NEREN,
<3

o 4. INSTITUTO DE HIGIENE E
S~ MEDICINA TROPICAL

-, DESDE 1902
g * gl

w0 UNz
Zp
S

o
O

Universidade Nova de Lisboa

Instituto de Higiene e Medicina Tropical

Caraterizacédo de virus especificos de insetos: analise da sua

diversidade genética e relacdo com outros virus

Paulo Jorge Sampaio Morais

DISSERTACAO PARA A OBTENGCAO DO GRAU DE DOUTOR EM CIENCIAS
BIOMEDICAS, ESPECIALIDADE EM MICROBIOLOGIA

Julho, 2022









ERE
_Q\}lx /\7&7

S @’s INSTITUTO DE HIGIENE E
%/‘5 MEDICINA TROPICAL

vy »‘Or)\ DESDE 1902
&

Universidade Nova de Lisboa

Instituto de Higiene e Medicina Tropical

Caraterizacao de virus especificos de insetos: analise da sua

diversidade genética e relacdo com outros virus

Autor: Paulo Jorge Sampaio Morais
Orientador: Prof. Dr. Ricardo Parreira

Coorientador: Profd. Dr2. Ana Abecasis

Dissertacdo apresentada para cumprimento dos requisitos necessarios a obtencao do

grau de

Doutor em Ciéncias Biomédicas, especialidade em Microbiologia






Oral/Poster communications:

Morais, P. & Parreira, R. (2019) “Primeira descri¢do de flavivirus ¢ densovirus
especificos de insetos em mosquitos de Angola: detecdo de genoma e
caracterizacdo filogenética de sequéncias virais” December 12. X Jornadas do
Instituto de Higiene e Medicina Tropical. Poster presentation.

Morais, P. & Parreira, R. (2020) “Dispersdo espaciotemporal de flavivirus
especificos de insetos explorando o uso da sequéncia codificante da RNA
polimerase” December 14. XI Jornadas do Instituto de Higiene e Medicina
Tropical. Online.

Morais, P. & Parreira, R. (2021) “Reavaliacdo da diversidade genética e
taxonomia da familia Mesoniviridae, bem como das suas relaces com outros
nidovirus” December 10. XII Jornadas do Instituto de Higiene e Medicina

Tropical. Poster presentation.

Peer-reviewed published/accepted manuscripts directly related with the work

presented in this thesis:

Manuel Silva, Paulo Morais, Carla Maia, Carolina Bruno de Sousa, Antonio
Paulo Gouveia de Almeida, Ricardo Parreira. A diverse assemblage of RNA and
DNA viruses found in mosquitoes collected in southern Portugal. Virus Research,
Volume 274 (July 2019), Article n° 1977609.
https://doi.org/10.1016/j.virusres.2019.197769

Paulo Morais, Jodo Pinto, Cani Pedro Jorge, Arlete Dina Troco, Filomeno Fortes,
Carla Alexandra Sousa, Ricardo Parreira. Insect-specific flaviviruses and
densoviruses, suggested to have been transmitted vertically, found in mosquitoes
collected in Angola: Genome detection and phylogenetic characterization of viral
sequences. Infection, Genetics and Evolution, Volume 80 (January 2020), Article
n°104191. https://doi.org/10.1016/j.meeqid.2020.104191

Paulo Morais, Nidia Trovao, Ana Abecassis, Ricardo Parreira. Genetic lineage

characterization and spatiotemporal dynamics of classical insect-specific


https://doi.org/10.1016/j.virusres.2019.197769
https://doi.org/10.1016/j.meegid.2020.104191

flaviviruses: outcomes and limitations. Virus Research, Volume 303 (October
2020), Article n°® 198507. https://doi.org/10.1016/j.virusres.2021.198507

Paulo Morais, Nidia Trovdo, Ana Abecasis, Ricardo Parreira. Readdressing the
genetic diversity and taxonomy of the Mesoniviridae family, as well as its
relationships with other nidoviruses and putative mesonivirus-like viral
sequences. Virus Research, Volume 313 (May 2022), Article n°® 198727.
https://doi.org/10.1016/j.virusres.2022.198727

Paulo Morais, Nidia Trovdo, Ana Abecasis, Ricardo Parreira. Insect-specific
viruses in the Parvoviridae family: Genetic lineage characterization and
spatiotemporal dynamics of the recently established Brevihamaparvovirus genus.
Virus Research, Volume 313 (May 2022), Article n° 198728.
https://doi.org/10.1016/j.virusres.2022.198728



https://doi.org/10.1016/j.virusres.2021.198507
https://doi.org/10.1016/j.virusres.2022.198727
https://doi.org/10.1016/j.virusres.2022.198728

In honor of my father, grandfather and grandmother, who all unfortunately passed

away during this project...

“Think of him faring on, as dear

In the love of There as the love of Here.
Think of him still as the same. 1 say,
He is not dead—he is just away. ”

- James Whitcomb Riley



Acknowledgements

e To IHMT for allowing me to continue my studies and further pursue my lifelong
wish of obtaining a doctorate degree, and to GHTM for providing the bioinformatics
framework that supported the majority of the analyses here presented.

e To my supervisor, Ricardo Parreira, for the constant guidance, patience and
support, for always being available and for all the handed experience and knowledge
that will for sure be invaluable in the future. Faced with all my mistakes and mishaps,
he never once doubted my work and sought for all projects/experiments to provide
the best possible results.

e Tomy co-supervisor, Ana Abecasis, who, even through her busy schedule, always
provided the best support she could.

e To the members of my Tutorial Commission, Nidia Trovao and Jodo Piedade, for
all assistance over the project.

e To the coordination of my doctoral program, formerly Jodo Pinto and now
Gabriela Santos-Gomes, for allowing me to pursue this dream and finish this project.
e To all my colleagues at IHMT, for all the friendship.

e To my wife Sara, who goes through all my joy and, more importantly, my
suffering. She’s the rock that keeps me going forward and without her I would
probably not even have embraced this challenge. Your love and support were essential
through all these years.

e To my father, Vitor Morais, who passed away on the 29" of January, 2019. Our
relationship was not always perfect, but if I am the man | am today, close to finishing
this doctoral degree, it’s no doubt also thanks to his support. I'm sure he’s looking
proud at what I have achieved, and I’11 keep striving and achieving higher heights for
him.

e To my grandfather, Agostinho Morais, who passed away on the 3 of November,
2018, and my grandmother, Maria de Jesus Morais, who passed away on the 26" of
November, 2021. Their emotional, financial and heartfelt support was one of, it not
the most, important over the course of not only this doctoral program, but also all my
former academic courses. Both were already quite sick when 1 started this project, but
they still wanted to see me cross the finish line. Unfortunately, that did not come to

be. I hope | made you both proud.

Vi



e To my family, who went through both good and bad moments with me over the
last years, and also my wife Sara’s family, who always took me literally as one of

their own and always gave all their hearts for me.

vii



Abstract

Arboviruses are responsible for impactful viral diseases and are transmitted to humans
and other animals by insect and other arthropod vectors. Among the latter, mosquitoes
pose as one of the most important hematophagous vectors known to carry pathogenic
arboviruses for humans, like dengue and Zika. For a long while, virus research was driven
by the negative impact viruses impose on human/animal/plant health, but recent
developments in next-generation sequencing and bioinformatics have allowed for
improvements on virus discovery strategies. In turn, these have led to an increase in the
number of peculiar viruses detected in viral screening-based studies, some of which
display restricted replication in vertebrate cells. These viruses, designated insect-specific
viruses, are thought to have none-to-low impact on animal health and have endured in the
shadow of pathogenic arboviruses. However, in the last decades they have become the
focus of our attention, not only due to their extensive diversity and unusual host-
restriction strategies, but also because of their potential to interfere with the replication
of arboviruses. Insect-specific viruses have since been discovered in multiple virus
families, with mosquito-specific viruses especially associated with the Flaviviridae,
Mesoniviridae and Parvoviridae families.

In this project we sought to detect and analyze new insect-specific virus sequences from
these three viral families in mosquitoes collected in Portugal, Angola and Mozambique.
Genetic diversity, phylogenetic reconstruction and phylodynamic assessments were then
executed, using both new generated sequences and sequences available in public
databases. New classical insect-specific flavivirus (cISF) sequences were detected in
mosquito pools from these three geographic regions, and different sub-lineages inside the
cISF cluster were characterized. Phylodynamics analyses suggested that cISF dispersion
over space and time could be recent and quite dynamic. On the other hand, while
insufficient data did not allow for a full phylodynamic analysis based on mesonivirus
sequences, an extensive taxonomy revision was performed, that also included the analysis
of sequences similar to mesoniviruses (meson-like viruses) recently detected in organisms
other than mosquitoes. Finally, we also sought to analyze among the parvoviruses of
invertebrates those included in the Brevihamaparvovirus genus, that have been restricted
(so far) to a few mosquito species. Their genomes seem to evolve under strong purifying
selection and are also characterized by low entropy, as also observed for flaviviruses and
mesoniviruses. We also performed a taxonomic revision of the taxon (the first ever for
brevihamaparvoviruses), and attempted their first ever phylodynamic reconstruction.

Keyword: Insect-specific virus; taxonomy; genetic diversity; phylogenetic analysis;

spatiotemporal dynamics
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Resumo

Os arbovirus sdo responsaveis por doencas com impacto significativo na saude humana,
sendo transmitidos a humanos e outros animais por insetos e outros vetores invertebrados.
Entre estes ultimos, 0os mosquitos representam um dos mais importantes vetores
conhecidos por servirem de vetores a arbovirus patogénicos para 0s humanos, de que séo
exemplos os virus da dengue e Zika. Por muito tempo, a pesquisa de virus foi
impulsionada pelo impacto que estes agentes impdem a salde humana/animal/plantas,
mas os desenvolvimentos nas Ultimas décadas nos dominios das tecnologias de
sequenciacgdo de alto rendimento e bioinformatica permitiram melhorias nas estratégias
de descoberta de virus, o0 que, por sua vez, levou a um aumento no nimero de virus
peculiares que vieram a ser descobertos em rastreios virologicos, alguns com replicagdo
restrita em células de vertebrados. Acredita-se que esses virus, designados virus
especificos de insetos, tenham impacto nulo ou baixo na satde animal e, provavelmente
por isso mesmo, tenham permanecido a sombra de arbovirus patogénicos. No entanto,
nas Ultimas décadas eles tornaram-se no foco da nossa atencdo, ndo apenas pela sua
extensa diversidade e estratégias incomuns de replicacdo restrita nalguns hospedeiros,
mas também pelo seu potencial de interferir na replicagdo de arbovirus. Desde entdo,
diversos virus especificos de insetos foram descobertos em varias familias de virus, com
virus especificos de mosquitos associados especialmente as familias Flaviviridae,
Mesoniviridae e Parvoviridae.

Neste projeto procurou-se detetar e analisar novas sequéncias de virus especificos de
insetos dessas trés familias virais em mosquitos coletados em Portugal, Angola e
Mocambique. A diversidade genética, reconstrucdo filogenética e avaliacBes
filodindmicas foram entdo executadas, usando tanto sequéncias gendmicas geradas de
novo, bem como de sequéncias disponiveis em bases de dados publicas. Novas sequéncias
de flavivirus especificos de insetos ditos "classicos” (cISF) foram detetadas em pools de
mosquitos das trés regides geograficas, e diferentes sub-linhagens de cISF foram
caracterizadas. A sua analise filodindmica sugeriu que a dispersdo de cISF no espaco e
no tempo devera ser recente e bastante dindmica. Por outro lado, embora dados
insuficientes ndo tenham permitido uma analise filodindAmica completa com base em
sequéncias de mesonivirus, foi realizada uma extensa revisao taxondmica, que incluiu a
analise de sequéncias semelhantes a mesonivirus (meson-like viruses) recentemente
detetadas em outros organismos que ndo mosquitos. Por fim, também procurdmos
analisar entre os parvovirus de invertebrados aqueles que tém sido incluidos no género
Brevihamaparvovirus, cuja distribuicdo até a0 momento parece ser restrita a algumas
espécies de mosquitos. Os seus genomas parecem evoluir sob forte selegdo negativa e
tambem séo caracterizados por baixa entropia, tal como foi igualmente observado para
flavivirus e mesonivirus. Também realizdmos uma revisdo taxonémica do taxon (o
primeiro para brevihamaparvovirus) e efetuamos a sua primeira reconstrucio
filodindmica.

Palavras-chave: Virus especificos de insetos; diversidade genética; reconstrugdo

filogenética; filo dindmica
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from the target pathogenic virus. Retrieved from Nouri et al. (2019). Reprinted by
permission from Elsevier under the license number 5274340001060, from 22 Mar

Figure 4 - Mutation rate variation among the seven groups of viruses, according to the
Baltimore classification (ss — single-strand, ds — double-strand, RT — retroviruses, pRT
— para-retroviruses). Retrieved from Sanjuan & Domingo-Calap (2016). Reprinted
from open access article distributed under the terms of the Creative Commons CC BY
LI CBNS . e 17

Figure 5 - Example of a phylogeny with included terminology. A and B are considered
sister taxa, derived from a common ancestral node; all these sequences are inserted into
a monophyletic group, including an ancestor with all its descendants. Retrieved from
Egan (2006). Retrieved from Egan (2006). Copyright © BYU,
20006, . ..t et bbbt b et nes 17

Figure 6 - Phylodynamic processes. (A) Simple rooted phylogenetic tree, with branch
lengths representing the genetic divergence from the ancestor (with no timescale); (B)
Same tree as A but reconstructed using a molecular clock, which defines a relationship
between genetic distance and time, with branch lengths represented in units of years;
(C) Same tree as B but reconstructed using spatial data, with each branch labeled as to
its estimated geographical position. Combining temporal and spatial data allows further
insight into the spatiotemporal dispersal of viruses. This hypothetical virus first spread
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into France and the United Kingdom, and spatiotemporal data allowed us to identify
two different diffusion events into two other locations in Spain, first to C1 in 1990 and
later in 2000 to C2. Retrieved from Pybus & Rambaut (2009); Reprinted by permission
from Springer Nature under the license number 5232480528990, from 19 Jan 2022...22

Figure 7 - (A) Representation of the flaviviral genome. (B) Flaviviral polyprotein
topology, with predicted transmembrane domains. UTR: untranslated region; ER:
endoplasmic reticulum; NS: non-structural. Reprinted with permission from Barrows,
N. J., Campos, R. K., Liao, K. C., Prasanth, K. R., Soto-Acosta, R., Yeh, S. C., Garcia-
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Reviews, 118(8), 4448-4482. Copyright © American Chemical Society, 2022........ 25
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Figure 9 - Representation of most conversed regions of the genome of mesoniviruses,
including the ribosomal frameshift responsible for the translation of two polyproteins.
3Clpro: 3C-like protease; ExoN: Exoribonuclease; Hel: Helicase; NMT = N7-
methyltransferase; OMT = Nucleoside-2’-O-methyltransferase; ORF: Open reading
frame; RdRp: RNA-dependent RNA polymerase. Retrieved from ViralZone,
www.expasy.org/viralzone © Swiss Institute of Bioinformatics...........ccccceevevvennne. 33

Figure 10 - Representation of genome of viruses from different parvovirus, shown as
single lines terminating in boxed hairpin structures (emphasized relative to the rest of
the genome). Major open reading frames that encode proteins are displayed as arrowed
boxes. NS stands for non-structural, VP stands for viral protein, AAAAA indicates
polyadenylation sites, and SAT stands for “small alternatively translated protein”.
Retrieved from Cotmore et al. (2019) Reprinted by permission from Microbiology
Society under the license number 1202419-1, from 27 Apr 2022.........ccccceovvvvevennenn. 35

Figure 11 - Phylogenetic representation of relationships at the genera level, based on
the Bayesian inference of the helicase domain (167 aa), from which the taxa from the
Parvoviridae family have recently been established. Retrieved from Pénzes et al.
(2020). Reprinted by permission from Springer Nature under the license number
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Figure 1 - Phylogenetic analysis of partial amino acid sequences of the viral-ended
RNA polymerase of viruses within the Order Bunyavirales. At specific branches the
number of “*” indicates the support revealed by the different phylogenetic
reconstructions methods used, assuming as relevant bootstrap values >75% and
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horizontal arrows. The size bar indicates the number of amino acid substitutions per

Figure 2 - Phylogenetic analysis of partial NS1 amino acid (A) or nucleotide (B)
sequences of viruses in the sub-family Densovirinae (family Parvoviridae)(A) or the
Brevidensovirus genus (B). In (A) only a maximum likelihood tree is shown, with
bootstrap values (=75%) indicated at specific branches. In (B), at specific branches the
number of “*” indicates the support revealed by the different phylogenetic
reconstructions methods used, assuming as relevant bootstrap values >75% and
posterior probability values>0.80. The sequences obtained in this work are highlighted
in boldface and indicated by the horizontal arrows. The size bar indicates the number
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reconstructions methods used, and assuming as relevant bootstrap values >75% (using
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1. Viruses

Viruses are submicroscopic, obligate intracellular parasites, composed of genetic
information (in the form of RNA or DNA), comprising genes encoding proteins dedicated
to self-replication (sometimes also including those that encode products that change the
cellular environment to benefit viral replication and/or to deter host antiviral defenses),
as well as those that encode the structural components that determine the formation of the
infectious virus particle itself (the virion). In addition to the latter, sometimes a lipid-rich
envelope (derived from one of the multiple cellular membrane compartments), encloses
the viral genome inside a viral particle (Wagner et al., 2007a). On their outer surface,
regardless of the presence/absence of an envelope, the viral particle displays the proteins
that are essential to allow the virus to interact with the host cell (Mothes et al., 2010).

While viruses are ubiquitous and structurally simple (Cann, 2015), they can come in many
shapes and sizes (as seen in Figure 1), which vary between different viral families.
Viruses can be classified according to their type of genome and replication strategy
(Baltimore Classification System) and can also be recognized in different taxonomic
ranks (like different viral families), which focuses mainly on the grouping of closely
related viruses. Official taxonomic classification has been overseed by The International
Committee on Taxonomy of Viruses (ICTV) and has evolved over time. It started as a
five-rank hierarchy (from species to genus, subfamily, family and order) and a simple
phenotype-based characterization, to a 15-rank structure that also includes the
comparative analysis of sequences of conserved genes and proteins (Gorbalenya et al.,
2020). Changes to the taxonomic classification of viruses, following changes to the ICTV

Code in 2018, can be provided by all of the virology community (Siddell et al., 2019).

Until a few decades ago, the isolation and study of such agents were mostly focused on
those that were pathogenic to humans, or to the animals/plants humans depend upon for
their survival or with significant associated economic value. Unsurprisingly, special
attention was devoted to viruses that led to epidemic/pandemic events, where the analysis
the investigation of their characteristics, and not only their pathogenicity/virulence,
promoted the evolution of virology (Oldstone, 2019).

Virology encompasses, amongst other aspects, the study of viral structure and

classification, their interactions with other organisms (viruses use as hosts, natural
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reservoirs, or vectors to warrant their transmission), their evolution as well as genetic
diversity, ecology, and the mechanisms they explore to ensure their successful replication
inside a host cell (Wagner et al., 2007b). Still, the demanding processes involved in the
discovery and isolation of viruses, as well as a focus on disease-associated viral agents,
proved as a limitation in the study of the diversity of the virosphere, from which only a
very small fraction is still currently known (Call et al., 2021). However, in recent years,
research in virology has mainly been approached from a molecular biology perspective,
and many studies have been especially focused on the analysis of viral genomes using a
combination of metagenomic approaches, taking advantage of the augmented
performance in high throughput sequencing and exploring the developments in the field
of bioinformatics. In combination, these have been vital in improving our current
knowledge about the viral diversity of the biosphere (lbrahim et al., 2018). This has
proven especially true when our attention is focused either on rarely sampled taxa or
infrequently visited biotopes, as viral surveys have repeatedly revealed novel or divergent
viral groups (Li et al., 2015; Kauffman et al., 2018). Invertebrates are among the animals
most frequently sampled in recent viral surveys, and among them, mosquitoes (Diptera:
Culicidae), due to their role as vectors of pathogenic viruses, are the invertebrates most
frequently studied (Zhang et al., 2018b).
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Fig. 1: Illustration of examples of different viruses’ shapes and sizes, based on the family they belong to
(Retrieved from Cann, 2015). Retrieved from Principles of Molecular Virology (6th Edition) by Alan J.
Cann, published by Elsevier, Copyright © Academic Press, 2015. Permission to reusage granted by
publisher.

1.1. Arthropod-borne diseases and arboviruses

Many viral diseases are caused by viruses carried by insect vectors, with human
involvement often being incidental (i.e., humans do not always participate in the natural
maintenance cycles of the viruses in question). These viruses, identified as arthropod-
borne viruses (or arboviruses) are usually biologically maintained in a natural cycle that
includes a vertebrate and a virus-infected invertebrate vector. These viruses have imposed
great challenges on humans, and for many of them, their disease-causing mechanisms are
still unknown. Moreover, they have proven resilient to the different strategies
implemented toward disease control, from difficulties regarding the limitation of the
geographical dispersal of their vectors, to the development of antivirals and vaccines
(Young, 2018).
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Vector-borne diseases are infections that list among the preeminent causes of morbidity
and mortality in humans, causing more than 700,000 deaths annually (WHO, 2020), and
constitute a significant health problem, especially in tropical and subtropical countries
(Figure 2). Recent years saw a considerable expansion of arboviral diseases linked to
multiple factors that include high human population density in certain areas, trade
globalization, and climate changes (Martina et al., 2017). Even after the onset of COVID-
19, their impact on human health has been largely disregarded. Viruses involved in these
diseases are either primarily, or exclusively, transmitted through a hematophagous
invertebrate (Cann, 2015), with the most common vector-borne diseases being associated
with either insects (mostly mosquitoes) or arachnids (mostly ticks). Arbovirus
transmission mechanics are quite complex and can be sorted into three main types, which

mainly involve either humans or other vertebrates (Weaver et al., 2018):

e Direct spillover: direct virus transmission to humans by primary/surrogate
enzootic vectors usually associated with enzootic amplification, augmenting viral
circulation near humans. Examples include the West Nile virus (WNV), St. Louis
encephalitis virus, yellow fever virus (YFV), as well as the Eastern and Western
equine encephalitis viruses (EEEV and WEEV, respectively);

e Domestic animals as amplifiers: prior amplification in domestic animals,
succeeded by direct spillover to humans. Examples include the Japanese
encephalitis virus (JEV; with viral amplification in swine) and Rift Valley fever
virus (RVFV; with viral amplification in sheep);

e Enzootic transmission cycle to a human—-mosquito—human cycle: an enzootic
cycle that spills over to infect people that live nearby, who then serve as
amplification hosts. Examples include the Zika virus (ZIKV) and chikungunya
virus (CHIKV).

Mosquitoes are insect vectors that are known to transmit pathogenic agents with emerging
potential, including viruses (Gould et al., 2017). Multiple mosquito-borne viruses, like
WNV, CHIKYV, dengue virus (DENV), YFV, and ZIKV, pose a substantial potential
threat to public health (Huntington et al., 2016). Among the latter, DENV stands as the
most important human arbovirus. Genetic studies have suggested that its origin may have

occurred around a thousand years ago, but it was isolated for the first time in Japan only
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in 1948. Presently, it is associated with significant morbidity and mortality, especially in
low-income countries (Harapan et al., 2020). Other than the most well-known (or talked
about) arboviruses, multiple others have remained in the shadows of the most
predominant ones and have either been emerging at an alarming rate or are poised to do
so should conditions allow it. One such example is the Tembusu virus (TMUV),
belonging to the Flaviviridae family. While TMUV was first detected in Malaysia in
1955, it was not until 2010, when the first major outbreak occurred in ducks, that research
focused on this virus really bloomed (Hamel et al., 2021). Recent years saw the
emergence of new arboviruses, like the Chatanga virus, first detected in Finland in 2007
(Madani et al., 2011), and the Kibale virus, first detected in Uganda in 2013 (Marklewitz
et al., 2013), both mosquito-borne viruses from the family Peribunyaviridae. Recent
years also saw many well-known arboviruses reemerge (including CHIKV and ZIKV),
even leading to their introduction from endemic areas into new regions, including Europe
(Barzon, 2018).

JEV

Q ZIKV
@
JEV &
RVFV

JEV DENV YFV ZIKV CHIKV RVFV ] MAYV [] orov

Fig. 2: Reported distributions of arboviruses, as Weaver et al. (2018) reported. Abbreviations: CHIKV -
chikungunya virus; DENV - dengue virus; JEV - Japanese encephalitis virus; MAYV - Mayaro virus;
OROV - Oropouche virus; RVFV - Rift Valley fever virus; YFV - yellow fever virus; ZIKV - Zika virus.
Reprinted by permission from Microbiology Society under the license number 1202419-1, from 27 Apr
2022.

There is a lot to be learned from the analysis of insect-borne viruses. Even with the recent
resurgence of multiple arboviruses, only less than 1% of all viruses, by recent estimates,

have been discovered so far (Geoghegan & Holmes, 2017). Unsurprisingly, starting
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approximately a decade ago, some viral screening-based studies combining
metagenomics and Next Generation Sequencing (or NGS) started reporting newly
discovered insect-associated viruses, many of which did not correspond to bona fide
arboviruses, as their replication was restricted to invertebrates or invertebrate cell-lines
(Junglen & Drosten, 2013).

1.2. Insect-Specific Viruses
In recent years, a large assemblage of viruses that seem to be non-pathogenic to
vertebrates, and that are unable to replicate in vertebrate cells, have come to be generally
known as insect-specific viruses (ISVs). They are abundant in hematophagous
arthropods, especially in mosquitoes, and comprehend a genetically disparate assembly

of RNA and DNA viral agents, belonging to several different families (Nouri et al., 2018).

1.2.1. History of ISVs

The first-ever ISV to be described was isolated from an Aedes aegypti cell culture in 1975
by Stollar and Thomas (Stollar and Thomas, 1975). No cytopathic effects were observed
when the virus was inoculated in different vertebrate cell lines, and it would eventually
be characterized as a positive-sense RNA virus, and placed within the family
Flaviviridae. Furthermore, it was designated cell fusing agent virus (CFAV) after the
typical cytopathic effect it causes when it replicates in mosquito cell-lines, which involves
the formation of multiple large syncytia (Cammisa-Parks et al., 1992). More than 20 years
passed with little to no developments regarding the discovery of new ISVs, and it was not
until the early 2000s that ISV research was solidly boosted, starting with the description

of another insect-specific flavivirus, the Kamiti river virus (KRV; Crabtree et al., 2003).

Interest in the analysis of ISVs mounted at a slow pace, with research showing these
genetically diverse viruses belonged to different taxa. In recent years, a clear rise in their
study has been indisputable (Abudurexiti et al., 2019), benefiting from the widespread
use of molecular technologies and the development of bioinformatics tools, which have
granted us a better understanding of the nature, diversity, distribution, replication features

and evolution of ISVs (Nouri et al., 2018). Indeed, studies have already shown that at
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least for some ISV, their genetic information not only exist in the form of viral genomes
but could also be found integrated into the genomes of mosquitoes where it might have
remained for a long time, and, therefore contribute to the acquisition of genetic diversity
in eukaryotic cells. Specifically, initial studies reported partial sequences related to the
ones encoding the RNA dependent RNA polymerase of CFAV and KRV in the Aedes
aegypti A20 cell-line (Crochu et al., 2004).

Even after the sudden surge of ISV discovery in the early 2000s, it was not until early
2010s that ISV research really spiked. Innumerous viruses would be identified, the
majority with RNA genomes. While they frequently corresponded to new flaviviruses
(Order Amarillovirales), others were placed in multiple families in the Order
Bunyavirales (Hobson-peters et al., 2016), the family Mesoniviridae in the Order
Nidovirales (Wang et al., 2017), and also in the families Togaviridae in the Order
Martellivirales (Nasar et al., 2012) and Rhabdoviridae in the Order Mononegavirales (Ma
et al., 2014). However, the taxonomic diversity involving ISVs would grow significantly
in recent years. Indeed, da Silva et al., in 2020, detected 1SVs from innumerous different
virus families from mosquitoes collected in Brazil, including Circoviridae, Totiviridae,
Iflaviridae, Nodaviridae, Luteoviridae, Phasmaviridae, Phenuiviridae, Rhabdoviridae,
Orthomyxoviridae and Xinmoviridae. Also in 2020, a double-stranded RNA (dsRNA)
virus, denominated Psammotettix alienus reovirus (PARV), was isolated from a
leafhopper (Psammotettix alienus) collected in China (Fu et al., 2020). While ISVs do not
usually display a DNA genome, a large number of ISV sequences have also been
associated with members of the Parvoviridae family (Zhai et al., 2008). Recent research
does suggest ISVs have a broader distribution that initially anticipated, not only being
associated with diverse virus families, but also displaying a global distribution. Indeed,
ISVs from the Flaviviridae, Mesoniviridae and Parvoviridae families have been
discovered in multiple continents (Sadeghi et al., 2017; Shi et al., 2017; Kyaw Kyaw et
al., 2018), and in association with distinct Culicine and Anopheline mosquitoes (Calzolari
et al., 2016).

Over time, ISVs have also been described in the research work carried out at IHMT,
which allowed for the characterization of such viruses from mosquitoes collected in
Portugal. As examples, the first world-wide known insect-specific flavivirus (ISF) from

Culex theileri was identified in mosquitoes collected in southern Portugal (Parreira et al.,
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2012). This was followed by the full characterization of an ISF isolated from Ochlerotatus
caspius (Ferreira et al., 2013), as well as Negev-like viruses (Carapeta et al., 2015), also
found in mosquito specimens from the south of Portugal. Further research in 2019 (based,
once more, on mosquitoes collected in 2018 in the Algarve region) allowed for the
detection of ISVs from the Flaviviridae, Parvoviridae as well as unclassified viral
sequences, associated with putative viruses placed in the Order Bunyavirales (Silva et al.,
2019).

1.2.2. Transmission and host-range restrictions of ISV

How insects acquire ISVs, and how these viruses are maintained in nature, is still largely
unknown. Unlike arboviruses, which are usually acquired by a vector upon feeding on a
viremic vertebrate, there is no indication that ISVs can be natural maintained in a cycle
between a mosquito and a vertebrate animal (Weaver & Barrett, 2004). While different
types of viral transmission modes could be explored to preserve ISVs in their host
populations, the primary natural maintenance mechanism is thought to be vertical (or
transovarial) transmission. This is suggested by direct experimental evidence, where the
virus was shown to pass from infected female mosquitoes to their offspring (Haddow et
al., 2013; Saiyasombat et al., 2011). Venereal transmission (transmission from naturally
infected male mosquitoes to females) has also been suggested and could be a possible

mechanism of ISV maintenance (Bolling et al., 2012).

While the story of the discovery of ISVs is relatively easy to track, the mechanisms behind
host restriction appear to be way more complex. Several experimental studies in recent
years confirmed ISV host-restriction by attempting their propagation, for example, in
vertebrate cell lines, including unsuccessful attempts to replicate Culex insect-specific
flaviviruses in African green monkey kidney epithelial cells (Hoshino et al., 2007) and
chicken embryo fibroblasts (Bolling et al., 2011). Also, studies have shown that direct
transmission in nature of these viruses between infectious insects with ISV and
vertebrates could be limited, as reports have shown that some ISVs, like a Culex flavivirus
(CxFV) and the Palm Creek virus, could not be found in the saliva of Culex mosquitoes
(Hall-Mendelin et al., 2016; Talavera et al., 2018). Surprisingly, one study did report

salivary glands of Aedes aegypti mosquitoes infected with Eilat virus, an insect-specific
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alphavirus (Nasar et al., 2014), which means ISVs could eventually come into contact
with vertebrate cells.

How could we then explain the limited in-vitro replication of ISVs in vertebrate cells lines
that have been reported in multiple experimental data? Several studies highlighted that
host-range restrictions of ISVs in vertebrate cells may affect multiple stages of the viral
replication cycle (Junglen et al., 2017). This was demonstrated when a YFV chimera
carrying the envelope proteins of an ISV, the Niénokoué virus (NIEV), exhibited efficient
replication in invertebrate cells, though it could not enter vertebrate cells. When RNA
from the YFV/NIEV clone was inserted into those same vertebrate cells, no viral genome
replication nor assembly was recorded. One of the most supported theories suggest that
the innate immune system could strongly hinder ISV replication in vertebrate cells. Tree
et al., in 2016, suggested that the ISV Kamiti River virus (KRV) could not evade
vertebrate innate immune pathways. Knockdown of pattern recognition receptors (RIG-
1, MDA5 and TLR3) resulted in a rise of KRV replication, even if at low levels, in
vertebrate cells, which suggests KRV can replicate in those same cells if the innate
immunity pathways are silenced. Other reports observed that even micro ambient
temperature could be an important factor determining host restriction. While arboviruses
are capable of replicating at temperatures up to 42 °C, insect-specific viruses seem to only
be able to replicate at ambient temperatures (between 25-28 °C). On the other hand,
Marklewitz et al. (2015) observed that high temperatures hindered the replication of an
insect-specific bunyavirus in insect cells, and also that simply lowering the temperature

was not enough for that same ISV to replicate in vertebrate cells.

While there is no definitive answer to the host-restriction of ISVs, these data suggest that
host restriction could be explained by either ISVs genetic elements, vertebrate host factors

or even be dependent on micro ambient temperature.

1.2.3. 1SVs potential for vector control

The global threat that arboviruses present, the lack of efficient treatment protocols as well
as prophylactic vaccines against many of them, has led, in recent years, to research on

new mechanisms for disease control. Since very little has been achieved regarding the
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development of antivirals, or even vaccines for the majority of arboviruses, the control of

arboviruses has mainly targeted mosquito populations (Ache et al., 2019).

It has been shown that Wolbachia, a common intracellular bacterial endosymbiont, can
block the transmission of important arboviruses (Jiggins, 2017). While recent research
results look promising (Aliota et al., 2016; Indriani et al., 2020), mechanisms by which
Wolbachia prevents arbovirus transmission are not yet still fully understood. Virus block
could be caused by decreasing host virus transmission (possibly by higher Wolbachia
density), especially in the midgut and salivary glands. In turn, this could lead to
arboviruses replication inhibition (Martinez et al., 2014). Alternatively, Wolbachia could
decrease host population density if its presence somehow has negative fitness effects in
mosquitoes. The latter effect has been investigated in mosquitoes with experimentally-

introduced Wolbachia, but mixed results have been obtained so far (Ross et al., 2019).

In theory, regardless of the impact ISVs might have on the fitness of mosquitoes (see
below), they could potentially be used as biocontrol agents by exploring their symbiotic
relationship with their mosquito hosts, which, in turn, could eventually lead to inhibition
of arbovirus replication in ISV-infected cells (Calisher and Higgs, 2018). Indeed,
experimental studies already demonstrated ISVs could modulate pathogenic arboviruses
replication in mosquitoes (Fujita et al., 2018). The main mechanism that has been
proposed for a plausible application of ISVs in arbovirus control strategy is thought to
involve superinfection exclusion (Laureti et al., 2020). This implies that a primary
infection by an ISV could result in the modification of cell surface molecules that might
restraint cell entry by an exogenous virus, or even affect viral intracellular replication,
therefore hindering vector competence. The latter is quite complex and usually refers to
the ability of the host to withstand infection and subsequently maintain and transmit an
infectious agent, usually further involving interactions between host, vector and pathogen
and calculated by both insect species factors (longevity, feeding habits) and

environmental factors.

Goenaga et al. (2015) demonstrated that a concurrent infection of Aedes albopictus C6/36
mosquito cells with the Nhumirim virus (NHUV), an insect-specific flavivirus, and
WNV, resulted in a substantial reduction in the replication of the latter. This does suggest

that the NHUV reduced vector competence for WNV in the mosquito host. Other studies
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also demonstrated that a persistent Culex insect-specific flavivirus infection in Culex
pipiens could hinder early replication of WNV (Bolling et al., 2012), or that Palm Creek
virus infection of Coquillettidia xanthogaster could hinder replication of WNV and
Murray Valley encephalitis virus (MVEV) (Hobson-Peters et al., 2013). However, these
observations may depend on specific viral combinations, as another study did not show
any promising effects in inhibiting the growth of ZIKV with the insect-specific Palm
Creek virus in a co-infection of Aedes mosquitoes (Koh et al., 2021). In a similar way, a
study from 2018 demonstrated that NHUV infection of C6/36 cells could inhibit ZIKV
and DENV-2 replication, but not CHIKV (Romo et al., 2018). Indeed, no consistency has
been found in recent research, implying that the mechanisms behind a possible effect of

co-infection on vector competence could be more complex than initially thought.

Previous infection of insects with ISV could affect vector competence and catalyze
desirable effects to impact the transmission of pathogens in mosquitoes in multiple ways
(Ohlund etal., 2019; Figure 3). One possibility is that ISVs could directly cramp arbovirus
cell attachment by blocking/downmodulating the expression of specific receptors (Figure
3-1). This interaction has been reported multiple times, including with Anopheles-specific
ISVs (Colmant et al., 2017), but how it was brought about is largely unknown.
Transfecting cultured cells with recombinant ISVs designed to express the ligands which
could bind to and saturate such receptors could be a viable approach. Another possibility
could involve the use of recombinant ISVs containing effector sequences derived from
the target pathogenic virus, which would promote resistance to homologous pathogenic
viruses, affecting vector competence (Figure 3-3). This strategy has been applied
successfully using a recombinant Sindbis virus (an alphavirus found in both insects and
vertebrates) to initiate resistance towards DENV in C6/36 cells (Adelman et al., 2001),
but has not yet been explored in practical terms with ISVs.

Moreover, it is also unknown to what extent ISVs may affect the fitness of their
invertebrate hosts, and potentially contribute, for example, to reduce the longevity of adult
mosquitoes. Using ISVs as a means to introduce RNA-induced silencing complexes
(RISC) into the host genome, negatively impacting insect survivability and, in turn,
affecting vector competence to arboviruses, could be a viable solution (Figure 3-2).
Recombinant ISVs could be used to express insect RNA sequences that would target host-

specific genes and affect, for example, their development or fecundity. This strategy has
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been used successfully for plant defense against pathogenic viruses but it has not yet been
explored with arthropods (Bachan & Dinesh-Kumar, 2012).

These proposed approaches could represent a turning point in vector control strategies
and consequent modulation of the replication of pathogenic arboviruses in insect cells.
However, since ISV research is relatively recent, many questions remain before it may be
possible to use any of the above-mentioned strategies (or others) to efficiently target
insect vector viability and/or the replication of viral pathogens. How can we deliver ISV
to target hosts? Will recombinant ISVs spread efficiently in their hosts' populations? Will
their intended desirable effects endure long enough so as to allow them to become
efficient in restraining vector competence and/or longevity? Interestingly, endogenous
elements from ISVs have already been found in specific hosts’ genomes, where they
integrate most probably taking advantage of reverse transcriptase activities encoded by
retrotransposons present in mosquito genomes (Crochu et al., 2004; Lequime &
Lambrechts, 2017; Abilio et al., 2020). Still, a greater understanding of the basic biology
and genetics of ISVs is required, and questions such as (i) what are their species-
specificity and geographic range, (ii) how diverse are their genomic sequences on an
individual and population level, (iii) how high are their mutation rates, (iv) what kind of
selective pressure is acting on their genomic sequences (evolving in a diversifying or
purifying way), and (v) are there recombinant ISVs already spreading among insect hosts

populations, are still open to discussion, and deserve being investigated.
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Fig. 3: Potential translational applications of recombinant ISVs by affecting vector competence. Three
possibilities for inducing desirable effects in the insect host are indicated: (1) directly impact on pathogen
entry in insect hosts by saturating receptors essential for virus acquisition; (2) impact on host survivability
by integrating an RNA induced silencing complex (RISC) that target specific host genes and induce adverse
effects in insect’ essential traits; (3) contribution to increased resistance to the target virus in the insect
vector by using recombinant ISVs that contain sequences derived from the target pathogenic virus.
Retrieved from Nouri et al. (2019). Reprinted by permission from Elsevier under the license number
5274340001060, from 22 Mar 2022.

