
DEPARTMENT OF
COMPUTER SCIENCE

CLÁUDIA CARABINEIRO DA SILVA ROSALINO

Bachelor in Computer Science

COMPLEX VISUAL QUERYING
WITHOUT SQL:
MASHUP IN-MEMORY DATA AND
PERSISTENT DATA

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
November, 2021

DEPARTMENT OF
COMPUTER SCIENCE

COMPLEX VISUAL QUERYING
WITHOUT SQL:
MASHUP IN-MEMORY DATA AND PERSISTENT DATA

CLÁUDIA CARABINEIRO DA SILVA ROSALINO

Bachelor in Computer Science

Advisers: Rui Nóbrega
Assistant Professor, NOVA School of Science and Technology

Teresa Romão
Associate Professor, NOVA School of Science and Technology

Co-adviser: Tiago Simões
Principal Product Designer, OutSystems

Examination Committee:

Chair: Ricardo João Rodrigues Gonçalves
Assistant Professor, NOVA School of Science and Technology

Rapporteur: Carlos Alberto Pacheco dos Anjos Duarte
Assistant Professor, FCUL

Adviser: Rui Pedro da Silva Nóbrega
Assistant Professor, NOVA School of Science and Technology

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
November, 2021

Complex Visual Querying without SQL: Mashup in-memory data and persistent

data

Copyright © Cláudia Carabineiro da Silva Rosalino, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation through

printed copies reproduced on paper or on digital form, or by any other means known or that

may be invented, and to disseminate through scientific repositories and admit its copying and

distribution for non-commercial, educational or research purposes, as long as credit is given to

the author and editor.

A C K N O W L E D G E M E N T S

I would like to thank my thesis advisers, Rui Nóbrega (Assistant Professor) and Teresa Romão

(Associate Professor), and also my co-adviser, Tiago Simões (Principal Product Designer), for

guiding me through this final step of my master’s degree with such exceptional expertise.

I would also like to thank NOVA School of Science and Technology and OutSystems for

this collaboration and opportunity. To my friends and colleagues, I would like to express my

gratitude for sharing with me great achievements and also the greatest difficulties.

Finally, a special thanks to my grandparents, mother and brother, who unconditionally

supported me through my academic path.

iv

A B S T R A C T

This dissertation has the intent of increasing the level of expressiveness of a visual interface that

allows users to query data without resorting to textual query languages. Although it was in the

1970s that Relational Database Management Systems appeared, the standard way to interact

with them remains to be through SQL, a textual query language.

One of the main problems with these kinds of languages is that they require technical skills

and knowledge of query language, syntax and domain schema. Consequently, database man-

agement was considered only accessible to experienced users for a long time. In recent years,

with the explosion of the Web, the volume of data available to everyone grew exponentially.

This way, it became necessary to make data retrieval accessible not only to expert users but

also to users without database knowledge. Visual Query Systems emerged in the late 1970s

to hide the complexity of query languages behind a visual interface and improving the effec-

tiveness of human-computer communication. Since then, many different approaches have

been proposed and studied. The OutSystems platform provides a graphical query interface

called Aggregates that allows its users to formulate queries through the manipulation of visual

components. However, this tool does not yet support the same level of expressiveness as SQL.

This dissertation aims at increasing the level of expressiveness of the Aggregates by propos-

ing different solutions for the implementation of the IN and NOT IN clauses without compro-

mising the global experience for any kind of user. In order to achieve this, an iterative devel-

opment process was used, including the design, implementation and evaluation of prototypes.

In this dissertation, we present a functional solution, integrated into the OutSystems platform.

The results show that we were able to turn the filtering of persistent data by in-memory data

very accessible to OutSystems Developers and also to regular Developers with no or very little

experience using the OutSystems platform.

Keywords: Visual Querying, Visual Query Systems, Low-Code Development, Data Visualization,

Human-Computer Interaction

v

R E S U M O

Esta dissertação tem como objetivo aumentar o nível de expressividade de uma interface visual

que permite aos seus utilizadores consultar dados sem recorrer a linguagens de consulta tex-

tuais. Apesar de ter sido na década de 1970 que surgiram os Sistemas de Gestão de Bases de

Dados Relacionais, a forma mais usual de interagir com esses sistemas continua a ser através

de SQL, uma linguagem textual de consulta de dados.

Um dos principais problemas da utilização deste tipo de linguagens é que requerem habili-

tações técnicas e conhecimento sobre linguagens de consulta, sintaxes específicas e esquemas

de domínio. Consequentemente, a gestão de bases de dados foi, durante muito tempo, consi-

derada apenas acessível a utilizadores experientes. Recentemente, com a explosão da Web, a

quantidade de dados disponíveis para toda a gente cresceu exponencialmente. Deste modo,

tornou-se necessário tornar o acesso a esses dados possível tanto para utilizadores experientes

como para utilizadores sem conhecimentos de bases de dados. Os Sistemas Gráficos de Con-

sulta de Dados emergiram no final da década de 1970 com o objetivo de ocultar a complexidade

das linguagens de consulta por detrás de uma interface visual e melhorar a eficácia da intera-

ção pessoa-máquina. Desde então, muitas abordagens diferentes foram propostas e estudadas.

A plataforma da OutSystems fornece uma interface gráfica de consulta chamada Aggregates

que permite aos seus utilizadores formular consultas através da manipulação de componentes

visuais. No entanto, esta ferramenta ainda não suporta o nível de expressividade do SQL.

Esta dissertação visa, assim, aumentar o nível de expressividade dos Aggregates, propondo

diferentes soluções para a implementação das cláusulas IN e NOT IN sem comprometer a

experiência global para qualquer tipo de utilizador. Para tal, foi utilizado um processo de desen-

volvimento iterativo, incluindo a concepção, implementação e avaliação de protótipos. Nesta

dissertação apresentamos uma solução funcional, integrada na plataforma OutSystems. Os re-

sultados mostram que fomos capazes de tornar a filtragem de dados persistentes por dados

em memória muito acessível tanto para programadores OutSystems como para programadores

regulares com nenhuma ou muito pouca experiência de uso com a plataforma OutSystems.

Palavras-chave: Consulta Visual de Dados, Sistemas Gráficos de Consulta de Dados, Desenvol-

vimento low-code, Visualização de Dados, Interação Pessoa-Máquina

vi

C O N T E N T S

List of Figures x

List of Tables xiii

Acronyms xiv

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Research Questions . 4

1.4 Contributions . 4

1.5 Document Structure . 5

2 Background 6

2.1 Human-Computer Interaction . 6

2.1.1 Iterative Development . 6

2.1.2 Requirements Analysis . 7

2.1.3 Prototyping . 8

2.1.4 Usability Testing . 9

2.2 OutSystems . 11

2.2.1 Architecture . 11

2.2.2 Service Studio . 12

2.2.3 Aggregates . 13

3 Related Work 18

3.1 Visual Query Systems . 18

3.1.1 Effects of Abstraction in Database Interfaces 18

3.1.2 Visual Interfaces . 19

3.1.3 Spreadsheet Concepts in Visual Querying 24

3.2 Visual Query Builders Today . 25

vii

C O N T E N T S

3.3 Summary . 27

4 Requirements and Methodology 28

4.1 Problem Exploration . 28

4.1.1 Current Alternative Solutions Analysis 28

4.1.2 IN Operator Usage in the OutSystems Platform 29

4.2 Alternative Approaches . 32

4.3 Methodology . 32

4.3.1 User Groups . 34

4.3.2 Testing Scenario . 35

4.3.3 Workflow . 37

5 Initial Platform Evaluation 40

5.1 Platform Current State . 40

5.1.1 Solution Examples . 40

5.1.2 Evaluation . 46

5.1.3 Discussion . 48

5.2 Alternative Approaches Analysis . 49

5.2.1 New system action vs Editing ListFilter 49

5.2.2 Use cases . 51

6 Iterative Design, Implementation and Evaluation 53

6.1 Low-fidelity Prototype . 53

6.1.1 Design and Implementation . 53

6.1.2 Evaluation . 57

6.2 IN Right Parameter Selection Exploration . 60

6.2.1 ListSelect Function Prototype . 62

6.2.2 Outcome . 64

6.3 Service Studio Prototype . 65

6.3.1 Implementation . 65

6.3.2 Evaluation . 67

6.4 Results Comparison . 69

7 Conclusion and Future Work 72

7.1 Conclusions . 72

7.2 Future Work . 73

Bibliography 74

Appendices

A Users Analysis 79

A.1 Platform current state users . 79

viii

C O N T E N T S

A.2 Low-fidelity prototype users . 83

A.3 ListSelect function prototype users . 87

A.4 Service Studio prototype users . 91

B Platform Current State Evaluation: Full results 95

C Low-Fidelity Prototype Evaluation: Full results 98

D IN Right Paramenter Exploration: Full results 101

E Service Studio Prototype Evaluation: Full results 105

Annexes

I Data Analysis 108

II Gartner Magic Quadrant 109

ix

L I S T O F F I G U R E S

2.1 Ratio between benefits and costs for using various number of test users to find us-

ability problems in a medium-large software project [29] 11

2.2 OutSystems Platform Architecture [35] . 12

2.3 Service Studio Interface [37] . 13

2.4 Aggregates Editor . 14

2.5 Aggregates Sources . 15

2.6 Aggregates Filters . 15

2.7 Aggregates Sorting . 15

2.8 Aggregates Preview Pane Functionalities . 16

2.9 Aggregates Output Preview with Aggregation Functions [39] 17

3.1 OVI-2 visual interface for Query 1 built with the set memberships displayed in the

COURSES-form [23] . 21

3.2 SIEUFERD visual query interface [3]. In this example is presented a query that instan-

tiates six database tables, contains five joins and is evaluated using five generated

Structured Query Language (SQL) queries. 24

3.3 SOQL Query Builder interface [43] . 26

4.1 Example of a post-process of records . 30

4.2 SQL editor with a query using the IN operator . 31

4.3 Count of Costumers by number of Aggregates with Index 31

4.4 Design Science Research Overview [17] . 33

4.5 Summarized Workflow Diagram . 33

4.6 Test Scenario: 1 - Table Component; 2 - Input Component; 3 - DropdownTags Com-

ponent. 35

4.7 Test Scenario Interface Tree: 1 - Variable “NameSearch”; 2 - Aggregate “GetDis-

tinctCategories”; 3 - Aggregate “GetProducts”; 4 - Client Action “DropdownTagsOn-

Change”; 5 - Client Action “InputSearchNameOnChange”. 37

4.8 Testing Scenario expected behavior . 38

4.9 Detailed Workflow Diagram . 39

x

L I S T O F F I G U R E S

5.1 DropdownTagsOnChange logic flow: assigning the selected categories to Categories-

ListCSV . 41

5.2 DataAction1 logic flow: using the SQL IN operator 42

5.3 DropdownTagsOnChange logic flow: Appending the selected categories to Cate-

goriesToFilter . 43

5.4 GetProducts Data Action logic flow: filtering the products by the selected categories

in CategoriesToFilter . 44

5.5 DropdownTagsOnChange logic flow: creating the coma separated text variable with

the selected categories and refreshing the Aggregate with the new filter condition 45

5.6 Success rate of the Current State phase tests by each group of users 47

5.7 Main system actions in the OutSystems platform . 50

5.8 ListContains proposed design and attributes . 50

5.9 ListFilter action attributes and proposed addition in the condition expression editor 51

5.10 UsersList (Local Variable) and GetPosts (Representational State Transfer (REST) Ap-

plication Programming Interface (API) method) structures 52

6.1 Proposed Solution Prototype: Homepage . 54

6.2 Example of the flow configuration (in Figma) to turn the low fidelity prototype

testable . 54

6.3 Proposed Solution Prototype: Addition of the IN operator in the "Add Filter"Expression

Editor . 55

6.4 Operators Bar new proposed design . 55

6.5 CurrentList structure . 56

6.6 DropdownItem List "CategoriesToFilter"expanded options in the scope of the Agrge-

gate "Add Filter"expression editor . 56

6.7 Selection of the operator by user group . 58

6.8 Operator name preference by user group . 59

6.9 Selection by Non Developers . 60

6.10 Selection by Software Developers . 60

6.11 Selection by OutSystems Developers . 60

6.12 Proposed new list property SubLists . 61

6.13 Solutions preference by user group . 62

6.14 ListSelect Prototype: Aggregate filter condition expression editor 64

6.15 Aggregate filter condition with IN operator in the Service Studio implementation 66

6.16 Success rate of the Service Studio phase tests by each group of users 69

6.17 Success rate by each user group: before (left) and after (right) new solution imple-

mentation . 70

6.18 Logic flow to filter the products: before (above) and after (below) new solution . . 70

I.1 Distribution of operations not supported by Aggregates in 67.828 total SQL queries

parsed [41] . 108

xi

L I S T O F F I G U R E S

II.1 Magic Quadrant for Enterprise Low-Code Application Platforms - August 2021 [15] 109

xii

L I S T O F TA B L E S

3.1 Classification of visual query interfaces . 20

4.1 User Groups . 34

4.2 Number of tests by user group for each main evaluation phase 35

6.1 Average test duration by User Group: before (left) and after (right) new solution

implementation . 71

xiii

A C R O N Y M S

ANSI American National Standards Institute 1

API Application Programming Interface xi, 51, 52

DBMS Database Management System 1

HCI Human-Computer Interaction 6, 8

IOS International Organization for Standardization 1

QBD* Query-By-Diagram 23, 24

QBE Query-By-Example 18, 21

RDBMS Relational Database Management System 1

REST Representational State Transfer xi, 51, 52

SQL Structured Query Language x, xi, 1, 2, 3, 14, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

34, 40, 41, 42, 46, 48, 53, 54, 55, 56, 57, 63, 66, 68, 72, 73

VQS Visual Query System 2, 3, 18, 19, 21, 23, 24, 25, 27

xiv

1

I N T R O D U C T I O N

In an era of application development where databases are accessed through specific and stan-

dardized languages, far from natural language, any low-code platform faces the challenge of

making access to databases accessible to non-experienced users.

It is increasingly important to develop applications that can be easily integrated into various

platforms, extensible, customizable to the needs of different customers and, above all, faster

to be developed. The Information Technology (IT) industry presents a demand in human

resources that is superior to the offer that IT teams can support. This has led to continuous

growth of the low-code market, with more and more companies recognizing that it can be a

great help to accelerate the development process and can bring several benefits [38]. As it is

generally known to any programmer or anyone related to the Information Technology sector,

practically in any application development, regardless of the sector with which it is related, it

is necessary to access databases to store and/or obtain information. This is where tools that

aim at making that access more visual became very interesting in the context of the low-code

market.

1.1 Context

It was in the 1960s that the first Database Management Systems (DBMSs), such as IMS and

IDS [16], appeared. However, they used heterogeneous data structures, with each application

storing its data in a single structure. Therefore, when another application needs to use the same

data, it was necessary to study and know this structure well.

To solve this problem, Relational Database Management Systems (RDBMSs) emerged, pro-

viding a uniform way of representing and accessing data that could thus be used by any appli-

cation. The process of accessing these databases can be done through queries formulated in

Structured Query Language (SQL), which was developed by IBM in the early 1970s and which is

currently recognized as an official standard by the American National Standards Institute (ANSI)

and the International Organization for Standardization (IOS). Although structured query lan-

guages such as SQL are quite expressive, they require an array of technical skills and knowledge

on query language, syntax, and domain schema, which continues to restrict its use to advanced

1

C H A P T E R 1 . I N T R O D U C T I O N

users [48].

With the exponential growth of data available on the web for everyone, it has become crucial

to have ways that allow ordinary users to be able to search and access that data. The concept

of Visual Query System (VQS) has been growing from this need and this type of systems were

initially defined as “systems for querying databases that use a visual representation to depict the

domain of interest and express related requests” by Catarci et al. [6]. The main purpose of this

visual approach is to make data querying accessible to non-experienced users that don’t have a

base knowledge of data querying languages, but expert users can also potentially benefit from

visual query formulation as it leads to ease in learning, high-efficiency rate, reduced error rate,

and more satisfactory experiences [48]. This way, when developing a visual querying interface

it is important to have in account all types of users.

As mentioned by Sourav S. Bhowmick [4], since the appearance of Database Management

Systems the academic and commercial efforts have been mostly focused on textual approaches

for querying data.

The main problem underlying this paradigm is that it limits its usage to expert users with

high knowledge of specific languages. Querying databases has become a daily task for many

end-users that don’t have specific skills for it, and the development of visual interfaces to data

can broadly expand the audience for databases. However, most of the existing visual querying

interfaces lack both visual expressiveness and/or ease of use, which is an essential trade-off [5].

1.2 Motivation

Low-code is a software development approach that enables the delivery of applications faster

and with minimal hand-coding. This dissertation was elaborated together with Outsystems,

which is currently one of the main low-code development companies in the world, having been

founded in Lisbon in 2001. OutSystems platform allows users to create complete applications

visually using a drag-and-drop interface composed by:

• A visual IDE that allows users to define UIs, workflows and data models to create an

application with the option of adding hand-written code;

• Connectors to various back-ends or services that automatically handle data structures,

storage, and retrieval;

• Application lifecycle manager with automated tools to build, debug, deploy, and main-

tain the application in test, staging, and production.

In order to allow users to retrieve data from databases, OutSystems provides components

called Aggregates that allow this process to be done through visual interactions. Using Aggre-

gates any type of user is able to apply filters, join entities, sort or make aggregation operations

over the data in a faster and much more intuitive way than using a textual query language like,

for example, SQL. The aggregates also provide a section with a table-based interface that allows

2

1 . 2 . M O T I VAT I O N

the user to see the query output produced while manipulating the data. The level of expres-

siveness of the Aggregates already covers most of the basic use cases, but it is still very com-

promised when compared to the level of expressiveness of structured querying languages. One

of the limitations is that it is not possible to intuitively filter persistent data from the database

by an in-memory list. In this thesis, we aimed at extending the visual query platform to en-

able this. However, when trying to increase the expressiveness of a VQS it is very important to

have in mind the trade-off between expressiveness and usability. The goal was to increase the

expressiveness as much as possible, without compromising its usability. Complex semantics

expressed with visual constructs and operations may result in inefficiency for expert users and

difficulty in learning and use for users with low database querying experience [48].

Although the OutSystems Aggregates already allow users to perform many basic query op-

erations as mentioned above, there are still some more advanced SQL functionalities that can’t

be performed this way. OutSystems platform offers an alternative for users to perform SQL

queries to compensate for the lack of expressiveness that still exists in the Aggregates, but this

results in the inexistence of a complete and uniform visual querying platform. At the time that

this dissertation started, some examples of functionalities that were still not supported by the

Aggregates were: IN, NOT IN, EXISTS, NOT EXISTS, DISTINCT, UNION and the possibility to

perform subqueries.

As there were still many functionalities that needed to be implemented, after looking at

already existing statistics regarding the percentages of use of each of those operations in SQL

queries (see Annex I for more details), seeing the Outsystems Community forum most voted

ideas and some discussion with the OutSystems stakeholders, it was decided that this work

would focus on the IN and NOT IN clauses. These clauses are particularly important because

they demonstrate the inexistence in the Aggregates of a proper way of filtering a database with

an in-memory list of values. There are many possible designs for adding this functionality and

that’s why before implementing the final one we needed to explore and evaluate them.

This way, the main motivation for this thesis was to find the best design for the integration of

the IN and NOT IN clauses in the Outsystems aggregates and implement it in order to increase

its expressiveness and provide an improved visual querying platform that results in a better user

experience.

3

C H A P T E R 1 . I N T R O D U C T I O N

1.3 Research Questions

This dissertation focused on trying to answer the following main broader question:

Can we make OutSystems Aggregates more expressive with the IN and NOT IN clauses

without compromising the global experience for any kind of user?

In order to answer this question, it was necessary to divide the main question into the fol-

lowing more specific questions:

Research Question 1: Is intersecting an in-memory list with the results of a database query

a common problem?

In order to start defining a solution, it was very important to research how the users cur-

rently implement the IN and NOT IN clauses and how often it happens to guarantee that we

were answering the right needs of the Outsystems platform users. There is no point in develop-

ing any solution that doesn’t add any real value.

Research Question 2: Are there other solutions to this problem that can solve more use

cases?

Although there was a main problem that we intended to solve by adding the IN clause in

the OutSystems Agreggates, if there could be found a solution that could solve more use cases

than the ones already identified then it needs to be considered.

Research Question 3: Is it possible to augment the expressiveness of OutSystems Aggregates

for this use case in a way that is natural for experienced developers?

