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Abstract. There is a significant interest to evaluate the occupational
exposure that manufacturing operators are subjected throughout the
working day. The objective evaluation of occupational exposure with
direct measurements and the need for automatic annotation of relevant
events arose. The current work proposes the use of a self similarity ma-
trix (SSM) as a tool to flag events that may be of importance to be
analyzed by ergonomic teams. This way, data directly retrieved from the
work environment will be summarized and segmented into sub-sequences
of interest over a multi-timescale approach. The process occurs under 3
timescale levels: Active working periods, working cycles, and in-cycle ac-
tivities. The novelty function was used to segment non-active and active
working periods with an F1-score of 95%. while the similarity function
was used to correctly segment 98% of working cycle with a duration er-
ror of 6.12%. In addition, this method was extended into examples of
multi time scale segmentation with the intent of providing a summary
of a time series as well as support in data labeling tasks, by means of a
query-by-example process to detect all subsequences.

Keywords: Self-similarity Matrix · Time Series · Industry · Muscu-
loskeletal Disorders, Inertial · Segmentation, · Summarization · Unsu-
pervised · Labeling

1 Introduction

1.1 Work Related Disorders and Risk Evaluation

Musculoskeletal disorders are a broad variety of health conditions that af-
fect the locomotor system. These are usually described by pain and a reduction
of people’s mobility, with some of the more common conditions including os-
teoarthritis, back and neck pain, fractures associated with bone fragility, injuries
and systemic inflammatory conditions such as rheumatoid arthritis.
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The burden of impaired musculoskeletal health can be very deteriorating for
individual human lives. Pain and disability lead to the inability of performing
daily life activities, precluding an active participation in social activities and
possibly limiting the work performance of the population. [6][7] Furthermore
these may also promote various physical and mental comorbidities.[8][9][10]

The present work will target work-related musculoskeletal disorders (WMSDs)
i.e. MSDs which are induced or aggravated by work and the circumstances of
its performance. [11] Workspaces can be pointed out as a significant contributor
to MSDs [12], with the added advantage of being also a controlled environment
that can be adapted towards health policies concentrated on primary preven-
tion. To project a proper intervention for the work-space it is very important
to firs evaluate each separate job-environment relationship. It’s not effective to
design a "one-fits-all" system for different work settings as it requires specific
adaptations designed by trained ergonomist specialists.

In this sense, there have been developed several systems to assess the level
of occupational exposure in each workplace. These techniques fall mostly into
three main categories, which differ from each other depending on the type of data
acquisition method used: (1) Self-report from workers, a protocol that enables
workers to individually provide the data about their personal work experience.
This can be achieved through the use of questionnaires, diaries, personal inter-
views or checklist surveys so that they might be further evaluated by experts;
(2) Observational methods, which consists on the visual surveillance of the work
routine by trained experts, where, conventionally, their metrics are then provided
by pre-designed ergonomic risk assessment sheets; (3) Direct Measurements, that
propose the use of new technologies to retrieve more precise/accurate informa-
tion from the work environment. This is made through the usage of sensors
usually attached to specific subjects performing work routines.

It has been proven, overall, that an ergonomic assessment of the work en-
vironment can indeed reduce the prevalence of MSDs by helping to identify
possible risk factors, and in the interest of this work we’ll argue that there are
also advantages in a transition towards more direct measurement techniques.
As a more objective form of describing the interaction between workers and
the workplace doesn’t suffer from any variability dependent on the worker or
specialist observer, as the "Self-reporting" and "Observational" methodologies
do.

However, despite direct measurements affording a more objective representa-
tion of the reality, it still has limitations regarding greater costs associated with
its implementations and the narrow success on a practical environment. Being
mostly used successfully under controlled simulated laboratories. Another im-
portant concern is its interpretability with the analysis of motion sensors being
complex and requiring specific insights to retrieve relevant knowledge.

1.2 Motivation

The current information era, in conjunction with technological developments,
is promoting a shift in the way industries manage and perform their work. With
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the inclusion of sensing devices, dashboards and machine learning algorithms,
many tasks can be better evaluated with direct quantitative measures. This can
be made for machines to prevent breakdowns and optimize their performance,
but can also be used for humans, namely their occupational health, to pre-
vent work-related disorders. The prevention of work-related disorders implies
a specialized intervention to perform changes in the workplace, the worker’s
training process and/or other organizational strategies. The process of decid-
ing a need for intervention implies a previous risk evaluation of the worker’s
routines. The direct measures from inertial sensors provide relevant information
for a more objective and personalized risk assessment [1]. However, before the
actual ergonomic risk evaluation, a considerable number of steps in preparing
the data are needed. Data preparation is an important part of any analysis
or task that requires further deployment in supervised methods, namely the
time-consumingtime consuming segmentation and labelling process. This is an
impediment that has become extensively common in various types of industries
and social sectors, stalling sometimes further development. As the rate of infor-
mation that we acquire from the world tends to increase there is a greater need
for processes that can automaticaly retrieve useful knowledge from that data, as
people don’t have that same capacity.

