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Global apparent temperature sensitivity of 
terrestrial carbon turnover modulated by 
hydrometeorological factors

Naixin Fan    1,2  , Markus Reichstein    1,3, Sujan Koirala    1, Bernhard Ahrens    1, 
Miguel D. Mahecha    4,5 & Nuno Carvalhais    1,3,6 

The ecosystem carbon turnover time—an emergent ecosystem property 
that partly determines the feedback between the terrestrial carbon cycle 
and climate—is strongly controlled by temperature. However, it remains 
uncertain to what extent hydrometeorological conditions may influence 
the apparent temperature sensitivity of τ, defined as the factor by which 
the carbon turnover time increases with a 10 °C rise in temperature (Q10). 
Here, we investigate the responses of the ecosystem carbon turnover 
to temperature and hydrometeorological factors using an ensemble of 
observation-based global datasets and a global compilation of in situ 
measurements. We find that temperature and hydrometeorology are almost 
equally important in shaping the spatial pattern of ecosystem carbon 
turnover, explaining 60 and 40% of the global variability, respectively. 
Accounting for hydrometeorological effects puts a strong constraint on 
Q10 values with a substantial reduction in magnitude and uncertainties, 
leading Q10 to converge to 1.6 ± 0.1 globally. These findings suggest that 
hydrometeorological conditions modulate the apparent temperature 
sensitivity of terrestrial carbon turnover times, confounding the role  
of temperature in quantifying the response of the carbon cycle to  
climate change.

The net exchange of CO2 between the atmosphere and the terrestrial 
biosphere is determined by carbon uptake via photosynthesis and car-
bon turnover time (τ)1–4. The response of τ to climate change is poorly 
constrained by observations, as reflected by substantial uncertainties 
in current simulations of climate–carbon cycle feedback4–6. One cen-
tral challenge in understanding the feedback between the terrestrial 
carbon cycle and climate is quantifying the temperature sensitivity 
of carbon turnover time in terrestrial ecosystems. Although there is a 
general consensus that temperature is a crucial driver of τ (refs. 2,3,7,8), 
the sensitivity of τ to temperature and its dependence on different 

climate conditions is subject to much debate3,8–10. Previous studies 
showed evidence that the long-term (multi-decadal) apparent tem-
perature sensitivity of terrestrial carbon turnover increases with tem-
perature3. However, this dependency was not found at the ecosystem 
level and at a decadal temporal scale in other studies11,12. Moreover, it 
still remains unclear how changes in hydrometeorological conditions 
may affect the apparent temperature sensitivity of τ since a notable 
spatial correlation between precipitation and τ has been found2. Glob-
ally, hydrometeorological conditions largely determine soil water 
availability and therefore influence the carbon turnover process by 
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Here, a represents the estimated sensitivity of each respective 
climate component and ε is the residual error term. The Q10 values 
are derived from aMAT by applying the definition of Q10 (see Methods). 
We use equation (1) to derive the temperature sensitivity of τ without 
considering the H effect, in contrast with equation (2) in which the H 
effect is accounted for. To satisfy the most important mathematical 
assumption in linear regression—that its deterministic component is a 
linear function of the separate predictors15—we transformed MAP and 
PET into their inverse forms based on the emergent nonlinear patterns 
between τ and MAP and τ and PET (Fig. 1b,c,e,f). Thus, equations (1) and 
(2) are used to assess the H effect on temperature sensitivity, as well as 
the contributions of temperature and H factors to the changes in τ at 
different spatial scales.

The H effect on the apparent Q10 values
Examination of global observational ensemble and site-level τ estima-
tions shows that the sensitivity of τ to temperature is substantially 
constrained by accounting for the H effect. Both the magnitude and 
the uncertainty of Q10 values are substantially reduced while model 
performances increase significantly (Extended Data Table 1) by con-
sidering the H effect globally, resulting in a median Q10 value of 1.6 with 
an interquartile range (IQR) from 1.5 to 1.7 (1.6 ± 0.1), compared with 
2.2 ± 0.2 when the H effect is not considered (Fig. 2). Similar results are 
found with independent site-level data, where Q10 values are reduced 
from 1.9 ± 0.1 to 1.6 ± 0.1 by accounting for the H effect (Fig. 2). Con-
sequently, the global temperature sensitivity of τ is confounded by H 
factors. Our results indicate that both temperature and hydromete-
orological conditions are critical in explaining the spatial variability 
of τ at the global scale. We further investigated potential influences of 
topography, climate seasonality and land use change on the residuals 
of modelled τ. Our results show that these factors play a marginal role 
in explaining the residual patterns of modelled τ at a large spatial scale 
(see Supplementary Information Section 2.2).