When adding new features to an already existing and working platform, we wanted to make

sure that we didn’t ruin the experience for the already experienced users of it.

Research Question 4: Is it possible to augment the expressiveness of OutSystems Aggregates

for this use case while making it accessible to non experienced users?

When adding new features to an already existing and working platform, we wanted to make

sure that we are not increasing the learning curve substantially and that new users could intu-

itively find and learn how to use the newly added features.

1.4 Contributions

The work presented in this thesis includes a study of the current state of the Aggregates, con-

sidering the nonexistence of an effective way of intersecting in-memory lists with persistent

data accessible by Aggregates, and a study of how OutSystems users currently overcome this

limitation, along with a research of their complaints and requests related to it.

The main contribution was the design and evaluation of solutions that allow augmenting

the expressiveness of the OutSystems Aggregates, without compromising the experience for

4

1 . 5 . D O C U M E N T S T R U C T U R E

experienced and non-experienced users. This was firstly done using low fidelity prototypes and

performing usability tests. In the end, we implemented a final prototype, integrated into the

Service Studio, in order to evaluate with high fidelity the progress achieved.

This way, the final contribution was an evaluated and integrated prototype that allowed us

to conclude if the level of expressiveness of the Aggregates was improved when compared to

the previous state and if it was improved without compromising the global user experience.

1.5 Document Structure

The remainder of this document is organized as follows:

• Chapter 2 - Background: Introduces base concepts that were used in the elaboration of

this work and provides insight about the OutSystems Platform and technology;

• Chapter 3 - Related Work: Presents an overview of Visual Query Systems evolution;

• Chapter 4 - Requirements and Methodology: Summarizes the process used to understand

the problem and defines how to solve it and validate solutions;

• Chapter 5 - Initial Platform Evaluation: Analysis the current state and the proposed alter-

native approaches;

• Chapter 6 - Iterative Design, Implementation and Evaluation: Describes all the phases of

the solution conception;

• Chapter 7 - Conclusion and Future Work: Includes the final remarks and defines what

should be addressed in future work.

5

2

B A C K G R O U N D

This chapter introduces base concepts that were used in the elaboration of this work and gives

insights about the OutSystems platform. In particular, this chapter gives an overview of the

OutSystems Aggregates, which are the main components addressed in this thesis.

2.1 Human-Computer Interaction

The base concepts of Human-Computer Interaction (HCI) were well established in the 1980s but

it has really expanded since then. As technology rapidly evolved, the interactions established

between people and computers increased. Consequently, the way those interactions are made

and who performs them has changed. We have come to a point where we want to design

“experiences for all manner of individuals (and not just users), in all manner of settings, doing

all manner of things” [42].

HCI aims to design interfaces that fit between the user, the machine and the required ser-

vices, in order to achieve a certain performance both in quality and optimally of the services.

There are two main terms that should be considered when talking about HCI: functionality and

usability. Functionality refers to the actions or services that a system allows its users to perform.

Usability refers to the “extent to which a system, product or service can be used by specified

users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified con-

text of use” [40]. The effectiveness of a system is, therefore, measured by the balance between

these two concepts [19].

2.1.1 Iterative Development

Before the arising of agile software development practices, the models that existed for the devel-

opment of software were sequential and didn’t include user feedback throughout the process.

Those models are now called traditional models, being the most famous one the Waterfall model,

and their implementation begins with the elicitation and documentation of a “complete” set

of requirements, followed by architectural and high-level design, development, and inspection

[10].

6

2 . 1 . H U M A N - C O M P U T E R I N T E R A C T I O N

At the beginning of the 1990s, developers began to find these initial steps frustrating and the

fact that technology began to evolve very fast made requirements change very frequently. These,

together with the fact that users started to find it increasingly hard to state their needs upfront

and that users’ expectations of software continue to rise, gave origin to the Agile Methods. The

core idea behind these methods is iteration based on feedback. Their focus is on extensive com-

munication, rapid iteration, continuous collecting of information and continuous adjustments,

instead of trying to plan the entire process right on the start [45].

Iterative development is an agile methodology and was defined by Larman as “An approach

to building software (or anything) in which the overall lifecycle is composed of several iterations

in sequence. Each iteration is a self-contained mini-project composed of activities such as

requirements analysis, design, programming, and test. The goal for the end of an iteration is an

iteration release, a stable, integrated and tested partially complete system.” [21].

Iterative development deals well with change, as the only complete requirements necessary

are for the current iteration (the requirements for the next iteration are provisional). Conse-

quently, this approach allows achieving flexibility in technology and requirements change.

2.1.2 Requirements Analysis

In order to know what is wanted from a system, one has to start by understanding who will use

it (user profile) and which functionalities will they want to perform on it (task analysis):

User profile - There isn’t a user interface style or approach that best suits all types of users.

Specific interface design alternatives that optimize the performance of some types of users may

actually degrade the performance of other types of users. For example, for an infrequent/casual

user, it is more important that the interface is easy-to-learn and easy to remember, but for a

high frequency/expert user it is more important that the interface is efficient, powerful, and

flexible [10].

This way, it is necessary to know the classes of people who will use the system. By knowing

the users’ work experience, educational level, age, previous computer experience, and so on, it

is possible to anticipate their learning difficulties to some extent and to better set appropriate

limits for the complexity of the user interface. The users’ work environment and social context

also need to be known. Some possible methods for collecting this information are market

analysis, observational studies and questionnaires/interviews [27].

Task analysis - Allows involving the entire team in understanding the users of the system. It

provides ways to organize the usually unstructured data that is retrieved from field studies or

site visits. It is an essential part of the process of creating any product, as they are tools for users

to accomplish goals by performing tasks [10].

It consists in elaborating a list of all the functionalities that the users will want to achieve

with the system (the goals), the preconditions, the steps that need to be taken and interdepen-

dencies between them, all the outputs and reports that need to be produced, the criteria used

to determine the quality and acceptability of these results, and the communication needs of

the users [27].

7

C H A P T E R 2 . B A C KG R O U N D

2.1.3 Prototyping

As we discussed in previous sections, HCI is a user-centered and iterative field. The user is

placed at the center of the user-centered design process from the first phases of analysis of user

requirements until the last phases of testing and evaluation. Prototypes support this goal by

allowing users to experience and evaluate a system before it is built. This way, designers are

able to identify earlier the functional requirements, usability issues and performance problems.

Once the identification is made, the designer can change the design accordingly in order to

obtain an improved design. Prototypes also allow the evaluation of concrete representations

of design ideas, revealing the strengths and weaknesses of each one. In iterative design, imple-

mentation and testing phases are made several times, allowing for continuous improvement

[45]. Prototyping can be defined in four steps [14]:

1. Functional Selection - The first step is to choose which functions the prototype should

exhibit. These should be the ones that are based on the most relevant work tasks and that

can serve as model cases for demonstration. The range of features offered by a prototype

can define it as “vertical prototype” or “horizontal prototype”. In vertical prototyping, the

range of features is lower but are implemented in more detail. In horizontal prototyp-

ing, the range of features is higher but are not implemented in great detail. These two

approaches can be combined in the same prototype as needed;

2. Construction - When developing a prototype, the effort needed should be much smaller

than the effort required to develop the final product. This can be achieved by making a

proper functional selection and through the use of suitable tools and techniques. When

constructing a prototype, the focus should be on the intended evaluation;

3. Evaluation - It’s the most important step since it provides the feedback needed for the fur-

ther development process. Evaluation should include users from all the relevant groups

and follow explicit documented criteria for the evaluation. It should also specify the steps

to be performed with the system, taking into account the context in which those steps

will be made;

4. Further use - Depending on the type of prototype developed and on the available produc-

tion environment, the prototype may merely serve as a learning vehicle and be thrown

away after it serves that purpose or it can be used fully or partially in the development of

the final system.

In the context of usability testing, prototypes can be low fidelity, high fidelity or somewhere

in between. Fidelity refers to the number of features implemented, the detail in the implemen-

tation of those features, the look/aesthetics of the prototype, how users will work with it and

how close it is to the final product [45].

Low-fidelity prototypes are usually easy and fast to develop and contain a high level of

interactivity. An example of this kind of prototype is a paper prototype. Doing usability tests

8

2 . 1 . H U M A N - C O M P U T E R I N T E R A C T I O N

with this kind of prototype requires a team member that knows the products very well, to act as

a facilitator according to the participant’s input. As they are quick and easy to build, they allow

starting usability testing early in development. This way, the team is able to fix design problems

while it is still cost-effective. Another advantage of using low-fidelity prototypes is that they

facilitate the think-aloud process. However, they may discourage exploration of the product,

be difficult to use by people with disabilities, difficult to collect quantitative data, not easy to

integrate with remote testing tools or even lead to a wrong idea of how obvious the changes will

be when made by a computer.

High-fidelity prototypes contain more functionalities and are more expensive to develop

than low-fidelity ones. In these prototypes, the interaction between the user and the prototype

is equal to the one that would be with the final product. These provide better documentation

of the product but can deceive the managers and users regarding the level of completion of the

project.

It is worth mentioning that a prototype may be low fidelity concerning a certain aspect and

medium or high fidelity concerning another aspect. For example, paper prototypes are low

fidelity in look but they may be high fidelity in-breath, number of features implemented. When

it comes to deciding which type of prototype to use, low-fidelity prototypes are considered

most useful at the beginning of development to address high-level conceptual issues. On the

other hand, high-fidelity prototypes are considered most useful later in development, after

more design decisions have been worked out. It is common to use both types of prototypes

throughout the process.

2.1.4 Usability Testing

Usability testing was introduced in the late 1980s and is currently a widely used technique to

evaluate user performance and acceptance of products and systems [50]. There are six funda-

mental characteristics that make a usability test valid [45]:

• The focus is on usability: The purpose of the test is to allow its participants to talk about

their reactions to the test session;

• The participants are end-users or potential end-users: The participants must be part of

the targeted market of the product. To find the right users one can make a user profile.

This should take into account two types of characteristics: characteristics that the users

share and characteristics that make a difference among the users. There are usually many

relevant groups for testing and that’s why the test team should decide which are the most

relevant in order to allocate the resources the best way;

• There is a product or a system to evaluate: Usability tests can be performed with almost

any type of product or technology;

9

C H A P T E R 2 . B A C KG R O U N D

• The participants perform tasks, usually while thinking aloud: When executing a test,

the test administrator should incentivize the participant to say out loud what he is think-

ing while performing the test and interact with him. The participant should be told that

the test is about the usability of the system and not about him. Selecting tasks is one of the

main requirements of every usability test, as when performing a test the time is limited

and the selected tasks will define the scope of the test. The tasks selected should have

one of the following characteristics: frequently performed on the system; important for

accomplishing basic goals on the system; critical for other tasks; include tasks that probe

areas where usability problems are likely; include tasks that probe the components of a

design; be central to the business goals for the product; have been redesigned in response

to the results of a previous test; be new to the product. Estimating the time for each task is

also important in order to determine how many tasks to include in the test. The tasks are

usually presented to the participant as task scenarios. Test scenarios try to simulate an

eventual normal use of the system. The order in which these are made may be important,

as they might have precedence between them. Assisting the participant with the tasks is

also a common practice;

• The data is recorded and analyzed: A usability problem usually affects more than just

one measure. The tester should observe the problems during the sessions and record

them, in order to be able to analyze them later in order to identify the basic causes. The

problems found should be classified according to their severity in order to know which

should be solved and in which order. Positive issues can also be identified and noted;

• The results of the test are communicated to appropriate audiences: Presently this is

done more informally because organizations started to accept this kind of test with users

as a valid, useful tool and an important part of their regular development process. The

results can be communicated for example at a meeting, and there is no need to tell all the

details of the tests and procedure, as the organizations just want to know what problems

they encountered and what needs to be done about them.

2.1.4.1 Estimating the Number of Subjects

Thinking aloud methods with potential users has been employed by usability engineering ex-

perts as one of the main methods for improving interfaces through user testing.

Nielsen performed studies in order to find the number of test subjects that results in the

best benefit/cost ratio for finding usability problems in an interface, and he claims that that

number is 5 users [26]. He also says that as the goal of this kind of testing is to identify problems

that will be corrected in future interactions, it is not worth to use more than 5 subjects since the

additional value falls exponentially from there, as can be seen in Figure 2.1.

This way, Nielsen concludes that it is better to use fewer subjects and run more phases of

testing [28], because it is very expensive to find all the problems and the next interactions will

10

2 . 2 . O U T S Y S T E M S

Figure 2.1: Ratio between benefits and costs for using various number of test users to find
usability problems in a medium-large software project [29]

probably introduce some new problems. Besides that, the most important usability problems

are likely to be the ones that are firstly found [25].

2.2 OutSystems

OutSystems is a low-code application delivery platform that aims to accelerate the delivery of

mobile and web applications. With the OutSystems platform, even users with little program-

ming knowledge can use a single, integrated development environment that covers the entire

development lifecycle to create an application. This is made possible because the OutSystems

platform offers a visual programming language that promotes high levels of abstraction [18, 36].

2.2.1 Architecture

An overview of the OutSystems architecture including its components and tools [35] can be

seen in Figure 2.2. The main components that can be seen are:

• Platform Server: Consists in a set of servers that compile, deploy, manage, run, and mon-

itor the applications inside your infrastructure. You can connect to the platform server

from Service Studio, which is the OutSystems development environment for Web and

Mobile Apps and will be explained in more detail in Section 2.2.2. Once it is connected,

developers can create and publish applications to the platform server. Each version of

those applications will be stored in the Platform Data database. The platform server

11

C H A P T E R 2 . B A C KG R O U N D

Figure 2.2: OutSystems Platform Architecture [35]

will then compile and generate optimized code for those applications and deploy them

to a standard application server. The application server uses traditional databases and

external systems to run the applications you’ve created.

• Integration Studio: Development environment that allows the users to create extensions

to the platform itself. Integration Studio provides several accelerators to integrate with ex-

ternal resources such as C# code and databases. Integration Studio takes those resources

and creates representations of them inside the OutSystems world. Once those represen-

tations exist inside an extension, they can be published to the server and used inside

Service Studio as normal OutSystems resources.

• Service Studio: Service Studio is the visual development environment for developers to

create great Mobile and Web Applications. In the following section it will be described in

more detail.

2.2.2 Service Studio

The low-code and visual development environment of the OutSystems platform is called Service

Studio (see Figure 2.3). It allows developers to create applications and Modules on the server.

On the Application Layer Tabs (on the top-right side of the screen as can be seen in Figure

2.3) users can select one of the following four application layers [33] and manipulate it:

• Processes layer: This layer gives us a lot of information about logic and tasks that can

occur at the highest level. Processes have two major groups of elements: Processes and

Timers. Processes include business processes and human and automated tasks which

can also have decisions, events and waits. Timers are scheduled actions that can occur at

12

2 . 2 . O U T S Y S T E M S

Figure 2.3: Service Studio Interface [37]

a specific time and can be rescheduled to occur periodically. These timers can be given

different priorities and can also have timeouts.

• User Interface layer: Focuses on the different components that will make up the user

interface. In this layer we can manage groups of screens and blocks (which are called User

Interface Flows). For each screen we can edit, remove or add variables, visual elements

and actions. In this layer we can also assign the elements to action flows that will define

the client-side logic of the screen and define the flow between screens.

• Logic layer: It is where we define the application logic that will run on the client or on

the server. Client Actions run on the client-side, be that a mobile device or a web browser,

while Server Actions will run on the server. This layer includes logic elements that allow

the users to integrate with external systems, roles that can be assigned to users in order

to know exactly which users have access to which resources and exceptions that can be

thrown or handled. It’s also in this layer that the user can add the actions related to data

retrieval.

• Data layer: Inside the data layer, we can define the different Entities that would be avail-

able in the database or locally on the device storage, which we call local storage. If you

wish to visually represent these and be able to see them, you can create Entity diagrams.

In short, here the user can define the data model of the application.

2.2.3 Aggregates

As is common knowledge, most applications need to fetch data from a database and the appli-

cations made with the OutSystems platform are no exception. Given that the whole purpose

of OutSystems is to make application development accessible to everyone, finding a way that

13

C H A P T E R 2 . B A C KG R O U N D

Figure 2.4: Aggregates Editor

would allow non experienced users to query the data was needed. That’s why OutSystems

created a visual element called Aggregates that can be run in the server-side logic or in the

client-side logic [31]. The Aggregates make it possible for users to create queries in a visual way,

without the need to have databases and structured query languages knowledge.

In Figure 2.4 we can see the Aggregates editor default opening presentation. The editor

has two main sections: a top menu where it is possible to define the source entities, filter data

according to some criteria, sort the data as needed or even test the query output; a preview

pane of the query output data presented with a style similar to the Excel spreadsheets with the

purpose of making it more familiar. Considering the top menu section it offers the following

functionalities [30, 32]:

• Sources: Expanding this tab the user can reveal the source entities (Figure 2.5). The

sources within the Aggregate determine from where the data is retrieved. Aggregates

support more than one entity as source. In this tab the user can add, edit or remove

entities from the query and even establish the join relationship between them. At the

current state there are three types of join available: "only with", "with or without", and

"with". The respective joins in SQL are: "inner join", "left join", and "full outer join". Each

of these types is represented with a icon based on Venn Diagrams to make them more

intuitive.

• Filters: Once we have the sources of the Aggregate defined we might want to define the

Aggregate filters (Figure 2.6), which are similar to the SQL WHERE clause. As you add

14

2 . 2 . O U T S Y S T E M S

Figure 2.5: Aggregates Sources

Figure 2.6: Aggregates Filters

Figure 2.7: Aggregates Sorting

filters, the preview data automatically refreshes and displays only the records that match

all filters. Multiple filters may be added, and the records returned are only the ones that

evaluate to "true for all filters". Each filter usually has some sort of logical operator, such

as equal to, not equal to, and so on. It is also possible to use some of the built-in functions

to manipulate dates or other values. This may be useful to get records whose date is in

the future, for instance.

• Sorting: In the sorting tab the user can choose the entity that he wants to sort and add

one or more sorting criteria (Figure 2.7). For example the sorting can be done Ascending

or Descending. Multiple sorts can be added. The order in which the sorts are defined

is important, as it will influence the Aggregate result, with the first one having more

precedence, followed by the second one, and so on.

• Test Values: The user can also set test values that don’t affect what will be actually running

inside the application but will allow him to see what the output might be in a particular

case. So if the user gives the input field a value, it will evaluate the query and refresh the

data preview.

15

C H A P T E R 2 . B A C KG R O U N D

Figure 2.8: Aggregates Preview Pane Functionalities

Considering the query output previewing pane, there are also some functionalities that

allow the user to add to its query visual formulation by selecting columns with a right-click or

by clicking on “New Attribute”.

As can be seen in Figure 2.8, if a user performs a right-click on a column, a list of options

is presented. In order to make the output preview more understandable, the options “Hide”

and “Hide others” allow hiding columns for previewing purposes. This is particularly important

when there are a lot of attributes in the previewer, to help the user visualize the most relevant

ones. Hiding columns do not affect the output of the Aggregate at runtime, unlike the rest of

the options presented. In the list, there are also options that perform aggregation on the rows

fetched by the Aggregate. The available aggregation functions are Group, Sum, Average, Max,

Min and Count.

Aggregates also support calculated attributes by selecting “New Attribute”. Sometimes

there’s information that’s not directly stored in the database, but with some combination of

attributes or calculations one can easily get that information. So, calculated attributes are cus-

tom values that can be computed from other attributes in the Aggregate, creating a new column

in the output of the Aggregate. These calculated attributes can be created via Expressions, which

have access to all the attributes in the Aggregate, as well as OutSystems built-in functions and

variables accessible by the Aggregate.

In Figure 2.9 we can see that when grouping rows together or using the aggregation func-

tions, only the Aggregated columns of the Aggregate will be part of the output. They can be

easily identified by the columns in blue.

16

2 . 2 . O U T S Y S T E M S

Figure 2.9: Aggregates Output Preview with Aggregation Functions [39]

17

3

R E L A T E D W O R K

In this chapter, an overview of Visual Query Systems types and evolution is presented. In the

end, an analysis is made of the current use of Visual Query Interfaces in commercial tools.

3.1 Visual Query Systems

Visual Query Systems (VQSs) were defined by Catarci et al. in 1997 as “systems for querying

databases that use a visual representation to depict the domain of interest and express related

requests” [6]. Different types of visual interfaces have been proposed and evaluated since then,

but the problem of making database querying accessible to all types of users still remains open.