Tools capable of segmenting time series to support and ease the labelling
process of motion and posture data are highly valued, since it is a sensitive and
time-consuming process, but highly necessary for the risk analysis and the de-
ployment of semi-supervised and supervised methods [2]. In this case, motion
data in real scenarios are even more complex since it is highly rich and diverse
in behaviors. For instance, although cyclic and repetitive activities performed in
industrial scenarios are mostly consistent from cycle to cycle, perfect conditions
cannot be met all the time. Eventually, the working process can inadvertently
be stopped or delayed. In addition, ergonomic risk assessment methods have to
analyze each working cycle, which means that a previous segmentation of each
one of these instances has to be made. Sub-activities that make the sequence of
actions comprehended in the working cycle can also be sub-segmented for fur-
ther recognition and association with risk measures. For instance, the ergonomist
might have an interest in understanding which actions from the working cycle
have a significant association with a high or low risk measure, to adapt the work-
ing station with intervention strategies that could help prevent future disorders.
Another relevant analysis is the study of changes in the working behavior over
time, since by segmenting the working cycle and its sub-activities, we can com-
pare them over time and perform higher level associations (e.g. how the worker
adjusted his behavior over the morning and afternoon periods).

This work studies the hypothesis of using the Self-Similarity Matrix (SSM),
already applied for audio information retrieval [4], for segmentation and assisted
labeling of time series from inertial motion and postural data of workers in an
assembly line of an automotive industry. Several results are provided showing
the ability of using this method for segmentation tasks, and examples with ex-
ploratory results are given to extend the segmentation power of the method
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for multi time-scale segmentation, summarization and assisted labeling. The
contributions are towards having an unsupervised tool to perform time series
segmentation in multiple and hierarchical time scales that can further be ap-
plied for time series summarization and/or personalized labelling-by-example in
occupational health datasets.

To provide an illustrative example to the reader of our intent, we show a
multi-scale segmentation of an electrocardiogram (ECG) signal with the pro-
posed method in Figure 1.

Fig. 1. Example of a multi time scale segmentation of a simple ECG signal with noise.
The signal is from the Physionet[5]. Each row of signals indicates a smaller time-
scale, zooming-in a specific sub-segment of the previous segmentation. On the right,
an example of how we could summarize the first portion of the signal with this type of
segmentation.

Figure 1 shows three levels of segmentation from higher to lower time scale.
The first is segmented by the novelty function (N1) with a time scale of 4 sec-
onds, which peaks separate clean ECG from noise. The segments of interest can
then be segmented into ECG cycles by the valleys of the similarity function
(S2), calculated with a time scale of 1 second. Finally, inside each cycle, the
most significant sub-segments are each of the P, T waves and QRS complex,
segmented by the novelty function (N3) with a time scale of 0.2 seconds. This
example is illustrative of the goal we want to reach with this work towards a tool
that can perform a meaningful multi time-scale segmentation that contributes
to transform the data into a summary and that can be used to assist the analyst
in performing labelling of the segments identified.



Title Suppressed Due to Excessive Length 5

1.3 Towards Occupational Data Segmentation

This work proposes the usage of the SSM created by a feature-based rep-
resentation of the time series from the worker’s motion while performing tasks.
From this representation, we will present visual evidence of its usage for the
identification of events with ergonomic significance and summarize the working
activity. The summarization process is performed by segmenting the data into
sub-sequences of interest in a multi-timescale approach, as defined below.

1. Active working periods (higher time scale): Active and non-active seg-
ments indicate sub-sequences of the time series where the worker was per-
forming the cyclic working tasks or not doing them, respectively (e.g.: stop
on the working line that leads to a pause in the working activity). In this
work, transitions between active and non-active work periods are made, with
the intent in focusing (zoom-in) our attention to each working cycle;

2. Working cycles (middle time scale): Sub-sequences of highly similar se-
quences of movements that are being repeated in time. This type of seg-
mentation pre-assumes that the time series under analysis will be mostly
(or entirely) defined by the repetition of a motion, which are the examples
of tasks analyzed in this work. Having each working-cycle identified, sub-
activities inside the working cycle can be searched by focusing (zoom-in)
our attention to a single working-cycle sub-sequence;

3. In-cycle activities (lower time scale): A working cycle is structured in a
sequence of sub-activities. The transition between these might be related with
a significant change in the worker’s motion behavior or change in posture.
In this context, what will be intended is to divide the working cycle into
more primitive segments and understand if the segmentation is consistent
over each of the analyzed cycles.