In addition to all the questions listed above, one area where ISV research has been lagging
regards the analysis of their evolution. How, and for how long, have ISVs been spreading
among insect populations? It is known that they are restricted to infect insects, but did
they lose the capacity to infect vertebrates over time, or did pathogenic arboviruses arise
from ISVs?

1.2.4. Why invest in the study of ISV’s viral evolution?

For decades, the application of phylogenetics has been key in allowing the study of the
ancestral relationships of viruses and the emergence of viral diversity (Grenfell et al.,
2004). Not surprisingly, research on virus evolution has been mainly focused on
mosquito-associated viruses with significant impact on public health, including recent
epidemic episodes of ZIKV (Pielnaa et al., 2020), YFV (Diagne et al., 2021), WNV
(Casimiro-Soriguer et al., 2021) or DENV (Du et al., 2021).
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Deconstruction of history, evolution, and relationships among taxonomic operational
units, also known as phylogenetic analysis, has been extensively used in multiple areas
of biology. As genome sequence data, both in the form of nucleotide and amino acid
sequences, became available, research on molecular evolution (which investigates the
accumulation of genetic differences over time) has become integral for the analysis of
genetic divergence between taxa, and to infer the chronology of the splitting events
depicted in a phylogenetic tree, or the age of ancestral sequences (Yang et al., 2012). This
area of expertise, known as molecular phylogenetics, has been a key element of
exploratory and comparative sequence data analysis, which, when applied to virology,
allows for the study of relationships among viral genes and the origin and spread of

viruses (Yang et al., 2012). The main principle is simple yet also complex.

While it is true that as two sequences diverge from their last common ancestor, so does
the number of differences between them increase, simply counting these differences is
complicated by multiple factors. These include, for example, the effects of natural
selection, the accumulation of differences between sequences sharing common ancestry
at variable evolution rates over time or the possibility that multiple substitutions might
hit the same nucleotide position (Holder & Lewis, 2003). Also, different viruses, from
double-stranded DNA (dsDNA) to single-stranded RNA (ssRNA), display different
mutation rates (Figure 4). These result from the combined effects of the biochemical
features of the polymerases that replicate their genomes, that may, or may not, introduce
substantial numbers of polymerization errors, and the possibility that some of these errors
may end-up being corrected during, or after, viral genome replication has been completed,
selected for, or wiped out, from the viral population. A clear understanding of the basics
of phylogeny is needed to understand how we can use phylogenetic inference and apply
it to analyse relationship between ISV genomic data.

Phylogeny allows for the observation of viral molecular evolution through the
reconstruction of the so-called phylogenetic trees. These are no more than schematic
structures depicting the relationships among the sequences being compared, using a
representation where nodes are joined by branches (Figure 5). Each branch represents a
relationship between sequences, and each node depicts the birth of a new lineage (or a
new individual sequence that will be ancestral to all further sequences in that same node

going forward). The sum of this unique ancestor and its respective descendants produces
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groups called monophyletic clades. The common ancestor of all sequences in the tree is
represented through a root (Yang et al., 2012). Information can then be extracted from
branch lengths, where different methods can be applied to calculate the amount of

evolution in them, usually expressed in nucleotide substitutions per site or per time unit.
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Fig. 4: Mutation rate variation among the seven groups of viruses, according to the Baltimore classification
(ss —single-strand, ds — double-strand, RT — retroviruses, pRT — para-retroviruses). Retrieved from Sanjuan
& Domingo-Calap (2016). Reprinted from open access article distributed under the terms of the Creative
Commons CC BY license.
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Fig. 5: Example of a phylogeny with included terminology. A and B are considered sister taxa, derived
from a common ancestral node; all these sequences are inserted into a monophyletic group, including an
ancestor with all its descendants. Retrieved from Egan (2006), Copyright © BYU, 2006
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Phylogenetic information in datasets can be estimated via likelihood mapping, using the
quartet puzzling algorithm (Stirmmer and von Haeseler, 1997), which computes four-
taxon trees and applies maximum-likelihood reconstruction to all possible quartets that
can be constructed from a specific dataset. A consensus rule is then applied and the output
shows the percentage of randomly sampled quartets of sequences that are well resolved
(when one of the three possible unrooted tree topologies is favored), along with partially
resolved (two tree topologies are equally probable), or not resolved (no single tree
topology is favored). The higher the percentage of unresolved quartets, the less befit a

dataset is for phylogenetic reconstruction.

Phylogenetic tree reconstruction is a complex process that revolves around, first and
foremost, the disclosure/collection and alignment of several different sequences, to ensure
the comparison of homologous sequences sites. Then, a reconstruction method must be
applied, and they revolve around either so-called "traditional” or Bayesian approaches.
Three different reconstruction methods have been repeatedly applied over the years for
the reconstruction of phylogenetic trees and in all cases, they attempt to choose the “best”

tree possible, each with its own strengths and weaknesses (Holder & Lewis, 2003):

¢ Neighbor-joining (NJ): perhaps, until recently, the most commonly used, and by
far one of the quickest, phylogenetic tree reconstruction approaches, is best used
for the analysis of sequences with low diversity or that have diverged recently.
This method converts nucleotide or protein sequences into a pairwise distance
matrix, corrected using one of many possible evolution model formulas. These
distances represent the number of changes that occurred along all branches.
However, NJ does not hold up well when divergent sequences are being
compared, or when homoplasies (resulting from multiple substitutions or back
mutations) occur (Frost & Volz, 2013);

e Maximum-likelihood (ML): Unlike NJ, ML accurately corrects for multiple
mutational events at the same site, analyzing numerous trees resulting from
successive topological refinements and choosing the tree that has the highest
probability (likelihood) of producing the observed sequences, considering the
parameters defined by a chosen evolutionary model (i.e., the ML function

maximizes the probability of the data, given a tree and an evolutionary model). It
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involves heavy computation and is, therefore, slower than an NJ-based approach.
It is, however, recommended to reconstruct relationships between sequences that
evolved rapidly or that have split from a common ancestor a long time ago;

e Maximum Parsimony (PM): this method also generates scores for each possible
tree but, unlike ML, it simply assumes a minimal evolution perspective, and
strives at obtaining the tree that reflects the tiniest number of mutations that could
possibly produce the observed data. While simple to understand, it does not
consider the possibility of different mutational pathways along all branches in the

tree.

All the above-mentioned phylogenic tree reconstruction methods require that the chosen
tree should be tested for topological reliability using, for example, bootstrapping
processes, which are not always easy to interpret (Henderson, 2005). In a departure from
the more "traditional” phylogenetic inference approaches, Bayesian methods for
phylogenetic reconstruction, instead of searching for the single “best” tree, it considers
all sets of plausible, similarly probable trees (weighed by their probability), with the better
set being summarized at the end of the analysis as a single Maximum-Clade Credibility
Tree (MCCT). One of the greater advantages of Bayesian phylogenetics builds upon the
fact that allows for the use of prior probability distributions to portray the uncertainty of
all unknown parameters before the analysis of the data (including the model parameters).
After the data is combined with all possible parameter values and the Markov Chain
Monte Carlo (MCMC) is run, the posterior distribution (or probability that the tree is
correct, given the data and the chosen evolutionary model) is generated. The popularity
of Bayesian methods has risen due to the recent growth of powerful data analysis models
and the user-friendly access to computer programs where they have been implemented
(Nascimento et al., 2017). Still, since these functions are too convoluted to integrate
analytically, Bayesian approaches rely on MCMC algorithms to sample, at random
(Markov Chain) from the posterior probability distribution, basing each sample on the
previous one (Monte Carlo) (Yang et al., 2012).

As the above sections suggest, choosing the best model for nucleotide substitution
calculation is critical in Bayesian phylogenetic approaches, but this is also true for NJ,
ML, and MP, to allow analyses to approach biological reality (Yang et al., 2012). The
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simplest model to be used is the JC69 (Jukes and Cantor 1969) model, which assumes
equal base frequencies and mutation rates. The K80 model, often named Kimura's two
parameter model, assumes different rates between transitions and transversions. Both the
HKY85 (Hasegawa, Kishino and Yano 1985) and the general time-reversible (GTR)
models assume different nucleotide proportions, but while HKY85 allow for one
transition rate and one transversion rate, the GTR model assumes a symmetrical
substitution matrix with unequal substitution rates for all possible types of substitutions.
There are additional models that allow rate variation among different genomic regions of
the alignment, usually variable rates according to a gamma distribution (I"). A model

allowing a proportion of sites to be invariable (1) can also be used simultaneously.

Applying phylogenetic approaches to evaluate viral origin and geographic dispersal over
time require not only choosing a specific reconstruction approach and the use of an
adequate nucleotide substitution model, but also both appropriate coalescent, spatial
diffusion, as well as molecular clock models (Figure 6; Pybus & Rambaut, 2009). This
field, known as phylodynamics, permits the characterization of the transmission dynamics
of virus evolution through the incorporation of epidemiological data alongside molecular
sequences (Rife et al., 2017). This analysis can only be possible through the simultaneous

application of several analytical models:

e Molecular clocks: these models describe the relationship between genetic
distance and time (Ho & Duchéne, 2014). The branch lengths only represent
genetic diversity between sequences when a simple phylogeny is used, whereas
when timestamps are attributed to each known sequence, and evolutionary rates
are calibrated using molecular clock models, it becomes possible to estimate the
timing of the different branching events along the tree. Unlike older strict
molecular clock models, which assumed that all lineages evolved at the same
uniform evolutionary rate over time, more recently developed models assume the
possibility of using, for example, a local clock (wherein all lineages in a clade
share a common substitution rate), or an uncorrelated relaxed clocks (wherein the
substitution rate on each lineage is independent from other lineages while being
constrained to fit some parametric distribution). As opposed to strict clocks, the

latter are generally known as relaxed molecular clocks (Drummond et al., 2006);
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Coalescent theory: these statistical models are used alongside molecular clock
models (which provide estimates of virus sequence divergence times) to allow
simple calculations capable of connecting the demography of a viral population
to its sample genealogy, linking patterns of genetic diversity to ecological
processes such as population size and growth. Over time, changes in population
sizes can be perceived using multiple models, the simplest of which are
parametric, where the so-called effective population size may, or may not, vary
through time according to a certain function. Nonetheless, it is sometimes
desirable to take a more flexible non-parametric approach to demographic
modelling (Liu et al., 2009). While the older coalescent models are meaningful
only if the sampled population befits the stated demographic model (e.g., during
an epidemic when viral population is expected to be expanding exponentially),
this is not always the case. As an alternative, flexible nonparametric models,
which include, for example, the Bayesian Skyline, Skyride and SkyGrid models,
have since been unfolded, enabling estimating varying effective population sizes
over time, that don’t necessarily fit the shape of previously considered traditional
demographic models (Hill & Baele, 2019).

Spatial diffusion: these models consider locality when describing the
transmission of a virus, detailing them as agents that move from one place to
another. Using sequence sample locations (usually as latitude and longitude
coordinates), a Markov chain can be employed to perceive diffusion between
locations, allowing the simulation of geographical changes and its integration into
phylogenetic and temporal data, allowing spatiotemporal reconstructions. Past
spatial diffusion approaches implemented models for discrete transitions in a
Bayesian inference framework, allowing geographical information to be blended
as distance-informed priors (Lemey et al.,, 2009). However, these did not
explicitly model the diffusion process in continuous space. As such, recent
models adopted more relaxed rates by accommodating branch-specific variations
i.e., where diffusion rates are drawn independently on each branch of the rooted
phylogeny (Lemey et al., 2010).
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Fig. 6: Phylodynamic processes. (A) Simple rooted phylogenetic tree, with branch lengths representing the
genetic divergence from the ancestor (with no timescale); (B) Same tree as A but reconstructed using a
molecular clock, which defines a relationship between genetic distance and time, with branch lengths
represented in units of years; (C) Same tree as B but reconstructed using spatial data, with each branch
labeled as to its estimated geographical position. Combining temporal and spatial data allows further insight
into the spatiotemporal dispersal of viruses. This hypothetical virus first spread into France and the United
Kingdom, and spatiotemporal data allowed us to identify two different diffusion events into two other
locations in Spain, first to C1 in 1990 and later in 2000 to C2. Retrieved from Pybus & Rambaut (2009);
Reprinted by permission from Springer Nature under the license number 5232480528990, from 19 Jan
2022.

Before attempting to infer time-scaled trees from a group of sequences, care should be
taken in order to confirm if those same sequences possess sufficient temporal signal
(genetic changes between sampling times that allow for a reconstruction of the
relationship between genetic divergence and time) for a reliable estimation. This can be
attained through a regression-based approach through multiple bioinformatic tools, like
TempEst, which takes a phylogenetic tree and uses the date for each sequence to analyze

root-to-tip genetic distances against sampling time (Rambaut et al., 2016).
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1.2.5. Selection of ISV groups

Combining spatial, temporal and genetic analyses could not only reveal the location of
origin, and the route of dispersal, of different ISVs, but potentially help predict patterns
of future dissemination of these viruses (Pybus & Rambaut, 2009). However, caution is
needed when considering which viral families we should analyze, as these researches
require heavy computation and heavy data (sequence) generation and/or mining, which
is labor-intensive and time-consuming. Still, the nature of the sequences available should
also be taken into consideration. While ISVs have already been identified in numerous
virus families, some of them are either only known for restricted geographical areas, or
are yet represented by a very low number of sequence data in the public genomic
databases. In turn, this could hinder sequence analysis due to sampling bias. Indeed, past
studies already demonstrated that phylodynamic patterns can be highly impacted by the
sampling process (Frost et al., 2015). As a result, research should be focused, whenever
possible, on ISV families with the highest number of sequences available, and with a

widespread geographical distribution.

With all available information, the core research of this PhD thesis project focused on
three specific, and very diverse, groups of ISV taxa, which represent specific genera in
virus families with the higher representation of mosquito-specific virus sequences in
public databases: mesoniviruses (Mesoniviridae family, Order Nidovirales),
brevihamaparvoviruses (Parvoviridae family, Order Piccovirales) and, finally, insect-
specific flavivirus (Flaviviridae family, Order Amarillovirales), the latter representing the
group of ISVs for which the highest known number of genomic sequences are available.
Indeed, identification and characterization of ISV sequences from mosquitoes have been
especially focused on these three families (Carvalho et al., 2021). While they are all
similar in their insect-specific host restriction, they are very distinct when it comes to
their genomic features, coding capacity and basic structure (like size and nucleic acid
class). In this regard, both flavivirus and mesonivirus possess RNA genomes with sizes
of ~11 kb to ~20 kb (respectively), while brevihamaparvovirus have DNA genomes with

a smaller size (~4 to ~6 kb).
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2. The Flaviviridae family

According to the last report by the ICTV, the Flaviviridae family is split into four genera:
Flavivirus, Hepacivirus, Pestivirus, and Pegivirus (Simmonds et al., 2017). The
Hepacivirus genus is divided into 14 species (from Hepacivirus A to N), including the
human Hepatitis C virus, which has since been renamed to Hepacivirus C (Smith et al.,
2016). The Pestivirus genus currently has 11 species (Smith et al., 2017), including the
classical swine fever virus, also known for causing a fatal disease of swine, known as hog
cholera (Blome et al., 2017). Pegiviruses belong to a new genus recently proposed in the
Flaviviridae family, which has been split into 11 species (Smith et al., 2016). Finally, the
genus Flavivirus is the most distinctive and also most diverse genus of the Flaviviridae
family, encompassing a genetically distinct array of over 50 RNA viruses, roughly
spherical in shape and enveloped, between 50 to 60 nm in diameter, and with surface
proteins disposed in an icosahedral-like symmetry (Barrows et al., 2018). Some of these
flaviviruses compose a group of arboviruses with global distribution, well known for
causing important mosquito and tick-borne diseases in a wide range of vertebrate species,
including humans (Gould & Solomon, 2008). As mentioned previously, DENV, WNV,
YFV and JEV, as well as multiple other flaviviruses are meaningful human pathogens,
generating high morbidity and mortality, and like ZIKV in recent years, others have

recently emerged as potential global health threats (Chong et al., 2019).

2.1. Genome organization of flaviviruses

Flaviviruses possess a single-stranded, positive-sense RNA genome of approximately 11
kb (Figure 7) encompassing a single open reading frame (ORF) surrounded by 5' (100
nucleotides) and 3' (400 to 700 nucleotides) untranslated regions (UTRs) (Markoff,
2003). The viral RNA is capped at the 5’-end but is not polyadenylated (Barrows et al.,
2018). A single large polyprotein is translated from the viral genome at the host’s
endoplasmic reticulum (ER) membrane, and this polyprotein is subsequently cleaved into
viral structural and non-structural proteins (Barnard et al., 2021). Three viral structural
proteins are generated, including the capsid (C), pre-membrane (prM) and envelope (E)
proteins, and they correspond to the main components of the flavivirus virion. Seven viral
non-structural proteins (NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5) and one peptide (2k)
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are also cleaved from the viral-encoded polyprotein, which are essential for coordinating
viral genome replication, transcription, translation and immune evasion (Barnard et al.,
2021). All eleven proteins stand in a conserved order among all flavivirus: C—prM-E—
NS1-NS2A-NS2B-NS3-NS4A-2k-NS4B-NS5 (Hackett et al., 1985). The structures
and functions of all these proteins are well conserved across the Flaviviridae family
(Pierson & Kielian, 2013). All their prominent roles are summarized in Table 1. However,

more recent studies also pointed

towards the possibility that new proteins, encoded by overlapping genes and translated
by ribosomal frameshifting, could still play a role in the replication/natural maintenance
cycles of flaviviruses. Among them stands the so-called trans-frame fusion protein
(designated fifo, with around 275 amino acids), and has been associated with the genomes
of insect-specific flaviviruses thanks to a frameshifting event in the NS2A coding region
(Firth et al., 2010).

5 UTR Open reading frame 3'UTR

Cytoplasm

Fig. 7: (A) Representation of the flaviviral genome. (B) Flaviviral polyprotein topology, with predicted
transmembrane domains. UTR: untranslated region; ER: endoplasmic reticulum; NS: non-structural.
Reprinted with permission from Barrows, N. J., Campos, R. K., Liao, K. C., Prasanth, K. R., Soto-Acosta,
R., Yeh, S. C., Garcia-Blanco, M. A. (2018). Biochemistry and Molecular Biology of Flaviviruses.
Chemical Reviews, 118(8), 4448-4482. Copyright © American Chemical Society, 2022.
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Table 1 — Main known functions of flaviviruses structural and non-structural proteins.

Protein Function Reference
Cc assembly process Tan et al., 2020
orMIM assembly process, secures E protein from pH-induced Roby et al., 2015
conformational changes
E cell receptor binding and entry Agrelli et al., 2019
NS1 virus genome replication and immune system evasion Puerta-Guardo et al., 2019
NS2A virion assemblage, immune system regulation and Zhang et al., 2019
evasion
NS2B NS3 cofactor Luo et al., 2015
multifunctional enzyme involved in viral genome Davidson et al., 2020
NS3 replication and polyprotein cleavage
NEAA NS3 cofactor, immune s-ystem modulation and Gopalaetal., 2018
evasion
» signal sequence for transfer of NS4B into the Roosendaal et al., 2006
endoplasmic reticulum
NS4B immune system modulation and evasion Gopala et al., 2018
NS5 viral genome synthesis, immune system modulation Fajardo et al., 2020
and evasion

2.2. Host range and transmission cycle of flaviviruses
Even though all flaviviruses possess similar genomic organizations, their host range and
transmission can be quite different. Most recognized flaviviruses are either considered
worldwide health hazards causing millions of infections all over the globe (e.g., DENV
and WNV), but for some (e.g., JEV and YFV) their current burden on human health and
geographical distribution may prospectively expand in the coming years (Chong et al.,
2019). These bona fide arboviruses are dual-host flaviviruses that spread horizontally
between vertebrates’ hosts using hematophagous arthropods (mostly mosquitoes or ticks;
Blitvich & Firth, 2015). Dual-host flaviviruses are maintained in an enzootic cycle
between a vector and, frequently, either a mammalian or avian amplifying host. Some,
such as DENV, have adapted to humans to the point where we have become its

mammalian maintenance host in urban settings. Other routes of transmission for these
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viruses have been reported, and these include human-to-human transmission of DENV
via blood transfusion (Slavov et al., 2019), transmission of WNV via solid organ
transplantation (Soto et al., 2022), sexual transmission of ZIKV (Sherley & Ong et al.,
2018), transmission of tick-born encephalitis (TBE) by consumption of unpasteurized
goat milk and cheese (Brockmann et al., 2018), or transplacental transmission of JEV
from an infected mother to her fetus (Chaturvedi et al., 1980). Nevertheless, even in the
case of sexual transmission of ZIKV, its contribution to the natural viral maintenance
cycles is negligible. However, not all flaviviruses drift between arthropods and
vertebrates. As mentioned above, some appear to be restricted to vertebrates (and have

apparently lost their ability to replicate in arthropods), while others are insect-specific.

2.3. Insect-specific flaviviruses

The definition of Flavivirus species has been established according to their antigenic
properties and vector associations, which include mosquito-borne (MBV), tick-borne
(TBV), and no-known vector viruses (NKV, i.e., viruses for which no-invertebrate vector
is known) (Kuno et al., 1998). A novel group diverging from other known flaviviruses,
named insect-specific flavivirus (ISF), would emerge in 1975 with the detection of CFAV
(also the first ISV, as mentioned in chapter 1.2.1.) in Aedes aegypti cell cultures (Stollar
and Thomas, 1975). The great majority of known ISFs cluster in an monophyletic cluster
and would later be described as classical ISF (cISF) or lineage | ISF. However, new
studies identified ISFs that did not cluster along with lineage I/cISF in a flavivirus
phylogenetic tree. Instead, they appeared to be more closely related to mosquito-borne
arboviruses, indicating insect host restriction was not exclusive to cISF (Harrison et al.,
2020). These distinct ISF were thought to have eventually lost their ability to replicate in
vertebrates (Blitvich and Firth, 2015), and would eventually be renamed dual-host
affiliated ISF (dhISF) or lineage Il ISF.

cISF can infect and replicate in insect cells but not in vertebrate cells. Experimental
studies suggest they seemingly persist in nature primarily by vertical transmission, by
which an infected female directly transmits the virus to her progeny (Farfan-Ale et al.,

2010; Saiyasombat et al., 2011). Thanks to recent advancements in methods for virus
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detection, there has been a sizeable increase in the number of cISFs discovered over the
last decade (Blitvich & Firth, 2015).

2.4. History, geographic distribution, and host range of Classical
ISF

Classical ISFs have a ubiquitous geographic distribution, with viruses being identified in
Europe (Vazquez et al., 2012), Asia (Kyaw Kyaw et al., 2018), America (Gravina et al.,
2019), Africa (Villinger et al., 2017) and Australia (McLean et al., 2015). After the initial
discovery of CFAV, and as already mentioned above, 20 years passed until the study of
ISF was rekindled with the description of the Kamiti river virus in the early 2000s,

isolated from Aedes macintoshi collected in Kenya in 1999 (Crabtree et al., 2003).

In 2003, the first cISF isolated from Culex mosquitoes (from Japan) was discovered
(Hoshino et al., 2007), and since then, cISF has been isolated from multiple Culex species
(Datta et al., 2015; Grisenti et al., 2015; Kyaw Kyaw et al., 2018). Also, several cISF
from different mosquito species from multiple genera have been described, including the
Nakiwogo virus (in Mansonia africana from Uganda; Cook et al., 2009), the Palm Creek
virus (from Australian Coquillettidia xanthogaster; Hobson-Peters et al., 2013) or the
Quang Binh virus (isolated from Anopheles sinensis from Vietnam; Crabtree et al., 2009).
ISFs have also been detected in the Portuguese continental territory via research work
done at IHMT, as previously mentioned in page 9.

While the evolutionary history of cISF is vague and complex, their basal position in
phylogenetic trees has led to the suggestion they correspond to an ancestral lineage of
flaviviruses (Cook et al., 2012). Their evolutionary history is clouded by the fact that
sequences related to extant genomes have been found in the genome of a diverse array of
mosquito species as endogenous viral elements (also known as EVEs; Roiz et al., 2009;
Crochu et al., 2004; Abilio et al., 2020). Furthermore, cISF research has gained increasing
momentum thanks to their potential uses as biological agents, as described in chapter
1.2.3. Multiple research projects, including experiments carried out both in-vivo and in-

vitro, have already demonstrated their capacity to interfere with vector competence via
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superinfection exclusion (Kent et al., 2010; Hobson-Peters et al., 2013; Goenaga et al.,
2020).

3. The Order Nidovirales

The Order Nidovirales comprises a genetically distinctive assemblage of enveloped,
approximately spherical viruses. They can infect a vast range of hosts, from mammals to
insects, and possess the biggest known non-segmented viral RNA genomes, with sizes
ranging from 13 to 16 kb for arteriviruses to 26-34 kb for roni- and coronaviruses
(Gorbalenya et al., 2006). These RNA viruses are linear single-stranded, positive-sense,
capped and polyadenylated (Gorbalenya et al., 2006). According to the ICTV, they are
taxonomically (mid-2021) distributed in eight suborders and 14 families
(https://talk.ictvonline.org/taxonomy/), including the extensively studied Arteriviridae
and Coronaviridae (Figure 8). The subfamily Coronavirinae (in the Coronaviridae
family) is the one that contains the most significant number of known nidoviruses,
including numerous human pathogens, which are then classified into four different
genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus
(Cong & Ren, 2014). While little is still known about the Arteriviridae and Roniviridae
families, concerns over public health and economic impact of specific pathogenic viruses
in both those families, like the yellow head virus (Dong et al., 2017) and the porcine
reproductive and respiratory syndrome virus (Ruedas-Torres et al., 2021), have spiked
interest in their research. The more recently attested Mesoniviridae family is the most
under-represented of the families and has only seen their first species described in 2009
(Junglen et al., 2009).
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Fig. 8: Taxonomy of the Order Nidovirales.

3.1. Mesoniviruses
Mesoniviruses have positive-sense, single-stranded RNA genomes with sizes of ~20 kb
and comprise (so far) the only taxon that exclusively consists of insect-specific viruses
within the Order Nidovirales (Newton et al., 2020). Mesoniviruses are considered insect-
specific viruses since no detection or replication has yet been divulged in mammalian
hosts (Vasilakis et al., 2014). Typical mesonivirus particles are enveloped, round and their

sizes range from 60 to 80 nm in diameter (Zirkel et al., 2013).

3.1.1. History and geographic distribution of mesoniviruses

Mesoniviruses were the first within the Order Nidovirales to have been described in 2009

as infectious agents of insects. This description was not, however, detailed, and no
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definitive virus-associated formal classification was proposed (Junglen et al., 2009). In
fact, their first detailed description was performed in 2011 with the characterization of
the Cavally and Nam Dinh viruses, isolated from Culex mosquitoes, collected in Cote
d’Ivoire and Vietnam, respectively (Nga et al., 2011; Zirkel et al., 2011). Both those
studies provided an extensive examination of their genomic sequence and the proteins
they encoded, as well as an analysis of their phylogenetic relationship with other
nidoviruses. Even though mesoniviruses do not appear to infect vertebrates and, therefore,
are not associated with disease in the latter, interest in their research has been steadily
rising in the last decade. This has been the result of the curiosity arising from the analysis
of their large RNA genome (that encode large numbers of proteins not usually associated
with other RNA viruses, including an exoribonuclease (ExoN) involved in the control of
replication errors), which may be linked to the evolutionary history of nidoviruses
(Lauber et al., 2013), since consecutive increases of ORF1b, ORF1a, and 3'ORFs sizes
could be linked to different points in an expansion trajectory of nidovirus genomes. The
structural and genetic resemblances of mesoniviruses to other members of the other three
predominant families in the Order Nidovirales have also contributed to the increase in
their research (Vasilakis et al., 2014).

Many different sequences have since been identified and characterized up to the present
day, starting in 2012 with the Hana, Meno and Nse viruses, primarily found in Culex
mosquitoes from Cote d’Ivoire (Zirkel et al., 2013). However, no concrete species
demarcation criteria for mesoniviruses existed until 2014, when Vasilakis et al. not only
defined 96.8% of amino acid sequence identity as the limit to define new mesonivirus
viral species (using RNA-dependent RNA polymerase sequences) but also further
characterized two new species, Karang Sari and Kamphaeng Phet. Since then, multiple
mesonivirus sequences have been identified from mosquitoes collected in the Americas
(Kadiweu and Ofaie virus — Pauvolid-Corréa et al., 2016; Houston virus — Charles et al.,
2018), Africa (Odorna virus — Amoa-Bosompem et al., 2020; Dianke virus — Diagne et
al., 2020), Australia (Casuarina — Warrilow et al., 2014; Ngewontan virus — Shi et al.,
2017) and Asia (Dak Nong — Kuwata et al., 2013; Bontang Baru virus — Sadeghi et al.,
2017). Even though mesoniviruses seem to have a ubiquitous distribution, only recently
have they been described in Europe, with scarce reports describing the detection of

Alphamesonivirus sequences from natural mosquito populations in France in 2017 (Gil et
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al., 2017) and in Spain in 2020 (Birnberg et al., 2020). Also, despite the description at
IHMT of a mesonivirus sequence obtained from mosquitoes collected in Portugal (R.
Parreira, personal communication), their presence in wild caught specimens was not
confirmed in a recent viral survey promoted within the scope of this thesis project.
Overall, to date, mesoniviruses are classified into one single genus (Alphamesonivirus),

eight subgenera and ten different species.

Until recently, mesoniviruses had only been detected in mosquito hosts. Nonetheless,
sequences with genetic characteristics similar to the bona fide mesoniviruses, and
designated meson-like viruses, have also been described from Aphis citricidus aphids
collected in 2012 in China (Chang et al., 2020), and from Thrips tabaci thrips collected
in 2018 in Italy (Chiapello et al., 2021). This suggests that the host range of mesoniviruses
(or at least of mesonivirus-related sequences) might be greater than what is currently
known. Additionally, a meson-like virus was also detected in 2020 in Italy from Leveillula

taurica, a fungal pathogen (accession number MN609866).

3.1.2. Genome organization of mesoniviruses

The coding content of the genomes of mesoniviruses are arranged into multiple ORFs.
Genome organization has been consistently described as ORF1a-ORF1b-ORF2a-ORF2b-
ORF3a-ORF3b-ORF4 (Figure 9), but exceptions do exist (e.g., the Meno virus does not
encode ORF4; Zirkel et al., 2013). A large section on the 5 half of the genome encodes
two polyproteins (ORFla and ORF1b), with ORF1b being translated as a fusion
polyprotein to ORF1a by ribosomal frameshift, followed by proteolytic processing (Nga
et al., 2011). These two ORFs overlap and encode two polyproteins, ppla, which is
characterized by a 3C-like main protease domain, and pplab, from which are excised the
RNA-dependent RNA polymerase (RdRp) and other conserved replicase-related
products, including a superfamily 1 helicase, the ExoN exoribonuclease, a guanine-N7
methyltransferase (NMT), and a ribose-2’-O-methyltransferase (OMT) (Lauber et al.,
2012). The 3’ region of the viral genome includes smaller ORFs that encode structural
proteins, including putative spike (ORF2a) and nucleocapsid (ORF2b) proteins, as well
as ORF4, which encodes a product of unknown function (Nga et al., 2011). The number
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of small ORFs differs among distinct viruses in the Order Nidovirales (Gorbalenya et al.,
2006).
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Fig. 9: Representation of most conversed regions of the genome of mesoniviruses, including the ribosomal
frameshift responsible for the translation of two polyproteins. 3Clpro: 3C-like protease; ExoN:
Exoribonuclease; Hel: Helicase; NMT = N7-methyltransferase; OMT = Nucleoside-2’-O-
methyltransferase; ORF: Open reading frame; RdRp: RNA-dependent RNA polymerase. Retrieved from
ViralZone, www.expasy.org/viralzone © Swiss Institute of Bioinformatics.

4. The Parvoviridae family

The Parvoviridae family, one of the viral families many single-stranded DNA (ssDNA)
viruses have been assigned to, comprehends small viruses that infect a broad variety of
vertebrate and invertebrate species. Evidence of both horizontal transmission (Kelman et
al., 2020) and transmission through the germline (Liu et al., 2011) have already been
found for parvoviruses. These remarkably diverse viruses are small (23-28 nm),
icosahedral-shaped and non-enveloped (Cotmore et al., 2019). A wide range of diseases
can be caused by parvoviruses, from acute to chronic, and are usually more severe in
animals. Infamous examples include the infections caused by the canine (Mylonakis et
al., 2016) and porcine (Mengeling et al., 2000) parvoviruses. On the other hand, human
diseases caused by parvoviruses are usually less severe, the two most notable being
infections by human parvovirus B19, associated with the “fifth disease” (Weir et al.,

2005), and human bocavirus (Guido et al., 2016).

A typical parvovirus genome ranges from 4 to 6 kb, and displays two major expression
cassettes (Cotmore et al., 2019). One of these dictates the expression of non-structural
(NS) proteins, the largest of which (the so-called non-structural protein 1, or NS1),
displays both a highly conserved helicase superfamily domain with helicase and ATPase

activity, as well as an endonuclease domain, with site-specific binding activity (Cotmore
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et al., 2005). NS1 is also responsible for the induction of cell apoptosis and cell cycle
arrest in infected hosts (Lin et al., 2019). Capsid proteins (also simply known as viral
proteins or VVP) are translated from mRNA transcribed from the second cassette, with the
number of structural proteins expressed varying from 1 to 3 between different
parvoviruses. These coding regions are flanked by palindromic sequences that form a
hairpin-like structure that is essential for replication (Cotmore et al., 2019), and where a
host-polymerase recognizes the 5'-end of the viral genome as the primer for replication
initiation. There are slight differences in the number and disposition of ORFs in the

genomes of different parvovirus, as seen in Figure 10.

sSDNA viruses have been known to integrate into numerous of their hosts’ genomes as
EVEs, suggesting long-term evolution with them, and have an extensive geographic
distribution (Metegnier et al., 2015). Parvovirus genomic sequences have been found
throughout the animal kingdom, frequently endogenized into the nuclear genomes of

various animals, and with an estimated age of tens of millions of years (Liu et al., 2011).

4.1. History and evolution of parvoviruses taxonomy
Like most ssDNA viruses, the origin of the Parvoviridae family could result from ancient
recombination events combining non-structural genes from DNA contributors (like
bacterial plasmids) and structural genes from RNA viruses (Krupovic, 2013). Curiously,
the evolution of many parvoviruses has been associated with frequent recombination

events (Leal etal., 2012) and high nucleotide substitution rates (Stamenkovic et al., 2016).
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Fig. 10: Representation of genome of viruses from different parvovirus, shown as single lines terminating
in boxed hairpin structures (emphasized relative to the rest of the genome). Major open reading frames that
encode proteins are displayed as arrowed boxes. NS stands for non-structural, VP stands for viral protein,
AAAAA indicates polyadenylation sites, and SAT stands for “small alternatively translated protein”.
Retrieved from Cotmore et al. (2019). Reprinted by permission from Microbiology Society under the
license number 1202419-1, from 27 Apr 2022.

The family Parvoviridae was first established in 1973, but in a taxonomic review dating
from 1993, parvoviruses were allocated to either the Densovirinae (infecting
invertebrates), or the Parvovirinae (infecting vertebrates) subfamilies (Cotmore et al.,
2019), with subfamily demarcation exclusively supported by the topologies of
phylogenetic trees (Muzyczka & Berns, 2001). Initially, subfamily boundaries seemed
unlikely to be challenged, as parvoviruses of vertebrates and arthropods had a relatively
limited host spectrum. However, as new viruses were discovered and classified, many
were assigned to the Densovirinae subfamily, where the Brevidensovirus,

Penstyldensovirus and Hepandensovirus genus were established.

The growing number of new known viruses successively enlarging the Densovirinae
subfamily were shown to display higher sequence diversity, departing from the "well-
conserved" nature of the pre-established idea of a well conserved Parvoviridae family
(Cotmore et al., 2014). Therefore, while virus in the Parvovirinae subfamily shared high

sequence similarity for most of the NS1 protein, that same level of similarity was not
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found between viruses from the Densovirinae subfamily. In addition, several anomalies
impacted the classification of parvoviruses, such as the unexpected isolation of new
densoviruses from vertebrates (Yang et al., 2016) and the discovery of ambisense
densovirus genomes (genome C in figure 10), adding to the heterogeneous nature of this
family. All these events promoted a recent taxonomy revision that took into account both
phylogenetic criteria, and amino acid sequence similarity values calculated from
comparisons of the sequences either of the whole of the NS1 protein, or strictly
considering its helicase domain (Pénzes et al., 2020). This revision led to the split of the
Densovirinae subfamily into two disparate subfamilies, Densovirinae and
Hamaparvovirinae, with hamaparvoviruses sharing less than 20% amino acid genetic
identity of the helicase sequence when compared to other parvoviruses, while sharing
between them approximately 30% of NS1 amino acid identity. A group of insect-specific
viruses in the Parvoviridae family and Densovirinae subfamily were previously known
as brevidensoviruses. After the latest taxonomy revision, it was discovered they shared
about 30% of NS1 protein identity with other hamaparvoviruses. They were, therefore,
renamed Brevihamaparvovirus and placed into the Hamaparvovirinae subfamily (Figure
11; Pénzes et al., 2020).
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Fig. 11: Phylogenetic representation of relationships at the genera level, based on the Bayesian inference
of the helicase domain (167 aa), from which the taxa from the Parvoviridae family have recently been
established. Retrieved from Pénzes et al. (2020). Reprinted by permission from Springer Nature under the
license number 5274360153432, from 22 Mar 2022

4.2. Brevihamaparvoviruses

Unlike other parvoviruses, the brevihamaparvovirus (BHP) host range has been, so far,
restricted to a few mosquito species (Pénzes et al., 2020). These viruses are easy to
manipulate and have been considered as candidate agents for paratransgenic control of
vector-borne diseases (Ren et al., 2014). They have also been reported as able to greatly
reduce the susceptibility of Aedes mosquitoes to the dengue virus (Wei et al., 2006).
However, their research history is relatively recent, with the identification of most BHP

from various mosquito cells and wild mosquitoes occurring in the last 30 years.

37



4.2.1. History and geographic distribution of BHP

The first BHP was isolated from an infected laboratory colony of Aedes aegypti in 1972
in Kyiv, in the Ukraine (Lebedeva et al., 1972). Several BHP have been isolated over the
years from persistently infected mosquito cell lines, such as the Haemagogus equinus cell
line GML-HE-12 (O’Neill et al., 1995), the Aedes albopictus cell line C6/36 (Chen et al.,
2004), the Anopheles gambiae cell line Sua5B (Ren et al., 2008) and the Aedes aegypti
cell line Aag2 (Parry et al., 2019). It is improbable that they evolved from a single

contamination event since all these viruses have significant sequence divergence.