3.1.1 Effects of Abstraction in Database Interfaces

The interface of a database is responsible for how users perceive the database system, as it

allows the communication of the semantics between the system and the user. These interfaces

can be classified according to their level of abstraction [46]:

• Physical - Interfaces with a very low level of abstraction and that require the user to know

details about physical storage and access structures used in that system;

• Logical - In this interfaces, the queries are specified in terms of abstract structures for

data and operations. The most common examples of this level of abstraction are the

relational databases interfaces. This level of abstraction doesn’t require users to know

the physical details of how data is stored or accessed but requires knowledge of joining

operations and their purpose to specify relationships. Without this knowledge, users are

very prone to errors when using these interfaces.

• Conceptual - This is the level with highest abstraction. Interactions are expressed in

terms of real-world concepts such as entities, objects and relationships. A data model

suitable for this level of interaction is the entity-relationship (ER) model.

Siau et al. [46] compared a logical interface, Query-By-Example (QBE) [51], and a conceptual

interface, Visual Knowledge Query Language (VKQL) [47], with the purpose of studying how

18

3 . 1 . V I S UA L Q U E RY S Y S T E M S

the level of abstraction of interfaces and query complexity affect the accuracy, time taken to

formulate the queries and confidence in query performance by novice users.

The experiment involved three tests: an initial test, a retention test and a relearning test.

The subjects were randomly selected from a population of 480 computer science students with

some computing but no database experience and randomly assigned to the conceptual and

logical groups. By choosing novice subjects it was possible to study the learning effect of both

interfaces.

The results confirmed that users in the conceptual group achieved higher accuracy and

higher confidence in all three tests, and even took less time in query formulation. This way, the

study concluded that the use of conceptual interfaces in organizational databases can achieve

better efficiency and effectiveness.

3.1.2 Visual Interfaces

Visual Query Systems use interfaces based on abstractions and can be classified according to

the way they represent the data model (the representation of the reality of interest) and how

they express the queries (query representation) to the users [22], as described in Table 3.1.

Jorge Lloret-Gazo [22] extended the work of Catarci et al. [6]. In that older article, where the

VQSs reviewed were from 1975 to 1996, it was concluded that VQSs still had various problems,

as they were not user friendly or very powerful, and the available data types were also limited.

In the extended and more recent version, the author reviewed VQSs from 1997 to 2017, focusing

on visual queries to structured information. The main type of interfaces found for database

representation was diagrammatic, and regarding query representation the distribution was

more balanced, except for the faceted type that was only found once.

However, very few papers were still found that offered a prototype that had been tested in

a real environment (Polaris [49], now known as Tableau, was the only system found that was

web-oriented and that was tested in a real environment), leading to the conclusion that VQSs

had not been a widely accepted solution for novel users yet.

Despite that, Jorge Lloret-Gazo concludes by saying that he strongly believes that research

in this direction should continue and that a solution for naive users is necessary.

There have also been efforts in a slightly different direction: instead of trying to replace

SQL try to make it faster to use and easier to learn and understand. Some examples of systems

developed with this purpose are QueryViz [11], which aims at allowing users to read and under-

stand existing queries faster, and QueRIE [1] that aims at assisting non-expert users of scientific

databases by tracking their querying behavior and generating personalized query recommen-

dations. However, this thesis is not focused on understanding SQL but rather on developing an

alternative approach that enables SQL to be visually formulated, so we won’t focus on this kind

of system.

19

C H A P T E R 3 . R E L AT E D W O R K

Table 3.1: Classification of visual query interfaces

Type Representation of the reality of inter-
est

Query representation

Diagram-
based

This representation offers the user a
diagrammatic representation of the
data model, made with typical graphi-
cal representation for its elements. An
example of this type of representation
is the entity/relationship metamodel,
in which usually entities are presented
with rectangles, relationships with di-
amonds and attributes with ovals.

In diagram-based representations the
query is expressed through a dia-
grammatic representation of the data
model.

Icon-
based

In this type of representation the user
doesn’t have the complete data model
available and only has iconic represen-
tations of some elements. This type
of representation is mainly directed
to users who don’t have knowledge of
data models and it’s concepts. The
icons aim to be metaphorical repre-
sentations of concepts in a way that
they are more intuitive to the users.
The main challenge in this approach is
to find a way to represent the concepts
without being ambiguous to different
users with different contexts.

There are two different approaches to
how icon based-based representation
addresses the expression of a query: 1
- the system offers icons to represent
the elements that are part of the query,
and for building it the user can drag
and drop icons to the canvas; 2 - the
icons represent both the entities and
the available functions of the system.

Form-
based

Typical web pages forms work as a rep-
resentation of the database. Those
forms consist of grids with rectangu-
lar components. Forms usually allow
the nesting of components.

Form-based facilitates the process of
expressing a query because it allows
users to select from available options
in different components in the form.
The disadvantage is that not always
the available logic in the form meets
the user’s logic.

Faceted The data is modeled as classifications
that organize a set of items into multi-
ple and independent categories. Each
classification is called a facet and a col-
lection of these is known as faceted
metadata. Category labels within a
facet are called facet values.

Queries are specified by the user by
clicking on the appropriate links. In
these systems, data and metadata co-
exist on the same page.

20

3 . 1 . V I S UA L Q U E RY S Y S T E M S

3.1.2.1 Form-based

In the late 1970s, the first generation of VQSs was marked by the introduction of Query-By-

Example (QBE), the first form-based system. Its simple tabular query mechanism proved that

database querying was no longer restricted to expert users. The main contribution of this

system was that it allowed removing from the user the tasks of inputting or remembering at-

tributes names. Selecting which attributes to include in the result could be done by simple

check-marking through a form [23]. Many variations have originated from QBE, but it is core

ideas have persisted.

As said by Alan Dix [13], querying a database is often a cyclic process. OVI-2 [23] is a form-

based query interface that is based on this affirmation and that started being officially used at

Aalto University’s Otaniemi campus in 2008. It aimed to adequately express complex queries

while being user-friendly, by following a two-phased approach for querying: a first phase focus-

ing on retrieving all tuples and attributes that may be of interest; a second phase allowing the

user to narrow down the set of tuples and select only the attributes that are actually needed. This

two-phased mechanism for querying visualization is the main characteristic that distinguishes

OVI-2 from many other VQSs.

Technically speaking, OVI-2 makes a distinction between a primary form, which visualizes

a primary concept, and a target form, which is an auxiliary form to visualize the target concept

that is related to the active primary concept. The primary concept is the main subject or prin-

cipal actor of the query, since it determines the primary key of the tuples that are going to be

Figure 3.1: OVI-2 visual interface for Query 1 built with the set memberships displayed in the
COURSES-form [23]

21

C H A P T E R 3 . R E L AT E D W O R K

returned through the query. The target concept acts as the object or target of the query, as it

determines the foreign key through which additional tuples from other entities of interest can

be associated with the primary concept’s primary key. With those two types of forms, users are

able to express complex queries using set membership operators. These membership opera-

tors are all associated with the same single relationship that prevails between the primary and

target concepts. This relationship is a many-to-many relationship so that complex queries are

possible.

Set membership testing refers to testing whether a given attribute’s value occurs in a given

set of values. This mechanism of OVI-2 is particularly interesting for this thesis, given that its

behavior is related to the SQL IN operator. The general structure for defining a query with set

memberships is the following:

Member of PrimaryConcept FOR WHOM {MembershipOp OF B}

IS IN Ax FOR TargetConcept

[WITH TargetRestriction]

Where:

MembershipOp is by default the Some operator but may be any of the following operators:

Some, None, All, NotAll or Only;

B is the user-defined target set of one or more items from a target concept;

x is the subject that is being queried, and is an instance of the primary concept;

Ax is the set with the items that are key values for the subject x that is being queried;

TargetRestriction is a set of optional restrictions that can be applied further and that narrow

down the target concept (usually are boolean conditions applied over the attributes of the target

concept).

To better understand how set membership works, let’s look at the following query example

presented in the article [23]:

Query 1 The Introductory Course Requirement for Computer Science (CS) is fulfilled by taking any

single course of the three courses in the set C1 = {CS-101; CS-102; CS-103} plus all of the three courses

in the set C2 = {CS-105; CS-107; CS-109} and any single course from the two courses in the third set C3 =

{CS-211; CS-213}. Find those CS students who have fulfilled their Introductory Course Requirement.

22

3 . 1 . V I S UA L Q U E RY S Y S T E M S

This query can be represented with the general notation used previously as:

Studentx FOR WHOM Some OF {CS-101; CS-102; CS-103}

AND All OF {CS-105; CS-107; CS-109}

AND Some OF {CS-211; CS-213}

IS IN Ax FOR Courses

Using the OVI-2 visual interface presented in Figure 3.1 we can see the window for Query

1 built with the three set memberships operations presented on the rectangular boxes on the

right, each associated to the respective course ids.

This paper shows that form-based VQSs can adequately express complex queries, and in

particular shows that complex queries involving universal quantification or negation can be

substantially improved in terms of user-friendliness through the use of simple set membership

operators like Some, None, All and Only.

3.1.2.2 Diagram-based Vs SQL

Around 1990, T. Catarci and G. Santucci [7] described an experiment aiming at estimating the

advantages/disadvantages of a visual approach to database querying against a traditional one.

In order to do this, they compared Query-By-Diagram (QBD*) [2], a visual query system based

on a diagrammatic representation of the Entity-Relationship schema describing the underlying

(relational) database balancing a high expressive power with a noticeable facility of use, against

the well-known SQL language.

To compare both systems, the task that users performed was query writing and a teaching

period for both technologies proceeded the evaluation. The purpose of the evaluation was to

understand which one is the easiest to use by different user classes (in other words, compare

the usability of the two systems). The method used was observational evaluation, involving real

users that were observed when interacting with the systems.102 were involved in the experiment

and were divided into three groups: 56 naive users (persons having little or no knowledge about

computer science), 30 intermediate users (persons having general knowledge about computer

science but naive about databases) and 16 expert users (persons having a precise knowledge

about databases). Each system was tested with the same number of persons from which group.

The users answered queries of increasing complexity and for each group they measured the

number of errors plus the time spent in formulating the query.

Regarding the Overall average of correctly completed queries, there was a significant differ-

ence in accuracy between the results of SQL and QBD* for naive and intermediate users in favor

of the later system, but not for expert users. Concerning the Overall average completion time,

there wasn’t a significant difference between the results of SQL and QBD* for naive users. There

was however a significant difference between the results for intermediate and expert users, in

favor of QBD*.

In summary, they concluded that that QBD* had the following advantages over SQL: it

offers a complete view of the database at a higher abstraction level; the syntax is much more

23

C H A P T E R 3 . R E L AT E D W O R K

simple (the user doesn’t need to remember tables or attributes names, just needs to choose

them navigating on the schema); the time needed to directly manipulate objects on the screen

is less than the time needed for writing SQL statements; the error rate is reduced (in particular

for simple queries); the users find QBD* more attractive, so they are not bored by working with

it.

The results of the experiment confirmed the belief presented by Catarci et al. [6] that a visual

approach is particularly suited for medium and naive users, and for certain types of queries.

3.1.3 Spreadsheet Concepts in Visual Querying

In 2016, Bakke et al. considered that, in order to be a successful alternative to the traditional

approach of SQL, any VQS has to have the following three characteristics:

1. Query specification through direct manipulation of results;

2. The ability to view and modify any part of the current query without departing from the

direct manipulation interface;

3. SQL-like expressiveness.

They decided to prove the hypotheses that database querying is hard, but can be made

significantly easier using a direct manipulation interface. So they developed a prototype called

SIEUFERD [3], a VQS aimed at meeting all these three requirements in a single design. In order

Figure 3.2: SIEUFERD visual query interface [3]. In this example is presented a query that
instantiates six database tables, contains five joins and is evaluated using five generated SQL
queries.

24

3 . 2 . V I S UA L Q U E RY B U I L D E R S T O D AY

to reach it, they used spreadsheet idioms (like formulas and filters) and allowed direct manipula-

tion of nested relational results. This way, the users could express a relationally complete set of

query operators, including calculation, aggregation, outer joins, sorting, and nesting operations,

while always being able to see the current status of the query and modify it with appropriate

actions.

In Figure 3.2 is presented the core query building interface of SIEUFERD. The user interac-

tion starts in the Result Area, where the currently open query and its nested relational result

is presented in the format of a nested table layout. By selecting any field (column), a Context

menu is open with many query-related actions that can change the query state. Whenever

the query state is modified, the displayed flat results, fields and icons are updated. In the

Result header, the user has access to a set of icons that can be used to augment the informa-

tion that can be derived from the names and positions of fields. The Filter icon indicates the

presence of a filter on that field, which can be manipulated by opening the filter popup from

the context menu. The Formula icon indicates that it is a calculated field with an associated

spreadsheet-style formula. The actual formula can be edited using the Formula bar or directly

in any non-header cell belonging to the field’s column. The Field selector, which can be ac-

cessed through the Context menu, also serves to suggest new joins over known foreign key

relationships, modeled as pre-existing hidden fields, and to display exact join conditions. Fi-

nally, another interesting feature of this visual interface is the possibility to hide non-relevant

fields (columns), making it easier for the users to get a sense of the data.

In short, we can identify the following key features in the system: visual stability, decou-

pled query and result updates, interruptible queries, automatic query limiting, high-level error

handling and undo/redo operations.

Although the authors conclude the article saying that in the current query interface some

queries are expressible yet awkward to construct, they also affirm that it achieves SQL-like

expressiveness, without sacrificing expressiveness or hiding the actual query from the user like

many other VQSs. Spreadsheet concepts are very interesting and promising, as they make it

possible to integrate the query and its result into a single interactive visualization.

3.2 Visual Query Builders Today

In the Gartner Magic Quadrant published in August of 2021 (see Annex II for more details),

it is possible to see that SalesForce, OutSystems and Mendix could be considered leaders in

Enterprise Low-Code Application Platforms.

As presented in this thesis, since 2013 that OutSystems offers a visual alternative for query-

ing called Aggregates, covered in Section 2.2.3. Its design is based on spreadsheet concepts that

are also used in popular software like Microsoft Excel, and also with similarities to the system

presented in Section 3.1.3.

Regarding SalesForce 1, they launched a Beta version of their first visual query builder in

1SalesForce https://www.salesforce.com/eu/?ir=1, 2021

25

https://www.salesforce.com/eu/?ir=1

C H A P T E R 3 . R E L AT E D W O R K

Figure 3.3: SOQL Query Builder interface [43]

November of 2020 called SOQL Query Builder [43]. It is a Visual Studio Code extension that

enables users to interactively build a SOQL query via a form-based visual editor (Figure 3.3),

view the query while it is built and save the output to a .csv or .json file. At the moment it allows

to build simple queries that include: FROM clause for only one Object type; SELECT clause

to pick fields from the selected Object; WHERE clause to filter your data; ORDER BY clause

with support for ASC, DESC, NULLS FIRST, and NULLS LAST; LIMIT clause. For the context of

this thesis is relevant to point out that regarding the WHERE clause this builder only supports

simple expressions, combining conditions using AND or OR, but not both [44].

Concerning Mendix 2, it supports several query languages being the main one XPath [24],

which is an easy-to-use query language that enables users to select data from Mendix objects

and their attributes or associations. It can be used to get objects that the user wants to display or

edit in pages, as well as to modify these objects through microflows. XPath allows to add query

aggregate functions and to filter results by adding constraint functions to any Xpath query.

All these three largely used low-code platforms try to offer to their users alternatives to

the traditional textual query languages like SQL, proving that there has been a progressive

commercial effort towards making querying databases accessible to all types of users.

Regarding tools that aim at helping formulating SQL, Chartio 3 and Devart dbForge 4 are

some of the most popular platforms in that area. Focusing on query filtering, these kinds of sys-

tems make the process easier by offering graphical interfaces. Regarding Chartio, they released

2Mendix https://www.mendix.com/, 2021
3Chartio https://chartio.com/, 2021
4Devart dbForge https://www.devart.com/dbforge/, 2021

26

https://www.mendix.com/
https://chartio.com/
https://www.devart.com/dbforge/

3 . 3 . S U M M A RY

a new interface last year called Visual SQL [9] based on browsing through tables, intelligent and

adjustable grouping and aggregation, direct writes to SQL that can be edited and results table in

spreadsheet style. In Chartio Visual SQL, the user selects a column to apply the filter and then a

dropdown list with possible filter operators for that column data type appears. It is also possible

to create a chain of AND-OR filter conditions. Chartio Visual SQL supports the "is one of"and

"is not one of"filter operators that simulate the SQL IN and NOT IN operators respectively [8].

Devart dbForge offers a tool called Query Builder [12] that helps users to design queries visually.

It includes a pane that displays the query in a diagram format and a pane that displays the

SQL text of the query. Starting formulating a query can be done by drag-and-drop tables from

the Database Explorer to the diagram pane and joins are created automatically. In the tabbed

editor, the user can select one of the following tabs to edit: Selection, Joins, Where, Group By,

Having and Order By. Selecting the Where tab, the user can choose to add a new condition and

an empty triple appears with the default format "<enter a value> = <enter a value>". Clicking on

the first "<enter a value>", a form with two lists appears and the user can select the attribute that

he wants to filter. Then selecting the "=", a list with the possible operators appears. The IN and

NOT IN operators are available. Finally, the user can click on the second "<enter a value>"and

write a value for the match.

However, none of these solutions is what we are trying to do in this thesis, as their context

is restricted to analyzing data or helping to formulate SQL. This also applies to several other

interfaces in the data analytic domain, like Tableau 5, Microsoft Power BI 6, etc. The purpose of

this thesis is to implement a way of passing a list of values that comes from a program to a VQS

to filter by its values, which is a more complex context.

3.3 Summary

In this chapter different types of VQSs were presented and analyzed in order to understand

how they have evolved through time. It is clear that visual querying is getting more and more

popular, as the amount of data made available with the Web keeps growing. Consequentially,

there is an increasing interest in inexperienced users being able to use systems that require data

consultation, from academic administration environments (Section 3.1.2.1) to more complex

environments of application development (Section 3.2).

Although there are already several tools that use visual approaches to visualize and filter

data, visual query interfaces with the same level of expressiveness as SQL in the context of low-

code application development do not yet exist. This made the research process to elaborate the

Related Work difficult, as there are no direct competitors to compare with what is proposed in

this thesis. However, the approaches used by those systems for filtering are relevant in the study

of design options for the new interface to be developed.

5Tableau https://www.tableau.com/, July, 2021
6Microsoft Power BI https://powerbi.microsoft.com/en-us/, July, 2021

27

https://www.tableau.com/
https://powerbi.microsoft.com/en-us/

4

R E Q U I R E M E N T S A N D M E T H O D O L O G Y

Although OutSystems has been making efforts to improve the usability of the Aggregates, the

expressiveness limitations that it presents still remain one of the main reasons why many users

still prefer to use their SQL tool. This chapter focuses on exploring and analyzing the expres-

siveness limitations existent at the current state of the Aggregates, in order to understand the

current problems, propose solutions and define the work process.

4.1 Problem Exploration

In order to understand and start analyzing the problem intended to be solved, it was necessary

to start by following the OutSystems “Becoming a Reactive Web Developer” tutorials and do

some self-exploration of the interface in order to get familiar with it.

The next step was to try, as a beginner user, to create an app that would allow to see a

list of products, sort them, see their details and, the most important part, filter them. Each

product should be composed by a name, category and price. No problems were found using an

Aggregate to retrieve and filter the products by one category. However, when trying to filter by

two or more categories, difficulties started to appear, as the Aggregates don’t provide the IN and

NOT IN functionalities that would make this implementation simple.

4.1.1 Current Alternative Solutions Analysis

After initial research regarding how OutSystems users currently overcome the absence of the

IN and NOT IN operators in the Aggregates, we found out that in the OutSystems Community

the "IN clause in Aggregates"is the most trending and liked idea in the Aggregates & Queries

category, with 333 likes, 5936 views and 63 followers. Looking at the date of creation of this

discussion, we could conclude that the addition of this operator in the Aggregates has been

asked by OutSystems users since, at least, 2015.

