have so far
evaded a satisfactory or intuitive explanation (Sreenivasan and D’Esposito, 2019).
For example, in tasks that require animals to remember some information, neurons
are sometimes persistently active (Constantinidis et al., 2018; Funahashi et al., 1989;
Romo et al., 1999; Inagaki et al., 2019), while at other times they are sequentially ac-
tive (Fujisawa et al., 2008; Harvey et al., 2012). Indeed, subtle changes in the timing
of a task can lead to a sudden shift from one to the other (Inagaki et al., 2019), but
the causes behind these activity shifts have remained unclear.
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Currently, these activity patterns are mostly studied from a mechanistic, net-
work perspective. For instance, sequential activity has sometimes been identified with
feedforward dynamics, and persistent activity with recurrent or attractor dynamics
(Ganguli et al., 2008; Goldman, 2009). More generally, task-related neural activity
has been modeled by training recurrent neural networks (RNNs) to perform the same
task as an animal (Barak et al., 2013; Inagaki et al., 2019; Mante et al., 2013; Orhan
and Ma, 2019; Song et al., 2016; Yang et al., 2019). Surprisingly, RNNs can mimic
recorded neurons quite well, if the task is phrased the right way, and if learning is
properly regularized to avoid overfitting (Sussillo et al., 2015). However, RNNs are
generally difficult to interpret and analyse, although some progress has been made in
this direction (Sussillo and Barak, 2013). More importantly, training a RNN does not
clarify why a particular solution is a good solution, or, indeed, if it is a good solution
at all.

Here we take a step back and first define what determines a good solution. Our
goal is to develop a normative approach to explain higher-order brain activities. Our
starting point is the efficient coding hypothesis, which states that neural circuits should
eliminate all redundant or irrelevant information (Attneave, 1954; Barlow, 1961; Si-
moncelli and Olshausen, 2001). We then merge the concept of an efficient representa-
tion with the formalism of reinforcement learning (RL) and Markov Decision Processes
(MDPs). As most realistic tasks are only partially observable, we first endow the un-
derlying MDPs with a notion of observations. Instead of assuming hidden causes
for these observations, as in the popular partially-observable MDPs (Kaelbling et al.,
1998), we simply assume that agents can accumulate large observation and action his-
tories. As a result, states in our MDPs are not hidden, but the state space is huge and
includes (short-term) memories. We then use the size of the state space as a proxy for
efficiency, and we show how to eliminate redundancy and compress the state space,
while preserving the behavioural goal of the agent. Some of the mathematical theory
underlying the compression of dynamical systems has been developed before in other
context (Bertsekas, 1995; Wolpert et al., 2015), but its application to behavioral tasks
and neural data is new.

We obtain two key results. First, we illustrate that model-based agents, which
may seek to adjust their policy flexibly depending on context, require a different
compression strategy from habitual agents, which are already set on a given policy.
Second, we generate efficient representations for two standard behavioral paradigms
(Romo et al., 1999; Inagaki et al., 2019), and we show that the transition from se-
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Figure 4.1: A: The agent-environment loop. The environment, e, emits observations, o,
which include rewards. Based on its internal (belief) state, s, the agent chooses actions, a, that
affect the environment. B: The most information the agent can have about the environment
is to remember all past observations and actions, i.e., the history, h. C: Dependency graph
for the OMDP.

quential to persistent activity depends on the temporal basis needed to represent the
task, as well as the behavioral goal (model-based versus habitual) of the agent.

4.4 Results

4.4.1 From task structure to representation

A task is defined by a set of observations, a set of required actions, and their
respective timing. Each trial of a task is a specific sequence (or trajectory) through the
observation-action space. Any task representation is a function of these sequences, and
the specific function may be defined by a RNN, or by a normative principle as in this
study, that may then be compared with the trials’ corresponding neural trajectories.
Throughout this study, we follow the reinforcement learning (RL) framework and
assume that the agent’s control problem is to maximize future rewards.

Control under partial observability: Observation Markov decision pro-
cesses

RL theory was extensively developed on the basis of Markov decision processes
(MDP, (Sutton and Barto, 2018)). In MDPs agents move through states, s ∈ S, and
perform actions, a ∈ A. Given such a state and action, the probability of reach-
ing the next state, s′ ∈ S, and collecting the reward, r′ ∈ R, is specified by the
environmental dynamics, P (s′, r′|s, a). An MDP is therefore defined by the tuple
⟨S, A, R, P (s′, r′|s, a)⟩. Usually, a discount factor γ is included, but since we are deal-
ing with episodic problems only, we set γ = 1 for the remainder of this article. The
MDP state is fully observable, meaning that the observations made by the agent at
each time point fully specify the state.
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More realistic tasks are partially observable, so that the agent cannot access all
task-relevant information through its current sensory inputs, see Fig. 4.1A. A popular
extension for such RL problems are the partially observable MDPs (POMDPs, (Kael-
bling et al., 1998)), which distinguish between the underlying environmental states,
e ∈ E, and the agent’s observations thereof, o ∈ O. Here, agents move through
environmental states with probabilities P (e′|e, a). In turn, they make observations
o′ ∈ O (which include rewards) with probability P (o′|e′, a). A POMDP is therefore
fully specified by the tuple ⟨E, A, O, P (e′|e, a), P (o′|e′, a)⟩.