The first BHP strain to have been identified in association with wild mosquitoes was
described in 1999 from multiple Aedes aegypti and Aedes albopictus collected in Thailand
(Kittayapong et al., 1999). Since then, BHP have been described in different species of
Aedes and Culex from Asia (Zhai et al., 2008) and the Americas (Sadeghi et al., 2017),
with singular BHP sequences also being isolated from Armigeres subalbatus (Fu et al.,
2017) and Anopheles sinensis (Zhai et al., 2008). Experimental work in this current thesis
project resulted in the first described BHP strains obtained from wild mosquitoes
collected in Europe (Portugal, with the first BHP isolation from Culiseta mosquitoes) and
Africa (Angola, from which they were amplified from mosquitoes from the Culex pipiens

complex), suggesting a widespread distribution of these parvoviruses.

4.2.2. Genome organization of BHP

The genomes of the members of the Brevihamaparvovirus genus possess three ORFs
which encode two non-structural proteins (NS1, NS2) and one capsid protein (VP)
(Bergoin and Tijssen, 2010). They have some of the smallest sSDNA genomes in the
Parvoviridae family, with approximately 4 kb. While NS1 has already been described as
crucial for initiating viral DNA replication, NS2 participates in suppressing type |
interferon responses (Lin et al., 2013) and viral egress from the nucleus, where viral
replication occurs. NS1 and NS2 coding sequences overlap, with distinct mRNAs being
expressed by alternative splicing, although the mechanisms behind it are still unclear
(Chen et al., 2021). The capsid protein is encoded by the VP gene and is vital for viral

entry into host cells and the output of infectious viruses (Sanchez-Martinez et al., 2012).
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5. Current state of ISV research

As suggested in section 1.2.3, infection of hematophagous arthropods with ISVs could,
in a near future, prove as a viable alternative for vector control strategies to reduce
mosquito hosts longevity or strategies to reduce replication efficiency of some human
pathogenic viruses in their most predominant insect hosts, as well as the permissiveness
of infected host cells, by reducing vector competence. However, a positive ecological
association has also been reported between ISVs and pathogenic arboviruses, with a
report case of multiple co-infections of CxFV and WNV in mosquito pools from Chicago,
United States (Newman et al., 2011). As such, the acquisition of genetic and biological

information still unknown in multiple ISV groups is essential.

Classical Insect-Specific Flavivirus. Research concerning cISFs is under-represented in
the literature as well as in the genetic databases when compared to flaviviruses infecting
vertebrates, probably due to their inability to replicate in vertebrate cells, and the fact that
they are apathogenic to vertebrates. Therefore, especially when viral surveys involve
isolation of viruses using vertebrate cells that are maintained in culture, cISFs could easily
have been undetected over the years. Past studies mainly focused on the discovery and
genetic characterization of different cISF, as well as their phylogenetic assignment within
the genus Flavivirus. Additional studies have involved the analysis of their replication in
insect cells. However, their origin and spatiotemporal dispersal have rarely been
researched, and in the few studies where these have been addressed, no coherent statistical
framework was used (Cella et al., 2019). Since little has been done to assess the evolution
of cISF over time, we attempted to do so by analyzing either NS5 or complete genome
nucleotide sequences of the most representative genetic cISF sublineages. We aimed to
genetically characterize the different sublineages of cISF and try to infer their
evolutionary history and spatial spread, demonstrating the worth of a Bayesian-based

phylodynamic model for the study of ISVs.

Mesonivirus. The only extensive genomic and phylogenetic characterization of
mesonivirus, as well as a detailed taxonomy revision of mesoniviruses was performed in
2014 (Vasilakis et al., 2014). At that time, only 13 sequences had been described, and
these were assigned to seven species (Alphamesonivirus 1 to Alphamesonivirus 7).

However, since then, multiple mesoniviruses have been isolated and characterized, but
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no further extensive revisions have been performed. Occasional updates have ensued as
new sequences were identified, but none with coherent or detailed presentation and
explanation. The latest ICTV update about the taxonomy of the Mesoniviridae family was
in March 2021 and, unlike in years prior, acknowledges only one single genus
(Alphamesonivirus), with the addition of eight subgenera, including Namcalivirus,
represented by the Alphamesonivirus 1 species (consisting of the most substantial number
of mesoniviruses isolated to date), and the Alphamesonivirus 10 species (with Dianke
virus as the sole representative). Other subgenera, like Ofalivirus (Ofaie virus, species
Alphamesonivirus 6) or Casualivirus (Casuarina virus, species Alphamesonivirus 4),
comprehend only one specific viral type. However, recently identified mesoniviruses

[e.g., the Odorna virus (OdoV)] remain unclassified.

With scarce detailed reevaluations of mesoniviruses genetic and taxonomy
characterization, the recent isolation of multiple mesoniviruses prompted us to reevaluate
their position within the family. However, that is not the only factor encouraging a much-
needed intensive survey of mesonivirus sequences. Since mesoniviruses are mostly
restricted to mosquitoes, and past studies suggested viruses from the Order Nidovirales
may have evolved in arthropods (Nga et al., 2011), they could hold critical information
about the evolution of viruses within the Order Nidovirales. Additionally, even if these
insect-specific viruses are distantly related to coronaviruses, the current pandemic spread
of SARS-CoV-2 coronavirus increased the interest in the study of mesoniviruses as
members of a larger group of viruses with overt impact on human health (Lai et al., 2020).
Furthermore, the recent discovery of the meson-like virus in organisms other than
mosquitoes could also hold new information regarding their phylogenetic relationship

with other mesoniviruses and viruses from the Order Nidovirales.

Brevihamaparvovirus. Even though multiple BHP have been extensively characterized
(Ren et al., 2008) and evaluated for their potential for novel genetic strategies to control
mosquito vectors (Ren et al., 2014), no consistent description of their most basic genetic
traits, such as genetic diversity, recombination, substitution rates, selective pressure
acting in the viral genome or phylogenetic and phylodynamic reconstructions, have ever
been performed. Also, even though there is already an archaic taxonomic structure for
BHP (with two species identified), no evidence or factual data has been presented for

classification and demarcation of BHP species, even though demarcation criteria were
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already established for parvovirus sequences (Pénzes et al., 2020). Also, as many BHP
have been isolated in recent years, multiple BHP sequences remain unclassified. This
genera's extensive genetic diversity analysis could help provide new information and

complement existing taxonomic classification.

6. Objectives and thesis outline

This thesis entails one main objective - to provide new information about the
biodiversity of 1SVs — as a way to fill the gaps in information that were explored in
Chapter 5. This will be done by two specific methods, both independent and

complementary, as a way to maximize new information generated in this project:

e Experimental work: we sought to obtain new viral sequences for all three ISV
groups selected, using as starting material RNA/DNA extracts prepared from
acellular macerates prepared from pools of mosquitoes collected during viral
screenings carried out in Portugal, Mozambique and Angola. This contribution
was carried out by detecting partial genomic sequences by reverse transcription-
polymerase chain reaction (RT-PCR) or PCR (to DNA viruses) using both
published primers and experimental amplification conditions (Flavivirus;
Vazquez et al., 2012) as well as those developed in the course of this work
(mesonivirus/brevihamaparvovirus).

e ISV’s genetic characterization and analysis of their evolution through both
time and space: this will be accomplished by assembly of multiple datasets for
each ISV group, containing both genomic sequences obtained via experimental
work (done within the scope of this project) and collection of all publicly available

genomic sequences, either partial or complete.

As such, we not only opted to provide new information on these three specific groups of
ISVs, but also sought to identify new ISV sequences in mosquito batches collected from
different countries. Various bioinformatic tools will be used to execute a genetic
characterization of these three groups of viruses and will focus mainly on basic genomic
traits: genetic distance — quantification of genetic divergence between these groups or

between specific populations inside them; mutation rates — rates of nucleotide
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substitution over time; selective pressure — how the genomic composition of a gene will
evolve according to the type and number of existing mutation events; entropy — measure
of the possibility of variation in the information coded by a nucleotide sequence and
recombination events — exchange of genetic information between two different viruses.
We will also measure the quality of information in the produced datasets by analyzing
phylogenetic signals via likelihood mapping and temporal signal via root-to-tip linear
regression analysis. This will be executed as a way to both analyze and clarify their origin
and evolution through both time and space, as well as provide valuable new information
regarding genetic diversity, phylogenetic relationships and phylodynamic
reconstructions, which may be essential in evaluating their rapport with other arboviruses

as well as their potential roles as vector control strategies.

Multiple studies were performed to accomplish these objectives, which are described in
the following chapters:

e Chapters 2 and 3 are devoted to the detection of RNA and DNA viruses,
including those from the three target ISVs groups of this thesis, using mosquitoes
collected in both Portugal (Chapter 2) and Angola (Chapter 3), in the context of
viral surveys conducted between 2015 and 2018.

e Chapter 4 describes the genetic characterization and spatiotemporal dynamics of
cISF. Genomic sequences were investigated with a wide range of molecular tools
and we were able to characterize different lineages of cISF. This chapter also
provided the reconstruction of the evolutionary history and spatiotemporal
dispersal of specific cISF sub-lineages.

e Chapters 5 and 6 describes similar research conducted in chapter 4 but this time
in two other ISV groups, mesoniviruses (Chapter 5) and brevihamaparvoviruses
(Chapter 6). An extensive genetic characterization of all available sequences was
performed in both cases, accompanied by slight taxonomy revisions. While a
robust reconstruction of the evolutionary history of mesoniviruses was not
possible, it was performed for brevihamaparvoviruses (albeit with some
limitations).

e Chapter 7 provides additional results not yet explored in former chapters, from a

more detailed look into selective pressure and temporal signal analyses to an
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attempt to reconstruct the evolutionary history and spatiotemporal dispersal of all
CISF.
e Chapter 8 is devoted to the final remarks, encompassing outlooks on proposed

future research studies.
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Abstract

This work describes the detection and partial characterization of mosquito-borne virus
genomic sequences, based on the analysis of mosquitoes collected from the Spring to Fall
of 2018 in the Algarve (southern Portugal). The viral survey that was carried out using
multiple primer sets disclosed the presence of both RNA and DNA viral sequences in
these mosquitoes, which were subsequently analyzed using maximum likelihood and
Bayesian phylogenetic reconstruction methods. The obtained results brought to light three
lineages of insect-specific flaviviruses, a monophyletic cluster of bunyaviruses from an
unassigned group within the Phenuiviridae family, as well as brevidensoviruses
(Parvoviridae, Densovirinae). The latter two groups of viruses were here described for
the first time in mosquitoes from Portugal. Results relating to the tentative isolation of
the putative viruses identified in C6/36 cells are also shown, and the serendipitous,
although not unexpected, isolation a Negev-like Nelorpivirus from Culex laticinctcus

mosquitoes is reported.

Keywords: Insect viruses; Mosquitoes; Phylogenetic analysis; Portugal
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Short communication

Among invertebrates, mosquitoes are frequently the focus of viral surveys because they
may serve as vectors for many pathogenic agents with (re)emerging potential, including
viruses (Gould et al., 2017). Despite their potential to transmit viral agents which may
affect human health, mosquitoes have also been shown to harbor many others that seem
to display restricted replication capacity in vertebrate cells. These viruses are regarded as
insect-specific (Calisher and Higgs, 2018; Junglen and Drosten, 2013), are genetically
diverse, and have been tentatively placed in a multitude of viral taxa (Abudurexiti et al.,
2019; Bolling et al., 2015).

This report describes the results of a survey that was carried out aiming at the detection
of a selection of both RNA and DNA viruses, including flaviviruses, phleboviruses, and
densoviruses. We based our analysis on mosquitoes recently collected in the Algarve, the
southernmost region of the country. This region is climatically influenced by its proximity
to the Mediterranean Sea, is a hotspot for tourism, and a temporary haven for migratory
birds as they fly to/from Africa/northern Europe. Furthermore, the Algarve displays a
combination of ecological and climatic conditions that support the development of
multiple species of mosquitoes to high densities, some of which may serve as vectors for
arboviruses (Almeida et al., 2008).

The mosquitoes that were analyzed in this work were collected between April and
November of 2018 in the district of Faro and corresponded to a convenience sample
obtained using CDC-light traps that were not baited with CO2. Due to logistic constraints,
the collected mosquitoes were maintained at —20 °C until they were brought to IHMT in
Lisbon, where their morphological identification was carried out on ice-bricks using
appropriate identification keys (Becker et al., 2010; Ribeiro and Ramos, 1999). These
mosquitoes were grouped according to species, sex, geographic origin, and blood-feeding
status, and divided into pools with a minimum of 5, and a maximum of 60 specimens.

The detection of viral genomes was carried out exclusively using female mosquitoes.

The preparation of mosquito homogenates, nucleic acids extraction, cDNA synthesis,
PCR amplification, and DNA cloning was performed as previously described (Carapeta
etal., 2015; Pimentel et al., 2019). Detection of Flavivirus ns5 sequences was carried out

using previously described primers and reaction conditions (Vazquez et al., 2012).
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Bunyavirus L-coding sequences were targeted for amplification using Phlebovirus and
Orthobunyavirus primers and reaction conditions either previously described (Matsuno
et al., 2015; Pereira et al., 2017), or defined in the course of this work. Densovirus
sequences were amplified using primers targeting the viral NS1 encoding gene. All the
primers, as well as the thermal profiles used for PCR, are listed in Supplementary Table
1. Virus isolation in cell culture was carried out using the Aedes albopictus C6/36 cell
line, as described before (Carapeta et al., 2015).

Multiple alignments of nucleotide (nt) or amino acid (aa) sequences were performed using
the iterative G-INS-1 method, as implemented in MAFFT vs. 7. Also, phylogenetic
analyses using the maximum likelihood optimization criterium or following a Bayesian
approach were carried out essentially as described in previous reports (Pereiraetal., 2017;
Pimentel et al., 2019).

For molecular confirmation of the morphological identification of mosquitoes, partial
mitochondrial cytochrome c¢ oxidase subunit I (COI) sequences were obtained and
analysed as previously described (Parreira et al., 2012). However, this analysis was only
performed on the pools of mosquitoes where molecular screenings suggested the presence
of a viral genome (see below). In all cases, it confirmed the morphological identifications
that had been performed. All the nt sequences obtained in the course of this study were
deposited in the public sequence databases (GenBank/ENA/DDBJ consortium) under
accession numbers LC480777-LC480779 (ns5-flaviviruses), LC480766-LC480776 (L-
bunyaviruses), LC483875 (ORF1-Negev-like virus), LC486533 and LC486534 (NS1-
brevidensoviruses), and LC480766-LC480779, and LC484858 (COI).

The mosquitoes analyzed in this work totaled 2837 specimens (Supplementary Table 2).
Most were female (80%, 2276/2837), and the majority were unfed, with only 14.9%
(340/2276) evidencing a bloodmeal. They were classified into 6 genera (Anopheles,
Culex, Culiseta, Aedes, Coquillettidia, and Uranotaenia), and 16 species. The genus
Culex encompassed the largest number of specimens distributed into 5 species [Culex
pipiens s. I. (Linnaeus, 1758), Cx. theileri (Theobald, 1903), Cx. laticinctus (Edwards,
1913), Cx. univittatus (Theobald, 1901), Cx. hortensis (Ficalbi, 1889)].

Among the 2276 female mosquitoes that were collected, 79.1% (n=1801) were associated

into 50 pools, all of which were subsequently processed for viral screening using a
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combination of different PCR/RT-PCR protocols (Supplementary Table 1). Flavivirus
and Phlebovirus-like genomes were detected in multiple pools of Aedes, Anopheles,
Culiseta, and Culex mosquitoes, as described in Supplementary Table 2. While the
presence of Orthobunyavirus sequences could not be unambiguously confirmed in any of
the pools analysed, the use of Brevidensovirus-specific primers allowed the observation
of the expected amplification products when cDNA extracts prepared from Cx. laticinctus

(n=1) and Cs. longiareolata (Macquart, 1838) (n=1) macerates were used.

Flavivirus-specific amplicons were obtained from four species of mosquitoes indicating
the presence of Flavivirus genomes in Cx. laticinctus, Cs. annulata (Schrank, 1776), Ae.
caspius, and An. petragnani (Del Vecchio, 1939). However, attempts to obtain a high-
quality sequence from An. petragnani (Del Vecchio, 1939) systematically failed, even
when recombinant plasmid clones carrying the Flavivirus-specific amplicon were used
as template for cycle-sequencing, probably due to very low plasmid copy number. On the
other hand, analysis of the obtained sequence data (Supplementary Fig. 1) clearly showed
that they clustered among the so-called classical insect-specific flaviviruses (cISF), but
segregated in three genetically distinct lineages. Two viral sequences detected in pools of
Cx. laticinctus and Ae. caspius were associated with previously identified genetic clusters
of viruses circulating in the Iberian Peninsula (Ferreira et al., 2013; Parreira et al., 2012;
Vazquez et al., 2012). In addition, a viral sequence obtained from Cs. annulata showed
high identity (> 98% by BLASTN), and shared common ancestry with another one
(KU958176) recently obtained from Cs. annulata mosquitoes from Turkey (Ergiinay et
al., 2017). Curiously, high sequence identity also extended to two other viral sequences
(> 96% identity with JF707859-JF707860 using BLASTN) previously found to be
integrated within the genomes of Ae. vexans (Meigen, 1830) mosquitoes from Spain
(Vazquez et al., 2012).

Amplicons with a size compatible with the presence of a Phlebovirus L segment were
detected in some of the pools analyzed corresponding to five species of mosquitoes
(Supplementary Table 2). Surprisingly, high sequence-identity Phlebovirus homologs
could not be found in the databases when the obtained sequences were analysed with
BLASTN/x. This suggested they had been amplified from Phlebovirus-like viruses, but
not legitimate phleboviruses. Furthermore, phylogenetic reconstruction using nt

alignments placed all of them (n=11) outside the Phlebovirus, Banyangvirus, Bandavirus,
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and Goukovirus genera (not shown). Since these sequences diverged from any of the taxa
mentioned above, their identity was investigated using phylogenetic analysis performed
on aligned datasets of amino acid sequences of the viral-encoded RNA polymerases (L
protein) from the viral groups that compose the Order Bunyavirales. Regardless of the
method/parameters used for phylogenetic reconstruction, the obtained trees displayed
congruent topologies that placed the viral sequences obtained in this study within the
Phenuiviridae family (Fig. 1). Within this radiation of bunyabiruses, they formed a
strongly supported monophyletic cluster that also included viral sequences previously
detected using metagenomics/NGS (Chandler et al., 2015; Li et al., 2015; Sadeghi et al.,
2018). This viral lineage remains unnamed, as it has not been yet assigned any official
designation by the International Committee on Taxonomy of Viruses. Although some of
the reference sequences within this cluster had been previously appointed as members of
the Peribunyaviridae family (Sadeghi et al., 2018), the analysis shown here contradicts
that statement.

The analysis of the obtained densovirus NS1 sequences placed them within the
Brevidensovirus genus (Fig. 2A), while the analysis of a Brevidensovirus-only nt
sequence dataset (Fig. 2B) revealed that the sequences here described from Cx. laticinctus
and Cs. longiareolata shared a common ancestor with those from brevidensoviruses
previously identified in mosquitoes from Russia and Brazil (accession numbers M37899
and GU452799, respectively).

Seven macerates from six species of mosquitoes (Ae. berlandi, Ae. caspius, An.
petragnani, Cs annulata, Cs. longiareolata, and Cx. laticinctus) were selected for viral
isolation in C6/36 cells. After two weeks of culture, and when compared with the negative
controls, C6/36 exposed to a Cx. laticinctus macerate revealed evident CPE. This was
characterized by cell growth arrest, cell rounding and detachment from the solid surface
(Supplementary Fig. 2A). Somewhat surprizingly, when screened by PCR/RT-PCR using
the same primers employed for viral genome screening, none of the culture supernatants
revealed the presence of any of the targeted virus-groups. However, the observed CPE
recalled previous virus isolation attempts carried out in our laboratory, and suggested the
presence of a nelorpivirus in the culture supernatant. This was confirmed using Negev-
like virus-specific primers combined with a phylogenetic analysis of the obtained partial

ORF1 sequence (Supplementary Fig. 2C). The low success rate of isolation of viruses
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using C6/36 cells must take into account the fact that only one blind passage was
performed. Although this strategy may have conditioned the possibility of obtaining high
titer viral suspensions, the success of viral isolation may have been more seriously
compromised by the fact that the mosquitoes were maintained at —20 °C from the day of
their collection up to the point when they were identified and macerated. While this does
not seem to have affected the infectivity of Negev-like viruses, it may have influenced

that of the other viruses detected in the mosquitoes that were analyzed.
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To conclude, this report brought to evidence the circulation of a diverse array of viruses
in mosquitoes collected in southern Portugal. While bona fide arboviruses were not
identified, three lineages of cISF were described in as many different species of Culex,
Aedes and Culiseta mosquitoes. Two of these lineages had been described previously
(Ferreira et al., 2013; Parreira et al., 2012; Véazquez et al., 2012), but another one
associated with Culiseta specimens had not been described before in the Iberian
Peninsula. In addition, the presence of genus-unassigned phenuiviruses (Buniavirales)
and brevidensoviruses (Parvoviridae, Densovirinae, Brevidensovirus) were here
described for the first time. Some, or even all, of these viruses, may correspond to viral
mutualistic symbionts that are part of the mosquito microbiota, as previously described
(Roossinck, 2011).
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Supplementary Fig. 1: Maximum likelihood phylogenetic analysis of partial Flavivirus ns5 nucleotide
sequences. At specific branches, relevant bootstrap values (>75%) are indicated. The multiple reference
sequences used include mosquito-borne viruses (MBV), tick-borne viruses (TBV), no known vector viruses
(NKV), dual-host associated insect-specific viruses (dISF), and classical insect-specific flaviviruses (cISF).
The sequences described in this work are indicated in boldface and the horizontal arrow. All the sequences
used are designated by their respective accession numbers_virus name_strain (when available). The size
bar indicates the number of nucleotide substitutions per site.

virus.
000341 Mustay Valley.encepalts virus
NC nm_ Cac

MBV

M2
009029 Kokoters irus
25264 Bainyik_virus

648 Kampuag_ Karu_vinss

anay_vi

dISF

MBV

“NC 005063 Omsk hemerrhagic_fever vinus
n(ym«lu h'r. sheep_cncephalills virus

<0y inish_gost_cncephalitis _virus
001800- buping 1 virws ©
056630 Sutiage i

TWIO
< BR \IRP 012012

X4 vivirus. vari

RXIRSAE Aropheics flriess Fhr—

KMOSK0E Mowquto_flavivirus AMI1374

KMOSRO3S Mosquito_ flayivirus. 3

KMOSB030 Mot favivirus mmnmm

Acdes._flavivirus_A

w5 AEFV_SPELD MO, 2011 MP6

Narita-21

v6
Bangkok

virus_Aag2, Brisiol
t.Qanm C ras02
NC J0sed Cell fusng age
648 Acds Baviieis 9
24 Cell_fusing agent virus E\S8
Xishuinghania_Acdes_ fAavvirus

X
u s
] K 110003 Culata 10462-12
KT119914 Culiscta flavivirus MESE
KT1199091 Culiseta flavivirus 640301
NC_ (30290 Culiseta flavivirus
NC 027819 Mercadeo_virus
[ MHSRG Sicthes avivirus Mo
oM Tt ke vion CFVL. San_ Francisco
e o_virus
NC 02

_Ochlcrotatus_caspius_flavivirus
hicrotatus flaviviris_143-166-2060chss

JFT07858_Flavivirus_insert
267_Uncultured_virs_isolate_scc 7 2

82



A diverse assemblage of RNA and DNA viruses found in mosquitoes collected in southern
Portugal

Supplementary Fig. 2: Microscopic observation of C6/36 cells mock-infected cells (A; 300x), or after
infection (day 2) with a Negev-like virus isolated from Cx. laticinctus (B; 300x). Phylogenetic analysis of
partial ORF1 nucleotide sequences of viruses from the family Virgaviridae, the genera Higrevirus and
Cilevirus, and the proposed genera Sandewavirus and Nelorpivirus. In the latter, the group formed by
Negev-like viral sequences, and that included the sequence of the virus isolated in the course of this work
(boldface and signaled by the horizontal arrow), is also indicated. At specific branches the number of “*”
indicates the support revealed by the different phylogenetic reconstructions methods used, assuming as
relevant bootstrap values >75% and posterior probability values >0.80. The sequences used are indicated
by their accession number_virus name. The size bar indicates the number of nucleotide substitutions per

site.
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Supplementary Table 1: PCR primers and thermal profiles used in this work.
Target gene Primer sequence (5°-3°) Thermocycling Reference
conditions
ns5 (Flaviviruses) 1 PCR 95 °C - 5 min; 45 Vasquez et
INS5F: GCATCTAYAWCAYNATGGG cycles [95 °C - 1 al, 2012
INS5R: CCANACNYNRTTCCANAC min; 50 °C - 4 min;
72°C - 1min]; 72°C
-5 min
2" PCR Same as above
2NS5F: GCNATNTGGTWYATGTGG
2NS5R: CATRTCTTCNGTCGTCATCC
L (Phleboviruses) TBPVL2759F: CAGCATGGIGGICTIAGAGAGAT 95 °C - 2 min; 45 Matsuno et
TBPVL3267R: TGIAGIATSCCYTGCATCAT cycles [95 °C - 30 al., 2015
HRT-GL2759F: CAGCATGGIGGIYTIAGRGAAATYTATGT  sec; 55 °C - 30 sec;
HRT-GL3276R: 72 °C - 30 sec]; 72
GAWGTRWARTGCAGGATICCYTGCATCAT °C -5 min
L 1tPCR 95 °C - 2 min; 45 This work
(Orthobunyaviruses)  OrthoF12: cycles [95 °C - 30
TRACTGARCCWTCTMGATATATGATAATGAAYT sec; 53 °C - 45 sec;
OrthoR1: CATCTTGDGCACTCCATTTTGACATRTCHGC 72 °C — 45 sec]; 72
°C -5 min
2 PCR Same as at
OrthoF12:
TRACTGARCCWTCTMGATATATGATAATGAAYT
OrthoR2: CATACATRCACATYTTDGCTTCAAATTC
NS1 (Densovirus) 1 PCR 95 °C - 2 min; 45 This work

ORF1 (Negev-like
viruses)

ORF1 (Loreto-like
viruses)

ORF1
(Denzidougou-like
viruses)

COl

DF1: AACCGTTGGTGACCTCTACCCACAATTAC
DR1: CGGATGCAATAGAGAATGAAGTTCCTGAG

2" PCR
DF2: GAAACTATGGATAATAACGGGTCACAGG
DR2: CGCTTCTGCACTTCCTGCGCTTGTCGC

1 PCR
NegeF: CAYGTRAARATYTTCTGCGAYATGTC
NegevinR: TAATCGTTTGTGCGGTARACATTGAGGC

2" PCR
NegevinF: AGTGCTTCAACGTGACATTCCCCCGTCC
NegevinR: TAATCGTTTGTGCGGTARACATTGAGGC

1% PCR
LorF: CGGCAATTTGGAATCGAAGAGGAACTTGTC
LorRout: CCACATGAAGGAGGAAGTGTACAACC

2" PCR
LorF: CGGCAATTTGGAATCGAAGAGGAACTTGTC
LorR: TGTGCGATGAACTTCGATACATTCCGGGTC

1 PCR

DenzF:
TAATTTGTGYGTTACYGCTCTKACTMGGCACAC

DenzR: ATACGAACYTTRGGATTRCGTTTCAGAGAC

2" PCR

DenzF:
TAATTTGTGYGTTACYGCTCTKACTMGGCACAC
DenzinR: GCKGGAGCAGGAGTGCTCAACMMCGG

LCO1490: GGTCAACAAATCATAAAGATATTGG
HCO02198: TAAACTTCAGGGTGACCAAAAAATCA

cycles [95 °C —
30sec; 53 °C — 30
sec; 72 °C — 45 sec];
72°C -5 min

Same as ak

95 °C - 2 min; 45
cycles [95 °C - 30
sec; 55 °C - 30 sec;
72°C—1min];72°C
-5 min

Same as above

95 °C - 2 min; 45
cycles [95 °C - 30
sec; 55 °C - 30 sec;
72°C—1min];72°C
-5 min

Same as above

95 °C - 2 min; 45
cycles [95 °C - 30
sec; 55 °C - 30 sec;
72°C—1min]; 72°C
-5 min

Same as above

95 °C - 5 min; 40
cycles [95 °C - 30
sec; 48 °C — 30 sec;

Carapeta et
al., 2015

Carapeta et
al., 2015

Carapeta et
al., 2015

Folmer et
al.,, 1994,
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72 °C — 45 sec]; 72 Cook et al.,
°C - 5 min 2009

I-inosine, M-A or C, N- any base, R-A or G, S-C or G, W-Aor T, Y-C or T. Sequences in bold-face are complementary to the genome
of bacteriophage SPP1 (X97918).

Supplementary Table 2: Mosquito collections and viral detection analyses.

Mosquitoes Brevidensovirus
Pools - L .
Mosquito species Total analysed (lab FIaV|V|_rus Phenun_/lrus detectioon
(number of detection detection
codes)
pools)
Ae. berlandi 20 13 (n=1) 37? 0 1 0
2,32 0
69, 702,
Ae. caspius 401 344 (n=8) 7142, 2 5
722,73,
742
Ae. detritus 16 16 (n=1) 42 0 1 0
Ae. echinus 3 0 na na na na
6, 8, 10, 0
An. atroparvus 860 314 (n=7) 40, 42, 0 0
44, 46
An. 482, 492, 0
claviger/petragnani 104 98 (n=3) 5012 ! 3
An. plumbeus 1 0 na na na na
Cq. richiardii 3 0 na na na na0
16, 0
Cs. annulata 62 55 (n=3) 5212, 2 2
532
3
Cs. longiareolata 112 66 (n=3) 18‘734 ! 0 0 !
Cx. hortensis 2 0 na na na na
. 19, 1
Cx. laticinctus 194 75 (n=3) 2013 58 1 0
21,22,
23, 24, 0
- 25, 26,
Cx. pipiens s.l. 645 474 (n=12) 27 60, 0 0
61, 62,
81, 86
29, 30,
Cx. theileri 282 267(n=6) 31,64, 0 0 0
65, 66
C.univitatus 162 79(n=3) 0> 0 0 0
Ur. unguiculata 2 0 na na na na
Total 2869 1801 (n=50) na 6 12 2

Ae: Aedes, An: Anopheles, Cq: Coquillettidia, Cs: Culiseta, Cx: Culex, Ur: Uranotaenia. ‘Detection of flavivirus sequences; ?Detection of phenuivirus

sequences; *Detection of brevidensovirus sequences; na — not applicable; s.I. — sensu lato.
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This paper was published before a recent taxonomy revision of the Parvoviridae family by Penzes et al. in 2020, where all

brevidensovirus were renamed as brevihamaparvovirus. In all other sections of this thesis, as well as in most recent papers, the new
term is used.
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Abstract

This report describes a survey of RNA and DNA viruses carried out in adult mosquitoes
from Angola, raised under laboratory conditions from field-collected immature forms.
This viral genomic survey was performed using different sets of primers targeting groups
of arboviruses with a considerable impact on human health, including flaviviruses,
alphaviruses, and phleboviruses. Furthermore, the viral survey that was performed also
included detection of densoviruses. The obtained results did not reveal the presence of
recognizable pathogenic arboviruses but allowed the identification of insect-specific
flaviviruses from two genetic lineages and a single lineage of brevidensoviruses. These
viruses, collectively detected in Anopheles sp. and Culex pipiens s.l. mosquitoes, were
most probably transmitted vertically.

Keywords: Flaviviruses; Densoviruses; Vertical transmission; Mosquitoes; Phylogenetic

analysis; Angola
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Short communication

The virome of mosquitoes (Diptera: Culicidae) comprises a multitude of pathogenic
viruses, as well as others that seem to display limited replication capacity in vertebrate
cells (Calisher and Higgs, 2018; Junglen and Drosten, 2013). These so-called insect-
specific viruses comprehend a genetically diverse assemblage of both RNA and DNA
viral agents and have been classified in a wide variety of distinct taxa (Nouri et al., 2018).
While these viruses are regarded as non-pathogenic to vertebrates, their impact on the

fitness of their invertebrate hosts is still open to debate.

In the wake of the yellow fever virus (YFV) epidemic that took place in Angola in 2015—
2016 (Grobbelaar et al., 2016), while surveying the distribution of Aedes aegypti (the
most probable vector of YFV during the outbreak), a convenience sample of mosquitoes
was obtained which served as a starting point for a viral survey. These mosquitoes were
collected between September and November 2016, at different sampling points located
in the capital city of Luanda (—=8° 50" 12" S, 13° 14’ 03" E), and some of its peripheric
municipalities. In addition, mosquitoes were also collected in the cities of Sumbe (—11°
1221”7 S, 13° 50" 37" E), Benguela (—12° 34’ 34 S, 13° 24’ 19 E) and Huambo (—12° 46’
33 S, 15°44'21 E), in the provinces of Cuanza Sul, Benguela, and Huambo, respectively.
The geographic distribution and total of mosquitoes collected in each region are indicated
in Supplementary Fig. 1. The analyzed mosquitoes were collected as larvae or pupae by

sampling with dips and pipettes, or as eggs laid in ovitraps.

The mosquito immature forms were reared up to the imago stage, and immediately after
emergence, male and female mosquitoes were separated, and the specimens were grouped
into pools with a minimum of 3 and a maximum of 63 specimens per pool. This grouping
took into account the geographic sampling region and the mosquito taxa, with groups
being defined as “Anophelinae”, “Aedes aegypti”, and “other Culicinae”. For the
preparation of the different pools of specimens, each mosquito was briefly soaked in
ethanol, dried onto filter paper and immediately stored at —20 °C in RNAlater®
(Invitrogen, USA).

Viral detection was carried out using nucleic acids that were extracted with NZYol
(NZYtech, Portugal), starting from aliquots of centrifugation clarified mosquito

macerates, prepared as previously described (Carapeta et al., 2015; Pimentel et al., 2019).
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Multiple combinations of primers were used in PCR-based assays aiming at the molecular
detection of different groups of viruses. For the detection of viruses with RNA genomes,
prior to PCR, total RNA was converted to cDNA using the NZY First-Strand cDNA
Synthesis Kit (NZYtech, Portugal). The primers used for viral detection targeted the
genomes of bona fide arboviruses, including flaviviruses (Véazquez et al., 2012),
alphaviruses (Sanchez-Seco et al., 2001) and phleboviruses (Matsuno et al., 2015). The
presence of densoviruses was also investigated using NS1 and VP-specific primers
developed in the course of this study. The primers used are indicated in Supplementary
Table 1, where the PCR conditions for detection of densoviruses are also indicated
(Supplementary Table 1 foot-note). The obtained amplification products were sequenced
either directly, or after cloning in pNZY-28, using the NZY-A PCR cloning kit (NZYtech,
Portugal).

Sequence similarity searches were carried out using BLASTn/p, while phylogenetic trees
were constructed using maximum likelihood and Bayesian approaches, essentially as
described by Pimentel et al. (2019), using the Mega 6.0 (Tamura et al., 2013) and
BEASTvV1.7.5 (Drummond and Rambaut, 2007) software packages, respectively. For
Bayesian analyses, two independent Markov chain Monte-Carlo (MCMC) runs were
performed under a relaxed lognormal clock, until 1 x 108 states were sampled, 10% of
which were later discarded as burn-in. Logistic and Gaussian Markov random field
(GMRF) demographic priors were used for phylogenetic reconstructions under a
Bayesian framework. The Tracer software (http://beast.bio.ed.ac.uk/tracer) was used to
check for chain-convergence and adequate (> 200) effective sample size (ESS).
Phylogenetic trees were sampled on every 10,000th MCMC step, finally summarized as
a maximum clade credibility tree (MCC), and visualized with the FigTree v1.4.2 software
(http://tree.bio.ed.ac.uk/software/figtree/). Evolutionary divergence values over sequence
pairs (intra- and inter- groups of sequences) were calculated with the JTT matrix-based
model (as implemented in Mega 6) using NS1 and VP amino acid alignments. Intra-genus
nucleotide sequence diversity values were calculated with Mega 6 using the TN93 + T"
model.

The sequences obtained in the course of this work were deposited in the public databases
(GenBank/ENA/DDBJ) under accession numbers LC485954-1.C485964
(Brevidensovirus NS1), LC485294-L.C485303 (Brevidensovirus VP), and LC485965-
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LC485968 (Flavivirus NS5). These sequences are listed in Supplementary Table 2a.
Sequences LC484845- L.C484858 correspond to the mitochondrial cytochrome C subunit
I (COI). Others, used as references in the different genetic analyses, were downloaded

from GenBank.

Mosquito species identification was carried out for each homogenate from which a viral
sequence was obtained (see below). This was achieved by DNA-barcoding using
BoldSystems vs4 (Ratnasingham and Hebert, 2007), based on the analysis of partial
sequences of the mosquito mitochondrial COI (Cook et al., 2009; Folmer et al., 1994). In
addition, a multiplex-PCR targeting the acetylcholinesterase (Ace-2) coding nucleotide
sequence was also used to tentatively discriminate between members of the Culex pipiens
s.l. complex, which includes Cx. pipiens (L. 1758, or Cx. pipiens sensu stricto), Cx.
quinquefasciatus (Say 1823), Cx. pipiens pallens (Coquillett 1898), and Cx. australicus
(Dobrotworsky & Drummond 1953) (Smith and Fonseca, 2004).

In total, 60 mosquito pools were analyzed, corresponding to 1441 mosquitoes. Viral
screening using Alphavirus- or Phlebovirus-specific primers did not reveal the presence
of their respective genomes in any of the pools analyzed, as none of the expected virus-
specific amplicons were ever observed after gel electrophoresis. However, using cDNA
prepared from 5 pools (Supplementary Table 2 a, b), corresponding to both male and
female mosquitoes, the presence of a 1 kbp amplicon was observed. This amplicon
encompasses part of a flavivirus NS5 coding sequence, that on the Culex flavivirus strain
CxFV-Mex07 reference sequence (accession number EU879060) would define a section
of the viral genome from coordinates 9800 to 9901. No virus-specific amplicons were
ever obtained when reverse-transcription was omitted, or when total DNA was directly
used as template for PCR. This seems to dismiss their origin as flavivirus sequences
integrated into mosquito genomes (Crochu et al., 2004). Three of these pools
corresponded to a morphologically homogeneous group of mosquitoes collected from the
same breeding site (Hotel Panorama, Luanda), classified as Anopheles sp. on the basis of
DNA-barcoding and Blastn searches (Megablast option). Indeed, its closest homolog
(sharing 99.82% sequence identity by Blastn analysis) was sequence MF372931. This
corresponded to Anopheles sp. 1 YL-201 collected in 2015 in Benguela, suggesting that
they correspond to a species of Anopheles mosquitoes that seems to be common in

Angola. The other two pools where flavivirus sequences were detected were shown to
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correspond to either Culex quinquefasciatus or a mixture of at least Cx. pipiens and Cx.
quinquefasciatus, as defined by COl-based barcoding, Ace-2 PCR results, and Blast
sequence searches. The Ace-2 PCR also revealed a band compatible with the presence of
Cx. pallens, but given the Asian geographic distribution of this species, their presence in

Angola was deemed unlikely.