Following a deeper investigation, three alternative solutions were discovered and analyzed

in order to achieve the filtering of a list of entities by two or more in-memory values in the initial

state of the platform. The first two solutions only use Aggregates and the third one uses the

OutSystems SQL tool:

28

4 . 1 . P R O B L E M E X P L O R AT I O N

Use the Index function: This first solution was the one for which we found the most men-

tions (besides using SQL) and consists in using a Built-in Function called Index(), which is the

equivalent to the C# String.Contains function. The Index() function can be used inside the fil-

ters of an Aggregate and, together with a Text variable that the user can build as a concatenation

of Text values that he wants to use to filter (for example: a coma separated Text variable of IDs),

it can achieve a similar behavior to the one from the IN SQL operator. The main difference is

that this function only works with values of type Text. So what this function basically does is

look for the first Text parameter in the second Text parameter. If it’s found, the function returns

the position where it was found. Otherwise, it just returns -1, meaning that it was not found. So,

for example, if we add a filter condition with something like "Index(Report.Id, SelectedIds) >=

0"it would return true if Id is contained inside SelectedIds and, in that way, that Report would

be returned by the Aggregate.

However, besides not being a clean solution, it also becomes very inefficient if there are

many values in the second parameter. Another potential problem can occur if there are values in

the second parameter that share some part with other values. To prevent that it is very important

that the values are delimited by some special char (e.g., #).

Filter after fetching data: Another possible solution found that doesn’t require SQL knowl-

edge was to filter the records after fetching all of them (see Figure 4.1). In other words, it means

applying the filtering process after using the Aggregate for the retrieval of all the products. The

problem with this solution is that, despite requiring even more logic components than the first

solution, it also requires the retrieval of all the data and only then the filtering is applied, which

results in an efficiency problem too.

Use the SQL tool: This solution has the advantage of being more intuitive for those users

that already know SQL and, in particular, know the IN operator. However, it requires SQL syntax

knowledge (See Figure 4.2). In this solution, the user also has to be aware of security problems

like SQL injection. To help prevent SQL injection vulnerabilities, the user should use the server

action BuildSafe_InClauseTextList when creating the concatenated variable with the values for

filtering [34].

4.1.2 IN Operator Usage in the OutSystems Platform

According to statistics made in 2020 by P.S.Rodrigues [41], 15.08% of the SQL queries used in

OutSystems applications that involved operations not supported by Aggregates used the IN

operator (Annex I). However, in those statistics the percentage shown for the IN operator in-

cluded its usage together with subqueries, which is not relevant for the context of this thesis and,

consequentially, should not be counted. Additionally, that percentage didn’t include the other

alternatives besides using SQL (presented in Section 4.1.1) to simulate the same behavior as the

IN operator. For those reasons, it was necessary to research further. In order to assess if the IN

functionality is often required in the development of OutSystems applications, we divided our

research into three parts: "IN operator in SQL Queries", "IN operator behavior simulated using

the Index() function"and "In operator behavior simulated through post-processing logic".

29

C H A P T E R 4 . R E Q U I R E M E N T S A N D M E T H O D O L O G Y

Figure 4.1: Example of a post-process of records

• IN operator in SQL queries: Regarding the usage of the IN operator in SQL queries with-

out being associated with subqueries, the OutSystems AI team determined that 8.42% of

all the Select statements that cannot be represented by Aggregates use the IN operator

without subqueries.

• IN operator behavior simulated using the Index() function: In order to elaborate new

statistics, we used a program called QueryGrabber. This program allows OutSystems

internal developers to navigate through all the application flows and analyze their com-

ponents. After some research and conducting interviews with OutSystems Community

users, it was concluded that the main alternative for performing filtering of persistent

data with a local list of values without using SQL was using the built-in function called

Index(). This way, a new extension was added to this program with the intention of quan-

tifying how many Aggregates contain the Index() function in their filters. We used the

Microsoft PowerBI tool to answer the following question: What is the percentage of (dis-

tinct) customers that have used one or more Aggregates that have the Index function in

its Filters?

As can be observed in Figure 4.3, 47.7% of the customers analyzed have used one or more

Aggregate that uses the Index() function. In total, 8948 modules and 1106 customers

were analyzed.

• In operator behavior simulated through post-processing logic: It is also important to

30

4 . 1 . P R O B L E M E X P L O R AT I O N

Figure 4.2: SQL editor with a query using the IN operator

Figure 4.3: Count of Costumers by number of Aggregates with Index

point out that there are other alternatives that should also be accounted for. For example:

The users can use the Aggregate to get all the products and then add the intended ones to

a new list; The users can make a call to the database for each category intended and add all

the results to a new list, etc. Given that this logic is developed outside the Aggregate and,

because of that, can be performed in different places and with more or less complexity, it

was not possible to quantify the usage of these types of solutions using the QueryGrabber.

Given the verified frequency of this use case and taking into account how difficult to imple-

ment the workarounds that are currently being used by several users are, we concluded that

this is a very relevant language design challenge that must be addressed.

31

C H A P T E R 4 . R E Q U I R E M E N T S A N D M E T H O D O L O G Y

4.2 Alternative Approaches

After analyzing how the OutSystems users currently overcome the problem previously pre-

sented, we devised the following four possible solutions:

1. Add the IN operator in the Aggregate filters expression editor;

2. Allow adding Lists as Sources of an Aggregate and allow using joins to match them with

database entities (tables);

3. Create a new list system action that would make post-processing simpler;

4. Add the IN operator in the expression editor of the condition property of the already

existent ListFilter list system action.

The first solution was proposed because it seemed to be the more intuitive one for users

that have SQL knowledge. It also seemed to be less disruptive for those who don’t need this

functionality. The second solution was considered knowing that it could be a less intuitive

solution, as those who don’t know what a Join is probably wouldn’t understand how to get there.

However, it had the potentiality of also solving other use cases of mashup in-memory data with

persistent data. The third and fourth solutions were considered less efficient than the previous

two, but could cover use cases involving filtering between two in-memory lists.

4.3 Methodology

The methodology that we present in this section was applied 3 times, in the following 3 different

sets of user studies:

1. Platform Current State (Section 5.1);

2. Low-fidelity Prototype (Section 6.1);

3. Service Studio Prototype (Section 6.3).

The work described in this document followed the methodology presented in Figure 4.4,

which is an iterative design strategy (see Section 2.1.1 for more details), always maintaining a

user-centered design approach. The first phase covered the Relevance Cycle, which bridges the

contextual environment of the research project with the design science activities, with the main

purpose of understanding the problem and defining how to solve it. The second phase of this

thesis focused on the Design Cycle, which consists in iterating between the core activities of

building and evaluating the design artifacts and processes of the research, and the Rigor Cycle

that connects the design science activities with the knowledge base of scientific foundations,

experience, and expertise that informs the research project [17].

We planned the work process to be made in 4 phases, as illustrated in Figure 4.5. The first

phase was regarding the Platform Current State. This phase was very important because it

32

4 . 3 . M E T H O D O L O G Y

Figure 4.4: Design Science Research Overview [17]

Platform Current
State

Alternative
Approaches

Analysis

Iterative Design,
Implementation
and Evaluation

Results
Comparison

Figure 4.5: Summarized Workflow Diagram

allowed us to have real contact with the problem and also to evaluate the improvements of the

new solution compared to its previous state at the end. In the following phase, Proposed Solu-

tions Analysis, we proceeded to design and explore possible solutions. The third phase, Design

and Implementation, started with the implementation of a paper prototype, interactively im-

proved, in order to evaluate the chosen solution from the ones identified in the previous phase.

This phase ended with the implementation of a high-fidelity prototype in the Service Studio,

using C#, Typescript and React. The work process ended with the Results Comparison phase,

where we analyzed the results and improvements achieved.

33

C H A P T E R 4 . R E Q U I R E M E N T S A N D M E T H O D O L O G Y

Table 4.1: User Groups

Non-Developers
Users without programming and databases knowledge. They might
have experience with other applications such as Microsoft Excel,
Google Sheets or other similar software.

Software
Developers

Users with traditional programming languages and databases
knowledge. These users have a software engineer background and
are familiarized with languages such as Java, C# and SQL. Although
they are experts regarding software development, they have little or
no experience using low-code platforms.

OutSystems
Developers

Users that, independently of their background, have medium or high
experience level using the OutSystems Platform. They may have
other traditional programming languages knowledge and know SQL.

4.3.1 User Groups

This work followed a user-centered design approach, which means that the users played a very

important role in the whole design and implementation process. Once we are in the context of

software that not only aims at helping experienced users with technical backgrounds but also

users with little or no technical knowledge, it was crucial to include in our evaluations a wide

diversity of users regarding their technical skills levels. We defined 3 groups, described in Table

4.1, which were tested equally throughout the entire evaluation process as characterization of

the target users of the system evaluated.

In order to assess each user’s skills with more detail and determine in which group the user

should be included, a Google Form was created and sent to each user to fill at the end of each

test. For each user, in each prototype, we collected the following main information:

• Frequency of use of the OutSystems platform;

• Number of OutSystems certifications;

• Level of experience with OutSystems;

• Level of programming languages knowledge;

• Level of SQL knowledge;

• Experience with Microsoft Excel, Google Sheets or other similar software.

How many users were tested from each user group for each of the evaluated main solutions

is presented in Table 4.2. To perform the usability tests, we followed the methodology proposed

by S.Krug [20]. We never repeated users to avoid bias of the results. For each of those solutions,

we used 5 users representative of each group to test, using Nielsen’s heuristics as justified in

Section 2.1.4.1. The tests took into account how much time the user required to execute the

proposed task and their effectiveness in the goal achievement (Achieved or Not Achieved). Re-

garding a more qualitative evaluation of each solution, the user opinion and suggestions in

34

4 . 3 . M E T H O D O L O G Y

Figure 4.6: Test Scenario: 1 - Table Component; 2 - Input Component; 3 - DropdownTags
Component.

each phase were also collected in order to help evaluate the user satisfaction and what should

be changed in the next iterations.

4.3.2 Testing Scenario

In Figure 4.6 we can observe the starting screen of the scenario proposed to perform the user

tests in this thesis, which was adapted in 4 different evaluation phases. In the center of this

screen, the users would start by seeing the following 3 components:

1. (Implemented) - A Table showing a list of products. For each product its Name, Category

and Price are presented;

2. (Implemented) - A Input working for filtering the products in the Table by Name;

Table 4.2: Number of tests by user group for each main evaluation phase

Users Group Current
Implementation

Low-fidelity
Prototype

Service Studio
Prototype

Total

Non-
Developers

5 5 5 15

Software
Developers

5 5 5 15

OutSystems
Developers

5 5 5 15

Total 15 15 15 45

35

C H A P T E R 4 . R E Q U I R E M E N T S A N D M E T H O D O L O G Y

3. (Incomplete) - A DropdownTags already with the options of the Categories available for

the user to select. However, at the initial state if the user selects a category nothing hap-

pens besides adding the tag in the component itself.

On the right side of the scenario, we can see the Interface tree menu, presented in more

detail in Figure 4.7. In this menu, the user could see that the test scenario was composed of only

one page, the "Homepage". That page included:

1. A variable, "NameSearch", that is used together with the input component to filter the

products by the name present in it;

2. An Aggregate, "GetDistinctCategories", that is used to fill the options of the Dropdown-

Tags component with the distinct existing categories;

3. Another Aggregate, "GetProducts", that retrieves the products that are presented in the

table component;

4. A Client Action, "DropdownTagsOnChange", which is associated to the DropdownTags

component and it’s called every time there is a change on it. For example, if the user se-

lects a category then there is a change in the component and the Client Action is activated.

Initially this Client Action is presented to the user with an empty logic flow. By default,

when adding a new DropdownTags component to a screen, it automatically creates a

handler for it with an input parameter. That input parameter is created with the data type

"DropdownItem List", which structure is composed by two attributes, "Value"and "Text".

5. Another Client Action, "InputSearchNameOnChange", which is called when there is a

change in the Input component and already included the logic necessary to filter the

Table products according to it.

The task that was asked for the users to perform in every test was:

Given the current list of products and the current DropdownTags with all the existing

categories in the right upper corner of the screen, complete the necessary logic to make the

DropdownTags work for filtering the products by the category or categories selected on it.

With this task, we had the main goal of evaluating if different types of users could achieve

the filtering of the Products, which are persistent data accessed through the Aggregates, by two

or more categories dynamically selected by the user through the DropdownTags component,

which are in-memory data. We decided to include the Input component in the Test Scenario as

a working example of a similar, but simpler, filtering of persistent data by in-memory data.

While achieving filtering of the products by only one category could be easily done in this

testing scenario, for it could be made by adding a new filter condition and using the existing

"="operator in the GetProducts Aggregate, when we had more than one category selected in

the DropdownTags to filter that operator does not work anymore. The equivalence operator

36

4 . 3 . M E T H O D O L O G Y

Figure 4.7: Test Scenario Interface Tree: 1 - Variable “NameSearch”; 2 - Aggregate “GetDis-
tinctCategories”; 3 - Aggregate “GetProducts”; 4 - Client Action “DropdownTagsOnChange”; 5 -
Client Action “InputSearchNameOnChange”.

only works for comparing a single value on the left with another single value on the right. That’s

where the IN operator comes very handy, as its purpose is to see if a single value is equal to any

value in a set of values. In Figure 4.8 it’s illustrated an example of the expected final behavior

to successfully complete the task, where the user initially has no filters and then selects the

"Drones"and "Laptops"categories in the DropdownTags component and the table is refreshed,

showing only the products which are from one of those categories.

4.3.3 Workflow

In Figure 4.9 the whole process described in this section is presented in more detail. The reason

why there are two colors, blue and purple, is because the first one represents the main path

followed in this dissertation, while the purple path was a parallel exploration that emerged from

the main path.

37

C H A P T E R 4 . R E Q U I R E M E N T S A N D M E T H O D O L O G Y

(a) List of products before filtering by any category

(b) List of products after filtering by the "Drones"and "Laptops"categories

Figure 4.8: Testing Scenario expected behavior

38

4 . 3 . M E T H O D O L O G Y

Iterative Design, Implementation and Evaluation

IN Right Parameter Selection Exploration

Design of Solutions

User Interviews (15 users)

Results Analysis

Choice of Best Solution

ListSelect Function Prototype

Design

Implementation

Evaluation (6 users)

Low-fidelity Prototype

Implementation

Evaluation (15 users)

Design

Service Studio Prototype

Implementation of High Fidelity Prototype

Evaluation (15 users)

Results Comparison

Main Path Secondary Path

Initial Platform Evaluation

Alternative Approaches Analysis

Design and Exploration of Alternative Approaches
 - IN operator in Aggregate Filters

 - New System Action: List Contains
 - Editing ListFilter System Action

Choice of Best Proposed Solution

Platform Current State

 Evaluation (15 users)

Elaboration of Testing Scenario in
the Platform

Figure 4.9: Detailed Workflow Diagram

39

5

I N I T I A L P L A T F O R M E V A L U A T I O N

Since we intend to improve the expressiveness of the OutSystems platform, we need to start by

evaluating the current state of the platform. That evaluation is covered in this chapter, allow-

ing us to understand what needs to be improved and also to be able to measure the progress

achieved at the end.

5.1 Platform Current State

In Section 4.1.2, we were able to analyze the frequency of use of the IN functionality in the

OutSystems Platform and conclude that it is, indeed, a relevant problem. However, it is not only

the frequency of use of a functionality that matters in order to ensure that it has good usability.

It is equally important to access how hard it is to use.

In order to evaluate how difficult it is, at the current state of the OutSystems platform, to filter

persistent data by in-memory data, 15 usability tests were performed, following the methodol-

ogy presented in Section 4.3.

5.1.1 Solution Examples

In this subsection, we present, in detail, the main possible solutions for the testing scenario in

the current state of the platform. Although there are many possible minor variances in either of

them, the examples presented cover the most common and suggested paths in the OutSystems

Community to solve this kind of problem.

5.1.1.1 Using SQL

In this solution, the user needs to add a new Text variable (CategoryListCSV) and a new Data

Action (DataAction1) in the Homepage screen. In the DropdownTagsOnChange Client Action

(see Figure 5.1), the user needs to concatenate, according to SQL syntax, the selected categories

from the DropdownTags CurrentList, assign them to the new text variable and, finally, refresh

the newly created Server Action (DataAction1), which will retrieve the filtered products to be

displayed in the Table. For that, the user needs to add a SQL node in it and open its expression

editor to write the query using the IN operator (see Figure 5.2). Having the query correctly

40

5 . 1 . P L AT F O R M C U R R E N T S TAT E

Figure 5.1: DropdownTagsOnChange logic flow: assigning the selected categories to Categories-
ListCSV

written, the user will only need to assign to the original list of Products, which is associated with

the Table, the new list that contains only the filtered products returned by the SQL query.

5.1.1.2 Making post treatment of the list with all products

In this solution, the user needs to create a new Text List Variable (CategoriesToFilter) and move

the GetProducts Aggregate into a new Data Action (GetProducts)in the Homepage. Starting by

the DropdownTagsOnChange Client Action (see Figure 5.3), the user needs to add the selected

categories from the Dropdowntags CurrentList to the new Text List Variable. For that, he can

use the ListAppendAll list system action and then refresh the new Data Action. When the Data

Action is refreshed, the flow starts by calling the Aggregate that retrieves all the products (see

Figure 5.4). Next, using 2 ForEach components, one for iterating the list with all the products

and another to iterate the list variable with all the selected categories, the user is able to check

if the category of the current product being iterated (from the list with all products) is equal to

the currently selected category being iterated (from the CategoriesToFilter variable). If they are

equal, the product is added to a new list. This comparison is repeated for every product. In

the end, the user can assign the new list, that only contains the filtered products, to the list of

products associated as the Source of the table.

41

C H A P T E R 5 . I N I T I A L P L AT F O R M E VA L UAT I O N

Figure 5.2: DataAction1 logic flow: using the SQL IN operator

5.1.1.3 Using the Index() function

In this solution, the user needs to create a new Text Variable (CategoriesFilter), which will con-

tain the selected categories from the DropdownTags CurrentList, separated by a coma. This can

be done in the DropdownTagsOnChange Client Action (See Figure 5.5), by adding the following

expression in the Assign component associated with the ForEach component that iterates the

CurrentList with the selected categories:

If(CategoriesFilter = "", "’"+ CurrentList.Current.Value + "’", CategoriesFilter + ",’"+

CurrentList.Current.Value + "’")

Next, the user should add a new filtering condition in the already existing GetProducts Ag-

gregate. In that condition, the user can make use of the Index() function, which allows checking

if a Text value is contained in another Text value. This way, it is possible to see if the category of

each product, which is of type Text, is contained in the concatenated Text Variable of selected

categories, CategoriesFilter. If so, the function returns the index where the category was found

(which means that the value is greater than -1) and returns that product. Finally, the user only

needs to add a refresh of the GetProducts Aggregate in the DropdownTagsOnChange.

42

5 . 1 . P L AT F O R M C U R R E N T S TAT E

Figure 5.3: DropdownTagsOnChange logic flow: Appending the selected categories to Cate-
goriesToFilter

43

C H A P T E R 5 . I N I T I A L P L AT F O R M E VA L UAT I O N

Figure 5.4: GetProducts Data Action logic flow: filtering the products by the selected categories
in CategoriesToFilter

44

5 . 1 . P L AT F O R M C U R R E N T S TAT E

Figure 5.5: DropdownTagsOnChange logic flow: creating the coma separated text variable with
the selected categories and refreshing the Aggregate with the new filter condition

45

C H A P T E R 5 . I N I T I A L P L AT F O R M E VA L UAT I O N

5.1.2 Evaluation

For this evaluation, we tested 5 users from each group presented in Section 4.3.1: Non-Developers,

Software Developers and OutSystems Developers.

Regarding the 5 OutSystems Developers, 3 of them had OutSystems certifications. All of

them had experience with other programming languages (such as Java, C#) and affirmed to be

Medium to High experienced users in OutSystems. Regarding their SQL knowledge, 3 of them

considered having a high experience while the other 2 said that they had little experience or

haven’t worked with it in a long time.

Concerning the 5 Software Developers, all of them had previous experience with the Out-

Systems platform but none of them had OutSystems certifications. All of them also had a lot of

knowledge about other programming languages (such as Java, Kotlin and C#). As for their SQL

knowledge, only 1 of them declared to have a lot of experience while the other 4 answered that

they had little experience or haven’t worked with it in a long time.

The 5 Non-Developers had no experience at all with OutSystems and only 1 of them men-

tioned having some very basic experience with programming languages (such as Pascal and

Visual Basic). Despite of that, all of them had experience with software tools like Microsoft Excel

and Google Sheets (see full answers in Appendix A.1).