In addition to the several levels of segmentation, we will also provide an
example in how a labelling process can be performed with the same SSM by
means of a query-by-example. This methodology will be exemplified to identify
instant repetitions of a given pre-specified time series’ sub-sequence of the user’s
interest. For example, if the analyst wants to understand the contribution of a
specific segment of the working cycle for the occupational risk, this sub-sequence
could be used as a query to search all the other equal segments. Moreover, current
risk evaluations of occupational exposure are made with the assistance of video.
Such query-by-example methods could be integrated into a video system that
let’s the analyst select an interval of the video that corresponds to a specific
part of a working cycle, and the algorithm segments the remaining other similar
segments. This would increase the speed of analysis and/or labeling process.

The segmentation process proposed will rely in the detection of significant
events in multiple time-scales. These events are the instants in time that segment
any of the aforementioned sub-sequences (1, 2 and 3). This work provides addi-
tional content to previous experiments [3] by (a) improving the detection perfor-
mance of events 1 with the usage of the novelty function, (b) extend the event
detection process to a multi time-scale approach by segmenting sub-activities of
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interest inside a working cycle, and (c) discussing how this method can be used
as a tool to support labelling of time series.

This document is organized by first (1) discussing related work, then (2)
explaining the data we used, (3) describe the proposed methodology, (4) and (5)
demonstrate illustrative examples in occupational inertial data, while discussing
these findings and (6) provide final thoughts regarding this work.

2 Related Work

Processes of computer analysis under acquisitions retrieved from a real work
environment have already been proven to be very useful in the design of eval-
uation tools to facilitate ergonomic studies. Under the work of [13], by firstly
calculating the orientation of anatomical joints, it was possible to design an
adjusted ergonomic risk score. This had the final objective of automatically as-
sessing the operator risk exposure during the work on an assembly line.

In the context of summarizing a work period acquisition by segmenting it
into smaller motion segments, the work of [14,15] has analysed multidimensional
angular joint motion time series with each motion segment being represented
by dynamic model approximations. The segmentation methodology was based
on univariate active forgetting segmentation methods, with a two-step recursive
least square algorithm predicting change points in the dynamic behavior of the
system. The motion data segments are then represented by parameters derivative
from a dynamic model fit, which as the advantage of the features being insensitive
to small-time variations, very common in this type of data, and allows for a
comparison based on a "kinetic energy-like" measure.

Meanwhile [16], in the process of summarizing human motion, temporally
segmented the repetitive human motions, much like we also propose to do. This
work used a time series representation of the joint angle of the subjects. This mo-
tion data was then converted into a generic full-body kinematic model, by using
an unscented Kalman filter, and then retrieved kinematic features by performing
a primary frequency analysis to the transformed data. The data was then seg-
mented by based on the zero crossing of these retrieved features, followed by an
adaptive k-means clustering to identify which segments are repetitions of each
other.

[17] proposed the use of a mask-based Neural Network (NN) capable of ex-
tracting desired patterns of interest from a large time series database, without
the requirement of a predefined template. Validated under electrocardiogram
and human motion signals, this work was an algorithm proposal that could au-
tomatically detect specific patterns in biosignals.

The use of an SSM applied on the analysis of human motion, more specifically
human motion at work, is still a subject with a short exploration in the literature.
However, this work will make the case that it might be a useful tool adapted to
this concern.

Notwithstanding, there has been some works on this subject, with [18] dis-
cussing in much detail a method that relies on a neighborhood graph to partition
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the dataset into 1) distinct activities and 2) motion primitives according to a self-
similar structures. Alternatively, we can also see the matrix profile algorithm[19],
an well established algorithm for an optimized processing of time series, which by
focusing on the similarity join problem can additionally compute the answer to
the time series motif and discord problem. A matrix profile is in a short summery
a “time serie”, whose values are the euclidean distance between a subsequence
and its nearest neighbor. Under this work, its also proven the validity of this
methodology to analyse human motion data.

The use of SSM is a well explored tool for the a rapid analysis of music data.
The reason why this type of database is especially fit for this analysis is that
it is (1) recurrent in nature, (2) complex enough in nature than other types of
processing of the raw data would be demanding enough that converting to a
similarity matrix isn’t as demanding in comparison. Fortunately, these charac-
teristics also apply to our case. We are using inertial data in time series format,
retrieved from various Inertial sensors attached to the subjects’ body, which is
a complex type of data. Besides, it is recurrent in nature, because the tasks
being analysed are cyclic. Therefore, the proposed method is highly inspired
by the same method used in audio signals analysis for audio thumbnailing or
summarization [20].

The developm

3 Dataset Description

3.1 Population

The inertial data available to develop this methodology was acquired in the
context of validating an inertial measuring system that would guarantee access
to direct measures in occupational industrial environments. This system was
previously used to deliver an ergonomic risk assessment based on the angular
information retrieved by the raw data of these sensors [1].