At each time point t, the environmental state et is hidden to the agent. Con-
sequently, the agent needs to infer this state using its action-observation history
ht = (ot, at−1, ot−1, . . . , o1, a0), see Fig. 4.1B. This inference process can be summa-
rized in the agent’s belief state, st ∈ S, where S = {x ∈ R|E|

≥0 |
∑

i xi = 1} is an |E|-
dimensional simplex. The elements of this belief state are given by st(e) = P (e|ht).
Upon taking an action at and making an observation ot+1, the agent can update its
belief state through Bayesian inference:

st+1(e′) = P (e′|ot+1, at, ht) = P (ot+1|e′, at)
∑

e∈E P (e′|e, at)st(e)
P (ot+1|ht, at)

(4.1)

Here the denominator, P (ot+1|ht, at) =
∑

e′ P (ot+1|e′, at)
∑

e P (e′|e, at)st(e), is the
observation-generating distribution given a belief state. Formally, the state update
function can be summarized by the distribution P (s′|s, a, o′) that equals one if Eq. (4.1)
returns s′ given s, a, o′, and zero otherwise. On the level of beliefs, we therefore
recover a MDP, called the belief MDP, defined by the tuple ⟨S, A, R, P (s′, r′|s, a)⟩
with P (s′, r′|s, a) =

∑
o′∈O\R P (s′|s, a, o′)P (o′|s, a) and O \ R denoting the set of

observations excluding rewards (Kaelbling et al., 1998).

Belief MDPs are generally hard to work with, since the belief states live on a
(generally high-dimensional) simplex. Since the belief states are simply functions
of the action-observation history, ht, however, we could also simply use the histories
themselves as states, st = ht. To generalize this idea, we therefore define an alternative
MDP directly on the level of P (s′|s, a, o′) and P (o′|s, a) and call it observation MDP
(OMDP, Fig. 4.1 C, given by the tuple ⟨S, A, O, P (s′|s, a, o′), P (o′|s, a)⟩). Importantly,
S may simply be chosen a discrete set.

If we choose histories as states, then the transition function P (h′|h, a, o′) becomes
simply the append function, i.e., h′ = (h, o, a) (Fig. 4.1B,C), and only the observation
function P (o′|h, a) has to be specified. We will call this specific OMDP a history-
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Figure 4.2: A: Dependency graphs for a history-OMDP (left) and a model-compressed
OMDP (right). Conditioned variables are shaded. B: Same as A, but for policy compression.

OMDP for the remainder. Obviously, the history-OMDP will not be the most compact
choice in general, since the set of histories grows exponentially with time, but it
contains all task-relevant information, and therefore allows us to ask the question of
how to compress the history space to get rid of the task-irrelevant bits.

State space compression

Our central goal is to find the most compact state space, Z, for a given task. For
simplicity, we assume that the task’s history-OMDP with state space H is already
given. As states are given by action-observation histories, h ∈ H, we first attempt
to directly find the compression function P (z|h) that maps histories to compressed
states, z ∈ Z, such that |Z| < |H|. We also define a decompression function, P (h|z),
by inverting P (z|h) using an uninformative prior on h.

The compression map will depend on the specification of the type of information
in H that needs to be preserved in Z. In the following, we will distinguish two types
of compression, model compression, which finds an efficient representation for model-
based agents, which have not converged on a fixed policy, and policy compression,
which finds an efficient representation for habitual agents, which have already inferred
the optimal policy.

State space compression for model-based agents

The model-based agent needs a compression that preserves all information in H

about future observations (Bialek et al., 2001). In principle, the information will
include observations (and their history) that may be irrelevant for a given task, but
could become relevant in the future. (Once an agent has attained certainty about
what is relevant or irrelevant for a given task, it should choose the more powerful
compression for habitual agents, see next section). The history-OMDP’s information
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about future observations is contained in both the observation function, P (o′|h, a),
and the transition function, P (h′|h, a, o′), and the compressed agent, with functions
P (o′|z, a) and P (z′|z, a, o′), needs to preserve information about both (Fig. 4.2A).
Similar compressions of world-models have been studied before, see e.g. (Bertsekas,
1995; Poupart and Boutilier, 2003), and we here build on these results.

Let us first consider preserving observation information when we compress the
state space representation with a map P (z|h). To do so, we simply require that,
given any action a ∈ A, the mutual information between observations, O′, and either
the full or compressed state space representation, H or Z, remains the same, so that
I(O′; H|A) = I(O′; Z|A). Accordingly, whether we compute the next observation
probability through P (o′|h, a), or whether we first compress into z, and then compute
the observation probability from there, using P (o′|z, a) =

∑
h P (o′|h, a)P (h|z), should

be the same.

Next we need to ensure that the compression also preserves our knowledge about
state transitions. Assume we start in h, predict o′ as described above, transition
to h′, and then compress h′ into z′. Ideally, we would obtain the same result if we
start in z, decompress into h, transition to h′, and then compress back into z′. In
terms of information, we thus obtain the condition I(Z ′, O′; H|A) = I(Z ′, O′; Z|A).
Given this constraint, we find the maximally compressive map P (z|h) by minimizing
the information I(Z; H) between Z and H using the information bottleneck method
(Tishby et al., 2000; Friedman et al., 2013):

min
P (z|h)

I(Z; H) subject to I(Z ′, O′; H|A) = I(Z ′, O′; Z|A) (4.2)

State space compression for habitual agents

For the habitual agent, we assume that an optimal policy, P (a|h), has been ob-
tained, and we aim to find the most compact representation of this policy. The agent
thus no longer needs to predict observations, but actions. A compressed representa-
tion for a habitual agent therefore requires the transition function P (z′|z, a, o′) and
the policy P (a|z). Following the logic of the model-based agent above, we therefore
need to preserve transition and action information (Fig. 4.2B), yielding the condition
I(Z ′, A; H|O′) = I(Z ′, A; Z|O′).