We implemented the testing scenario presented in Section 4.3.2 using version 11 of the Ser-

vice Studio. The task that was asked for the users to complete was the same that is presented in

that Section:

Given the current list of products and the current DropdownTags with all the existing

categories in the right upper corner of the screen, complete the necessary logic to make the

DropdownTags work for filtering the products by the category or categories selected on it.

For the Non-Developers and Software Developers, a small introduction to the platform

preceded every test, in order to give them an idea of the IDE organization and basic concepts.

All tests were done remotely and by giving the user remote control, in order to simulate, as close

as possible, the same circumstances for every user test. For each user test, we collected the

following information, which can be seen in detail in Appendix B:

1. Previous experience with Aggregates;

2. Familiarity with this type of problem;

3. Starting looking place to solve the task;

4. Resource to Google;

5. Difficulty using SQL;

6. Mention of the SQL IN operator;

7. Knowledge of the Index() built-in function;

46

5 . 1 . P L AT F O R M C U R R E N T S TAT E

Non Developers

Software
Developers

OutSystems
Developers

0% 25% 50% 75% 100%

Achieved Not Achieved

Figure 5.6: Success rate of the Current State phase tests by each group of users

8. Difficulty understanding the DropdowTags component;

9. Difficulty using the ForEach component;

10. Knowledge of system actions;

11. Difficulty choosing appropriate system actions;

12. Intended final solution;

13. Result regarding task completion;

14. Test duration.

The results regarding the success rate of this phase tests are presented in Figure 5.6. As

was initially expected, none of the Non-Developers was able to complete the task. The users

from this group started to get frustrated very early and, on average, only took 26 minutes and

52 seconds to give up. However, these tests were interesting in the sense that they gave us an

idea of where someone that doesn’t have any programming knowledge finds it more intuitive

to start looking to solve this problem:

• 3/5 Non Developers started looking in the DropdownTagsOnChange Client Action;

• 2/5 Non Developers started looking in the GetCategories Aggregate.

Regarding the Software Developers group, none was also able to successfully complete the

task. The most interesting observation taken from these tests was that all the Software Develop-

ers started by trying to solve the problem in the Filters Tab of one of the Aggregates.

47

C H A P T E R 5 . I N I T I A L P L AT F O R M E VA L UAT I O N

When trying to add a new filter:

• 1 user tried to loop inside the expression editor;

• 2 users wanted to use a function like "contains";

• 1 user looked for the IN operator;

• 1 user wanted to use a function like "any";

When told that those functions and operators didn’t exist there, the Software Developers

tried to solve in the DropdownTagsOnChange Client Action, recurring to post-processing tech-

niques. 3 of them used System Actions in their attempts. On average, Software Developers tried

for 38 minutes and 33 seconds, and developed a lot more than the Non-Developers, but none

of them was also capable of completing with success.

The third and final group of users, the OutSystems Developers group, was the only one

where there were successful results, with 2 users being able to complete the task. In fact, 3

out of the 5 OutSystems Developers had already faced this problem, including the 2 users that

were able to finish with success. 4 out of the 5 OutSystems Developers started by using the

SQL tool and the other 1 started by trying to solve in the Aggregate Filters tab. From those 4

users that used SQL, 3 of them had difficulties using it. On average, OutSystems Developers

tried for 39 minutes and 41 seconds. It is relevant to notice that while one of the users that

successfully finished the task only took 13 minutes and 48 seconds, because he had recently

faced this problem in his work and more than one time, the other one faced many difficulties

and took 40 minutes and 15 seconds to complete.

It was also possible to observe that, by changing the Dropdowntags component to have an

output parameter of Text List data type instead of the default DropdownItem List data type, the

understanding of where the selected categories were being saved was much easier for the users.

5.1.3 Discussion

Overall, the most important final conclusions of the Platform Current State phase were:

• 7/12 users that didn’t know that the IN operator doesn’t exist in the Aggregates filters

started looking there, while the other 3 started looking in the client action associated with

the DropdownTags component;

• Only 4/15 users tried to use SQL, and only 1 of them didn’t have difficulties using it;

• 5/15 users used list system actions in their solutions;

• Only 2/15 users tested were able to complete the task.

With this low success rate and observations, we could conclude that, at the current state

of the OutSystems platform, solving use cases that involve filtering of persistent data by in-

memory data it’s too difficult and needs to be improved. Even using the SQL tool the users

faced many difficulties, which proves that it isn’t a viable alternative.

48

5 . 2 . A LT E R N AT I V E A P P R O A C H E S A N A LY S I S

5.2 Alternative Approaches Analysis

Initially, 4 different solutions were proposed in Section 4.2 for the implementation of the IN

functionality in the OutSystems platform, in order to improve the mashup of in-memory data

and persistent data.

However, after discussing with the OutSystems stakeholders and interviewing OutSystems

developers, we have come to the conclusion that the Sources tab of the Aggregates was already

very complex for beginner users to understand, as this is where the Join actions between Sources

are performed. Including the IN functionality in this section would only increase the already

existing high complexity present on this section of the Aggregates. Besides that, no user, regard-

less of its group, looked into the Sources tab to try to solve the usability test of the current state.

This way, the second proposed solution in that section was discarded.

Given the feedback received by the stakeholders and the fact that in the previous phase tests

the Aggregates Filters was the most visited starting place, we decided to focus on prototyping the

first solution, which evolves the addition of the IN operator in the Aggregate filters expression

editor. We started by sketching solutions and Figma 1 was the software tool that we decided to

use in order to elaborate the low fidelity prototype. For that, we followed an iterative sketching

process, that will be described in the following sections.

5.2.1 New system action vs Editing ListFilter

In the Platform Current State phase, we observed that 5 out of the 15 users tested used at least

one list system action in their solutions. This motivated us to also suggest the implementation

of the IN operator as a list system action. This suggestion does not replace the implementation

of the IN operator in the Aggregate filters expression editor. Instead, it works as a complement

and, in order to achieve this, two alternatives were proposed:

1. Implement a new system action;

2. Add the IN operator in the already existing ListFilter system action .

5.2.1.1 New system action: ListContains

In Figure 5.7 we can see the main List System Actions that currently exist in the OutSystems

platform. While the name IN for this functionality is adequate in the context of Aggregates,

which is a context of database querying, here we found the name Contains, which was also very

mentioned in the usability tests of the following phases, more adequate given that the usage

context of the list system actions is more general.

The main advantage of having a new System Action is that it excludes the need of opening

the expression editor to define the IN condition. As can be seen in Figure 5.8, in the input “At-

tribute to be compared” the user would only need to select which attribute from the SourceList

he wants to use for the comparison and in the background the system would check, for each

1Figma https://www.figma.com/, July, 2021

49

https://www.figma.com/

C H A P T E R 5 . I N I T I A L P L AT F O R M E VA L UAT I O N

Figure 5.7: Main system actions in the OutSystems platform

Figure 5.8: ListContains proposed design and attributes

item of the SourceList, if the specified attribute is contained in the items of the ReferenceList.

The ReferenceList needs to be a list with only 1 attribute.

5.2.1.2 Editing the existing ListFilter action

During the Platform Current State tests, some of the users that tried to solve the task by using

list system actions tried to solve it with the existing ListFilter. This allowed us to conclude that

by creating a new list system action we would have to deal with the ambiguity between the new

action and the already existing ListFilter action, given that using the IN operator can be seen as

a way of filtering. To prevent that, in this solution we propose the addition of the IN operator

in the Condition expression editor of the existent ListFilter system action. As represented in

Figure 5.9, having the IN operator there the user can specify the condition in the same way he

would specify in the Aggregate Filters expression editor.

50

5 . 2 . A LT E R N AT I V E A P P R O A C H E S A N A LY S I S

Figure 5.9: ListFilter action attributes and proposed addition in the condition expression editor

5.2.2 Use cases

What makes these proposals really interesting for the context of this thesis is that either one of

them allows 4 extra use cases to be solved:

1. Filtering an in-memory list by the values in another memory list (needs to have only 1

attribute), specifying the attribute of the first list for comparison;

2. Filtering the output list of an external integration method by the values in the output list

of another external integration method (needs to have only 1 attribute), specifying the

attribute of the first list for comparison;

3. Filtering an in-memory list by the values in the output list of another external integra-

tion method (needs to have only 1 attribute), specifying the attribute of the first list for

comparison;

4. Filtering the output list of an external integration method by the values in another mem-

ory list (needs to have only 1 attribute), specifying the attribute of the first list for compar-

ison;

Looking in more detail to the following example, which corresponds to the use case number

3. In Figure 5.10, we have a GetPosts REST API method that returns a list of Posts, where each

post has the attributes UserId, Id, Title, etc. Imagine that we also have a local list containing

Users, where each user has the attributes Id, Name, Username, etc. We want to list only the

posts that are from any of the users present in the local list of users. Assume that the Assign

component was used to copy only the values of the Id attribute from the UsersList to a new

51

C H A P T E R 5 . I N I T I A L P L AT F O R M E VA L UAT I O N

Figure 5.10: UsersList (Local Variable) and GetPosts (REST API method) structures

simple list, usersIdsList. This particular use case can be solved using the 2 proposed solutions

as described below:

1. With the new ListContains, making the following assignments:

SourceList = GetPosts.Response

ReferenceList = usersIdsList

Attribute to be compared = UserId

2. Having the IN operator in the ListFilter, making the following assignments:

SourceList = GetPosts.Response

Condition = Post.UserId in usersIdsList

Although no tests were performed in order to evaluate which alternative would be the best,

at the end of every test of the Design and Implementation phase we asked the users what they

thought of this alternative and all of them agreed that it would be beneficial to also have one of

these solutions complementary to the main one.

52

6

I T E R A T I V E D E S I G N , I M P L E M E N T A T I O N A N D

E V A L U A T I O N

Throughout this chapter, the design, implementation and evaluation process of each solution

are presented in detail, from the first low-fidelity prototype until the final Service Studio imple-

mentation. This chapter includes 3 cycles of design, implementation and evaluation, one for

each of the following sections:

1. Low-fidelity Prototype (6.1)

2. IN Right Parameter Selection Exploration (6.2)

3. Service Studio Prototype (6.3)

Each cycle follows the methodology presented in Section 4.3, with some small adaptations.

6.1 Low-fidelity Prototype

In the Platform Current State phase, it was concluded that most of the users that were not aware

of the absence of the IN operation in the OutSystems Aggregates started looking for solving

this problem in an Aggregate filters tab. With that in mind, we decided to elaborate a low-

fidelity prototype (See Figures 6.1 and 6.2) to evaluate the implementation of the IN operator

in that place. For that evaluation, we performed 15 usability tests, following the methodology

presented in Section 4.3.

6.1.1 Design and Implementation

In our design and implementation of the low-fidelity prototype, we decided to focus on the

following 3 main questions:

• Q1 - Where should the IN operator be added in the expression editor?

In the first iteration of the prototype, we decided to add the new IN operator next to the

LIKE operator (see Figure 6.3), which is also an SQL operator, and near the NOT operator,

53

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

Figure 6.1: Proposed Solution Prototype: Homepage

Figure 6.2: Example of the flow configuration (in Figma) to turn the low fidelity prototype
testable

in order to be more intuitive that it can be used together with it to form the NOT IN

functionality. The IN was placed visibly because, similarly to the LIKE operator, its use is

most common in the Aggregates, unlike existing built-in functions that are widely used

inside and outside the Aggregates. In the second iteration of tests, a new version, which

is presented in Figure 6.4, for the placement of the new IN operator in the operators’

bar was suggested and tested. This suggestion included the addition of labels for each

group of operators, with the intuit of helping the users better understand where to look

for the intended operation. A new group, called “Matching”, was also added in order to

accommodate the LIKE and IN operators, which are both very related to SQL and have

higher complexity than the other operators.

54

6 . 1 . L O W- F I D E L I T Y P R O T O T Y P E

Figure 6.3: Proposed Solution Prototype: Addition of the IN operator in the "Add Fil-
ter"Expression Editor

Figure 6.4: Operators Bar new proposed design

• Q2 - Is the name “in” intuitive for all types of users?

With this prototype, we also intended to evaluate which is the best syntax for the desired

new operator. In the previous phase, we had some users mentioning function names like

"in", "contains"and "any". We decided to test the use of the SQL syntax "in", because the

already existing operator LIKE also uses the same name as in SQL and the majority of the

OutSystems Developers has SQL knowledge. With that in mind, we also wanted to check

if the IN name could also be intuitive to users that don’t know SQL.

• Q3 - What do users expect to put next to the IN?

If the list that the user wants to put next to the IN is a list with only one attribute, then

the only concern should be that the type of that attribute is the same or can be implicitly

converted to the same type as the value on the left side of the operator. But what if the

list has more than one attribute for each element?

In OutSystems language, there are several components that use, by default, data types that

55

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

Figure 6.5: CurrentList structure

Figure 6.6: DropdownItem List "CategoriesToFilter"expanded options in the scope of the Agrge-
gate "Add Filter"expression editor

are composed of 2 or more attributes. The developed test scenario contains a Dropdown-

Tags component which, by default, creates a list of type DropdownItem record, named

CurrentList, composed by 2 attributes (each CurrentList item has two attributes: Value

and Text), as can be seen in Figure 6.5.

If we have a complex list like that, it is necessary to specify the attribute that the user

wants to use for the comparison. This way, this prototype also aimed at evaluating what

the users expect to put next to the IN operator when confronted with this problem. The

main problem is that, in the current state of the platform, the only way to access attributes

of a list is by expanding the property “Current” (see Figure 6.6). This name is not intuitive

in this context, as we are not iterating the list.

We needed to find a solution that could allow a level of simplicity as close as possible to

just selecting the whole list for the users with fewer skills, while also allowing the selection

of attributes. The basic proposed solution was to use the IN operator like in SQL, requiring

that the list to put on the right is already well defined with only one attribute:

Product.Category in CategoriesToFilter

Pros: This solution is very clear and simple if the list is of a simple type that only has 1

attribute (for example: list of text), which is most of the cases.

56

6 . 1 . L O W- F I D E L I T Y P R O T O T Y P E

Cons: What if the list has 2 or more attributes? The user will need to leave the editor to

convert the complex list to a simple list, only with the wanted attribute values for the

comparison.

6.1.2 Evaluation

We tested our prototype with 5 users from each group presented in Section 4.3.1: Non-Developers,

Software Developers and OutSystems Developers.

Regarding the 5 OutSystems Developers, all of them had OutSystems certifications and

had experience with other programming languages (such as Java and C#) and affirmed to be

Medium to High experienced users in OutSystems.

Concerning the 5 Software Developers, only 3 of them had ever worked with Outsystems and

none of them had OutSystems certifications. All of them stated to be beginner users regarding

OutSystems development but had a lot of knowledge of other programming languages (such as

Java, C# and PHP).

All the OutSystems Developers and all the Software Developers had high knowledge of SQL

(see full answers in Appendix A.2).

The 5 Non-Developers had no experience at all with OutSystems and only 2 of them men-

tioned ever learning some basic programming languages (such as HTML and CSS). 1 of them

mentioned that he had made some basic work with SQL a long time ago. Despite that, all of them

had experience with software tools like Microsoft Excel and Google Sheets (see full answers in

Appendix A.2).

Our prototype consisted of an incomplete implementation of the testing scenario presented

in Section 4.3.2, with the addition of the IN operator in the expression editor of Aggregate filters.

It was incomplete because, as is common practice in usability testing, we focused on the happy

path. Because of that, whenever a user tried to click in a functionality that was not implemented

we, as moderators, would describe what would happen. Like all the other evaluations made in

the context of this thesis, the task was the one also presented in that Section.

For the Non-Developers and Software Developers, a small introduction to the platform

preceded every test, in order to give them an idea of the IDE organization and basic concepts.

All tests were done remotely and by giving the user remote control, in order to simulate, as close

as possible, the same circumstances for every user test. As this evaluation was conducted with

an incomplete prototype, the users were less prone to exploration and many functionalities

were not available and had to be only verbally described.

Because it was an exploratory prototype and we were still not sure what we wanted to con-

sider as the final right way of solving the task, we didn’t have in count the success rate in this

evaluation. The following information was registered for each user and can be seen in more

detail in Appendix C:

1. SQL knowledge;

2. Previous knowledge about the lack of the IN operator in Aggregates;

57

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

Non Developers

Software
Developers

OutSystems
Developers

0% 25% 50% 75% 100%

Understood and selected the IN operator Selected another operator
Selected nothing

Figure 6.7: Selection of the operator by user group

3. Understanding of the SelectedCategories input parameter;

4. Operator selection;

5. Selection behaviour regarding the right parameter of the IN operator;

6. Opinion on the "Current"list property;

7. Opinion regarding the usage of the syntax "in"for the operator;

8. Opinion concerning the location of the operator in the prototype.

6.1.2.1 Q1 and Q2 - IN location and syntax results

The results concerning the selection of the IN operator are shown in Figure 6.7. As we can see,

all OutSystems Developers and the majority of the Software Developers rapidly and correctly

selected the IN operator. This allowed us to conclude that it was an adequate name and location

for both those types of users. Regarding the Non-Developers, only one of them selected the

IN operator. The majority of them started by choosing the "="operator (because they didn’t

understand that it doesn’t work with more than one value) and then selected the "like"operator

(probably because it was the operator used in the already existent filter example).

Although all the users found the IN name adequate for the operator when asked about it

at the end of each test, CONTAINS was another name mentioned by many of them as a viable

alternative. For the users that started constructing the condition with the selected categories

saved in the CategoriesToFilter local list in mind, it was more intuitive to think with a CONTAINS

operator, as the logic order is the inverse of the IN logic. However, both ways of thinking are

correct, as shown in the following 2 examples:

58

6 . 1 . L O W- F I D E L I T Y P R O T O T Y P E

Non Developers

Software
Developers

OutSystems
Developers

0% 25% 50% 75% 100%

Prefered "in" Prefered "contains" Liked both

Figure 6.8: Operator name preference by user group

CategoriesToFilter contains Product.Category

or

Product.Category in CategoriesToFilter

When asked if they preferred the name IN or CONTAINS, the answers were distributed as

presented in Figure 6.8. Although the name IN achieved good results regarding its selection and

preference against CONTAINS, the results highlighted the importance of also using the name

Contains in the description of the IN operator.

The feedback received concerning the new operators’ bar design was positive, being con-

sidered a good new asset, and every user agreed with the location of the new IN operator in the

prototype.

6.1.2.2 Q3 - IN right parameter selection results

From the results presented in Figures 6.9, 6.10 and 6.11, we could conclude that users with the

lowest technical skills just expected to select the whole list. On the other hand, users with higher

technical skills showed more awareness that they needed to specify an attribute, and were faced

with the absence of a way of doing it.

It was also proven that the name "Current"dissuaded users to search there for the attributes

of the list, as 62,5% of the users that started by expanding the list ended up either going back

and selecting the whole list or selecting nothing.

59

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

80%

20%

Just selected the whole list
Expanded list to select CategoriesToFilter.Current.

Figure 6.9: Selection by Non Developers

40%

20%

40%

Just selected the whole list
Expanded list to select CategoriesToFilter.Current.Value

Expanded list but ended up selecting the whole list

Figure 6.10: Selection by Software Develop-
ers

20%

20%

40%

20%

Just selected the whole list Expanded list to select CategoriesToFilter.Current.Value
Expanded list but ended up selecting the whole list

Expanded the list but was not confortable with any option

Figure 6.11: Selection by OutSystems Developers

6.2 IN Right Parameter Selection Exploration

If we look again at Figure 4.9, we can see that this section corresponds to the secondary path

(represented by the purple color) of our workflow. In order to try to mitigate the Cons of the

basic solution presented at the end of Section 6.1.1, we resorted to brainstorming techniques

and ended up proposing 4 alternative solutions:

1. IN operator be used like a function, with parentheses and with 2 arguments, being the

first argument the list and the second argument the list attribute to be compared:

Product.Category in (CategoriesToFilter, Text)

Pros: Making the IN a function makes it consistent with a syntax that is already widely

used in OutSystems (example: If(), Index())

Cons: Currently the attributes of the list are not available at the scope of the aggregate

filters expression editor.

60

6 . 2 . I N R I G H T PA R A M E T E R S E L E C T I O N E X P L O R AT I O N

Figure 6.12: Proposed new list property SubLists

2. IN operator be used with two keywords, the word “by” would be added automatically if

detected it was a list with more than one attribute.

Product.Category in CategoriesToFilter by Text

Pros: This one is similar to solution 2, but uses keywords that make it closer to natural

language.

Cons: Has the same problem as solution 2, currently the attributes of the list are not

available at the scope of the aggregate filters expression editor. The expression “by” may

not be intuitive enough.