From five flavivirus-positive pools we obtained four viral sequences (Fig. 1), and their
analysis showed that none of them were directly related to pathogenic flaviviruses. On
the contrary, the sequences segregated in two distinct genetic lineages of the so-called
classical insect-specific flaviviruses, or cISF (Bolling et al., 2015). One of these viral
sequences (LC485968), obtained from Cx. quinguefasciatus mosquitoes collected in
Sumbe, ca. 330 km south of the capital Luanda, was included in the genetic lineage of
Culex flaviviruses. The other three were amplified from pools of mosquitoes identified
as Anopheles sp. or Culex pipiens complex mosquitoes (on the basis of COI sequence
analysis), all collected in the vicinity of Luanda. These viral sequences were shown to
share a common ancestry and formed a distinct phylogenetic lineage, having Anopheles
flavivirus (KX148548) as their closest homolog (approximately 83% nucleotide identity,
see table in Fig. 1).
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Anopheles/Luanda_flavivirus (4nopheles sp.)_LC485966_Angola A
*#3 Anopheles/Luanda_flavivirus (4nopheles sp.)_LC485965_Angola :
*4 ° Luanda_flavivirus (undetermined)_LC485967_Angola
Anopheles_flavivirus_(4nopheles sp.) KX148548 Sencgal
Mosquito_flavivirus_(Anopheles squamosus) KM088038 Kenya
Anopheles_flavivirus (Anopheles gambiae) KX148546_Liberia
Mosquito_flavivirus KMO088037 (Anopheles gambiae) Kenya
Anopheles_flavivirus_ MG372058 (dnopheles gambiae) Kenya
Anopheles_flavivirus MG372059_ (dnopheles gambiae) Kenya
Mosquito_flavivirus KMO088036 (Anopheles gambiae) Kenya

19)8n[d SNIAIAR|) sapydouy

***Dairy_swampgﬂavivirus (Anopheles bancroftii) MF352618_Australia
Haslams_Creek_virus_(Anopheles annulipes) MF352617_Australia
Karumba_virus (Anopheles meraukensis) MF352615_Australia
Karumba_virus (4dnopheles meraukensis) KY460522 Australia
Karumba_virus (Anopheles meraukensis)_KY460523_Australia
Mac_Peak_virus (Anopheles farauti) MF352616_Australia
b E Cell_fusing_agent_virus_KJ741267_USA
— Kamiti_river_virus_NC_005064_Kenya
 — La_Tina_virus_KY320649 Peru

Mercadeo_virus KP688057 Panama
Nienokoue_virus_KX879626 Cote_d’Ivore
Nakiwogo_virus_ GQ165809_Uganda
Palm Creck virus KC505248 Australia
Culex_theileri_flavivirus HE574573_Portugal
Quang_Binh_virus NC_012671_Vietnam
Culex_flavivirus_HQ634596_USA
Culex_flavivirus_NC_008604_Japan
Culex_flavivirus_JX897904 Taiwan

€ - e e - -

cISF

Culex_flavivirus_ EU879060_Mexico

|: Hanko virus JQ268258 Finland

*** = Qchlerotatus_caspius_flavivirus HF548540 Portugal

Japanese encephalitis virus HM596272 Malaysia

Accession number Sequence identity (Blastn best match) Sequence identity (Blastp best match)
LC485965 83% with Acdes flavivirus (KX148548) 95% Anopheles flavivirus (YP_009305401)
LC485966 83% with Aedes flavivirus (KX148548) 95% Anopheles flavivirus (YP_009305401)
LC485967 83% with Acdes flavivirus (KX148548) 94% Anopheles flavivirus (YP_009305401)
LC485968 98% Culex flavivirus (MH719098.) 100% Culex flavivirus (ACJ64914)

Fig. 1: Phylogenetic analysis of partial Flavivirus NS5 nucleotide sequences. After removing poorly aligned
regions from the multiple sequence alignment, the trees were constructed using 837 unambiguously aligned
nucleotides. At specific branches, the number of “*” indicates the branch-support as revealed by the different
phylogenetic reconstructions methods used, and assuming as relevant bootstrap values >75% (using 1000
resampling of the sequence data in maximum likelihood analysis) and posterior probability values >0.80 (when
Bayesian approaches were used). One, two or three “*” would indicate that a given branch had been supported
by one, two, or all the phylogenetic reconstruction approaches used in the analysis (ML and Bayesian analysis
using two sets of demographic priors). In the Anopheles flavivirus clade (indicated by the lateral, vertical arrow),
virus sequence designation includes their origin (mosquito species), when available. The bar indicates the
average number of substitutions per site. At the base of the figure, the table indicates, for each NS5 sequence
obtained what were their corresponding best matches by sequence similarity searches using Blastn and Blastp.
The NS5 sequence from Japanese encephalitis virus from Malaysia (HM596272) was used as the tree outgroup.
cISF indicates classical Insect Specific Flaviviruses.
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Despite the fact that the molecular identification that was performed indicated Cx. pipiens
s.l. as the origin for viral sequence LC485967 (one of the three sequences mentioned
above), this identification may be misleading. In fact, given the apparent high-species
specificity previously suggested for the flaviviruses detected in Anopheles mosquitoes
(Colmant et al., 2017), the association of an apparently Culex-derived viral sequence with
this group (Fig. 1) was considered controversial. However, one must bear in mind that
Sanger-sequencing, being the starting point for identifications based on sequence analysis
of PCR amplicons, is a population-sequencing approach that only reveals the sequence of
the most abundant molecular form in a PCR-product. For this reason, while sequence
analyses results may have suggested a Culex origin for the viral sequence LC485967, this
does not formally exclude the possibility that it may have been derived from one (or a
small number of) non-Culex mosquitoes (possibly Anopheles) originally present in the
pool in question. In addition, a very low amount of Flavivirus-specific amplificon was
obtained, which is also compatible with their origin being a low number of non-Culex
derived DNA molecules. Since the lack of Anopheles genus-specific primers in our lab
precludes a PCR-based confirmation for the presence of Anopheles sequences in the DNA
extract in question, for the time being, the exact origin of LC485967 viral sequence
remains undetermined. A clarification of this point would require, for example, a larger
sampling of mosquitoes, and the isolation of the detected flaviviruses in Aedes,
Anopheles, and Culex cell lines, in order to check for mosquito specificity. Then again,
viral replication in cell culture could not have been performed in the context of our work,
as the analyzed mosquitoes had been stored in RNAlater®, which compromises viral

infectivity.

Among the viruses that may exploit vertical transmission for their natural maintenance
stand those commonly known as densoviruses. Although they are not pathogenic to
humans, they have very rarely have been described in African mosquitoes. For these
reasons, the presence of the genomes of DNA viruses of the Densovirinae subfamily
(Parvoviridae) was also investigated. These viruses comprise a diverse group of linear
single-stranded DNA viral agents that infect arthropods, many of which are pathogenic
to the members of seven insect Orders, including the Order Diptera (Martynova et al.,
2016). Furthermore, these viruses do not replicate in vertebrate cells and may integrate

their genomes into their host's (mosquito) chromosomal DNA. In this regard, they can be
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exploited as vehicles for stable expression of heterologous proteins in insect cells, host
paratransgenesis and even used for mosquito control (Gu et al., 2011; Ren et al., 2008;
Tijssen et al., 2016).

The genomes of densoviruses were detected using primers that were designed on the basis
of the identification of conserved regions in multiple sequence alignments [obtained using
MAFFT vs7; Katoh and Standley, 2013] of viral genomic reference sequences
downloaded from the nucleotide sequence databanks. Two nested-PCR protocols were
developed, targeting either the NS1 (regulatory protein) or VP (capsid) coding regions
(Supplementary Table 1). The screening for the presence of genomes of densoviruses
using primers targeting NS1 sequences revealed positive amplification results for 15 out
of 60 pools (25%) of mosquitoes (Supplementary Table 2 b). The majority (14 out of 15)
included either male or female mosquitoes that had been collected in the city of Luanda
(and its surroundings), corresponding either exclusively to Culex quinquefasciatus or
mixtures of Cx. pipiens and Cx. quinquefasciatus mosquitoes. One additional pool of
female mosquitoes, collected in the city of Sumbe, also revealed the presence of

densovirus genomes.

Two of these pools (including the latter) had also been found positive for the presence of
Flavivirus genomes. For 10 of these pools of mosquitoes, partial VP-encoding sequences
were also obtained using specific primers, while we repeatedly failed to amplify these
sequences from one of them. A preliminary phylogenetic analysis (maximum likelihood)
was carried out using sequence alignments of the putative NS1 and VP translated products
encoded of these sequences (Fig. 2A and B, respectively), along with many others from
viruses of the five genera of the Densovirinae subfamily (Cotmore et al., 2014). Both
phylogenetic trees gave similar topologies, where the viral sequences obtained segregated

together within the monophyletic cluster defining the genus Brevidensovirus.

Furthermore, the inclusion of the VP Angolan Brevidensovirus sequences in a single
monophyletic cluster was supported by the identification of sequence group-specific
polymorphisms (defined by p < .001 in a Chi-squared test using Yate's correction) in the
sequence of the capsid protein. These include both conservative (K126R, N253T, S254T,
V256M), and non-conservative (Y72L, S135A, K218Q, E234A) amino acid

substitutions.
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On the basis of the analyses described above, the genomes of the densovirus strains
detected do not seem to have resulted from intergenus recombination. However, since
intragenus genetic recombination has been previously shown to affect the evolutionary
history of these viruses (Martynova et al., 2016), viral genomes were further characterized
by combining phylogenetic and recombination analyses, using concatenated alignments
of the NS1 and VP sequences. As expected, given the topology of the NS1 and VP
phylogenetic trees, the inspection of the concatenated multiple sequence alignment with
the RDP4 software (Martin et al., 2015) did not reveal any evidence of intra-genus

recombination.

The analysis of genetic distances was also carried out using an alignment of concatenated
NS1/VP-coding sequences, corrected using the TN93 + I model, as suggested by Mega
6 (Tamura et al., 2013). Estimates of evolutionary divergence over amino acid sequence

pairs between groups (genera) are shown in Supplementary Table 3.

The amplification of viral sequences from adult mosquitoes that were collected as
immature forms and their occurrence in both male and female specimens supports the
possibility that all the viruses detected in this study might exploit vertical (transovarian)
transmission for their natural maintenance. Nonetheless, since the presence of viral
sequences was not investigated, for example, in eggs, the obtained results are also
formally compatible with the possibility of horizontal viral transmission between

immature mosquito forms at their breeding sites.

While the circulation of identifiable pathogenic flaviviruses (e.g. dengue, Zika or YFV),
alphaviruses (e.g. chikungunya) or phleboviruses (e.g. Rift VValley fever virus) was not
verified, one should bear in mind that in addition to the analytic bottleneck imposed by
selecting for apparent vertical transmission, most of the mosquitoes analyzed were not
those most frequently associated with the transmission of the arboviruses, i.e. Ae. aegypti
and Ae. albopictus. However, during the YFV 2016 epidemic in Angola, a double YFV-
Japanese encephalitis virus (JEV) infection was detected in the Cunene province in the
south of the
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country (Simon-Loriere et al., 2017), suggesting that pathogenic flaviviruses may already
co-circulate in Angola. Indeed, this YFV/JEV coinfection was detected by de novo
assembly of high throughput sequence data obtained from a single YFV-infected 19-year-
old man, with a 5-day history of fever. While this sample was obtained at the Cunene
provincial hospital (> 800 km south-east from the capital), at the onset of disease, the
patient was working in Luanda and reported no history of traveling abroad. While YFV
is usually transmitted by Ae. aegypti, the circulation of JEV is most frequently associated
with Culex mosquitoes. Detection of a pathogenic virus in the vector in the absence of
sympatrically described cases of symptomatic disease in humans is a rare event. On the
contrary, cISF and brevidensoviruses were relatively frequent, altogether being detected
in a total of 18 out of 60 pools analyzed (i.e., in 1/3 of the total). To our knowledge, this
study corresponds to the first identification of cISF and brevidensoviruses in mosquitoes
from Angola. As the specimens analyzed corresponded to a small convenience sample,
the obtained results suggest that many other viral strains wait to be identified. While the
viruses here described in mosquitoes from Angola may correspond to viral mutualistic
symbionts that are part of the mosquito microbiota, as previously described for many
other organisms, their presence may interfere with their host's competence for
transmission of bona fide arboviruses (Nouri et al., 2018). This subject deserves to be
investigated in the future.
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Supplementary Fig. 1: Geographic distribution of the mosquito collection sites. The Angolan provinces
where mosquito collections took place are indicated by numbers (legend on the right side of the map), and
the approximate location of the main collection sites in each region are identified by an arrow and a dot.
For each collection site, the numbers in brackets indicate the total number of mosquitoes collected/analyzed.
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Supplementary Table 1: Primers and thermal profiles used for the detection of densoviruses
(Densovirinae).

Primer PCR round Sequence Coordinates®  Genomic
target
VPF1 1™ GGCAGACAGCACTWCAATGGACC 2567-2589 VP1
VPF2 2nd* CGTAAAAGAAGGWTAYGGACC 2672-2692 VP1
VPR1 1t GTGCTCATTCKTACTTGGTATCTG 3466-3489 VP1
VPR2 2nd* GTTTCRTCTGGAAYTTGTGGTTGTGC 3425-3450 VP1
DF1 15 AACCGTTGGTGACCTCTACCCACAATTAC 737-765 NS1
DF2 2nd* GAAACTATGGATAATAACGGGTCACAGG 936-963 NS1
DR1 10" CGGATGCAATAGAGAATGAAGTTCCTGAG 1590-1618 NS1
DR2 2nd* CGCTTCTGCACTTCCTGCGCTTGTCGC 1535-1561 NS1

2 The coordinates indicated correspond to the position of sequences targeted by the different primers in reference FJ805445; K: G or
T,R:AorG,W:AorT,Y:CorT.

* The thermal profile used for amplification of NS1 sequences included (in both PCR cycles) 2°-94 °C (1x), [30°°-94 °C, 30°’-53 °C,
45°°-72 °C (50x)], 5°-72 °C (1X).

** The thermal profile used for amplification of VP sequences included (in both PCR cycles): 2°-94 °C (1x), [30°’-94 °C, 1°-50 °C,
1’-72 °C (50x)], 5°-72 °C (1x).

Supplementary Table 2a: List of viral sequences described in this work.

Viral taxon: Flavivirus Sequence accession number Mosquito pool
LC485965* Ang3
LC485966" Ang4
LC485967* Ang24
LC485968! Ang45

Viral taxon: Brevidensovirus Sequence accession number Mosquito pool
LC485294? Ang20
LC4852952 Ang22
LC4852962 Ang24
LC4852972 Ang25
LC4852982 Ang27
LC485299? Ang29
LC485300? Ang30
LC4853012 Ang3l
LC485302? Ang33
LC4853032 Ang37
LC485954° Ang20
LC485955° Ang22
LC485956° Ang24
LC485957° Ang25
LC485958° Ang27
LC485959° Ang29
LC485960° Ang30
LC485961° Ang3l
LC485962° Ang33
LC485963° Ang37
LC485964° Ang45

1 NS5 sequences, 2 VP sequences, 3 NS1 sequences.

104



Insect-specific flaviviruses and densoviruses, suggested to have been transmitted vertically, found in
mosquitoes collected in Angola: Genome detection and phylogenetic characterization of viral sequences

Supplementary Table 2b: Flavivirus and Brevidensovirus detection in mosquitoes from Angola, and
characterization of the mosquito pools analysed.

Pool lab code (size) Collection Mosquito sex/ldentification* Flavivirus detection Brevidensovirus detection
site
Ang3 (n=25) Luanda Male/Anopheles sp. Positive Negative
Ang4 (n=32) Luanda Male/Anopheles sp. Positive Negative
Ang5 (n=25) Luanda Female/Anopheles sp. Positive Negative
Ang6 (n=24) Luanda Male/ND Negative Negative
Ang7 (n=14) Luanda Female/ND Negative Negative
Ang8 (n=25) Luanda Male/ND Negative Negative
Ang9 (n=25) Luanda Male/ND Negative Negative
Ang10 (n=24) Luanda Male/ND Negative Negative
Angl1 (n=25) Luanda Female/ND Negative Negative
Angl12 (n=17) Luanda Female/ND Negative Negative
Ang13 (n=20) Luanda Male/ND Negative Negative
Ang14 (n=30) Luanda Female/ND Negative Negative
Ang15 (n=28) Luanda Female/ND Negative Negative
Ang16 (n=10) Luanda Male/ND Negative Negative
Angl7 (n=21) Luanda Female/ND Negative Negative
Ang18 (n=12) Luanda Male/ND Negative Negative
Ang19 (n=9) Luanda Female/ND Negative Negative
Ang20 (n=25) Luanda Female/Culex pipiens s.I. Negative Positive
Ang21 (n=25) Luanda Female/ND Negative Negative
Ang22 (n=30) Luanda Male/Culex pipiens s.1. Negative Positive
Ang23 (n=30) Luanda Female/ND Negative Negative
Ang24 (n=30) Luanda Male/Culex pipiens s.l. Positive Positive
Ang25 (n=25) Luanda Female/Culex pipiens s.1. Negative Positive
Ang26 (n=16) Luanda Male/Culex pipiens s.1. Negative Positive
Ang27 (n=30) Luanda Female/Culex pipiens s.l. Negative Positive
Ang28 (n=30) Luanda Female/Culex pipiens s.I. Negative Positive
Ang29 (n=31) Luanda Female/Culex pipiens s.1. Negative Positive
Ang30 (n=30) Luanda Male/Culex pipiens s.l. Negative Positive
Ang31 (n=21) Luanda Male/Culex pipiens s.1. Negative Positive
Ang32 (n=52) Luanda Male/Culex pipiens s.1. Negative Positive
Ang33 (n=50) Luanda Female/Culex pipiens s.l. Negative Positive
Ang34 (n=34) Luanda Female/ND Negative Negative
Ang35 (n=50) Luanda Female/ND Negative Negative
Ang36 (n=55) Luanda Male/Culex pipiens s.1. Negative Positive
Ang37 (n=30) Luanda Male/Culex pipiens s.1. Negative Positive
Ang38 (n=25) Benguela Female/ND Negative Negative
Ang39 (n=46) Huambo Female/ND Negative Negative
Ang40 (n=36) Huambo Female/ND Negative Negative
Ang4l (n=11) Sumbe Female/ND Negative Negative
Ang42 (n=49) Huambo Male/ND Negative Negative
Ang43 (n=14) Luanda Male/ND Negative Negative
Ang44 (n=25) Benguela Female/ND Negative Negative
Ang45 (n=25) Sumbe Female/Culex pipiens s.l. Positive Positive
Ang46 (n=25) Huambo Female/ND Negative Negative
Ang47 (n=9) Luanda Male/ND Negative Negative
Ang48 (n=7) Luanda Female/ND Negative Negative
Ang49 (n=16) Luanda Male/ND Negative Negative
Ang50 (n=18) Luanda Female/ND Negative Negative
Ang51 (n=13) Luanda Male/ND Negative Negative
Ang52 (n=17) Sumbe Female/ND Negative Negative
Ang53 (n=27) Sumbe Female/ND Negative Negative
Ang54 (n=19) Sumbe Male/ND Negative Negative
Ang55 (n=23) Huambo Female/ND Negative Negative
Ang56 (n=10) Huambo Female/ND Negative Negative
Ang57 (n=13) Huambo Male/ND Negative Negative
Ang58 (n=9) Sumbe Male/ND Negative Negative
Ang59 (n=18) Sumbe Female/ND Negative Negative
Ang60 (n=17) Benguela Female/ND Negative Negative
Ang61 (n=2) Luanda Female/ND Negative Negative
Ang62 (n=2) Luanda Female/ND Negative Negative
60 pools (n=1,436 mosquitoes) n=5 positive n=15 positive

*Identification was based on COI barcoding using sequences generated by Sanger (population) sequencing of PCR products.
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Supplementary Table 3: Estimates of evolutionary divergence over sequence pairs between groups

1 2 3 4 5
1 | Brevidensovirus -- 2.65/2.56 3.29/2.17 2.21/251 1.68/2.76
2 | Ambidensovirus 2.65/2.56 -- 2.51/2.13 2.77/2.85 2.64/3.39
3 | Iteradensovirus 3.29/2.17  2.51/2.13 -- 5.73/3.01 4.32/2.64
4 | Hepandensovirus  2.21/2.51 2.77/2.85 5.73/3.01 - 8.44/3.05
5 | Penstyldensovirus 1.68/2.76 2.64/3.39 4.32/2.64 8.44/3.05 --

The values indicate amino acid substitutions per site from averaging over

all sequence pairs between the defined groups (genera). All ambiguous

positions were removed from each sequence pair.
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Abstract

The genus Flavivirus incorporates bona fide arboviruses, as well as others viruses with
restricted replication in insect cells. Among the latter, a large monophyletic cluster of
viruses, known as cISF (classical insect-specific flaviviruses), has been sampled in many

species of mosquitoes collected over a large geographic range.

In this study, we investigated nucleotide and protein sequences with a suite of molecular
characterization approaches including genetic distance, Shannon entropy, selective
pressure analysis, polymorphism identification, principal coordinate analysis, likelihood
mapping, phylodynamic reconstruction, and spatiotemporal dispersal, to further
characterize this diverse group of insect-viruses. The different lineages and sub-lineages
of viral sequences presented low sequence diversity and entropy (though some displayed
lineage-specific polymorphisms), did not show evidence of frequent recombination and
evolved under strong purifying selection. Moreover, the reconstruction of the
evolutionary history and spatiotemporal dispersal was highly impacted by overall low
signals of sequence divergence throughout time but suggested that cISF distribution in
space and time is dynamic and may be dependent on human activities, including

commercial trading and traveling.

Keywords: Flavivirus; Insect-specific viruses; Genetic diversity; Phylogenetic analysis;

Phylogeography; Phylodynamics; BEAST
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1. Introduction

The genus Flavivirus (Flaviviridae) encompasses a genetically diverse array of enveloped
RNA viruses with single-stranded genomes of positive polarity, many of which are well-
known tick- or mosquito-borne pathogenic arboviruses (Holbrook, 2017). Many of them
have (re-)emerged in recent years to become worldwide threats causing millions of
infections on a global scale (Bhatt et al., 2013; Chong et al., 2019), while others (e.g. the
Japanese encephalitis and yellow fever viruses) still have the potential to expand their
geographical distribution and increase their current burden on human health (Wasserman
etal., 2016; Weaver et al., 2018).

Although many flaviviruses are pathogenic to humans and some (eg. the Kyasanur forest
and Omsk hemorrhagic fever viruses) are studied under strict biological containment
(Wilson and Chosewood, 2009), the replication of others seems to be restricted to
invertebrate hosts (Blitvich and Firth, 2015). These, commonly designated insect-specific
flaviviruses (ISF), are divided into two groups. One includes the so-called dual host-
affiliated ISF (dhISF) or lineage Il ISF (Harrisom et al., 2020). They do not form a
monophyletic lineage in the flavivirus phylogenetic tree, but cluster among mosquito-
borne arboviruses and their restriction to mosquitoes appears to have resulted from a
secondary loss of their ability to replicate in vertebrates (Blitvich and Firth, 2015). On the
other hand, most ISF described to date cluster in a separate large monophyletic cluster
(lineage 1), and are commonly known as classical ISF (cISF), a group that includes the
first of these viruses (the cell fusing-agent virus) described more than 45 years ago
(Stollar and Thomas, 1975).

From the moment the study of ISF was revived in the early 2000s with the
characterization of the Kamiti river virus, isolated from Aedes macintoshi collected in
Kenya (Crabtree et al., 2003; Sang et al., 2003), many others have been described,
indicating that these viruses not only have global distribution but can also be associated
with both Culicine and Anopheline mosquitoes (Calzolari et al., 2016; Colmant et al.,
2017). They have been suggested to correspond to an ancestral lineage of flaviviruses
(Cook et al., 2012) but their evolutionary history is unclear and complex, and can even
be found as endogenous viral elements in the genome of mosquitoes (Abilio et al., 2020;
Crochu et al., 2004; Nouri et al., 2018). Furthermore, the study of ISF has gained
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increasing momentum in more recent years as translational opportunities involving their
potential use as biological agents to interfere with vector competence (via superinfection
exclusion) have been explored (Goenaga et al., 2020; Hobson-Peters et al., 2013; Kuwata
etal., 2015; Romo et al., 2018).

Nonetheless, the great majority of the studies involving ISF include their identification,
genetic characterization and phylogenetic placement within the genus Flavivirus. Very
rarely have questions such as the evolutionary and ecological hypotheses ruling their
origin and spatiotemporal dispersal been addressed, and in the few studies where these
analyses have been carried out (Cella et al., 2019), no coherent statistical framework was
used. For this reason, we attempted to do so by focusing on some of the most
representative genetic sublineages found within the cISF radiation using either non-
structural protein 5 (or ns5, encoding the viral RNA dependent RNA polymerase, and the
most frequently used markers used for genetic analyses of cISF) or complete genome
nucleotide sequences available at public databases. Different bioinformatics tools were
employed to analyze each of these groups of sequences, and the obtained reconstructions
demonstrate the value of a Bayesian-based phylodynamic model to infer the evolutionary
history and spatial spread of different subgroups of cISF.

2. Materials and Methods

2.1. Dataset preparation and sequence alignments
The compilation of the different nucleotide (nt) sequence datasets (ds) used in this work
was based on the selection of non-structural protein 5 (NS5) and whole-genome
sequences available in GenBank on 31-April-2020. These were either directly identified
via their accession numbers or indirectly singled-out as a result of similarity searches
using BLASTN. For those viruses for which a complete genomic sequence was available,

protein-datasets (including non-structural and structural proteins) were also assembled.

Our analyses focused on eight datasets (ds) that include nucelotide sequences clustering
as major branches on the phylogenetic tree as depicted in Supplementary Figure 1. These
included partial Culex theileri flavivirus (n=80; dsl), Culex pipiens flavivirus (n=41;

ds2), Culex flavivirus (n=172; ds3), Aedes flavivirus (n=59; ds4), cell-fusing agent virus

111



Genetic lineage characterization and spatiotemporal dynamics of classical insect-specific flaviviruses:
outcomes and limitations

(CFAV) (n=41; ds5), and cISF NS5 coding sequences, the latter including a maximum of
two sequences from the same genetic lineage per country per year of sampling (n=95;
ds6). Two complete Open Reading Frame (ORF)-coding datasets were also analysed, one
including Culex flavivirus sequences (n=45; ds7), and the other cISF sequences, the latter
comprising a maximum of two sequences from the same genetic lineage per country per

year of sampling (n=83; ds8).

Multiple alignments of nt sequences were performed using the iterative G-INS-I method
as implemented in MAFFT vs. 7 (Katoh and Standley, 2013), followed by their edition
using GBlocks (Castresana, 2000), allowing for less strict flanking positions. The
multiple sequence alignments were systematically verified to ensure the correct alignment
of homologous codons using BioEdit 7.0.5 (Hall, 1999).

2.2. Assessment of the temporal and phylogenetic signals of

different sequence datasets
Inspection of the degree of temporal signal (i.e. signal for divergence accumulation over
the sampling time interval) was carried out based on an exploratory linear regression
approach using the topology of a maximum likelihood (ML) tree, estimated under an
unconstrained clock and GTR+I'+I substitution model using the MEGA X software
(Kumar et al., 2018). Root-to-tip divergences were plotted as a function of sampling time
using the TempEst software (Rambaut et al., 2016).

On the other hand, the evolutionary information contained in each aligned dataset
(phylogenetic signal) was assessed by likelihood mapping (Strimmer and von Haeseler,
1997) using TREE-PUZZLE v5.3 (Schmidt et al., 2002).

2.3. Phylogenetic analyses using maximum likelihood and Bayesian

approaches
Phylogenetic reconstructions were performed based on the ML optimization criterion
using the GTR+I"+I as the best data-fitting substitution model, as suggested by IQ-TREE

(Trifinopoulos et al., 2016), and the stability of the obtained tree topologies was assessed
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by bootstrapping with 1000 re-samplings of the original sequence data in MEGA X

software.

Time-calibrated phylogenetic and phylogeographic histories were constructed using a
Bayesian statistical framework implemented in the BEAST v1.10 software package
(Suchard et al., 2018), using GTR+I'+I model. All phylogenetic reconstructions were
carried out assuming a relaxed uncorrelated lognormal molecular clock model (Ho et al.,
2005) as indicated by the ML Clock Test implemented in MEGA X, allowing for the

accommodation of among-lineage rate variation.

To investigate the sensitivity of the estimate for the time to the Most Recent Common
Ancestor (tMRCA) concerning the coalescent priors used, the performance of parametric
demographic priors (constant, exponential, logistic, and expansion population growth
priors) (Drummond et al., 2003; Griffiths and Tavare, 1994) were tested against that of
nonparametric ones (Bayesian Gaussian Markov Random Field (GMRF) Skyride (Minin
et al., 2008), Skygrid (Gill et al., 2013) and Skyline (Drummond et al., 2005)). This
preliminary comparative analysis was carried out using two datasets of partial ns5
sequences including Culex theileri and Culex pipiens cISF, while the performance of
nonparametric demographic priors was also estimated using a ns5 dataset of CFAV
sequences. Bayes factor (BF) support for predictors was calculated using the marginal
likelihood estimates (infered using Path Sampling (PS) and Stepping-Stone (SS)
approaches) for each candidate model and then comparing the ratio of the marginal

likelihood estimates for the set of candidate models.

A minimum number of two (up to a maximum of eight) independent Markov chain
Monte-Carlo (MCMC) runs were performed using BEAST v1.10 until 1-3x108 states
were sampled, and at least 10% of which were discarded as burn-in. The length of the
MCMC analyses was defined as a function of chain convergence using the Tracer
software v1.7.1 (http://beast.bio.ed.ac.uk/tracer), which was also used to check for
adequate effective sample size (ESS) higher than 200 after the removal of burn-in. The
trees were logged on every 10,000th MCMC step, and the trees distribution was
summarized using TreeAnnotator software v1.8.3 as a maximum clade credibility (MCC)
tree, using median heights as the node heights in the tree. The FigTree v1.4.2 software

was used to visualize the phylogenetic trees (http://tree.bio.ed.ac.uk/software/figtree/).
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2.4. Continuous phylogeography

The geographic spread of cISF in continuous space was studied using a phylogenetic
Brownian diffusion approach that models the change in geographic coordinates (latitude
and longitude) along each branch in the phylogenetic reconstruction (Lemey et al., 2010).
As an alternative to homogeneous Brownian motion, relaxed random walk (RRW)
extensions that model branch-specific variation in dispersal rates similar to uncorrelated
relaxed clock approaches was also used (Drummond et al., 2006a). The assessment of BF
support for the diffusion priors was calculated as described above for the coalescent
demographic priors.

The spatiotemporal reconstruction of ISF spread was visualized on the Spatial
Phylogenetic Reconstruction of Evolutionary Dynamics software (SpreaD3; Bielejec et

al., 2016), using a custom-made geoJSON world map (https://geojson-maps.ash.ms/).

2.5. Genetic diversity and selective pressure analyses
The putative mosaic structure of cISF sequences was investigated using the
Recombination Detection Program RDP4 (Martin et al., 2015), and the estimation of
genetic distance values (corrected with the Kimura-2P formula) was carried out using
MEGA X. Single amino-acid polymorphisms (SAPs) for protein variation were detected
with the indicated amino acid coordinates corresponding to those in the CFAV reference
sequence NC_001564.

The analyses of selective pressure on individual sites of codon alignments were carried
out using the Single Likelihood Ancestor Counting (SLAC) and Fixed Effects Likelihood
(FEL) methods as implemented in Datamonkey (Kosakovsky Pond and Frost, 2005), or
using the SNAP tool (http://www.hiv.lanl.gov/content/sequence/SNAP/SNAP. html) that
explores a simple method for calculation of synonymous and non-synonymous
substitutions (Nei and Gojoborit, 1986). The degree of variability of each amino acid
position in multiple alignments of the putative ISF NS5 amino acid sequences evaluated
based on the Shannon entropy function was calculated using Entropy (Shannon entropy-
one and entropy-two options; available at
http://www.hiv.lanl.gov/content/sequence/ENTROPY/ entropy. html). Finally, a
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principal coordinate analysis was carried out using PCOORD (http://www.hiv.lanl.
gov/content/sequence/PCOORD/PCOORD.html).

3. Results

3.1. Genetic diversity and selective pressure analyses
The non-structural protein 5 viral sequences of Culex-associated Culex theileri
flaviviruses (CTFV) and Culex pipiens flaviviruses (CPFV), as well as cell-fusing agent
viruses (CFAV), comprised datasets ds1, ds2, and ds5, respectively. In addition to these,
three other datasets of more divergent assemblages of ns5 sequences included Culex cISF
(ds3) and Aedes cISF (ds4), as well as the whole cISF radiation (ds6). Finally, we also set
up two datasets of complete viral genomic ORF-coding sequences, which integrated
Culex-specific cISF (ds7) or representative sequences of all cISF (ds8). Access to
complete genomic sequences also allowed the construction of multiple datasets for each
of the non-structural (NS1, NS2a, NS2b, NS3, NS4a, 2k, NS4b, NS5) as well as structural

(capsid, envelope, and membrane glycoprotein) protein sequences.

Preliminary ML phylogenetic tree of all Culex cISF partial NS5 coding sequences (ds3)
identified multiple sublineages (indicated as "L" in Supplementary Figure 2A), most of
them associated with a specific species of Culex mosquitoes (for example, L1-Culex
theileri; L2-Culex tritaeniorhynchus; L3-Culex pipiens). The existence of genetic
sublineages was also supported by PCOORD analysis (Supplementary Figure 2B).
Curiously, one of the sequences (accession number LC462017), detected in Culex
antennatus from Mozambique was placed closer to Culex tritaeniorhynchus cISF (L2)
than to those it forms a sublineage with (L4, including Nienokoue viral sequences).
Shannon entropy assessment showed low values for different sublineages of Culex cISF

(data not shown).

Overall mean genetic distance for Culex cISF was calculated for both the complete
genome and for each specific genomic region. The mean distance between all genomic
sequences was 0.302, with the lowest and highest values (0.252 and 0.399, respectively)
associated with the NS5 and C protein-coding sequences, respectively (Supplementary

Figure 3A). Not surprisingly, the inclusion of a more divergent group of ORF-coding
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sequences into a single dataset raised the average genetic distances to 0.391, with the
lowest and highest values (0.327 and 0.498, respectively) associated with the NS5 and
NS2b protein-coding sequences, respectively (Supplementary Figure 3B).

As it has been described for Culex cISF, a preliminary reconstruction of the phylogenetic
relationships of all Aedes cISF partial NS5 coding sequences identified three different
sublineages, one of them being CFAV (Supplementary Figure 4A). Mean ns5 genetic
distance was, as expected, higher for Aedes cISF (encompassing viral sequences found in
multiple species of Aedes mosquitoes) than CFAV (0.14 and 0.03, respectively), only
found to be associated with Aedes aegypti and corresponding to a single genetic lineage.
Even though low diversity between CFAV was apparent, PCOORD did suggest different

subclusters of sequences even in the CFAV sublineage (Supplementary Figure 4B).

Multiple single amino-acid polymorphisms for protein variation were detected in the ns5
protein between different cISF sublineages. Most SAPs such as 2949G, 2986S, 3014M,
3068A, 3073S, 3117S, 3172E, and 3195M were found to be characteristic of Aedes cISF
sequences, while polymorphism 3044R was found in CFAV sequences but not in other
Aedes cISF. Multiple SAPs were also only found on Culex cISF, including 3000Q,
3017C, 3083F, and 3193G, with 3094G and 3204G only being found in Cx. theileri cISF.

Estimation of omega (w) values (corresponding to the ratio of non-synonymous to
synonymous substitutions) was performed for cISF using three different methods (SLAC,
FEL, and SNAP) based on the analysis of both the complete genome and for each
genomic region (Supplementary Table 1). Overall results indicate that the whole genome
is under strong purifying selection, with low o values, as previously suggested for CTFV
ns5 (Cella et al., 2019). Most structural proteins and non-structural proteins possess little
to nil evidence of positively selected sites. On the contrary, smaller genomic regions
seemed to be under lower levels of purifying selection, with the ns2 region presenting the
highest , and a higher percentage of positively selected sites, including codons 921, 925,
929, and 936. Culex and Aedes-specific cISF selective pressure analyses disclosed similar
results (Supplementary Table 2).

Using as a reference a minimum of 84% of identity between ns5 nucleotide sequences to
define a viral species (Kuno et al., 1998; Peterson, 2014), calculation of genetic diversity

values supported the delimitation of independent viral lineages mostly associated with a
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single mosquito species, some of which corresponded to major branches on a
phylogenetic tree (Supplementary Figure 1), defining, for example, Cx. theileri (CT) and
Cx. pipiens (CP) flaviviruses (CTFV and CPFV, respectively), or the Aedes aegypti-
associated cell-fusing agent virus (or CFAV). Phylogenetic reconstructions did not seem
to be impacted by the occurrence of pervasive intra- or inter-lineage recombination
events. Nonetheless, we detected a possible recombination event among Calbertado virus
sequences. RDP4 indicated that viral sequences with accession humbers KX669683 and
KX669685 could stem from recombination between the nsl, ns2a, and ns2b genomic
regions of KX669686 (Calbertado virus from Canada) and the remaining coding sequence
of KX669682 (Calbertado virus from EUA) (data not shown). Consequently, these
sequences were excluded from phylogenetic reconstructions that involved the analysis of

complete ORF-coding sequences.

3.2. Assessment of phylogenetic signal and analysis of sequence

divergence throughout time
Phylogenetic signal was evaluated for each nt dataset using likelihood mapping. The
obtained results (Table 1) showed that the percentage of totally resolved sequence
quartets (of the total number of their possible number in 10,000 replicates) ranged from
89.6% to 99.6%, with the highest values associated with datasets including Culex-specific
cISF (ds7) or representative sequences of all cISF (ds8), with 99.6% unambiguous quartet
resolution in both cases, the latter corresponding to assemblages of complete ORF-coding
sequences. Given the overall high phylogenetic signal for all the eight datasets, it is not
surprising that most of the major branches in phylogenetic reconstructions of the genus
Flavivirus were found to be topologically sound. Additional likelihood mapping analyses
were also executed for each genomic region for complete genome sequence datasets
(Supplementary Table 3). For both Culex-specific cISF and all cISF, ns3- and ns5-specific
datasets displayed higher phylogenetic signals, with both phylogenetic trees showing
equivalent topologies to those reconstructed with complete ORF-coding sequences (data

not shown).

To assess the extent to which all datasets contained detectable signals for sequence

divergence throughout time, a standard linear regression exploration of root-to-tip genetic
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distances as a function of sampling time was performed. Except for datasets ds1 and ds5
(CTFV and CFAV, respectively), the remainder did not reveal clear evidence for a
substantial temporal signal (Table 1). This suggests that regardless of their overall high
phylogenetic signal, either the temporal signal estimate for the different datasets may be
strongly impacted by nucleotide substitution rate variation, especially among the deeper
tree branches, or that that the interval of dates of sampling is not broad enough. As far as
the first possibility is concerned, whereas the rates of evolutionary change have already
been estimated for various pathogenic flaviviruses (Aradjo et al., 2009; Barzilai and
Schrago, 2019a; Sall et al., 2010; Sang et al., 2019a), the same does not apply to cISF.

Table 1: Phylogenetic signal (as assessed by likelihood mapping) and root-to-tip (sequence divergence as
a function of time) of cISF sequences using datasets of ns5 or complete ORF-coding sequences.