The population in which the system was tested is described in this work [1].
The in-field data used was acquired in an industrial environment from an auto-
motive assembly plant. More specifically, the subjects were working in assembly
tasks and the data was acquired while the subjects were performing the tasks
of a specific workstation. The dataset includes six participants, each monitored
while working at two different workstations. In this scenario, each workstation
has a specific set of tasks that have to be performed by the worker. These tasks
are repeated throughout the working period, being divided into working cycles.

3.2 Instruments and Setup

An inertial measurement unit (IMU) is an electronic device composed in-
ternally by three 3-axial sensors: accelerometer (Acc), gyroscope (Gyro) and
magnetometer (Mag). When attached to strategic points of the human body, it
allows to register that object’s specific force, angular momentum, and position,
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simultaneously. Combined, these provide much information about the movement
and posture of the subject.

In this study data from the dominant upper limb of the subjects was mea-
sured. The system comprehends a set of four 9-DoF IMUs. These were attached
on the upper dominant limb of the subjects, namely:

– IMU 1 posterior side of the hand
– IMU 2 posterior side of the forearm (wrist)
– IMU 3 posterior side of the arm (elbow)
– IMU 4 thorax area

All devices were attached so that the Y-axis was aligned upwards. Figure 2
shows how the sensors were placed on the subjects.

y

xz

Acc

Gyr

Mag

Acc

Gyr

Mag

Acc

Gyr

Mag

Acc

Gyr

Mag

Fig. 2. Schematic of the placement of Inertial sensors, used for the dataset acquisition
protocol. Based on [1] and [3]

.

The signals available for analysis are the 3-axis accelerometer, gyroscope
and magnetometer of all IMUs used, collected with a sampling rate of 100 Hz.
The raw data has all the events described in the ??, namely (1) active working
periods intercalated with non-active working periods; (2) working cycles and (3)
sub-activity segments. For the ground-truth position of these events, all signals
were annotated by means of video-records of the acquisition sessions.

4 Methods

The following section describes the proposed methodologies to detect the var-
ious events of interest for the segmentation process. It will, as such, be structured
as follows:

1. SSM construction
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2. Similarity function
3. Novelty function
4. Sub-sequence search-by-example

, with the first point describing how the SSM is structured such that all the
remaining strategies are capable of finding relevant event types presented in
Section 1.

4.1 SSM construction

Pre-Processing Before any analysis, the data has to be prepared. This includes
tasks such as synchronizing and filtering. The synchronization tends to be an
essential process, as the framework usually involves several sensor devices that
can have divergent internal clocks. The filtering process is also a fundamental
step. In this case, a second-order low pass Butterworth filter of 40 Hz was used
on the inertial data. The choice of this cut frequency was because experimental
studies [21] have already proved that human motion and posture could be well
represented by a frequency up to 20Hz.

Feature Retrieval After all the sensor dimensions have been pre-processed, a
new representation of the dataset is made by applying a moving window func-
tion, which retrieves a set of predefined features of the temporal, statistical and
spectral domain. Extracting relevant features is of great importance to have a
rich characterization of the morphology of each signal [22].

This process has the result of turning a multivariate time series with n di-
mensions and m data points, into a multivariate time series with n× f feature
dimensions and < m number of data points. This is a process of feature retrieval
which doesn’t necessarily reduces the volume of data, but instead tries to reduce
its complexity into simpler components that describe the shape of the data.

This entire process will, of course, be parameterized by the windows length
(Windlen) and an overlapping fraction (Overlapfrac). Both Windlen, Overlapfrac
have a large influence on the results, as they define the time scale at which fea-
tures are extracted and consequently will also define the time resolution of the
SSM. This means that an adjustment of these parameters changes the time di-
mension of the events which are gonna be highlighted. In other words, a larger
Windlen will result in highlighting similarities between longer sub-sequences of
the set of time series, while a shorter Windlen will have the inverse effect. Most
studies in the field of human activity recognition consider the use of 1 to 10 sec-
ond time length windows.[23] However, despite this being a good starting value
in an ergonomic analysis, it is required to consider events along the multiple
time scales, and without any previous information, there cannot be made any
assumptions.

SSM calculation An SSM is a graphical representation of the similarity be-
tween each data sample (or window) and all the remaining samples (or windows)
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in the rest of a time series. This allows to highlight similar and (dis)similar struc-
tures, that can be patterns or dynamic behaviors of the signal.

Obtained the previously described feature matrix

F = (x1, . . . , xn)(n∈N)

, where each coordinate x is also described by a vector of dimensions (m ∈ N).
Then the SSM, used for this work, will have a size n×n, with each of its position
being defined by

SSM(i, j) = s(xi, xj)

Where s(xi, xj) is a distance measure, which takes into account the vector points
xi, xj ∈ X, both of length m and returns a real value, which represents a score
of how closely similar are these two point coordinates.