3. Have a new list property besides “Current” that would have separate sub lists for each

attribute (a list of Value and a list of Text), with an intuitive name (ex: SubLists)

Product.Category in CategoriesToFilter.SubLists.Text

Pros: It would make the whole syntax of the IN easily made only with “clicks”, which

increases the discoverability and follows a path where writing lines of code is increasingly

unnecessary;

Cons: This new property would appear for every list through the OutSystems Platform

editors and could encourage new user errors by introducing some ambiguity between the

new property and the already existing “Current” property.

4. Make the IN operator only work with simple lists, similarly to the basic solution, and have

a new function that converts “complex lists” to “simple lists”.

Product.Category in ListSelect(CategoriesToFilter, Item => Item.Text)

Pros: The user does not need to leave the editor to convert the complex list to a simple

list and can use it together with the IN operator.

Cons: The function will be hidden in the expression editor and beginner users won’t know

of its existence. Probably only with good error messages and auto-corrections users will

find it.

61

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

Figure 6.13: Solutions preference by user group

In order to determine the best alternative solution, we resorted to User Interviews. The users

interviewed were the same from the Low-fidelity prototype phase and the detailed answers can

be seen in Appendix D. The results are presented in Figure 6.13. As we can see, solutions 3

and 4 were the most voted ones and were also the only ones with votes from each group of

users, which indicates that it could make the use case simpler to users with lower technical

skills without compromising the experience for the most expert ones. In the following section,

we will describe the design, implementation and evaluation of the most voted solution, the

ListSelect() Function solution (Solution 4).

6.2.1 ListSelect Function Prototype

Having determined the best alternative solution in the previous section, we resorted to Figma

to develop a low-fidelity prototype that would allow us to evaluate the usability of the proposed

new function ListSelect().

Differently from what was done in the other evaluations, we decided to not test this solu-

tion with Non-Developers, as this solution involves the addition of a new function that it’s of

high complexity. This way, we only tested our ListSelect() function prototype with 6 users (2

OutSystems Developers and 4 Software Developers).

Regarding the 2 OutSystems Developers, both of them had OutSystems certifications and

had experience with other programming languages (such as .NET) and affirmed to be expert

OutSystems users. Regarding their SQL knowledge, they answered that they had already worked

with it several times.

62

6 . 2 . I N R I G H T PA R A M E T E R S E L E C T I O N E X P L O R AT I O N

Concerning the 3 Software Developers, none of them had ever worked with Outsystems.

All of them stated to be beginner users regarding OutSystems development but had a lot of

knowledge of other programming languages (such as Java and C#). 2 of them mentioned having

high experience using SQL while the other 2 said that they had only worked with it a few times

or very long ago (see full answers in Appendix A.3).

In the following section, we propose and describe mechanisms that can help and guide the

user through the process of using the new function to solve the testing scenario presented in

Section 4.3.

6.2.1.1 Rapid Development

Through our evaluations, we took notes regarding the following aspects which can be seen in

full in Appendix D:

1. User’s SQL knowledge;

2. User’s IN operator knowledge;

3. Ease of understanding and selection of the IN operator in the prototype;

4. Expectations regarding what to put next to the IN operator;

5. Difficulty founding the hint system;

6. Error message clarity;

7. User’s first perception of the ListSelect() function;

8. Expressiveness of the symbol "=>";

9. User opinion regarding the name Record.

In our implementation, if the user selects an object with a data type that has more than one

attribute next to the IN operator, a helping system is introduced, represented by a light bulb

icon that appears on the left side of the editor window, in-line with the place where the error

occurred (the error is indicated by a red underline), as shown in Figure 6.14.

The reason why it is placed there is to avoid overlapping and hiding of the remaining expres-

sions written. The light bulb icon was initially presented without fill, but it was later painted

entirely in orange to make it more clearly visible given that, in the first tests, the users weren’t

noticing the new icon appearing in the editor. A new phrase “Check the light bulb for sugges-

tions.” was also added at the end of the error message in order to encourage people to look up

for the suggestions of correction. Initially, we called it “hint bulb” instead of “light bulb” but

that name was proven ambiguous by some users that after reading thought it was referring to

the icon on the left bottom corner of the editor composed by a question mark icon. We also

concluded that splitting the error message in two lines helped to make users read the error

63

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

Figure 6.14: ListSelect Prototype: Aggregate filter condition expression editor

message until the end, as in the initial tests some of the users would only read the first part of

the message where the error is explained.

By clicking on the light bulb, suggestions are presented to the user to select. Clicking in

a suggestion will auto-replace the expression with the selected suggestion expression. It is

important to note that in this prototype the new ListSelect function was also added in the User

Functions but, as initially expected, no user reached it through the scope tree.

Regarding the new function syntax, we started by using the name Record to represent each

list element, but the first 3 users tested had difficulty understanding it. We decided to change

it to Item and we got better results with the following 3 users. All 4 developers and the 2 Out-

Systems Developers easily understood the “=>” icon (similar to the “arrow function” in other

languages).

6.2.2 Outcome

All the proposed solutions concerning the selection of the right parameter of the IN operator are

very interesting regarding the selection of one property in the context of Relational Databases,

where each entity usually is defined by several attributes. OutSystems works with those kinds of

databases and, consequently, there are several use cases where OutSystems users have lists of

entities, which usually are lists with more than one attribute for each item, and they only pretend

to use one of those attributes in their logic. It is worthy of note that the ListSelect function could

also be used outside of Aggregates (e.g: used inside the list system actions ListFilter, ListSort,

etc.), allowing the users to express more declarative code, in an excel-like manner. It would

64

6 . 3 . S E R V I C E S T U D I O P R O T O T Y P E

even allow scenarios such as making the cast of a list or adding the IVA value to each element of

a list.

However, after completing the 6 tests for this prototype we found an easier way to solve this

specific problem in the DropdownTags component itself: the user could create a new version

of the component where he changes the default CurrentList that comes with the component to

the type intended and then make the mapping for only one value. This way, when the user gets

to the Aggregate filters expression editor he doesn’t need to deal with more than one attribute

in the list with the selected categories. For this reason, the basic solution initially presented at

the end of Section 6.1.1 was the one that ended up being implemented in the next phase, as a

Service Studio prototype.

6.3 Service Studio Prototype

As we just justified at the end of the previous section, we decided to implement the IN operator

in the Service Studio as working with simple lists (lists that only have one attribute). This

decision was due to the finding of a simpler solution that would remove the complexity of the

complex list in the component itself.

6.3.1 Implementation

In the Service Studio implementation, we decided to add a new group of operators in the filters

Expression Editor, the “Matching” group, and new validations to ensure that an IN condition is

correctly built. In order to be a valid IN condition, the following validations must be satisfied:

• The data type of the left parameter must be either a basic type or an entity identifier;

• The right parameter of the expression needs to be of type List;

• The list needs to have only one attribute;

• The elements of that list need to be of the same type or implicitly convertible to the left

parameter type in the expression;

The new operators’ group “Matching”, which contains the operators LIKE and IN, was im-

plemented in order to only appear in the context of an Aggregate filter. As the operator LIKE

was previously already made available in the intended place, we only needed to make the IN

operator also available there. In the rest of the IDE, this group is not visible when the user opens

the Expression Editor and neither can these two operators be recognized as valid, even if the

user tries to write them.

For users that never used the IN operator in another language, it was needed to find a way to

make them understand that what needs to be in the right side of this operator is a list of values.

This way, it was decided that we needed to add the following new error message that appears

in the expression editor in case the user tries to put something that is not of type list after the

65

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

Figure 6.15: Aggregate filter condition with IN operator in the Service Studio implementation

IN operator: “Cannot apply ‘in’ operator to ‘Text’ together with ‘Text’. The right side of the

‘in’ needs to be a list”. If the user tries to put a list that has more than one attribute next to the

IN operator, the following message is shown: “Cannot apply ‘in’ operator to ‘Text’ together

with ‘DropdownItem List’. The right side of the ‘in’ needs to be a list of a Basic Type or Entity

Identifier”. We also added the following description that appears when the user hovers the

mouse over the IN button: "Matches any value in a list of values".

Given that in the usability tests of the first prototype we observed that some users tried to

use “()” before selecting the list to put next to the IN operator, similarly to what happens in SQL,

we decided to allow both syntaxes in the Service Studio implementation: "Entity.Attribute in

66

6 . 3 . S E R V I C E S T U D I O P R O T O T Y P E

List" and "Entity.Attribute in (List)"

With our implementation of the new IN operator in the Aggregate filters expression editor,

the following use cases become possible to solve with Aggregates:

• Check if an attribute of the Aggregate source entity matches any of the values in a local

list variable (Note: only works if the local list only has one attribute);

• Check if an attribute of the Aggregate source entity doesn’t match any of the values in a

local list variable (Note: only works if the local list only has one attribute);

At the current version of the OutSystems platform, the user is not allowed to access in the

expression editor of an Aggregate filter to another Aggregate output list or another Data Action

output list. For efficiency reasons, if the user tries to access these structures, the following error

message is displayed: "Only the Current, CurrentRowNumber, Length and Empty properties

of Lists from ‘Another Aggregate Name’ Aggregate / ’Data Action Name’ Data action can be

used in ‘Aggregate Name’ Aggregate". With the addition of the IN operator in the Aggregate

filters expression editor, we suggest opening an exception in order to also allow the following

use cases:

• Check if an attribute of the Aggregate source entity matches any of the values in the output

list of another aggregate (Note: only works if the output list of the other aggregate only

has one attribute);

• Check if an attribute of the Aggregate source entity matches any of the values in the output

list of a Data Action (Note: only works if the output list of that Data Action only has one

attribute);

6.3.2 Evaluation

For this final evaluation, we performed 15 usability tests following, once again, the methodology

presented in Section 4.3.

Regarding the 5 OutSystems Developers, 3 of them had OutSystems certifications. All of

them had experience with other programming languages (such as C++, Java and Javascript)

and affirmed to be Medium to High experienced users in OutSystems. Regarding their SQL

knowledge, 4 of them considered having high experience while the other 1 said that he had little

experience or haven’t worked with it in a long time.

Concerning the 5 Software Developers, only 1 of them had previous experience with the

OutSystems platform but didn’t have any OutSystems certifications. All of them had a lot of

knowledge about other programming languages (such as Java, C# and Python). As for their SQL

knowledge, 4 of them declared to have a lot of experience while the other 1 answered that he

had little experience or haven’t worked with it in a long time.

The 5 Non-Developers had no experience at all with OutSystems or other programming

languages. Despite that, 1 of them had tried to use SQL and all of them had experience with

software tools like Microsoft Excel and Google Sheets (see full answers in Appendix A.4).

67

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

We implemented our solution in the Service Studio itself, in order to make it comparable

to the results from the Platform Current State phase concerning the level of functionality. We

made a small change in the testing scenario regarding the initial state of the program, justified

by our finding in Section 6.2.2: we changed the DropdownTags component so that its output

list had only one attribute, making it a simple list.

For the Non-Developers and Software Developers, a small introduction to the platform

preceded every test, in order to give them an idea of the IDE organization and basic concepts.

All tests were done remotely and by giving the user remote control, in order to simulate, as close

as possible, the same circumstances for every user test. The information taken from each test

was the following (see Appendix E for full results):

1. Previous experience with Aggregates;

2. Familiarity with this type of problem;

3. Starting looking place to solve the task;

4. Resource to Google;

5. Difficulty using SQL;

6. Previous use of the IN operator;

7. Mention of a "Contains"operator;

8. Difficulty understanding the DropdownTags component;

9. Solution thoughts;

10. Result regarding task completion;

11. Test duration;

As we can see in Figure 6.16, with our final solution all the OutSystems Developers and

almost all the Software Developers were able to finish the task with success. The biggest im-

provement achieved was, undoubtedly, with Software Developers. These users, even without

having experience using the OutSystems platform, became able to perform the task with our

new solution. This can be explained by the right choice of placement for the new feature and

by how simple it is to use for those users, given their background and experience writing condi-

tions. As we saw in Section 5.1.2, in the evaluation of the Current State no Software Developer

was able to complete the task with success. This was mainly because the currently existing solu-

tions require a much higher knowledge of the OutSystems language and the available features

of the Service Studio.

Unfortunately, it remained not possible for any Non-Developer to finish the task successfully.

It is important to note that this group of users had no programming experience at all, and were

getting their first contact with the OutSystems Service Studio. Given that the Service Studio is

68

6 . 4 . R E S U LT S C O M PA R I S O N

Non Developers

Software
Developers

OutSystems
Developers

0% 25% 50% 75% 100%

Achieved Not Achieved

Figure 6.16: Success rate of the Service Studio phase tests by each group of users

a very complex tool, we can argue that a great part of the problem for both Non Developers

and Software Developers that had never used OutSystems was to know where to look. For

Non-Developers, that difficulty was even further aggravated by the lack of understanding of

conditions formulation and database basic concepts.

6.4 Results Comparison

In this section, we compare the most relevant results from our first evaluation phase, the Current

State phase, with the ones from our final evaluation, the Service Studio Prototype phase.

Success rate

As can be seen in Figure 6.17, we achieved a success rate progress of 80% regarding the Software

Developers group and a progress of 60% for the OutSystems Developers group. In total, the reg-

istered progress concerning all the 3 groups of users was 46.67%. Only with the Non-Developers

group we weren’t able to achieve better results.

Logic flow

In the current state, it would take an Assign (or ListAppendAll system action) component in

the event of the DropdownTags to copy the selected values to a screen global variable, together

with around 7 components in a server or data action, to complete the necessary filtering logic

without using SQL or the Index() function (which only works with the Text data type). All that

process can now be done inside the event of the DropdownTags component, using only an

Assign component and 1 Aggregate that has the capability to filter by himself. This way, besides

our successful increase in the task completion rate, we were also able to reduce the complexity

of the development flow, as shown in Figure 6.18.

69

C H A P T E R 6 . I T E R AT I V E D E S I G N , I M P L E M E N TAT I O N A N D E VA L UAT I O N

Non Developers

Software
Developers

OutSystems
Developers

0% 25% 50% 75% 100%

Achieved Not Achieved

Non Developers

Software
Developers

OutSystems
Developers

0% 25% 50% 75% 100%

Achieved Not Achieved

Figure 6.17: Success rate by each user group: before (left) and after (right) new solution imple-
mentation

Figure 6.18: Logic flow to filter the products: before (above) and after (below) new solution

70

6 . 4 . R E S U LT S C O M PA R I S O N

Table 6.1: Average test duration by User Group: before (left) and after (right) new solution
implementation

Current State Service Studio Prototype
Average Test

Duration (h:m:s)
Standard

Deviation (m:s)
Average Test

Duration (h:m:s)
Standard

Deviation (m:s)
Non-Developers 00:26:52 4 min 37 sec 00:26:17.2 8 min 37 sec
Software
Developers

00:38:33 4 min 57 sec 00:25:15.2 9 min 12 sec

OutSystems
Developers

00:39:40.6 17 min 3 sec 00:06:42 3 min 55 sec

Tests duration

Concerning the duration of the tests for both the Current State and the Service Studio prototype

evaluation phases, presented in Table 6.1, we can see that, in accordance with what we saw in

the evolution of the success rate, the average test time of the Non-Developers group remained

very similar. This means that these users still got frustrated and gave up as fast as in the Current

State.

For the Software Developers group, there was a decrease in the average test duration which,

together with the improvement in the success rate previously presented for that group, can be

interpreted as a good indicator that it was easier for them to understand what they had to do

and where to develop.

Regarding the third and final group, the OutSystems Developers, it was the group with the

most impressive decrease in the average test duration. For these users, the solution for this use

case became very clear and straightforward.

The lowest the value of the standard deviation value is, the more confident we are that our

conclusions apply to the real total population of each of these groups.

71

7

C O N C L U S I O N A N D F U T U R E W O R K

In this chapter, we present the final conclusions of this dissertation, while answering the re-

search questions indicated at the beginning of this document and presenting what can still be

improved in future work.

7.1 Conclusions

In Section 1.3 we presented the following research questions which we will now answer. It is

worth noticing that, given the samples size, these answers are merely indicative and are not

definitive answers.

Research Question 1: Is intersecting an in-memory list with the results of a database query

a common problem?

Answer: Yes. In our research (see Section 4.1 for more details) we found out that the IN

operator has been highly requested in the OutSystems Community and we were even able to

determine that 8.4% of all the SQL Select statements that cannot be represented by Aggregates

use the IN operator for intersecting an in-memory list with database results. To add to these

findings, we were also able to determine that approximately 47.7% of the customers have used

one or more Aggregate that uses the Index() function, which is one of the main alternatives that

the users currently use.

Research Question 2: Are there other solutions to this problem that can solve more use

cases?

Answer: Yes. In Section 5.2 we analyzed and designed 2 solutions that can solve use cases

regarding the intersection between in-memory data (either as internal data or as data coming

from an external integration). Although we determined that those weren’t the best solutions for

solving our main use case, we ended up concluding that also having them could add substantial

value to the platform.

72

7 . 2 . F U T U R E W O R K

Research Question 3: Is it possible to augment the expressiveness of OutSystems Aggregates

for this use case in a way that is natural for experienced developers?

Answer: Yes. By using the same syntax for the operator as in SQL, experienced developers

found it very familiar and easy to understand. Even for developers that never used the IN op-

erator in SQL, there are other programming languages that use this syntax and that they might

have had contact with.

Research Question 4: Is it possible to augment the expressiveness of OutSystems Aggregates

for this use case while making it accessible to non-experienced users?

Answer: No. Even with the addition of the IN operator in the Aggregates and independently

of the syntax used, non-developers still weren’t able to complete the task. This is largely due to

the complexity of the Service Studio tool, which makes it very hard for people that never used

the platform to know where to look. This is further aggravated in the case of users without any

programming knowledge or databases knowledge, which was the case of the non-developers

group. This way, we concluded that, given the complexity of the Service Studio, in future studies

we should take into account that it is difficult to test new features with users that don’t have

previous experience using the platform.

7.2 Future Work

In Section 5.2, we presented 2 designs that address use cases of mashup between in-memory

data, without evolving Aggregates. Although we started the process of sketching and design,

we had to focus on one main solution for this thesis and, because of that, we didn’t get to the

evaluation phase for these 2 solutions which would allow us to choose the best design. This way,

we propose as future work further research concerning a solution that would allow augmenting

the OutSystems language to also be able of solving use cases of mashup between in-memory

data.

In Section 6.2, we started addressing the issue of the complex lists as the right parameter of

an IN condition. We performed a brainstorm of solutions, followed by user interviews to decide

the best one. After that, we even performed 6 usability tests with the winning solution, the

ListSelect() function. Those tests achieved promising results and the expressiveness power that

such a function with a lambda expression, which does not need to be restricted to Aggregates,

could bring to the OutSystems language is definitely worth researching.

73

B I B L I O G R A P H Y

[1] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, D. On, N. Polyzotis, and

J. S. V. Varman. “SQL QueRIE Recommendations”. In: Proc. VLDB Endow. 3.1–2 (Sept.

2010), pp. 1597–1600. I S S N: 2150-8097. D O I: 10.14778/1920841.1921048 (cit. on

p. 19).

[2] M. Angelaccio, T. Catarci, and G. Santucci. “Query by diagram: A fully visual query sys-

tem”. In: Journal of Visual Languages & Computing 1.3 (1990), pp. 255–273 (cit. on p. 23).

[3] E. Bakke and D. R. Karger. “Expressive query construction through direct manipulation

of nested relational results”. In: Proceedings of the 2016 International Conference on

Management of Data. 2016, pp. 1377–1392 (cit. on p. 24).

[4] S. S. Bhowmick. “We Don’t Need No Education: From Building for Coders to Building for

Users”. In: Proceedings of the 2nd Joint International Workshop on Graph Data Manage-

ment Experiences & Systems (GRADES) and Network Data Analytics (NDA), Amsterdam,

The Netherlands, 30 June 2019. Ed. by A. Arora, A. Bhattacharya, and G. H. L. Fletcher.

ACM, 2019, 2:1. D O I: 10.1145/3327964.3328491 (cit. on p. 2).

[5] C. R. Borges and J. A. Macıas. “Feasible database querying using a visual end-user ap-

proach”. In: Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive

Computing System, EICS 2010, Berlin, Germany, June 19-23, 2010. Ed. by N. Sukaviriya,

J. Vanderdonckt, and M. Harrison. ACM, 2010, pp. 187–192. D O I: 10.1145/1822018.18

22047 (cit. on p. 2).