Datasets
ns5 complete ORF
Likelihood Mapping ds1 ds2 ds3 ds4 ds5 ds6 ds7 ds8
Totally resolved quartets 89.8% 89.6% 96.5% 88.6% 90.3% 98.4% 99.6% 99.6%
Partially resolved quartets 2.9% 3.1% 1.6% 4.8% 3.5% 1.2% 0.3% 0.3%
Unresolved quartets 7.3% 7.3% 2.0% 6.5% 6.1% 0.4% 0.1% 0.1%

Root-to-tip analysis (r?) 0.347 0.022 4.6x10* 0.046 0.534 0.085 0.019 0.0096

partial NS5-coding sequences: ds1 - Culex theileri flavivirus (n=80); ds2 - Culex pipiens flavivirus (n=41); ds3 - Culex
flavivirus (n=172); ds4 - Aedes flavivirus (n=59); ds5 - cell fusing agent virus (n=41); ds6 - partial cISF (n=95).
Complete ORF-coding sequences: ds7 - Culex flavivirus (n=45); ds8 - cISF (n=83).

Therefore, nucleotide substitution rates were estimated using the sequences of the three
different datasets under analysis defining viral lineages associated with a specific
mosquito species (CTFV — dsl1; CPFV —ds2; and CFAV — ds5), and assuming a relaxed
molecular clock model (Drummond et al., 2006b). This assumption was supported both
by the Maximum Likelihood test of the molecular clock hypothesis, performed for each
dataset, and which systematically rejected the null hypothesis of equal nucleotide
substitution rates along the branches of the trees, and the exploratory linear regression
analysis results, indicating that for most datasets there was no apparent time-dependent
accumulation of divergence (from the tips of branches to the root of the tree). Curiously,

while the molecular clock test systematically rejected the strict-clock hypothesis favoring
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a relaxed clock, a substantial variation of the substitution rate along the branches of the
phylogenetic trees, indicated by the high coefficient of variation of its estimates (Table
2), was not always observed, although it was consistently high for CTFV. The obtained
results (Supplementary Table 4) differed according to the coalescent priors used and
ranged from 7.12x10° to 1.13x103 substitutions per site/year, although the great majority
of them fell in the range of 3.34x10* to 9.88x10* substitutions per site/year. These values
are similar to those previously calculated for other flaviviruses including dengue viruses
3 (Aradjo et al., 2009) and 4 (Sang et al., 2019b) (8.9x10* and 9.8x10* substitutions per
site/year, respectively), the yellow fever virus [approximately 2x10* substitutions per
site/year; (Sall et al., 2010)], or the Zika virus [approximately 8x10* substitutions per
site/year; (Barzilai and Schrago, 2019b)].

Table 2: Evaluation of rates for coalescent combined with different geographic diffusion priors: analysis
of CTFV (dsl1), CPFV (ds2) and CFAV (ds5) ns5 sequences.

root_age
[95% HPD]

mean rate
[95% HPD]

coefficient of variation

[95% HPD]

dsl
. 1966 1.13E-03 1.03
Skyline
[1926-1998] [6.45E-04-1.67E-03] [0.62-1.51]
. 1964 1.15E-03 1.07
Skyline+CauchyRRW
[1923-1998] [6.81E-04-1.64E-03] [0.69-1.51]
ds2
. 1717 4.62E-04 0.37
Skygrid
[1558-1965] [9.73E-05-8.49E-04] [2.02E-05-0.85]
. 1908 8.58E-04 0.902
Skygrid+CauchyRRW
[1799 - 1987] [2.73E-04 — 1.51E-03] [0.016-1.71]
ds5
i 1865 3.24E-04 1.54E-03
GMRF Skyride
[1767-1984] [5.80E-05-6.27E-04] [0-1.94E-15]
GMRF Skyride+ -65696 3.8E-04 0.0538
CauchyRRW [1796-1987] [6.82E-05-6.94E-04] [0-0.46]

GMREF: gaussian Markov random field; HPD: highest Probability Density; nd: not determined; PS: path

sampling; RRW: Relaxed Random Walk; SS: stepping-stone sampling. The values 1 and 2 associated with
PS and SS indicate those obtained in two independent MCMC runs.
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3.3.  Continuous phylogeography

To attempt to infer the population dynamics of ISF, the performance of parametric
demographic priors was tested against that of non-parametric ones using two selected
datasets with reasonable (CTFV — dsl; r2=0.347), as well as poor (CPFV - ds2;
r2=0.022) temporal signals. Bayes factor (BF), as well as adequate ESS values, clearly
revealed better performance for non-parametric demographic priors in both datasets.
Interestingly, the best nonparametric prior (Table 2) was not the same for every dataset,
with the best candidate models consisting of Bayesian Skyline for CTFV and Bayesian
Skygrid for CPFV. On the other hand, since the performance of non-parametric priors
was consistently better than that parametric ones (as judged by marginal likelihood and
ESS values) when cISF datasets including CTFV and CPFV sequences were analysed,
only the performance of the former were evaluated for CFAV (which was characterized
by an adequate temporal signal with an r2=0.534 in the root-to-tip analysis; Table 1), and
the obtained results pointed towards GMRF Bayesian Skyride as the coalescent prior of
choice. This occurred not because of marginal likelihood estimates / BF values, but as a
consequence of the fact that the convergence results and ESS values were not reasonable
for other parametric priors (for a maximum of 10 independent runs), unlike those
obtained with the GMRF Bayesian Skyride model (data not shown).

For the evaluation of what would be the best geographic diffusion model to be used for
spatiotemporal dispersal analysis, a comparative assessment of the performance of a
strict Brownian vs. several RRW diffusion models was also performed. For this, marginal
likelihood estimation was based on the analyses of CTFV and CFAV (Supplementary
Table 4). For CTFV BF values suggest that a Cauchy-RRW approach was the best fit to
explain its dispersal dynamics. On the other hand, analysis of ds5 (CFAV) revealed that
the Cauchy-RRW prior provided the best convergence and ESS values, even though BF
values slightly favored Gamma-RRW. In conclusion, for a spatiotemporal dispersal
analysis of CTFV and CFAV in continuous space, a Cauchy-RRW diffusion process was
combined with either a Bayesian Skyline (CTFV — dsl1) or a GMRF Skyride (CFAV —

ds5) coalescent prior.

Analyses of the spatiotemporal patterns of viral sequence spread were carried out under

the selected priors, and the obtained results graphically described both as MCC
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phylogenetic trees (Supplementary Figures 5 and 6) and as visual reconstructions using
the SpreaD3 software (Figure 1A and B). These analyses focused on the dispersal of the
cISF ns5 sequences for which an appropriate temporal signal had been calculated, i.e.

CTFV (Supplementary Figure 5) and CFAV (Supplementary Figure 6).

The spatiotemporal analysis of the Culex theileri flavivirus (CTFV) sequences suggested
an unexpectedly recent expansion of CTFV and proposed the existence of a MRCA for
those comprising CTFV dating around the late 1960s (95% Highest Probability Density
(HPD): 1921- 1998) located in the east Mediterranean region (the suggested origin was
Lebanon). From there, two viral lineages seemed to have spread in both eastern and
western directions. Viral expansion of the eastern-bound lineage (starting from the
MRCA) may have reached South-East Asia (including Myanmar and neighboring
countries) in the early 2000s (95% HPD: 1996-2007). The other route (for which an
Italian geographical origin was suggested, though not strongly supported by a high
posterior probability (PP) (PP=0.08)) seemed to have split into two different routes, most
probably reaching Spain in the early 1990s (95% HPD: 1983-1999) and Turkey in the
late 2000s (95% HPD: 2005-2011) (Supplementary Figure 5 Al). Interestingly, when the
spatiotemporal analysis was restricted to only CTFV-ns5 sequences with a European
origin, the proposed MRCA origin was not Italy, but rather Spain, yet again not strongly
supported (PP=0.08) (Supplementary Figure 5 A2). More recent years marked the
expansion of the Spanish clade in the country and the movement of CTFV towards
Portugal. On the other hand, the available sequence sampling did not indicate a recent

expansion of the Turkish lineage beyond Turkey.

A similar investigation of the spatiotemporal patterns of viral sequence dispersal was
used to analyze the cell-fusing agent virus (CFAV — ds5) sequence dataset. Similar to
CTFV, a recent origin for the MRCA of CFAV was estimated in the late 1930s (95%
HPD: 1796-1987). Two viral lineages seemed to have then spread into distinct directions,
one outbound to the American continent and another into Southeast Asia, both reaching
their destinations in the late 1940s (95% HPD: 1827- 1993). The Asian clade seemed to

have continued
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Fig. 1: (A) Spatiotemporal reconstruction of Culex theileri cISF spread visualized on SpreaD3 software,
based on the MCC tree represented in Supplementary Figure 5. (B) Spatiotemporal reconstruction of
CFAV spread visualized on SpreaD3 software using the MCC tree represented in Supplementary Figure

6.
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expanding into Thailand in the late 1980s (95% HPD: 1944-2002). Our analysis also
suggested the possibility of one additional expansion event from Southeast Asia (possibly
Thailand) to East Africa (Uganda), from where the virus may have later reached
neighboring Kenya. The American clade mainly expanded into North America (USA and
Mexico), with two subsequent, likely independent, expansion events into Australia more
recently (Supplementary Figure 6). Finally, a reconstruction of the continual dispersal of
Culex pipens cISF (CPFV) was also carried out using the Bayesian Skygrid and Cauchy-
RRW prior combination (Supplementary Figure 7). While the suggested age of the
MRCA (1916, 95% HPD: 1786-1985) may have been affected by the lack of a strong
temporal signal, most of the nodes of the obtained MCC tree were strongly supported,
and an Asian origin (China; PP=0.19) was suggested. From here, two major Asian
lineages expanded towards Japan (1989, 95% HPD: 1970-2000), Africa (Liberia; 1993,
95% HPD: 1970-2004), and the USA (2000, 95% HPD: 1990- 2005) in more recent

times.

4. Discussion

Insect-specific flaviviruses are a group of viruses that infect a wide range of mosquito
hosts and display a global geographical distribution among all sublineages (Blitvich and
Firth, 2015). In the last decades, new information about their genetics and biological
applications (including their potential use as vaccine or heterologous protein expression
vectors) has emerged (Holbrook, 2017), but many aspects remain unknown or under
present investigation, including their insect-specific viral replication, evolution, dispersal
over time, and relationship with other flaviviruses. Our present study hopes to gain

information on most, if not all, of these very important aspects.

When phylogenetic relationships among flaviviruses are reconstructed based on the
analysis of either ns5 or whole-genome (ORF-coding) sequences, viral sequences split
into two major genetic lineages. One of these incorporates bone fide tick- and mosquito-
borne arboviruses, dhISF, as well as flaviviruses with no known vector (NKV), whereas
the other groups all known cISF. These cISF do not always segregate geographically, but
rather seem to associate with either a single species or a small group of species, within a

given genus of mosquitoes. Given their medical importance, the genera Culex, Aedes,
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and Anopheles are those associated with the majority of currently described cISF, but this
most probably results from sampling bias by the more frequent analysis of medically
important mosquitoes. In fact, different lineages of these viruses have been detected in

Culiseta and especially in African Mansonia (Abilio et al., 2020).

Arboviruses and cISFs have been shown to share a common evolutionary history, which
led to the suggestions that cISFs may eventually bypass host range restrictions imposed
by cells in vertebrate hosts (Junglen et al., 2017) and acquire the ability to replicate in
these cells, thus expanding their host-range (Ohlund et al., 2019). As such, a thorough
reconstruction of evolutionary history could help in the identification of possible host
switch over time, and how the virus will spread to new hosts. Additionally, phylodynamic
analyses of genomic sequence data could be used to infer the time and location of their
most recent common ancestors, their routes of dissemination, and demographic
dynamics. However, these analyses require a wide range of temporal and geographic

sampling of informative viral sequences.

Our genetic analyses of cISF were based on the assembly of multiple datasets of
sequences, all of which grouped either ns5 or ORF-coding sequences sharing common
ancestry. The obtained results have shown that regardless of their overall high
phylogenetic signal, a strong temporal signal could only be confirmed for two species-
specific sequence datasets (ds1 and ds5, grouping CTFV and CFAYV, respectively). Even
though both of these corresponded to partial ns5 genomic sequence datasets, one might
expect that the use of longer genome regions might offer more phylogenetic resolution
and increase the temporal signal (Pinel-Galzi et al., 2009). However, in our datasets,
simply increasing sequence length, while associated with an increase in phylogenetic
signal, did not result in a corresponding increase in temporal signal. We also observed
that ns5 and ORF-coding sequence-based tree topologies were always congruent.
Flavivirus ns5 sequences have been extensively used for phylogenetic and
phylogeographic analyses, especially in datasets with incomplete genome sequences
(Cella et al., 2019; Iwashita et al., 2018). Therefore, in this specific case, there seems to
exist little to no advantages to the use of whole-genomic sequences when against ns5

sequences, which are far more accessible.
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Despite its caveats, the present study represents the first spatiotemporal dispersal of
specific sublineages within the cISF radiation. The best candidate models for a Bayesian
phylogeographic were determined, using the two analyzed datasets of viral sequences
associated with a single host species. This is critical in such an analysis, as it has been
proved that not only weak temporal signal may be reflected in uncertainty of date and/or
rate estimation in a Bayesian coalescent framework, but coalescent priors may also affect
mean tMRCA estimates (Trovao et al., 2015).

Whereas the spatiotemporal analyses of both CTFV and CFAV ns5 sequence seemed to
suggest expansion through distinct routes, the proposed ages for their respective mean
MRCA may have been biased. The inner nodes of the MCC trees displayed large 95%
HPD intervals for root ages, especially in the case of the CFAV dataset. Not surprisingly,
when a similar approach was used to reconstruct the spatiotemporal diffusion of cISF
associated with Culex pipiens, for which a root-to-tip analysis had indicated a low
temporal signal, the combination of a recent root and a large age root 95% HPD interval

was even more apparent.

The analysis of CTFV ns5 sequences did place a tree root from which two genetic
sublineages expanded into Southeast Asia and southern Europe. However, how the virus
spread from its suggested shared ancestor into Europe remained unclear. Interestingly,
the European Cx. theileri cISF seemed to have reached the Iberian Peninsula and Turkey
on two separate occasions, but the geographic origin for their MRCA was not strongly
supported. The time frame in which the latter events occurred was not clear either as
estimated by the broad age root 95% HPD intervals. Regardless of the exact date, these
viruses started to diverge from their MRCA, our analyses suggested that it may have
occurred recently. These recent movements of mosquito-restricted viruses may benefit
from climate changes, massive tourism, continuous population growth especially in
urban areas, as well as global commercial trading which have also been blamed for the
repeated introduction of Aedes albopictus into Europe, and its expansion in recent times
(Parreira and Sousa, 2015). Moreover, while the obtained results support the formerly
suggested dispersal of CTFV within the Iberian Peninsula, the Turkish origin for the

Myanmar clade, as suggested previously (Cella et al., 2019), could not be confirmed.
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Although CFAV was initially discovered in 1975 and appears to be ubiquitous in Aedes
aegypti mosquitoes collected worldwide (Baidaliuk et al., 2019), very little is known
about its evolutionary history. Our analysis placed the MRCA of all sequences analyzed
in the 1930s, although, as mentioned above, this date may be biased, and is likely to be
older. We estimated its expansion towards the Americas and Asia, and from there into
Oceania or Africa. A similar dissemination pattern was suggested for CPFV, starting in
Asia in the early 20th century (but as early as the late 1700s) and accelerating over the
last two decades, and dispersing on a global scale. Considered altogether, our
spatiotemporal analysis demonstrated multiple points of origin for cISF and diverse
pathways of worldwide dissemination. These long-distance movements are unlikely to
be solely carried out by insects (that have shorter migration routes), but most likely also

benefit from human-associated activities and population movements.

Genetic diversity analyses were performed for both ns5 partial genomic and whole-
genome sequence datasets. Although the considered cut-off value was arbitrarily defined
(minimum of 84% nucleotide sequence identity), based on the divergence estimates
obtained, it seems suitable to define independently evolving genetic lineages. While
analyzing ns5 and complete genome sequences of Culex-specific cISF (and all cISF),
little to no distinct patterns were found after all analyses are considered. Our analysis
point that ns5 was by far the genomic region with the lowest overall mean genetic
diversity, which, interestingly, does not match results found by based on the analysis of
CTFV (Bittar et al., 2016), whereas the ns2a-coding sequence was the region with the
highest overall mean genetic distance. As expected, mean genetic distance values were
consistently higher for coding regions of structural proteins when comparing them to
non-structural proteins. Altogether, the cISF sequences were characterized by low
(Shanon) entropy, displaying low variation in the amino acid sequences of their products,

which probably results from low numbers of non-synonymous substitutions.

PCOORD analyses were executed side by side with phylogenetic reconstructions and
they uncovered subtle patterns not found through conventional analyses, as was the case
with CFAV. Sequences of the same sublineage usually display similar distribution
patterns by PCOORD analysis, allowing the verification of how close different
sublineages are to one another, which is especially useful for the analysis of nucleotide

sequence datasets with low genetic variability. With CFAV, even though all sequences
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appeared to be closely related through a phylogenetic reconstruction with a ML tree,
PCOORD was able to unveil different patterns even between all CFAV.,

Selective pressure analyses indicated that most of cISF genome is under strong purifying
selection. Extensive research has shown over time that flavivirus can inhibit immune
responses in their respective hosts to allow persisting infections, generating an
advantageous immunological balance between the mosquito and the virus (Mukherjee et
al., 2019). While this might suggest that this would lead to low selective pressure and a
diversification of the viral population (Coffey et al., 2013), other studies have suggested
that purifying selection is a major driver of arbovirus evolution (Lequime et al., 2016)
even in invertebrate cells (Vasilakis et al., 2009). While cISF are not subject to the
pressures of a natural maintenance cycle where they replicate in both vertebrates and
invertebrates as arboviruses do, and may, therefore, evolve under distinct selective
scenarios, our results suggest that a strong selective pressure does impact the evolution
of cISF. However, the ns2a region seems to present higher  values then other regions
of the viral genome. Past studies suggest that flavivirus ns2a participates in the assembly
and egress of the virion (Xie et al., 2019; Zhang et al., 2019), but while mutations on the
ns2a protein impair virion morphogenesis, they have little to no effect on viral RNA
synthesis (Xie et al., 2013). Additionally, reversion mutations in the NS3 coding
sequence (one of the regions with the lowest  values) could restore infectious virus
production in virus harboring ns2a mutations (Liu et al., 2003). This could explain the
more relaxed pressure against amino acid change in the ns2a region when compared to

other regions.

This report did end up highlighting caveats affecting continuous phylogeography
analyses when applied to cISF. Most datasets analysed did not show significant temporal
signals, especially those including either all cISF or Culex/Aedes-specific ISF. While
uncertainties in the estimates rates of nucleotide sequence substitution or tMRCA may
result from weak temporal signals (Trovao et al., 2015), they may also be affected by the
rapid rates of evolution of RNA viral genomes due to saturation. However, a negative
impact in MRCA date estimates due to strong purifying selection seems to be negligible
in the case of cISF. Besides, while the number of cISF sequences has been growing in
recent years, host-associated, geographic, and temporal biases (with most sequences

being obtained quite recently), most probably impact these analyses. Regardless of its
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limitations, the information generated in this study could help define how these types of
analyses may be conducted in future studies and highlight the need for a correct
assessment of the best candidate models for Bayesian time-calibrated phylogenetic and
phylogeographic analyses, as different candidate models may apply to different sequence

datasets.
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Abstract

Research on the recently established Mesoniviridae family (Order Nidovirales), RNA
genome insect-specific viruses, has been steadily growing in the last decade. However,
after the last detailed phylogenetic characterization of mesoniviruses in 2014, numerous
new sequences, even in organisms other than mosquitos, have been identified and

characterized.

In this study, we analyzed nucleotide and protein sequences of mesoniviruses with a wide
range of molecular tools including genetic distance, Shannon entropy, selective pressure
analysis, polymorphism identification, principal coordinate analysis, likelihood mapping
and phylodynamic reconstruction. We also sought to reevaluate new mesoniviruses

sequence positions within the family, proposing a taxonomic revision.

The different sub-lineages of mosquito mesoniviruses sequences presented low sequence
diversity and entropy, with incongruences to the existing taxonomy being found after an
extensive phylogenetic characterization. High sequence discrepancy and differences in
genome organization were found between mosquito mesoniviruses and other
mesoniviruses, so their future classification, as other meso-like viruses that are found in

other organisms, should be approached with caution.

No evidence of frequent recombination was found, and mesonivirus genomes seem to
evolve under strong purifying selection. Insufficient data by root-to-tip analysis did not

yet allow for an adequate phylogeographic reconstruction.

Keywords: Mesonivirus; Nidovirales; Taxonomy; Genetic diversity; Phylogenetic

analysis
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1. Introduction

The Order Nidovirales comprises a genetically diverse assemblage of enveloped,
approximately spherical viruses with linear single-stranded, positive-sense, and
polyadenylated RNA genomes, that can infect a wide range of hosts, from mammals to
insects. According to the International Committee on Taxonomy of Viruses (ICTV), they
are taxonomically (mid-2021) distributed in eight suborders and 14 families (https://talk.
ictvonline.org/taxonomy/), including the well-studied Arteriviridae, Coronaviridae, and
Roniviridae, as well as the more recently established Mesoniviridae family (Vasilakis et
al., 2014).

Within the Order Nidovirales, mesoniviruses were the first known to infect insects. Their
detailed description was initiated in 2011 with the characterization of the Cavally
(CAVV) and Nam Dinh (NDiV) viruses, isolated from Culex mosquitos, collected in Cote
d’Ivoire and Vietnam, respectively (Zirkel et al., 2011; Nga et al., 2011). Since then,
mesoniviruses have been isolated from mosquitos collected in the Americas (Charles et
al., 2018), Asia (Wang et al., 2017), Africa (Diagne et al., 2020), and Oceania (Warrilow
et al., 2014), suggesting a global distribution. Like insect-specific flaviviruses (Blitvich
and Firth, 2015) and mosquito-associated bunyaviruses (Marklewitz et al., 2013),
mesoniviruses are considered some of the most predominant RNA genome insect-specific
viruses (ISVs) (Vasilakis et al., 2014). While they have repeatedly been isolated from
naturally infected mosquitoes, they do not appear to infect vertebrates (Blitvich and Firth,
2015). Nonetheless, their isolation from Aphis citricidus aphids collected in 2012 in China
suggests that the host range of mesoniviruses might go beyond that which is currently
known (Chang et al., 2020). Furthermore, a meso-like virus has already been detected in

Italy in Leveillula taurica, an obligate fungal pathogen (accession number MN609866).

The genomes of mesoniviruses of approximately 20 kb are organized into multiple open-
reading frames (ORFs). The most frequently found organization is ORFla-ORF1b-
ORF2a-ORF2b-ORF3a-ORF3b-ORF4, but exceptions do exist (e.g., the Meno virus does
not encode ORF4). The 5’ region of the genome encodes two polyproteins (ORF1a and
ORF1b), the expression of which is controlled by ribosomal frameshift followed by
proteolytic processing (Vasilakis et al., 2014), and their products are suggested to be

involved in the regulation of gene expression, polyprotein processing, and genome
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replication and transcription. The 3’ region of the genome includes smaller ORFs that
encode structural proteins. Apart from ORFla and ORF1b, the number of small ORFs

varies among different viruses in the Order Nidovirales (Gorbalenya et al., 2006).

The latest update from the ICTV regarding the Mesoniviridae family (March 2021,
available at https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-
viruses-2011/w/posrna_viruses/308/mesoniviridae), acknowledges 1 single genus
(Alphamesonivirus) and 8 subgenera. Namcalivirus is represented by both the
Alphamesonivirus 1 species (comprising most mesoniviruses isolated to date), and the
Alphamesonivirus 10 species (which includes the Dianke virus). Other genera encompass
only one other viral type. For example, the Ofaie virus (OFAV) and the Casuarina virus
(CASV) are currently the sole representatives of the Ofalivirus (Alphamesonivirus 6) and
Casualivirus (Alphamesonivirus 4) genera, respectively. In addition, several recently
discovered mesoniviruses [e.g., the Odorna virus (OdoV)], remain unclassified.

Considering the recent pandemic spread of SARS-CoV-2 coronavirus the interest in the
study of mesoniviruses has increased (Lai et al., 2020). While distantly related to
coronaviruses and mostly restricted to mosquitoes, their study might hold crucial
information regarding the evolution of the viruses within the Order Nidovirales, as they
may have evolved in arthropods (Nga et al., 2011). However, while the genomic and
phylogenetic characterization of mesonivirus has lastly been addressed in a comparative
dating from 2014 (Vasilakis et al., 2014), since then, the isolation of multiple
mesoniviruses prompted us to reevaluate their position within the family. Furthermore,
the recent discovery of a meso-like virus in organisms other than mosquitos might hold
new information regarding their phylogenetic relationship with other mesoniviruses. In
this report, we will also discuss the conditions required for a potential future

phylogeographic analyses of this taxa.
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2. Materials and methods

2.1. Dataset preparation and sequence alignments
The compilation of the different nucleotide (nt) and amino acid (aa) sequence datasets
used in this work was based on the selection of complete genome sequences available at
GenBank in 01/07/2021. These were either directly identified via their respective
accession numbers, or indirectly singled out as a product of similarity searches using
BLASTN.

All sequences corresponding to complete genomes available were downloaded, and
additional information including GenBank accession number, host species, geographic
origin, and collection date was obtained. When available, information on genomic
coding-capacity (ORF organization) and their respective sequences were also collected.
Furthermore, for comparative purposes, representative datasets containing ORFlab nt
and aa sequences of viruses from other families in the Order Nidovirales (corresponding

to the most conservative coding region between them) were also constructed.

Multiple alignments of complete nt and aa sequences were performed using the iterative
G-INS-1 method as implemented in MAFFT v.7 (Katoh and Standley, 2013), followed by
their edition using GBlocks (Castresana, 2000), allowing for less strict flanking positions
in the obtained multiple sequence alignments (MSA). These were systematically verified
to ensure the correct alignment of homologous codons using BioEdit 7.0.5 (Hall, 1999).
Additional alignments were also constructed for different ORFs identified in the
Mesoniviridae family that included ORF1a, ORF1b, ORF2a/spike, ORF3a, and ORF4, as
well as the viral RNA-dependent RNA polymerase (RdRp). Multiple alignments of
ORF1ab aa sequences from different families in the Nidovirales Order were performed
similarly using MAFFT iterative L-INS-I option, followed by a new alignment using the
G-INS-1 method.

2.2. Assessment of the temporal and phylogenetic signals of

different mesonivirus sequence datasets

The evolutionary information contained in all used sequence datasets (phylogenetic

signal) was assessed by Likelihood Mapping (Strimmer and von Haeseler, 1997) using
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TREE-PUZZLE v5.3 (Schmidt et al., 2002). Datasets with totally resolved quartets values
of over 90% were considered of high phylogenetic resolving power.

A visual inspection of the degree of temporal signal (i.e., signal for divergence
accumulation over the sampling time interval) in the complete genome nt datasets (as
well as for the RdRp and S protein-coding sequences) for all mesoniviruses was carried
out using an exploratory linear regression approach assuming the topology of a Maximum
Likelihood (ML) tree, estimated under a non-clock (unconstrained) and the GTR+I'+I
substitution model using 1Q-TREE (Trifinopoulos et al., 2016). Root-to-tip divergences
were plotted as a function of sampling time using the TempEst v. 1.5.3 (Rambaut et al.,
2016).

2.3. Phylogenetic analyses using maximum likelihood
Phylogenetic reconstructions of full-length genomic nt and ORF-specific nt datasets and
specific aa sequences (RdRp and S datasets) were performed based on the maximum
likelihood optimization criterion, using the GTR+I"+I model and Whelan And Goldman
(WAG) model, respectively, as suggested by 1Q-TREE (Trifinopoulos et al., 2016), which
was also used for tree building. The stability of the obtained tree topologies was assessed
by bootstrapping and using the aLRT (approximate likelihood ratio test) with 1000 re-

samplings of the original sequence data.

2.4. Genetic diversity and protein primary sequence analyses
The estimation of genetic distance values (corrected with the Kimura-2P formula) was
carried out using MEGAX (Kumar et al., 2018). Heat maps were calculated based on
pairwise evolutionary distances obtained using the Heatmapper webserver (Babicki et al.,
2016), while box plots were drawn with Microsoft Excel. Visualization of viral genomic
organization was performed using Open Reading Frame Finder (available in
https://www.ncbi.nlm.nih.gov/orffinder/), while the SMART webserver (Letunic and
Bork, 2018) was used for the identification and annotation of genetically mobile domains.
The presence of conserved domains in viral protein sequences was investigated using CD-

Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Remote homology
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detection and structure prediction was analyzed using HHblits and Hpred, as well as
sensitive sequence searching by HHMER (Zimmermann et al., 2018). Several
bioinformatic tools were employed to investigate ORFs with unknown function,
including computation of molecular weight and theoretical isoelectric point (pl) via
ProtParam (https://web.expasy.org/protparam/), analysis of hydropathicity by ProtScale
(https://web.expasy.org/cgi-bin/protsc ale/protscale.pl), prediction of transmembrane
helices via TMHMM v2.0 (http://www.cbs.dtu.dk/servicess TMHMM), prediction of n-
glycosylation sites (http://www.cbs.dtu.dk/services/NetNGlyc) and o-glycosylation sites
(http://www.cbs.dtu.dk/services/NetOGlyc), signal sequence search by SignalP
(http://www.cbs.dtu.dk/service s/SignalP) and protein subcellular localization prediction
by DeepLoc (http://www.cbs.dtu.dk/services/DeepLoc). The detection of repeats in
protein  sequences was carried out with RADAR (https://www.ebi.ac.
uk/Tools/pfa/radar/).

The analyses of selective pressure on individual sites of codon alignments were carried
out using the Single Likelihood Ancestor Counting (SLAC), the Fixed Effects Likelihood
methods as implemented in Datamonkey (Kosakovsky Pond and Frost, 2005), or the
SNAP tool (http://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html) that explores
a simple method for calculation of synonymous and non-synonymous substitutions (Nei
and Gojoborit, 1986). The degree of variability at each amino acid position in multiple
alignments of single ORF aa sequences was evaluated based on the Shannon entropy
function using Entropy (Shannon entropy-one option, available at http://www.
hiv.lanl.gov/content/sequence/ENTROPY /entropy.html). Finally, principal coordinate
analysis was carried out using PCOORD (http://www.
hiv.lanl.gov/content/sequence/PCOORD/PCOORD.html).  Possible  recombination
events were investigated using the Recombination Detection Program 4 (RDP4) software
(Martin et al., 2015).

2.5. Comparative analysis with virus from other Nidovirales

families
For comparative analyses of mesonivirus genomic sequences with those of other

nidoviruses, overall mean distances, assessment of phylogenetic signals, and selective
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pressure analyses were performed for families in the Nidovirales Order with higher
representation in the genomic sequence databases (Arteriviridae, Coronaviridae, and

Tobaniviridae), focusing on the most conserved coding region among them (ORF1ab).

To assess the relationship between different families in the Nidovirales Order,
phylogenetic reconstructions were carried out using multiple sequence alignments of

RdRp aa sequences as described in Section 2.3.

3. Results

3.1. Comparative genome organization analyses
A total of 47 full-length mesonivirus genomic sequences, downloaded from the public
genomic databases, were aligned, and analyzed. These included both those that, until
2020, had been only identified in multiple species of mosquitoes (n = 44), being
frequently associated with Culex sp. or Aedes sp. In addition, this dataset also included
three meso-like viral sequences that had recently been identified in hosts other than
mosquitoes. These comprised those of meso-like viruses isolated from Aphis citricidus
aphids (Aphis citricidus meson-like virus, AcMSV), from Thrips tabaci thrips (Insect
metagenomics mesonivirus 1, Immesol; Chiapello et al., 2021), as well as from a fungal
pathogen, Leveillula Taurica (Leveillula taurica associated alphamesonivirus 1,
temporarily abbreviated as LtM). All these have been listed in Supplementary Table 1.
Additionally, for phylogenetic and other comparative analyses, ORFlab aa sequences
were also compiled for viruses in other families in the Nidovirales Order, and these have
been included in Supplementary Table 2. Alongside the full-length genome datasets,
other datasets including the nt and aa sequences of all mesonivirus identifiable ORFs (of

the sequences listed in Supplementary Table 1) were also constructed.

Also, as suggested by Gorbalenya et al. in 2006, and as corroborated here in
Supplementary Fig. 1, the number of ORFs identified in viral genomes from viruses
allocated to different families in the Nidovirales Order is substantially different. Viruses
from the Mesoniviridae family display smaller genomes with 4 to 7 ORFs, as similarly
observed in the Tobaniviridae and Medoniviridae families. In contrast, viruses from the

Arteriviridae and Coronaviridae families have a larger number of ORFs, up to 12.
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A comparative analysis of the organization predicted for the different mosquito
mesoniviruses (MM) genomes (Supplementary Fig. 1) indicated overall conserved
synteny, with only those of meno-, kadiweu- and ofaieviruses missing an identifiable
ORF4. As no complete genomic sequence have yet been made available for OdoV, a
prediction of its genomic structures remains incomplete. A comparison between the
genome organization of MM and other mesoniviruses (OM) revealed substantial
differences, especially considering their similar genome sizes (excluding the 3’-poly [A]
tail, they range from 19,209 nt for Immesol to 20,626 nt for AcCMSV). All these viruses
are suggested to use ribosomal frameshifting for translational control of the expression of
non-structural proteins, as revealed by the consistent overlap between ORFla and
ORF1b, while ORF2a (surface spike) encodes the S glycoprotein. As expected, and
considering that the mature products of ORF1a and 1b are usually involved in the control
of essential steps of the viral replication cycle that include genomic replication,
transcription, RNA capping and polyprotein processing, the genomic organization
appears similar when MM and OM are compared (although smaller in size in LtM),
including most conserved domains and other so-called genetically mobile domains (i.e.,
transposable elements; Vasilakis et al., 2014) (Fig. 1). Only Immesol does not seem to
possess a coiled coil motif in ORF1a, while displaying a zinc finger domain which,
however, is not shared by other mesoniviruses. Unfortunately, the available LtM genomic
sequence appears to be incomplete, with only the full sequence of ORF1a and a partial
sequence of ORF1b currently available. While the ORFs at the 3’ half of the genome of
MM were similar (except for ORF4), the number and organization of the ORFs identified
in that same region of the genomes of OM are different. These ORFs (identified as ORFs
x1-3 and ORFs y1-3in Fig. 1) seem to encode putative products that, in most cases, share
no easily identifiable homology with other viral proteins, nor do they display readily
recognizable conserved domains (as defined by CD-BLAST analysis) associated with a
particular biological function or protein family. Sequence searches regarding both y1 and
y3 did not return any putative matches with homologues in the sequence databases, not
even when remote homology detection methods were used (HHDblits, HHpred, or
HMMER). However, y1 is predicted as a 22kDa, basic (pl 9.9) and hydrophilic, while y3
is also small (12kDa) and basic but mostly hydrophobic. Furthermore, while multiple O-

glycosylation sites were predicted in y1, none have been predicted for y3. On the other
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hand, y2 is larger (98 kDa) and mostly neutral. However, remote homology detection
tools indicated a 96% probability match between the highly basic (p1=10.5) product of
ORFx2 (between amino acids 108 and 216) and the putative nucleocapsid protein of the
Kadiweu virus (Alphamesonivirus 7), while part the product of ORFy2 aligned with the
ORF2a protein encoded by NDiV (positions 391 and 906). In addition, the larger ORF
found in the genomes of the Aphis citricidus meson-like virus and the Thrips tabaci
associated mesonivirus (ORFs x3 and y2 in Fig. 1) encode putative proteins with 3 (y2)
or 6 (x3) transmembrane helixes and multiple targets for N-glycosylation, which are
features frequently found in integral viral envelope proteins. Finally, the putative ORF4,
which is encoded by the genomes of mosquito mesoniviruses, is highly conserved (96.3%
identity conservation among MM). It encodes a small (approximately 5kDa), basic
(p1=9.6) hydrophilic protein, with no glycosylated amino acids, transmembrane helices,
or signal peptide sequences (the latter found in the product of Aphis citricidus meson-like
virus ORFx1), or conserved domains. Up to the present, its function remains unknown.
In addition, insertions blocks in ORF1a have been described in a handful of mesonivirus
(Kamphaeng Phet, KPhV; Karang Sari virus, KSaV; Bontang Baru, BBaV; Vasilakis et
al., 2014), but among the more recently identified MM and OM, the Dak Nong virus
(DkNV) also revealed those same type of insertions. Two of these insertion blocks are
larger (approximately 570 nt) than the other (approximately 170 nt) but despite their size
difference they partially align at their 5’ ends. All these insertions extend the coding
capacity of ORF1a, with the larger of these two insertions, found in the genomes of the
BBaV and KSaV viruses, apparently coding for hydrophilic peptides of approximately
190 aacharacterized by two types of partially repeated sequences. One of these is repeated
3 to 4 times at the N-terminal section, while the other (in two copies), can be identified at
the peptide’s C-terminus. Homology searches did not reveal sequence similarities or
amino acid motifs that might indicate their putative function, but the sequence encoded
by the BBaV is characterized by the presence of a PKR13108 superfamily sequence motif
found in prolipoprotein diacylglyceryl transferases, found in bacteria of the

Corynebacterineae family (E=7.64e"%%).
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Fig. 1: Schematic representation of the genomic organization of mosquito mesoniviruses (Dianke virus,
accession number MN622133, used as an example) and other mesoniviruses: Aphis citricidus meson-like
virus (AcMSV, accession number MN961271); Insect metagenomics mesonivirus 1 (Immesol, accession
number MN714662); Leveillula taurica associated alphamesonivirus 1 (LtM, accession number
MN609866); Znf = Zinc finger; 3CLpro = 3C-like protease; RdRp = RNA-dependent RNA polymerase;
Zn = Zinc-binding domain; HEL = Helicase; Exon = 3’ -5’ exoribonuclease; NMT = N7-methyltransferase;
OMT = Cap-0 specific (nucleoside-2’ -O-)-methyltransferase; Tp = Transmembrane region; Cr = Coiled
coil region; Sp = Signal peptide. * - Leveillula taurica associated alphamesonivirus 1 whole genome
sequence still not available. ORFs at the 3” half of the genome for other mesoniviruses identified as x1-x3
(for AcMSV) and y1-y3 (for Immesol), with most recognizable putative proteins for each (when available)
displayed.

3.2. Genetic diversity analyses

Overall mean genetic distances for MM were calculated for both the complete genome
as well as for each ORF-specific genomic region (Supplementary Table 3). Furthermore,
both genetic distances between all MM full-length genomes as well as for two ORF-
specific genomic regions (RdRp and S) were also calculated (Supplementary Table 4).
The overall mean distance (complete genome) between all sequences was 0.15. The
region encompassing the ORF4 gene was the viral genomic region with the lowest mean
genetic distance value (0.04), while the ORF1a region held the highest (0.17). Using
ORF1lab aa sequences as a reference, analyses of datasets including up to three different
sequences genus/subgenus selected from the viral families with a larger representation in
the public databases (Mesoniviridae, Coronaviridae, Arteriviridae e Tobaniviridae),
overall mean genetic distance values were 0.07, 0.34, 0.43 and 0.50, respectively.
Pairwise evolutionary distances (PEDs) were calculated between all RdRp aa
mesonivirus sequences (Supplementary Table 5), with heat maps designed to visualize

intersequence genetic diversity, and box-and-whisker graphs used to visualize all
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distances between mesoniviruses from the same species, between mesonivirus from
different species and also between MM and OM. These analyses clearly highlight the
difference between MM and OM, as seen in Supplementary Fig. 2. Substantial
differences in PEDs between all groups analyzed were also highlighted using box-and-
whisker graphs (Supplementary Fig. 3). While, and as expected, higher PEDs were
obtained when protein sequence comparisons included viral sequences from different
species (as opposed to intra virus species comparisons), with values always below the
96.8% protein sequence identity used as cut-off (Vasilakis et al., 2014), but this distance
was far considerably pronounced when comparing MM to OM, with identity values
under 70%. Two groups of mesoniviruses sequences, BBaV and KPhV, clearly exceed
the cut-off value, with identity values below 80%, which suggests they should correspond

to new species.

