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Abstract: Apples are ranked third, after bananas and oranges, in global fruit production. Fresh apples
are more likely to be appreciated by consumers during the marketing process. However, apples
inevitably suffer mechanical damage during transport, which can affect their economic performance.
Therefore, the timely detection of apples with surface defects can effectively reduce economic losses.
In this paper, we propose an apple surface defect detection method based on weight contrast transfer
and the MobileNetV3 model. By means of an acquisition device, a thermal, infrared, and visible apple
surface defect dataset is constructed. In addition, a model training strategy for weight contrast transfer
is proposed in this paper. The MobileNetV3 model with weight comparison transfer (Weight Compare-
MobileNetV3, WC-MobileNetV3) showed a 16% improvement in accuracy, 14.68% improvement in
precision, 14.4% improvement in recall, and 15.39% improvement in F1-score. WC-MobileNetV3
compared to MobileNetV3 with fine-tuning improved accuracy by 2.4%, precision by 2.67%, recall
by 2.42% and F1-score by 2.56% compared to the classical neural networks AlexNet, ResNet50,
DenseNet169, and EfficientNetV2. The experimental results show that the WC-MobileNetV3 model
adequately balances accuracy and detection time and achieves better performance. In summary, the
proposed method achieves high accuracy for apple surface defect detection and can meet the demand
of online apple grading.

Keywords: defect detection; image fusion; deep learning; transfer learning; weight comparison

1. Introduction

Consumer demand for fresh fruit is increasing. Apples are popular with consumers
because of their good taste and rich nutrition [1]. Consumers often prefer to buy apples that
are brightly colored, regular in shape, and have no visible surface scars. Therefore, grading
apples according to their appearance is an important process to improve the economic
efficiency of the apple industry [2]. However, the current postharvest work of fruits is still
a labor-intensive task performed by manual laborers [3]. Hence, slight mechanical damage
such as scratches and bruises is inevitable during the commercial postharvest processing of
apples (collection, manual sorting, storage, and transportation) [4,5]. The surface defects of
apples caused by these mechanical damages can lead to certain physiological changes [6],
such as water loss and rot, which can lead to a shortened guarantee period and a drop
in quality, which in turn can cause the loss of commercial value of apples and severely
limit the increase in value of the apple industry [7]. In addition, the current fruit surface
defect detection task is usually performed manually [8] and quality inspectors can lead to
misjudgments due to excessive working time, resulting in a decrease in detection efficiency.

Currently, computer vision techniques based on visible imaging systems and spec-
troscopic techniques are most widely used in fruit surface defect detection tasks [9]. In
addition, numerous researchers have achieved defect detection of high precision on vis-
ible imaging systems by implementing machine learning and deep learning techniques
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for grading and defect detection of various types of fruits, overcoming the limitations of
classical computational paradigms.

1.1. Machine Learning Technique on Surface Defect Detection of Fruit

Machine learning techniques have played an essential role in the development of
artificial intelligence, image processing, and data analysis [10], and this technique has
significant results in searching, processing, and analyzing data acquired by most sen-
sors [11]. In recent years, some researchers proposed some technological solutions based
on machine learning for the task of fruit surface defect detection and achieved better re-
sults [12]. Moallem et al. [13] proposed a machine learning-based apple grading algorithm.
The authors classified apples into two categories: defective and healthy. Apple grading is
performed using a classifier support vector machine (SVM) and K-nearest neighbor (KNN).
Bhargava et al. [14] developed an automatic apple grading system. Different combinations
of several features are considered based on the damage exposed to the apple. In this work,
these features are considered inputs for training an SVM model. The system achieved
maximum accuracies of 96.81% and 93.00% for both datasets using k-fold cross-validation
techniques. Zhang et al. [15] constructed a computer vision system that combines auto-
matic brightness correction, defect candidate region counting, and a weighted correlation
relevance vector machine (RVM) classifier to propose a novel method for the automatic
detection of defective apples. The overall detection accuracy is 95.63% for 160 samples.

Chithra et al. [16] proposed a global thresholding algorithm to segment the defective
parts of apple images, and then the coefficients obtained from wavelet transform and
Haard filtering are used to extract features from the segmented images. The plain Bayesian
classifier is used to classify and identify the defective and intact fruits according to the
extracted features. The experimental results show that the average accuracy of the plain
Bayesian classifier using the global thresholding algorithm is 96.67%, which is 31.67% and
3.34% higher compared to the Otsu segmentation algorithm and the K-pur segmentation
algorithm. Tan et al. [17] proposed a citrus surface defect detection method based on
KF-2D-Renyi and ABC-SVM. Firstly, Kent chaos theory (RF-2D-Renyi) is introduced in the
firefly algorithm, which is based on the principles of ergodicity and randomness of chaotic
sequences to find the optimal threshold. Edge features, texture features, and geometric
features are extracted from the obtained segmented images, and then the extracted features
are input to the support vector machine classifier which is optimized by the artificial bee
colony algorithm (ABC-SVM) for the recognition of defects. The experimental results indicate
that the average accuracy of this method for eight types of defect recognition is 98.45%. Wang
et al. [18] developed a region of interest (ROI) extraction algorithm based on background
separation, luminance correction, and global threshold segmentation. After luminance
correction, 0.8 times the average gray value of the apple region is used as a threshold to
extract the region of interest. The SVM model is built by extracting the texture features
of the region of interest. The experimental results show that the average accuracies of the
classifier based on angular second moments and the classifier model based on entropy are
94.8% and 94.7%, respectively, and the detection time of a single apple is about 1.2 s.

All of the above studies basically follow the steps of image segmentation, feature
extraction, and feature classification recognition to solve the task of fruit surface defect
detection. However, all of these methods experience the problems of complex processes,
detection accuracy cannot reach the actual production requirements, and detection time
is slow.

1.2. Deep Learning Technique on Surface Defect Detection of Fruit

In recent years, with the development of deep learning and deep learning techniques
have been widely used in agriculture [19]. Meanwhile, some researchers started to apply
deep learning techniques to solve fruit surface defect detection tasks and achieved good de-
tection results. Deep learning-based fruit detection methods use end-to-end deep networks,
which allow for the integration of feature extraction. This approach greatly simplifies the
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algorithm process. The robustness and accuracy of the detection results are significantly
improved with the support of large data volumes. For example, Zhou et al. [20] modified
ResNet50 to obtain WideResNet50, while the AdamW optimizer and the weighted cross-
entropy loss function are used during the training process. Experiments are conducted
on a self-built dataset of plum surface defects and the experimental results indicate that
the average accuracy of the model to identify defects is 98.95%, and the detection time is
0.1037 s for a single plum image. Deng et al. [21] constructed a lightweight deep learning
model (CDDNet) based on ShuffleNet and transfer learning for the carrot surface defect
detection task. The experimental results indicate that the average accuracy of the model for
carrot surface defect detection is 99.82%. Yao et al. [22] developed a YOLOv5-based kiwi
surface defect detection model, which improved the original YOLOv5 by adding a small
object detection layer, embedding SE attention module, adopting CIoU loss function, and
transfer learning to improve the performance of YOLOv5. The experimental results indicate
that the mAP@50 of this model can reach 94.7% and the detection time of a single image is
about 0.1 s. Da Costa et al. [23] obtained an improved ResNet50 model by fine-tuning all
layers of the ResNet50 model and performing experiments on a self-constructed dataset of
tomato surface defects. The experimental results indicate that the average accuracy of the
model for recognition on the test set is 91.7%.