[6] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. “Visual query systems for databases:

A survey”. In: Journal of Visual Languages & Computing 8.2 (1997), pp. 215–260 (cit. on

pp. 2, 18, 19, 24).

[7] T. Catarci and G. Santucci. “Diagrammatic vs textual query languages: a comparative

experiment”. In: Working Conference on Visual Database Systems. Springer. 1995, pp. 69–

83 (cit. on p. 23).

[8] Chartio. Filter, Group, and Aggregate Operators in Visual SQL. U R L: %5Curl%7Bhttps:

//chartio.com/docs/visual- sql/operators/#filter- operators%7D, %20

accessed%202021-02-16 (cit. on p. 27).

74

https://doi.org/10.14778/1920841.1921048
https://doi.org/10.1145/3327964.3328491
https://doi.org/10.1145/1822018.1822047
https://doi.org/10.1145/1822018.1822047
%5Curl%7Bhttps://chartio.com/docs/visual-sql/operators/#filter-operators%7D,%20accessed%202021-02-16
%5Curl%7Bhttps://chartio.com/docs/visual-sql/operators/#filter-operators%7D,%20accessed%202021-02-16
%5Curl%7Bhttps://chartio.com/docs/visual-sql/operators/#filter-operators%7D,%20accessed%202021-02-16

B I B L I O G R A P H Y

[9] Chartio. We Made SQL Visual - Why and How. https://chartio.com/blog/why-we-

made-sql-visual-and-how-we-finally-did-it/, accessed 2021-02-16 (cit. on

p. 27).

[10] D. Cohen, M. Lindvall, and P. Costa. “Agile software development”. In: DACS SOAR Report

11 (2003), p. 2003 (cit. on pp. 6, 7).

[11] J. Danaparamita and W. Gatterbauer. “QueryViz: Helping Users Understand SQL Queries

and Their Patterns”. In: Proceedings of the 14th International Conference on Extending

Database Technology. EDBT/ICDT ’11. Uppsala, Sweden: Association for Computing

Machinery, 2011, pp. 558–561. I S B N: 9781450305280. D O I: 10.1145/1951365.195144

0 (cit. on p. 19).

[12] Devart. Devart dbForge Query Builder. https://www.devart.com/dbforge/sql/

querybuilder/resources.html, accessed 2021-02-16 (cit. on p. 27).

[13] A. Dix. “Interactive Querying-locating and discovering information”. In: Second Work-

shop on Information Retrieval and Human Computer Interaction. Citeseer. 1998 (cit. on

p. 21).

[14] C. Floyd. “A systematic look at prototyping”. In: Approaches to prototyping. Springer,

1984, pp. 1–18 (cit. on p. 8).

[15] Gartner. Magic Quadrant for Enterprise Low-Code Application Platforms. https://

www.gartner.com/doc/reprints?id=1-24TEFBCB&ct=201214&st=sb, accessed

2021-02-15 (cit. on p. 109).

[16] T. Haigh. “How Data Got its Base: Information Storage Software in the 1950s and 1960s”.

In: IEEE Annals of the History of Computing 31.4 (2009), pp. 6–25. D O I: 10.1109/MAHC.2

009.123 (cit. on p. 1).

[17] A. R. Hevner. “A three cycle view of design science research”. In: Scandinavian journal of

information systems 19.2 (2007), p. 4 (cit. on pp. 32, 33).

[18] A. ICT. What is OutSystems? https://www.ada-ict.nl/en/what-is-outsystems/,

accessed 2021-01-23 (cit. on p. 11).

[19] F. Karray, M. Alemzadeh, J. Abou Saleh, and M. N. Arab. “Human-computer interaction:

Overview on state of the art”. In: (2008) (cit. on p. 6).

[20] S. Krug. Don’t make me think!: a common sense approach to Web usability. Pearson

Education India, 2000 (cit. on p. 34).

[21] C. Larman. “Agile and Iterative Development: A Manager’s Guide”. In: 2003 (cit. on p. 7).

[22] J. Lloret-Gazo. “A Survey on Visual Query Systems in the Web Era (extended version)”. In:

CoRR abs/1708.00192 (2017). arXiv: 1708.00192. U R L: http://arxiv.org/abs/1708

.00192 (cit. on p. 19).

75

https://chartio.com/blog/why-we-made-sql-visual-and-how-we-finally-did-it/
https://chartio.com/blog/why-we-made-sql-visual-and-how-we-finally-did-it/
https://doi.org/10.1145/1951365.1951440
https://doi.org/10.1145/1951365.1951440
https://www.devart.com/dbforge/sql/querybuilder/resources.html
https://www.devart.com/dbforge/sql/querybuilder/resources.html
https://www.gartner.com/doc/reprints?id=1-24TEFBCB&ct=201214&st=sb
https://www.gartner.com/doc/reprints?id=1-24TEFBCB&ct=201214&st=sb
https://doi.org/10.1109/MAHC.2009.123
https://doi.org/10.1109/MAHC.2009.123
https://www.ada-ict.nl/en/what-is-outsystems/
https://arxiv.org/abs/1708.00192
http://arxiv.org/abs/1708.00192
http://arxiv.org/abs/1708.00192

B I B L I O G R A P H Y

[23] S. El-Mahgary and E. Soisalon-Soininen. “A form-based query interface for complex

queries”. In: Journal of Visual Languages Computing 29 (2015), pp. 15–53. I S S N: 1045-

926X. D O I: https://doi.org/10.1016/j.jvlc.2015.03.001 (cit. on pp. 21,

22).

[24] Mendix. XPath. https://docs.mendix.com/refguide/xpath, accessed 2021-02-15

(cit. on p. 26).

[25] J. Nielsen. “Estimating the number of subjects needed for a thinking aloud test”. In:

International Journal of Human-Computer Studies 41.3 (1994), pp. 385–397. I S S N: 1071-

5819. D O I: https://doi.org/10.1006/ijhc.1994.1065 (cit. on p. 11).

[26] J. Nielsen. How Many Test Users in a Usability Study? https://www.nngroup.com/

articles/how-many-test-users/, accessed 2021-02-07 (cit. on p. 10).

[27] J. Nielsen. Usability engineering. Morgan Kaufmann, 1994 (cit. on p. 7).

[28] J. Nielsen. Why You Only Need to Test with 5 Users. https://www.nngroup.com/

articles/why-you-only-need-to-test-with-5-users/, accessed 2021-02-07

(cit. on p. 10).

[29] J. Nielsen and T. K. Landauer. “A Mathematical Model of the Finding of Usability Prob-

lems”. In: Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in

Computing Systems. CHI ’93. Amsterdam, The Netherlands: Association for Computing

Machinery, 1993, pp. 206–213. I S B N: 0897915755. D O I: 10.1145/169059.169166 (cit.

on p. 11).

[30] OutSystems. Advanced Aggregates. https : / / www . outsystems . com / training /

lesson/1972/advanced-aggregates?LearningPathId=18, accessed 2021-01-24

(cit. on p. 14).

[31] OutSystems. Aggregate. https://success.outsystems.com/Documentation/11

/Reference/OutSystems_Language/Data/Handling_Data/Queries/Aggregate,

accessed 2021-01-24 (cit. on p. 14).

[32] OutSystems. Aggregates 101. https://www.outsystems.com/training/courses/12

6/aggregates-101/?LearningPathId=18, accessed 2021-01-24 (cit. on p. 14).

[33] OutSystems. Application Layers. https://www.outsystems.com/training/lesson/

2186/application-layers?LearningPathId=18, accessed 2021-01-23 (cit. on p. 12).

[34] OutSystems. Building Dynamic SQL Statements the Right Way. https://success.

outsystems.com/Documentation/Best_Practices/Development/Building_

Dynamic_SQL_Statements_the_Right_Way, accessed 2021-01-21 (cit. on p. 29).

[35] OutSystems. Components and Tools. https://www.outsystems.com/training/

lesson/2183/components-and-tools?LearningPathId=18, accessed 2021-01-23

(cit. on pp. 11, 12).

[36] OutSystems. Developing with OutSystems. https://www.outsystems.com/evaluation-

guide/developing-with-outsystems/, accessed 2021-01-23 (cit. on p. 11).

76

https://doi.org/https://doi.org/10.1016/j.jvlc.2015.03.001
https://docs.mendix.com/refguide/xpath
https://doi.org/https://doi.org/10.1006/ijhc.1994.1065
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://doi.org/10.1145/169059.169166
https://www.outsystems.com/training/lesson/1972/advanced-aggregates?LearningPathId=18
https://www.outsystems.com/training/lesson/1972/advanced-aggregates?LearningPathId=18
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Data/Handling_Data/Queries/Aggregate
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Data/Handling_Data/Queries/Aggregate
https://www.outsystems.com/training/courses/126/aggregates-101/?LearningPathId=18
https://www.outsystems.com/training/courses/126/aggregates-101/?LearningPathId=18
https://www.outsystems.com/training/lesson/2186/application-layers?LearningPathId=18
https://www.outsystems.com/training/lesson/2186/application-layers?LearningPathId=18
https://success.outsystems.com/Documentation/Best_Practices/Development/Building_Dynamic_SQL_Statements_the_Right_Way
https://success.outsystems.com/Documentation/Best_Practices/Development/Building_Dynamic_SQL_Statements_the_Right_Way
https://success.outsystems.com/Documentation/Best_Practices/Development/Building_Dynamic_SQL_Statements_the_Right_Way
https://www.outsystems.com/training/lesson/2183/components-and-tools?LearningPathId=18
https://www.outsystems.com/training/lesson/2183/components-and-tools?LearningPathId=18
https://www.outsystems.com/evaluation-guide/developing-with-outsystems/
https://www.outsystems.com/evaluation-guide/developing-with-outsystems/

B I B L I O G R A P H Y

[37] OutSystems. Service Studio Overview. https://success.outsystems.com/Documentation/

11/Getting_started/Service_Studio_Overview, accessed 2021-01-23 (cit. on

p. 13).

[38] OutSystems. The Low-Code Market in 2021. https://www.outsystems.com/blog/

posts/low-code-market/, accessed 2021-02-17 (cit. on p. 1).

[39] OutSystems. What’s (Not) New in OutSystems: A Product Timeline. https://www.

outsystems.com/blog/posts/not-new-product-timeline/, accessed 2021-01-

24 (cit. on p. 17).

[40] O. B. Platform. ISO 9241-11:2018(en) Ergonomics of human-system interaction — Part 11:

Usability: Definitions and concepts. U R L: %5Curl%7Bhttps://www.iso.org/obp/ui/

#iso:std:iso:9241:-11:ed-2:v1:en%7D,%20accessed%202021-01-30 (cit. on

p. 6).

[41] P. S. Rodrigues. “Accelerating SQL with Complex Visual Querying”. unpublished thesis.

MA thesis. FCT-UNL, 2020 (cit. on pp. 29, 108).

[42] Y. Rogers. “New theoretical approaches for human-computer interaction”. In: Annual

Review of Information Science and Technology 38.1 (2004), pp. 87–143. D O I: https://

doi.org/10.1002/aris.1440380103. eprint: https://asistdl.onlinelibrary.

wiley.com/doi/pdf/10.1002/aris.1440380103 (cit. on p. 6).

[43] SalesForce. Introducing the SOQL Query Builder, Now in Beta! https://developer.

salesforce.com/blogs/2020/11/introducing-the-soql-query-builder-now-

in-beta.html, accessed 2021-02-15 (cit. on p. 26).

[44] SalesForce. SOQL Builder (Beta). https://developer.salesforce.com/tools/

vscode/en/soql/soql-builder/, accessed 2021-02-15 (cit. on p. 26).

[45] A. Sears and J. A. Jacko. Human-computer interaction: Development process. CRC Press,

2009 (cit. on pp. 7–9).

[46] K. L. Siau, H. C. Chan, and K. K. Wei. “Effects of query complexity and learning on

novice user query performance with conceptual and logical database interfaces”. In:

IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 34.2

(2004), pp. 276–281 (cit. on p. 18).

[47] K. L. Siau, H. C. CHAN, and K. P. TAN. “Visual knowledge query language”. In: IEICE

TRANSACTIONS on Information and Systems 75.5 (1992), pp. 697–703 (cit. on p. 18).

[48] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, and I. Horrocks.

“Ontology-based end-user visual query formulation: Why, what, who, how, and which?”

In: Univers. Access Inf. Soc. 16.2 (2017), pp. 435–467. D O I: 10.1007/s10209-016-0465-

0 (cit. on pp. 2, 3).

[49] C. Stolte, D. Tang, and P. Hanrahan. “Polaris: A system for query, analysis, and visualiza-

tion of multidimensional relational databases”. In: IEEE Transactions on Visualization

and Computer Graphics 8.1 (2002), pp. 52–65 (cit. on p. 19).

77

https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://www.outsystems.com/blog/posts/low-code-market/
https://www.outsystems.com/blog/posts/low-code-market/
https://www.outsystems.com/blog/posts/not-new-product-timeline/
https://www.outsystems.com/blog/posts/not-new-product-timeline/
%5Curl%7Bhttps://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en%7D,%20accessed%202021-01-30
%5Curl%7Bhttps://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en%7D,%20accessed%202021-01-30
https://doi.org/https://doi.org/10.1002/aris.1440380103
https://doi.org/https://doi.org/10.1002/aris.1440380103
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/aris.1440380103
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/aris.1440380103
https://developer.salesforce.com/blogs/2020/11/introducing-the-soql-query-builder-now-in-beta.html
https://developer.salesforce.com/blogs/2020/11/introducing-the-soql-query-builder-now-in-beta.html
https://developer.salesforce.com/blogs/2020/11/introducing-the-soql-query-builder-now-in-beta.html
https://developer.salesforce.com/tools/vscode/en/soql/soql-builder/
https://developer.salesforce.com/tools/vscode/en/soql/soql-builder/
https://doi.org/10.1007/s10209-016-0465-0
https://doi.org/10.1007/s10209-016-0465-0

B I B L I O G R A P H Y

[50] A. M. Wichansky. “Usability testing in 2000 and beyond”. In: Ergonomics 43.7 (2000).

PMID: 10929833, pp. 998–1006. D O I: 10.1080/001401300409170 (cit. on p. 9).

[51] M. M. Zloof. “Query-by-example: A data base language”. In: IBM systems Journal 16.4

(1977), pp. 324–343 (cit. on p. 18).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 78).

78

https://doi.org/10.1080/001401300409170
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

A

U S E R S A N A L Y S I S

In this appendix are included the profiles of all the users tested in this thesis and the form that

was used to collect the users information.

A.1 Platform current state users

79

Platform Initial State - Users details
Timestamp Identifier Have you ever worked with

the OutSystems Platform?
If you answered "Yes" in
the previous question, when
was the last time you worked
with it?

Do you have any
OutSystems certification?

3/30/2021 11:52:47 OutSystems Dev 1 Yes <3 Years No
4/6/2021 23:59:39 OutSystems Dev 2 Yes <3 Years Yes
4/14/2021 14:20:45 OutSystems Dev 3 Yes 3 or more years Yes
4/14/2021 16:57:20 OutSystems Dev 4 Yes <6 Months Yes
4/19/2021 11:36:17 OutSystems Dev 5 Yes <6 Months No
4/9/2021 14:01:57 Software Dev 1 Yes <6 Months No
4/12/2021 18:35:16 Software Dev 2 Yes <1 Year No
4/13/2021 11:38:38 Software Dev 3 Yes <6 Months No
4/15/2021 18:44:56 Software Dev 4 Yes <6 Months No

2021/04/23 11:53:54 Software Dev 5 Yes <6 Months No

2021/04/28 20:20:23 Non Dev 1 No No
2021/05/05 17:09:24 Non Dev 2 No No
2021/07/22 13:48:03 Non Dev 3 No No
2021/07/23 09:20:40 Non Dev 4 No No
2021/09/01 14:29:54 Non Dev 5 No No

Platform Initial State - Users details
How do you classify your level
 of experience with OutSystems?

Do you have any knowledge
of programming languages?

If you answered "Yes" in the previous
question, can you tell some of them?

Medium (Frequent User) Yes Java, kotlin
Medium (Frequent User) Yes Java, c#, python
High (Expert User) Yes Java, C#, Javascript
Medium (Frequent User) Yes Javascript, Java
High (Expert User) Yes C++, C#, Javascript
Low (Beginner User) Yes Java, Python, C, HTML/CSS, JavaScript, Rust, Go e Erlang.
Low (Beginner User) Yes Java, C#, C++, JS, React
Low (Beginner User) Yes C#, TypeScript, Kotlin, Swift
Low (Beginner User) Yes JS, C, Java, Kotlin

Low (Beginner User) Yes Java (including Android specific), JavaScript, Python,
Objective-C (a little)

None Yes Pascal and Visual Basic in high school
None No
None No
None No
None No

Platform Initial State - Users details
Do you have experience with SQL? Do you have experience with

Microsoft Excel, Google Sheets
or other similar software?

Yes, but only a few times or very long ago Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, but only a few times or very long ago Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, but only a few times or very long ago Yes
Yes, but only a few times or very long ago No
Yes, but only a few times or very long ago Yes

Yes, but only a few times or very long ago Yes

No Yes
No Yes
No Yes
No Yes
No Yes

A . 2 . L O W- F I D E L I T Y P R O T O T Y P E U S E R S

A.2 Low-fidelity prototype users

83

Low-fidelity prototype - Users details
Timestamp Identifier Have you ever worked with

the OutSystems Platform?
If you answered "Yes" in
the previous question, when
was the last time you worked
with it?

Do you have any
OutSystems certification?

2021/04/27 14:03:26 OutSystems Dev 1 Yes <6 Months Yes
2021/04/26 15:08:36 OutSystems Dev 2 Yes <6 Months Yes
2021/04/29 15:57:28 OutSystems Dev 3 Yes <3 Years Yes
2021/04/29 21:00:41 OutSystems Dev 4 Yes 3 or more years Yes
2021/05/03 15:57:00 OutSystems Dev 5 Yes <6 Months Yes
2021/04/28 15:08:21 Software Dev 1 Yes <6 Months No
2021/05/04 19:17:08 Software Dev 2 No No
2021/05/28 16:07:47 Software Dev 3 No No
2021/05/11 00:00:19 Software Dev 4 Yes 3 or more years No
2021/05/13 17:27:39 Software Dev 5 Yes <6 Months No
2021/05/13 20:59:05 Non Dev 1 No No
2021/05/16 17:27:39 Non Dev 2 No No
2021/05/10 14:57:58 Non Dev 3 No No
2021/06/01 18:28:21 Non Dev 4 No No
2021/06/01 19:24:18 Non Dev 5 No No

Low-fidelity prototype - Users details
How do you classify your level
 of experience with OutSystems?

Do you have any knowledge
of programming languages?

If you answered "Yes" in the previous
question, can you tell some of them?

High (Expert User) Yes ruby on rails, c#, c++, java
Medium (Frequent User) Yes C#, JAVA, REACT, ANGULAR, PYTHON
High (Expert User) Yes Outsystems, Java, CSS
High (Expert User) Yes Java, JS, C, SQL
High (Expert User) Yes C++, Java, Python
Low (Beginner User) Yes Java, C#, JavaScript, Flutter, SQL, PHP
Low (Beginner User) Yes Java, Javascript, Kotlin
None Yes Java, JavaScript, C#, PHP, Python, Lua
Low (Beginner User) Yes C#, Dart, Java, JavaScript, PHP
Low (Beginner User) Yes Java, C#, SQL, HTML, JavaScript
None No
None No
None Yes Html, css, java script, swift
None Yes Basics of HTML, CSS...
None No

Low-fidelity prototype - Users details
Do you have experience with SQL? Do you have experience with

Microsoft Excel, Google Sheets
or other similar software?

Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
No Yes
No Yes
Yes, but only a few times or very long ago Yes
No Yes
No Yes

A . 3 . L I S T S E L E C T F U N C T I O N P R O T O T Y P E U S E R S

A.3 ListSelect function prototype users

87

ListSelect prototype - Users details
Timestamp Identifier Have you ever worked with

the OutSystems Platform?
If you answered "Yes" in
the previous question, when
was the last time you worked
with it?

Do you have any
OutSystems certification?

2021/05/17 18:47:54 OutSystems Dev 1 Yes 3 or more years Yes
2021/05/18 13:40:41 OutSystems Dev 2 Yes <6 Months Yes
2021/05/18 16:28:08 Software Developer 1 No No
2021/05/20 17:47:05 Software Developer 2 No No
2021/05/25 17:27:12 Software Developer 3 No No
2021/05/28 17:44:58 Software Developer 4 No No

ListSelect prototype - Users details
How do you classify your level
 of experience with OutSystems?