As such, to build an SSM, it is necessary to define the distance function s,
with the literature on the subject pointing usually to three options: cosine of
the angles, euclidean distance and Kullback Leibler distance. This work chose to
use the first distance function. To calculate it, the feature representation signal
F positions were normalized. Then, the distance function could be described by
the simple inner product between two vectors

s(xi, xj) = ⟨xi, xj⟩

, which means that the SSM can be calculated by the dot product of F and its
transposed [25].

SSM = XTX

4.2 Similarity function

A similarity function Sf is a univariate time serie where each value represents
how different is a specific time instant when compared with the remaining time
series.

Given the SSM, built as described in the previous section, the similarity
functionSf can be calculated by the sum throughout one of the axes of the SSM.

Sf (t) =
n∑

i=0

SSMti

, with n being the length of the SSM. Due to the property of symmetry of the
SSM, this operation can either be applied over the lines or the columns of the
matrix, with the final result being the same Sf . This will then be smoothed to
facilitate the following processing stages.

In a previous work, it was used to search for highly dissimilar sub-sequences
of the signal [3]. In this context, this method was mostly successful in identifying
sub-sequences corresponding to periods of non active work. Therefore, by using
a simple minimal threshold, it was possible to identify these sub-sequences and
remove them from the signal. In addition, the similarity function is useful for
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the segmentation of periodic events, as is exemplified in Figure 1. As the dataset
being observed is only composed by working cycles, periodically repeated along
time, the Sf will approximate to a sinusoidal function. Then, the valleys of Sf

will indicate the time instances where there is a transition between the working
cycles, which also can be identified by a simple valley detection operation.

4.3 Novelty function

The Novelty function Nf is also a univariate time serie calculated from the
processing of the SSM. However, Nf intends to instead provide information on
how much the data within a neighborhood distance to the left of that point
is different from the data within a neighborhood distance to its right. Being
especially relevant in the detection of change points.

When the signal displays a significant change between two states of motion,
the corresponding SSM will display two distinct blocks along the main diagonal.
As such, the novelty function Nf can be calculated by making a checkerboard
kernel convolution centered along the main diagonal. This kernel in its simplest
form can be described as the sum between a kernel that measures coherence and
anti-coherence on either side of the center point. In other words, the first com-
ponent presented in the following equation highlights when the two regions are
homogeneous or coherent within each other. Meanwhile, the second component
will be highlighted whenever these two regions are also similar within each other.
As this last component is negative, the opposite will be expected [25].

KBox =

[
0 1
1 0

]
−

[
1 0
0 1

]
=

[
−1 1
1 −1

]
The resulting novelty function Nf is expected to have higher values of intensity
whenever it is in the middle of two different blocks [25]. The checkboard kernels’
dimension will be defined by (M×M , where M = 2L+1, for L ∈ N. The central
column and central row coordinates of the kernel KBox will have the values of
0, followed by four planes which will either be 1 or -1 according to the same
pattern as previously seen. For example, if L=2, then [25]

KBox =


−1 −1 0 1 1
−1 −1 0 1 1
0 0 0 0 0
1 1 0 −1 −1
1 1 0 −1 −1


The final kernel is then the result of further smoothing by a radially symmetric
Gaussian function (ϕ(s, t)) and normalization (dividing by the sum of all absolute
values of the kernel) [25].

Kcheckerboard(k, l) =
ϕ(s, t) ·KGauss(k, l)∑

k,l∈[−L,L] | KGauss(k, l) |
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The detection of change points is one of the most commonly used techniques
in event detection, as by definition they search time instances that display a
significant change in the properties of the signal. This work intends to take
advantage of this algorithm to also structure the time series into different non
overlapping states. In occupational context, we’ll use this to separate between
active and non-active periods, and also to divide the work cycles into a sequence
of sub-activities.

4.4 Sub-sequences searched-by-example

Another aspect of occupational risk evaluation in industrial scenarios is to
compare the occupational risk of sub-segments of the working cycle during the
working period. This strategy supports professionals in identifying specific se-
quences of sub-activities that occur in-cycle, and search them over the entire set
of working cycles for comparative purposes. In addition, if in need of labeling the
data, this method can be quite fruitful as it searches for the exact sub-sequence
match in the matrix. In addition, this process does not match the shape but
rather the sub-diagonal of the matrix, that is, being the sub-diagonal one cycle,
we are matching the exact portion of the cycle being used as an example.

The search procedure is made with an example that is a sub-sequence of
interest in the signal. The search procedure works by sliding the selected example
along the SSM. The distance, D, between the example and the segments it slides
over is calculated as the sum of absolute differences:

D(x) =

x=M∑
x=0

√
(SSM(x)− SSMt)2 (1)

where SSM(x) is the segment of the SSM over which the example, SSMt, slides
at moment x, starting from 0 to the size of the SSM, M . The resulting function
has valleys at the instants where the example matches.