All the above methods of fruit surface defect detection based on machine learning
techniques and deep learning techniques are performed on a visible imaging system, which
can effectively detect more obvious defects, such as insect spots, rot, and other defects, but
the detection of slight mechanical damage is not ideal, which is due to the fact that the
detection precision of slight mechanical damage is affected by the background color of the
defect area.

1.3. Thermal Technique on Surface Defect Detection of Fruit

In general, according to wavelength bands, infrared spectra can be divided into near-
infrared (0.75–3 µm), mid-infrared (3–6 µm), far-infrared (6–15 µm), and ultra-infrared
(15–1000 µm) spectra. Infrared thermography is a non-invasive, non-contact, and non-
destructive technique [24]. Infrared images obtained by thermal imaging sensors are
acquired by photoelectric conversion, which transforms thermal radiation into a grayscale
image that is used to describe the temperature distribution on the surface of the object.
According to the need for external excitation sources, thermal infrared imaging techniques
can be divided into two categories, namely active and passive thermography [25]. Active
thermography requires an external heat source to heat the object, while passive thermog-
raphy does not. Passive thermography is used to measure the temperature difference
between the object and its surrounding environment in the natural environment. Some
scholars have introduced passive thermography to the field of fruit surface defect detection.

For example, Jawale and Deshmukh [26] proposed a method for fruit bruise detection
based on passive thermography and image processing. The method first uses an infrared
thermal imager to acquire image data, preprocesses the acquired thermal images, extracts
the features of energy, entropy, contrast, mean, correlation, standard deviation, and ho-
mogeneity from the processed images, and uses an artificial neural network (ANN) for
classification and recognition based on the extracted features.

Compared to passive thermography, active thermography can detect defects that are
produced on the surface and subsurface of the object, as well as the depth of the defect
based on the characteristics of the thermal pulse and the change in the object temperature
with time [27]. In addition, infrared thermography differs from other imaging techniques
in that the technique does not need to solve the problem of inhomogeneous illumination
and scattering caused by spherical fruits and only requires the stable temperature of the
environment. Therefore, with its unique advantages, the infrared thermography technique
is applied by many scholars in the field of fruit defect detection.

The earlier related studies including Varith et al. [28] use active thermography to detect
bruises on the surface of apples, where the apples are kept in a refrigerator for 3 h before
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acquiring infrared images, following which the infrared images are captured in heating
and cooling processes, respectively. The accuracy of identification is 100% for apple defects
under heating treatment and 66% for apple defects under the cooling process, and they ob-
served that the heating process is more suitable for detecting fruit surface defects. With the
development of infrared thermography and deep learning techniques, scholars are starting
to combine both of them for fruit surface defect detection tasks; for example, Zeng et al. [29]
constructed a simple infrared thermography system for studying the detection of pear
bruises based on infrared thermography, and the defective parts of pears are analyzed at
different days. Meanwhile, the infrared image dataset of pear surface defects required
for training the deep learning model is constructed during the process of analysis. The
recognition experiments are performed under the convolutional neural network model and
the experimental results show that the accuracy of the model for recognition of defective
and intact pears is 99.3% when the number of iterations is 20. Dong et al. [30] developed a
method to detect bruises on jujube based on infrared thermography and a convolutional
neural network. By constructing an infrared thermography system to build an infrared
image dataset of jujube surface defects and analyzing the captured infrared images at the
same time, the temperature difference at the boundary of the bruise region can be known
to be in the range of 1.72–3.25 ◦C, and the bruise degree of jujubes can be judged based on
the difference in temperature. When the DenseNet is modified, the modified DenseNet
performs classification recognition experiments on the infrared image dataset of jujubes
surface defects and the experimental results indicate that the recognition accuracy for jujube
bruises is 99.5%.

According to the above research, it is known that mechanical damages that are not
obvious on visible images, such as slight scratches and bruises, are more difficult to identify
on visible images due to factors such as color features and texture features on the fruit
surface. Compared with the method of fruit surface defect detection based on visible
images, the mechanical damages suffered on the fruit surface have more obvious features
in the infrared image. Therefore, the development of infrared thermography provides a
method to identify surface defects, such as slight scratches and bruises, by detecting changes
in the thermal conductivity of fruit tissue and obtaining relatively better detection results.

1.4. The Contribution of this Research

Therefore, to better achieve the detection of apple surface defects, calyx, and apple
stalks in this paper, a thermal infrared and visible fusion algorithm is introduced to con-
struct a thermal infrared and visible apple surface defect image dataset, and a training
strategy based on the comparative transfer of weight parameters is proposed to train Mo-
bileNetV3, which provides a new idea for apple surface defect detection. The main work of
this study is described as follows:

(1) Building a thermal infrared and visible image dataset of apple surface defects using a
thermal infrared and visible apple image acquisition device.

(2) A model training strategy for weight comparison transfer is proposed. The specific
approach is to compare the pretraining weights with the default weights of the model
itself, thus allowing the model to maximize the extraction of the required feature
parameters from the pretraining weights during training.

(3) Comparison experiments on different spectral datasets (VIS, IR, and VIS + IR). The ef-
fectiveness of fused image datasets is verified compared to single light image datasets.

(4) Ablation experiments are performed on the model training strategy of weight contrast
transfer. The experiments are compared with three model training strategies of no
freezing (no freezing of network layers), fine tuning (freezing of network layers), and
freezing (freezing of all network layers). WC-MobileNetV3 is compared with other
classical convolutional neural networks to verify the superiority of WC-MobileNetV3
for the recognition accuracy of apples subject to minor mechanical damage.
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2. Materials and Methods
2.1. Image Acquisition

The thermal infrared and visible apple surface defect image dataset constructed in this
paper is acquired by a thermal infrared and visible apple image acquisition device built by
the group of Si Haiping from Henan Agricultural University, China, as shown in Figure 1.
The thermal infrared and visible apple images are acquired using a dual-light camera
equipped with the Yu2 Industry Advance UAV developed and manufactured by Shenzhen
DJI Innovation Technology Co., Shenzhen, China. The dual-light camera device consists of
an RGB camera with a color image resolution (8000 × 6000 pixels) and a thermal infrared
imaging camera with a thermal image resolution (640 × 512 pixels). The thermal imaging
camera has a long infrared wavelength of 8–14 µm, a temperature measurement range of
−40 ◦C to 550 ◦C, a temperature measurement accuracy of ±2 ◦C, and a fixed-focus lens
focal length of 9 mm. The specific parameters are shown in Tables 1 and 2.
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Figure 1. Dual light apple image acquisition system.