In contrast with a previous study3, our results show a much-reduced 
range of Q10 values across global temperature gradients by accounting 
for the H effect, challenging the temperature dependency in spatial 
Q10 patterns (see Supplementary Information Section 3 for details). 
By considering the H effect for the global fitting (via equation (2)), we 
find 66–88% reductions in the range of Q10 values and a change in the 
relationship between log[τ] and temperature from a quadratic to a 
linear function, challenging the Q10 dependence on temperature. This 
is supported by further statistical analysis using different ensemble 
datasets and site-level observations (Extended Data Figs. 3 and 4 and 
Supplementary Information).

Relative importance of temperature and H factors
To quantify the relative importance of temperature and H factors, we 
investigated the relative dominance (RD; see Methods) of each climatic 
factor. Globally, we find that temperature and H factors explain approxi-
mately 60% (RD = ~0.6) and 40% (RD = ~0.4) of the spatial variability of 
τ, respectively. This pattern is consistent across different ensemble 
members, showing an RD of temperature of 0.6 ± 0.1 and of H factors 
of 0.4 ± 0.1, respectively. Similar results are also found at the site level 
(Table 1). Although spatial turnover times have long been thought to be 
dominated by the large spatial gradient of temperature1–3,7, our study 
shows that H factors are almost equally as important as temperature 
in explaining spatial τ variability. These results further suggest that 
abstracting from the effects that H factors have on the variability of τ 
may cause biases in determining a spatial τ–temperature sensitivity.

Roles of climate factors and estimated Q10 values
The RDs of temperature (RDT) and H factors (RDH) are heterogeneous 
across different biomes (see Supplementary Fig. 4.1 for the spatial 
distribution of biomes). Temperature plays a dominant role in tem-
perate grassland (RDT = 72%) and semi-arid grassland (RDT = 57%), 

controlling soil respiration and decomposition processes8,13,14. Cur-
rently, a comprehensive understanding of the climatic controls on the 
long-term temperature sensitivity of τ is still lacking. Here, we contrast 
the spatial responses of τ to large-scale climatic gradients to quantify 
the dominant factors behind the spatial variability in carbon turnover 
times at different spatial scales. We assess the apparent spatial tempera-
ture sensitivity of τ, quantified as the change in turnover time with a 
10 °C rise in temperature under the influence of other environmental 
factors (Q10). The concept of apparent temperature sensitivity is used 
here as contrast to intrinsic temperature sensitivity since, in reality, the 
response of turnover time to temperature is simultaneously affected by 
other environmental changes3,8. Our aim is to quantify the variability 
of Q10 across different terrestrial ecosystems to address the question: 
‘To what extent can hydrometeorological conditions influence the 
temperature sensitivity of τ?’.

Direct determination of the transient response of τ to climate is 
hampered by a lack of long-term dynamical observations of carbon 
storage (including soil and vegetation). An alternative is to infer emer-
gent τ–climate relationships across spatial gradients, since the spatial 
variability of τ reflects long-term accumulated effects of climate, pro-
ductivity, respiration and ecosystem carbon storage2,3. Therefore, we 
note that Q10 in this study represents the climatological temperature 
sensitivity of τ that can be used to diagnose long-term climatic effects 
on carbon turnover times. Using the state-of-the-art observation-based 
ensemble of soil carbon stock (Csoil), vegetation biomass (Cveg), terres-
trial ecosystem respiration (TER) and gross primary production (GPP), 
we estimated τ and its uncertainties in a full factorial way to account 
for the uncertainties originating from different data sources (Extended 
Data Figs. 1 and 2 and Supplementary Information). In a complementary 
approach, we also used a global compilation (over 200 sites) of τ esti-
mates at the site level to estimate Q10 values and quantify the potential 
hydrometeorological effect at the global scale (see Methods).