In practice, this condition requires the mutual information conditioned on observa-
tions, yet many state-observation combinations are never provided by the environment
or the experimenter. An alternative and equivalent approach, which we follow here,
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is to preserve one-step information about actions and transitions by preserving future
action sequences given future observation sequences. A trial k of length T is defined by
the observation sequence {o}k = (ok

1, ok
2, . . . , ok

T ) and the corresponding optimal action
sequence {a}k = (ak

0, ak
1, . . . , ak

T ). Given the history-OMDP and the policy P (a|h) we
can compute the likelihood of an action sequence given an observation sequence:

PH({a}k|{o}k) =
∑
{h}

P (h0)P (ak
0|h0)

T −1∏
i=0

P (hi+1|hi, ak
i , ok

i+1)P (ak
i+1|hi+1) (4.3)

We now try to find the smallest state space representation, Z, with transition proba-
bilities P (z′|z, a, o′) and policy P (a|z), such that the action sequence likelihoods are
preserved:

PH({a}k|{o}k) = PZ({a}k|{o}k) ∀k (4.4)

Here PZ({a}k|{o}k) is the action sequence likelihood given the compressed represen-
tation, computed analogously to PH({a}k|{o}k) in Eq. 4.3. Importantly, k only runs
over observed trials, thereby ignoring observation sequences that never occur. We use
a non-parametric setting and optimize the model parameters using expectation maxi-
mization. As many state-observation combinations and thus entries of P (z′|z, a, o′) are
encountered in none of the trials and to prevent overfitting, we put a Dirichlet prior on
transitions preferring self-recurrence (see e.g. (Montañez et al., 2015)). Furthermore,
we find the smallest state space Z by brute-force. Specifically, we initialize the model
with different |Z|, optimize the model parameters, and then take the smallest model
that fulfils the likelihood condition 4.4.

Towards a more biologically realistic setting: Linear Gaussian OMDP
parametrization

So far we have discussed the discrete or non-parametric treatment of tasks using
discrete OMDPs. As we will show below, the non-parametric case can already give us
several conceptual insights on task representations. However, to become more realistic
and deal with real-valued neural activities, continuous observation spaces, and the
noisiness of the brain, we need to look at possible parametrizations. Here we discuss
a linear parameterization that allows us to intuitively interpret the model and make
several connections to neural properties and network dynamical regimes. Furthermore,
by introducing representation noise we can describe trade-offs between accuracy and
complexity of representations, given a limited capacity. This automatically compresses
the state space for efficiency reasons, as we will show below.
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We only consider the habitual agent here, for brevity, but a model-based agent
with a full OMDP model can be modelled analogously. In the non-parametric case
the model parameters were parameters of categorical distributions. Assuming an
Nz-dimensional state vector z ∈ RNz , we here parametrize the model with normal
distributions:

P (z′|z, a, o′) = N (Az + Baa + Boo′, σ2
t I)

P (a|z) = N (Cz, σ2
rI).

(4.5)

Here, A ∈ RNz×Nz is the transition matrix, Ba ∈ RNz×Na and Bo ∈ RNz×No are
the input weights of past actions and observations, respectively, C ∈ RNa×Nz are the
weights of the readout (here the policy), and σt and σr are scalar standard deviations
of the isotropic transition and readout noise, respectively. Our system therefore cor-
responds to a linear dynamical system (LDS) for the state z. We will set the readout
noise to zero for the remainder as we are only interested in how transition noise ac-
cumulates over time, modelling memory decay over time. Since there is a degeneracy
in the scaling of the parameters A, Ba, Bo, C, and the transition noise, σt (see e.g.
(Roweis and Ghahramani, 1999)) which allows the system to get rid of noise trivially,
we constrain the state values from above and below so that 0 ≤ µ(z(i)) ≤ zmax for
all i = 1 . . . Nz.

Given this limited capacity, both task-relevant and task-irrelevant information
have to compete for resources. Accordingly, policy-irrelevant information will be ig-
nored in favor of an accurate representation of relevant information, thus leading to
compressed representations. We discuss this intuition in more detail in the Supple-
mentary Material, and we exemplify in the simulations, below. Finally, we optimize
the LDS by maximizing the likelihood of the target policy with respect to parameters
A, Ba, Bo, C, analogous to the non-parametric policy compression case before.

4.4.2 Compressed state space representations and neural activities

Non-parametric policy compression for a delayed licking task

We will first apply our non-parametric policy compression on a delayed directional
licking task in mice (Guo et al., 2014; Inagaki et al., 2019). In this task, mice have to
decide whether a tone is of low or high frequency, and then report their decision, after
a delay, by licking one of two water delivery ports. We model two versions of this task,
one with a fixed delay period (fixed delay task, FDT, Fig. 4.3A-E) and one with a
randomized delay period (random delay task, RDT, Fig. 4.3F-H). Neurons recorded
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Figure 4.3: A-E: Fixed delay task (FDT). F-H: Randomized delay task (RDT). A: Task
structure. Each trial starts with a tone (red or blue) that indicates the reward location.
Rewards are available after a go cue (grey) that arrives either after a fixed (FDT) or ran-
domized (RDT) delay. B: Example trial (red tone) and sequence of corresponding history
states (columns, only sensory and go cues are shown). Underneath each history state, the
corresponding optimal action is indicated (blank means action wait, p.l stand for preparatory
left, and so on). C: History task graph with optimal policy. Nodes are history states (post-go
cue states have a grey rim), edges are actions. Dashed red edges correspond to (preparatory)
left actions, and dashed blue edges to (preparatory) right actions. D: Task graph for FDT
after compression of the optimal policy. E: State probabilities for the two trial types. F: Same
as in C, but for the RDT. G: Task graph for RDT after compression. H: as in E, for a given
delay length.

in the ALM (anterior lateral motor cortex) show a striking distinction between the
tasks: while activity changes during the delay period in the FDT, it remains at a
steady level in the RDT (Inagaki et al., 2019).