Table 1. Infrared camera.

Sensors Lens Focal Length Sensor Resolution Infrared Temperature
Measurement Accuracy

Uncooled VOx
Microbolometer

Fixed-focus lens focal length
approx. 9 mm;

equivalent focal length
approx. 38 mm

640 × 512 @30 Hz ±2 ◦C or ±2%
(whichever is greater)

Table 2. Visible camera.

Image Sensor Lens Sensor Resolution Infrared Temperature
Measurement Accuracy

12.7 mm CMOS;
effective pixels 48 million

Viewing angle: 84◦;
equivalent focal length: 24 mm;

aperture: f/2.8;
focus point: 1 m to infinity

Video: 100 to 12,800 (auto)
Photo: 100~1600 (auto) 32× digital zoom
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In order to meet the conditions of uniform illumination and adequate heating of the
test sample, a semi-enclosed chamber is built, which consisted of two LED strips and two
black baffles. The LED strips are located on the front inner side and the back inner side of the
semi-enclosed chamber. As the thermal properties of defective apples differ from those of
intact apples, the temperature on their surface will show a non-uniform distribution under
the action of an external excitation source [31]. Therefore, this study uses active external
excitation loaded with thermal waves to achieve temperature difference enhancement [32],
while in practical application scenarios, hot fans are used as temperature regulation mod-
ules in image acquisition devices due to their advantages such as uniform heating and
long-acting distance. Furthermore, this is used in order to overcome the problem of large
spatial gradients in the acquired images due to overheating caused by the close heating
of the hot blower. Designing the fixed position and heating distance of the hot blower: a
500 W hot blower is fixed at the rear of the semi enclosure. After repeated tests, the distance
between the hot blower and the sample surface is finally determined to be 0.4 m, with the
air outlet at an angle of 45◦ to the floor. The arrangement of the temperature regulation
module is shown in Figure 2.
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When acquiring thermal infrared and visible images of apples, the thermal excitation
source and the dual-light camera need to be as spatially separated as possible to minimize
the effect of external thermal noise and to improve the contrast between the target and the
background. To facilitate the adjustment of the distance between the dual-light camera and
the sample surface for subsequent work, an automatic lifting device is constructed. Placing
the apple sample on top of the rotating device allows the apples to be uniformly heated.
In this study, the distance between the dual-light camera and the sample surface is set to
0.45 m and the sample is focused to keep the thermal infrared and visible images of the
apples in sharp focus.

The lifting device consists of two 1204 screws, two couplings, two 42 stepper motors,
and a camera bracket. The device adjusts the distance between the camera and the apple
sample by rotating the drive motor and the distance is set to 400 mm. The rotating device
consists mainly of the drive motor, two timing pulleys, the timing belt, and the apple
sample support bracket. The stepper motor mounted under the apple sample holder drives
the timing pulleys via the timing belt. By controlling the speed of the stepper motor, the
attitude of the apple sample can be adjusted to obtain a suitable thermal infrared thermal
image and a visible image.

A total of 100 “Yantai Fuji”, 20 “Akesu Fuji”, 20 “Gansu Fuji”, and 20 “Shaotong Fuji”
apples are purchased from Yaoqiao Farmers’ Market in Zhengzhou City, Henan Province,
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China as test samples. The main sample used in this study is “Yantai Fuji” due to its wide
availability in our city and easy accessibility. Therefore, it is chosen as the main experimental
sample. To investigate the effect of mechanical damage on the surface defects of the apples,
100 samples are collected at 7:00 am on the same day for a wear test. The samples are
equally divided into two groups: a control group and an experimental group. Additionally,
to recreate the realism of the production scenario, the samples are subjected to abrasion
using sharp objects common to the production scenario, such as at the edges of plastic
packaging boxes. Each group of samples was placed in a box at a temperature of 15 ◦C and
a humidity of 65 ◦C. Thermal infrared and visible images of the samples are taken from
4 pm onward. A total of 600 pairs of “Yantai Red Fuji”, 120 pairs of “Akesu Fuji”, 120 pairs
of “Gansu Fuji”, and 117 pairs of “Shaotong Fuji” dual light images are collected.

2.2. Image Preprocessing

To investigate the effects of different divided ratios between the training set and the
test set, the experimental dataset is divided into the training set and test set according to
9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9 and the experimental results are shown in Table 3.
According to the analysis of the experimental results in Table 3, the WC-MobileNetV3
model proposed in this paper basically achieves the accuracy rate of 98% or higher when
the training set is above 60% and the highest accuracy rate of 99.20% is achieved when the
ratio of the training set to the test set is 8:2. In general, when the training set is above 60%,
accuracy rates of various divisions are similar, and there is not much difference between
the division of training set and test set. When the training set accounted for less than 60%,
the accuracy declines rapidly from above 98% to 91.81% and then to 63.77%, with a faster
drop. Thus, 600 pairs of image data from the thermal infrared and visible apple image
dataset are divided into a training set and test set according to 8:2 in this experiment.

Table 3. Comparison of experimental results of different proportions of experimental data.

Train:Test Accuracy/% Precision/% Recall/% F1-Score
(%)

Parameter
(M) Ts (ms)

9:1 98.15 98.48 98.15 98.23 4.21 33.32
8:2 99.20 99.12 99.02 99.04 4.21 24.08
7:3 98.28 98.26 98.33 98.27 4.21 21.51
6:4 98.35 98.43 98.37 98.36 4.21 17.14
5:5 97.58 97.64 97.54 97.53 4.21 15.37
4:6 96.00 96.04 96.17 95.96 4.21 14.26
3:7 96.37 96.52 96.39 96.37 4.21 13.63
2:8 91.81 92.27 91.84 91.75 4.21 14.06
1:9 63.77 73.30 63.75 62.03 4.21 13.71

The apples are divided into intact, calyx, stem, and defect apples. In addition, since
calyx and stem may appear in the same view as the defective part, two additional categories
are classified as calyx + defect and stem + defect. The constructed thermal infrared and
visible apple surface defect datasets are divided into six categories: intact apple, defect
apple, calyx, apple stem, calyx + defect, and apple stem + defect.

To make the defective part of the thermal infrared image more distinctive, histogram
equalization is selected to perform image enhancement operations on the thermal infrared
image. The various types of dual-light image datasets are shown in Figure 3. By using
the RFN-Nest thermal infrared and visible fusion algorithm [33], the VIS + IR dataset, VIS
dataset, and IR dataset are obtained for experimental use. Additionally, this study has
a small sample dataset. To reduce the possibility of overfitting the apple surface defect
detection model during the training process, to improve its generalization ability and to
increase the learning efficiency of the model for defect features, data extensions must be
performed on the dataset.
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RFN-Nest thermal infrared and visible fusion algorithm [33], the VIS + IR dataset, VIS 
dataset, and IR dataset are obtained for experimental use. Additionally, this study has a 
small sample dataset. To reduce the possibility of overfitting the apple surface defect de-
tection model during the training process, to improve its generalization ability and to in-
crease the learning efficiency of the model for defect features, data extensions must be 
performed on the dataset. 