We analysed each ensemble member of τ estimation indepen-
dently, but in a consistent way at the global, biome and latitudinal level. 
To account for the effect of hydrometeorology on the temperature sen-
sitivity of τ (hereafter, the H effect), we used mean annual precipitation 
(MAP), potential evapotranspiration (PET) and peat soil fraction (PSF) 
to represent different hydrometeorological/hydrological processes 
(hereafter, H factors; see Methods).

Global patterns between τ and climate
Our analysis reveals a contrasting global pattern of τ spatial variabil-
ity correlated with temperature and hydrometeorological variables  
(Fig. 1). We show a strong linear relationship between the global distri-
bution of logarithmic τ (log[τ], base of 10) and temperature (Fig. 1a,d), 
corroborating an emergent τ–temperature sensitivity at the global 
scale. In contrast, we find that log[τ] is inversely related to precipitation 
(log[τ] ~ 1/MAP) and PET (log[τ] ~ 1/PET), as confirmed by the patterns 
derived from both ensemble and site-level τ estimates (Fig. 1b,c,e,f). Fur-
ther analysis shows that there are strong partial correlations between 
τ and H factors when temperature is controlled (see Supplementary 
Information Section 2.1), reflecting the potential controls of water 
availability on τ at the global scale.

To obtain the contributions of temperature and hydrometeoro-
logical conditions to the spatial variability of τ and the Q10 values, we 
decomposed the variability in logarithmic τ of each ensemble member 
at each spatial scale into components that are driven by mean annual 
temperature (MAT) and each of the H factors:

log10 [τ] = aMAT ×MAT + ε (1)

log10 [τ] = aMAT ×MAT + aMAP ×
1

MAP + aPET ×
1
PET + aPSF × PSF + ε

(2)
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whereas it contributes less to the τ variability in tropical forest 
(RDT = 47%), temperate forest (RDT = 48%), wetland (RDT = 48%) and 
cropland (RDT = 35%) ecosystems (Fig. 3a). H factors are dominant 
in boreal forests (RDH = 92%), tundra (RDH = 89%) and tropical savan-
nahs (RDH = 70%) where most of the contribution to the τ variability 
emerges from precipitation and PET patterns, rather than from tem-
perature (Fig. 3a). However, the results in tropical forests and tropical 

savannahs are probably challenged by poor model performances in 
these regions (Supplementary Fig. 4.2), which are associated with a 
low spatial variability in τ and reduced spatial temperature gradients 
(Supplementary Fig. 4.3). The contribution of H factors to the variability 
of τ is also reflected when determining Q10 at the biome level. Figure 3b 
shows that Q10 values are adjusted to higher values in tropical forest, 
whereas they are suppressed in the other ecosystems, especially in 
tundra and boreal forests, by accounting for the H effect. The impor-
tance of the peatland fraction emerges in boreal, tropical and wetland 
ecosystems, as shown by the higher RD of PSF (Fig. 3). The significant 
positive τ–PSF correlations in those biomes (Supplementary Fig. 4.6) 
indicate that the interaction between soil/vegetation dynamics and 
the hydrological cycle can substantially influence carbon turnover 
times at the local scale16,17. Overall, both across-biome variability and 
within-biome uncertainty in Q10 estimates are substantially decreased 
by accounting for H factors: Q10 across biomes reduces from 1.9 ± 0.3 
to 1.4 ± 0.2, while the within-biome uncertainty in τ decreases overall 
by 10% (Fig. 3b). The uncertainties of Q10 estimates are substantially 
reduced in temperate forest (by 27%), boreal forest (by 34%) and  
tundra (by 15%).

In tundra and boreal forests, we observe a linear (negative) 
response of τ to PET, while the temperature sensitivities are strongly 
reduced when accounting for H factors, indicating a dominant role 
of PET in these biomes (Fig. 3a,b). We investigated the potential link 
between τ and PET by analysing the relationship between PET and 
each of the different ecosystem components (see details in Supple-
mentary Information Section 4). We find strong positive correlations 
between carbon fluxes (GPP and TER), vegetation biomass and PET 
while controlling for other climatic factors, whereas no such pattern 
is found between PET and soil carbon stock (Supplementary Figs. 4.7 
and 4.8). This finding indicates that vegetation biomass and GPP (and 
TER) increase with higher PET in tundra and boreal biomes, but that 
the soil carbon stock does not follow that trend. We further show a 
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linear decrease of τ with higher vegetation biomass (Supplementary 
Fig. 4.9), indicating that a faster carbon turnover in response to higher 
PET can possibly be caused by: (1) a priming effect, which would stimu-
late decomposition processes when there are inputs of fresh carbon 
into deeper soil layers18; and (2) an increase in available energy for the 