A key difference between the two tasks is that the timing of the go cue is un-
predictable in the RDT, but predictable in the FDT. A predictable go cue allows
the animal to prepare its action, which we will model by introducing a sequence of
preparatory actions (e.g. open mouth, stick tongue out, or internal preparations) be-
fore the actual left or right licking action (Fig. 4.3B). Furthermore, we assume that
the agent takes decisions as fast as possible, in order to maximize its reward consump-
tion. In turn, the resulting optimal policy for the FDT initiates the action sequence
before the go cue (Fig. 4.3C) while in the RDT the sequence is initiated after the
go cue (Fig. 4.3F). These differences are reflected in the resulting compressed state
space representations shown in Fig. 4.3D and G, respectively.

In the FDT, the task representation keeps precise track of time during the delay
period (Fig. 4.3D). Each time point effectively becomes its own state, and the model
sequences through them. If we identify each state with the activation of an individual
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neuron (or, more realistically, of a population mode), then neural activities turn on
and off as in a delay line (Fig. 4.3E). This task representation thereby allows the agent
to take the preparatory actions before the onset of the go-cue. We note that recorded
neural activities are generally slower (they ‘ramp’ up or down) than the fast delay line
proposed here. Such ’ramping’ provides a less precise (and thereby ‘cheaper’) encoding
of time which may be sufficient for this task as the gain for precise timing is only minor
(faster access to reward). Here we only consider compressed representations that
preserve future returns, and do not consider possible tradeoffs between the future
returns and the compressed representations. These idealized representations require
a fast delay line.

In contrast, the compressed state representation of the RDT combines all delay
states and thereby discards timing information (Fig. 4.3G). In turn, the (compressed)
state does not change during the delay (Fig. 4.3H). This representation is sufficient to
represent the optimal RDT policy.

Non-parametric and linear compression for a somatosensory working mem-
ory task

Next, we study model and policy compression in a (somatosensory) working mem-
ory task in monkeys (Romo et al., 1999), see Fig. 4.4A. In this task, each trial consists
of two vibratory stimuli with frequencies f1 and f2 that are presented to a monkey’s
fingertip with a 3sec delay. To get a reward, the monkey has to indicate which of the
two frequencies was higher. Neural activities in the prefrontal cortex recorded during
the task show characteristic, temporally varying persistent activity during the delay
period, as observed for many other working memory tasks (Kobak et al., 2016), see
also Fig. 4.5A,C.

The history-OMDP of this task is shown in Fig. 4.4B. When compressing the
history space using the method for the model-based agents, we find that all states
during the delay period remain uncompressed, as they are predictive of the f2 obser-
vation. After f2 is observed, history states with the same action-reward contingencies
are combined in the compressed representation, yielding only two states (f1 > f2 and
f1 < f2), which effectively correspond to the subject’s decision (Fig. 4.4C). If we
again identify each state with the activation of a neural population mode, we find
a component corresponding to the decision, as observed in the data (Kobak et al.,
2016), but also a precise encoding of time during the delay period which does not
reflect recorded activity (Fig. 4.4D).
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Figure 4.4: A: Task structure. We only model three f1 frequencies for simplicity, coded red,
green and blue. B: Task graph based on history states for the optimal policy (constructed as in
Fig. 4.3). C: Task graph for model compression. States requiring the left and right actions are
combined into a single dark red and dark blue state, respectively. D: State probabilities over
time after model compression for all six trial types. Rows correspond to different f1 values.
E: Task graph for policy compression. Delay states after the f1 presentation are combined. F
same as D, but for policy compression.

Animals well-trained on tasks may be assumed to behave habitually. Indeed, when
we seek to only preserve policy information, and when we assume that the animal is
not preparing any actions during the delay period, we find that we can compress the
state space even further (Fig. 4.4E,F). All delay states corresponding to different
f1 frequencies are merged, so that any timing information is lost. When looking at
the state representation over time, we find persistent activity (Fig. 4.4F), just as in
the RDT above (Fig. 4.3G). The persistent state dynamics here contrast with the
sequential state dynamics of the FDT above (Fig. 4.3E). While in both tasks the
delay is fixed, in the directional licking task a decision is stored while here a stimulus
is stored and (under the assumption that no action needs to be prepared) timing
during the delay is irrelevant.

While the non-parametric treatment yields several conceptual insights, it does
not allow for a direct comparison with data. For instance, the delay line activity
of the model-based agents crucially depends on the time step of the simulation, and
assumes a completely noise-free evolution of the internal representations. To move
closer to realistic agents, we finally model the somatosensory working memory task
using the parametric LDS approach, which also includes noise. A trial is structured as
in Fig. 4.4A, but with {f1, f2} ∈ R being continuous scalars. Given the rigidity of the
linear parametrization we make a couple of simplifying assumptions: First, we only
maximize the accuracy in the actual decision (left or right) and ignore previous actions
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Figure 4.5: A: Peristimulus time histograms of two PFC neurons. Lines follow legend shown
in E. B: Two matching model neurons (i.e., two state dimensions of z). C,D: Population level
comparison using demixed principal component analysis (Kobak et al., 2016). We demixed
condition-independent variance and stimulus dependent variance. C: First three condition-
independent components (first row) and stimulus components (second row) of PFC neurons.
D: The corresponding components of the model. Fraction of explained variance is indicated
on top of each component. As components may be non-orthogonal, they do not have to add
up to 100%. F: Singular values of Φ. G: The history space with one example history, hTD

,
drawn in black, underlaid by two vectors in Φ’s row space. Specifically, since the readout
weights c compute the f1 − f2 difference from the state µ(zTD

) = ΦhTD
, and since zTD

≥ 0,
some entries of c are positive (c+), some negative (c−). The blue and orange lines correspond
to −c⊤

−Φ and c⊤
+Φ, respectively. All neural data was processed as described in (Kobak et al.,

2016).

altogether. The transition function then also becomes action independent, i.e., we set
Ba = 0. Second, we approximate the (nonlinear) decision function, d = sign(f1 − f2),
with a linear function, y = f1 − f2.