This experiment uses the transform function with the PyTorch framework to imple-
ment data enhancement operations. Each batch is resized to 256 × 256 and the training 
samples are expanded with random cropping, random horizontal flipping, random verti-
cal flipping, random rotation, adjustment of contrast, saturation and hue, and central 
cropping. The above data enhancement preprocessing operations are used for the training 
and test sets in this experiment. 
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This experiment uses the transform function with the PyTorch framework to imple-
ment data enhancement operations. Each batch is resized to 256 × 256 and the training
samples are expanded with random cropping, random horizontal flipping, random vertical
flipping, random rotation, adjustment of contrast, saturation and hue, and central cropping.
The above data enhancement preprocessing operations are used for the training and test
sets in this experiment.

2.3. Experimental Environment and Parameter Setting

The experimental environment in this paper is shown in Table 4. All the models are
trained and tested in NVIDIA GeForce RTX 2060. The cross-entropy loss function (CE)
is employed as the loss function, the Adam optimizer is used to optimize the model, the
learning rate strategy is a custom tuning strategy (LambdaLR), the initial value of the
learning rate is 0.0001, the batch size is 32, and the network is trained for 150 epochs, which
is the detail hyperparameter setting as shown in Table 5.

Table 4. The experimental environment in this paper.

Experimental Tool Specific Model

CPU Intel(R) Core(TM) i7-10750H
GPU NVIDIA GeForce RTX 2060

Operating System Windows 10
Programming Language Python 3.7.11

Deep Learning Framework Pytorch 1.9.1

Table 5. Hyperparameter setting in this paper.

Hyperparameter Detail Setting

Loss Function The cross-entropy loss function
Optimizer Adam

Learning Rate Strategy LambdaLR
Initial Learning Rate Value 0.0001

Batch Size 32
The Number of Epoch 150

The learning rate represents the speed of updating the model weights, which is a
relatively important parameter. In this study, different learning rates are experimentally
compared to select the best performing learning rate. In this paper, learning rates of 0.1,
0.01, 0.001, and 0.0001 are tested and the model performs best when the learning rate is set
to 0.0001. The accuracy and loss curves of the training process are shown in Figure 4. As
the loss values in the pretraining period at learning rates of 0.1 and 0.01 are too high and
too different from those at learning rates of 0.001 and 0.0001 to be compared in the figure,
only the loss curves at learning rates of 0.001 and 0.0001 are compared.
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2.4. MobileNetV3 Model

The Google team proposed the MobileNet-V1 model in 2017 [34] for deploying
lightweight convolutional neural networks in mobile or embedded devices. Compared
with traditional convolutional neural networks, depthwise separable convolution is intro-
duced as an effective alternative to standard convolution, which significantly reduces the
parameters and computation of the model with slightly lower accuracy. In 2018, the Google
team proposed the MobileNet-V2 model [35] network, which introduces linear bottlenecks
and inverted residual structures compared to the MobileNet-V1 network to improve the
efficiency of the layer structure by exploiting the low-rank nature of the problem.

The Google team successively proposed the MobileNet-V3 model in 2019 [36]. MobileNet-
V3 combines the deep separable convolution in MobileNet-V1 and the inverted residual
structure (inverted residuals) of the linear bottleneck in MobileNet-V2, which is updimen-
sionalized and then downdimensionalized after the deep separable convolution is followed
by dimensionality reduction. The deep separable convolution serves to reduce the number
of convolution kernels and accelerate the model. In addition, MobileNet-V3 also introduces
the SE (squeeze and excitation) lightweight attention model [37]. Through the training
process, the SE module gives each channel a weight so that the model globally serves to
emphasize features with higher weights and suppress insignificant features. In addition,
MobileNetV3 incorporates a new activation function, Hard-swish, which makes it much
less computationally intensive and friendly to the quantization process. The basic network
structure of the model is shown in Figure 5.
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The MobileNetV3 model is suitable for mobile applications as a lightweight deep
learning model. However, there is currently less research on the use of this model for apple
surface defect detection, as well as the impact of realistic apple features that have suffered
minor mechanical damage that is not obvious. Therefore, the model has a limited effect
on the recognition of apples suffering from minor mechanical damage. To meet the task
requirements for apple surface defect detection in realistic scenarios, the weight comparison
transfer method proposed in this study is introduced. The MobileNetV3-Large model is
chosen as the base model because this study is conducted on a small sample dataset. The
specific network structure of the MobileNetV3-Large model is shown in Table 6, where
NBN indicates that the BN (batch normalization) structure is not used, RE indicates the
ReLU activation function, and HS indicates the activation function Hard-swish.

Table 6. Network structure of MobileNetV3-Large model.

Operator Input Channel Size SE Module NL Step

ConvBNA, 3 × 3 3 224 × 224 - HS 2
InvertedResidual, 3 × 3 16 112 × 112 - RE 1
InvertedResidual, 3 × 3 16 112 × 112 - RE 2
InvertedResidual, 3 × 3 24 56 × 56 - RE 1
InvertedResidual, 5 × 5 24 56 × 56

√
RE 2

InvertedResidual, 5 × 5 40 28 × 28
√

RE 1
InvertedResidual, 5 × 5 40 28 × 28

√
RE 1

InvertedResidual, 3 × 3 40 28 × 28 - HS 2
InvertedResidual, 3 × 3 80 14 × 14 - HS 1
InvertedResidual, 3 × 3 80 14 × 14 - HS 1
InvertedResidual, 3 × 3 80 14 × 14 - HS 1
InvertedResidual, 3 × 3 80 14 × 14

√
HS 1

InvertedResidual, 3 × 3 112 14 × 14
√

HS 1
InvertedResidual, 5 × 5 112 14 × 14

√
HS 2

InvertedResidual, 5 × 5 160 7 × 7
√

HS 1
InvertedResidual, 5 × 5 160 7 × 7

√
HS 1

Conv2d, 1 × 1 160 7 × 7 - HS 1
Avg Pooling, 7 × 7 960 7 × 7 - - 1

Conv2d, 1 × 1, NBN 960 1 × 1 - HS 1
Conv2d, 1 × 1, NBN 1280 1 × 1 - - 1

2.5. SE Module

For deep learning models, not all extracted features are important. As a classical
channel attention mechanism, SE-Net has three main components—squeeze, excitation and
reweight—which are utilized to recalibrate features by learning global information and
then by constructing interactions between two feature channels, stimulating features that
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are important for the classification task and suppressing features that are less important for
the classification task. The SENet model architecture is shown in Figure 6.
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In the SE module of MobileNetV3, the 1 × 1 × C feature map is obtained by global
averaging pooling of the dimensions of the input feature map, and then the 1 × 1 × C
vector is passed through the first fully connected layer FC, whose activation function is
ReLU. A vector of size 1 × 1 × C/r is obtained. The vector of size 1 × 1 × C is then passed
through a second fully connected layer FC with an activation function of h-swish. A vector
of size 1 × 1 × C is obtained, which is multiplied by the original corresponding channel
feature matrix to complete the rescaling of the original features in the channel dimension.