decomposition of carbon8. However, given the co-variation between 
PET and MAT, especially at high latitudes (Supplementary Fig. 5.4), 
which makes it difficult to fully decouple these factors, the hypotheses 
stand as outstanding questions that need addressing to further grasp 
the effects of future changes in climate on τ.

Table 1 | Comparison of Q10 values and the RD of each climate variable based on ensemble median and site-level data

Data type Q10 (H effect not 
considered)

Q10 (H effect considered) RDMAT (%) RDMAP (%) RDPET (%) RDPeat (%)

Site level 1.92 ± 0.12 1.56 ± 0.12 61.05 ± 14.28 3.90 ± 3.43 26.19 ± 12.22 8.78 ± 6.34

Ensemble 2.17 ± 0.16 1.56 ± 0.06 60.75 ± 11.58 6.80 ± 5.01 31.38 ± 15.05 1.07 ± 1.63

The uncertainty bounds represent the spread (IQR) among all ensemble members (n = 144).
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Our analysis shows large variability in the RD of temperature and 
H factors across latitude (see Methods and Supplementary Informa-
tion Section 5 for details). Consistent with our previous results at the 
biome level, we show that temperature plays a more important role at 
temperate and subtropical latitudes, whereas H factors dominate the τ 
variability at high northern latitudes (>55° N) (Fig. 4a). Compared with 
the pattern at the global scale, the increasing spatial variability in the 
RD at the latitudinal scale indicates a much higher heterogeneity when 
local features are considered. Despite the heterogeneity in the RD of 
temperature and H factors, our analysis reveals highly consistent linear 
τ–temperature patterns across latitude (Fig. 4c, slope = −0.024 ± 0.007) 
as well as an apparent inverse relationship between τ and MAP and τ and 
PET (Fig. 4d,e). The sensitivity of τ to PET increases with higher latitude, 
which is in line with the result of a higher importance of PET at high 
latitudes. Factoring in the contributions of H factors in determining the 
temperature sensitivity of τ results in constrained Q10 values (1.5 ± 0.2), 
in contrast with the Q10 values (1.8 ± 0.3) obtained without considering 
the H effect at the latitudinal level. The H effect on temperature sensi-
tivity is evident, especially at high northern latitudes where Q10 values 
are more constrained than at lower latitudes (Fig. 4b).

Implications for understanding carbon  
cycle–climate feedback
Our results highlight a fundamental yet neglected influence of hydro-
meteorology on the response of carbon turnover times to temperature. 
Supported by a large ensemble of observation-based as well as site-level 
τ estimates, the findings of our study suggest that hydrometeorologi-
cal conditions are almost as important as temperature in shaping the 
spatial variability of carbon turnover times from global to latitudinal 
spatial scales. Despite large spatial variability in the RD of the effects 
of different climate factors on τ, ignoring H factors may render large 
biases and uncertainties when estimating the apparent sensitivity of 
carbon turnover times to temperature. An inclusive approach (that 
is, integrating H factors) yields a strong constraint on Q10 values with 
a substantial decrease in their magnitude and variability, revealing a 
convergence in the response of spatial turnover times to temperature 
when the H effect is considered. Our findings suggest that hydromete-
orological conditions modulate the apparent temperature sensitivity 
of terrestrial carbon turnover times, confounding the role of tempera-
ture in quantifying climate–carbon cycle feedbacks. Ultimately, these 
results emphasize the importance of considering the spatial covariance 
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among climate variables in determining the strength of climate–carbon 
cycle feedback.
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Methods
The ensemble of τ estimation
We used three soil carbon datasets that were derived from upscal-
ing a compilation of worldwide soil profiles using machine learning 
approaches. Note that the soil carbon dataset represents the long-term 
mean status (approximately for the past 50 years) of carbon stocks. We 
also extrapolated the gridded soil data into full soil depth to investigate 
the effect of depth on the climatic sensitivity of τ (ref. 19). Four global 
maps of vegetation biomass stocks (above and below ground), which 
were based on remote-sensing data and in situ inventories, were used to 
account for the carbon in vegetation. We used four sets of mean annual 
TER and GPP datasets based on different setups (remote sensing versus 
remote sensing and climate forcing). The datasets were derived using 
two partitioning methods and multiple machine learning algorithms 
that were trained on the FLUXNET station observations to represent 
fluxes of terrestrial carbon between the biosphere and atmosphere20. 
The combination of all of the above ensemble members yielded 48 
global τ maps at each soil depth (1 m, 2 m and full soil depth; that is, 
144 global τ maps in total).