The accuracy of the representation is thus fully defined by the readout distri-
bution, P (y|hTD

) = N(µy, σ2
y), at decision time TD, right after f2 is observed. The

mean, µy = c⊤µ(zTD
), and variance, σ2

y , of this readout are functions of the mean and
variance of the final state zTD

, which can be computed by unrolling the LDS. Specifi-
cally, c⊤ ∈ RNz is the readout vector, and the final state mean, µ(zTD

), is computed
by µ(zTD

) = ΦhTD
, with Φ =

[
Bo ABo . . . ATD−1Bo

]
∈ RNz×TD being the linear

map from histories to compressed states, analogous to P (z|h) in the non-parametric
case above. The compressed state space can thus be understood as a linear subspace
in the space of all histories, defined by Φ. We finally find this subspace by maxi-
mizing the likelihood of y = f1 − f2 given hTD

with respect to A, Bo, c as described
in section 4.4.1. Simulation details, parameter values and code are provided in the
Supplementary Material.
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The resulting state representation dynamics resemble brain activity well on a
single neuron level (Fig. 4.5A,B) as well as on a population level (Fig. 4.5C,D). Fur-
thermore, the state dynamics are low-dimensional, a sign of the successful compression
(Fig. 4.5D). Indeed, when looking at the linear map Φ directly, we see it dominated
by two dimensions (Fig. 4.5F). Specifically, these two dimensions divide the history
space in two bins, one for recent observations, i.e. f2, and one for observations in the
past, i.e. f1 (Fig. 4.5F). Timing information of the stimuli is thus compressed away,
similar to the non-parametric case (Fig. 4.4E,F).

4.5 Discussion

In this article we have proposed a new, normative framework for modeling and
understanding higher-order brain activity. Based on the principle that neural activity
reflects a maximally compact representation of the task at hand, we have reproduced
dynamical features of higher-order brain areas for two example tasks involving short-
term memory, and we have explained how those features follow from the normative
principle.

The key principle underlying this work— representational efficiency—has been
proposed before in various context. For instance, the efficient coding hypothesis has
held that redundant information in sensory inputs should be eliminated (Simoncelli
and Olshausen, 2001). Information-theoretical considerations have led to the pro-
posal that the brain should only keep information about past events that is relevant
for maximizing future returns (Bialek et al., 2007), which naturally suggests some
combination of efficient coding and reinforcement learning (Botvinick et al., 2015).
Moreover, indirect evidence for efficient task-representations has been found in the
activity of dopaminergic neurons (Motiwala et al., 2022). We were also inspired by
considerations of efficient representation, or coarse-graining, of dynamical systems
(Wolpert et al., 2015).

On a technical level, our work extends previous studies that have considered
RL under costs. While we have focused on representational costs, previous work
has studied RL under control costs (Tishby and Polani, 2011; Todorov, 2009). Our
approach also extends previous work on representation learning for RL (Bertsekas,
1995; Poupart and Boutilier, 2003; Lesort et al., 2018; Mahadevan, 2009; Singh et al.,
2005). While (Mahadevan, 2009; Singh et al., 2005) consider simultaneous learning
of representation and control, we have not considered the problem of learning. In
theory, an agent could first learn a history-OMDP model, from there solve, or plan,
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for the optimal policy using dynamic programming, and then compress the policy.
This learning strategy of going from a model-based strategy to a model-free strategy
has been conceived before (Lengyel and Dayan, 2008; Chrisman, 1992; McCallum,
1996). In practice, starting with the full and detailed history representation will
often prove infeasible, and one would therefore assume that agents also have to go the
opposite way: starting with a coarse representation that is then expanded (McCallum,
1996). Consequently, there are many paths conceivable on how to get to a compact
representation, each of which might have different advantages. We therefore consider
learning a separate, and presumably more difficult problem, and leave it for future
work.

Finally, we think that the OMDP framework and especially parametrizations
thereof might be a fruitful avenue for partially observable RL research. POMDPs
have been shown computationally untractable and new ways of dealing with partial
observability are considered to be needed (see e.g. (Sutton and Barto, 2018), chapter
17.3). Furthermore, RNN systems used for RL, such as in (Wang et al., 2018), are
effectively using OMDP parametrization.

4.6 Materials and Methods

4.6.1 History representation under a noisy, constrained linear dy-
namical system

Here we give a short analysis of how different linear dynamical systems (LDS)
result in different tradeoffs of representing relevant versus irrelevant parts of a history,
given transition noise. We will use the same notation as in the main text.

Let us look at a single scalar readout y of an arbitrary LDS, which, at time t, is
given by:

yt ∼ N(c⊤µ(zt), c⊤σ2(zt)c) (4.6)

Here, c correspond to the readout weights. The mean, µ(zt), and the covariance,
σ2(zt), of the state variable, zt, are given by (under the assumption of certain initial
state conditions µ(z0) = 0 and σ2(z0) = 0):

µ(zt) = Φht

σ2(zt) = σ2
t

t−1∑
n=0

An(An)⊤
(4.7)
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with
Φ =

[
Bo ABo . . . At−1Bo

]
(4.8)

The dynamics and input weights are denoted by A and Bo, respectively. As noted
in the main text, there is a degeneracy between the scaling of the transition noise σt

and the weights of the LDS. We chose to constrain this degeneracy by bounding state
values from below and above. Here we want to first describe our rationale behind
this choice of constraint. Second, we describe how an LDS under this constraint must
trade-off between relevant and irrelevant information.