2.6. Weight Comparison Transfer Learning

Convolutional neural networks are advantageous for image recognition, but they have
high dataset requirements, usually in terms of the quantity and quality of image data.
However, it is not always possible to obtain high quality and large amounts of data to train
a model for all tasks in practice. More often than not, the datasets for image recognition
tasks are small sample datasets.

Transfer learning is an important direction in deep learning. Transfer learning avoids
the problem of insufficient training data in most cases, reduces the cost of using data, and
enhances the usability of convolutional neural network models. The principle of transfer
learning is to transfer the weights and parameters from the trained model to the model
to be trained, thus allowing the new model to converge at a faster rate and to obtain the
desired training results [38]. Applying the learning model from the source domain to the
target domain and training the weights and parameters of the pretrained model obtained
from the source domain on the new dataset allows the new model to quickly converge and
reduces the model’s demand for data, which to some extent solves the problem of model
overfitting that may be caused by insufficient data. There are various transfer learning
methods, such as no freezing, partial freezing, and freezing.

No freezing, also known as all-parameter transfer, is a model-based transfer learning
method that involves sharing parameters between two models in the source and target
domains to achieve an overall transfer of parameters. This method is the most common
transfer learning method and is often utilized when the data characteristics of the source and
target domains do not differ much. This outcome is achieved by not freezing all network
layers and training the model with all parameters.

The freezing method is to freeze all the network layers in the target domain, with
the exception of the fully connected layer, and to replace the fully connected layer in the
original model with a fully connected layer with random weights. The model only trains
the parameters of this fully connected layer. A fully connected layer is added to the model
to be trained as a classifier and the pretrained weights are used as feature extractors for
another task. Only the classifier parameters added at the end of the model to be trained are
learned, while the other network layer parameters are kept frozen.

The partial freezing method refers to transfer training by a process of freezing some of
the network layers and retraining some of them. In general, to obtain the optimal number of
frozen layers, the model is frozen in a stepwise descending manner from the highest number
to the lowest number of frozen layers. The significance of this approach is that it allows the



Agriculture 2023, 13, 824 13 of 26

model to focus on learning feature information that is specific to the dataset during training,
thus improving the overall network model’s ability to extract feature information.

The weight comparison transfer learning method proposed in this paper transfers
different weight parameters to the network layer of the target model by comparing the pre-
training weights obtained by the model on a large-scale dataset with the default weights of
the model itself, thus enabling the model to adaptively extract effective feature parameters
from the pretraining weights throughout the training process. The method takes maximum
advantage of the data volume of large-scale datasets. The flow of the weight comparison
transfer learning method is shown in Figure 7.
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2.7. WC-MobileNetV3

To enhance the applicability of MobileNetV3 for apple surface defect detection tasks
and improve the accuracy of apple surface defect detection in this paper, a training strat-
egy of weight comparison transfer is introduced to MobileNetV3 to obtain the final WC-
MobileNetV3 model. The flow of the proposed WC-MobileNetV3 model in this paper
is shown in Figure 7. The core idea of the model is to transfer adaptively the effective
features of each layer of the model, thus reducing the training complexity and improving
the model training effect. First, MobileNetV3 trained on the ImageNet dataset is obtained
with pretraining weight parameters. Second, the new MobileNetV3 model is trained by
loading the thermal infrared and visible apple surface defect fusion image dataset. During
the training process, the pretraining weights of each network layer obtained from the model
on the ImageNet dataset are compared with the default weights of each network layer
extracted from the model itself, and the different weight parameters are transferred to the
corresponding network layers of the training model. This approach enables an efficient
transfer of the pretrained weight parameters. Last, the apple surface defect detection model
is obtained on the fused thermal infrared and visible apple surface defect image dataset.

The training procedures for WC-MobileNetV3 are shown below in Algorithm 1.



Agriculture 2023, 13, 824 14 of 26

Algorithm 1: Training Strategy-Weight Comparison Transfer Learning with MobileNetV3

Input: Input the fused image dataset of infrared and visible images of apple surface defect
Output: WC-MobileNetV3 Model
1 The pretraining weight parameters are obtained from the MobileNetV3 trained on the
ImageNet dataset;
2 Loading the fused image dataset of infrared and visible images of apple surface defect for the
training of a new MobileNetV3 Model;
3 for Wi and Wpre

i do;
4 If Wpre

1 == W1;
5 Continue;
6 else;
7 W1= Wpre

1 ;
8 i = i + 1;
9 End for.

The general architecture of the WC-MobileNetV3 model is shown in Figure 8.
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3. Experimental Results
3.1. Experimental Evaluation Indices

In this experiment, the accuracy rate is used as the main evaluation index for the
results of apple surface defect detection. To further analyze the performance of the model,
accuracy, recall, time spent on a single image (Ts), F1-Score, and number of parameters
(M) are selected as evaluation metrics. These evaluation metrics are used to evaluate the
performance of the apple surface defect detection model.
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3.1.1. Accuracy

The accuracy rate represents the ratio of the number of samples correctly identified
to the total number of samples in the classification recognition task. The formula for
calculating the accuracy rate is shown in Equation (1),

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP denotes the number of true-position samples, FP denotes the number of false-
position samples, FN denotes the number of false-negative samples, and TN denotes the
number of true-negative samples. When the number of different sample categories in the
dataset is not homogeneous, accuracy cannot be the only criterion for evaluation and other
metrics are needed to support the assessment.

3.1.2. Precision

Accuracy represents the ratio of samples that the model correctly predicts and is indeed
correct to all samples that the model correctly predicts in the classification recognition task.
The formula is shown in Equation (2),

Precision =
TP

TP + FP
(2)

3.1.3. Recall

Recall represents the ratio of samples that the model predicts to be correct but are
indeed correct to all correct samples in the classification recognition task. The formula is
shown in Equation (3),

Recall =
TP

TP + FN
(3)

3.1.4. F1-Score

The F1-score is the summed average of precision and recall. Precision indicates the ability
of the model to discriminate between two negative samples and the value of precision
is proportional to the ability of the model to discriminate between two negative samples.
Recall is the ability of the model to discriminate between two positive samples and the
value of recall is proportional to the ability of the model to discriminate between two
positive samples. The F1-score is a combination of precision and recall, and its value is
proportional to the robustness of the model. The formula for calculating the F1-score is
shown in Equation (4),

F1− score =
2× Precision× Recall

Precision + Recall
(4)

3.1.5. Time Spent on a Single Image (Ts)

Ts is an important evaluation metric to assess the performance of a model, which
represents the ratio between the time taken by the model to make predictions on the test
set and the number of image data in the test set. Ts is calculated as shown in Equation (5)

Ts =
Total test time

Total number of test images
(5)
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3.1.6. Parameter (M)

The number of parameters in a model is a comprehensive evaluation of the model’s
performance. The number of parameters is generally the sum of the number of parameters
of all network layers of the model, which can be shown by Equation (6)

Parameter =
L

∑
i=1

ni+1 (6)

where L denotes the number of all network layers of the model, ni denotes the number of
parameters of the previous network layer, and ni+1 denotes the number of parameters of
the current network layer. The number of parameters affects the speed of the model run
and the size of the model. Thus, this paper includes the number of parameters as one of
the indicators for evaluation of the model.