The SoilGrids dataset21 provides consistent spatial predictions of 
soil carbon stock at depths of 5, 15, 30, 60, 100 and 200 cm at a spatial 
resolution of 250 m. Covariates, including 158 remote-sensing-based 
maps, land cover, long-term climate variables and so on, were used 
in training. Sanderman et al.22 used a method similar to SoilGrids but 
with additional covariates. In addition to geological and climate covari-
ates, the dataset also included land use and forest fraction change. 
The dataset provides carbon stock at soil depths of 0–30, 30–100 and 
100–200 cm at a spatial resolution of 10 km. We also used a soil carbon 
dataset provided by the LandGIS group23. The dataset provides carbon 
stock at depths of 10, 30, 60, 100 and 200 cm. Due the heterogeneity 
of the soil data (for example, different spatial resolutions and soil 
depths), we harmonized all of the soil datasets by extrapolating the 
soil carbon stock to the full soil depth using two ensembles of empirical 
models for circumpolar and non-circumpolar regions, respectively, 
and by aggregating the datasets from the original spatial resolution  
to 0.5° (ref. 19).

Four global vegetation biomass datasets were incorporated in this 
study. We combined the map of Thurner et al.24 and Saatchi et al.25 to 
produce a global map. The carbon stock of the tree stem was estimated 
based on the retrieved growing stock volume and using the BIOMASAR 
algorithm. The total carbon content of the vegetation was derived 
by summing roots, foliage and branches and tree stems. We used an 
updated version of vegetation from Saatchi et al.25, which was derived 
using LiDAR, optical, microwave satellite images and trained on global 
in situ forest inventory plots. The above-ground biomass was obtained 
by extrapolating over the landscape using MODIS and radar imaging. 
The GlobBiomass26 project provides above-ground biomass from a 
growing stock volume that is derived from space-borne backscattered 
intensity images and the BIOMASAR algorithm. We also used the global 
biomass map from Avitabile et al.27 by fusing two maps using independ-
ent reference data from field observations25,28.

We used FLUXCOM global carbon flux datasets, including GPP and 
TER, derived from three machine learning methods and two flux parti-
tioning methods trained on daily carbon flux from over 200 flux tower 
sites using both satellite data and meteorological measurements20. GPP 
and TER were trained separately using three machine learning models 
with two different setups (remote sensing only and meteorological/
climate forcing) as driver data to produce spatiotemporal grids of 
carbon flux. We averaged annual GPP and TER from 2001–2015 to 
derive mean annual maps.

We calculated the carbon turnover times in two different ways:

τ =
Csoil + Cveg

GPP (3)

and

τ =
Csoil + Cveg

TER (4)

Where both calculations are based on the assumption that the influx 
equals the outflux of carbon of the ecosystem (steady-state assump-
tion). Since the GPP and TER products of FLUXCOM were trained inde-
pendently, we used both equations (3) and (4) to estimate τ to better 
quantify the uncertainty that stems from different representations of 
carbon fluxes.

All of the datasets used in this study are harmonized to the same 
geographic coordinate system and spatial resolution of 0.5° using the 
mass conservative aggregation method, which guarantees that the 
carbon stocks of soil and vegetation do not change during aggregation 
from higher to low spatial resolution19. We produced the ensemble of 
144 τ estimations in a full factorial manner by considering all of the 
possible combinations of three soil datasets at three different soil 
depths (1 m, 2 m and full soil depth), four vegetation datasets and four 
carbon flux datasets. This approach allows us to make a comprehensive 
assessment of the uncertainties in τ estimations that stem from differ-
ent components of carbon pools in the whole ecosystem.