Shannon entropy is a quantitative measure of uncertainty in a dataset of nucleotide or
amino acid sequences, and it may be considered as a measure of variation in DNA and
protein sequence alignments for assessment of genetic diversity in a cross-sectional sense.
When applied to the analysis of MM mesonivirus sequences, Shannon entropy
calculations showed low values for all mesonivirus ORF-coding sequences. However,
statistically higher entropy values were calculated for ORF1a, especially when compared
to other genomic regions, while ORF3 showed the lowest entropy. Other families in the
Nidovirales Order had consistently higher entropy values when compared with the
Mesoniviridae family (Supplementary Fig. 4).

3.3.  Phylogenetic analyses of mosquito mesoniviruses
For different datasets of nt mesonivirus sequences, likelihood mapping analyses were
performed to calculate their respective phylogenetic signals (Table 1). The obtained
results showed an overall high percentage (>90%) of the totally resolved sequence
quartets (assessing the topologies of 10,000 quartet replicates) obtained for the complete
genome, ORF1a, ORF1b and ORF2a, as well as the specific RdRp-coding sequence,
while lower values were obtained for ORF3a (81.8%) and ORF4 (74.1%). These results
indicate that most phylogenetic reconstructions based on the analysis of alignments for

any viral ORFs other than ORF3 and 4 could be used to produce unambiguous trees.
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Overall, phylogenetic reconstructions using full-length genome sequences from viruses
allocated to different families in the Nidovirales Order consistently presented high
phylogenetic signals (Supplementary Table 6). However, while the great majority of the
constructed datasets revealed consistent high phylogenetic signals, standard linear
regression exploration of root-to-tip distances as a function of sampling time
(Supplementary Table 7) carried out to establish to what extent the Mesoniviridae family
contained detectable signal for sequence divergence throughout the sampling time
intervals, showed negative slope and correlation coefficient values, even after an
extensive root-to-tip analysis and the removal of outlier sequences. This observation
extended for both the full-genome, RdRp and S protein-coding sequence comparisons, as
well as when analyzing only the Alphamesonivirus 1 species or all MM and OM at once
(indicated as all mesoniviruses in Supplementary Table 7). As such, at the present, only
the investigation of phylogenetic relationships using ML trees is possible, while potential
temporal and phylogeographical analyses using a Bayesian phylodynamic framework

await the description of future new mesonivirus sequences.

Table 1: Phylogenetic signal of mesonivirus sequence datasets.

Datasets

Full-length — oporia  ORFIb  RARp  ORF2a(S) ORF3a  ORF4
genome

Totally resolved 99.3% 98.4%  98.7%  94,4% 96.8% 81.8%  74.1%

quartets

Partially resolved

0.6% 0.8% 0.8% 2.7% 1.2% 3.7% 1.7%

quartets
Unresolved quartets 0.1% 0.9% 0.4% 2.9% 2.1% 14.4% 24.2%

Selective pressure analyses were carried by estimating omega (o, i.e., dN/dS or the
frequency of non-conservative-to-conservative substitutions ratio) values using
concatenated ORF1a/ORF1b/ORF2/ ORF3/ORF4 coding-sequence datasets, as well as
for each one of the individual ORFs using three different methods (SLAC, FEL and
SNAP). No significant differences were found between all ORFs, apart from ORF4
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(which seems to be the only region under diversifying selection, with o values over 1,
even though it is the genomic region with lowest genetic diversity), with all ® values
being very low (Supplementary Table 8a), with site-specific selection analysis revealing
high percentage of negatively selected sites, as well as very low percentage of positively
selected sites. Comparative analyses with other families in the Nidovirales Order were
performed using their most conservative region among their genomes, the ORF1ab region
(Supplementary Table 8b). Unlike mesonivirus sequences, those from coronaviruses,
tobaniviruses and arteriviruses displayed higher o values, always higher than 1, with
lower percentage of negatively selected sites and higher percentage of positively selected

sites.

Recombination events are common among viruses classified into the Nidovirales Order
(Gorbalenya et al., 2006) and has been shown to affect the evolution of some of its best
studied members (Hon et al., 2008; Boni et al., 2020). Since no previous assessment of
whether these events affect the evolution of mesoniviruses had ever been performed, we
investigated whether this would extend to mesoniviruses using the RDP4 software. A full
genome scan (using all detection methods implemented in RDP4) was performed, and
while many minor recombination events were detected, only one potential recombination
event was strongly supported by the RDP4 software, regardless of the recombination
detection method used. This event seems to have been involved in the genesis of NDiV
(accession number KF771866), as its genome appears to have resulted from the
recombination of two distinct mesoniviruses, with NgeV (accession number MF176279)
and OdoV (LC497422), or viruses very similar to them, suggested as the parental
sequences. Due to the apparent mosaic nature of the NDiV sequence, it was removed

from further phylogenetic analyses.

Phylogenetic reconstructions were based on the analyses of mesoniviruses genomic
regions with high phylogenetic signals (Table 1). We focused our analyses on non-mosaic
full-length genome sequences (dataset with the highest phylogenetic signal), as well as
two others comprising different ORF-specific datasets with higher signal (ORF1b and
ORF2a/S) which encode very different types of viral proteins. However, instead of
analyzing the whole of the ORF1b-coding sequence, we sought to focus our analyses

exclusively on the RdRp coding sequences, which not only displays high phylogenetic
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signal, but especially because it is, by far, the mesonivirus genomic sequence most
frequently found in public databases.

Phylogenetic reconstructions carried out using either the ORF2a/S-coding region or the
full-length genomic sequence translated into similar results (Supplementary Fig. 5 for
ORF2a/S and Supplementary Fig. 6 for full-length). When the current taxonomy of
mesoniviruses (according to the latest update on ICTV) is superimposed to the topology
of these trees and to the mesonivirus species demarcation criteria defined by Vasilakis et
al. in 2014 (96.8% protein sequence identity), evident discrepancies were found when the
topologies of the complete genome/S and RdRp trees were compared (compare
Supplementary Fig. 5 vs. Fig. 2). Even as the trees appeared to be topologically similar,
they were not identical. For example, CAVV was placed in the lineage defining the
Alphamesonivirus 1 species only in the RdRp tree, and this association seemed to be
supported by all PCOORD analyses. In addition, the monophyletic group that included
DKNV and KPhV sequences is indicated, in the RdRp tree (and is supported by
PCOORD), as sharing direct ancestry and forming a robust monophyletic clade with the
lineage that clusters KSaV and BBaV, when this is not seen in the S-protein tree. These
results indicate that while the mesonivirus genome or the RdRp and S regions may be
used for phylogenetic analysis, some topological discrepancies are seen depending on the
region used. Clearly, if tree topologies are considered to aid taxonomic decisions, even

slightly different topologies may impact viral taxonomy.

Since species demarcation criteria for nidoviruses have been most focused on highly
conserved RARp aa sequences (Cowley and Walker, 2014), and since mesonivirus species
demarcation have previously been focused on the analysis of concatenated regions of
highly conserved domains within ORF1ab (Vasilakis et al., 2014), to evaluate how the
species demarcation criteria would affect mesoniviruses classification, we focused our
attention on the RdRp aa tree (Fig. 2). When phylogenetic relationships among MM were
superimposed to the nomenclature scheme current defining the mesonivirus taxonomy,
some clashes between tree topology and previous taxonomy assignments become
apparent. KPhV and BBaV are both assigned as members of the Alphamesonivirus
1/AMV1 species and of the Namcalivirus subgenus in NCBI’s taxonomy browser
(Schoch et al.,, 2020), which would mean, by the obtained tree topology, that

namcaliviruses are paraphyletic. However, previous studies never did place KPhV and
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BBaV into that specific Alphamesonivirus species (Vasilakis et al., 2014; Wang et al.,
2017; Newton et al., 2020), with Vasilakis et al. (2014) even suggesting, by PED analysis,
that these two species should be considered as separate species. Indeed, our analysis did
confirm this. If the minimum of 96.8% protein sequence identity defines the limit of viral
species (Vasilakis et al., 2014), KPhV can never be assigned as a member of the
Alphamesonivirus 1/AMV1 species. However, KPhV RdRp shares only 92% sequence
identity with those of bona fide members of AMV1, and this suggestion is further
supported by all the tree topologies obtained. Again, phylogenetic information and
distance values clearly indicate KPhV and DKNV (which share 99% of RdRp sequence
identity) should be members of the same (AMV3) species, confirming phylogenetic
assessments in recent studies (Wang et al., 2017; Newton et al., 2020). In a similar
situation, the analysis of the phylogenetic tree topologies clearly showed that BBaV
should also not belong to the AMV1 species. Furthermore, when the RdRp sequences of
BBaV are compared with those of AMV1 members, as mentioned above for KPhV, their
RdRp share only around 90% of sequence identity. Therefore, it should not be classified
as a member of AMV1. On the other hand, BBaV does seem to share common ancestry
with KSaV, but both these virus’ RdRp sequences form independent monophyletic
clusters in phylogenetic trees (Fig. 2). While Vasilakis et al. (2014) did suggest BBaV
and KSaV should be considered as separate species, Wang et al. (2017) and Newton et
al. (2020) place them into the same species (AMV2). While their sequences do share high
similarity, their RdRp shared only 96% identity, falling below the 96.8% cut-off value
for viral species assignment. Therefore, both the RdRp phylogenetic tree topology and
sequence similarity values support previous claim by Vasilakis et al. (2014) that these
two viruses should be placed into two different viral species in the Mesoniviridae family.
Since KSaV has been detected first (Vasilakis et al., 2014) and assigned to the AMV?2
species, we tentatively propose that BBAV should, instead, be regarded a member of the
new Alphamesonivirus 11 species (Fig. 2). Our analysis also suggested that the Odorna
virus from Ghana, which remains unclassified up to the present day, should also belong
to the AMV1 sublineage, as it shares over 97% of identity to other AMV1 sequences. The
mesonivirus classification at the subgenus level has not yet been extensively studied and
should also be reconsidered from what is currently assigned at the NCBI taxonomy

browser, where the Namcalivirus subgenus not only contains all previously defined
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mesoniviruses in the AMV1 species, but also KPhV and BBaV, while the Karsalivirus
only contains DKNV and KSaV. We propose for a reference value of 93% of protein
sequence identity (RdRp protein sequences) to be used as a reference for definition of a
new subgenus in the Mesoniviridae family. DKNV, KPhV, BBaV and KSaV share less
than 93% identity between them, and more than 93% against other MM. As such, they
should all be inserted into one specific subgenus, in this case the Karsalivirus subgenus,
while the Namcalivirus should only contain the species in its monophyletic clade (seen
in Fig. 2, with all its sequences sharing more than 93% identity values). All the remainder
sequences,  Alphamesonivirus 4 (CASV), Alphamesonivirus 5 (HanaV),
Alphamesonivirus 6 (OFAV), Alphamesonivirus 7 (KADV), Alphamesonivirus 8
(NseV), Alphamesonivirus 9 (MenoV) and Alphamesonivirus 10 (DKV), were
represented by one single sequence each in the ML phylogenetic tree, where they appear
as isolated branches, and their taxonomy classification, both at genus and subgenus level,
have been reinforced by the results/findings of this study.

3.4. Analyses with other mesonivirus and virus from other

families of nidoviruses
To further extend the phylogenetic analyses carried out in this work, we reconstructed the
evolutionary relationships of mosquito mesonivirus, not only to other viruses in the
Nidovirales Order, but also with the recently described mesonivirus identified in non-
mosquito hosts. An initial tree was obtained using ORF1ab aa sequences (not shown), but
since still no full-length ORF1ab sequence has yet been described for LtM, phylogenetic
reconstruction was refined using only RdRp sequences (Supplementary Fig. 7). In the
suborder Mesnidovirineae, mesoniviruses clearly form a stable clade that shares ancestry
with the so-called Beihai Nido-like virus, the single representative of the Medioniviridae
family, but those found in hosts other than mosquitoes (OM: AcMSV, Immesol, LtM)
are positioned between the large monophyletic clade that defines the mosquito
mesonivirus lineage, as independent (not forming a cluster) sister lineages of the latter.
The phylogenetic relatedness between MM and OM was not only suggested by the
topology of the RARp tree, but also by the genetic distance values obtained when OM and
MM sequences were compared, indicating that OM were consistently closer to MM than

to the Medioniviridae
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members (only two identical sequences have been described, both from the same species,
so only one is indicated in Supplementary Fig. 6). Finally, assessments of OM vs OM and
OM vs MM protein sequence divergence between OM sequences, led to high divergence
values, which further suggests they may correspond to the maiden members of putative
new mesonivirus taxon (genera, family). These hypotheses will be investigated as further

OM sequences become available.

4. Discussion

In this study, we sought to extend previously published genetic characterization data
(Vasilakis et al., 2014) regarding the Mesoniviridae family of viruses. Over recent years,
the number of mesonivirus sequences deposited in GenBank has significantly increased,
which expanded the potential for new genetic analyses and phylogenetic inference
analyses. While many newly described sequences clustered into predefined mesonivirus
genetic lineages (like most of the sequences of the Alphamesonivirus 1 species), some
were classified as totally new species (e.g., the Dianke virus). More importantly,
phylogenetic reconstructions and sequence similarity calculations carried out during our
study brought out new information that calls for a revision of the classification

(taxonomy) of mesoniviruses.

Unlike previous reconstructions (Vasilakis et al., 2014; Chang et al., 2020) which mostly
focused on the analysis of S-sequences, we performed analyses based on different sets of
nucleotide and protein sequences. While the phylogenetic signals and tree topologies
were calculated using multiple sequence datasets corresponding to the total coding-
sequence or its ORF-specific fractions (most of which display high phylogenetic signal),
special attention was devoted to phylogenetic reconstructions involving the RdRp-
specific coding region, which has been extensively used for nidovirus species
demarcation criteria (Cowley and Walker, 2014). Focusing on a specific dataset of
sequences is important in this specific case, since our data indicate that phylogenetic
reconstructions based on different genomic regions (complete-genome or ORF2A/S vs
RdRp) does not result in congruent topologies, therefore confounding the establishment
of clade demarcation criteria, and consequently complicates the taxonomic classification

of these viruses. Therefore, we suggest that mesonivirus taxonomy should focus on the
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analysis of only RdRp aa sequences, using a minimum reference value of 96.8% of
protein sequence identity to define a mesonivirus species, and 93.0% of protein sequence
identity as a reference value of to place mesoniviruses into a given subgenus. Not only
did our analysis indicate that tree topologies and genetic diversity values at times clash
with the prevailing classification scheme, the description of new viral sequences in the
coming years will bring new light into the structure of the mesonivirus taxon. We
proposed that Odorna (which has remained unclassified up to the present day) should
become a member of the Alphamesonivirus 1 species in the Namcalivirus subgenus. Also,
our analysis suggests that BBaV should be regarded as a candidate for new species in the
Mesoniviridae family, tentatively named as Alphamesonivirus 11. On the other hand, the
Karsalivirus genus, currently containing both DKNV (AMV3) and KSaV (AMV2),
should also contain both BBaV (AMV11) and KPhV (AMV3). As for the remaining

species, our analyses reinforced the currently accepted classification.

While taxonomic decisions based on the analysis of a small section of a viral genome
(RdRp), as opposed to the use of the viral genome, may be disputed, RdRp sequences are
currently the most frequently represented mesonivirus sequence in the public genomic
databases. Future studies should not only focus on the Mesoniviridae family but also other
nidoviruses and ideally should focus on obtaining full-length sequences, as our results
indicate it has the highest phylogenetic signal. These studies should also combine
phylogenetic, genetic distance, and statistical analyses (such as PCOORD) as

complementary tools for genetic analyses.

Previous observations did indicate a worldwide distribution mesonivirus (Vasilakis et al.,
2014), which we further emphasized here, with the analysis of mesonivirus sequences
obtained from mosquitos collected in multiple continents. However, no signs were found
regarding geographic segregation patterns. There were also no obvious signs of species-
specific host restrictions, unlike what has been described for most lineages of insect-
specific flaviviruses (Colmant et al., 2017). For example, like what happens to the
Alphamesonivirus 1 species, most sequences have been obtained from multiple
subspecies of Culex or Aedes mosquitos from multiple countries. However, the majority
of the other Alphamesonivirus species are currently characterized by either one or only a
few genetically close members with a similar geographic origin, which confounds the

identification of possible geographic or host-range limits.
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The detailed analysis of mesonivirus genomic features confirmed that newly described
MM sequences conform, in general terms, to the genetic organization previously defined
for mesoniviruses. When compared to other nidovirus, mesonivirus have shorter genomes
(the only exception being the Arteriviridae family, with even shorter genomes) as well as
a lower number of identifiable ORFs. The analysis of recently described mesonivirus
sequences indicated the presence of a sequence insertion block in ORF1a similar to that
reported previously (Vasilakis et al., 2014) in DKNV. Nidovirus genome expansions have
been previously reported (Lauber et al., 2013), but the specific functional role of the
ORF1a insertion blocks remains unclear. Our analysis suggested it has coding capacity,
though its putative product is of unknown function. Other than function of the products
of the readily identifiable ORF1a and ORF1b, the putative functions of the other ORFs
found in the MM viral sequences analyzed remains elusive. However, remote homology
detection and some of their biochemical features suggest two of them encode a
nucleocapsid and a viral envelope glycoprotein. Altogether, mesoniviruses are
characterized by low amino acid sequence diversity (by entropy assessment), as well as a
lower number of non-synonymous substitutions (by calculation of ® values), especially

when compared to other nidoviruses.

We executed the first phylogenetic reconstruction with multiple meso-like virus isolated
from non-mosquito hosts to elucidate how they fare in phylogenetic relationships into the
whole Nidovirales Order radiation. They were all classified as members of the
Nidovirales Order based on its genomic structure, amino acid sequence identity and
phylogenetic analysis, expanding our knowledge on the host range of mesonivirus,
previously only reported in mosquitos. Although they could tentatively be classified as
mesonivirus, their sequence identity with mosquito mesonivirus and virus from other
close families, like the Medioniviridae and Coronaviridae family, is quite low. Even
between themselves there is high sequence discrepancy, and there are significant
differences in their genomic structure. While the more conserved regions (both ORFla
and ORF1b) look to be nearly identical to other mesonivirus (including its putative
proteome characteristics), the remaining ORFs, which should correspond to structural
protein coding regions, did not found any similarity searches, with no known function or
domain found as well. Further studies are needed, as more non-mosquito meso-like virus

are identified in the future, to evaluate whether these new viruses could indeed be
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clustered with viruses of the Mesoniviridae family, or even shape a new family. Also, this
does corroborate past studies that hinted at the evolution of nidovirus in arthropods and
consequent spread into other group of hosts, including vertebrates (Nga et al., 2011),
which may happen again with mesonivirus. Coronavirus from completely different hosts
(like bats and equines) share low sequence identity, which also happens between

mosquito mesonivirus and other mesonivirus (with non-mosquito hosts).

In contrast with the high phylogenetic signal values associated with of most datasets of
mesonivirus sequences, assessment of sequence divergence through time using root-to-
tip analysis, systematically indicated, for all datasets used, that there is still insufficient
data in the public databases to possibly support a phylogeographic reconstruction of the
evolution of mesoniviruses. This result is most probably the consequence of a poor range
of sampling time for existing sequences, which would negatively impact the sequences’
temporal signal. In fact, even though some sequences (from BBaV, KPhV and NgeV)
were detected in mosquito collections from the early 1980’s, the remainder have been
mostly obtained from mosquitos collected in the last 10 to 15 years. Therefore,
phylogeographic reconstructions that would disclose the geographic distribution of
mesoniviruses over time still awaits that more diverse assemblages of heterochronous
mesonivirus sequences become available in the near future. Mesoniviruses look to be an
ever-expanding and unique group of viruses in the Nidovirales Order, with more
information being obtained as new sequences are identified. Even their stance as insect-
specific viruses could no longer hold true, as more hosts continue to be recognized (if
they indeed end up being classified as virus in the Mesoniviridae family). Studies like
these should continue to be executed in the future. Their potential to be developed as
biological control agents, which have been identified in similar viruses (Goenaga et al.,

2020), also remains unclear and is an important area for future investigation.
Supporting information

Supplementary Fig. 1: Schematic representation of nucleotide sequences for each group
of mesonivirus and for other virus from different families in the Nidovirales Order, with
different ORFs identified; * - Nucleotide sequence for the Odorna virus seems incomplete
and contains no further information apart from the one present here; RFS: ribosomal
frameshift elements; HOUV = Houston virus; AMV1 = Alphamesonivirus 1; NDiV =
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Nam Dinh virus; NgeV = Ngewontan virus; OdoV = Odorna virus; CAVV = Cavally
virus; DKV = Dianke virus; HanaV = Hana virus; BBaV = Bontang Baru virus; KSaV =
Karang Sari virus; KPhV = Kamphaeng Phet virus; DKkNV = Dak Nong virus; CASV =
Casuarina virus; NseV = Nse virus; KADV = Kadiweu virus; MenoV = Meno virus;
OFAV = Ofaie virus; SARS-CoV-2 = Severe acute respiratory syndrome coronavirus 2
(Coronaviridae; MT997203); SheV = Simian hemorrhagic encephalitis virus
(Arteriviridae; NC_038293); FmN = Fathead minnow nidovirus (Tobaniviridae;

NC_038295); BIN = Botrylloides leachii nidovirus (Medionivirineae; MK956105).

Supplementary Fig. 2: Heat map representing intersequence genetic diversity of
mesonivirus. Representative tree (maximum likelihood, WAG model) based on RdRp aa
sequences (sequences identifiable in Supplementary Table 1), and Z-Scores were

obtained based on pairwise evolutionary distances obtained on MegaX.

Supplementary Fig. 3: Intragroup genetic diversity of mesonivirus. Representative RdRp
tree (maximum likelihood, WAG model) based on the analysis of alignments of RdRp
primary sequences. For each species, sequence identification follows the nomenclature
indicated in Supplementary Table 1, followed by number of sequences for each clade;
box-and-whisker graphs are used to plot distributions of pairwise evolutionary distances
of three different sets: between mesoniviruses from the same species (Alphamesonivirus
1/AMV1), between all mosquito mesoniviruses (MM), and between all mosquito

mesoniviruses (MM) and other mesoniviruses (OM).

Supplementary Fig. 4: Entropy calculations based the Shannon function (Shannon
entropy-one) applied on alignments of ORF1a protein sequences from different families

in the Nidovirales Order.

Supplementary Fig. 5: Principal coordinate analysis carried (left panel) out for mosquito
mesonivirus S protein coding sequences. Each sequence is identified by the sequence
abbreviation they belong to (HOUV = Houston virus; AMV1 = Alphamesonivirus 1;
NDiV = Nam Dinh virus; NgeV = Ngewontan virus; OdoV = Odorna virus; CAVV =
Cavally virus; DKV = Dianke virus; HanaV = Hana virus; BBaV = Bontang Baru virus;
KSaV = Karang Sari virus; KPhV = Kamphaeng Phet virus; DkNV = Dak Nong virus;
CASV = Casuarina virus; NseV = Nse virus; KADV = Kadiweu virus; MenoV = Meno

virus; OFAV = Ofaie virus). A maximum likelihood tree (right panel), estimated under a
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WAG substitution model, is also shown, while displaying the taxonomy revision proposal

presented in this work.

Supplementary Fig. 6: Maximum likelihood tree for mosquito mesonivirus full-length
sequences. Each sequence is identified by the sequence abbreviation they belong to
(HOUV = Houston virus; AMV1 = Alphamesonivirus 1; NDiV = Nam Dinh virus; NgeV
= Ngewontan virus; OdoV = Odorna virus; CAVV = Cavally virus; DKV = Dianke virus;
HanaV = Hana virus; BBaV = Bontang Baru virus; KSaV = Karang Sari virus; KPhV =
Kamphaeng Phet virus; DKNV = Dak Nong virus; CASV = Casuarina virus; NseV = Nse
virus; KADV = Kadiweu virus; MenoV = Meno virus; OFAV = Ofaie virus).

Supplementary Fig. 7: Maximum likelihood tree for protein sequences (RdRp coding

region) of virus from different families in the Nidovirales Order.
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Readdressing the genetic diversity and taxonomy of the Mesoniviridae family, as well as its relationships
with other nidoviruses and putative mesonivirus-like viral sequences

Supplementary Fig. 5: Principal coordinate analysis carried (left panel) out for mosquito mesonivirus S
protein coding sequences. Each sequence is identified by the sequence abbreviation they belong to (HOUV
= Houston virus; AMV1 = Alphamesonivirus 1; NDiV = Nam Dinh virus; NgeV = Ngewontan virus; OdoV
= Odorna virus; CAVV = Cavally virus; DKV = Dianke virus; HanaV = Hana virus; BBaV = Bontang Baru
virus; KSaV = Karang Sari virus; KPhV = Kamphaeng Phet virus; DKNV = Dak Nong virus; CASV =
Casuarina virus; NseV = Nse virus; KADV = Kadiweu virus; MenoV = Meno virus; OFAV = Ofaie virus).
A maximum likelihood tree (right panel), estimated under a WAG substitution model, is also shown, while
displaying the taxonomy revision proposal presented in this work.
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Readdressing the genetic diversity and taxonomy of the Mesoniviridae family, as well as its relationships
with other nidoviruses and putative mesonivirus-like viral sequences

Supplementary Fig. 6: Maximum likelihood tree for mosquito mesonivirus full-length sequences. Each
sequence is identified by the sequence abbreviation they belong to (HOUV = Houston virus; AMV1 =
Alphamesonivirus 1; NDiV = Nam Dinh virus; NgeV = Ngewontan virus; OdoV = Odorna virus; CAVV
= Cavally virus; DKV = Dianke virus; HanaV = Hana virus; BBaV = Bontang Baru virus; KSaV = Karang
Sari virus; KPhV = Kamphaeng Phet virus; DKNV = Dak Nong virus; CASV = Casuarina virus; NseV =

Nse virus; KADV = Kadiweu virus; MenoV = Meno virus; OFAV = Ofaie virus).
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Readdressing the genetic diversity and taxonomy of the Mesoniviridae family, as well as its relationships
with other nidoviruses and putative mesonivirus-like viral sequences

Supplementary Fig. 7: Maximum likelihood tree for protein sequences (RdRp coding region) of virus
from different families in the Nidovirales Order.
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Readdressing the genetic diversity and taxonomy of the Mesoniviridae family, as well as its relationships
with other nidoviruses and putative mesonivirus-like viral sequences
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Insect-specific viruses in the Parvoviridae family: Genetic lineage characterization and spatiotemporal
dynamics of the recently established Brevihamaparvovirus genus

Abstract

The analysis of the viruses allocated to the recently established Brevihamaparvovirus
genus (Parvoviridae family), which includes all previously known brevidensoviruses, has
not yet been carried out on an extensive basis. As a result, no detailed genetic lineage

characterization has ever been performed for this group of insect-specific viruses.

Using a wide range of molecular tools, we have explored this taxon by calculating
Shannon entropy values, intra- and inter-taxon genetic distances, analyzed sequence
polymorphisms, and evaluated selective pressures acting on the viral genome. While the
calculated Brevihamaparvovirus mutation rates were within the range of those of other
parvoviruses, their genomes look to be under strong purifying selection, and are also
characterized by low diversity and entropy. Furthermore, even though recombination
events are quite common among parvoviruses, no evidence of recombination (either intra
or intergenic) was found in the Brevihamaparvoviruses sequences analyzed. An extended
taxonomic analysis and reevaluation of existing Brevihamaparvoviruses sequences, many
still unclassified, was performed using cut-off values defining NS1 identity between viral
sequences from the Parvovirus family. Two existing genetic lineages, Dipteran
Brevihamaparvovirus 1 and Dipteran Brevihamaparvovirus 2, were rearranged and the
creation of a new one, Dipteran Brevihamaparvovirus 3, was suggested. Finally, despite
the uncertainties associated with both the time estimates of the most recent common
ancestors, which could span from twenty thousand years before the current era to way
earlier (in the last century), and the dispersal routes proposed for Brevihamaparvoviruses
sequences by phylodynamic reconstruction, the analyses here presented could help define
how future studies should be conducted as more isolates continue to be identified in the

future, and contribute to eliminating possible analytical biases.

Keywords: Brevihamaparvovirus; Parvoviridae; Virus taxonomy; Phylogenetic

analysis; Spatiotemporal dynamics
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1. Introduction

Mosquitoes are important vectors for many pathogenic agents with (re)emerging
potential, and many of these correspond to viruses (Gould et al., 2017), some of which
pose threats to public health, and may cause epidemics that get considerable worldwide
attention (Barzon, 2018). However, over the last decade, in addition to the discovery of
many pathogenic viruses in association with hematophagous arthropods, many studies
have also brought to light a plethora of so-called insect-specific viruses (ISV). The latter
encompass a genetically diverse assemblage of taxonomically distinct viruses, which all
share restricted/null replication capacity in vertebrate cells (Calisher and Higgs, 2018;
Abudurexiti et al., 2019). Among them stand the viruses of the Brevihamaparvovirus
genus, which belongs to the Parvoviridae family, which was first established in 1975 and
groups viruses found in most major vertebrate and invertebrate clades (Cotmore et al.,
2014).

Parvoviruses are small (23-28 nm), icosahedral-shaped, non-enveloped viral agents with
single-stranded linear DNA (ssDNA) genomes ranging from 4 to 6 kilobases (kb). Two
major coding regions determine the expression of non-structural (NS) and structural (\VP)
proteins, the largest of which (the so-called non-structural protein 1, or NS1) displays a
highly conserved helicase superfamily domain with helicase and ATPase activity
(Cotmore et al., 2019). Until 2020, parvoviruses were allocated to either the Densovirinae
(infecting invertebrates) or Parvovirinae (infecting vertebrates) subfamilies, with initial
subfamily demarcation exclusively supported by the topologies of phylogenetic trees
(Muzyczka and Berns, 2001). However, a recent taxonomy revision took into account not
only phylogenetic criteria, but also amino acid sequence similarity values calculated from
comparisons of the sequences of the NS1 protein or its helicase domain (Pénzes et al.,
2020). While high sequence identity for most of the NS1 protein characterized the
Parvovirinae subfamily, the same did not apply to the Densovirinae subfamily. In
addition, new densoviruses have also been unexpectedly isolated from vertebrates
(Bochow et al., 2015; Yang et al., 2016), adding to the heterogeneous nature of this
subfamily, and supporting its division into two distinct ones: the Densovirinae and
Hamaparvovirinae. While hamaparvoviruses share (on average) approximately 30% of

NS1 amino acid identity, they only share around 20% of sequence identity when their
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helicase domain is compared with that of other parvoviruses. Furthermore, as the insect-
specific brevidensoviruses (Densovirinae subfamily) shared around 30% of NS1 protein
identity with other hamaparvoviruses, they were inserted into the Hamaparvovirinae

subfamily and the genus renamed Brevihamaparvovirus (Pénzes et al., 2020).

Among parvoviruses, the members of the genus Brevihamaparvovirus have some of the
smallest sSDNA genomes (approximately 4 kb), with three open reading frames encoding
two non-structural proteins (NS1, NS2) and a capsid protein (VP) (Bergoin and Tijssen,
2010). While NS1 has been known to be crucial for the initiation of viral DNA replication,
NS2 participates in viral egress from the nucleus where viral replication takes place (Chen
et al., 2021). The VP gene encodes a capsid protein that is essential for viral entry into
host cells and the production of infectious virus (Sanchez-Martinez et al., 2012). Also,
the viral genome is characterized by the presence of a unique non-coding terminal
palindromic hairpin loop that is required for DNA replication (Afanasiev et al., 1991).

Brevihamaparvoviruses have been isolated from various mosquito cell-lines (Afanasiev
et al., 1991; Ren et al., 2008) as well as wild mosquitoes, mostly from different species
of Aedes and Culex from Asia (Kittayapong et al., 1999), the Americas (Sadeghi et al.,
2018), Europe (Silva et al., 2019) and Africa (Morais et al., 2020), suggesting a
widespread distribution. As many of these viruses have been isolated in recent years, we
undertook an extensive genetic diversity analysis of this taxon using multiple
bioinformatic tools. These included a comprehensive phylogenetic and an attempted

spatiotemporal dispersal reconstruction analysis of these ISV.

2. Materials and methods

2.1. Dataset and sequence alignment preparation
The compilation of the different nucleotide (nt) and amino acid (aa) sequence into the
datasets used in this work was based on the selection of sequences encoding non-
structural protein 1 (NS1), non-structural protein 2 (NS2) and viral protein (VP) of
members of the Brevihamaparvovirus genus, available at GenBank as of 01/08/2021.
These were either directly identified via their respective accession numbers (described in

previous publications), or indirectly singled out as a product of sequence similarity
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searches using BLASTNn. All sequences available to date were downloaded, and
additional information including GenBank accession number, host species, geographic
origin, and collection date was also obtained. Furthermore, for comparative and
phylogenetic purposes, representative datasets containing NS1 nt and aa sequences (the
most conserved genomic section) of viruses from other genera in the Parvoviridae family

were also constructed.

Multiple alignments of viral sequences in each dataset were performed using the iterative
G-INS-1 method as implemented in MAFFT vs.7 (Katoh and Standley, 2013), followed
by their edition using GBlocks (Castresana, 2000). The multiple sequence alignments
were systematically verified to ensure the correct alignment of homologous codons using
BioEdit 7.0.5 (Hall, 1999). Multiple alignments of NS1 aa sequences from multiple genus
in the Parvoviridae family were also performed. In this case, the MAFFT iterative L-INS-
| option was employed by alignment refinements using the G-INS-1 method.

2.2. Assessment of the temporal and phylogenetic signals of

Brevihamaparvovirus sequence datasets
The evolutionary information contained in all the sequence datasets compiled
(phylogenetic signal) was assessed by Likelihood Mapping (Strimmer and von Haeseler,
1997) using TREE-PUZZLE v5.3 (Schmidt et al., 2002). Datasets for which > 85% of
the sequence quartets were totally resolved (randomly selected), were considered of

good/high phylogenetic resolving power.

A visual inspection of the degree of genomic sequence divergence accumulation over the
sampling time interval (i.e., temporal signal) in all nt datasets was carried out using an
exploratory linear regression approach, assuming the topology obtained in a Maximum
Likelihood (ML) tree, estimated under an unconstrained clock and the GTR+I'+I
substitution model using 1Q-TREE (Trifinopoulos et al., 2016). Root-to-tip divergence
values were plotted as a function of sampling time using the TempEst software (Rambaut
etal., 2016).
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2.3. Genetic diversity analyses
The estimation of genetic distance values (corrected with the Kimura-2P formula) was
carried out using MEGAX (Kumar et al., 2018). Heat maps were designed based on
pairwise evolutionary distances obtained using the Heatmapper webserver (Babicki et al.,
2016). Visualization of genome organization for Brevihamaparvovirus (as well as that of
selected members of other Parvoviridae genera) was executed using Open Reading
Frame (ORF) Finder (available in https://www.ncbi.nlm. nih.gov/orffinder/), and the
SMART webserver (Letunic and Bork, 2018). The presence of conserved domains in viral
protein sequences was investigated using CD-Search (https://www.ncbi.nlm.nih.gov/Stru
cture/cdd/wrpsb.cgi). For protein variation analyses, single amino-acid polymorphisms
(SAPs) were detected. The indicated amino acid coordinates correspond to those in the

Aedes albopictus densovirus 2 sequence (accession number X74945).

The analyses of selective pressure acting on individual sites of codon alignments were
carried out using the Single Likelihood Ancestor Counting (SLAC) and the Fixed Effects
Likelihood (FEL) methods as implemented in Datamonkey (Kosakovsky Pond and Frost,
2005), or the SNAP tool (http://www.hiv.lanl.gov/content/sequence/SNAP/SNAP. html),
the latter exploring a simpler method for calculation of synonymous and non-synonymous
substitutions (Nei and Gojoborit, 1986). Principal coordinate analyses were carried out
using PCOORD (http://www.hiv.lanl.gov/content/sequence/PCOORD/PCOORD.html).
Additionally, possible recombination events were investigated using the Recombination
Detection Program 4 (RDP4) software (Martin et al., 2015).

2.4. Phylogenetic analyses using maximum likelihood and
Bayesian approaches

To assess the relationship between the isolates belonging to the Brevihamaparvovirus
genus and the remaining genera in the Parvoviridae family, phylogenetic reconstructions
were carried out using NS1 aa sequences and the ML optimization criterion assuming the
Whelan and Goldman (WAG) model, as defined by 1Q-TREE (Trifinopoulos et al., 2016).
The stability of the obtained tree topologies was assessed by bootstrapping based on 1000
re-samplings of the original sequence data. Phylogenetic reconstructions (ML) using

Brevihamaparvovirus ORF-specific nt and aa datasets were performed using the
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GTR+I'+l and WAG model, respectively, as suggested by 1Q-TREE. Once again, the
stability of the obtained tree topologies was assessed by bootstrapping with 1000 re-
samplings of the original sequence data. All phylogenetic reconstructions were carried
out assuming a relaxed uncorrelated lognormal molecular clock model (Ho et al., 2005)
as indicated by the ML Clock Test implemented in MEGA X, allowing for the

accommodation of among-lineage rate variation.

Time-calibrated phylogenetic and phylogeographic histories were obtained using a
Bayesian statistical framework, as implemented in the BEAST v1.10 software package
(Suchard et al., 2018), and using the GTR+I"+I model. To investigate the sensitivity of
the estimate for the time to the Most Recent Common Ancestor (tMRCA) concerning the
coalescent priors used, the performance of constant, exponential, logistic, and expansion
parametric population demographic growth priors (Drummond et al., 2003; Griffiths and
Tavaré, 1994) was tested against that of nonparametric ones, including the Bayesian
Gaussian Markov Random Field (GMRF) Skyride (Minin et al., 2008), Skygrid (Gill et
al., 2013) and Skyline (Drummond et al., 2005). This preliminary comparative analysis
was carried out using all the VP dataset sequences available. Bayes factor (BF) support
for predictors was calculated using marginal likelihood estimates (MLE) (inferred using
Path Sampling (PS) and Stepping-Stone (SS) approaches) for each candidate model, and
then comparing the ratio of the marginal likelihood estimates for the set of candidate

models being compared.