Do you have any knowledge
of programming languages?

If you answered "Yes" in the previous
question, can you tell some of them?

High (Expert User) Yes .Net, PowerBuilder, Delphi7
High (Expert User) Yes .Net, Java
None Yes C#, C/C++, Java, Angular, React, Flutter...
None Yes Java, Kotlin, C#
None Yes C/C++, C#, Java, Python, SQL
None Yes C#, Java, Kotlin

ListSelect prototype - Users details
Do you have experience with SQL? Do you have experience with

Microsoft Excel, Google Sheets
or other similar software?

Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, but only a few times or very long ago No
Yes, I have already worked with it several times Yes
Yes, but only a few times or very long ago Yes

A . 4 . S E R V I C E S T U D I O P R O T O T Y P E U S E R S

A.4 Service Studio prototype users

91

Service Studio Prototype - Users details
Timestamp Identifier Have you ever worked with

the OutSystems Platform?
If you answered "Yes" in
the previous question, when
was the last time you worked
with it?

Do you have any
OutSystems certification?

2021/06/22 17:35:11 OutSystems Dev 1 Yes <6 Months Yes
2021/06/24 13:03:55 OutSystems Dev 2 Yes <6 Months No
2021/06/28 15:31:57 OutSystems Dev 3 Yes <6 Months No
2021/06/28 17:30:00 OutSystems Dev 4 Yes 3 or more years Yes

2021/07/01 15:18:19 OutSystems Dev 5 Yes <6 Months Yes

2021/06/15 10:56:19 Software Dev 1 Yes <3 Years No
2021/06/15 13:22:48 Software Dev 2 No No
2021/06/15 16:05:54 Software Dev 3 No No
2021/06/17 14:16:48 Software Dev 4 No No
2021/06/21 16:25:46 Software Dev 5 No No
2021/07/05 18:57:06 Non Dev 1 No No
2021/07/06 20:34:36 Non Dev 2 No No
2021/07/08 14:18:24 Non Dev 3 No No
2021/07/15 18:20:39 Non Dev 4 No No
2021/07/22 16:53:03 Non Dev 5 No No

Service Studio Prototype - Users details
How do you classify your level
 of experience with OutSystems?

Do you have any knowledge
of programming languages?

If you answered "Yes" in the previous
question, can you tell some of them?

High (Expert User) Yes I learned the basics of programming in the university, with C++.
Medium (Frequent User) Yes C, C++, Java, JS, Prolog, R...
Medium (Frequent User) Yes Java, C, SQL, Javascript, php
High (Expert User) Yes C, Java, Javascript

Medium (Frequent User) Yes SQL (low to intermediate) / .NET (very little knowledge) /
 LANSA (intermediate) / JS (very little knowledge)

Low (Beginner User) Yes Java, C, Go, Erlang, Rust, Javascript, Python
None Yes Java, JavaScript, Dart, Go, C#, C, Kotlin, Python
None Yes Java, C#, Python, Typescript, Javascript
Low (Beginner User) Yes Javascript, SQL, Python, C++
None Yes Java, Python, JavaScript, Golang, C#
None No
None No
None No
None No
None No

Service Studio Prototype - Users details
Do you have experience with SQL? Do you have experience with

Microsoft Excel, Google Sheets
or other similar software?

Yes, I have already worked with it several times Yes
Yes, but only a few times or very long ago Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes

Yes, I have already worked with it several times Yes

Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, I have already worked with it several times Yes
Yes, but only a few times or very long ago Yes
Yes, but only a few times or very long ago Yes
No Yes
No Yes
No Yes
No Yes

B

P L A T F O R M C U R R E N T S T A T E E V A L U A T I O N :

F U L L R E S U LT S

In this appendix are included the detailed results from every test from the Current State phase.

95

1. Has
ever

worked
with

Aggregat
es?

2. Has
already
faced
this

problem
?

3. Starting looking
place

4. Used google?

5. If
used

SQL, had
difficult

w/ it?

6.
Mention
ed the
SQL IN
clause?

7. Knew
the

Index
built-in
function

?

8. Had difficulty
understanding the

dropdown tags?

9. Had difficulty
using the ForEach

component?

Non-Developers

Non-Developer
1

No No DropdownTags handler No - No No Yes Did not use

Non-Developer
2

No No DropdownTags handler No - No No Yes Did not use

Non-Developer
3

No No
GetCategories

Aggregate
No - No No Yes Did not use

Non-Developer
4

No No
DropdownTags handler

- System Actions
No - No No Yes Did not use

Non-Developer
5

No No
GetCategories

Aggregate
No - No No Yes Did not use

Developers

Soft. Dev 1 Yes No

Aggregate filters
(wanted to make a

cycle junction of “or”
with “=”)

No - No No Yes No (only used 1)

Soft. Dev 2 Yes No

Aggregate filters
(wanted to use a

function like
“contains”)

No - No No No No (only used 1)

Soft. Dev 3 Yes No
Aggregate filters

(wanted to use IN)
No - Yes No No No (only used 1)

Soft. Dev 4 Yes No

Aggregate filters
(wanted to use a

function like
“contains”)

Yes (found the Index
function and a

solution with List
Remove)

- No No No No (only used 1)

Soft. Dev 5 Yes No
Aggregate filters
(wanted to use a

function like “any”)

Yes (tried to find
examples like this

problem but did not
find it)

- No No Yes No (did not use)

OutSystems Developers

OutSystems
Dev 1

Yes No Aggregate filters No - No No No
Yes (used 2 in a

row)

OutSystems
Dev 2

Yes No SQL
Yes (to search how
to do loops w/ SQL)

Yes No No Yes
Yes (used 2 in a

row)

OutSystems
Dev 3

Yes Yes SQL No No Yes Yes No Did not use

OutSystems
Dev 4

Yes Yes SQL
Yes (to see SQL

syntax and IN clause)
Yes Yes Yes No No (only used 1)

OutSystems
Dev 5

Yes Yes SQL
Yes (to see String

Join action)
Yes Yes Yes No No (only used 1)

10. Knew
system
actions?

11. Had difficulty
choosing

appropriate system
actions?

12. Intended final
solution

13. The user was
able to complete

the task?

14. Duration (h:m:
s)

Non-Developers

No Yes (used ListFilter)
Use the ListFilter action
to filter the list with all

the products
No 00:26:40

No Did not use
Copy the filter of the

Input name Search
No 0:26:01

No Did not use

Tried to add a filter in
GetProducts but did

not know how to write
a condition

No 0:31:53

A little
Yes (didn't select

any)

Use a if component
with many "0r"s and

"="
No 0:18:50

No Did not use
Do a similar filter

condition to the one for
the name

No 00:30:56

Developers

No
(started by

using
assign)

No

Add the results of an
aggregate for each

category selected in a
new list

No 00:39:50

No
Yes (started by
using ListInsert)

Add the results of an
aggregate for each

category selected in a
new list

No 0:32:00

No (used
assign)

Did not use them

Add the categories in a
String and then use a

contains in the
aggregate filter

No (only for one
selected category)

0:36:30

Yes
Yes (tried using

ListRemove)

Remove from the
products list the

products that do not
have any of the

selected categories

No (problem
removing item

from the list that is
being iterated)

0:37:20

No Did not use them

Wanted to iterate the
categories and refresh
the aggregate one by

one

No (only for one
selected category)

00:47:05

OutSystems Developers

Yes No
Remove from the list of

products the non-
intended ones

No 0:29:13

Yes, but
did not

remember
to use
them

Yes (used assign
instead of list

append)

Add to a new list the
intended products from

the list of products
No 0:53:20

Yes No
Use SQL with the IN

clause

Yes

0:13:48
(but without

products on start
and with a query

error message)

Yes Did not use
Use SQL with the IN

clause
No 1:01:47

Yes Did not use
Use SQL with the IN

clause
Yes 0:40:15

C

L O W - F I D E L I T Y P R O T O T Y P E E V A L U A T I O N :

F U L L R E S U LT S

In this appendix are included the detailed results from every test from the Low-Fidelity Proto-

type phase.

98

Knew SQL?

Knew that the
IN didn't

previously exist
in Aggregates?

Correctly
understood the

SelectedCategories?

Easily understood and
selected the new IN

operator?

Started by
selecting the
whole list or
expanding?

Ended selecting the
whole list or

SelectedCategories.
Current.Value/Text?

Found the
name "Current"
inadequate for
the use case?

Non-Developers

Non-Developer
1

No No No

No (started by selecting
equals and had many

difficulties in
understanding database

concepts)

Whole list Whole list No

Non-Developer
2

No No

No (thought value
was the price and

text was the
category)

Sort of (selected "like") Whole list Whole list No

Non-Developer
3

Not much (few
times and a long

time ago)
No

No (thought Value
was the price, Text

the name)

No (started by selecting
"=", then "like" and finally

"in")
Expanded

CategoriesToFilter.
Current.Value

No

Non-Developer
4

No No No Sort of (selected "like") Whole list Whole list No

Non-Developer
5

No No No

Sort of (started by
selecting "=" but switched
when understood that it

was a list)

Whole list Whole list No

Developers

Soft. Dev 1 Yes No Yes
Yes (but started by

searching for "contained")
Expanded Whole list Yes

Soft. Dev 2 Yes No

No (thought it had
had the categories

with a boolean field
indicating the
selected ones)

Sort of (started by
selecting "=")

Expanded
CategoriesToFilter.

Current.Value
No

Soft. Dev 3 Yes No No (didn't notice the
attributes) Yes Whole list Whole list No

Soft. Dev 4 Yes No

No (though that
didn't need to

select the attribute
to compare)

Yes Expanded Whole list Yes

Soft. Dev 5 Yes No
No, though it was a

list of String
Sort of (started by

selecting "=")
Whole list Whole list No

OutSystems Developers

OutSystems
Dev 1

Yes Yes Yes Yes Whole list Whole list -

OutSystems
Dev 2

Yes Yes Yes Yes Expanded
CategoriesToFilter.

Current.Value
No

OutSystems
Dev 3

Yes Yes Yes Yes Expanded Whole list Yes

OutSystems
Dev 4

Yes Yes Yes Yes Expanded - Yes

OutSystems
Dev 5

Yes Yes Yes Yes Expanded Whole list Yes

Agreed that IN is an
intuitive name for the

operation?

Agreed with the
location of the

new IN operator?

Non-Developers

Yes (but prefered
Contains and started

with
CategoriesToFilter)

Yes

Yes yes

Yes (after thinking
about it, but found

"Contains" much more
intuitive)

Yes

Yes Yes

Yes Yes

Developers

Yes (also liked
"contains")

Yes

Yes Yes

Yes, but found
Contains more intuitive Yes

Yes Yes

Yes (also mentioned
Contains)

Yes

OutSystems Developers

Yes (didn't like
"contains")

Yes

Yes (also liked
"contains")

Yes

Yes Yes

Yes Yes

Yes Yes

D

I N R I G H T PA R A M E N T E R E X P L O R A T I O N :

F U L L R E S U LT S

In this appendix are included the detailed answers of every user regarding their solution prefer-

ence and the results from the usability tests with the ListSelect() function prototype.

Table 1 - User Interviews Answers

Table 2 - ListSelect() Function Prototype evaluation results

101

Basic solution Proposed solution 1 Proposed solution 2
Proposed
solution 3

Proposed
solution 4

Non-Developers

Non-Developer
1

No No Better than solution 2
Liked it

(favorite one)
Liked the hint

Non-Developer
2

No No Better than solution 2 -
Liked (favorite

one)

Non-Developer
3

Didn't like this
one, sounded
too complex

- Said that "by" is not intuitive

"Current" and
"Attributes"

might be
confusing

Liked this one
(favorite one)

Non-Developer
4

No Better than solution 3 No

Favorite one
(text and value

as new
properties)

Liked

Non-Developer
5

- No Yes, more intuitive for begginer
users (Favorite one) 2nd Too complex

Software Developers

Soft. Dev 1 - Liked this one -

Favorite one
(new list
property

"Content")

-

Soft. Dev 2 - - - - Favorite one

Soft. Dev 3 No No No Liked it Liked it

Soft. Dev 4 - - - -
Liked this one
(favorite one)

Soft. Dev 5 Did not like it -
Found better than with

parenthesis

Mentioned a
new property

"Element", but
recognized
ambiguity

Found it too
complex and

long

Outsystems Developers

OutSystems
Dev 1

-
Favorite one (IN used always

with the parentheses)
- - -

OutSystems
Dev 2

Didn't like this
one

Favorite one (with auto-match by
name instead of type)

- - -

OutSystems
Dev 3

- - -
Favorite one

(new list
property "List")

-

OutSystems
Dev 4

- - - - Favorite one

OutSystems
Dev 5

- -
Favorite one (with "by" being

added automatically)
- -

Knew
SQL?

Knew the
IN

operator?

Easily understood
and selected the
new IN operator?

What did the user
first select next to

the IN?

Easily found
and used the

hint?

Found the
error

message
usefull?

Correctly
understood the
new ListSelect

function?

Did the user
found the

symbol "=>"
intuitive?

Did the user
found the

name "Record"
intuitive?

Software Developers

Soft. Dev 1 Yes Yes Yes Entire List No

No (though it
was the

other blue
button)

Yes Yes Yes

Soft. Dev 2 Yes No
No, started by
selecting "="

CategoriesToFilter.
Current.Text

No, found it
but didn't
click in the
suggestions

Yes Yes Yes No

Soft. Dev 3 Yes Yes
No, started by

selecting "like" and
then used "ORs"

CategoriesToFilter.
Current.Text

No Yes Yes Yes Yes

Soft. Dev 4 Yes Yes Yes
CategoriesToFilter.

Current.Text
Yes Yes Yes Yes No

OutSystems Developers

OutSystems
Dev 1

Yes Yes

No, but only
because he knew

that it didn't
previously exist

CategoriesToFilter.
Current.Value

Yes Yes Yes Yes Yes

OutSystems
Dev 2

Yes Yes Yes Entire List No Yes Yes Yes No

The user
completed

the task
succesfully?

Extra
observations

Changes for
next

iteration

Software Developers

No

Wanted to
use "()" with

the IN
operator

Change
name to

"light bulb"
instead of
"hint bulb"

Yes

Yes

Separate the
error

message in 2
lines

Yes
Mentioned
similarity
with Linq

OutSystems Developers

Yes

Wanted to
use "()" with

the IN
operator

Yes

Wanted to
use "()" with

the IN
operator

Fill the entire
icon in
orange

E

S E R V I C E S T U D I O P R O T O T Y P E E V A L U A T I O N :

F U L L R E S U LT S

In this appendix are included the detailed results from every test from the Service Studio Proto-

type phase.

105

1. Has ever
worked with
Aggregates?

2. Has already
faced this
problem?

3. Starting
looking place

4. Used google?
5. If used SQL,
had difficult w/

it?

6. Already knew
IN operator?

7. Mentioned
"Contains"?

8. Had difficulty
understanding the

DropdownTags?

Non-Developers

Non-Developer
1

No No
DropdownTags

component
No - No No Yes

Non-Developer
2

No No
DropdownTags

component
No - No No Yes

Non-Developer
3

No No
DropdownTags

OnChange
No - No No No

Non-Developer
4

No No
DropdownTags

component
No - No No Yes

Non-Developer
5

No No
DropdownTags

component
No - No Yes Yes

Software Developers

Soft. Dev 1 No No
GetDistinctCate

gories
Aggregate

No - No No No

Soft. Dev 2 No No
GetProducts

Aggregate
No - Yes No No

Soft. Dev 3 No No
ListFilter system

action
No - Yes

Mentioned
Includes

No

Soft. Dev 4 No No
GetProducts

Aggregate
No - Yes No No

Soft. Dev 5 No No
Created a new
dropdowntags

handler
No -

Yes (from
python)

No

Yes (because created a
new one and so it had

a list with two
attributes)

OutSystems Developers

OutSystems
Dev 1

Yes Yes
GetProducts

Aggregate
No - Yes - No

OutSystems
Dev 2

Yes Yes
GetProducts

Aggregate
No - Yes - No

OutSystems
Dev 3

Yes No
GetProducts

Aggregate

Yes (to search
how to make a

filter in the
aggregate
filters and

found the post
about the

inexistence of
the IN)

- Yes Yes Yes

OutSystems
Dev 4

Yes Yes
GetProducts

Aggregate
No - Yes - No

OutSystems
Dev 5

Yes No
GetProducts

Aggregate
No - Yes -

Yes (didn't understand
that the

SelectedCategories
input parameter
already had the

selected categories)

12. Solution thoughs

13. The user
was able to

complete the
task?

14. Duration (h:m:s)

Non-Developers

Tried to explore the
dropdowntags but didn't

understand how to view and edit
the associated event

No 00:19:20

saw that GetProducts had a filter
for the other component and

wanted to make another
aggregate similarly but he didn't

know how to do it

No 0:43:02

used the like operator; thought it
would be indifferent to use like

or in from the help messages
No 0:22:46

tried to put an if in the
Inputsearchnameonchange

action
No 0:25:27

got stuck in the filter condition
part

No 00:20:51

Software Developers

wanted to put a component in
front of the aggregate refresh to

filter (basically wanted a list
action)

Yes 00:32:57

started by wanting to make the
filter as a junction of Or clauses Yes 0:17:01

Wanted a filter component (tried
searching the search bar for

"filter")
Yes 0:36:19

First chose the like but then
realized he wanted more than

one tag in the comparison
Yes 0:12:16

selected "like" because he saw
the logic of the already made

example.
No 00:27:43

OutSystems Developers

Use the IN operator in the
Aggregate filters

Yes 0:03:15

First he wanted to solve by
concatenating the selected

categories and using the "like"
operator

Yes 0:04:04

Use the IN operator in the
Aggregate filters

Yes 0:13:18

Use the IN operator in the
Aggregate filters

Yes 0:03:44

Use the IN operator in the
Aggregate filters

Yes 0:09:08

I

D A T A A N A L Y S I S

Figure I.1: Distribution of operations not supported by Aggregates in 67.828 total SQL queries
parsed [41]

108

II

G A R T N E R M A G I C Q U A D R A N T

Figure II.1: Magic Quadrant for Enterprise Low-Code Application Platforms - August 2021 [15]

109

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Research Questions
	1.4 Contributions
	1.5 Document Structure

	2 Background
	2.1 Human-Computer Interaction
	2.1.1 Iterative Development
	2.1.2 Requirements Analysis
	2.1.3 Prototyping
	2.1.4 Usability Testing

	2.2 OutSystems
	2.2.1 Architecture
	2.2.2 Service Studio
	2.2.3 Aggregates

	3 Related Work
	3.1 Visual Query Systems
	3.1.1 Effects of Abstraction in Database Interfaces
	3.1.2 Visual Interfaces
	3.1.3 Spreadsheet Concepts in Visual Querying

	3.2 Visual Query Builders Today
	3.3 Summary

	4 Requirements and Methodology
	4.1 Problem Exploration
	4.1.1 Current Alternative Solutions Analysis
	4.1.2 IN Operator Usage in the OutSystems Platform

	4.2 Alternative Approaches
	4.3 Methodology
	4.3.1 User Groups
	4.3.2 Testing Scenario
	4.3.3 Workflow

	5 Initial Platform Evaluation
	5.1 Platform Current State
	5.1.1 Solution Examples
	5.1.2 Evaluation
	5.1.3 Discussion

	5.2 Alternative Approaches Analysis
	5.2.1 New system action vs Editing ListFilter
	5.2.2 Use cases

	6 Iterative Design, Implementation and Evaluation
	6.1 Low-fidelity Prototype
	6.1.1 Design and Implementation
	6.1.2 Evaluation

	6.2 IN Right Parameter Selection Exploration
	6.2.1 ListSelect Function Prototype
	6.2.2 Outcome

	6.3 Service Studio Prototype
	6.3.1 Implementation
	6.3.2 Evaluation

	6.4 Results Comparison

	7 Conclusion and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	A Users Analysis
	A.1 Platform current state users
	A.2 Low-fidelity prototype users
	A.3 ListSelect function prototype users
	A.4 Service Studio prototype users

	B Platform Current State Evaluation: Full results
	C Low-Fidelity Prototype Evaluation: Full results
	D IN Right Paramenter Exploration: Full results
	E Service Studio Prototype Evaluation: Full results
	I Data Analysis
	II Gartner Magic Quadrant
	Back Matter
	Back Cover