Site-level τ database
In this study, we used a site-level global τ database to estimate Q10 values 
and to quantify the potential H effect in parallel with the ensemble of τ 
estimates. At the site level, we estimated τ using in situ measurements 
of the total ecosystem carbon stock (Csoil + Cveg) and TER (equation (4)).

The Global Soil Respiration Database (SRDB)29, downloaded on 
10 December 2020 from https://github.com/bpbond/srdb, was used 
to obtain in situ soil respiration measurements. We also used Global 
Forest Ecosystem Structure and Function Data version 3.1 (GFESF)30 to 
obtain TER in situ measurements (downloaded on 23 December 2020 
from https://daac.ornl.gov/VEGETATION/guides/forest_carbon_flux.
html). For both databases, we only used records that report annual 
TER and have geographic coordinates (longitude and latitude). The 
annual TER values are averaged if there are multiple measurements 
from different years for one site.

To obtain total soil carbon stock at the site level, we used the 
soil profile database provided by the World Soil Information Ser-
vice (WoSIS)31 and Northern Circumpolar Soil Carbon Database 
version 2 (NCSCDv2)32. The WoSIS soil profile database (down-
loaded on 18 December 2020 from https://doi.org/10.17027/
isric-wdcsoils.20190901) contains over 190,000 soil profiles and pro-
vides soil organic carbon density, bulk density and fraction of coarse 
fragments data, which allow us to estimate the soil organic carbon stock 
(SOCS). We used an interpolation method to fill in the missing values of 
organic carbon density. The missing bulk density values are filled using 
median values of the measurements of all soil layers. The missing coarse 
fragments values are filled with zero (assuming no coarse fragment). 
The SOCS for each horizon can then be derived using

SOCS = OC × BD × 100 − CF
100 × h (5)

In the computation, the units of organic carbon density (OC), bulk 
density (BD) and coarse fragments (CF) are %, kg m−3 and %, respec-
tively. The thickness of soil layer h is in metres. Therefore, the unit of 
SOCS is kg m−2. The total soil carbon stock (Csoil) can then be derived by 
summing the SOCS of all soil layers. The NCSCDv2 database directly 
provides Csoil in both soil profile data and gridded data. We searched 
for matching geographic coordinates (latitude and longitude) in TER 
and Csoil databases to find sites with both measurements. We allowed a 
geographic proximity of 0.01° (~1 km) as the buffer to search for match-
ing data points. Some sites in the SRDB report Csoil values retrieved 
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from literature. Note that we do not replace these records with WoSIS 
or NCSCDv2 but use the original values of Csoil for the analysis.

For sites that do not report Cveg, we fill the value with an estima-
tion of Cveg based on satellite retrievals. Here, we use the global map of 
vegetation from Saatchi et al.25, which has the highest spatial resolution 
(0.0083°) among all of the vegetation datasets we used in the study. 
Note that we do not replace the available in situ Cveg measurements 
that are reported in the SRDB and GFESF if both in situ- and remote 
sensing-derived data are available.

In addition to the two previous databases, we also incorporate 
a global network of eddy covariance sites (FLUXNET)33 that provide 
annual TER, Csoil and Cveg measurements. The La Thuile FLUXNET data-
set provides an additional 70 site-level measurements of τ. In total, 
we obtained 233 τ observations derived from different data sources.

At each site, the associated climate variables, including MAT 
and MAP, are retrieved from WorldClim2 high-resolution datasets at 
the same geographic coordinates34. The variable PET for each site is 
retrieved from the Global Aridity Index dataset35,36. The variable PSF 
for each site is retrieved from a global peatland map37.

Exclusion of the data in deserts
We excluded grid cells of arid desert according to the Köppen–Geiger 
climate classification38 BW (arid desert) since the carbon fluxes (GPP 
or TER) in deserts are negligible (close to zero) and therefore lead to 
unrealistic τ values. In total, we excluded ~5% of the global land area 
characterized by arid desert climate.