A minimum number of two, and up to a maximum of twenty, independent Markov chain
Monte-Carlo (MCMC) runs were performed using BEAST v1.10 until 1-3 x 108 states
were sampled, with at least 10% of which being discarded as burn-in. The length of the
MCMC analyses was defined as a function of chain convergence which was followed
using the Tracer software v1.7.1 (http://beast.bio.ed.ac.uk/tracer). The latter was also
used to check for adequate effective sample size (ESS) higher than 200 after the removal
of burn-in. The trees were logged on every 10,000th MCMC step, and the trees
distribution was summarized using the TreeAnnotator software v1.8.3 as a maximum
clade credibility (MCC) tree, with median heights as the node heights in the tree. The
FigTree v1.4.2 software was used to visualize the phylogenetic trees (htt

p://tree.bio.ed.ac.uk/software/figtree/).
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2.5. Continuous phylogeography

The geographic spread of Brevihamaparvoviruses in continuous space was studied using
a phylogenetic Brownian diffusion approach that models the change in geographic
coordinates (latitude and longitude) along each branch in the phylogenetic reconstruction
(Lemey et al., 2010). As an alternative to the latter, relaxed random walk (RRW)
extensions that model branch-specific variation in dispersal rates similar to uncorrelated
relaxed clock approaches was also used (Drummond et al., 2006). The assessment of BF
support for the diffusion priors was calculated using MLE as described above for the
coalescent demographic priors.

The spatiotemporal reconstruction of the spread Brevihamaparvovirus was visualized on
the Spatial Phylogenetic Reconstruction of Evolutionary Dynamics software (SpreaD3;

Bielejec et al., 2016), using a custom-made geoJSON world map (https://geojson-

maps.ash.ms/).

3. Results

3.1. Comparative genomic coding architecture and genetic

diversity analyses
Public genomic database mining allowed the creation of three datasets containing
Brevihamaparvovirus (BHP) nt and aa sequences. These included 60 NS1 sequences, 31
NS2 sequences, and 40 VP sequences (additional information available on
Supplementary Table 1). Most sequences (~90%) were originally identified in association
with specimens of either Culex sp. or Aedes sp. mosquitoes, with the remaining ones being
amplified from Anopheles, Culiseta, Armigeres, and Haemagogus. Five of the BHP
sequences were obtained from C6/36 cell cultures and two from chronically infected cell
lines (Aag2 and SuaB5). Additionally, for phylogenetic and other comparative analyses,
NS1 aa sequences were also compiled for viruses from each genus/species in all

Parvoviridae subfamilies (Supplementary Table 2).

Brevihamaparvovirus ORF organization, as seen in Fig. 1, is almost identically shared
between all BHP, with two distinct regions coding the non-structural proteins (NS1 and

NS2) and one viral structural protein (VP). However, the genome of one BHP (accession
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number MH188047), isolated in 2016 from a Culex mosquito, displayed two ORFs that
encoded structural proteins (Fig. 1). This genetic organization recalls that of typical
Ambidensovirus (Densovirinae subfamily) sequences (Supplementary Fig. 1). The
composition of ORF-coding sequences looked similar between different genera in the
Hamaparvovirinae subfamily, with the only noticeable exception found among the
members of the Ichthamaparvovirus genus, for which an NS2 coding sequence could not
be identified. On the contrary, ORF organization inside the Densovirinae and
Parvovirinae subfamilies was found to be quite disparate. An alternative ORF-coding
sequence, encoding the so-called assembly-activating protein (AAP), which promotes
capsid assembly (Earley et al., 2017), seemed to exist only in the genome of the members

of the Dependoparvovirus genus.
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Fig. 1: Schematic representation of nucleotide sequences for ten different Brevihamaparvovirus, with
different ORFs identified; NS — non-structural protein; VP —viral protein; Hel — Helicase; P-ATP — P-loop
NTPase; CR — coiled region.
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Overall, comparison of all individual BHP ORF-coding sequences disclosed low mean
genetic distances, with the lowest value associated with the NS1 protein (0.053), followed
by NS2 (0.064) and VP (0.077). Pairwise evolutionary distances (PEDs) were calculated
between all BHP sequences and analyzed using a heatmap (Supplementary Fig. 2). PEDs
analysis did provide insights into possible segregation of three different groups of
sequences inside the Brevihamaparvovirus genus, with those inside each group sharing
low PEDs values, while slightly higher values were observed when sequence comparisons
extended towards those from other viral groups. To compare genetic distance values
between members of the different Parvoviridae subfamilies, overall mean genetic
distances were calculated individually (for each subfamily) for the most conserved ORF-
coding region (NS1), using datasets containing sequences from each genus/species. The
inclusion of a more divergent group of NS1-coding sequences into a single dataset
naturally raised the average genetic distance values of the Hamaparvovirinae,
Densovirinae and Parvovirinae subfamilies to 0.499, 0.502 and 0.503, respectively, with

no apparent significant difference between all values.

Shannon entropy is a quantitative measure of uncertainty in a dataset of nucleotide or
amino acid sequences, and it may be considered as a measure of variation in DNA and
protein sequence alignments for assessment of genetic diversity in a cross-sectional sense.
When applied to the analysis of BHP sequences, Shannon entropy calculations showed
low values for all BHP ORF-coding sequences. NS1-coding region did show slightly
lower entropy values in most amino acids (Supplementary Fig. 3A), which should be
expected due to its key role in viral DNA replication. In addition, no substantial
differences in entropy values were found between different subfamilies in the
Parvoviridae families when evaluating NS1 aa sequences entropy (Supplementary Fig.
3B).

3.2. Phylogenetic signal, selective pressure, impact of genetic
recombination, and sequence divergence accumulation

throughout time
In order to assess the extent to which selective pressure and/or intra/ intergenic

recombination events could impact phylogenetic reconstructions, both were metrics
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evaluated using specific bioinformatic tools. No evidence of either intra or intergenic
recombination events were detected for either full-length genomes or any of the genes
analyzed, using all detection methods on the RDP4 software. Estimation of omega (o)
values (corresponding to the ratio of non-synonymous to synonymous substitutions) was
performed for BHP using three different methods (SLAC, FEL, and SNAP). These
analyses were carried out for all ORF-coding regions (Supplementary Table 3), and the
results obtained indicated that the whole genome seems to be under purifying selection,
as deduced by overall low w values, especially in the case of the VP-coding region (p-
value < 0.05). Site-specific selection analysis also revealed little to no evidence of
positively selected sites. Only 2 codons in the NS2 gene were identified as evolving under
diversifying selection, and even so, this observation was only supported by one analysis
methods used (FEL).

Since no evidence of recombination events or positive selective pressure acting on the
BHP genome were detected (which could compromise phylogenetic reconstruction), the
phylogenetic signals of each nt dataset were evaluated using likelihood mapping (Table
1). The obtained results showed high phylogenetic resolving power for both the NS1 and
VP sequence datasets, with 88.1% and 85.5%, of totally resolved randomly selected
10,000 quartet replicates respectively. The NS2 gene showed slightly lower phylogenetic
resolving power with 77.0% of totally resolved sequence quartets. These results indicated
that phylogenetic reconstructions based on the analysis of alignments of any viral ORFs
(with the possible exception of NS2), would produce unambiguous phylogenetic trees.

Table 1: Phylogenetic signal (as assessed by likelihood mapping) and root-to-tip (sequence divergence as
a function of time) of brevihamaparvovirus sequences using datasets of all ORF-coding sequences.

Likelihood Mapping NS1 NS2 VP

Totally resolved quartets 88.1% 77.0% 85.5%
Partially resolved quartets 3.5% 0.7% 1.8%
Unresolved quartets 8.4% 22.3% 12.7%

Root-to-tip analysis (r?) 0.028 0.220 0.450
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To assess the extent to which all BHP sequence datasets contained detectable signals
indicating expanding sequence divergence throughout time, a standard linear regression
exploration of root-to-tip genetic distances as a function of sampling time was performed.
Only the NS1-coding region did not reveal clear evidence for a substantial temporal signal
(Table 1), even after the removal of outlier sequences that could have a negative impact
on temporal signal assessment. Nevertheless, while for both the NS2 and VP sequence
datasets, a substantial temporal signal was found, we selected the VP gene as the prime
candidate for continuous phylogeography analysis (see below) as it also displayed the
highest phylogenetic signal. However, both the very narrow temporal date sampling
interval (with an average date-range of 20 years) and the a priori unknown average rates
of evolutionary change for Brevihamaparvoviruses, could influence temporal signal
assessment. As far as the latter was concerned, nucleotide substitution rates were
estimated using the sequences of the BHP VP gene, while assuming a relaxed molecular
clock model (Drummond et al., 2006). This was supported by ML test of the molecular
clock hypothesis, which systematically rejected the null hypothesis of equal nucleotide
substitution rates along the branches of the trees (Supplementary Table 4A). Substitution
rate values varied depending on the coalescent priors used and ranged from 1.16 x 103 to
2.24 x 10 substitutions per site/per year.

3.3.  Phylogenetic analyses
Previous reports have stated that NS1 proteins of viruses belonging to the same genus
share between 35-40% of amino acid sequence identity with a minimum shared query
cover of 80% (between any two members being compared), while simultaneously
clustering as a robust monophyletic lineage (Pénzes et al., 2020). Accordingly, a
phylogenetic reconstruction of the evolutionary relationships within the Parvoviridae
family (Supplementary Fig. 4) and the genetic distance values indicated in Supplementary
Table 5 clearly show the singularity of the Brevihamaparvovirus genus. While the
analysis of NS1 sequences suggested that Brevihamaparvoviruses share common
ancestry with the members of Parvovirinae subfamily, this shared ancestry was not

supported by bootstrap analysis.
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Considering the above mentioned, (i) high phylogenetic signal of NS1 and VP sequence
datasets, and (ii) the absence of evidence for intra/ intergenic recombination, (iii) or of
positive selection acting as a driver of virus evolution, the evolutionary relationships
between only BHP were investigated using ML phylogenetic tree reconstruction
(Supplementary Fig. 5). No substantial differences were found between the NS1 and VP
ML trees, and in both the BHP sequences were segregated into three distinct
monophyletic clades. Furthermore, when the previously defined minimum of 85% of
identity (based on the analysis of NS1 aa sequences) was considered to unite
Brevihamaparvoviruses as members of the same species (Pénzes et al., 2020), the
different BHP genetic lineages did seem to correspond to distinct viral species, consistent
with the NS1 tree topology. However, not only have many new, and therefore
unclassified, sequences been described recently from the Americas (Sadeghi et al., 2018),
Asia (Fuetal., 2017), Europe, and Africa (Morais et al., 2020; Silva et al., 2019), a dissent
was observed between the NS1 tree topology and the currently accepted taxonomic
assignments (Fig. 2A). For these reasons, Fig. 2B indicates a suggested correction of the
BHP genetic lineage assignment, confirming the previously defined Dipteran
Brevihamaparvovirus (DB) 1 and DB2 genetic lineages, and suggesting the establishment
of a third one, designated DB3. The existence of the DB1-3 genetic sublineages was also
supported by PCOORD analysis (Fig. 2C), as well as by the NS1 genetic diversity
grouping indicated by heatmaps (Supplementary Fig. 2).

Multiple single amino-acid polymorphisms were identified when NS1 aa variation was
analyzed taking into account sequence comparisons between different
Brevihamaparvovirus branches, further supporting the identified viral sublineages (Fig.
2C). The analysis of lineage-specific SAPs indicated four of them to be exclusively found
on DB2 (479D, 487S, 524A and 546H) and DB3 (74H, 496D, 539K and 586S) sequences,
while polymorphisms 481R and 522K characterized the DB1 lineage.
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3.4. Continuous phylogeography
In an attempt to infer the population dynamics of BHP sequence dispersal through space
and time, using a dataset with high phylogenetic resolving power and reasonable temporal
signal (VP; r2=0.45), we first tested the performance of parametric demographic priors
against that of non-parametric ones. The obtained results clearly showed that the non-
parametric priors consistently performed better than the parametric ones, indicated by
both Bayes factor (Supplementary Table 4A) and effective sample size (ESS) values,
which were consistently higher for non-parametric priors. The obtained results also
pointed towards the Bayesian Skyline as the coalescent prior of choice, as judged by
marginal likelihood and ESS values (consistently higher than 200). A comparative
assessment of the performance of a strict Brownian vs. several RRW diffusion models
for BHP was also performed, allowing us to evaluate what would be the best geographic
diffusion model to be used for spatiotemporal dispersal analysis. The obtained MLE
values (shown in Supplementary Table 4B) suggested that a Gamma-RRW prior was the

one best fit to explain its dispersal dynamics.

Results for the spatiotemporal analysis were summarized as a MCC phylogenetic tree
(Supplementary Fig. 6), as well as projected into maps using the SpreaD3 software (Fig.
3). High Highest Probability Density (HPD) intervals for MRCA ages were estimated for
almost all nodes, especially for the MRCA for all BHP sequences. While these high HPD
intervals appear to dissipate as the estimates moved towards the more recent nodes, the
analysis of root age dates should be interpreted with caution. Although it seems clear that
two viral lineages have diverged well in the past into two distinct clades, evaluation of
dispersion routes between BHP’s oldest and also the most recent ancestors were not
firmly supported by our analyses. With the available data, our analysis suggests the
possibility of an expansion of one of the viral lineages into two distinct ones dating more
than two thousand years ago (95% HDP: (-10263)-2014) in both eastern and western
directions (Asia and North America). The other expansion event, for which a Middle
Eastern (possibly Iranian) geographical origin was suggested (though not statistically
supported), seemed to have split into two different routes in the 1700s. More recent years
marked the expansion of one of the possible Indian clades into Africa (Angola) in the
early 2010s (95% HPD: 1990- 2016, and strongly supported with a posterior probability

of 1), while the other clade seemed to have expanded in two totally different directions.
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These included movements towards Asia, starting in the early 1870 (95% HPD: 1068-
1995) as well as North America, starting as late as in 2014 (95% HPD: 1995-2016). Both

dispersal routes were strongly supported by location posterior probability values (of 0.8

and 1, respectively).

USA

Angola

2017

Fig. 3: Spatiotemporal reconstruction of Brevihamaparvovirus spread visualized on SpreaD3 software,
based on the MCC tree represented in Supplementary Fig. 6.
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4. Discussion

Unlike the case of most genera in the Parvoviridae family that join viruses identified in
association with both vertebrate and invertebrate species (Pénzes et al., 2020), the
members of the Brevihamaparvovirus genus have only been, up to the present day, found
in mosquitoes. To what extent is this association with Diptera absolute is still open to
debate. In fact, the analysis of other ISV's has shown that in specific cases they eventually
bypass host range restrictions imposed by certain host cells (Junglen et al., 2017), thus
expanding their host range (Morais et al., 2021). These observations open the possibility
that among the large diversity of viruses associated with viral taxa whose members are
supposedly restricted to replicate in insect cells, some may acquire the capacity to adapt
to a larger collection of hosts. Such a case has already been described in the Parvoviridae
family, when sequences of members of the Ambidensovirus genus (Densovirinae
subfamily), mostly associated with insect hosts until recently, have been recently detected
in vertebrate hosts such as ducks (accession number MW306771) and cranes (accession
number MWO046535).

As it has been previously considered for other ISVs (Goenaga et al., 2020),
Brevihamaparvoviruses are not only widespread in a variety of wild mosquito species,
but have also been found to interfere in vitro with the replication of bona fide arboviruses,
such as reducing the severity of the cytopathic effects induced by dengue virus infection
in C6/36 cells persistently infected with Aedes albopictus Brevihamaparvovirus
(Burivong et al., 2004). These observations highlight the potential use of certain
arboviruses as biological agents to interfere with vector competence. These viruses seem
to be able to integrate their genomes into that of infected cells, therefore they can also be
exploited as vehicles for stable expression of heterologous proteins in insect cells (Ohlund
etal., 2019). All these facts justify a more detailed approach to gather information on this
specific genus in the Parvoviridae family, where extensive genetic research has been
scarce. In fact, studies addressing the analysis of members of the Brevihamaparvovirus
genus (formerly designated as Brevidensovirus) have been almost non-existent, with only
sporadic reports on the detection of a new viral genome, the analysis of its genetic
structure (Chen et al., 2004), or what phenotypic effects are associated with their

replication on specific cell lines (Paterson et al., 2005). Broader genetic studies have
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focused exclusively on either the taxonomy revision of the Parvoviridae family as a
whole (Pénzes et al., 2020) or the characterization of the phylogenetic relationships of its
members (Cotmore et al., 2019), with sporadic reports of estimation of nucleotide
substitution rates and selective pressure analysis for some parvovirus (Stamenkovic et al.,
2016). However, to this date, the members of the Brevihamaparvovirus genus have not
been analyzed in detail, including assessments of genetic diversity, selective pressure,
Shannon entropy, or spatiotemporal dynamics. In this regard, this study provides new
insights into the genetic characteristics of BHP, as well as what evolutionary events may
have contributed to their dissemination, and what technical aspects limit our ability to
describe it precisely and with detail.

Our genetic analyses were based on the assembly of multiple datasets of sequences from
three different genomic regions (NS1, NS2 and VP). The NS proteins share the majority
of conserved domains and a coiled region essential for DNA replication (Bergoin and
Tijssen, 2010). The regions encoding NS1 and NS2 overlap, but each protein is encoded
from a distinct reading frame after alternative splicing (Chen et al., 2021). While two of
the regions displayed high phylogenetic signal (NS1 and VVP), only one revealed a strong
temporal signal (VP-coding region) required for spatiotemporal dispersal analysis. The
genomic regions with the lowest and highest overall mean genetic diversity were the NS1
and VP regions, respectively. These results confirm previous observations made in
association with the study of other parvoviruses (Kapoor et al., 2010; Lu et al., 2020), for
which mean genetic distance values were consistently higher for coding regions of
structural proteins when comparing them to non-structural proteins. Recombination
events, which seem to commonly affect the evolution parvoviruses of equine (Lu et al.,
2020), geese and Muscovy ducks (Shen et al., 2015), or even humans (Khamrin et al.,
2013) seem to affect the VP region in particular. However, no recombination events
seemed to have affected the evolution of the analysed BHP. Since the generation of
recombinant genomes requires co-/superinfection events to occur, whether the apparent
lack of impact of recombination on viral evolution is a direct consequence of restricted

replication only in insects (mosquitoes in particular) is open to debate.

Positive selection pressure is among the factors that affect virus evolution. In the context
of this study, its analysis indicated that most of the BHP genome evolves under strong

purifying selection, as seen by the accumulation of a surplus of synonymous substitutions
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relative to the non-synonymous substitutions. Only two codons in NS2 may be under
diversifying selection, but this observation was not confirmed by all method of analysis
used. Furthermore, analysis of Shannon entropy, used as a measure of variation in
DNA/protein sequence alignments, revealed low values for all genomic regions. Similar
results have been found in canine parvovirus and human parvovirus (Shackelton et al.,
2005; Stamenkovic et al. 2016). The biological relevance of these observations should,
however, be considered with caution as they may vary significantly depending on the
number of BHP sequences available (Afiez et al., 2011), and a considerable number of
these have been described recently (Morais et al., 2020; Silva et al., 2019). Further
research regarding the clarification of what may be the mechanisms of natural selection
affecting BHP is important. Indeed, reports of positive selective pressure acting on
selected parvovirus genomic sites (especially in capsid protein coding regions) have been
strongly connected to their ability to adsorb to new host cells (Hueffer et al., 2003a),
allowing possible early detection of future BHP host-switching. Furthermore, whereas
the calculated BHP substitution rates are similar to those of other parvoviruses
(Shackelton et al., 2005, calculated for canine parvoviruses, ranging from 2.7 x 1073 to
9.4 x 107 substitutions per site/per year; Stamenkovic et al., 2016, calculated for human
parvovirus B19, ranging from 1.03 x 10 to 2.32 x 10 substitutions per site/per year),
they are high due to the small size of the viral genome and its high replication turnover
(Koppelman et al., 2007), which could influence future processes of natural selections by

mutation fixation.

Considering (i) the cut-off value of NS1 sequence identity that seems suitable to define
independently evolving genetic lineages for BHP, (ii) the congruence between the
topologies of phylogenetic trees, (iii) the recently described BHP sequences that remained
unclassified, (iv) with one of them (MH550148) being previously misclassified, our
analysis did confirm the establishment of two species (Dipteran Brevihamaparvovirus 1
and 2) and suggests that a new one (Dipteran Brevihamaparvovirus 3) should be
considered. This suggestion was also supported by PCOORD analysis as well as by the
identification of NS1 species-specific aa polymorphisms.

Addressing phylodynamic analysis in a BHP genetic characterization study could provide
relevant information regarding the estimation of the time and geographic origin of most

recent common ancestor (MRCA) of all BHP sequences analysed, as well as what may
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have been the routes these viruses explore to spread through space and time. However, a
prior assessment of genetic information contained in viral sequences is vital, since not
only weak temporal signals could negatively impact the calculations of the mean MRCA
time estimates (or tMRCA,; Trovao et al., 2015), but the use of adequate candidate models
in phylogeographic analyses is of paramount importance. Except for NS2, both NS1 and
VP coding sequences showed sufficient temporal signals, which seem to be a common
observation when studying parvoviruses (Stamenkovic et al. 2016). However, unlike
observations stated in previous reports where the spatiotemporal dynamics of parvovirus
was investigated considering constant or logistic population size priors, in thus study we
formally demonstrate that non-parametric coalescent priors often perform better than
parametric ones (Morais et al., 2021). Therefore, using adequately selected coalescent
and demographic dispersal priors, our results suggested a scenario where the MRCA of
the BHP under analysis may have emerged up to twenty thousand years before the current
era. However, given the large 95% HDP intervals estimated for internal nodes, the
proposed ages for mean tMRCA, despite giving an indication of the times of divergence,
are not accurate and should be interpreted with caution. The analysis of BHP VP
sequences revealed a tree root in the Middle East (with low statistical support) from where
two viral lineages diverged. Despite the wide host-range and transmission routes different
parvoviruses have explored to ensure their natural maintenance, in reports regarding the
analysis of canine parvovirus (Giraldo-Ramirez et al., 2020), the estimated average
tMRCA was 1979 (with 95% HPD range of 38-44 years), and the spread of these viruses
seems to have happened quite recently. Therefore, given the very wide 95% HPD
intervals associated with the older branches of the BHP phylogeography tree, the early
BHP expansion events could have occurred considerably later than our analysis
suggested. However, this discrepancy might be due to the use of inappropriate priors
during the phylodynamic reconstruction. Multiple factors, such as massive tourism and
global commercial trading, and the limited success of most vector-control programs could
have a strong impact in the recent expansion of BHP. Despite its limitations, this study
did provide information that could help define how future studies should be conducted,

as more BHP sequences are identified.

Few reports delving into the evolutionary events that shaped the evolution of parvoviruses

have been carried out to this day and, not surprisingly, these usually address pathogenic
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viruses. To date, none of these studies had specifically focused on the members of the
Brevihamaparvovirus genus, which stand unique among parvoviruses thanks to their
host-restriction. However, host-switching looks to be quite common in parvovirus
(Hueffer et al., 2003b), so as new BHP sequences are identified in the near future, new
research is crucial in order to identify how and when putative host-switching events might

have eventually occurred.
Supporting information

Supplementary Fig. 1: Schematic representation of nucleotide sequences from each genus
in the Parvoviridae family with different ORFs identified. Not representative of the size
of each ORF, only their organization and sequence. NS — non-structural protein; VP —

viral protein; NP — nucleoprotein; AAP — assembly activating protein.

Supplementary Fig. 2: Heat map representing inter-sequence genetic diversity of
Brevihamaparvovirus. Representative tree obtained on IQ-TREE (maximum likelihood,
GTR+I'+I model) based on NS1 nt sequences (reported in Supplementary Table 1), and

Z-Scores estimated based on pairwise evolutionary distances using MegaX.

Supplementary Fig. 3: (A) Entropy on the basis of the Shannon function (Shannon
entropy-one) for different ORF-coding sequences of Brevihamaparvovirus; (B) Entropy
on the basis of Shannon function (Shannon entropy-one) for NS1-coding sequences of

different subfamilies in the Parvoviridae family.

Supplementary Fig. 4: NS1 maximum likelihood phylogenetic tree of several parvovirus
genera and subfamilies, estimated under a WAG substitution model using 1Q-TREE
(phylogeny test with 1000 bootstrap replications). Isolates are shown in Supplementary
Table 2.

Supplementary Fig. 5: Maximum likelihood tree of Brevihamaparvovirus NS1 and VP
nucleotide sequences, estimated under a GTR+I'+I substitution model using 1Q-TREE
(phylogeny test with 1000 bootstrap replications). The different genetic lineages (DB1-
3) are indicated.

Supplementary Fig. 6: Continuous phylogeographic analysis of Brevihamaparvovirus VP
coding sequence. At certain nodes of the MCC tree, the geographic origin and/or the date
of MRCA are indicated, with the 95% HPD values for the date of the MRCA being
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displayed between brackets. Posterior probability (PP) values >0.70 (for the tree
topology) are indicated by circles, while the decimals associated with certain nodes

indicate the inferred location PP.
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Insect-specific viruses in the Parvoviridae family: Genetic lineage characterization and spatiotemporal
dynamics of the recently established Brevihamaparvovirus genus

Supplementary Fig. 4: NS1 maximum likelihood phylogenetic tree of several parvovirus genera and
subfamilies, estimated under a WAG substitution model using 1Q-TREE (phylogeny test with 1000
bootstrap replications). Isolates are shown in Supplementary Table 2.
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Insect-specific viruses in the Parvoviridae family: Genetic lineage characterization and spatiotemporal
dynamics of the recently established Brevihamaparvovirus genus

Supplementary Table 3: Assessment of selective pressure of brevihamaparvovirus using three different
methods (Single Likelihood Ancestor Counting or SLAC and Fixed Effects Likelihood or FEL available in
the DataMonkey server, and by the Synonymous Non-synonymous Analysis Program or SNAP, hosted the
HIV Los Alamos Database) for each coding region, with a p-value of 0.05. Percentages shown for number
of sites, either for negative or positive selection, to the total number of sites for each genomic region.

(€] NS1 NS2 VP
FEL 0.82 0.53 0.11
SLAC 0.84 0.57 0.13
SNAP 0.64 0.68 0.14
Sites under negative selection NS1 NS2 VP
Number of sites 168 354 178
FEL 15 (9%) 40 (11%) 67 (38%)
SLAC 4 (2%) 5 (1%) 26 (15%)
Sites under positive selection NS1 NS2 VP
Number of sites 168 354 178
FEL 0 2 (0.6%) 0
SLAC 0 0 0
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Chapter 7. Supplementary Results
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Author summary

Through the course of this project, extensive data was obtained following the analysis of
viral sequences representing three viral genera, from as many viral families [Flavivirus
(Flaviviridae),  Alphamesonivirus  (Mesoniviridae), and Brevihamaparvovirus
(Parvoviridae)], which we identified in Chapter 1 as some of the most relevant today, as
far as ISV research is concerned. While the most important data obtained in the course of
this study has already been presented in the previous chapters as research papers,
supplementary data, also deemed important in the context of our analysis, will be
incorporated in this chapter. This will include (i) the results of mesonivirus-targeted viral
surveys in mosquito pools collected in Portugal and Angola, (ii) a more detailed view of
selective pressure and temporal signal analyses and (iii) an attempt to evaluate all cISF
spatiotemporal dispersal (not possible in past research, as conveyed in chapter 4) using

other flaviviruses sequences.

1. Mesonivirus viral surveys

1.1. Introduction

Parallel to the detection of insect-specific flaviviruses and brevihamaparvoviruses in
mosquito pools collected in both Portugal (50 pools; Chapter 2) and Angola (20 pools;
Chapter 3), we also sought to detect mesoniviruses sequences in these same mosquito
pools. Had this endeavor been successful, it would have resulted in the first
characterization of mesoniviruses sequences from both these countries. However, no
primers that would enable such detection were available at the beginning of this thesis
project in IHMT nor available in literature with the coverage we wanted, and for that
reason they had to be designed. In addition, assessment of their performance required the

development of a positive control.

1.2. Material and Methods

Mesonivirus sequence detection was performed on all 50 mosquito pools from

mosquitoes collected in Portugal (see Supplementary Table 2 from Chapter 2) and on 20
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of a total of 60 mosquito pools from mosquitoes collected in Angola. At this stage,
multiple alignments of nt sequences from all available mosquito mesoniviruses sequences
(from Supplementary Table 1 in Chapter 5) were performed using the iterative G-INS-i
method as implemented in MAFFT vs. 7 (Katoh and Standley, 2013). Primer design was
carried out using Primer Design M (Yoon & Leitner, 2015) where conserved regions,
with low sequence entropy and the highest possible Tm, were selected as their potential
hybridization targets, considering a region-of-interest (amplicon size) of 1800 base pairs.
We selected two pairs of primers that would allow the amplification (via nested PCR) of
a partial sequence inside the RdRp coding region. Primer sequences as well as the thermal
profiles used for PCR (which were defined de novo and improved alongside experimental

work) can be viewed in Table 1.

Table 1: Primer sequences, and thermal profiles used for partial sequence amplification of the mesonivirus
RdRp-coding region; indicated nt coordinates correspond to those in the Houston virus sequence (accession
number MH719099).

Target gene Primer sequence (5°-3°) Coordinates Thermocycling
(MH719099) conditions
RdRp 1% PCR
(Mesoniviruses) 95 °C - 2 min; 25 cycles [95
o _ . oC - in-
MesonV_F1: GATTATCCHAAATGGGAYCGYCG 10.079-10101 (+) -G 5 20 $9; 50°C - 2 min;

72 °C — 2 mins]; 25 cycles
[95 °C — 30 seg; 50 °C - 2
min; 72 °C — 2 min+5 seg
MesonV_R1: 11.952-11.924 ()  Percycle]; 72°C — 10 min
GGRATTTGKGTGTCAGTTWGCCATATATG
nd

2"PCR 95°C - 2 min: 50 cycles [95
°C — 30 seg; 50 °C - 2 min;
72 °C — 1 min]; 72°C - 10
MesonV_R2: GCATAATTARTTGRTGATATGGTCTGAC  11.717-11.690 (-) ~ MIN

MesonV_F2: CCTGARTTTGGACGCATGTAYWCC 10.733-10.756 (+)

PCR amplifications were carried out in final volumes of 20 uLL (10 pL of PCR Mix), using a total of 30pmol of each degenerate primer
mixture (forward and reverse) and 4 pL of cDNA

Detection of mesonivirus sequences was attempted using cONA obtained as previously
described (Carapeta et al., 2015; Pimentel et al., 2019) from mosquito pools used in
Chapter 2 and 3 of this thesis. In the absence of an adequate positive control (viral isolate),
primer detection performance was tested using an artificial molecule, also designed in the
context of this work. It corresponded to a double stranded DNA sequence with the

expected amplicon size of 1800 nt including a heterologous sequence (Bacillus subtilis
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bacteriophage SPP1 DNA, used as stuffer DNA), flanked by viral nt sequences of the
Houston virus genome (isolate HOUV-M742, accession number MH719099).

New primers were created in order to obtain the positive control fragment (Table 2) in
the form of a PCR amplicon when phage SPP1 genomic DNA was used as the
amplification template. These new set of primers allowed for the hybridization of 20 nt
at their 3’ half with DNA from the bacteriophage SPP1 (accession number X97918),
while their 5” half displayed target sequences for the Houston virus (as a representative
of the viruses we wished to detect). After PCR, aliquots of the amplification reactions
were analyzed by agarose gel electrophoresis (1%) which allowed the detection of the
expected 1.8 kb DNA fragment. The Zymoclean Gel DNA Recovery Kit (Zyma
Research) was used to purify the DNA fragment from the agarose gel. Serial dilutions of
the purified DNA fragment were used, along with the newly designed primers, to template
the amplification of the intended target DNA. Primer sequences and the thermal profiles

used are indicated in Table 1.

Table 2: Thermal profiles used for PCR and sequences of new designed primers specific to both nucleotide
SPP1 sequence and Houston virus isolate; sequence that allows for hybridization with DNA from the
bacteriophage SPP1 in bold.

Target Primer sequence (5°-3”) Thermocycling
seqguences conditions
SPP1 SPPMeson_F1:

(X97918) + GATTATCCAAAATGGGATCGCCGCCTCCTTGATCTCGTGAGACG
Houston

virus isolate

(MH719099)

95 °C - 3 min; 45
cycles [95 °C — 30 seg;
55°C — 30 seg; 72 °C
SPPMeson_R1: ;innmlns]; 72°C -5
GGAATTTGTGTGTCAGTTTGCCATATATGGACCCTGTCTTTCTGCTCTCC

1.3. Results and Discussion

We were unable to detect any mesonivirus sequences from mosquito pools from both
Portugal and Angola. We were, however, able to demonstrate that our newly designed
primers could potentially detect mesonivirus genome sequences, as demonstrated by
amplification of the intended amplification product (for the first round) using as template
1:1000 and 1:10000 serial dilutions of the purified positive control amplicon. Even

though this positive control was only able to assess the ability of the newly designed
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MesonV_F1 and MesonV_R1 primer to detect a specific viral sequence (Houston virus),
the degeneracy of those same primers should allow for the detection of a higher number
of viral sequences, if present. However, sequence detection is more sensitive when the
intended target is small, and decreasing as the amplicons grow bigger (Habbal et al.,
2009). Therefore, the detection of a relatively large amplicon (1.8 kb) may have been
compromised not only by the presence/absence of mesonivirus genomes, but also by the
quality of the viral DNA. Its putative fragmentation or degradation, could have also

hindered mesonivirus sequence detection.

2. Selective pressure analyses

2.1. Introduction

Selective pressure forces have been key in evolution of viral strains over time (Ghosh &
Chakraborty, 2020). Indeed, these forces could be key in how viral genomes adapt over
time when pressured by changing environments. Even though the genomes of the three
ISV groups we investigated (cISF, Chapter 4; mesonivirus, Chapter 5;
brevihamaparvovirus, Chapter 6) look to evolve under strong purifying pressure, mostly
indicating that evolutionary drive is against amino acid change, we did identify a few
numbers of sites in the viral genome that seem to be under positive selection. In this
section we will look into these sites in a more detailed manner, checking how amino acids
in these sites diverge between different ISV sequences and comparing the locations where

the codons encoding the changing amino acids (diversifying selection) occur.

2.2. Material and Methods

These analyses were performed simultaneously, and with the same tools, as those
mentioned in section 2.5 of Chapter 4. For this specific case, we considered the results of
the analyses of complete genome sequence alignments for all three ISV groups (cISF,
mesonivirus and brevihamaparvovirus) in the DataMonkey webserver. We identified the
location of the sites under strong positive selection (o > 1; p < 0,05) in both FEL and

SLAC analyses using coordinates available in the GenBank database records.
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2.3. Results and Discussion

For cISF, while most of the genome seems to be evolving under strong purifying selection
(more detailed results in Supplementary Table 1 in Chapter 4), high o values were
observed especially in the NS2a coding region (Fig. 1), but also in a minor number of
selected positions elsewhere (e.g. NS2b or NS4a).

omega

T T T T T T T T T T
800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600

NS1  nNs2a Ns2b NS3 1) NS5

L 2k
NS4a

Fig. 1: Assessment of o values along the cISF complete genome using the FEL function; the different
protein coding regions are identified below the x axis, where the indicated coordinates correspond to codon
sites in the viral polyprotein coding region.

More specifically, 4 codons were identified by both FEL and SLAC analyses as to be
under strong purifying selection. All those codons are located on the NS2a region. Amino
acid changes along all sequences for two of these sites (codon number 921 and 929,
following numbering on Fig. 1) can be seen in Fig. 2. As described in more detail in the
Discussion section in Chapter 4, this more relaxed pressure against amino acid change in
the NS2a region seems to be important and could be explained but it having little to no
effect on RNA synthesis, being mainly involved in the genesis of virus-induced
membranes responsible for the transportation of a partially assembled nucleocapsid to the
compartment where the final assembly occurs. Compensatory mutations in both NS2A
(Leung et al., 2008) and NS3 (NS2a is a cofactor of NS3’ activity; Liu et al., 2003) could
restore the virion assembly process. Further research should be conducted on this subject.
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For mosquito mesoniviruses, while most of their genome is under strong purifying
selection, ORF4 had o values of over 1. However, when the complete genome was
evaluated, only 3 sites (none on ORF4) were identified by both FEL and SLAC analysis
as to be under strong diversifying selection, one on ORF1la and two on ORF2a. Amino
acid changes along all mesonivirus sequences for two of these sites (one for ORFla and
one on ORF2) can be seen in Fig. 3. While purifying selection is commonly found acting
under genomes of viruses in the Nidovirales order (Ghosh & Chakraborty, 2020; Nam et
al., 2019), sites under positive selection on the spike protein can also commonly be
identified among these viruses, with the same being observed for mosquito mesonivirus

sequences.

For brevihamaparvoviruses, as described in Chapter 6, selective pressure analysis
revealed no sites under strong diversifying selection by both FEL and SLAC analysis,
which while similar to other parvovirus research (Stamenkovi¢ et al., 2016), could be

hindered by the low number of BHP sequences that have been identified so far.
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3. Temporal signal analyses

3.1. Introduction

In all research papers included in this thesis, regarding the analysis of spatiotemporal
dispersal of different ISVs (Chapter 4, 5 and 6), we first assessed the degree of temporal
signal of genomic data included in the analyzed sequence datasets. In this brief section,
we will provide more detailed information about the data obtained on temporal signals
for all datasets of the three ISV groups analyzed, as well as a brief explanation as to how
we optimized the datasets suited to use in phylogeographical analyses (i.e., with high

temporal signals).

3.2. Material and Methods

The inspection of the degree of temporal signals from datasets of the three ISV groups
analyzed (cISF, mesonivirus, brevihamaparvovirus) was executed as seen in section 2.2
of Chapter 4. Sequences that could negatively impact temporal signals of datasets were
removed. We did, however, try to remove as few sequences from our datasets as possible
so as to not significantly decrease the final number of sequences analyzed, and possibly

jeopardizing phylodynamic analyses.

3.3.  Results and Discussion

cISF. Looking back at Table 1 of Chapter 4, two datasets (Cx. theileri cISF and CFAV,
both for NS5 sequences) had higher R2 values, suggesting they possessed acceptable
temporal signal, and would allow spatiotemporal dispersal analysis, unlike all the
remainder. Differences between these two datasets and others that were associated with
lower divergence-over-time R2 values (using TempEst) can be seen in Fig.4a and 4c. For
the Cx. theileri cISF dataset, we removed one sequence that was clearly negatively
affecting the analysis, further improving temporal signal data and demonstrating the value

of an extensive root-to-tip analysis and removal of outlier sequences (Fig.4b).
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Fig. 4a: Assessment of temporal signal data by TempEst software of (A) Cx. theileri cISF NS5 dataset and

(B) CFAV NS5 dataset
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Fig. 4b: (A) Original assessment of temporal signal data of Cx. theileri cISF NS5 dataset and (B) differences
in values obtained in TempEst by the same analysis after removal of sequence marked in (A).
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Fig. 4c: Assessment of temporal signal data by TempEst software of (A) Cx. pipiens cISF NS5 dataset, (B)
Aedes cISF NS5 dataset, (C) Culex cISF NS5 dataset, (D) Culex cISF complete genome dataset, (E) cISF
NS5 dataset and (F) cISF complete genome dataset.
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Mesonivirus. As depicted in section 3.3 of Chapter 5, significant negative slopes and
correlation coefficient values were found for all datasets, hindering potential
phylodynamic analyses (Fig. 5). We present here specific examples of obtained TempEst
analyses results regarding the analysis of alignments of different sections of the coding
region of mosquito mesoniviruses genomic sequences (RdRp and spike proteins) or
specific mosquito mesoniviruses belonging only to the AMV1 species (as depicted in
Fig.2 of Chapter 5). Similar results were found for all datasets, and this subject should be

revisited as new mesonivirus sequences become available in the future.