3.2. Impact of Image Augmentation

Figure 9 depicts the various stages of the training process with and without data
augmentation. Figure 9 indicates that the model without data augmentation underwent an
overfitting phenomenon. While the accuracy on the training set is 100%, the accuracy on the
test set is approximately 90%. Additionally, the loss value of the training process is 0 and
gradient disappearance occurs. The overall training process is not ideal. The model trained
with data augmentation, however, did not suffer from overfitting and had an accuracy
of 96.4% on the training set and 100% on the test set. The overall results are superior to
those of the model without data augmentation. The experiments demonstrated that the
data enhancement operation resulted in faster convergence and fit of the model and higher
generalization ability.
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3.3. Weighted Comparison Transfer Learning Ablation Experiment

To verify the effectiveness of the transfer learning method of weight comparison in
the model training process, this study conducted ablation experiments on the test set. The
results obtained are shown in Table 7. We discovered that the model with the introduction of
weight-contrast transfer learning achieved an accuracy of 99.2%. The accuracy of the model
with the introduction of transfer learning improved by 16% compared to the model without
the introduction of weighted contrast transfer learning. In addition, the introduction of
the transfer learning method allows the model to converge at a faster rate and achieve
the desired results in a shorter training time. The model with the introduction of transfer
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learning methods had the best performance with 99.2% accuracy, 99.12% precision, 99.02%
recall, and 99.04% F1-score. These results show that the weight-contrast transfer learning
method effectively enhances the detection of surface defects in apples.

Table 7. Ablation experiments to prove the effectiveness of weight comparison transfer learning.

Weight Comparison
Transfer Learning Accuracy/% Precision/% Recall/% F1-Score (%) Parameter (M) Ts (ms)

× 83.2 84.44 84.98 83.65 4.21 24.42√
99.2 99.12 99.02 99.04 4.21 24.08

3.4. Comparison Experiments of Transfer Learning Methods

The MobileNetV3 model is trained by freezing the network layers before the fully
connected layer of the MobileNetV3 model and unfreezing the network layers of the
MobileNetV3 model layer by layer, starting from deep to shallow, to train the model with
different numbers of frozen layers. The test results are shown in Table 8. By analyzing the
experimental results of Table 6, the number of parameters of the model starts to increase
as the number of frozen layers decreases. At the same time, the evaluation indexes of
the model (accuracy, precision, recall, F1-score, and parameter) start to increase and the
overall performance of the model becomes better and better. When the model is unfrozen
to only the first four network layers, the model achieves the best performance with 96.8%
of accuracy, 96.45% of precision, 96.6% of recall, 96.48% of F1-score, 6.71 M of parameters,
and 22.77 ms of Ts. Since the number of frozen layers is different, and thus the model learns
feature information differently, the model with the best overall performance (the model
with the first four network layers frozen) is selected as the fine-tuned model for this study.

Table 8. Comparison of experimental results on the test set for models with different freezing layers.

Freeze the Number of
Layers of the Model Accuracy/% Precision/% Recall/% F1-Score (%) Parameter

(M) Ts (ms)

1 96.80 96.31 96.66 96.47 6.72 23.21
2 96.80 96.45 96.60 96.48 6.72 24.12
3 96.80 96.45 96.60 96.48 6.72 24.73
4 96.80 96.45 96.60 96.48 6.71 22.77
5 96.00 95.52 95.62 95.53 6.70 23.79
6 95.20 94.67 94.70 94.53 6.68 22.72
7 96.00 95.52 95.62 95.53 6.66 23.65
8 96.00 95.52 95.62 95.53 6.63 22.91
9 95.20 94.67 94.64 94.57 6.59 23.12
10 95.20 94.67 94.64 94.57 6.56 22.60
11 95.20 94.67 94.70 94.53 6.53 23.61
12 94.40 93.78 94.64 94.12 6.31 23.40
13 93.60 93.37 94.12 93.55 5.93 23.16
14 89.60 89.57 90.06 89.67 5.50 22.94
15 89.60 89.04 90.66 89.44 4.70 22.66

Table 9 shows a comparison of the results of different transfer learning methods,
including no freezing (no freezing of network layers), partial freezing (freezing of some
network layers), freezing (freezing of all network layers), and a comparison of weights.
The analysis of Table 7 shows that when some of the network layers are frozen, the model
has the best overall performance with an accuracy of 96.2%; when no network layers
are frozen, the model has a better overall performance with an accuracy of 95.2%; and
when all network layers are frozen, the model has the worst overall performance with an
accuracy of only 84.0%. Freezing (freezing all network layers) is the least effective among
the first three transfer learning approaches because the pretraining weights are obtained
on the ImageNet dataset. The original recognition task is for 1000 objects, which is a poor
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difference compared to the dataset employed in this study. Therefore, directly loading
the weight parameters of the model without updating the parameters of the model’s
network layers does not give good results. No freezing (without freezing the network
layers) performs better than freezing (freezing all network layers) because this training
method has the most training parameters. However, some of the network layers are poorly
learned, which affects the final recognition effect; partial freezing (freezing some of the
network layers) works best because the model learns useful feature information better by
removing some of the network layers that are poorly learned and avoids the interference of
useless feature information.

Table 9. Comparison of experimental results of different transfer learning methods on the test set.

Transfer Learning Methods Accuracy/% Precision/% Recall/% F1-Score (%) Parameter (M) Ts (ms)

No freezing of network layers 95.2 94.67 94.64 94.57 6.72 24.52
Freezing part of the network layers 96.80 96.45 96.60 96.48 6.71 22.77

Freezing of all network layers 84.0 84.02 85.42 83.87 3.75 24.11
Weight comparison transfer learning 99.2 99.12 99.02 99.04 4.21 24.08

However, the above three transfer learning approaches do not adaptively transfer
useful training parameters from the pretraining weights. The weight comparison transfer
approach achieves adaptive transfer of weight parameters by filtering the training parame-
ters from the pretraining weights. The model thus works best and can be considered the
best performing model.