Climate, hydrometeorological and peatland cover datasets
The WorldClim2 (version 2) MAT, precipitation and long-term mean 
climate seasonality datasets were used in this study34. These climate 
variables were derived by assimilating worldwide ground weather 
station observations and remote-sensing covariates. The spatially 
interpolated gridded climate datasets have a spatial resolution of ~1 km 
and represent the mean climate condition from 1970–2000.

We used the Global Potential Evapotranspiration (Global–PET) 
dataset35,36 to represent the ability of the atmosphere to remove water 
through evapotranspiration processes. The variables that are available 
from the WorldClim2 dataset, including minimum, maximum and 
average temperature, solar radiation, wind speed and water vapour 
pressure, were used in the Penman–Monteith equation to estimate 
PET. The dataset has a spatial resolution of ~1 km.

We used a global peatland map based on a meta-analysis of geo-
spatial information from a variety of sources37. The global peatland 
distribution was derived by combining peatland-specific datasets at 
the global, regional and national level and the distribution of histosols 
derived from Harmonized World Soil Database v1.2, which resulted in 
a fine spatial coverage of PSF.

In this study, we used MAP, PET and PSF to represent different 
aspects of hydrological and hydrometeorological processes. The 
decomposition of ecosystem carbon (therefore τ) is largely affected 
by the soil moisture availability, which is determined by both water 
supply (MAP) and demand (PET). In fact, the ratio between MAP and PET 
is usually used to represent aridity35. In addition, the decomposition of 
soil carbon in peatland ecosystems is largely affected by the saturated 
moisture content due to low-level microbial activity, which can have a 
substantial influence on the temperature sensitivity39.

Topography dataset. The ETOPO1 global topography dataset40 was 
used in this study to investigate potential factors that may affect the 
spatial patterns of carbon turnover. An ETOPO1 relief model was gen-
erated from regional and global digital datasets that integrates land 
topography and ocean bathymetry.

Global land change dataset. We used the datasets of land cover 
change from Song et al.41 to investigate its potential influence on carbon 

turnover. The dataset includes variables such as percentages of tree 
canopy, short vegetation and bare ground, which were derived from 
Advanced Very-High-Resolution Radiometer remote-sensing measure-
ments. The mean land cover change from 1982–2016 was used in this 
study as an explanatory variable in the analysis of linear regression (see 
Supplementary Information Section 2.2).

Derivation of Q10

The traditional definition of Q10 used to describe the temperature 
sensitivity of instantaneous decomposition is as follows:

K (T) = K (Tref)Q
( T−Tref

γ
)

10 (6)

Where K(Tref) is the rate of decomposition at reference temperature Tref 
and K(T) is the rate of decomposition as a function of the environmental 
temperature. The parameters γ = 10 °C and Tref = 15 °C are constants. 
Here, we adapted the conventional concept of Q10 for turnover pro-
cesses by replacing K with turnover time:

K = 1
τ

(7)

Q10 with respect to turnover time then becomes:

τ (Tref) = τ (T)Q
( T−Tref

γ
)

10 (8)

Here, τ is the ecosystem turnover time as a function of temperature 
and τ(Tref) is the reference turnover time at the reference tempera-
ture. We rewrite the equation by taking logarithms on both sides and 
deformation:

Q10 = 10
−10( log[τ]−log[τref ]

T−Tref
) (9)

For each estimate of Q10 at a specific latitude or in a specific biome, 
a corresponding τref is retrieved. Our key assumption is that τref varies in 
space (that is, the reference turnover time variability is dependent on 
biomass, soil substrate availability, biome types and so on). Inferring 
Q10 in space then simplifies to a regression problem, although the form 
of regression may vary:

Q10 = 10−10(
dlog[τ]
dT

) (10)

Previous studies have found both linear and polynomial 
(second-order) relationships between the two variables. We have shown 
that the nonlinearity in the log[τ]–temperature relationship is caused 
by H factors (see Supplementary Information Section 3). By control-
ling the H effect, we have shown a linear function of log[τ] in response 
to temperature H factors supported by statistical analysis. Thus, the 
derivative of log[τ] with respect to temperature can be represented 
by a linear function:

log [τ] = aT + b (11)

Then, Q10 can be expressed as:

Q10 = 10−10a (12)