¢ ©
T o . 04 = .
T e W\\ X \\
1 X-Intercept =2500 ol . \’\g\ n
*| Correlation Coeflicient = 0,7216 b
15 R2=0,5078
Forel B C

X-Intercept = 2141 H X-Intercept = 2264
Correlation Coeflicient =-0,7407 .4 Correlation Coefficient = -0,6041
R2=0,5487 ¢ R2=0,3649

Fig. 5: Assessment of temporal signal data by TempEst software of mosquito mesonivirus (A) RdRp
dataset, (B) spike dataset and (C) spike dataset for only mosquito mesonivirus sequences belonging to the
AMV1 species.

Brevihamaparvovirus. Three different datasets for three coding regions were considered
(NS1, NS2, VP) for temporal signal analysis. According to Table 1 in Chapter 6, the VP
coding region provided the more acceptable temporal signal that allowed it to be used as
base for a phylodynamic analysis approach. In Fig. 6 we compare the results regarding
the VP region to those obtained regarding of the analysis of the NS1 coding region, which
displayed the worst results, as far as temporal signal is concerned. Even after removing
the four sequences that are clearly set apart from the remainder, instead of improving R?
value, it actually decreased it, inverting the slope of the regression analysis (from positive
to negative) and ultimately deteriorating temporal data available, which means those four
sequences could be important to depict genetic diversity over time of

brevihamaparvoviruses sequences.
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Fig. 6: Assessment of temporal signal data by TempEst software of brevihamaparvovirus (A) NS1 dataset
and (B) VP dataset.

4. Spatiotemporal dispersal of cISF

4.1. Introduction

Most arbovirus families are thought to have evolved from insect-only life cycles to on
where vertebrate infection becomes an integral part of viral maintenance (Marklewitz et
al., 2015). Accordingly, a study on the evolution of flaviviruses suggested that cISFs
constitute the ancestral forms from which the vertebrate-infecting flaviviruses have
evolved (Shi et al., 2016). However, until recently, no known studies regarding the
spatiotemporal dispersion of cISF existed, which could lead to new information regarding

their diversity and possible connection to other lineages of flavivirus.

Our extensive study involving the genetic characterization of the most representative
genetic lineages found within the cISF branch of the Flavivirus phylogenetic tree, as well
as a Bayesian-base phylodynamic approach, was conducted and described in Chapter 4.
Not only did we find significant differences between distinct sublineages of cISF, we also
got evidence of their dispersal from potential MRCAs, which were suggested to have a
recent origin (no more than 100 years). However, we could not examine the
spatiotemporal dispersal since the oldest tMRCA for all the cISF radiation as described
in section 3 of this same chapter, due to low temporal signals obtained. For this reason,
we have since attempted to overcome it by analyzing both cISF and other Flavivirus

lineages (mosquito-borne viruses — MBV, tick-borne viruses — TBV, no-known vector —
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NKYV and dual-host affiliated insect specific flaviviruses — dhISF) placed altogether in
one single dataset, in an attempt to increase the quality of the temporal signal associated
with the dataset used, and eventually perform a full phylodynamic analysis of all
flavivirus and, more specifically, of all cISF. Using all available cISF nucleotide
sequences downloaded from the public databases, as described in Chapter 4, as well as
sequences from other Flavivirus lineages, we used different bioinformatic tools to
perform a Bayesian-based phylodynamic approach and infer the origin and

spatiotemporal dispersal of all cISF.

4.2. Material and Methods

As seen in section 3 of this same chapter, partial cISF NS5 sequences had higher temporal
signal when compared to complete genome sequences. Following this, we went through
all analyses steps as described in section 2 of chapter 4, this time using available partial
cISF NS5 sequences (using only one sequence per sublineage/location/year), as well as
sequences from other Flavivirus lineages, including all flaviviruses described in
Supplementary Fig. 1 in Chapter 4. According to comparative studies with the support of
Bayes factor (BF) as predictors using the marginal likelihood values (calculated using
both Path-Sampling and Stepping-Stone approaches), our previous study suggested that
nonparametric demographic priors were the best candidate models for the
phylogeographic study of flavivirus. Accordingly, we investigated and selected the best
nonparametric demographic prior (Skygrid), and the geographic spread of flavivirus in
continuous space was studied using relaxed random walk (RRW) extensions that model
branch-specific variation in dispersal rates (also the best diffusion prior as selected in
Chapter 4).

4.3. Results and Discussion

To ensure phylogenetic reconstructions using partial NS5 sequences from all Flavivirus
lineages featured acceptable phylogenetic signal, we assessed it by using TREE-
PUZZLE. High phylogenetic signal was associated to this specific dataset, with 97.9% of

totally resolved quartets that had been randomly sampled. A visual inspection of the
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degree of temporal signal of the same dataset was carried using the TempEst software.
Final R2 values for partial NS5 genomic sequences of all Flavivirus lineages were much
higher when compared to a dataset containing only cISF NS5 sequences (Table 3). As
such, we were able to execute a continuous phylogeography analysis using the partial

NS5 genomic region dataset of all Flavivirus lineages.

As clearly stated in this thesis, preliminary analysis for selection of best candidate models
is vital to phylodynamic approaches. As such, we conducted a similar approach testing
three non-parametric coalescent priors along with a Cauchy relaxed random walk (RRW)
diffusion model. As seen in Table 4, the non-parametric coalescent prior selected was the
Skygrid model.

Table 3: Assessment of temporal signal (Root-to-tip) analyses of partial ns5 coding sequence of (A) only
cISF and (B) cISF and other Flavivirus lineages, using the TempEst software

(A) cISF (B) All Flavivirus
Date range 22 91
Slope (rate) 0.0032 0.0011
X-Intercept 1851 1347
Correlation coefficient 0.31 0.52
Root-to-tip analysis (r?) 0.0096 0.265
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Table 4: Evaluation of rates for three different non-parametric priors plus a Cauchy-RRW diffusion
approach: analysis of all Flavivirus lineages; bold BF values indicate the best candidate model selected

coefficient
root_age mean rate stdev o
ofvariaion  pg;  psp  ss1 sS2
[95% HPD]  [95% HPD]  [95% HPD]
[95% HPD]
all
Flavi
6,91E-04  1,35E-04 0,19
GMRF 635 - ; - -
, 3,69E-04—  [5,10E-05 - 012 -
skyride  [194  1957] [ [ [ 42207 42205 42206 42204
1,03E-03]  2,40E-04] 0,27]
535E-04  8.87E-05 0,16
-113 ) ) ) )
skline [1434_ g3 |\2o0E04- [2208124 0097 45100 42182 42101 42182
8,26E-04] - 1,52E-04] 0,25]
544E-04  1,09E-02 0,17
58 ) ) ) )
skygnid (1343046 LCOLE04= [LBAE03- [009- 45189 42173 42189 42174
8,30E-04] 0,03] 0,24]

HPD: Highest Probability Density; PS: path sampling; SS: stepping-stone sampling; GMRF: gaussian Markov random
field

In Chapter 4, we demonstrated that even if spaciotemporal dispersal analysis is possible
in selective subgroups of cISF, when all cISF are taken in consideration, temporal signal
analysis is quite poor, which invalidates continuous phylogeography analysis using a
Bayesian approach. We suggested the observed low temporal signals associated with
most datasets could due to the fact that most cISF sequences had been obtained from
biological specimens sampled quite recently, and within a narrow time-range. One
possible solution to overcome this limitation would be to execute the same analysis using
sequences from all Flavivirus lineages, boosting the number of sequences and the data
range in our final dataset. Bayesian phylogenetic tree presented in Fig. 7 was
reconstructed based on 108 partial NS5 genomic sequences. It was composed of two main
robust monophyletic clades, one containing all vertebrate-infecting flaviviruses
(including dhISF), with the other containing all cISF, which are split into 3 main robust

clades, each corresponding mainly of Aedes cISF, Anopheles cISF and Culex cISF.
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The oldest part of the tree splits into two major lineages, one including all cISF and the
other the remaining flaviviruses. Curiously, our analysis suggests that their temporal, as
well as geographical origins are similar, with African being suggested as the putative
birthing place for both lineages. Huge differences do seem to exist in how both clades
then disperse over time, with vertebrate-infecting flaviviruses segregating into different
sublineages of flaviviruses way sooner than the cISF segregate into its distinct clades.
The branches starting from the different ancestors of the cISF lineage appear to be larger
than those in the arbovirus-side of the phylogenetic tree, implying that more time has
passed between each expansion event. This could, however, result from cISF’ reduced
sampling size over a narrow time-range. Similar results were found when analyzing the
tMRCA of individual cISF sublineages, like the CFAV and Culex theileri cISF (the
sublineages analyzed in Chapter 4), with similar time frames found for their tMRCA
(around 1910-1970).

Indeed, past studies support that some vertebrate-infecting flaviviruses, like dengue and
japanese encephalitis virus, evolved from an African ancestral virus over 1000 years in
the past (Holmes & Twiddy, 2003; Solomon et al., 2003). Our data suggested that the
spatiotemporal dispersal of cISF, also probably from an African origin, with most of its
subgroups starting to disperse out of Africa after the 1600’s, curiously dates back to the
Age of Discovery, where Europeans explored multiple geographic regions across the
globe. The dispersal of cISF over time seems to have occurred slowly at first, with most
cISF subgroups having a quite recent tMRCA.. Such are the cases of CFAV (India, 1971),
Culex theileri cISF (India, 1940) and Culex pipiens cISF (China, 1913). Most tMRCA for
cISF monophyletic clades have associated high posterior values for both location and
topology. This corroborates our previous work where we analyze the spatiotemporal
dispersal of CFAV and Culex theileri cISF, with similar results being obtained. After the
initial dispersal of cISF in the African continent, different cISF clades seem to have been
introduced multiple times into different Asian regions, with the dispersal to other regions
happening quite recently. Although we can analyze the time span and geographic
locations of most tMRCA with high confidence, curiously most monophyletic clades
include sequences from different countries, with some examples of clades with sequences
from different continents (like Culex pipiens cISF, with sequences from the USA, Japan

and even Angola). One interesting find is that two of the sequences obtained in this study
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(LC480778 and LC462008 from Portugal and Mozambique, respectively) segregated into
one monophyletic clade that recently was composed of only the Nakiwogo virus, with the

three sequences possibly comprising a novel species within the genus.
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1. Concluding remarks and future perspectives

Starting in recent years, our knowledge of the insect virome, especially that of
hematophagous arthropods, has been rapidly expanding (Shi et al., 2016). This has been
mainly attributed to both advancements in metagenomics, with analysis of virus sequence
data obtained directly from a multitude of insect species (Zhang et al., 2018), and genomic
analysis technologies, with the introduction of high throughput sequencing as an efficient
toolkit to identify both known and emerging insect viruses (Cannon et al., 2021). This
combination eventually allows the identification of many viral genomic sequences,
especially in the form of RNA. Curiously, many of these sequences have been found
integrated into the insect host genome (where they reside as EVESs), which usually
remains asymptomatic (VVarghese & van Rij, 2018). Some of these viruses were found not
to replicate in vertebrate cells (Calisher & Higgs, 2018), and the analyses of the genomes

of some of these so-called insect specific viruses were the main focus of this Thesis.

While the identification of the first ISV occurred almost 50 years ago, their
characterization, as reported in Chapter 1.2.1., started out slowly with the identification
of CFAV in 1975 (Stollar & Thomas, 1975), followed by that of Kamiti river virus in
2003 (Crabtree et al., 2003). A spike in the number of ISVs detected occurred only later,
when these viruses started being usually reported either as byproduct of viral surveys
aiming the detection of pathogenic arboviruses with global and significant public health
impact using degenerate amplification primers (Farfan-Ale et al., 2009), or as the direct
product of metagenomics-based viral surveys. New ISV sequences would eventually be
obtained from studies carried out across the globe and involving many possible arthropod
host species (Nouri et al., 2018), suggesting these viruses do have a widespread
geographic distribution and explore a broad range of possible hosts. However, much is
still not yet known about ISVs, and our main goal was to provide new information and

increase ISV’s biodiversity knowledge.
= New ISV sequences were obtained from multiple geographic regions

Through the course of this Thesis, we also sought to contribute to the ongoing discovery
and characterization of new ISV, via detection of their genomic sequences. We initially
proposed to analyse three groups of viruses whose sequences have only been identified

in mosquitoes so far: the Mesoniviridae family, classical insect-specific flaviviruses
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(Flaviviridae family) and the Brevihamaparvovirus genus (Parvoviridae family), as these
corresponded to groups of ISVs with an already established widespread distribution and,
when at least compared to others, with a significant number of sequences available in the
public genomic databases. With this in mind, we also sought to identify ISV sequences
from these three specific groups associated with specimens collected in geographical
areas where these viruses had not yet been identified. This included the attempted
detection of ISVs in mosquitoes collected in Portugal (Chapter 2), Angola (Chapter 3)
and Mozambique, using both previously designed primers (targeting the NS5 protein
coding-sequence of cISFs; Vazquez et al., 2012) and new ones designed during the course
of this project (targeting the RdRp protein coding sequence of mesoniviruses and that of
the NS1 and VP proteins of brevihamaparvoviruses). We were able to identify new
sequences for all mosquito populations using the proposed methodology, and the new
primers were either able to correctly identify new sequences or tested successfully using
positive controls. Our study marked the first identification of cISF in mosquitoes from
Angola (Chapter 3) and Mozambique (Chapter 4), further identification of cISF in
mosquitoes from Portugal (Chapter 2) following previous detection in 2009 by other
colleagues in IHMT, as well as the first identification of brevihamaparvoviruses in
mosquitoes from Portugal (Chapter 2) and Angola (Chapter 3). This also marked the first
time a brevihamaparvovirus sequence was discovered in both Europe and Africa. Not
only were we able to expand on the geographical distribution of both cISF and
brevihamaparvoviruses, we were also able to identify the first cISF and
brevihamaparvovirus associated with Culiseta specimens. Unfortunately, no new
mesonivirus sequences were identified in all mosquito pools analyzed using the

experimental approach undertaken.

As previously described, an ever-expanding number of ISV sequences available could
greatly contribute, in the future, to a better understanding of how they evolved and
dispersed over time, as well as how they relate and/or what role may they have played in
the evolution of pathogenic arboviruses or even of their hosts. While viral surveys of ISVs
could not be readily perceived as beneficial outside the scope of the scientific community
(since they have little to no direct impacts on public health), attempts should be made to
identify and characterize ISVs alongside the more impactful arboviruses. Indeed,

sequences available today suggest ISVs could exist in multiple, if not most of, countries
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around the world. Even though a mesonivirus sequence was previously identified in a
clone obtained by a colleague in IHMT, following a mosquito viral survey in Algarve,
suggesting mesoniviruses could be spread in mosquitoes from that region, we did not
identify new mesonivirus sequences in mosquitoes collected from Portugal and Angola.
Still, mesoniviruses have already been reported in the past in both Europe (Pettersson et
al., 2019) and Africa (Diagne et al., 2020), so we could expect to identify them soon as

efforts continue to survey their presence around the globe.
= Vertical transmission suggested for ISV

While our virus detection strategies did suggest vertical transmission for ISVs (occurring
in both males and females collected as immature forms), we could not exclude sexual- or
hatchery-associated horizontal transmission since no mosquito eggs were investigated for
the amplification of virus sequences. While vertical transmission seems to be the primary
mode I1SVs explore to ensure their natural maintenance (Vasilakis & Tesh, 2015), rare
cases of horizontal transmission have been reported, including one involving the
Rhopalosiphum padi virus, from the Dicistroviridae family (Bonning & Miller, 2010).
Future studies should be performed to help clarify how ISVs are transmitted and
maintained in nature, which would also be essential when designing future strategies that
might explore ISVs against the dispersal of pathogenic arboviruses using previously

infected invertebrate vectors.
= First extensive genetic characterization for these ISV groups

One may wonder why have such viruses suddenly spiked the interest of the scientific
community, which culminated with our intent to specifically investigate more about these
three specific groups of ISVs? Two main reasons were considered. First, the potential of
ISVs to alter (ideally compromise) the putative vector competence of their insect hosts
regarding the transmission of specific pathogenic arboviruses (explored in Chapter
1.2.3.). This topic has been thoroughly addressed and yielded serendipitous optimistic
results (Laureti et al., 2020). Multiple data obtained regarding the analysis of different
ISVs groups, from their genetic diversity, genome-associated entropy, selective pressure
forces acting on their genomes to the analysis and comparison of genome organizations,
could help us understand the evolution, natural maintenance strategy as well as the

complex interactions these insect viruses establish with their specific hosts. While their
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complex vertebrate host-restriction mechanisms have only been explored for a handful of
viruses (as depicted in Chapter 1.2.2.), these studies are usually accompanied by
systematic reviews of their host range and modes of transmission (Blitvich & Firth, 2015).
On the other hand, genomic data analysis of ISVs has been mainly focused on either
singular newly-found virus (Aedes albopictus brevihamaparvovirus, Chen et al., 2004;
Quang Binh virus, Crabtree et al., 2009; Dianke virus, Diagne et al., 2020) or specific
subsets of viruses (Culex insect-specific flaviviruses, Bittar et al., 2016). Of the three
groups of ISVs we analyzed, which are the most robustly represented at present (i.e., the
ones with the highest number of viral sequences available in public genomic databases),
only in one particular instance (the Mesoniviridae family), has a noteworthy genetic
characterization been performed (Vasilakis et al., 2014). However, that study focused
more on the analysis of genome sequences and their organization, and only 13
mesoniviruses sequences were available at that time, against the 47 sequences we had
available at the start of this PhD project. In the end, we were able to perform a
comprehensive and detailed genetic characterization of all three ISV groups in a wider

scale.

Second, studies have already demonstrated that insect viruses undergo frequent gene loss
or gains, gene change via recombination with gene transfers occurring between viruses,
or even involving their permanent establishment in their host genome as EVEs (Shi et al.,
2016). With multiple studies strongly suggesting RNA viruses found on insects to be
ancestral to those of vertebrates (Marklewitz et al., 2015) and plants (Li et al., 2015),
viruses found within insects could have an important role in other viruses' evolutionary
history. However, no prior studies for either cISF, brevihamaparvovirus or mesonivirus
involving the determination of their ancestral or how they dispersed through time and
space had ever been performed. Therefore, it was one of our aims to analyze the
dispersion history of specific viral taxa through the analysis of their sequences, not before
evaluating to what extent their genomes might have undergone genetic exchange via
recombination. The information we have managed to produce could help us identify and
predict patterns of future dissemination of these viruses and if (and/or how) these viruses
are related to pathogenic arboviruses. If, on the one hand, the data we present in this

Thesis, regarding the analysis of cISF, mesoniviruses and BHPs, adds new knowledge on
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their genetic characteristics, on the other we were also confronted with technical
limitations associated with the data available to date.

= ISV show low diversity and entropy, and mostly evolve under purifying

selection

Interestingly enough, subtle patterns were found in association with the analysis of the
three ISV groups. While their genomic organization is similar to other viruses in the same
respective family (especially when it comes to ORFs that encode products deemed
essential for virus replication), all of them display low genetic diversity, when different
regions of the genome scattered throughout its extension are compared. In phylogenetic
reconstructions, ISVs cluster into robust monophyletic clades, usually with a well-defined
ancestor not directly related to other pathogenic arboviruses. For instance, while all cISF
cluster into a single clade, dhISF cluster among mosquito-borne arboviruses. On the other
hand, while most genus in the Parvoviridae family cluster into multiple monophyletic
clusters close to each other, the Brevihamaparvovirus genus clusters into a singular clade
that is well separated from the remaining parvoviruses. Genetic distance values obtained
also support all these claims.

The analysis of selective pressure forces acting upon viral genomes, be them diversifying,
purifying or neutral, has been fundamental in investigating genomic diversification
(Ghosh & Chakraborty, 2020), and this is especially true in the case of RNA viruses due
to their high potential to rapidly accumulate change which grants them with high
adaptability (Duffy, 2018). Our analyses indicated that in all three ISV groups, purifying
selective pressure has been a major evolutionary drive of virus evolution, in all cases
affecting over 99% of all genome sequences analyzed. Strong purifying forces acting on
both cISF, mosquito mesonivirus and brevihamaparvovirus genomes suggest that, in
general, ISVs seem to be well adapted to their biological niches, to the point where any
amino acid relevant changes could eventually disrupt the balance between high viral
fitness with little-to-no compromise of that of their hosts. Indeed, no serious cytopathic
effects can usually be found when infecting mosquito host cells with most ISVs (Morales-
Betoulle et al., 2008; Wang et al., 2017). This overall tendency to stay the same
(conservation) is also corroborated by low Shannon entropy levels associated with all

three ISV groups. In contrast, positive selection has been key in the evolutionary history
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of closely related pathogenic viruses, like the dengue virus (Edgerton et al., 2021) and
SARS-CoV-2 (Angeletti et al., 2020).

= Recombination events appear to not yet be common amongst ISV

Viral recombination also plays a key role in evolutionary mechanisms of arboviruses,
especially when it comes to host-switching, and is a common event found in some species
of flaviviruses (Norberg et al., 2013), parvoviruses (Lu et al., 2000) and viruses in the
Order Nidovirales (Gorbalenya et al., 2006). However, in the course of our analysis only
one recombination event was described for cISF and mosquito mesoniviruses, and none
were detected for BHP. Strong selective pressure has been suggested to slow down
evolution, especially recombinant-driven evolution (Ueda et al., 2017), which might
suggest ISVs could be in a kind of “neutral” state when it comes to their single tropism
regarding their insect hosts. Host-switching, as defined by their ability to infect/replicate
new host cells, has been linked to not only single specific events, be it either the selection
of specific mutations or the consequences of recombination events, but to numerous other
situations, which would require ISVs to overcome the numerous possible barriers
associated with host-restriction (as explored in Chapter 1.2.2.) that ISVs might need to
overcome in order to expand their host range, especially in what regards their possible
adaptation to the infection of vertebrates. Past studies suggested that dhISF, the ISFs that
are mostly related to the flavivirus vertebrate pathogens, had lost their capacity to infect
vertebrate cells in the past (Nasar et al., 2012). However, recent studies instead suggested
that host range changes from single to multiple tropisms, thanks to the paraphyly of ISFs,
happened at different stages of flaviviruses evolutionary history, and that dhlSFs could
eventually acquire the capacity to become vertebrate pathogens (Ohlund et al., 2019).
This theory, while not yet proved, could eventually be applied to cISF as well. The
possibility that extant arboviruses such as dengue or Zika might have evolved from single
tropism ancestors, restricted to insect hosts in the past, should be evaluated in future
studies. Indeed, a recent study suggested that the diversification of flavivirus sequences,
especially of the replicase complex (NS3 and NS5), is strongly linked to their current
widespread distribution (Caldwell et al., 2022), although more studies are needed to

identify which individual proteins have a bigger role on their adaptation to new hosts.
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Similar cases of host-switching associated with genetic evolution have been reported in
parvoviruses (recent detection of a Ambidensovirus, previously associated with insect
hosts, in vertebrate hosts such as ducks; Canuti et al., 2021). The identification of meso-
like viral sequences (like the one identified on an obligate fungal pathogen, Leveillula
Taurica) also suggests that host range expansion in the Mesoniviridae family could be a
stronger possibility than initially thought. Indeed, these meso-like viral sequences had
significant differences in genomic organization and were identified in phylogenetic
reconstructions not to be closely related neither to mosquito mesoniviruses sequences but
also to other virus families in the Order Nidovirales. Indeed, they instead form a “sister”
clade to the present Mesoniviridae (family) monophyletic clade, which indicates these
sequences might be regarded as a new genus on the Mesoniviridae family or, altogether,
even as a new family. Similar cases can be seen, for example, in the Coronaviridae
family, where coronaviruses with bats and equines as primary hosts share low sequence
identity between them (Woo et al., 2009). In summary, our data suggested that since ISVs
look to be in an advantageous environment with no major repercussion to their insect
hosts (corroborated by evidence of low genetic diversity, strong purifying selection and
little to no evidence of gene loss, gain, or recombination events), along with the
complexity of host restriction barriers, it is unlikely that sudden host range acquisition
will occur, at least if involving only single-site mutations. Instead, it is more plausible
that adaptation to new hosts could be driven by multiple substitution events at specific
sites, linked to high mutation rates and specific substitution events involving the coding
sequence of the VP2 protein, supported the emergence of canine parvoviruses
(Shackelton et al., 2005), or by recombination events between closely-related viruses as
has been suggested as a key event in the emergence of human coronavirus OC43 (Zhang
et al., 2015). Indeed, even though our analysis did not show a pervasive impact of
recombination events in the genomic shaping of the virus under analysis, multiple dual-
infections have already been reported in nature between ISVs and pathogenic arboviruses
(Newman et al., 2011), which could contribute to future genetic exchange between these
entities. We also reported high nucleotide substitution rates in all ISV groups, consistent
with substitution rates already identified in the past for closely-related viruses. Future
studies that specifically identify the key events driving host range expansions could help

to predict early instances of host-switching events in different ISV groups.
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» First phylogeographical analysis, albeit with limitations, of multiple ISV

groups

While our phylodynamics analyses had its clear limitations (as expanded on Chapter 4
and 6), including host-associated, geographic, and temporal biases, some insights could
be provided and serve as base for similar research in the future. The evaluation of
temporal signal and selection of optimal coalescent and demographic dispersal priors for
different ISV groups brought out the importance of all these analyses. While insufficient
temporal data for mesoniviruses spatiotemporal dispersal analysis were mainly attributed
to the poor range of sampling times for existing sequences, we were able to suggest a
recent expansion for all BHP sequences and for different sub-lineages in the cISF
radiation. Still, the uncertainty of all results obtained, mainly the time estimates of
different MRCA and their geographical dispersal were reason for concern. We suggested
this was caused primarily by the number of sequences available in public databases (still
low, some of them consisting of only partial sequences) and also the temporal biases
associated with the recent specimen-collection dates, since ISV detection has only gained
traction in the last two decades. Since the number and nature of ISV sequences available
could affect genetic diversity and genetic evolution analyses, all these observations
should be tested in future research as new sequences become available over time.
However, recent research identified sequence diversity as a key factor in the evaluation
of temporal signal, with a certain amount of evolutionary change needed to provide
acceptable results in a phylodynamic analysis approach (Duchene et al., 2020). Given the
low genetic diversity found for all ISV groups, more time and evolutionary change is
probably needed before a more accurate assessment can be made of how and for how long
these ISV groups have dispersed over time. While we did provide important insight on
the execution of phylodynamic analyses and prior selection of these specific ISV groups,
following the limitations found at this time, we recommend that all steps, including
determination of best performing coalescent and demographic dispersal priors, should be

executed again as more sequences are obtained.

While we did suggest that cISF seem to have dispersed more recently when compared to
other flaviviruses (Chapter 7), these observations could also be negatively impacted by
temporal biases. We suggest a continued monitorization of their expansion conducting

similar approaches in the future as new cISF sequences are available. Nonetheless, we
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did suggest that the expansion of different flaviviruses occurred through independent
evolution of two independent MRCAs, one responsible for the expansion of all cISF
sequences available to date, and a completely different one responsible for the expansion
of all other flaviviruses, including mosquito and tick-borne arboviruses. This seems to
corroborate with previous studies that had suggested that current cISF sequences could
correspond to an ancestral lineage of flaviviruses (Cook et al., 2012). While cISF look to
have expanded in a similar fashion to the pathogenic arboviruses we know today, our data
suggested that these same arboviruses look to have evolved from a different ISF than the

ones we analyzed here, one that eventually evolved and adapted to new hosts.
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Excerpts from methods referenced on Chapter 2 and 3, published as:

Carapeta, S., do Bem, B., McGuinness, J., Esteves, A., Abecasis, A., Lopes, A., de
Matos, A.P., Piedade, J., de Almeida, A.P.G., Parreira, R., 2015. Negeviruses found in
multiple species of mosquitoes from southern Portugal: isolation, genetic diversity, and
replication in insect cell culture. Virology 483, 318-328.
https://doi.org/10.1016/j.virol.2015.04.021

“Mosquito collection and homogenate preparation

Mosquito homogenates were prepared by mechanical disruption of adult specimens using
glass beads, as previously described (Huang et al., 2001), using 1.3 ml of phosphate
buffered saline (PBS) supplemented with 4% of Bovine Serum Albumin (Fraction V;
NZYtech, Lisbon, Portugal). After clarification of the mosquito macerates by
centrifugation at 13,000 x g (4°C for 10 min), supernatants were kept at -80°C until further

use.

Cell culture, and virus isolation, titration, and purification

The C6/36 cell line, established from macerates of Aedes albopictus larvae, was used for
virus isolation. Cells were maintained at 28¢C (in the absence of CO2) in Leibovitz's L-
15 medium (Lonza, Walkersville, MD, USA) supplemented with 10% (v/v) heat-
inactivated fetal bovine serum (FBS) (Lonza, Walkersville, MD, USA), 2 mM L-
glutamine (Gibco BRL, Gaithersburg, MD, USA), 100 U/mL penicillin (Gibco BRL,
Gaithersburg, MD, USA), 100 ug/mL streptomycin (Gibco BRL, Gaithersburg, MD,
USA), and 0.26% (v/v) triptose phosphate broth (AppliChem GmbH, Darmstadt,

Germany).
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Aliquots of clarified mosquito homogenates (approximately 500 pl) were sterilized
through 0.22 um disposable PVDF filters (Millex-GV, Millipore Corp., Bedford, MA,
USA), diluted in an equal volume of PBS, and used to inoculate subconfluent C6/36 cell
monolayers in T25 flasks (Thermo Scientific Nunc, Roskilde, Denmark). After 1 h at
room temperature (allowing for viral adsorption), the inoculum was removed, Leibovitz's
L-15 medium (5% FBS) added, and the cultures incubated at 28 1C for up to a week.
Culture supernatants were collected, after a second- or third-blind passage, depending on
the magnitude of the cytopathic effect (CPE) observed, and stored at -80°C.

Separation of OCFVPT from OCNV (strain 174) (henceforth designated OCNV; see
nomenclature description in the Results section) was carried out by limiting dilution,
starting from a cell supernatant in which both viruses were present at different titers. This
virus stock was serially-diluted, and each dilution used to infect C6/36 cells (as previously
indicated) up to the point where the genome of OCNV, but not that of OCFVPT, could
still be detected in the culture supernatant, by RT-PCR, using NeglF/NegIR and
AcFV11F/AcFV21R primer pairs (Ferreira et al., 2013), respectively. For plaque assay
titration, monolayers of C6/36 cells were inoculated with serial dilutions of virus samples
in PBS. After adsorption for 1 h, cells were covered with 2% Sephadexs G-50 (GE
Healthcare Bio-Sciences AB, Uppsala, Sweden) in Leibovitz's L-15 medium with 2%
FBS, and incubated at 28°C for 48 h. Cells were fixed with 4% formaldehyde in PBS and

stained with 0.1% crystal violet and 1% methanol in PBS, before plaque counting.

Culture supernatants from C6/36 cells harvested 48 h post-infection (p.i.) with OCNV
were clarified by centrifugation at 2000xg for 10 min and the virus was precipitated
overnight at 4°C in the presence of 7% PEG6000 and 2.3% NaCl. The viral particles were
collected by centrifugation (4000xg, 30 min, at 4°C), resuspended in TEN buffer (50 mM
Tris—HCI pH 7.4, 100 mM NaCl, 1 mM EDTA), loaded onto a discontinuous 20—-70%
sucrose gradient, and centrifuged for 1 h at 270,000xg. The virus was collected from the
sucrose interface and subsequently loaded onto an Amicon Ultra centrifugal filter (Merck
Millipore, Billerica, MA, USA) with a 100 kDa cutoff, and centrifuged at 4000xg, at 4°C,

for 15 min.

294



Nucleic acid extraction, purification, amplification, and DNA sequencing

Viral RNA was extracted from 150 ml of either clarified mosquito macerate or culture
supernatant, using the ZR Viral RNA Kit™ (Zymo Research, Irvine, CA, USA) according
to the manufacturer's recommendations. Reverse transcription of viral RNA was carried
out with the Phusion RT-PCR Kit (Thermo Fisher Scientific, Waltham, MA, USA) using
random hexaprimers and 5 ml of the RNA extract. The obtained cDNA served as template
for the amplification of viral sequences using Phusion High-Fidelity DNA Polymerase
(ThermoFisher Scientific, Waltham, MA, USA) or NZYTaq 2x Green Master Mix
(NZYTech, Lisbon, Portugal), and the oligonucleotides listed in Supplementary Table 1.
DNA amplicons were purified with the DNA Clean & Concentrator™-5 (Zymo Research,
Irvine, CA, USA) and directly sequenced. The completion of the viral genomic sequence
was carried out by Rapid Amplification of cDNA Ends (RACE) essentially as described
by Tillett et al., (2000), with modifications suggested by Li et al., (2005). The sequence
of the 5’-end was determined after amplification of viral cDNA using the DT89/R2 and
DT89/R0O primer pairs (Supplementary Table 1) in the 1st and 2nd rounds of PCR,
respectively. Similarly, the 3’-end of the viral genome sequence was completed after
amplification of viral cDNA using the DT89/F9 (1st round) and DT89/raceF (2nd round)
pairs of primers (Supplementary Table 1).

To study the kinetics of viral RNA synthesis, selective strand-specific amplification of
viral RNA was carried out as previously described (Plaskon et al., 2009) on C6/36 cells
subjected to cold-synchronized infection. Virus adsorption was allowed to occur at 4°C
for 1h (m.o.i >410), was followed by thorough wash of cell monolayers with cold PBS,
before shifting to 28 1C for viral replication to occur. Tagged-primers were used to
decrease the chances of false-priming of RNA during RT reactions, which may occur in
the absence of any specific oligonucleotide (Peyrefitte et al., 2003). These primers, to
which a 21-nucleotide (nt.) 50-tag (GGCCGTCATGGTGGCGAATAA) with no known
homology to negevirus sequences was added, are listed in Supplementary Table 1. The
detection of either the (+) or (-) viral strands involved the preparation of strand-specific
cDNA using the tagF174 (- strand) or tagR174 (+ strand) primers, followed by 35 cycles
of conventional PCR amplification (94°C, 30s; 57°C, 30s; 72°C, 45s) using the Tag/R174
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(+ strand) and Tag/F174 (- strand) primer pairs. Alternatively, PCR reactions were carried
out in real-time format in a Rotor-Gene 3000 thermocycler (Corbett Research, St. Neots,
UK), in reaction volumes of 25 ul, using the Maxima SYBR Green qPCR Master Mix
(2X) (Thermo Fisher Scientific, Waltham, MA, USA) and 400 nM of each primer,
allowing for the detection of amplicon synthesis as a function of fluorescence emission
by DNA-bound SYBR Green I. Positive amplification results were defined as those for
which fluorescence intensity increased exponentially over, at least, five consecutive

cycles, with a cycle threshold (Ct) <30.”

Excerpts from methods referenced on Chapter 2 and Chapter 3, published as:

Véazquez, A., Sanchez-Seco, M.-P., Palacios, G., Molero, F., Reyes, N., Ruiz, S.,
Aranda, C., Marqués, E., Escosa, R., Moreno, J., Figuerola, J., Tenorio, A., 2012. Novel
flaviviruses detected in different species of mosquitoes in Spain. Vector-Borne Zoonotic

Dis. 12, 223-229. https://doi.org/10.1089/vbz.2011.0687

“Generic NS5 RT-nested-PCR

Nucleotide sequences of complete NS5 genes of different flaviviruses were obtained from
GenBank (National Institute of Health, Bethesda, MD) and aligned by using the algorithm
Clustal X as implemented in the MEGA 4.0 software (Tamura et al. 2007). Degenerated
primers were designed based on conserved motifs of the NS5 gene; primers selected were
INS5F: 5°9035-GCATCTAYAWCAYNATGGG-90533’, INS5Re: 5’10129-
CCANACNYNRTTCCANAC-101463", 2NS5F: 5’9103-GCNATNTGGTWYATGTGG-
91203” and 2NS5Re: 5’10103- CATRTCTTCNGTNGTCATCC-101223’. Indicated positions
correspond to the sequence of WNV strain NY99-flamingo382-99 (accession number:
AF196835).

Viral RNA was extracted from mosquito pools or cell culture supernatants by using a
QlAamp Viral RNA Mini Kit (QIAGEN). RT-PCR was conducted by using One-Step
RTPCR kit (QIAGEN) using degenerated primer set INS5F/INS5Re. First amplification
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profile was 50°C for 45 min and 95°C 15 min, followed by 40 cycles of 94°C for 1 min,
50°C for 4 min, and 72°C for 1 min, with a final extension for 10 min at 72°C. Second
amplification was carried out in a final volume of 50 puL and contained 5mM MgCl;
(Perkin Elmer-Cetus), 0.1mM of each dNTP (Amersham Pharmacia Biotech), 60 pmol
of each primer, 2.5U of AmpliTag DNA Polymerase (Applied Biosystems), and 1 pL of
the first amplification product. Second amplification profile was 94°C for 5 min, followed
by 40 cycles of 94°C for 1 min, 50°C for 3 min, and 72°C for 1 min, with a final extension
for 10 min at 72°C. The reactions were performed in a Peltier Thermal Cycler (PTC-200;
MJ Research, Watertown). The amplified products were visualized by ethidium bromide
staining after electrophoresis on a 1.5% high-resolution agarose gel (MS8; Hispanlab).”

Excerpts from methods referenced on Chapter 2 and Chapter 3, published as:

Parreira, R., Cook, S., Lopes, A., de Matos, A.P., de Almeida, A.P.G., Piedade, J.,
Esteves, A., 2012. Genetic characterization of an insect-specific flavivirus isolated from
Culex theileri mosquitoes collected in southern Portugal. Virus Res. 167, 152-161.
https://doi.org/10.1016/j.virusres.2012.04.010

“Partial mitochondrial cytochrome ¢ oxidase subunit | (COI) sequences were amplified
from total genomic DNA, extracted from mosquito homogenates with the ZymoBeadTM
Genomic DNA kit (Zymo Research, Irvine, CA), and the PuRe Tag Ready-to-Go PCR
Beads (GE Healthcare, Dornstadt, Germany), using primers and reaction conditions
previously described (Cook et al., 2009; described by Folmer et al., 1994). The obtained
amplicons were purified, cloned in pPGEM®T Easy (Promega, Madison, WI), and

sequenced.”
Primers and reaction conditions described in Parreira et al., 2012, as published in:

Cook, S., Moureau, G., Harbach, R. E., Mukwaya, L., Goodger, K., Ssenfuka, F.,
Gould, E., Holmes, E. C., & de Lamballerie, X. (2009). Isolation of a novel species of
flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito
population in Uganda. Journal of General Virology, 90(11), 2669-2678.
https://doi.org/10.1099/vir.0.014183-0
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“The COl gene was amplified by using primers UEA3 (59-
TATRGCWTTYCCWCGAATAAATAA-39) (Lunt et al.,, 1996) and Flyl0 (59-
ASTGCACTAATCTGCCATATTAG-39) (Sallum et al., 2002) according to Cook et al.
(2006) (hereafter referred to as the ‘Fly’ region). An additional overlapping region, the
‘barcode’ section of the COI gene, was amplified using the primers LCO1490 (59-
GGTCAACAAATCATAAAGATATTGG-39) and HCO2198 (59-
TAAACTTCAGGGTGACCAAAAAATCA-39) [both from Folmer et al. (1994)] with a
primer concentration of 10 mM and reaction conditions of 5 min at 95 uC; 40 cycles of
30 sat 95 uC, 30 s at 48 uC and 45 s at 72 uC; followed by a final extension time of 5
min at 72 uC.”
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