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ABSTRACT
Prostate cancer (PCa) is the most common oncological disease in
Western men. Even though a significant effort has been carried out
by the scientific community, accurate and reliable automated PCa
detection methods are still a compelling issue. In this clinical sce-
nario, high-resolution multiparametric Magnetic Resonance Imag-
ing (MRI) is becoming the most used modality, also enabling quan-
titative studies. Recently, deep learning techniques have achieved
outstanding results in prostateMRI analysis tasks, in particular with
regard to image classification. This paper studies the feasibility of
using the Semantic Learning Machine (SLM) neuroevolution algo-
rithm to replace the fully-connected architecture commonly used
in the last layers of Convolutional Neural Networks (CNNs). The
experimental phase considered the PROSTATEx dataset composed
of multispectral MRI sequences. The achieved results show that,
on the same non-contrast-enhanced MRI series, SLM outperforms
with statistical significance a state-of-the-art CNN trained with
backpropagation. The SLM performance is achieved without pre-
training the underlying CNN with backpropagation. Furthermore,
on average the SLM training time is approximately 14 times faster
than the backpropagation-based approach.
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1 INTRODUCTION
In 2019 the Prostate Cancer (PCa) is going to be the most common
one in Western men [9]. Nowadays, high-resolution multiparamet-
ric Magnetic Resonance Imaging (MRI) is acquiring clinical and
scientific interest, also enabling quantitative studies [10]. Therefore,
computer-assisted MR image analysis approaches are mandatory
for improving results repeatability in large-scale clinical studies [8].

The idea explored in this work is to improve the performance of
a Convolutional Neural Network (CNN) by replacing the fully con-
nected layers (used to perform the classification tasks based on the
image features extracted from the previous convolutional layers)
with a network constructed by a neuroevolution algorithm on high-
level image features. Two different approaches are considered: (1) a
regular CNN training process in which backpropagation is used to
train a given CNN architecture, and (2) a neuroevolution-based ap-
proach where the outputs from the convolutional layers of a given
CNN are passed as inputs (without pre-training) to a neuroevo-
lution algorithm. To achieve the challenging objective previously
described, this work relies on a recently defined neuroevolution
algorithm called Semantic Learning Machine (SLM) [2, 3, 5].

Even though several CNN architectures networks were used
in medical imaging, they have to be specifically adapted for the
medical imaging application at hand. In this work, we considered
the XmasNet architecture [6] as deep feature extractor and for the
prediction between benign and malignant PCa.

XmasNet [6] was developed ad hoc for the PROSTATEx 2017 chal-
lenge. Despite the simple architecture (four convolutional and two
fully-connected layers), it achieved state-of-the-art performance in
the challenge. Because of this, XmasNet we selected as an end-to-
end trainable deep model for the PROSTATEx dataset.
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2 SEMANTIC LEARNING MACHINE
The SLM neuroevolution algorithm proposed by Gonçalves et al. [2]
was created by deriving, for Neural Networks (NNs), a mutation op-
erator from Geometric Semantic Genetic Programming (GSGP) [7].
In GSGP, Moraglio et al. [7] showed that any supervised learning
problem where the error is measured as a distance to the known tar-
gets has a unimodal error landscape that can be effectively explored
by constructing specific variation operators. These operators are
known as geometric semantic operators. In this context, the term
semantics is used to refer to the outputs of any supervised learning
model (e.g., an NN) over a set of data instances. The reasoning
behind these geometric semantic operators can be used to create
equivalent operators for other representations or computational
models. The SLM was created by defining a geometric semantic
mutation for NNs, allowing the SLM to explore unimodal error
landscapes and to effectively explore the space of NNs.

3 DATASET AND EXPERIMENTAL SETTINGS
In this work, we consider the non-contrast-enhancedMRI sequences
included in the dataset provided by the PROSTATEx Challenge [1].

To estimate the best performing configuration of the considered
CNN, random search was performed. The original data set was
divided into three parts: training, validation and test. In particular,
60% was used for training purpose, 20% for validation, and 20% for
testing the performance of the model over unseen instances. 30
random configurations were tested and for each configuration the
model was trained on the training and validation sets 30 times, by
averaging the achieved results.

For SLM the following parameters were tuned: (1) in the initial
population each NN is generated with a random number of hid-
den layers selected between 1 and 5; (2) in the initial population
each NN randomly selects the number of neurons for each hidden
layer between 1 and 5; (3) each hidden neuron randomly selects its
activation function from the following options: logistic, Rectified
Linear Unit (ReLU), and tanh; (4) each hidden neuron randomly
selects the weight of each incoming connection from values in the
interval [−mncw,mncw], where mncw represents the maximum
neuron connection weight parameter (subject to parameter tun-
ing); (5) each hidden neuron randomly selects the weight of its bias
from values in the interval [−mbw,mbw], wherembw represents
the maximum bias weight parameter; (6) every time a new NN is
created by the mutation operator, the number of new neurons to be
added to each layer is randomly selected between 1 and 3; (7) the
weights of connections from the new neurons in the last hidden
layer to the output neuron are selected from values in the interval
[−mls,mls], wheremls represents the maximum learning step pa-
rameter (subject to parameter tuning); and (8) the training stopping
point is determined by one of the two semantic stopping crite-
ria proposed by Gonçalves et al. [4]: the error deviation variation
criterion and the training improvement effectiveness criterion.

4 MAIN RESULTS AND DISCUSSION
To analyze the classification performance, the Area Under the Re-
ceiver Operating Characteristic (AUROC) curve was taken into
account, considering that the dataset is not balanced. According to
the results obtained, it is possible to state that the SLM outperforms

XmasNet in classifying unseen PCa images. Considering a signif-
icance level (α ) of 0.05, the differences observed are statistically
significant as the p-value returned by the Mann-Whitney U-test is
0.016.

With respect to the time required to perform the training process
of the two approaches, the experimental results show that SLM
is significantly more efficient than the backpropagation-based ap-
proach (the p-value returned by the Mann-Whitney test is smaller
than 10−10). The average speed-up (calculated as CNNtime

SLMtime
) is 14.008.

In conclusion, these encouraging results point out that the SLM
neuroevolution algorithm can be properly applied to the biomedical
imaging domain. As a future direction, we aim at designing a novel
version of the SLM to evolve the whole topology of deep neural
networks.
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