3.5. Thermal, Visible and Fused Image Dataset Comparison Experiment

To verify the effectiveness of the thermal infrared and visible light image fusion al-
gorithm in the process of apple surface defect detection, the experimental results of the
proposed detection method in this section on the fused image dataset are compared with
the experimental results on the visible apple image dataset and the thermal infrared apple
image dataset. The experimental results are shown in Table 10. Compared to the experi-
mental results for detecting visible apple images and thermal infrared images alone, on
fused images, the accuracy improved by 0.8% and 3.02%, the precision improved by 0.64%
and 2.73%, the recall improved by 0.62% and 3.58%, and the F1-score improved by 0.64%
and 3.23%, respectively. There is also a better performance in the single recognition time.
The comparative experiments indicate that the proposed apple surface defect detection
model in this paper is superior to visible or thermal infrared images alone in terms of
fused images.

Table 10. Comparison of experimental results on different spectral datasets.

Data Type Accuracy/% Precision/% Recall/% F1-Score
(%)

Parameter
(M) Ts (ms)

VIS 98.4 98.48 98.4 98.4 4.21 22.33
IR 96.18 96.39 95.44 95.81 4.21 22.81

Fused 99.2 99.12 99.02 99.04 4.21 24.08

3.6. Comparison Experiments of Different Models

To verify the recognition ability of the proposed detection model (WC-MobileNetV3)
in this paper. AlexNet, ResNet50, DenseNet169, and EfficientNetV2 are selected for compar-
ison experiments and compared under the same experimental conditions. The experimental
results are shown in Table 11.
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Table 11. Comparison of experimental results of different convolutional neural network models on
the test set.

Model Accuracy/% Precision/% Recall/% F1-Score (%) Parameter (M) Ts (ms)

AlexNet 73.60 76.58 78.82 74.93 58.31 22.83
DenseNet169 96.00 95.94 95.50 95.59 12.49 57.48

ResNet50 91.20 91.11 90.99 90.87 23.52 34.97
EfficientNetV2 90.40 90.73 89.90 90.00 52.87 36.70

WC-MobileNetV3 99.20 99.12 99.02 99.04 4.21 24.08

According to the analysis carried out in Table 9, the detection method proposed in this
paper has advantages in all evaluation metrics compared to the other four convolutional
neural networks. The recognition accuracy is 3.2% higher than the best results of the other
models, the number of parameters is 8.28 M less, and the recognition time of a single image
is only 1.25 ms more than that of AlexNet. Simultaneously, good experimental results are
achieved in terms of accuracy, recall, and F1-Score. The experimental results show that
the WC-MobileNetV3 model proposed in this study can identify the most correct samples
compared to other models. In terms of overall performance, WC-MobileNetV3 can be con-
sidered the best-performing model. Compared with the other three classical convolutional
neural network models, the DenseNet169 model has the highest accuracy, precision, recall,
and F1-score but is the highest in single image recognition time consumption. AlexNet has
the highest number of parameters among these four models and only has the lowest single
image recognition time consumption but the lowest in all other evaluation metrics. The
above analysis reveals that the WC-MobileNetV3 model is superior. The model can achieve
a balance among accuracy, number of parameters, and time consumption for single image
recognition and can meet the requirements for apple surface defect detection.

In addition, in order to further compare the WC-MobileNetV3 model with four clas-
sical convolutional neural network models and three models based on different transfer
learning methods, the ROC (Receiver Operating Characteristic) curve is additionally chosen
as one of the evaluation metrics for the model. The ROC curve is chosen because there
is a category imbalance in the actual dataset, which will lead to more negative samples
than positive samples (and vice versa), while ROC is not affected by the test data and can
directly evaluate the classifier when the area under curve (AUC) is larger; it indicates the
better performance of the classifier and the AUC is calculated by Equation (7),

AUC = 1−
∑i∈positiveClass ranki − M(1−M)

2

M×N
(7)

where M denotes the number of positive samples and N denotes the number of negative
samples. Rank can indicate the number of such combinations that can yield positive samples.

The ROC curves of the eight models are shown in Figure 10. According to the compar-
ison of the eight ROC curves, WC-MobileNetV3 has a better performance compared with
the other seven models, but the overall performance of all eight models is limited, which is
caused by insufficient training data, and the subsequent research will expand the dataset to
train the WC-MobileNetV3 model with more superior performance.

The performance of the five convolutional neural network models on the test set is
visualized in this study in the form of confusion matrices. The MobileNetV3 models are
visualized under different transfer learning methods to further analyze the performance of
the MobileNetV3 models with weight comparison transfer. The confusion matrix generally
refers to the analysis matrix used in machine learning to summarize the classification and
prediction results of a model. Each row of the confusion matrix in this section represents the
predicted data for the category and each column represents the actual data for the category.
Each value in the confusion matrix is the probability of the data in the column category
being predicted as a row category, with the value at the diagonal position indicating the
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probability of a correct prediction. The confusion matrices for the five models are shown in
Figure 10.
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As shown in Figure 11, the overall recognition effect of the MobileNetV3 model with
weight contrast transfer is superior to that of the other models. The model achieves a
high recognition accuracy of 100% for stem, calyx, intact apple, defect apple, and calyx +
defect but an accuracy of 94.7% for stem + defect. These results are mainly attributed to
the high similarity between calyx and stem, while the defective part is not sufficiently well
characterized. Similar problems are identified in other models. Overall, the MobileNetV3
model with weight contrast transfer learned more valuable feature information, which
ultimately improved the detection results.
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Figure 11. Confusion matrix visualization for 8 models. (a) AlexNet Confusion Matrix; (b) DenseNet
Confusion Matrix; (c) ResNet50 Confusion Matrix; (d) EfficientV2 Confusion Matrix; (e) MobileNetV3
Confusion Matrix under 100% Transfer (no freezing of network layers); (f) MobileNetV3 Confusion
Matrix under Fine-tuning (freezing part of the network layer); (g) MobileNetV3 Confusion Matrix
under Feature Extraction (freeze all network layers); (h) MobileNetV3 Confusion Matrix under
Weight Comparison.
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3.7. Comparative Experiments of WC-MobileNetV3 Model on Different Varieties of Apples

Due to the differences in the appearance characteristics (color and texture) of ap-
ples of different varieties and production areas, the WC-MobileNetV3 model is used to
detect defects in other apple varieties, such as “Akesu Fuji”, “Gansu Fuji”, and “Shao-
tong Fuji”. “Akesu Fuji”, “Gansu Fuji”, and “Shaotong Fuji” apple varieties are detected.
The experimental results are shown in Tables 12 and 13.

Table 12. The accuracy of WC-MobileNetV3 model for detecting different apple varieties.

Ground Truth True Positive

Total Intact Stem Stem +
Defect Defect Calyx Calyx +

Defect Total Intact Stem Stem +
Defect Defect Calyx Calyx +

Defect

Akesu Fuji 120 20 20 20 20 20 20 106 20 17 16 20 13 20
Gansu Fuji 120 20 20 20 20 20 20 104 20 20 17 20 7 20

Shaotong Fuji 117 20 17 20 20 20 20 101 19 14 20 20 8 20

Table 13. The experimental results of WC-MobileNetV3 model for different apple varieties.