Constraining the LDS to remove scaling degeneracy

As seen in the equations above, the uncertainty in the readout is determined by
two parameters, the readout vector c and the dynamics A. The input weights, Bo, only
feature in the mean, it is thus easy to see that the readout noise can be eradicated by
decreasing ∥c∥ arbitrarily and increasing ∥Bo∥ accordingly, while leaving the readout
mean unchanged. This leads to a first degeneracy, independent of the dynamics A,
that quenches the noise trivially. A second degeneracy may arise through transient
amplifications by non-normal dynamics. An example would be a purely feedforward
dynamics that amplifies the input.1

Common to both degeneracies is that they amplify the input such that the addi-
tive transition noise, σt, is relatively scaled down. Hence, both degeneracies may be
removed by constraining the scale, or some norm, of the state z. We chose to bound
each dimension separately for the following reasons:

Each state dimension zi can be interpreted as a component in the representation
of a history. Specifically, µ(zt) = Φht and thus an estimate ĥt of the history can
be obtained through ĥt = Φ†µ(zt), where Φ† denotes the Moore-Penrose inverse of
Φ. Each column Φ†

i thus defines the direction in history space that component zi is
representing. Since we have Nz such components we can represent Nz, potentially
overlapping, directions in the history space. By bounding the activity of each compo-
nent, or state dimension, separately, as opposed to bounding the L1 or the L2 norms
of the state vector, we effectively assume all components to be independent, i.e. if one
component is more active it does not imply that another component has to be less
active. For example, if only one history direction is task-relevant, then all Nz compo-

1We note that dynamics amplifying the input will in general also amplify the noise. Without
making any structural assumptions on A, such as assuming normal dynamics, it is hard to treat this
intricate relationship analytically. We thus content ourselves with noting that dynamics that trivially
quench the noise exist, and thus must be constrained.
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nents can code for the same direction, reducing the uncertainty in the representation
of that direction because the readout may average Nz representations. If there are Nz

independent relevant directions in the history space, every component has to code for
a separate direction, thus effectively increasing the noise. This trade-off, that follows
from the limited capacity of the constrained LDS, is discussed in more detail in the
following section.

Representational tradeoffs under limited capacity

As described above, our LDS has a limited capacity defined by the number of
components Nz and the range of activity [0, zmax]. Furthermore, both degeneracies
will scale up the system state to effectively scale down the relative size of the transition
noise σt, thereby pushing the system’s dynamic range to have zmax as an upper bound.
Here, we first describe how such a system has to focus on relevant information only
in order to increase the precision in the representation of this relevant information
(Fig. 4.6A). Second, we illustrate how a system may also increase precision by ignoring
timing information, if irrelevant (Fig. 4.6B).

Let us consider a single state dimension µ(zi) = ϕ⊤
i h, where ϕ⊤

i is the i’th row of
Φ and h is a history. Due to the upper bound zmax we have:

zmax ≥ µ(zi) = ϕ⊤
i h

= cos α∥ϕi∥∥h∥
(4.9)

As the length of ϕi will scale any signal in h, ∥ϕi∥ effectively determines the signal to
noise ratio. More specifically, each component can either represent the whole history
faithfully (α = 0) with low precision ∥ϕi∥ = zmax/∥h∥, or only parts of the history
α > 0 with higher precision ∥ϕi∥ > zmax/∥h∥. (For simplicity we assumed here that
h is the history hitting zmax, i.e. zmax = ϕ⊤

i h). Figure 4.6A illustrates this trade-off
for a single represented history.

The same trade-off applies to the representation of two histories adjacent in time
that both contain relevant information. Specifically, we consider h1 =

[
h 0

]⊤
and

h2 =
[
0 h

]⊤
, and assume that only the magnitude h is task-relevant, but not at

what time h was observed. Representations ignoring timing information then increase
precision (Fig. 4.6B). Ignoring timing information generally leads to a smoothing of
the representation over time.
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Figure 4.6: Trade-offs in a noisy, constrained LDS. A: We consider a history h =
hrelerel + hirreirr consisting of a relevant direction erel and an irrelevant direction eirr, scaled
by hrel and hirr, respectively. All three vectors are assumed to have unit length. We consider
two choices of represented directions, ϕ (blue) and ϕ∗ (green). Their respective angles to the
history are α and α∗. The lengths ∥ϕ∥ and ∥ϕ∗∥ are constrained by their projection onto
the history h, specifically by the upper bound zmax (dashed titled line). As a longer ϕ in
general signifies lower noise, dashed half circles are depicted akin to noise isoclines. Direction
ϕ∗ leads to a longer projection onto the relevant direction (red-green dashed arrow) than
ϕ (red-blue dashed arrow), thus leading to a higher precision representation of the relevant
information. The increased precision is thus enabled by discarding irrelevant information. B:
Representation of two histories adjacent in time, specifically h1 =

[
h 0

]⊤ and h2 =
[
0 h

]⊤.
Both histories have unit length. We assume only the magnitude of h is relevant, but not
when in the history h was observed. We consider two sets of two representation directions,
ϕ1, ϕ2 and ϕ∗

1, ϕ∗
2. Angles and constraints are depicted as in A. The first set, ϕ1, ϕ2, codes for

both directions almost orthogonally (small α1, small α2). Each history is thus represented
faithfully. In the second set, ϕ∗

1 and ϕ∗
2 have reduced overlap with h1 and h2, respectively, and

thus no longer represent the two histories faithfully. Specifically, ϕ∗
1 and ϕ∗

2 give up timing
information, but both still represent the task-relevant magnitude h. In fact, they represent
h at both time steps, the readout can therefore average the two representations to reduce
readout noise.
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As a note of caution we emphasize here that the illustrations in Figure 4.6 and the
explanations given here aim at describing the main effects governing the representation
of histories, but they do not represent a rigorous analysis. For example, even though
we treated rows ϕi as independent, the matrix Φ is not any arbitrary matrix, but a
matrix following the specific structure in equation 4.8. Furthermore, this structure
depends on the dynamics A which also influences the noise accumulation, and, as noted
above, we ignore this interaction. Nevertheless, we found the intuitions presented here
quite useful and accurate, as for example seen in figure 4.5 of the main text.