4.5 Illustrative Example

Figure 3 shows an SSM representation of the set of inertial signals acquired
while a worker was performing 2 different workstations (A and C). The SSM
also shows an interruption in the working line (B). With this illustration, we
can highlight which structures are mainly present in the SSM, namely blocks
and parallel sub-diagonals. The first indicates transitions between homogeneous
blocks and can be detected by the novelty function. The second indicates pres-
ence of periodicity or cyclic behavior, which can be detected with the similarity
function. In the next section, these functions will be used in examples of signals
from the manufacturing scenario to provide evidence of applying this method-
ology to perform the segmentation of time series and possible applicability in
summarization and labeling.

The methods explained in this section are deeply inspired by the work from
Meinard Müller in the context of information retrieval from audio records [4][24].
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Fig. 3. At the left is the SSM designed from the signals acquired while an operator
was performing 2 different workstations. At the right is a simplification of the original
SSM, with highlights on the main structures present (Blocks and Diagonals). A being
workstation 1 and C workstation2. B is the interruption in the working line.[3]

We performed the SSM calculation and novelty searched by means of the avail-
able libfmp python library [20] [25] [26].

5 Results and Discussion

The following section delivers the results obtained by applying the aforemen-
tioned methodologies to demonstrate the validity of the proposed objectives. As
presented as an introductory simple example in Figure 1, we can use the nov-
elty function to segment homogeneous sub-sequences of the time series, and the
similarity function to identify periodic segments. With this in mind, we will now
demonstrate the application to more complex scenarios, such as motion data in
industrial settings, for time series segmentation, summarization and labeling.

The proposed method is applied in real motion data from an industrial setting
to perform the (1) detection of active working periods and (2) segmentation of
working cycles. In addition, it provides examples to use these methods to perform
a multi timescale analysis and summarization of the data, as well as how this
can support a labeling process.

5.1 Active Working Periods Segmentation

In order to detect the transition between active and non-active work we used
the novelty function Nf . This function will display peaks in sections where there
is a transition between coherent blocks. To identify these transitions we applied
a smoothing and peak detection technique to the Nf .
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N_f

Fig. 4. Schematic of active working period detection, by means of a novelty function.
Each image represents a peak detection process. From the top to the bottom, the first
step represents the x coordinate of the hand accelerometer during the (Opr4 Wkst1)
acquisition. The following images represent the respective SSM and Nf , as labeled. The
active and non active work periods are accordingly represented with the acronyms of
AW and NAW at the top of the image [3]

Considering the example provided by Figure 5.1. This signal can visibly high-
light the time instances where the SSM transitions from high valued, squared,
and homogeneous blocks, which represent periods of non-active work, to blocks
with several parallel sub-diagonals, equally spaced, which represent the periods
of active work.

The measurements of the algorithm’s performance are summarized in table
1. This analysis was made to understand how close were the events identified
by the algorithm to the manually annotated labels. For this, we used Precision,
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Recall and the Fn-score (with the TP annotations having a tolerance of 50s),
and how much time distance existed between the identified event and those
labelled annotations (Mean absolute error measured in seconds). From table 1,
it is possible to see that 4 of the 7 samples had the perfect score measurements,
detecting every single intended event without any false classification. From the
remaining 3 samples, the false classifications were all False Positives, which, in
this context, are more affordable when compared to False Negative classifications.
There is given a greater significance on the measurement of R against P, because
a presence of FP could be noticed in a further analysis of the results, as, after all,
the motivation of this work is to serve as a support for the analysis of ergonomic
data.

Moreover, the identified FP events just tended to divide the non active work
states into various sub-states. Something understandable as there might be a
more complex motion description within these time instances, which wasn’t con-
sidered for the context of this work. However, this is a manageable error, as long
as there is still a clear segmentation between the active work time periods from
the remaining time series, the segmentation of the non-active work is irrelevant
for the context of this problem.

The increase in the MAE value is associated with the several smoothing
processes applied over the methodology, that distanced the events from their
ground annotations. However, when considering that the active work period
tended to be about 1169.11 s and even the smaller states tended to be of 128.52s.
These MAE values (within 8.38 - 11.87 s), although significant, correspond to a
small percentage of the time.

Table 1. Results of type event 1 (work period transition), discriminated per time serie
samples. Measurements of Precision (P), Recall (R), Fn-score(F) and mean absolute
error(MAE), of each according sample.

TS sample P R F MAE (s)
Opr 1 Wkst1 0,78 1 0,88 11,87
Opr1 Wkst2 1 1 1 34,77
Opr2 Wkst1&2 0,86 1 0,92 10,17
Opr3 Wkst1 0,80 1 0,89 3,21
Opr4 Wkst1 1 1 1 8,83
Opr5 Wkst1 1 1 1 8,54
Opr5 Wkst2 1 1 1 8,38

Overall, this process was successful without the necessity of a very intense
search, and by performing a simple manual selection of the parameters, most
events were able to be detected.
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5.2 Working Cycles Segmentation

Much like the work on [3] the best methodology for the segmentation between
cycles is the retrieval of the Sf followed by a smoothing and valley detection
operation of this signal.