RDs of temperature and hydrology/hydrometeorology
To obtain RDs of each climate variable, we performed a similar but 
different regression from equation (2): all variables were standardized 
(z score), including logarithmic τ and all four climate variables so that 
each of the variables was centred to a mean value of zero and scaled 
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to have a standard deviation of 1. Following the previous study42, we 
defined the RD of the effect of a climatic component x on the spatial 
variability of τ as the ratio between the mean variance of component x 
and the summed mean variance of all climatic components:

RDx =
μ(σ2 (τxw))

μ (σ2 (τMATw + τMAPw + τPSFw + τAIw ))

Where τxw is the product of a climatic component x (z score) and its 
corresponding coefficient (for example, τMATw  = aMATw  × z score (MAT)). 
The subscript w stands for different moving windows. In the case of 
global-scale analysis, w represents the whole global map (only one 
window). In the case of ecosystem-scale analysis, w represents different 
ecosystems. We calculated the RDs for each ensemble member at all 
spatial scales. The RD was calculated in the same manner across differ-
ent spatial scales.

Moving window analysis
The responses of τ to different climate factors were assessed locally at 
each latitude by performing regression analysis using a 360° (in longi-
tude) by 20° (in latitude) moving window. The 1st and 99th percentiles 
of data in each moving window were excluded to avoid the effect of 
outliers. To test the effect of window size on the results, we used a wide 
range of window sizes to confirm the robustness of our results (see 
details in Supplementary Information Sections 5 and 6).

Data availability
The ensemble τ database that supports the findings of this 
research is available from the data portal (https://doi.org/10.6084/
m9.figshare.21187672.v3). The Köppen–Geiger climate classifica-
tion map is available from http://koeppen-geiger.vu-wien.ac.at/pre-
sent.htm. The WorldClim version 2 climate data are available from 
http://www.worldclim.com/version2. The Global Potential Evapo-
transpiration dataset is available from https://cgiarcsi.community/
data/global-aridity-and-pet-database/#:~:text=The%20Global%20
Potential%20Evapotranspiration%20(Global,PET%20Database%20
is%20available%20here!. The peatland fraction data are available  
from https://peatdatahub.net/. Source data are provided with  
this paper.

Code availability
The code that was used to generate the results in this study is available 
upon reasonable request.
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Extended Data Fig. 1 | Spatial patterns of τ and the uncertainty. Spatial distribution of ensemble median τ (upper) and its relative uncertainty (interquartile range/
mean) across different ensemble members (bottom).
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Extended Data Fig. 2 | Contribution to the τ uncertainty from different ecosystem components. Different color indicates the grid cells where the uncertainty is 
dominated by soil carbon (64.3 % of total land area), GPP/TER (34.4% of total land area) and vegetation carbon (1.3% of total land area), respectively.
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Extended Data Fig. 3 | Comparison between fittings of log (τ) as a function of 
temperature with linear and quadratic models and corresponding Q10 values 
on global scale. Solid black lines represent quadratic fitting curves (log10(τ) 
~ MAT2+MAT) while red lines represent linear fit (log10(τ) ~ MAT). The density 

plot of observational data is overlaid. The embedded smaller figure at the lower 
left corner is Q10 values (derived from quadratic fitting) against temperature. 
Different data is used to estimate τ with two different carbon stocks (Ctotal and 
CHWSD) and two carbon flux products (GPPMODIS and GPPFLUXCOM).
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Extended Data Fig. 4 | The adjusted response of log (τ) to MAT when the 
hydrometeorological effect is controlled in multiple regression models. 
Solid black lines represent quadratic fitting curve (log10(τ) ~ MAT2+MAT+1/
MAP+1/PET+PSF) while red lines represent linear fit (log10(τ) ~ MAT+1/MAP+1/
PET+PSF). The density plot (overlaid) shows the adjusted response of log(τ) to 

MAT when the average conditions of the other predictors are taken into account. 
The embedded smaller figure at the lower left corner is Q10 values (derived 
from quadratic fitting) against temperature. Different data is used to estimate τ 
with two different carbon stocks (Ctotal and CHWSD) and two carbon flux products 
(GPPMODIS and GPPFLUXCOM).
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Extended Data Table 1 | Comparison of model performances between equation (1) (using only T as a predictor) and equation 
(2) (using both T and H factors as predictors) using both global ensemble and site-level datasets
.
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