4.6.2 Description of the LDS model of the somatosensory working
memory task

Here we describe in more detail the LDS model of the somatosensory working
memory task Romo et al. (1999) introduced in section 4.4.1 and figure 4.5.

Model setup and parameter choices

In our model, a trial consists of TD = 15 time steps. The first frequency, f1, is
presented on the second time step, the second frequency, f2, on the last time step.
Thus all entries of the history hTD

at decision time TD will be zero, except for hTD,1 =
f2 and hTD,14 = f1. Since hTD

∈ R15, we set Nz = 15 in order to give the system
the capacity to represent the history space faithfully. The upper bound zmax will
be reached by the history hmax

TD
of maximum length. Assuming ∥hmax

TD
∥ = 1, we set

zmax = 1. Lastly, we set the transition noise variance σ2
t = 0.01.

Optimization

As described in the main text, we maximize the log-likelihood of the f1 − f2

difference y, given the history hTD
, subject to the state values being within the lower

(0) and upper (zmax) bounds. The likelihood, for a trial i with frequencies f i
1 and f i

2,
is given by:

P (yi|hi
TD

) = N(µyi , σ2
yi) (4.10)

Using equations 4.6 and 4.7, we have µyi = c⊤µ(zi
TD

) = c⊤Φhi
TD

, and σ2
yi =

c⊤σ2(zi
TD

)c = σ2
t c⊤ ∑t−1

n=0 An(An)⊤c. We thus see that the readout variance is trial
independent and we write σ2

y .
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The log-likelihood L(yi|hi
TD

) is then given by:

L(yi|hi
TD

) = −k − log(σy)−
(yi − c⊤Φhi

TD
)2

2σ2
y

(4.11)

Here k is a constant. To speed up optimization, we approximate the trial-dependent
term (yi − c⊤Φhi

TD
)2 by first writing fi =

[
f i

1 f i
2

]⊤
, and then yi =

[
1 −1

]
fi and

hi
TD

= Mfi, where M ∈ RTD×2 is the appropriate matrix mapping f i
1 and f i

2 to the
history hi

TD
. We then have (yi − c⊤Φhi

TD
)2 = (δ⊤fi)2, with δ⊤ =

[
1 −1

]
− c⊤ΦM .

The log-likelihood is thus maximal for every trial if ∥δ∥2 = 0, i.e. when the composition
of the readout c with the map Φ performs the f1−f2 operation. We thus approximate
(δ⊤fi)2 by ∥δ∥2, thereby making the log-likelihood trial independent. Finally, we
optimize using gradient ascent.

Generating model sequences to compare to neural data

After optimizing the LDS as described above, we want to compare the resulting
state trajectories to the corresponding neural trajectories.

To generate such state trajectories, we run our optimized LDS providing both
positively and negatively scaled f1 and f2 frequencies, as is common among other
models of this task, e.g. Song et al. (2016); Machens et al. (2005), and as motivated
by the frequency coding in the secondary somatosensory cortex S2 Romo et al. (2002),
the structure providing the frequency information to the PFC. Specifically, after gen-
erating a state sequence for trial i with frequencies f i

1 and f i
2, we generate a second

sequence with frequencies f i
1− and f i

2−, where f i
− = a + (b − f i). The scalar b is set

to the maximum of all frequencies presented, and a > 0. Each trial’s modelled state
sequence thus has 2Nz dimensions.

Next we modify the state trajectories after f2 is presented. Neural trajectories
move back to baseline after the f2 presentation and the decision, thereby discarding for
example frequency information. This makes sense from our efficiency perspective, but
is not within the scope of our LDS model. In order to not let the principal dimensions
of our model data be affected by this post-f2 activity, we artificially let the state decay
after f2 presentation.

Both steps described here, as well as all the steps described in section 4.6.2, are
implemented in the provided code.
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Chapter 5

General Discussion

It is believed that higher-order brain regions play a significant role in enabling the
flexibility and versatility of natural animal intelligence (Fuster, 2015). In chapter 2,
we looked at the role that population recordings from these regions play in these skills
across a range of behavioral paradigms. We concluded that the activities serve as task
representations after observing that they represent all task variables. However, it is
often unclear what these representations actually mean or, to be more precise, why
certain task variables are represented in the manner that we find.

A large set of studies has aimed at explaining these neural activities from a mech-
anistic perspective. While this work of course is very important, it does not answer
why we see these representations or what overarching function the representation
is achieving. The currently most popular strain of modelling work of higher-order
brain activity uses RNNs that are optimized to perform a specific function. While
these methods in principle consider function as the main determinant of the resulting
model, they often suffer from two short-comings that we address in this work. First,
studies using the RNN-approach often do not explicitly state the assumed function
or purpose of the modelled activities, nor is it tested against a well defined set of al-
ternative purposes. Second, for a given assumed purpose, a myriad of RNN solutions
exist. In other words, any purpose can be fulfilled by many representations.

Here, we proposed a normative approach that asks what the underlying purpose
of a neural representation might be. We first clearly defined what a purpose is and
formalized it within the reinforcement learning framework. Specifically, we formal-
ized two purposes, the purpose of serving a habitual behavior, and the purpose of
serving a model-based behaviour. We then, for each purpose, searched for the corre-
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sponding task representation that is as compact as possible, which we called efficient
representation.

Looking for efficiency is justified by its previous success in visual areas, but also
by its several benefits: First it makes the representation associated with a purpose
unique, making a match to neural data not a matter of serendipity. Second, efficiency
is beneficial from a computational perspective, as having efficient or compact represen-
tations saves storage, energy, and they also generalize across certain task variations.
Third, efficient representations are easier to interpret as all representational features
are either determined by the assumed purpose or by the task structure.