Considering the example provided in figure 5.2, we can see that the similar-
ity function will consistently segment the dataset into positions very close to the
annotated ones. Despite usually having a minor delay, the events tend to main-
tain that delay constantly across the entire time series. The reasoning for this is
because the algorithm is unsupervised, it does not have a reference of where the
cycle has the ”real” start. As such the algorithm will take into consideration the
beginning of the data as a reference, which might not be the same precise in-
stant when the operator starts the work cycle. This does not make the detection
necessarily incorrect, as long as the following cycles are also segmented in the
same transition point, it can be considered a work cycle motif. This consideration
means that the assessment will insist more on the question of the consistency of
the detections made rather than on how close they are to the labeled positions.

Fig. 5. Schematic of active working period detection, by means of a novelty function.
Each image represents a peak detection process. From the top to the bottom, the first
step represents the x coordinate of the hand accelerometer during the (Opr4 Wkst1)
acquisition. The following images represent the respective SSM and Nf , as labeled. The
active and non active work periods are accordingly represented with the acronyms of
AW and NAW at the top of the image [3]

As such, the following metrics will insist on two points: 1) Number of cy-
cles detected 2) consistency of duration of the detected cycles. The last point
is described by the mean absolute error between the duration of the ground
truth segmentation cycles and the algorithms’ segmentation cycles, described
by DE (Duration). In the work of 2 the results of the proposed algorithm were
also compared with a more well established technique proven to work in similar
problems, the Matrix Profile.

Overall, the measures considered for this analysis demonstrate the ability
to identify working cycles with good accuracy. Almost all the work cycles of
interest were detected, as, within the 157 ground annotation cycles, 154 cycles
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Table 2. Detected cycles and DE results of the detection of working period events
detection, under an occupational context, with the results being separated according
with two different methodologies with the SSM being the technique based on the anal-
ysis of the similarity function Sf , presented in this work, while the other is the Matrix
Profile algorithm

Signal SSM Matrix Profile
Detected Cycles Duration Error Detected Cycles Duration Error

Opr1 Wkst1 11/11 3.26s (3.04%) 11/11 11.08s (10.34%)
Opr1 Wkst2 14/15 16.97s (15.83%) 14/15 8.09s (7.55%)
Opr2 Wkst1 14/14 6.45s (6.40%) 14/14 6.74s (6.70%)
Opr2 Wkst2 11/11 8.48s (8.62%) 11/11 11.2s (11.39%)
Opr3 Wkst1 16/16 12.35s (11.79%) 16/16 7.39s (7.05%)
Opr3 Wkst2 13/13 8.81s (8.25%) 12/13 11.41s (10.68%)
Opr4 Wkst1 14/14 1.05s (0.4%) 14/14 8.72s (8.24%)
Opr4 Wkst2 11/11 3.42s (3.32%) 10/11 4.9s (4.75%)
Opr5 Wkst1 12/12 2.83s (2.85%) 11/12 5.39s (5.43%)
Opr5 Wkst2 10/11 3.47s (3.45%) 10/11 6.7s (6.69%)
Opr6 Wkst1 14/15 3.79s (3.74%) 15/15 7.25s(7.15%)
Opr6 Wkst2 14/15 5.79s (5.73%) 15/15 6.13s (6.06%)

Total 154/157 6.12% 153/157 7.6%

were detected. The duration error was mostly good with an average value of
6.12% of the working cycle, but still significantly high in some cases (2 and 5).
When compared with the MP, the results are comparable. To be clear, we are
not trying to say if our algorithm is better or worse than the MP, but simply to
have a standard measure of reference to compare with.

5.3 Towards multi time-scale Segmentation

In the two previous sections, we highlighted the ability to perform the seg-
mentation of time series based on novelty, while also being able to segment sub-
sequences of cyclic nature. Now, we intended to extend the usage of the SSM to
show how it could be used in an iterative segmentation over multiple timescales,
successively over smaller previously segmented sub-sequences. Considering the
previously detection of AW as the high level, and the segmented working cycles
as the middle level, this next section devotes its attention to analyse in-cycle
detection.

Considering the scenario of occupational health, we are dealing with a multi-
dimensional dataset with some variability in the worker’s motion, which means
that each working cycle might be relatively different. Still, the sequence of in-
cycle activities are the same, with small variations. Using the novelty function
with a smaller time scale, we segmented several working cycles of one subject
to present as an exploratory example of a lower-scale segmentation. The SSM
was calculated for each previously segmented working cycle, with a time scale
of 2.5 seconds. In Figure 6, we present the corresponding novelty functions for
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3 working cycles (C1, C2 and C3 ), highlighting their peaks as the segmentation
instants.