Accuracy/% Precision/% Recall/% F1-Score
(%)

Parameter
(M) Ts (ms)

Akesu Fuji 88.33 89.95 88.33 88.32 4.21 25.69
Gansu Fuji 86.67 92.06 86.67 85.67 4.21 24.54

Shaotong Fuji 86.32 90.78 86.23 85.40 4.21 24.22

The average accuracy of the WC-MobileNetV3 model is 87.11% and the results for
“Akesu Fuji”, “Gansu Fuji” and “Shaotong Fuji” apples are acceptable. However, the
experimental results do not achieve very good results. This is due to the insufficient fusion
data for model training. The training dataset of the WC-MobileNetV3 model only uses
“Yantai Fuji”, but “Yantai Fuji” already contains the common appearance characteristics
of apples. With the effect of data enhancement and weight comparison transfer method,
the model can still recognize similar apples efficiently to a certain extent, especially for
intact and defect, but the recognition of defects in calyx is poor, which is due to the high
similarity between calyx + defect and calyx, as well as the small training data of calyx and
calyx + defect classes. The model does not learn enough feature information.

To improve the performance of the WC-MobileNetV3 model for detecting surface
defects of other varieties of apples, the most direct improvement method is to put the apple
images of these varieties into the training set, thus improving the generalization of the
training set. Secondly, the amount of data within the training set can also be expanded,
which can then improve the detection performance and generalization ability of the WC-
MobileNetV3 model, so subsequent studies will construct larger sample datasets to be used
for model training.

4. Discussion

This paper uses a dataset of fused thermal infrared and visible images to provide a new
idea for the detection of surface defects in apples. Among the current methods for apple
detection of surface defects, no experiments have been conducted for fused thermal infrared
and visible images. The use of image fusion to extract features requires better enhancement
of the IR target and preservation of the details of the visible image. Ma et al. [39] showed
that fused thermal infrared and visible images can significantly improve the efficiency of
the algorithm. This paper conducted comparative experiments on IR, VIS, and IR + VIS.
The experimental results show that the strategy is effective and informative. However, a
good fused image needs to contain the rich texture features of the visible image and the
defective targets in the thermal infrared image [40]. Due to the inadequate performance
of existing dual-light cameras, the quality of the acquired IR and visible images is limited,
which to a certain extent, limits the accuracy of detecting defects on the apples’ surface. The
accuracy in the recognition of apple stem + defect is only 94.7%. Therefore, the quality of the
acquired images needs to be improved. Notably, proper preprocessing is very important.
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Redundant information can exist in data acquisition. In this case, preprocessing can be
effective in improving the quality of the fused images [41].

In addition, this paper proposes a weight-contrast transfer learning method. Com-
pared with traditional transfer methods, weight-contrast transfer learning methods are
adaptive in extracting feature parameters. Common transfer learning methods are no
freezing (without freezing any network layer), partial freezing (freezing some network
layers) and freezing (freezing all network layers) [42]. Our weight comparison transfer
method is compared with these methods. By conducting ablation experiments on the test
set, it is determined that the above three transfer learning approaches could not adaptively
transfer useful training parameters from the pretrained weights. In contrast, the weight
comparison transfer method proposed in this paper achieves adaptive transfer of weight
parameters by screening the training parameters from pretrained weights. The model has
better accuracy and convergence speed. Therefore, the learning method based on weight
contrast transfer is feasible for enhancing the detection of surface defects on apples.

Ji et al. [43] achieved a multiclass average accuracy of 94.43% for apple recognition
based on the improved MobileNetV3 model. The running time for recognition is 0.051 s per
image. MobileNetV3 reduces the number of parameters and computation while ensuring
accuracy. In this paper, we choose to use a weight contrast transfer training strategy for the
MobileNetV3 model. The pretraining weights obtained by MobileNetV3 on the ImageNet
dataset are compared with the default weights of the model itself during the training
process, allowing the model pretraining weights to extract the required feature parameters
for each network layer. The final model that we propose is WC-MobileNetV3. To verify the
superiority of this model, it is compared with the convolutional neural networks AlexNet,
ResNet50, DenseNet169, and EfficientNetV2 under the same experimental conditions. The
model achieves a balance between accuracy and detection time, which is well suited to the
needs for apple surface defect detection.

The research in this paper focuses mainly on the surface defects of apples caused by
mechanical damage mainly scrapes and scratches. However, due to the special charac-
teristics of the fused images of infrared and visible images, there is still obvious feature
information on the fused images for common natural defects on the fruit surface such as
rots and insect spots. In the subsequent research, we consider expanding the number of
defect types and realizing the identification of defect classes in the process of detection,
and giving high-quality suggestions related to subsequent fruit cultivation and manage-
ment. In addition, the quality of the acquired images is limited due to the low precision
of the infrared camera in the dual-light camera used in this study, but the experiments in
Section 3.5 also prove the effectiveness of the infrared and visible image fusion technique
for apple surface defect detection. In future research, a new type of dual-light camera will
be constructed using a visible industrial camera and thermal infrared industrial camera
with suitable precision to realize the acquisition of high-quality infrared and visible images.
The RFN-Nest algorithm achieves the fusion of infrared and visible images of apples with a
nice fusion effect, but it still has many deficiencies for fruits with high-speed movement on
the sorting assembly line. In future research, the idea of infrared and visible image fusion
is considered to be introduced into the object detection model to achieve real-time image
fusion and defect detection. In addition, more high-quality infrared and visible images of
apples will be acquired for training the deep learning models in subsequent studies, in the
expectation of obtaining models with better generalization and detection performance for
the task of detecting surface defects for most apple varieties.

5. Conclusions

Apples with surface defects can cause economic losses in the apple industry. Therefore,
implementing the detection of surface defects on apples is an effective strategy for reducing
economic losses. In this paper, a MobileNetV3 model based on weighted contrast transfer
is proposed for the detection of apple surface defects. The detection method is tested on
self-constructed visible, thermal infrared and fused image datasets for comparison. The
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experimental results of the MobileNetV3 model with weight contrast transfer are better.
The recognition accuracy is high for stem, calyx, intact apple, defect apple, and calyx +
defect, all reaching 100%, and 94.7% for stem + defect. Therefore, the proposed method is
fully suitable for the accurate identification of apples that have suffered minor mechanical
damage. The method also has the potential to be extended to other fruits.

In future research, the number of types of natural defects will be expanded and a
higher performance infrared and visible image acquisition system will be constructed to
obtain higher quality dual-light image data to ultimately improve the effectiveness of apple
surface defect detection. At the same time, an end-to-end dual-channel object detection model
will be constructed to achieve real-time fusion and defect detection of dual-light images, laying
the technical foundation for the construction of a dual-channel online sorting system.
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