We applied our approach to three tasks in both monkeys and mice, and with
recordings from PFC and ALM. In a first task, the somatosensory working memory
task (Romo et al., 1999), we could explain the observed PFC activities in terms
of a model-based purpose, which matches with previous conceptual models of PFC.
Similarly, in the second task, a context-dependent perceptual decision making task
(Mante et al., 2013), we also found better agreement with the model-based hypothesis
to explain the PFC data. In the last task, the delayed licking task in mice (Inagaki
et al., 2019), we had to extend our set of purposes in order to explain the recordings
from ALM.

We think our normative approach has the potential to push forward research in
higher-order brain areas due to it its hypothesis-driven nature. Once a purpose is
agreeing with a particular task and a neural data set, it can be used to look for
possible task alterations or new tasks that are specifically designed to test the current
hypothesis or to generate new hypotheses. This iterative approach is arguably what
underlies the scientific method.

The purposes we studied here directly correspond to two strategies of behaviour,
i.e. the habitual behaviour and the model-based or goal-directed behaviour. It is
thought that animals, such as the mice and monkeys of the studies discussed here, are
capable of using both these strategies (Dolan and Dayan, 2013). However, whether at
any given time an animal is using one strategy or the other, is difficult to determine
(Akam et al., 2015). So far, the attempts to do so rely on the analysis of behaviour
only, yet it might be helpful to use neural data as well. For this, a clear connection
between a behavioural strategy and its neural basis would be needed, and our approach
potentially contributes to this endeavor.
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At the same time, we do not claim here any causal relationship between the
modelled purpose of a neural representation and the behaviour that an animal is
following. Therefore, while our hypotheses are based on behavioural strategies, we
do not use any behavioural data to constrain our models. To establish a causal
relationship between neural activity and behaviour is a main goal of neuroscience,
though. Thus, in a future extension of our approach, studying whether the behaviour
predicted by a purpose agrees with behavioural recordings, and how the behaviour
relates to the neural representation, might give evidence for such a causal relationship.

Two related topics have also not been addressed in this thesis, namely how neural
activities mechanistically implement a putative purpose and how a neural representa-
tion arises over the course of learning. In principle, our SLDS models are especially
well-suited for analysis of their mechanism, as their state space is linearly divided
into a set of partitions, where each partition has its own linear dynamics. However,
proposing an underlying mechanism opens up further questions. For example, apri-
ori, it is unclear whether a particular efficient representation has a unique mechanism
associated to it. Apart from this, in the spirit of the work of this thesis, how the
complexity of a mechanism relates to the complexity of a representation would be
interesting to study.

Similarly, the problem of learning is also beyond the scope of this thesis. Over
the course of learning, probably different behavioural strategies are involved (see e.g.
Lengyel and Dayan (2008)). From a normative perspective, it is thus unclear how,
for example, a habitual representation should develop over learning, or how the dif-
ferent behavioural strategies, and the different brain areas that are associated to each
strategy, interact to learn a new behaviour.

5.1 Future directions

There are several possible avenues for furthering the work presented in this thesis.
A first extension would be to formalize purposes beyond the habitual and the model-
based purposes, especially the ones presented in Fig.3.3. All of these purposes are
reasonable hypotheses for how a task may be represented, as they all correspond to
a valuable representation within the reinforcement learning framework. For example,
the reward-predictive representation is suited for an agent that wants to estimate the
value, i.e. the expected cumulative amount of reward, of a given situation, by using
methods such as temporal difference learning (Sutton and Barto, 2018). As signatures
of reward prediction errors, which underlie the temporal difference algorithm, have
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been found in the firing patterns of midbrain neurons (Schultz et al., 1997), one might
also expect to find reward-predictive representations.

Apart from studying more purposes, it might be fruitful as well to characterise
the tradeoff between a representation’s efficiency and its purpose-sufficiency. In other
words, while we considered lossless compression of a task in this work, it would be
interesting to test lossy compression as well, such as e.g. in Motiwala et al. (2022).
For example, a habitual behaviour that is suboptimal in terms of the rewards it
incurs, might be a lot simpler to represent (Ma and Hermundstad, 2022). Actor-
critic objectives (Sutton and Barto, 2018) could be used to directly trade off the value
incurred by a policy — or a habitual behavior — and the compactness of the required
representation.

Furthermore, here we considered representations of one task at a time, yet nothing
prevents our approach to treat a family of tasks simultaneously. What happens if tasks
have related structure and how does this differently affect e.g. habitual and model-
based representations (see e.g. Whittington et al. (2020); Yang et al. (2019))?

Beyond these extensions of the current work, our approach can also be improved
in a number of ways. First, it would benefit from a more rigorous comparison be-
tween normative predictions and neural data, for example through a quantitative
comparison. This would also open up the possibility for statistical inference over our
hypothesized purposes, by using model comparison or as e.g. in Młynarski et al.
(2021).

The practicality of the approach could be improved by finding a more straight-
forward way of obtaining efficient representations, given a task and a purpose. So far
we take the dynamical systems approach using switching linear dynamical systems, in
order to fulfil the memory constraint (see section 3.6). These approaches suffer from
vanishing and exploding gradients, though, which makes optimization brittle and slow.
Another possibility is to not enforce the memory constraint through structural con-
straints, i.e. through recurrent dynamics, but to define more direct, feed-forward,
encoders, and then enforce the memory constraint through the objective.

Finally, while in principle an efficient representation is only a function of the task
and the purpose, our choice of parameterization of the variational distributions as
well as the encoder will have an effect. The SLDSs that we chose are quite flexible,
however, they might still constrain the solutions in certain ways (see e.g. caption of
supplementary Fig.3.1). In this thesis, we have already seen that an inappropriate
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choice of encoder can lead to misleading results. Fig.4.5d suggests that an efficient
habitual representation reproduces the neural representation quite well, yet this seems
only due to the fact that we have used a rigid linear dynamical system that is able to
only move around information gradually. For future work, it would thus be valuable
to investigate whether alternative encoder parameterizations, such as for example a
RNN, yield the same results.
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