Firstly, the image shows us that the inertial signals are mostly consistent over
working cycles. There are small variations, but the significant changes occur in
the same sequence. As the novelty function highlights instants where a change
is significant, we expected its peaks to be related to a significant change in the
posture/motion of the worker.

In a first inspection, we can see that the peaks of the novelty functions
for all cycles match a significant change in the group of inertial signals from
which the SSM was built. Matching the peaks with a video inspection, we were
able to associate the changes with what happened in the video. The caption of
Figure 6 indicates the list of activities. In general, these changes are related to a
transition between homogeneous blocks of posture/motion, that is, sub-activities
that have a certain pattern and are shifted to another sub-activity by a change
of motion/posture. For instance, block C indicates a quick motion to a new
position to perform a set of tasks with tool1. There are also obvious symmetric
behaviors that are segmented, such as I, J and K, where the subject positions
piece1 (I), works on a static posture (J) and unfits piece1. These actions are well
separated in all exemplified cycles.

These are still very preliminary results in a first exploratory experiment on
motion data, but we believe that this method, already used in audio thumb-
nailling (technically summarization), is worth exploring in other types of data
for the problematic of time series segmentation and summarization. In addition,
we also show that this method is worth exploring in a multi time-scale segmen-
tation process, with simple ECG data (from Figure 1), but also in more complex
data, such as motion and posture.

The importance of summarizing the data is in the way we can then represent
the signal in a higher levelled representation. As an example, Figure 6.right
shows the length of each sub-activity segmented for each cycle. This type of
visual summary gives the analyst a quicker form of getting feedback from the
data. Besides, if integrated into an interactive platform, it can provide valuable
interactive power.

5.4 Labeling with query-by-example

Finally, the last scenario focuses on demonstrating the possibility of perform-
ing labeling by querying an example along the SSM. Figure 7 exemplifies a case
where we are trying to label 3 different segments from a working cycle. The seg-
ments are highlighted as A, B and C. Applying the distance measure across the
signal results in the signals DA, DBandDC . These distances show how well the
valleys (minimal distance) indicate the match with the example. Performing the
match along the sub-diagonals of the SSM, it is not distracted by similar shapes,
but rather by the exact moment the pattern occurs in the working cycle. This
method can be used assigned with a label, to semi-automatically label segments
of a working cycle, such as A, B and C.
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Fig. 6. Example of an in-cycle segmentation of sub-activities of a worker. There are
3 cycles (C1, C2 and C3. For each, the corresponding set of inertial signals and the
resulting novelty function are presented. The list of activities are labelled from A to O,
as follows: A - stretching arms to the top and slowly pulling an object; B - adjusting
the object to be fixed on the car; C - picking tool1 and using it on the side of the car;
D - moving to the front of the car and use tool1; E - move back to the side and leave
tool1; F - perform inverse sub-activity of A; G - walk away from the car; H - walk back
to the front of the car; I - Fit piece1 on the car; J - use tool2; K - unfit piece1 from the
car; L - walks away from the car; M - drops tools and pieces; N - moves back to the
initial position; O - waits for the next cycle.
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Fig. 7. Query-by-example on the SSM. Segments A, B and C are used as examples by
being selected on the SSM columns. The resulting distance functions (DA, DBandDC)
show the ability of this method to find the starting point. The signal is only illustrative,
as all the signals available were used to build the SSM.

6 Conclusions

One of the objectives of this work was to demonstrate the relevance of retriev-
ing events through the usage of an unsupervised method, for posterior ergonomic
analysis. In this sense, the methods were able to structure the time series under
different levels of abstraction. Firstly, by detecting the sub-sequences of actual
active work movement, then by segmenting the various work cycles, and in the
end, by summarizing the work cycle into smaller primitive structures, different
from each other. Then it also provided a tool to further detect new instances of
an user-defined query.

This methodology shows promise in doing so, as when the events of “Ac-
tive Working Periods Segmentation” and “Working Cycles Segmentation” were
compared with manually labelled annotations they were proven to be mostly
all detected. Moreover, when calculating the error duration between the events
detected and the annotation these were noticed to be rather short and of little
variation. On the other hand, the remaining events were proven by comparison
to provide useful and valid information about the work period motion. The most
significant utility provided by this algorithm is the automation of processes re-
lated to the identification of periods of relevance, segmentation of the signal,
and further identification of periodic regions. Moreover, the proposed analysis
by means of the SSM seems to be a promising approach with the potential to
be expanded upon.

The empirical results reported herein should be considered in light of some
limitations. The process of feature retrieval is especially time demanding, and the
construction of entire SSMs for each time series might become too demanding
for the storage capabilities. These were concerns that were not noticeable for the
dimension of the provided data, which described a short work period extension,
but it might become too demanding for acquisitions of entire days. These are
points should be further investigated in future research works.
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